高一数学上学期期中试卷-5(附答案)
2023-2024学年高一(上)期中数学试卷(带解析)
2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。
高一年级第一学期期中考试数学试卷及其参考答案
高一年级第一学期期中考试数学试卷(基础模块第一章、第二章)一、选择题(每小题5分,共60分)1.下列表示正确的是().A.{ 0 }=∅B.{全体实数}=RC.{ a }∈{a,b,c } D.{ x∈R∣x2+1=0 }=∅2.已知全集U={ 0,1,2,3,4,5},集合A={1,2,5},B={2,3,4},则(U C A)B=().A.{2}B.{0,2,3,4}C.{3,4}D.{1,2,3,4,5}3.已知A={ (x,y) | 2x-y=0 },B={ (x,y) | 3x+2y=7 },则A B=().A.{(2,1)}B.{1,2}C.{(1,2)}D.{x=1,y=2}4.设A={ x | 0< x < 1 },B={ x | x < a } ,若A⊆B,则a的取值范围是().A.[1,+∞) B.(-∞,0]C.[0,+∞)D.(-∞,1]5.已知集合A={ x | x2+14= 0 },若A∩R =∅,则实数m的取值范围是().A.m<1B.m≥1C.0<m<1D.0≤m<16.“A⊆B”是“A B=A”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.不等式21-+xx≤0的解集为().A.{ x | x≥2}B.{ x | x≥2或x<-1 }C.{ x|-1<x≤2 }D.{x| x≥2或x≤-1 }8.已知a<b<0,c>0,那么().A.a2<b2B.a b<1C.ca<cb D.ca>cb9.绝对值不等式| 2x-3 |<5的解集是().A.{ x | x<-1或x>4 }B.{ x |-1<x<4 }C.{ x | x<-1 }D.{ x | x>4 }10.与不等式-x2-2x+3>0同解的不等式(组)是().A. x2+2x-3>0B. (x+3)(x-1)<0C.x+3>0x-1D.x+3<0x-1>0⎧⎨⎩a 、b 、c 的大小顺序是( ). A.a>b>c B.c>b>a C.b>a>c D.a>c>b12.若实数0<a <1,则)0>1(a-x)(x-a的解集为( ). A.{ x |1<x<a a } B.{ x | 1<<a x a} C.{ x | 1< >x a 或x a } D.{ x | 1<a >x 或x a}二、填空题(每小题4分,共16分)13.设全集U={ 1,2,3,4,5 },A={ 2,5 },则U C A 的所有子集的个数为 _________. 14.符合条件{a}⊆M {a,c,d}的集合M的个数是 _________.15.设a,b为实数,则“a2=b2”是“a=b”的 _________条件.(填充分或必要)16.不等式2+2m x x+n>0的解集是(11,32-),则不等式2-nx +2x-m >0的解集是 _________.三、解答题(共74分,解答应写出文字说明及演算步骤) 17.已知U={ x |-2<x<7 ,x ∈N },A={ 1,2,4 },B={ 2,3,5}.求: ⑴ A U B ;⑵ A B ;⑶ B C C U U A;⑷ B C C U U A .(12分)18.若集合A={ x | mx 2+2x -1 = 0 , m ∈R , x ∈R }中有且仅有一个元素,那么m 的值是多少?(12分)19.设集合A={ x | x 2-3x +2 = 0 },B = { x | x 2+2(a +1)x +(a 2-5) = 0 },若A B = { 2 },求实数a的值.(12分) 20.解不等式x+23-x≤1.(12分) 21.设全集为R ,A={ x | |x-1|<3 },B={ x | x 2-x -2≥0 },求A B ,A U B ,A CB .(12分)22.已知集合A={ x | x 2-x -12 ≤0 },集合B={ x | m -1≤x ≤2m +3 },若A U B=A ,求实数m 的取值范围.(14分)高一年级第一学期期中考试数学试卷参考答案二、填空题(每小题4分,共16分)13、 8 14、 3 15、 必要 16、 (-2,3)三、解答题:(22题14分,17~21题每题12分,共计74分)17.解:U={ 0,1,2,3,4,5,6 }. ⑴A U B={1,2,3,4,5}.⑵A B={2}.⑶B C C U U A ={ 0,3,5,6 }U { 0,1,4,6 }={ 0,1,3,4,5,6, }. ⑷ B C C U U A={ 0,3,5,6 } { 0,1,4,6 }={ 0,6 }.18. 解:当m=0时, A=12⎧⎫⎨⎬⎩⎭,符合题意.当m ≠0时,要使集合A 中有且仅有一个元素,必须 方程mx 2+2x -1 = 0有两个相等实数根, ∴ 2∆=2+4m =0, 即m=-1,综上所述,m=0或m=-1. 19. 解:A={ 1,2 }∵ A B={ 2 }, ∴ 2 B, ∴ 2是方程x 2+2(a +1)x +(a 2-5) = 0的根,把x=2代入此方程得2a +4a+3=0, ∴ a=-1或a=-3, 当a=-1时,B={ -2,2 }, A B={ 2 },符合题意. 当a=-3时,B={ 2 }, A B={ 2 },符合题意. 综上所述,a 的值为-1或3. 20. 解:原不等式⇔x+2-13-x ≤0⇔x+2-(3-x)3-x ≤0⇔2x-13-x≤0 ⇔2x-1x-3≥00≠⎧⇔⎨⎩x-3(2x-1)(x-3)≥012⇔x ≤或x>3, ∴ 解集为12{x |x ≤或x>3}. 21. 解:解|x-1|<3得-2<x<4, 故A=(-2,4).解x 2-x -2≥0得x ≤-1或x ≥2, 故B=(-∞,-1]∪[2,+∞).∴ A B=(-2,-1]∪[2,4),A U B=R,A C B=(-2,4) (-1,2)=(-1,2).22.解: 解x2-x-12 ≤0得-3≤x≤4, 故A=[-3,4],由A U B=A,知B A,∴⎧⎪⎨⎪⎩m-1≤2m+3,m-1≥-3,2m+3≤4,即12⎧⎪⎪⎨⎪⎪⎩m≥-4,m≥-2,m≤,∴ -2≤m≤12.。
浙江省宁波2023-2024学年高一上学期期中考试数学试卷含答案
浙江省宁波2023-2024学年高一上学期期中考试数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每个题给出的四个选项中,只有一项是符合题目要求的.(答案在最后)1.已知集合{||11},{14}A x x B x x =-<=≤≤∣∣,则A B = ()A.{12}x x <<∣B.{12}xx ≤<∣C .{04}xx <<∣ D.{04}xx <≤∣【答案】B 【解析】【分析】先求集合A ,再根据交集运算求解即可.【详解】由题意,因为集合{|02},{|14}A x x B x x =<<=≤≤所以{|12}A B x x =≤< .故选:B.2.已知命题2000:1,0p x x x ∃≥-<,则命题p 的否定为()A.200010x ,x x ∃≥-≥ B.200010x ,x x ∃<-≥C.210x ,x x ∀<-≥ D.210x ,x x ∀≥-≥【答案】D 【解析】【分析】根据存在量词命题的否定方法对命题p 否定即可.【详解】由命题否定的定义可知,命题2000:1,0p x x x ∃≥-<的否定是:210x ,x x ∀≥-≥.故选:D.3.对于实数a ,b ,c ,下列结论中正确的是()A.若a b >,则22>ac bcB.若>>0a b ,则11>a bC.若<<0a b ,则<a b b aD.若a b >,11>a b,则<0ab 【答案】D 【解析】【分析】由不等式的性质逐一判断.【详解】解:对于A :0c =时,不成立,A 错误;对于B :若>>0a b ,则11<a b,B 错误;对于C :令2,a =-1b =-,代入不成立,C 错误;对于D :若a b >,11>a b,则0a >,0b <,则<0ab ,D 正确;故选:D .4.已知0x 是函数1()33xf x x ⎛⎫=-+ ⎪⎝⎭的一个零点,则0x ∈()A.(1,2)B.(2,3)C.(3,4)D.(4,5)【答案】C 【解析】【分析】根据题意,由条件可得函数单调递减,再由零点存在定理即可得到结果.【详解】根据题意知函数1()3xf x ⎛⎫= ⎪⎝⎭在区间1,+∞上单调递减,函数()3f x x =-+在区间()1,∞+单调递减,故函数1()33xf x x ⎛⎫=-+ ⎪⎝⎭在区间1,+∞上单调递减,又因1>2>3>0,4<0,又因()133xf x x ⎛⎫=-+ ⎪⎝⎭在()1,∞+上是连续不中断的,所以根据零点存在定理即可得知存在()03,4x ∈使得()00f x =.故选:C5.“2a ≤”是“函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】A 【解析】【分析】根据复合函数的单调性求函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增的等价条件,在结合充分条件、必要条件的定义判断即可.【详解】二次函数21y x ax =-+图象的对称轴为2a x =,若函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增,根据复合函数的单调性可得2≤24−2+1>0,即52a <,若2a ≤,则52a <,但是52a <,2a ≤不一定成立,故“2a ≤”是“函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增”的充分不必要条件.故选:A 6.函数22()1xf x x =+的图象大致是()A. B.C. D.【答案】D 【解析】【分析】首先判断函数的奇偶性,即可判断A 、B ,再根据0x >时函数值的特征排除C.【详解】函数22()1x f x x =+的定义域为R ,且()()2222()11x x f x f x x x --==-=-+-+,所以22()1xf x x =+为奇函数,函数图象关于原点对称,故排除A 、B ;又当0x >时()0f x >,故排除C.故选:D7.已知42log 3x =,9log 16y =,5log 4z =,则x ,y ,z 的大小关系为()A.y x z >>B.z x y >>C.x y z >>D.y z x>>【答案】C 【解析】【分析】利用对数运算法则以及对数函数单调性可限定出x ,y ,z 的取自范围,即可得出结论.【详解】根据题意可得2222log 3log 3x ==,2233log 4log 4y ==,5log 4z =利用对数函数单调性可知32223log 3log log log 22x ===,即32x >;又323333331log 3log 4log log log 32y ====<,可得312y <<;而55log 4log 51z ==<,即1z <;综上可得x y z >>.故选:C8.已知函数323log ,03()1024,3x x f x x x x ⎧<≤=⎨-+>⎩,若方程()f x m =有四个不同的实根()12341234,,,x x x x x x x x <<<,则()()3412344x x x x x --的取值范围是()A.(0,1)B.(1,0)- C.(4,2)- D.(2,0]-【答案】B 【解析】【分析】根据图象分析可得121x x =,()()343410,3,4,6,7x x x x +=∈∈,整理得3431233(4)(4)2410x x x x x x x ⎛⎫--=-++ ⎪⎝⎭,结合对勾函数运算求解.【详解】因为op =3log 3,0<≤32−10+24,>3,当3x >时()22()102451f x x x x =-+=--,可知其对称轴为5x =,令210240x x -+=,解得4x =或6x =;令210243x x -+=,解得3x =或7x =;当03x <≤时3()3log f x x =,令33log 3x =,解得13x =或3x=,作出函数=的图象,如图所示,若方程()f x m =有四个不同的实根12341234,,,()x x x x x x x x <<<,即()y f x =与y m =有四个不同的交点,交点横坐标依次为12341234,,,()x x x x x x x x <<<,则12341134673x x x x <<<<<<<<<,对于12,x x ,则3132log log x x =,可得3132312log log log 0x x x x +==,所以121x x =;对于34,x x ,则()()343410,3,4,6,7x x x x +=∈∈,可得4310x x =-;所以()()3434333431233334161024(4)(4)2410x x x x x x x x x x x x x x x -++--⎛⎫--===-++ ⎪⎝⎭,由对勾函数可知332410y x x ⎛⎫=-++ ⎪⎝⎭在()3,4上单调递增,得()3324101,0x x ⎛⎫-++∈- ⎪⎝⎭,所以34123(4)(4)x x x x x --的取值范围是()1,0-.故选:B.【点睛】关键点点睛:本题解答的关键是画出函数图象,结合函数图象分析出121x x =,()()343410,3,4,6,7x x x x +=∈∈,从而转化为关于3x 的函数;二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.函数1()21x f x -=+恒过定点(1,1)B.函数3x y =与3log y x =的图象关于直线y x =对称C.0x ∃∈R ,当0x x >时,恒有32x x >D.若幂函数()f x x α=在(0,)+∞单调递减,则0α<【答案】BCD 【解析】【分析】由指数函数的性质可判断A ;由反函数的性质可判断B ;由指数函数的增长速度远远快于幂函数,可判断C ;由幂函数的性质可判断D .【详解】对于A ,函数1()21x f x -=+恒过定点(1,2),故A 错误;对于B ,函数3x y =与3log y x =的图象关于直线y x =对称,故B 正确;对于C ,因为指数函数的增长速度远远快于幂函数,所以0x x >时,恒有32x x >,故C 正确;对于D ,当0α<时,幂函数()f x x α=在(0,)+∞单调递减,故D 正确;故选:BCD .10.已知函数e 1()e 1x x f x +=-,则下列结论正确的是()A.函数()f x 的定义域为RB.函数()f x 的值域为(,1)(1,)-∞-+∞C.()()0f x f x +-=D.函数()f x 为减函数【答案】BC 【解析】【分析】根据分母不为0求出函数的定义域,即可判断A ;再将函数解析式变形为2()1e 1xf x =+-,即可求出函数的值域,从而判断B ;根据指数幂的运算判断C ,根据函数值的特征判断D.【详解】对于函数e 1()e 1x x f x +=-,则e 10x -≠,解得0x ≠,所以函数的定义域为{}|0x x ≠,故A 错误;因为e 1e 122()1e 1e 1e 1x x x x xf x +-+===+---,又e 0x >,当e 10x ->时20e 1x >-,则()1f x >,当1e 10x -<-<时22e 1x<--,则()1f x <-,所以函数()f x 的值域为(,1)(1,)-∞-+∞ ,故B 正确;又11e 1e 1e 1e 1e 1e ()()01e 1e 1e 11e e 11e xxxx x x x x x xx xf x f x --++++++-+=+=+=+------,故C 正确;当0x >时()0f x >,当0x <时()0f x <,所以()f x 不是减函数,故D 错误.11.已知0,0a b >>,且1a b +=,则()A.22log log 2a b +≥- B.22a b +≥C.149a b +≥ D.33114a b ≤+<【答案】BCD 【解析】【分析】利用基本不等式求出ab 的范围,即可判断A ;利用基本不等式及指数的运算法则判断B ;利用乘“1”法及基本不等式判断C ;利用立方和公式及ab 的范围判断D.【详解】因为0,0a b >>,且1a b +=,所以2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时取等号,所以()22221log log log log 24a b ab +=≤=-,当且仅当12a b ==时取等号,故A 错误;22a b +≥=22a b =,即12a b ==时取等号,故B 正确;()14144559b a a b a b a b a b ⎛⎫+=++=++≥+ ⎪⎝⎭,当且仅当4b a a b =,即13a =,23b =时取等号,故C 正确;()()()2332222313a b a b a ab b a ab b a b ab ab +=+-+=-+=+-=-,因为104ab <≤,所以3034ab <≤,所以11314ab ≤-<,即33114a b ≤+<,故D 正确.故选:BCD12.对于定义在[]0,1上的函数()f x 如果同时满足以下三个条件:①()11f =;②对任意[]()0,1,0x f x ∈≥成立;③当12120,0,1x x x x ≥≥+≤时,总有()()()1212f x f x f x x +≤+成立,则称()f x 为“天一函数”.若()f x 为“天一函数”,则下列选项正确的是()A.()00f =B.()0.50.5f ≤C.()f x 为增函数 D.对任意[0,1]x ∈,都有()2f x x ≤成立【答案】ABD【分析】对于A ,令120x x ==,结合题中条件即可求解;对于B ,令120.5x x ==,结合题中条件即可求解;对于C ,令2121101X x x x X +>≥=≥=,结合性质②③可得()()21f X f X ≥,因此有()f x 在[]0,1x ∈上有递增趋势的函数(不一定严格递增),即可判断;对于D ,应用反证法:若存在[]00,1x ∈,使0>20成立,讨论1,12x ⎡⎤∈⎢⎥⎣⎦,10,2x ⎡⎫∈⎪⎢⎣⎭,结合递归思想判断0x 的存在性.【详解】对于A ,令120x x ==,则()()()000f f f +≤,即()00f ≤,又对任意[]()0,1,0x f x ∈≥成立,因此可得()00f =,故A 正确;对于B ,令120.5x x ==,则()()()0.50.51f f f +≤,又()11f =,则()0.50.5f ≤,故B 正确;对于C ,令2121101X x x x X +>≥=≥=,则221(0,1]x X X -∈=,所以()()()()()()12122121f X f X X f X f X f X f X X +-≤⇒-≥-,又对任意[]()0,1,0x f x ∈≥成立,则()221()0f x f X X =-≥,即()()210f X f X -≥,所以()()21f X f X ≥,即对任意1201x x ≤<≤,都有()()12f x f x ≤,所以()f x 在[]0,1x ∈上非递减,有递增趋势的函数(不一定严格递增),故C 错误;对于D ,由对任意1201x x ≤<≤,都有()()12f x f x ≤,又()00f =,()11f =,故()[]0,1f x ∈,反证法:若存在[]00,1x ∈,使0>20成立,对于1,12x ⎡⎤∈⎢⎥⎣⎦,()1f x ≤,而21x ≥,此时不存在01,12x ⎡⎤∈⎢⎥⎣⎦使0>20成立;对于10,2x ⎡⎫∈⎪⎢⎣⎭,若存在010,2x ⎡⎫∈⎪⎢⎣⎭使0>20成立,则()()()002f f x f x ≥,而[)020,1x ∈,则()()()()000022f x f x f x f x ≥+=,即0≥20>40,由()[)00,1f x ∈,依次类推,必有[)0,1∈t ,0()2nf t x >且*n ∈N 趋向于无穷大,此时()[0,1)f t ∈,而02nx 必然会出现大于1的情况,与>20矛盾,所以在10,2x ⎡⎫∈⎪⎢⎣⎭上也不存在010,2x ⎡⎫∈⎪⎢⎣⎭使0>20成立,综上,对任意[]0,1x ∈,都有()2f x x ≤成立,故D 正确;故选:ABD.【点睛】关键点点睛:对于D ,应用反证及递归思想推出1,12x ⎡⎤∈⎢⎥⎣⎦,10,2x ⎡⎫∈⎪⎢⎣⎭情况下与假设矛盾的结论.三、填空题:本大题共4小题,每小题5分,共20分.13.若23(1)()log (1)x x f x x x ⎧≤=⎨>⎩,则(0)(8)f f +=______.【答案】4【解析】【分析】根据分段函数解析式计算可得.【详解】因为23(1)()log (1)x x f x x x ⎧≤=⎨>⎩,所以()0031f ==,()32228log 8log 23log 23f ====,所以(0)(8)4f f +=.故答案为:414.已知()f x 是定义在R 上的奇函数,当0x >时,()22xf x x =-,则()()10f f -+=__________.【答案】1-【解析】【分析】根据()f x 是定义在R 上的奇函数,可得(1)(1)f f -=-,(0)0f =,只需将1x =代入表达式,即可求出(1)f 的值,进而求出(1)(0)f f -+的值.【详解】因为()f x 是定义在R 上的奇函数,可得(1)(1)f f -=-,(0)0f =,又当0x >时,()22xf x x =-,所以12(1)211f =-=,所以(1)(0)101f f -+=-+=-.故答案为:1-【点睛】本题主要考查利用奇函数的性质转化求函数值,关键是定义的灵活运用,属于基础题.15.定义在R 上的偶函数()f x 满足:在[)0,+∞上单调递减,则满足()()211f x f ->的解集________.【答案】()0,1【解析】【分析】利用偶函数,单调性解抽象不等式【详解】因为()f x 为定义在R 上的偶函数,且在[)0,+∞上单调递减,所以()()()()211211f x f fx f ->⇔->,所以2111211x x -<⇔-<-<,即01x <<,故答案为:()0,116.设函数31()221x f x =-+,正实数,a b 满足()(1)2f a f b +-=,则2212b aa b +++的最小值为______.【答案】14##0.25【解析】【分析】首先推导出()()2f x f x +-=,再说明()f x 的单调性,即可得到1a b +=,再由乘“1”法及基本不等式计算可得.【详解】因为31()221x f x =-+,所以3132()221221xx xf x --=-=-++,所以331()()22221221x x x f x f x +-=-+-=++,又21x y =+在定义域R 上单调递增,且值域为()1,+∞,1y x =-在()1,+∞上单调递增,所以31()221x f x =-+在定义域R 上单调递增,因为正实数,a b 满足()(1)2f a f b +-=,所以10a b +-=,即1a b +=,所以()()222211212412b a b a a b a b a b ⎛⎫⎡⎤+=++++ ⎪⎣⎦++++⎝⎭()()2222211412b b a a b a a b ⎡⎤++=+++⎢⎥++⎣⎦()()22222111124444b a b a ab a b ⎡⎢≥++=++=+=⎢⎣,当且仅当()()222112b b a a a b ++=++,即35a =,25b =时取等号,所以2212b a a b +++的最小值为14.故答案为:14四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.计算下列各式的值.(1)20.5233727228)9643-⎛⎫⎛⎫⎛⎫+-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(2)2log 3223(lg5)lg2lg50log 3log 22+⨯+⋅+【答案】(1)229(2)5【解析】【分析】(1)根据指数幂的运算法则计算可得;(2)根据对数的运算性质及换底公式计算可得.【小问1详解】20.5233727229643-⎛⎫⎛⎫⎛⎫+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2223333212139245-⎡⎤⎛⎫⎛⎫⎛⎫=+-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦2323332521334⎛⎫⨯- ⎪⨯⎝⎭⎛⎫=+-+ ⎪⎝⎭5162221399=+-+=.【小问2详解】2log 3223(lg5)lg2lg50log 3log 22+⨯+⋅+()210lg 3lg 2(lg 5)lg lg 10535lg 2lg 3⎛⎫=+⨯⨯+⋅+ ⎪⎝⎭()()2(lg5)1lg51lg513=+-⨯+++()()22lg 51lg 5135=+-++=.18.设全集为R ,已知集合{}2|280A x R x x =∈--≤,(){}2|550B x R x m x m =∈-++≤.(1)若3m =,求A B ,R A ð;(2)若R B A ⊆ð,求实数m 的取值范围.【答案】(1){}25A B x R x ⋃=∈-≤≤;{2R A x x =<-ð或}4x >;(2)4m >.【解析】【分析】(1)先解不等式求出集合A ,B ,根据补集的概念,以及并集的概念,即可得出结果;(2)由(1)得出R A ð,再对m 分类讨论,即可得出结果.【详解】(1)因为{}{}228024A x R x x x R x =∈--≤=∈-≤≤,则{2R A x x =<-ð或}4x >;若3m =,则{}{}2815035B x R x x x R x =∈-+≤=∈≤≤,所以{}25A B x R x ⋃=∈-≤≤.(2)由(1){2R A x x =<-ð或}4x >,()(){}|50B x R x x m =∈--≤,当5m =时,则{5}B =,满足R B A ⊆ð;当5m >时,则[5,]B m =,满足R B A ⊆ð;当5m <时,则[,5]B m =,为使R B A ⊆ð,只需4m >,所以45m <<.综上,4m >.19.为了节能减排,某农场决定安装一个可使用10年旳太阳能供电设备.使用这种供电设备后,该农场每年消耗的电费C (单位:万元)与太阳能电池面积x (单位:平方米)之间的函数关系为4,0105(),10m xx C x m x x-⎧≤≤⎪⎪=⎨⎪>⎪⎩,(m 为常数),已知太阳能电池面积为5平方米时,每年消耗的电费为12万元.安装这种供电设备的工本费为0.5x (单位:1万元),记()F x 为该农场安装这种太阳能供电设备的工本费与该农场10年消耗的电费之和(1)写出()F x 的解析式;(2)当x 为多少平方米时,()F x 取得最小值?最小值是多少万元?【答案】(1)1607.5,010()8000.5,10x x F x x x x-≤≤⎧⎪=⎨+>⎪⎩;(2)40平方米,最小值40万元.【解析】【分析】(1)根据给定的条件,求出m 值及()C x 的解析式,进而求出()F x 的解析式作答.(2)结合均值不等式,分段求出()F x 的最小值,再比较大小作答.【小问1详解】依题意,当5x =时,()12C x =,即有45125m -⨯=,解得80m =,则804,0105()80,10xx C x x x -⎧≤≤⎪⎪=⎨⎪>⎪⎩,于是得1607.5,010()10()0.58000.5,10x x F x C x x x x x -≤≤⎧⎪=+=⎨+>⎪⎩,所以()F x 的解析式是1607.5,010()8000.5,10x x F x x x x-≤≤⎧⎪=⎨+>⎪⎩.【小问2详解】由(1)知,当010x ≤≤时,()1607.5F x x =-在[0,10]上递减,min ()(10)85F x F ==,当10x >时,800()402x F x x =+≥=,当且仅当8002x x =,即40x =时取等号,显然4085<,所以当x 为40平方米时,()F x 取得最小值40万元.【点睛】方法点睛:在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.20.已知函数1()2(R)2xx m f x m -=-∈是定义在R 上的奇函数.(1)求m 的值;(2)根据函数单调性的定义证明()f x 在R 上单调递增;(3)设关于x 的函数()()()9143xxg x f m f =++-⋅有零点,求实数m 的取值范围.【答案】(1)2m =(2)证明见解析(3)(],3-∞【解析】【分析】(1)由奇函数性质(0)0f =求得参数值,再验证符合题意即可;(2)根据单调性的定义证明;(3)令()0g x =,结合()f x 的单调性得到9431x x m +=⋅-,参变分离可得1943x x m =-+-⨯,依题意可得关于x 的方程1943x x m =-+-⨯有解,令()1943xxh x =-⨯+-,则y m =与()y h x =有交点,利用换元法求出()h x 的值域,即可得解.【小问1详解】因为1()2(R)2xxm f x m -=-∈是定义在R 上的奇函数,所以(0)1(1)0f m =--=,解得2m =,当2m =时,1()2222xx xx f x -=-=-,满足()()f x f x -=-,()f x 是奇函数,所以2m =;【小问2详解】由(1)可得1()22x x f x =-,设任意两个实数12,R x x ∈满足12x x <,则1212121212111()()22(22)(1)2222xx x x x x x x f x f x -=--+=-+⋅,∵12x x <,∴12022x x <<,1211022x x +>⋅,∴12())0(f x f x -<,即12()()f x f x <,所以()f x 在R 上为单调递增;【小问3详解】令()0g x =,则()()9143xxf m f +=--⋅,又()f x 是定义在R 上的奇函数且单调递增,所以()()1943xxf m f +=⋅-,则9431x x m +=⋅-,则1943x x m =-+-⨯,因为关于x 的函数()()()9143xxg x f m f =++-⋅有零点,所以关于x 的方程1943x x m =-+-⨯有解,令()1943xxh x =-⨯+-,则y m =与()y h x =有交点,令3x t =,则()0,t ∈+∞,令()214H t t t +--=,()0,t ∈+∞,则()()222314H t t t t +-==---+,所以()H t 在()0,2上单调递增,在()2,+∞上单调递减,所以()(],3H t ∈-∞,所以()(],3h x ∈-∞,则(],3m ∈-∞,即实数m 的取值范围为(],3-∞.21.设R a ∈,已知函数()y f x =的表达式为21()log f x a x ⎛⎫=+ ⎪⎝⎭.(1)当3a =时,求不等式()1f x >的解集;(2)设0a >,若存在1,12t ⎡⎤∈⎢⎥⎣⎦,使得函数()y f x =在区间[],2t t +上的最大值与最小值的差不超过1,求实数a 的取值范围.【答案】(1)(,1)(0,)-∞-⋃+∞(2)1,3⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)根据函数的单调性转化为自变量的不等式,解得即可;(2)根据函数的单调性求出最值,根据不等式有解分离参数求取值范围.【小问1详解】当3a =时,21()log 3f x x ⎛⎫=+⎪⎝⎭,不等式()1f x >,即21log 31x ⎛⎫+>⎪⎝⎭,所以132x +>,即10x x +>,等价于()10x x +>,解得1x <-或0x >;所以不等式()1f x >的解集为(,1)(0,)-∞-⋃+∞;【小问2详解】因为0a >,1[,1]2t ∈,所以当[,2]x t t ∈+时,函数1y a x=+为减函数,所以函数()21log f x a x ⎛⎫=+⎪⎝⎭在区间[],2t t +上单调递减,又函数()y f x =在区间[],2t t +上最大值和最小值的差不超过1,所以()()21f t f t -+≤,即2211log ()log ()12a a t t +-+≤+,即222111log ()1log ()log 2()22a a a t t t +≤++=+++所以112()2a a t t +≤++,即存在1[,1]2t ∈使122a t t ≥-+成立,只需min122a t t ⎛⎫≥- ⎪+⎝⎭即可,考虑函数121,[,1]22y t t t =-∈+,221,[,1]22t y t t t -=∈+,令321,2r t ⎡⎤=-∈⎢⎥⎣⎦,213,1,86826r y r r r r r⎡⎤==∈⎢⎥-+⎣⎦+-,设()8g r r r =+,其中31,2r ⎡⎤∈⎢⎥⎣⎦,任取123,1,2r r ⎡⎤∈⎢⎥⎣⎦,且12r r <,则()()()212121212121888r r g r g r r r r r r r r r ⎛⎫--=+--=- ⎪⎝⎭,因为12r r <,所以210r r ->,因为123,1,2r r ⎡⎤∈⎢⎥⎣⎦,所以2180r r -<,所以()()21g r g r <,所以函数()g r 在31,2⎡⎤⎢⎥⎣⎦上单调递减,所以86y r r =+-在31,2r ⎡⎤∈⎢⎥⎣⎦单调递减,所以856,36r r ⎡⎤+-∈⎢⎥⎣⎦,116,8356r r⎡⎤∈⎢⎥⎣⎦+-,所以13a ≥,所以a 的取值范围为1,3⎡⎫+∞⎪⎢⎣⎭.22.已知函数43()21x x f x +=+,函数2()||1g x x a x =-+-.(1)若[0,)x ∈+∞,求函数()f x 的最小值;(2)若对1[1,1]x ∀∈-,都存在2[0,)x ∈+∞,使得()()21f x g x =,求a 的取值范围.【答案】(1)2(2)1313,,44⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭【解析】【分析】(1)首先利用指数运算,化简函数()()421221xx f x =++-+,再利用换元,结合对勾函数的单调性,即可求解函数的最值;(2)首先将函数()f x 和()g x 在定义域的值域设为,A B ,由题意可知B A ⊆,()02g ≥,确定a 的取值范围,再讨论去绝对值,求集合B ,根据子集关系,比较端点值,即可求解.【小问1详解】若[)0,x ∈+∞,()()()()221221442122121x x x x xf x +-++==++-++,因为[)0,x ∈+∞,令212x t =+≥,则()42,2y t t t=+-≥,又因为42y t t=+-在[)2,+∞上单调递增,当2t =,即0x =时,函数取得最小值2;【小问2详解】设()f x 在[)0,+∞上的值域为A ,()g x 在[]1,1-上的值域为B ,由题意可知,B A ⊆,由(1)知[)2,A =+∞,因为()012g a =-≥,解得:3a ≥或3a ≤-,当3a ≥时,且[]11,1x ∈-,则10x a -<,可得()222111111151124g x x a x x x a x a ⎛⎫=-+-=-+-=-+- ⎪⎝⎭,可得()1g x 的最大值为()11g a -=+,最小值为1524g a ⎛⎫=-⎪⎝⎭,即5,14B a a ⎡⎤=-+⎢⎥⎣⎦,可得524a -≥,解得:134a ≥,当3a ≤-时,且[]11,1x ∈-,10x a ->,可得()222111111151124g x x a x x x a x a ⎛⎫=-+-=+--=+-- ⎪⎝⎭,可知,()1g x 的最大值为()11g a =-,最小值为1524g a ⎛⎫-=-- ⎪⎝⎭,即5,14B a a ⎡⎤=---⎢⎥⎣⎦,可得524a --≥,解得:134a ≤-,综上可知,a 的取值范围是1313,,44⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭.【点睛】关键点点睛:本题第二问的关键是求函数()g x 的值域,根据()02g ≥,缩小a 的取值范围,再讨论去绝对值.。
2023-2024学年成都七中高一数学上学期期中考试卷附答案解析
2023-2024学年成都七中高一数学上学期期中考试卷(试卷满分150分.考试用时120分钟)2023.11一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}Z 03A x x =∈<<的一个子集是()A .{}0,1B .{}02x x <<C .{}03x x <<D .∅2.若()(){}230A x x x =+-<,{}2B x x =>,则A B = ()A .{}23x x <<B .{}2x x >-C .{}23x x -<<D .∅3.一枚炮弹发射后,经过26s 落到地面击中目标.炮弹的射高为845m ,且炮弹距地面的高度h (单位:m )与时间t (单位:s )的关系为21305h t t =-.该函数定义域为()A .()0,∞+B .(]0,845C .[]0,26D .[]0,8454.函数()221f x x =-([]2,6x ∈)的最大值为()A .2B .23C .25D .2355.幂函数()y f x =的图象过点14,2⎛⎫⎪⎝⎭,则此函数的解析式为()A .()12f x x-=(0x >)B .()18f x x =C .()72f x x =-D .()2132f x x =6.已知函数()f x 是定义域为R 的奇函数,当0x ≥时,()()2f x x x =+,则函数()f x 的单调递增区间是()A .(),1-∞和()1,-+∞B .(),-∞+∞C .(),1-∞-和()1,+∞D .()1,-+∞7.已知函数()2328f x kx kx =++,对一切实数x ,函数()f x 的值恒为正,则实数k 的取值范围是()A .()0,3B .(]0,3C .[]0,3D .[)0,38.实数a ,b 满足3ab a b =++,则以下结论错误的是()A .a b +取值范围是][(),26,∞∞--⋃+B .ab 取值范围是][(),19,-∞+∞C .2+a b 取值范围是[(),32342,-∞-++∞D .()1a b-取值范围是R二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分.9.以下运算结果等于2的是()A ()2π4-B .202320232C .332--D ()22-10.对于任意实数a ,b ,c ,d ,下列四个命题中为假命题的是()A .若a b >,0c ≠,则ac bc>B .若22ac bc >,则a b>C .若0a b <<,则22a ab b >>D .若0a b >>,cd >,则ac bd>11.设集合()(){}20,R A x x x a a =-+=∈,6N 21B x x ⎧⎫=∈≥⎨⎬-⎩⎭,则A B ⋃的元素个数可以是()A .3个B .4个C .5个D .6个12.若(){}2max 23,32g x x x =--,(){}2max 23,32h x x x =+-,()()(){}min ,f x g x h x =,其中{}max ,,x y z 表示x ,y ,z 中的最大者,{}min ,,x y z 表示x ,y ,z 中的最小者,下列说法正确的是()A .函数()f x 为偶函数B .当[]1,3x ∈时,有()f x x≤C .不等式()1f f x ⎡⎤≤⎣⎦的解集为221,,122⎡⎡⎤--⎢⎢⎥⎣⎦⎣⎦ D .当[][]3,22,3x ∈--⋃时,有()()f f x f x ⎡⎤≤⎣⎦三、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡上.13.已知函数()3,14,1x x f x x x +≤⎧⎪=⎨>⎪⎩,若()2f a =,则=a .14.若0ab >,则42b a b a b -+的最小值为.15.若3x a +<成立的一个充分不必要条件是23x <<,则实数a 的取值范围为.16.若函数()y f x =在区间[],a b 上同时满足:①()f x 在区间[],a b 上是单调函数,②当[],x a b ∈时,函数()f x 的值域为[],a b ,则称区间[],a b 为函数()f x 的“保值”区间,若函数()212f x x x m =-+存在“保值”区间,则实数m 的取值范围.四、解答题:本题共6小题,17题10分,18-22题每题12分,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知集合{}7A x a x =≤<(a ∈R ),{}210B x x =<<.(1)若3a =,求A B ⋃和()B A ⋂R ð;(2)若A B ⊆,求a 的取值范围.18.已知函数()3f x x x =-+(0x >).(1)解不等式()2f x <;(2)判断函数在()0,∞+上的单调性,并用定义法证明.19.在经济学中,函数()f x 的边际函数()Mf x 定义为()()()1Mf x f x f x =+-,某公司每月最多生产10台光刻机的某种设备,生产x 台(1x ≥,*N x ∈)这种设备的收入函数为()221640R x x x =++(单位千万元),其成本函数为()4010C x x x =+(单位千万元).(以下问题请注意定义域)(1)求收入函数()R x 的最小值;(2)求成本函数()C x 的边际函数()MC x 的最大值;(3)求生产x 台光刻机的这种设备的的利润()z x 的最小值.20.已知函数()21ax f x x bx =++为定义在R 上的奇函数,且()112f =.(1)求()f x 的解析式;(2)设()()g x f x =,(ⅰ)画出函数()g x 的大致图像,并求当()25g x =时x 的值;(ⅱ)若()()12g m g +<-,求m 的取值范围.21.已知函数()231f x x =-+.(1)求证:()()121222f x f x x x f ++⎛⎫≥⎪⎝⎭;(2)若函数()y h x =,满足()()22h a x h x b-+=,则函数()h x 的图象关于点(),M a b 对称.设函数()()31g x f x x =+-,(ⅰ)求()g x 图象的对称中心(),a b ;(ⅱ)求1234045S 2023202320232023g g g g ⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值.22.已知幂函数()()22233mf x m m x -=-+⋅在R 上单调递增.(1)求()f x 的函数解析式;(2)设()()()()231g x kf x k f x =+-+,若()g x 的零点至少有一个在原点右侧,求实数k 的取值范围;(3)若()()213h x f x =-,()()213h x h x =-,()()323h x h x =-,若()()31h x h x =,求满足条件的x 的取值范围.1.D【分析】先化简集合A ,结合选项可得答案.【详解】因为{}{}Z 031,2A x x =∈<<=,所以A 的子集有∅,{}{}{}1,2,1,2;故选:D.2.A【分析】利用一元二次不等式的解法化简集合A ,然后利用交集运算求解即可.【详解】因为()(){}{}23023A x x x x x =+-<=-<<,又{}2B x x =>,所以A B ={}23x x <<.故选:A 3.C【分析】根据实际意义分析即可.【详解】由题意可知,炮弹发射后共飞行了26s ,所以026t ≤≤,即函数21305h t t =-的定义域为[]0,26.故选:C 4.B【分析】根据函数的单调性求解函数的最值即可.【详解】因为函数21y x =-在[]2,6上单调递增,所以根据单调性的性质知:函数()221f x x =-在[]2,6上单调递减,所以当2x =时,函数()221f x x =-取到最大值为()2222213f ==-.故答案为:B 5.A【分析】设出幂函数解析式,将点的坐标代入即可求解.【详解】设幂函数()af x x =,将点14,2⎛⎫ ⎪⎝⎭代入a y x =得142a =,所以12a =-.所以幂函数的解析式为()12f x x-=,要使函数()12f x x-=有意义,则0x >,故函数的解析式为()12f x x-=(0x >).故选:A.6.B【分析】根据函数解析式判断出()f x 在[)0.+∞上单调递增,且()00f =,再由函数奇偶性即可判断函数在定义域R 内的单调性.【详解】因为0x ≥时,()()()2211f x x x x =+=+-,所以()f x 在[)0.+∞上单调递增,且()00f =,又函数()f x 是定义域为R 的奇函数,所以()f x 在(),0∞-上单调递增,所以数()f x 在(),-∞+∞上都是单调递增.故选:B 7.D【详解】由题意可得对任意的x ∈R ,23208kx kx ++>恒成立,当0k =时,308>恒成立,符合题意;当0k ≠时,则有2Δ30k k k >⎧⎨=-<⎩,解得03k <<,综上可得,实数k 的取值范围是0k ≤<3.故选:D【分析】由题意可得对任意的x ∈R ,23208kx kx ++>恒成立,当0k =时显然成立,当0k ≠时,则根据二次函数的图象与性质,列不等式求解即可.8.D【分析】利用条件得出411b a =+-,结合选项逐个求解可得答案.【详解】由()()114a b --=,得411b a =+-(1a ≠),对于A ,()4411211a b a a a a +=++=-++--,当10a ->时,()41224261a a -++≥=-,当且仅当3a =时取到等号;当10a -<时,由4141a a -+≥-得()4124221a a -++≤-+=--,当且仅当1a =-时取到等号;所以a b +取值范围是][(),26,∞∞--⋃+,A 正确.对于B ,3ab a b =++,由A 可得ab 取值范围是][(),19,-∞+∞ ,B 正确.对于C ,()88221311a b a a a a +=++=-++--,当10a ->时,()8132834231a a -++≥=-,当且仅当122a =+当10a -<时,由81421a a -+≥-得()8134231a a -++≤--,当且仅当122a =-时取到等号;C 正确.对于D ,()11434a b a a -=-+=+≠,从而D 错误.故选:D 9.BCD【分析】根据根式运算化简各项即可.【详解】对于A ()2π4π44π-=-=-,不合题意;对于B ,2023202322=,符合题意;对于C ,()33222-=--=,符合题意;对于D ()2222-=-=,符合题意.故选:BCD 10.AD【分析】利用特殊值判断A 、D ,根据不等式的性质判断B 、C.【详解】对于A ,当1c =-时,满足条件a b >,0c ≠,但是ac bc <,所以A 为假命题;对于B ,因为22ac bc >,所以0c ≠,所以20c >,所以a b >成立,所以B 为真命题;对于C ,因为0a b <<,所以2a ab >且2ab b >,所以22a ab b >>,所以C 为真命题;对于D ,当2a =,1b =,1c =-,2d =-时,满足条件0a b >>,c d >,但是ac bd =,所以D 为假命题.故选:AD .11.AB【分析】先化简两个集合,再求A B ⋃.【详解】{}6N 22,3,41B x x ⎧⎫=∈≥=⎨⎬-⎩⎭;当2a =-时,{}2A =,所以{}2,3,4A B = ,此时A B ⋃的元素个数是3;当2a ≠-时,{}2,A a =-,所以{},2,3,4A B a =- ,此时A B ⋃的元素个数是4;故选:AB12.ABD【分析】根据图象判断函数奇偶性判断A ,根据不等式变形判断B ,根据复合不等式的解法求解判断C ,根据复合函数不等式及B 选项判断D.【详解】若22332x x -=-,解得0x =或1x =,结合二次函数和一次函数知()223,0132,01x x x g x x x ⎧-=⎨-≤≤⎩或,若22332x x +=-,解得0x =或=1x -,结合二次函数和一次函数知()223,1032,10x x x h x x x ⎧+-=⎨--≤≤⎩或,所以()()(){}min ,f x g x h x =223,132,1123,1x x x x x x ⎧+<-⎪=--≤≤⎨⎪->⎩,画出()f x的图象,如图:结合图象及()()f x f x -=知()f x 为偶函数,故选项A 正确;当[]1,3x ∈时,2430x x -+≤,即231290x x -+≤,所以224129x x x -+≤,所以23x x-<,所以()f x x≤成立,故选项B 正确;对于C ,令()f x t=,则()1f t ≤,当1t <-时,231t +≤,解得21t -≤<-,当11t -≤≤时,2321t -≤,解得1t ≤-或1t ≥,又11t -≤≤,所以1t =±,当1t >时,231t -≤,解得12t <≤,综上12t ≤≤,故()12f x ≤≤,当1x <-时,1232x ≤+≤,解得 2.52x -≤≤-,当11x -≤≤时,21322x ≤-≤,解得212x ≤≤或212t -≤≤-,当1x >时,1232x ≤-≤,解得2 2.5x ≤≤,综上,不等式()1f f x ⎡⎤≤⎣⎦的解集为[][]221,,12,2.5 2.5,222x ⎡⎤⎡⎤∈---⎢⎥⎢⎥⎣⎦⎣⎦ ,错误;对于D ,当[]2,3x ∈,令()[]231,3m f x x ==-∈,结合偶函数的性质,当[][]3,22,3x ∈--⋃时,()[]1,3m f x =∈,则()()f f x f x ⎡⎤≤⎣⎦等价于()0f m m -≤,结合选项B ,当[][]3,22,3x ∈--⋃时,有()()f f x f x ⎡⎤≤⎣⎦成立,正确.故答案:ABD【点睛】关键点点睛:对于复合函数不等式,换元法,先解内层不等式,再解外层不等式,注意前提条件对解的影响.13.1-或2【分析】根据给定分段函数,分类代入求解即可.【详解】当1a ≤时,()32f a a =+=,解得1a =-,当1a >时,()42f a a ==,解得2a =,综上,=a 1-或2.故答案为:1-或2.14.2【分析】利用基本不等式即可得解.【详解】因为0ab >,所以42442222b a b b a b aa b a b a b -+=+-≥⋅-=,当且仅当4b aa b =,即2a b =时,等号成立,所以42b a b a b -+的最小值为2.故答案为:2.15.50a -≤≤【分析】先利用绝对值的几何意义化简不等式,再根据充分不必要条件列不等式求解即可.【详解】3x a +<等价于33a x a --<<-,因为3x a +<成立的一个充分不必要条件是23x <<,所以3233a a --≤⎧⎨-≥⎩,解得50a -≤≤,所以实数a 的取值范围为50a -≤≤.故答案为:50a -≤≤16.59117,,16161616⎡⎫⎡⎫--⎪⎪⎢⎢⎣⎭⎣⎭ 【分析】由二次函数的性质可得函数()212f x x x m =-+单调区间,分类讨论结合二次函数根的分布分别求解,最后再求并集即得答案.【详解】函数()212f x x x m =-+在1,4⎛⎤-∞ ⎥⎝⎦上单调递减,在1,4⎡⎫+∞⎪⎢⎣⎭上单调递增,若[]1,,4a b ⎡⎫⊆+∞⎪⎢⎣⎭,则14b a >≥,由()f a a =,()f b b =,可知()f x x =在1,4⎡⎫+∞⎪⎢⎣⎭有两个不等根.设()()232g x f x x x x m =-=-+,所以9Δ404314411304168m g m ⎧=->⎪⎪⎪>⎨⎪⎪⎛⎫=-+≥ ⎪⎪⎝⎭⎩,则916516m m ⎧<⎪⎪⎨⎪≥⎪⎩,∴591616m ≤<.若[]1,,4a b ⎛⎤⊆-∞ ⎥⎝⎦,则14a b <≤,由()212f a a a m b =-+=,()212f b b b m a=-+=,两式相减可得221122a b a b b a --+=-,知12a b ++=,从而21122a a m a -+=--,即21122a a m +++=,同理可得211022b b m +++=,设()21122h x x x m =+++,所以7Δ40411441111041682m h m ⎧=-->⎪⎪⎪-<⎨⎪⎪⎛⎫=+++≥ ⎪⎪⎝⎭⎩,则7161116m m ⎧<-⎪⎪⎨⎪≥-⎪⎩,所以1171616m -≤<-.综上,m 范围是59117,,16161616⎡⎫⎡⎫--⎪⎪⎢⎢⎣⎭⎣⎭ .故答案为:59117,16161616⎡⎫⎡⎫--⎪⎢⎢⎣⎭⎣⎭ 【点睛】方法点睛:对于一元二次函数零点分布(一元二次方程根的分布)求解参数问题,往往要分析下面几个因素:1、二次项系数符号;2、判别式;3、对称轴的位置;4、区间端点值的符号,结合图象列不等式求解即可.17.(1)()2,10A B = ,()()[)2,37,10B A ⋂=⋃R ð(2)()2,+∞.【分析】(1)根据集合的交并补定义直接运算即可;(2)分A =∅和A ≠∅两种情况,根据包含关系讨论即可.【详解】(1)若3a =,则[)3,7A =,又()2,10B =,则()2,10A B = ,因为()[),37,A ∞∞=-⋃+R ð,所以()()[)2,37,10B A ⋂=⋃R ð.(2)(ⅰ)当7a ≥,此时A =∅,满足A B ⊆;(ⅱ)当7a <时,A ≠∅,因为A B ⊆,所以2a >,故27a <<,综上,2a >.∴a 的取值范围是()2,+∞.18.(1)()1,+∞(2)()f x 在()0,∞+上单调递减,证明见解析【分析】(1)把分式不等式转化为一元二次不等式求解即可;(2)先判断函数的单调性,再利用单调性的定义证明即可.【详解】(1)因为()3f x x x =-+(0x >),由()2f x <,可得2230x x x --+<.又0x >,不等式转化为()()013x x -+>,且0x >,解得1x >.所以原不等式的解集为()1,+∞.(2)()y f x =在()0,∞+上单调递减.证明:设2x ∀,()10,x ∞∈+,且12x x <.则()()()21121221123331f x f x x x x x x x x x ⎛⎫-=-+-=-+ ⎪⎝⎭,由210x x >>,可知120x x -<,且12310x x +>,所以()()210f x f x -<,即()()21f x f x <.所以()f x 在()0,∞+上单调递减.19.(1)48千万元(2)()max 869MC x =(3)()min 7z x =(千万元)【分析】(1)利用基本不等式求解函数最小值即可.(2)求出边际函数()MC x 的解析式,然后利用函数的单调性求解最值.(3)求出利润函数()z x 的解析式,根据二次函数的性质求解最值.【详解】(1)∵()221640R x x x =++,110x ≤≤,*N x ∈.∴()221624048R x x x ≥⋅=,当且仅当2216x x =,即2x =时等号成立.∴当2x =时,()min 48R x =(千万元).(2)()()()1MC x C x C x =+-,19x ≤≤,*N x ∈.∴()()()404040101101011MC x x x x x x x =++--=-++,19x ≤≤,*N x ∈.由函数单调性可知:()MC x 在19x ≤≤,*N x ∈单调递增,∴当9x =时,()max 4086101099MC x =-=⨯.(3)()()()22216404440101032z x R x C x x x x x x x x x ⎛⎫⎛⎫⎛⎫=-=++-+=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴()2457z x x x ⎛⎫=+-+ ⎪⎝⎭,19x ≤≤,*N x ∈.当45x x +=时,即2540x x --=,解得4x =或1x =,∴当4x =或1x =时,()min 7z x =(千万元).20.(1)()21xf x x =+(2)(ⅰ)作图见解析,12x =-,212x =-,312x =,42x =;(ⅱ)311322m m m m ⎧⎫><--<<-⎨⎬⎩⎭或或【分析】(1)根据题意,由函数的奇偶性,代入计算,即可得到结果;(2)(ⅰ)由函数()g x 为偶函数,画出图像即可;(ⅱ)根据题意,由函数的奇偶性化简,即可求解不等式.【详解】(1)∵()()f x f x -=-,可知22x bx c x c bx -+=++.∴20bx =,解得0b =.∵()112f =,则122a =,∴1a =,∴()21x f x x =+.(2)由()()g x g x -=可知()g x 为偶函数,∴()22,0,1,0.1x x x g x x x x ⎧≥⎪⎪+=⎨⎪-<⎪+⎩,利用描点法可得图像,由()25g x =,解得12x =-,212x =-,312x =,42x =.(ⅱ)由已知可得()()12g m g +<,∴12m +>,或112m +<,∴12m +>,或12m +<-,或11122m -<+<.解得1m >,或3m <-,或3122m -<<-.∴m 的取值范围是311322m m m m ⎧⎫><--<<-⎨⎬⎩⎭或或.21.(1)证明见解析;(2)(ⅰ)()1,2-;(ⅱ)8090-.【分析】(1)作差,然后配方即可证明;(2)(ⅰ)根据()()22g a x g x b -+=,由等式两边多项式相应系数相等可得;(ⅱ)根据对称性,倒序相加即可求解.【详解】(1)∵()231f x x =-+,∴()()()()2122212211213131312222f x f x x x x x f x x +++⎛⎫⎛⎫⎡⎤-=-+--++-+ ⎪ ⎪⎣⎦⎝⎭⎝⎭()22222211221213333330442224x x x x x x x x =---++=-≥,∴()()121222f x f xx x f ++⎛⎫≥⎪⎝⎭.(2)(ⅰ)∵()()33213g x f x x x x =+-=-,设()g x 的对称中心为(),a b ,则()()22g a x g x b -+=,即()()323223232a x a x x x b ---+-=.整理得()()22326612128122a x a a x a a b -+-+-=,∴232660121208122a a a a a b -=⎧⎪-=⎨⎪-=⎩解得1,2.a b =⎧⎨=-⎩.∴()g x 图象的对称中心为()1,2-,(ⅱ)由(ⅰ)得()()24g x g x -+=-,∵12340452023202320232023S g g g g ⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,又有40454044404312023202320232023S g g g g ⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相加得244045S =-⨯,∴8090S =-.22.(1)()f x x =(2)(],1-∞(3)6,6⎡⎣【分析】(1)根据幂函数的定义及单调性即可求解解析式;(2)由(1)得()()231g x kx k x =+-+,分类讨论研究函数的零点即可求解;(3)由题意223333x x -=---,令23x t -=,分类讨论去掉绝对值即可求解.【详解】(1)由()2331m m -+=,解得2m =或1m =,当2m =时,()2f x x -=不合题意;当1m =时,()f x x =满足条件,所以()f x x =.(2)设()()231g x kx k x =+-+,(ⅰ)若0k =,则13x =满足条件;(ⅱ)若0k <,由()010g =>,易知满足条件;.(ⅲ)若0k >,由()010g =>,可知两根同号,则2Δ1090302k k k k ⎧=-+≥⎪⎨-->⎪⎩,解得1903k k k ≤≥⎧⎨<<⎩或,∴01k <≤,综上,1k ≤.所以k 的取值范围是(],1-∞.(3)()213h x x =-,()2233h x x =--,()23333h x x =---,由()()31h x h x =得223333x x -=---,令23x t -=,3t ≥-,则33t t =--.(ⅰ)若6t ≥,则6t t =-,此时无解;(ⅱ)若36t ≤<,则6t t =-,从而6t t =-,解得3t =,此时26x =;(ⅲ)若03t ≤<,则t t =-,则03t ≤<,即2033x ≤-<,解得236x ≤<;(ⅳ)若30t -≤<,则t t -=,则30t -≤<,即2330x -≤-<,解得203x ≤<;综上,26x ≤,即66x ≤≤所以x 的取值范围是6,6⎡-⎣.【点睛】关键点点睛:对于一元二次函数型零点问题,要注意根据函数类型讨论,结合一元二次函数图象与性质分析零点分布,注意讨论的完整性.。
福建省厦门2024-2025学年高一上学期期中考试数学试卷(含答案)
厦门2024-2025学年第一学期期中考高一数学试卷(答卷时间:120分钟 卷面总分:150分)一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.设全集,集合,则( )A .B .C .D .2.若命题,则命题的否定为( )A .B .C .D .3.已知命题,若命题是命题的充分不必要条件,则命题可以为( )A .B .C .D .4.下列幕函数满足:“①;②当时,为单调通增”的是( )A . B .C .D .5.已知函数(其中)的图象如图所示,则函数的图像是( )A .B .C .D .6.已知且,则的最小值是( )A .B . 25C .5D .{}0,1,2,3,4,5,6U ={}{}1,2,3,3,4,5,6A B ==U ()A B = ð{}1,2{}2,3{}1,2,3{}0,1,2,32:0,320p x x x ∃>-+>p 20,320x x x ∃>-+≤20,320x x x ∃≤-+≤20,320x x x ∀≤-+>20,320x x x ∀>-+≤:32p x -<≤q p q 31x -≤≤1x <31x -<<3x <-,()()x R f x f x ∀∈-=-(0,)x ∈+∞()f x ()f x =3()f x x=1()f x x-=2()f x x=()()()f x x a x b =--a b >()2xg x a b =+-0,0x y >>3210x y +=32x y+52657.已知偶函数与奇函数的定义域都是,它们在上的图象如图所示,则使关于的不等式成立的的取值范围为( )A .B .C .D .8.已知,则与之间的大小关系是( )A .B .C .D .无法比较二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对得5分,部分选对得部分分.9.下列函数中,与不是同一函数的是( )A .B .C .D .10.若,则下列不等式成立的是( )A .B.C .D .11.设,用符号表示不大于的最大整数,如.若函数,则下列说法正确的是( )A .B .函数的值域是C .若,则D .方程有2个不同的实数根三、填空题:本大题共3小题,每小题5分,共15分.将答案填写在答题卷相应位置上.12.计算________.13.“不等式对一切实数都成立”,则的取值范围为________.()f x ()g x (2,2)-[0,2]x ()()0f x g x ⋅>x (2,1)(0,1)-- (1,0)(0,1)- (1,0)(1,2)- (2,1)(1,2)-- 45342024120241,2024120241a b ++==++a b a b>a b <a b =y x =2y =u =y =2n m n=,0a b c a b c >>++=22a b <ac bc <11a b<32a a a b b+>+x R ∈[]x x [1.6]1,[ 1.6]2=-=-()[]f x x x =-[(1.5)]1f =-()f x [1,0]-()()f a f b =1a b -≥2()30f x x -+=21232927()((1.5)48---+=23208x kx -+-<x k14.某学校高一年级一班48名同学全部参加语文和英语书面表达写作比赛,根据作品质量评定为优秀和合格两个等级,结果如表所示:若在两项比赛中都评定为合格的学生最多为10人,则在两项比赛中都评定为优秀的同学最多为________人.优秀合格合计语文202848英语301848四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知集合,集合.(1)当时,求,.(2)若,求的取值范围.16.(15分)已知函数.(1)判断函数的奇偶性并用定义加以证明;(2)判断函数在上的单调性并用定义加以证明.17.(15分)已知函数.(1)若函数图像关于对称,求不等式的解集;(2)若当时函数的最小值为2,求当时,函数的最大值.18.(17分)某游戏厂商对新出品的一款游戏设定了“防沉迷系统”规则如下①3小时内(含3小时)为健康时间,玩家在这段时间内获得的累积经验值(单位:EXP )与游玩时间(单位:小时)滴足关系式:;②3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为0(即累积经验值不变);③超过5小时为不健康时间,累积经验值开始损失,损失的经验值与不健康时国成正比例关系,正比例系数为50.(1)当时,写出累积经验值与游玩时间的函数关系式,求出游玩6小时的累积经验值;(2)该游戏厂商把累积经验值与游现时间的比值称为“玩家愉悦指数”,记为,若,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数的取值范围.19.(17分)《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂,从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是发现新问题、新结论的重要方法.例如,已知,求证:.{}34A x x =-<≤{}121B x k x k =+≤≤-2k ≠A B ()R A B ðA B B = k 2()f x x x=-()f x ()f x (0,)+∞2()23,f x x bx b R =-+∈()f x 2x =()0f x >[1,2]x ∈-()f x [1,2]e ∈-()f x E t 22016E t t a =++1a =E t ()E f t =E t ()H t 0a >a 1ab =11111a b+=++证明:原式.波利亚在《怎样解题》中也指出:“当你找到第一个蘑菇或作出第一个发现后,再四处看看,他们总是成群生长.”类似上述问题,我们有更多的式子满足以上特征.请根据上述材料解答下列问题:(1)已知,求的值;(2)若,解方程;(3)若正数满足,求的最小值.111111ab b ab a b b b=+=+=++++1ab =221111a b+++1abc =5551111ax bx cxab a bc b ca c ++=++++++,a b 1ab =11112M a b=+++高一数学期中考参考答案1234567891011A DCB DAABABDBDACD12.13.14.1215.解:(1)由题设,则,,则,(2)由,若时,,满足;若时,;综上,.16.解:(1)是奇函数,证明如下:由已知得的定义域是,则,都有,且,所以是定义域在上的奇函数.(2)在上单调递减,证明如下:,且,都有∵,∴,∵,∴∴,即,所以在上单调递减32({}3B ={}34A B x x =-<≤ {}()34R A x x x =≤->或ð()R A B = ð∅A B A B A =⇒⊆ B =∅1212k k k +>-⇒<B ≠∅12151322214k k k k k +≤-⎧⎪+>-⇒≤≤⎨⎪-≤⎩52k ≤()f x ()f x (,0)(0,)-∞+∞ (,0)(0,)x ∀∈-∞+∞ (,0)(0,)x -∈-∞+∞ 22()()()f x x x f x x x-=--=-=--()f x (,0)(0,)-∞+∞ ()f x (0,)+∞12,(0,)x x ∀∈+∞12x x <22212121121212122222()()x x x x x x f x f x x x x x x x --+-=--+=222112************222()()x x x x x x x x x x x x x x x x --+⨯---==211212()(2)x x x x x x -⨯+=12x x <210x x ->12,(0,)x x ∈+∞120x x >12()()0f x f x ->12()()f x f x >()f x (0,)+∞17.解:(1)因为图像关于对称,所以:,所以:得:,即,解得或所以,原不等式的解集为:(2)因为是二次函数,图像抛物线开口向上,对称轴为,①若,则在上是增函数所以:,解得:;所以:,②若,则在上是减函数,所以:,解得:(舍);③若,则在上是减函数,在上是增函数;所以,解得:或(舍),所以:综上,当时,的最大值为11;当时,最大值为6.18.解:(1)当时,,,当时,,当时,当时,所以,当时,.(2)当时,,整理得:恒成立,令函数的对称轴是,当时,取得最小值,即,()f x 2x =2b =22()43()43,1f x xx f x x x e e -+=-+=<2430x x ee -+<2430x x -+<1x <3x >{}13x x x <>或2()23f x x bx =-+x b =1b ≤-()f x [1,2]-min ()(1)422f x f b =-=+=1b =-max ()()7411f x f x b ==-=2b ≥()f x [1,2]-min ()(2)742f x f b ==-=54b =12b -<<()f x [1,]b -(,2]b 2min ()()32f x f b b ==-=1b =1b =-max ()(1)426f x f b =-=+=1b =-()f x 1b =()f x 03t <≤1a =22016E t t =++3t =85E =35t <≤85E =5t >8550(5)33550E t t=--=-22016,03()85,3533550,5t t t E t t t t ⎧++<≤⎪=<≤⎨⎪->⎩6t =()35E t =03t <≤22016()24t t aH t t++=≥24160t t a -+≥2()416f t t t a =-+2(0,3]t =∈2t =()f t 164a -1640a -≥14a ≥19.解:(1).(2)∵,∴原方程可化为:,即:,∴,即,解得:.(3)∵,当且仅当,即∴有最小值,此时有最大值,从而有最小值,即有最小值.222211111ab ab b aa b ab a ab b ab a b+=+=+=++++++1abc =55511(1)ax bx bcxab a abc bc b b ca c ++=++++++5551111x bx bcx b bc bc b bc b ++=++++++5(1)11b bc x b bc ++=++51x =15x =2221122111111211223123123ab b b b b M ab a b b b b b b b b b++=+=+==-=-++++++++++12b b +≥=12b b =1b a b===12b b +1123b b ++3-11123b b-++2-11112M a b=+++2。
2023-2024学年北京交大附中高一(上)期中数学试卷【答案版】
2023-2024学年北京交大附中高一(上)期中数学试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M ={﹣2,﹣1,0,1},N ={x |﹣3≤x <0},则M ∩N =( ) A .{﹣2,﹣1,0,1}B .{0,1}C .{﹣2}D .{﹣2,﹣1}2.命题“∃x 0∈(0,+∞),x 02+1≤2x 0”的否定为( ) A .∀x ∈(0,+∞),x 2+1>2x B .∀x ∈(0,+∞),x 2+1≤2x C .∀x ∈(﹣∞,0],x 2+1≤2xD .∀x ∈(﹣∞,0],x 2+1>2x3.已知关于x 的方程x 2﹣2x +m =0的两根同号,则m 的取值范围是( ) A .m ≤1B .m ≤0C .0<m ≤1D .0≤m ≤14.已知函数f (x )={x 2−2x(x <1)−x +1(x ≥1),则f (f (﹣1))的值为( )A .3B .0C .﹣1D .﹣25.已知a ∈R ,则“a >1”是“1a<1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.下列函数中,在区间(0,+∞)上单调递增且是奇函数的是( ) A .y =√xB .y =x 2C .y =|x |D .y =x −1x7.已知实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .b ﹣a <c +aB .c 2<abC .cb>caD .|b |c <|a |c8.设f (x )为R 上的奇函数,且当x <0时,f (x )=3x ﹣1,则f (0)+f (4)=( ) A .12B .﹣12C .13D .﹣139.已知当x >0时,不等式x 2﹣mx +16>0恒成立,则实数m 的取值范围是( ) A .(﹣∞,8)B .(﹣∞,8]C .[8,+∞)D .(6,+∞)10.(多选)对于全集U 的子集A 定义函数f A (x )={1(x ∈A)0(x ∈∁U A)为A 的特征函数,设A ,B 为全集U 的子集,则下列结论中正确的是( ) A .若A ⊆B ,则f A (x )≤f B (x ) B .f ∁U A (x )=1﹣f A (x )C .f A ∩B (x )=f A (x )•f B (x )D .f A ∪B (x )=f A (x )+f B (x )二、填空题(本大题共5小题,每小题4分,共20分,把答案填在题中横线上) 11.函数f(x)=2√x−1的定义域是 . 12.如图,函数f (x )的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则f (x )≤2的解集为 .13.定义在R 上的函数f (x ),给出下列三个论断: ①f (x )在R 上单调递增;②x >1;③f (x )>f (1).以其中的两个论断为条件,余下的一个论断为结论,写出一个正确的命题: . 14.为了保护水资源,提倡节约用水,某城市对居民生活用水,实行“阶梯水价”.计算方法如表:若某户居民本月交纳的水费为90元,则此户居民本月用水量为 . 15.设函数f(x)={x 2+4x +3,x ≤0−1x ,x >0.给出下列四个结论:①函数f (x )的值域是R ;②∀x 1,x 2∈(﹣2,+∞)(x 1≠x 2),有f(x 1)−f(x 2)x 1−x 2>0;③∃x 0>0,使得f (﹣x 0)=f (x 0);④若互不相等的实数x 1,x 2,x 3满足f (x 1)=f (x 2)=f (x 3),则x 1+x 2+x 3的取值范围是(﹣3,+∞). 其中所有正确结论的序号是 .三、解答题(本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤) 16.(12分)设关于x 的不等式|x ﹣a |<2的解集为A ,不等式x 2﹣x ﹣6<0的解集为B . (1)求集合A ,B ;(2)若A ⊆B ,求实数a 的取值范围. 17.(12分)已知函数f(x)=2x−3x+1.(1)用函数单调性的定义证明:f(x)在(﹣1,+∞)上是增函数;(2)求函数f(x)在区间[1,4]上的值域.18.(12分)已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.(1)求f(x)的解析式;(2)若当x∈[﹣3,﹣1]时,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围.19.(12分)为了减少能源损耗,房屋的屋顶和外墙通常需要建造隔热层,某地正在建设一座购物中心,现在计划对其建筑物建造可使用40年的隔热层,已知每厘米厚的隔热层建造成本为8万元.该建筑物每年的能源消耗费用P(单位:万元)与隔热层厚度x(单位:cm)满足关系:P=3m4x+5(x∈R,0≤x≤8).若不建隔热层,每年能源消耗费用为9万元.设S为隔热层建造费用与40年的能源消耗费用之和.(1)求m的值及用x表示S;(2)当隔热层的厚度为多少时,总费用S达到最小,并求最小值.20.(12分)已知f(x)是定义域为R的函数,若对任意x1,x2∈R,x1﹣x2∈S,均有f(x1)﹣f(x2)∈S,则称f(x)是S关联.(1)判断和证明函数f(x)=2x+1是否是[0,+∞)关联?是否是[0,1]关联?(2)若f(x)是{3}关联,当x∈[0,3)时,f(x)=x2﹣2x,解不等式:2≤f(x)≤3.2023-2024学年北京交大附中高一(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M ={﹣2,﹣1,0,1},N ={x |﹣3≤x <0},则M ∩N =( ) A .{﹣2,﹣1,0,1}B .{0,1}C .{﹣2}D .{﹣2,﹣1}解:集合M ={﹣2,﹣1,0,1},N ={x |﹣3≤x <0},则M ∩N ={﹣2,﹣1}. 故选:D .2.命题“∃x 0∈(0,+∞),x 02+1≤2x 0”的否定为( ) A .∀x ∈(0,+∞),x 2+1>2x B .∀x ∈(0,+∞),x 2+1≤2x C .∀x ∈(﹣∞,0],x 2+1≤2x D .∀x ∈(﹣∞,0],x 2+1>2x解:否定:否定量词,否定结论,所以把任意改成存在,x 02+1≤2x 0改为x 2+1>2x , 即∀x ∈(0,+∞),x 2+1>2x 故选:A .3.已知关于x 的方程x 2﹣2x +m =0的两根同号,则m 的取值范围是( ) A .m ≤1B .m ≤0C .0<m ≤1D .0≤m ≤1解:关于x 的方程x 2﹣2x +m =0的两根同号,则判别式大于等于0且两根之积大于零, 则有{Δ=4−4m ≥0m >0,解得0<m ≤1.故选:C . 4.已知函数f (x )={x 2−2x(x <1)−x +1(x ≥1),则f (f (﹣1))的值为( )A .3B .0C .﹣1D .﹣2解:因为函数f (x )={x 2−2x(x <1)−x +1(x ≥1),所以f (﹣1)=1+2=3,则f (f (﹣1))=f (3)=﹣3+1=﹣2. 故选:D .5.已知a ∈R ,则“a >1”是“1a <1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:由1a<1,可得a>1或a<0,故由a>1,能够推出1a <1,故a>1是1a<1的充分条件,由1a <1,不能够推出a>1,故a>1是1a<1的不必要条件,综上所述,a>1是1a<1的充分不必要条件,故选:A.6.下列函数中,在区间(0,+∞)上单调递增且是奇函数的是()A.y=√x B.y=x2C.y=|x|D.y=x−1x 解:对于A,函数y=√x的定义域为[0,+∞),关于原点不对称,故函数y=√x为非奇非偶函数,故A不符题意;对于B,函数y=f(x)=x2的定义域为R,因为f(﹣x)=x2=f(x),所以函数y=x2为偶函数,故B不符题意;对于C,函数y=f(x)=|x|的定义域为R,因为f(﹣x)=|x|=f(x),所以函数y=|x|为偶函数,故C不符题意;对于D,函数y=f(x)=x−1x的定义域为{x|x≠0},因为f(−x)=−x+1x=−f(x),所以函数f(x)为奇函数,又因为函数y=x,y=−1x在区间(0,+∞)上都单调递增,所以函数y=x−1x在区间(0,+∞)上单调递增,故D符合题意.故选:D.7.已知实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.b﹣a<c+a B.c2<ab C.cb >caD.|b|c<|a|c解:(法1)根据数轴可得c<b<a<0且|c|>|b|>|a|,对于A:因为c<b,a<0,所以c+a<c,b﹣a>b,则c+a<c<b﹣a,即c+a<b﹣a,故A错误;对于B:因为c<b<a<0,|c|>|b|>|a|,所以c2>b2>a2,且b2>ab,所以c2>b2>ab,则c2>ab,故B 错误;对于C :因为b <a <0,所以1b>1a,则cb<ca,故C 错误;对于D :因为|b |>|a |,且c <0,所以|b |c <|a |c ,故D 正确, (法2)不妨令c =﹣5,b =﹣4,a =﹣1,则c +a =﹣6<b ﹣a =﹣3,故A 错误;c 2=25>ab =4,故B 错误;cb =54<c a=5,故C 错误;故选:D .8.设f (x )为R 上的奇函数,且当x <0时,f (x )=3x ﹣1,则f (0)+f (4)=( ) A .12B .﹣12C .13D .﹣13解:根据题意,当x <0时,f (x )=3x ﹣1,则f (﹣4)=3×(﹣4)﹣1=﹣13, 又由f (x )为R 上的奇函数,则f (0)=0,f (4)=13, 则f (0)+f (4)=13. 故选:C .9.已知当x >0时,不等式x 2﹣mx +16>0恒成立,则实数m 的取值范围是( ) A .(﹣∞,8)B .(﹣∞,8]C .[8,+∞)D .(6,+∞)解:根据题意当x >0时,不等式x 2﹣mx +16>0恒成立,则m <x 2+16x =x +16x恒成立,只需m <(x +16x )min即可. 易知当x >0时,由基本不等式可得需x +16x ≥2√x ⋅16x=8,当且仅当x =4时取等号; 所以(x +16x )min=8,即m <8,所以m 的取值范围是(﹣∞,8). 故选:A .10.(多选)对于全集U 的子集A 定义函数f A (x )={1(x ∈A)0(x ∈∁U A)为A 的特征函数,设A ,B 为全集U 的子集,则下列结论中正确的是( ) A .若A ⊆B ,则f A (x )≤f B (x ) B .f ∁U A (x )=1﹣f A (x )C .f A ∩B (x )=f A (x )•f B (x )D .f A ∪B (x )=f A (x )+f B (x )解:对于A ,∵A ⊆B ,可得x ∈A 则x ∈B ,因为f A (x )={1(x ∈A)0(x ∈∁U A),f B (x)={1,x ∈B 0,x ∈∁U B ,当x ∈A 时,f A (x )=f B (x )=1,当x ∉A 但x ∈B 时,f A (x )=0,f B (x )=1,当x∉B,f A(x)=f B(x)=0∴f A(x)≤f B(x),故A正确;对于B,f∁U A (x)={1,x∈∁U A0,x∈A,所以f∁U A(x)=1−f A(x),故B正确;对于C,当x∈A∩B时,f A∩B(x)=f A(x)=f B(x)=1,当x∈A,x∉B时,f A∩B(x)=f B(x)=0,f A(x)=1,当x∉A,x∈B时f A∩B(x)=f A(x)=0,f B(x)=1,当x∉A∪B时,f A∩B(x)=f A(x)=f B(x)=0,以上情况均满足f A∩B(x)=f A(x)•f B(x),故C正确;对于D,当x∈A∩B时f A∪B(x)=1,f A(x)+f B(x)=1+1=2≠f A∪B(x),故D错误.故选:ABC.二、填空题(本大题共5小题,每小题4分,共20分,把答案填在题中横线上)11.函数f(x)=2√x−1的定义域是{x|x>1}解:要使f(x)=2√x−1有意义,则x﹣1>0,∴x>1;∴f(x)的定义域为{x|x>1}.故答案为:{x|x>1}.12.如图,函数f(x)的图象是折线段ABC,其中A,B,C的坐标分别为(0,4),(2,0),(6,4),则f(x)≤2的解集为[1,4].解:由图象可知,f(x)≤2的解集为[1,4].故答案为:[1,4].13.定义在R上的函数f(x),给出下列三个论断:①f(x)在R上单调递增;②x>1;③f(x)>f(1).以其中的两个论断为条件,余下的一个论断为结论,写出一个正确的命题:①②推出③.解:由题意,若f(x)为定义在R上的单调递增函数,根据单调性,可知,当x>1时,很明显有f(x)>f(1)成立.故已知①②可以推出③.故答案为:①②推出③.14.为了保护水资源,提倡节约用水,某城市对居民生活用水,实行“阶梯水价”.计算方法如表:若某户居民本月交纳的水费为90元,则此户居民本月用水量为 20m 3 . 解:设用水量为x 立方米,水价为y 元,则y ={3x ,0≤x ≤1236+6(x −12),12<x ≤1872+9(x −18),x >18,整理得y ={3x ,0≤x ≤126x −36,12<x ≤189x −90,x >18当0≤x ≤12时,0≤y ≤36,x >18;当0≤x ≤12时,0≤y ≤36;12<x ≤18 时,36<y ≤72; 故某户居民本月交纳的水费为90元,则用水量大于18立方米, 令9x ﹣90=90,则x =20(立方米), 故答案为:20m 3. 15.设函数f(x)={x 2+4x +3,x ≤0−1x ,x >0.给出下列四个结论:①函数f (x )的值域是R ;②∀x 1,x 2∈(﹣2,+∞)(x 1≠x 2),有f(x 1)−f(x 2)x 1−x 2>0;③∃x 0>0,使得f (﹣x 0)=f (x 0);④若互不相等的实数x 1,x 2,x 3满足f (x 1)=f (x 2)=f (x 3),则x 1+x 2+x 3的取值范围是(﹣3,+∞). 其中所有正确结论的序号是 ①③④ .解:因为f(x)={x 2+4x +3,x ≤0−1x ,x >0,作出函数图像,如图所示:由图像可知f (x )∈R ,①正确;∀x 1,x 2∈(﹣2,+∞)(x 1≠x 2),f (x )不具有统一单调性,②错误;作出y =1x ,(x <0)的图像,如虚线所示,因为y =1x与f (x )=x 2+4x +3,x ≤3有交点,所以∃x 0>0,使得f (﹣x 0)=f (x 0),故③正确;由图像易知当x >0且f (x )=﹣1,解得x =1,则若互不相等的实数x 1,x 2,x 3满足f (x 1)=f (x 2)=f (x 3),则x 1+x 2=﹣4,x 3>1,则x 1+x 2+x 3>﹣3,④正确. 故答案为:①③④.三、解答题(本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤) 16.(12分)设关于x 的不等式|x ﹣a |<2的解集为A ,不等式x 2﹣x ﹣6<0的解集为B . (1)求集合A ,B ;(2)若A ⊆B ,求实数a 的取值范围. 解:(1)因为A ={x ||x ﹣a |<2}, 所以﹣2<x ﹣a <2,即a ﹣2<x <a +2, 所以A ={x |a ﹣2<x <a +2}, 因为x 2﹣x ﹣6<0,所以(x +2)(x ﹣3)<0,即﹣2<x <3, 所以B ={x |﹣2<x <3}.(2)因为A ⊆B ,且a ﹣2<a +2恒成立,所以A ≠∅, 所以{a −2≥−2a +2≤3,解得0≤a ≤1,故a 取值范围为[0,1].17.(12分)已知函数f(x)=2x−3x+1.(1)用函数单调性的定义证明:f (x )在(﹣1,+∞)上是增函数; (2)求函数f (x )在区间[1,4]上的值域. 解:(1)任取x 1,x 2∈(﹣1,+∞),且x 1<x 2,则f(x 1)−f(x 2)=2x 1−3x 1+1−2x 2−3x 2+1=(2x 1−3)(x 2+1)−(2x 2−3)(x 1+1)(x 1+1)(x 2+1)=5(x 1−x 2)(x 1+1)(x 2+1),因为x 1,x 2∈(﹣1,+∞),x 1<x 2,所以x 1﹣x 2<0,x 1+1>0,x 2+1>0,所以f (x 1)﹣f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(﹣1,+∞)上是增函数. (2)由(1)知f (x )在区间[1,4]上单调递增, 所以f(x)min =f(1)=−12,f (x )max =f (4)=1, 所以函数f (x )在区间[1,4]上的值域为[−12,1].18.(12分)已知二次函数f (x )的最小值为1,且f (0)=f (2)=3. (1)求f (x )的解析式;(2)若当x ∈[﹣3,﹣1]时,y =f (x )的图象恒在y =2x +2m +1的图象上方,试确定实数m 的取值范围. 解:(1)设f (x )=a (x ﹣0)(x ﹣2)+3,则f (x )=ax 2﹣2ax +3,二次函数f (x )的最小值为1, ∴12a−4a 24a=3−a =1,∴a =2,∴f (x )=2x 2﹣4x +3.(2)x ∈[﹣3,﹣1]时,y =f (x )的图象恒在y =2x +2m +1的图象上方, 可得2x 2﹣4x +3>2x +2m +1恒成立, 即m <x 2﹣3x +1在x ∈[﹣3,﹣1]时恒成立. 所以m <(x 2﹣3x +1)min =f (﹣1)=5 即m <5.19.(12分)为了减少能源损耗,房屋的屋顶和外墙通常需要建造隔热层,某地正在建设一座购物中心,现在计划对其建筑物建造可使用40年的隔热层,已知每厘米厚的隔热层建造成本为8万元.该建筑物每年的能源消耗费用P (单位:万元)与隔热层厚度x (单位:cm )满足关系:P =3m4x+5(x ∈R ,0≤x ≤8).若不建隔热层,每年能源消耗费用为9万元.设S 为隔热层建造费用与40年的能源消耗费用之和.(1)求m 的值及用x 表示S ;(2)当隔热层的厚度为多少时,总费用S 达到最小,并求最小值.解:(1)设隔热层厚度x ,依题意,每年的能源消耗费用为:P =3m4x+5,而当x =0时,P =9, 则3m 5=9,解得m =15,显然建造费用为8x ,所以隔热层建造费用与40年的能源消耗费用之和为: S =40P +8x =40×454x+5+8x =18004x+5+8x (0≤x ≤8). (2)由(1)知S =18004x+5+8x =18004x+5+2(4x +5)−10>2√10004x+2⋅2(4x+5)−10=2×60−10=110,当且仅当18004x+5=2(4x+5),即x=6.25时取等号,所以当隔热层的厚度为6.25cm时,总费用S取得最小值110万元.20.(12分)已知f(x)是定义域为R的函数,若对任意x1,x2∈R,x1﹣x2∈S,均有f(x1)﹣f(x2)∈S,则称f(x)是S关联.(1)判断和证明函数f(x)=2x+1是否是[0,+∞)关联?是否是[0,1]关联?(2)若f(x)是{3}关联,当x∈[0,3)时,f(x)=x2﹣2x,解不等式:2≤f(x)≤3.解:(1)函数f(x)=2x+1是[0,+∞)关联,证明如下:证明:任取x1,x2∈R,若x1﹣x2∈[0,+∞),则f(x1)﹣f(x2)=2(x1﹣x2)∈[0,+∞),所以函数f(x)=2x+1是[0,+∞)关联;函数f(x)=2x+1不是[0,1]关联,证明如下:证明:若x1﹣x2∈[0,1],则f(x1)﹣f(x2)=2(x1﹣x2)∈[0,2],所以函数f(x)=2x+1不是[0,1]关联.(2)因f(x)是{3}关联,则x1﹣x2=3,有f(x1)﹣f(x2)=3,即f(x+3)﹣f(x)=3,当x∈[0,3)时,f(x)=x2﹣2x=(x﹣1)2﹣1∈[﹣1,3),而2≤f(x)≤3,即2≤x2﹣2x≤3,解得1+√3≤x≤3,于是得1+√3≤x<3,当x+3∈[0,3)时,x∈[﹣3,0),f(x)=f(x+3)﹣3=(x+2)2﹣4∈[﹣4,0),不等式无解;当x﹣3∈[0,3)时,x∈[3,6),f(x)=f(x﹣3)+3=(x﹣4)2+2∈[2,6),而2≤f(x)≤3,即2≤(x﹣4)2+2≤3,解得3≤x≤5,则有3≤x≤5,当x﹣6∈[0,3)时,x﹣3∈[3,6),x∈[6,9),f(x)=f(x﹣3)+3=f(x﹣6)+6=(x﹣7)2+5∈[5,9),不等式无解,把函数f(x)从x∈[0,3)起每3个单位向右按f(x+3)﹣f(x)=3变换,图象上升,从x∈[0,3)起每3个单位向左按f(x+3)﹣f(x)=3变换,图象下降,综上得1+√3≤x≤5,所以不等式2≤f(x)≤3的解集为[1+√3,5].第11页(共11页)。
江西省南昌市江西师范大学附属中学2024-2025学年高一上学期期中考试数学试卷
江西省南昌市江西师范大学附属中学2024-2025学年高一上学期期中考试数学试卷一、单选题1.已知集合{}{}220,1||A x x B x x =+>=>,则A B = ()A .{}|21x x -<<B .{}|1x x >C .{|21x x -<<-或}1x >D .{|1x x <-或}1x >2.已知集合{}{}1,1,2,41,2,4,16M N =-=,.给出下列四个对应法则:①1y x=;②1y x =+;③y x =;④2y x =.请由函数定义判断,其中能构成从M 到N 的函数的是()A .①③B .①②C .③④D .②④3.已知函数()f x 在[)0,+∞上单调递减,则对实数120,0x x >>,“12x x >”是“()()12f x f x <”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.函数()233xx f x =-的大致图象是()A .B .C .D .5.若函数()y f x =为奇函数,则它的图象必经过点()A .()0,0B .()(),a f a --C .()(),a f a -D .()(),a f a ---6.已知函数11(0,1)x y a a a -=+>≠的图像恒过定点A ,且点A 在直线(,0)y mx n m n =+>上,则11m n+的最小值为()A .4B .1C .2D .327.设()f x 是定义在R 上的奇函数、对任意()12,0,x x ∈+∞,且12x x ≠,都有()()2121f x f x x x ->-且(1)0f =、则不等式()0xf x >的解集为()A .(1,0)(1,)-+∞B .(,1)(0,1)-∞-C .(,0)(1,)-∞⋃+∞D .(,1)(1,)-∞-+∞ 8.已知函数()2,123,1x a a x f x ax ax a x ⎧+≥=⎨-+-+<⎩(0a >且1a ≠),若函数()f x 的值域为R ,则实数a 的取值范围是()A .20,3⎛⎤⎝⎦B .31,2⎛⎤ ⎥⎝⎦C .[)2,+∞D .[)3,+∞二、多选题9.下列说法正确的是()A .命题“0x ∀>,都有e 1x x >+的否定是“0x ∃>,使得e 1≤+x xB .若0a b >>,则11a ab b+>+C .()xf x x =与()1,01,0x g x x ≥⎧=⎨-<⎩表示同一函数D .函数()y f x =的定义域为[]2,3,则函数()21y f x =-的定义域为3,22⎡⎤⎢⎥⎣⎦10.已知函数()e 1e 1x x f x -=+,则下列结论正确的是()A .函数()f x 的定义域为RB .函数()f x 的值域为()1,1-C .()()0f x f x +-=D .函数()f x 为减函数11.已知函数()f x 的定义域为R ,其图象关于()1,2中心对称.若()()424f x f x x --=-,则()A .()()4214f x f x -+-=B .()()244f f +=C .()12y f x =+-为奇函数D .()22y f x x =++为偶函数三、填空题12()1132081π3274⎛⎫⎛⎫--+= ⎪ ⎪⎝⎭⎝⎭13.已知幂函数()()215m f x m m x -=+-在0,+∞上单调递减,则m =.14.将()22xx af x =-的图象向右平移2个单位后得曲线1C ,将函数=的图象向下平移2个单位后得曲线2C ,1C 与2C 关于x 轴对称.若()()()f x F x g x a=+的最小值为m 且2m >+则实数a 的取值范围为四、解答题15.已知集合U 为实数集,{5A x x =≤-或}8x ≥,{}121B x a x a =-≤≤+.(1)若5a =,求()U A B ⋂ð;(2)设命题p :x A ∈;命题q :x B ∈,若命题p 是命题q 的必要不充分条件,求实数a 的取值范围.16.已知函数()()3211f x x ax b x =++-+是定义在R 上的奇函数.(1)求a ,b 的值;(2)解不等式()3279333x x x xf >+-⨯+.17.已知定义域为R 的奇函数()21212x x f x =-+(1)判断函数()f x 的单调性,并用定义加以证明;(2)若对任意的[]1,2x ∈,不等式()()²²40f x mx f x -++>成立,求实数m 的取值范围.18.已知0a >且1a ≠,函数()4,02,0x a x x h x x -⎧≥=⎨<⎩,满足()()11h a h a -=-,设()x p x a -=.(1)若()()()231p x f x p x +=+,[)0,x ∞∈+,求函数()f x 的最小值;(2)函数()()()231p x f x p x +=+,()21g x x b x =-+-,若对[]11,1x ∀∈-,都存在[)20,x ∈+∞,使得()()21f x g x =,求b 的取值范围.19.对于定义在区间[],a b 上的函数f (x ),若()(){}[]()|,f P x max f t a t x x a b =≤≤∈.(1)已知()()[]121,2,0,1xf xg x x x ⎛⎫==∈ ⎪⎝⎭试写出()f P x 、()g P x 的表达式;(2)设0a >且1a ≠,函数()()2131,12x xf x a a a x ⎡⎤=+-⨯-∈⎢⎥⎣⎦,,如果()f P x 与()f x 恰好为同一函数,求a 的取值范围;(3)若()(){}[]()min ,f Q x f t a t x x a b =≤≤∈存在最小正整数k ,使得()()()f f P x Q x k x a -≤-对任意的[],x a b ∈成立,则称函数()f x 为[],a b 上的"k 阶收缩函数",已知1b >,函数()4f x x x=+是[]1,b 上的“3阶收缩函数”,求b 的取值范围.。
2023-2024学年四川省绵阳市高一上学期期中数学试题+答案解析(附后)
2023-2024学年四川省绵阳市高一上学期期中数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,则( )A. B. C. D.2.若,则下列选项正确的是( )A. B. C. D.3.命题:“”为真命题,则实数a的取值范围为( )A. B. C. D.4.下列幂函数中,在定义域内是偶函数且在上是单调递减的是( )A. B. C. D.5.已知集合,若,则实数a的取值范围是( )A. B. C. D.6.函数的图象大致形状是( )A. B.C. D.7.红星幼儿园要建一个长方形露天活动区,活动区的一面利用房屋边墙墙长,其它三面用某种环保材料围建,但要开一扇宽的进出口不需材料,共用该种环保材料12m,则可围成该活动区的最大面积为( )A. B. C. D.8.若对任意恒成立,其中是整数,则的可能取值为( )A. B. C. D.二、多选题:本题共4小题,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.已知函数,则( )A. B. 若,则或C. 函数在上单调递减D. 函数在上的值域为10.下列叙述中正确的是( )A.设,则“且”是“”的必要不充分条件B. “”是“关于x的一元二次方程有两个不等实数根”的充分不必要条件C. 命题“”的否定是:“”D. 函数的定义域A为R的子集,值域,则满足条件的有3个11.关于函数的相关性质,下列正确的是( )A. 函数的图象关于y轴对称B. 函数在上单调递减C. 函数在上单调递减D. 函数的最小值为0,无最大值12.已知函数,若存在实数m,使得对于任意的,都有,则称函数有下界,m为其一个下界;类似的,若存在实数M,使得对于任意的,都有,则称函数有上界,M为其一个上界.若函数既有上界,又有下界,则称该函数为有界函数.以下四个选项中正确的是( )A. “函数有下界”是“函数有最小值”的必要不充分条件B. 若定义在R上的奇函数有上界,则该函数是有界函数C. 若函数的定义域为闭区间,则该函数是有界函数D. 若函数且在区间上为有界函数,且一个上界为2,则三、填空题:本题共4小题,每小题5分,共20分。
四川省绵阳中学2024-2025学年高一上学期期中测试数学试卷(含答案)
绵阳中学高2024级高一上期期中测试数学试题第I 卷(选择题)一、单选题(每小题5分,共计40分)1.已知命题,命题的否定是()A.B.C.. D.2.已知集合,若,则实数的值不可以为()A.2 B.1 C.0 D.3.下列函数既是奇函数又在单调递增的是()A. B.C. D.4.已知,若的解集为,则函数的大致图象是( )A. B.C. D.5.已知函数在区间上的值域是,则区间可能是()A. B. C. D.6.“函数的定义域为”是“”的( )2:,210p x x ∀∈+>R p 2,210x x ∀∈+R …2,210x x ∃∈+>R 2,210x x ∃∈+<R 2,210x x ∃∈+R …{}()(){}2320,220A x x x B x x ax =-+==--=∣∣A B A ⋃=a 1-()0,∞+1y x =31y x=1y x x =-1y x x=+()2f x ax x c =--()0f x >()2,1-()y f x =-222y x x =-+[],a b []1,2[],a b []1,0-30,2⎡⎤⎢⎥⎣⎦[]1,3[]1,1-()211f x ax ax =-+R 04a <<A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知且,不等式恒成立,则正实数的取值范围是( )A.B.C. D.8.已知函数是定义在的单调函数,且对于任意的,都有,若关于的方程恰有两个实数根,则实数的取值范围为( )A. B. C. D.二、多选题(每小题6分,共计18分)9.对于任意实数,下列四个命题中为假命题的是( )A.若,则B.若,则C.若,则D.若,则10.已知为正实数,且,则( )A.的最大值为4B.的最小值为18C.的最小值为4D.11.定义在上的偶函数满足:,且对于任意,,若函数,则下列说法正确的是()A.在上单调递增B.0,0a b >>1ab =11422m a b a b++≥+m 2m ≥4m ≥6m ≥8m ≥()f x [)0,∞+[)0,x ∞∈+()2f f x ⎡=⎣x ()2f x x k +=+k 92,4⎡⎫⎪⎢⎣⎭51,4⎡⎫⎪⎢⎣⎭133,4⎡⎫⎪⎢⎣⎭13,4∞⎛⎫- ⎪⎝⎭,,,a b c d ,0a b c >≠ac bc>22ac bc >a b>0a b <<22a ab b >>0,a bcd >>>ac bd>,a b 8ab a b ++=ab 22(1)(1)a b +++a b +1111a b +++R ()f x ()22f =120x x >>()()21122122x f x x f x x x ->-()()2f xg x x -=()g x ()0,∞+()()34g g -<C.在上单调递减D.若正数满足,则第II 卷(非选择题)三、填空题(每小题5分,共计15分)12.函数__________.13.函数,若,则14.已知函数的定义域为的图象关于直线对称,且,若,则__________.四、解答题(共计77分)15.(13分)已知定义在上的函数满足:.(1)求函数的表达式;(2)若不等式在上恒成立,求实数的取值范围.16.(15分)设集合.(1)若,求实数的值;(2)若“”是“”的必要条件,求实数的取值范围.17.(15分)如图,正方形的边长为分别是和边上的点沿折叠使与线段上的点重合(不在端点处),折叠后与交于点.若(1)证明:的周长为定值.(2)求的面积S 的最大值.()f x ()2,∞+m ()()24202m f m f m -+->()2,m ∞∈+()12f x x =+()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩()()2f a f a =+()2__________.f a =()(),f x g x (),y f x =R 1x =()()()()110,45f x g x f x g x -+=--=()21f =()()12g g +=R ()()2223f x f x x x +-=-+()f x ()21f x ax ≥-[]1,3a {}(){}222320,2150A x x x B x x a x a =-+==+++-=∣∣{}2A B ⋂=a x A ∈x B ∈a ABCD 1,,E F AD BC EF C AB M M ,A B CD AD G ,BM x BF y==AMG AMG18.(17分)已知函数是定义在上的奇函数,且.(1)求函数的解析式;(2)判断在上的单调性,并用单调性定义证明;(3)解不等式.19.(17分)若函数的定义域为,集合,若存在正实数,使得任意,都有,且,则称在集合上具有性质.(1)已知函数,判断在区间上是否具有性质,并说明理由;(2)已知函数,且在区间上具有性质,求正整数的最小值;(3)如果是定义域为的奇函数,当时,,且在上具有性质,求实数的取值范围.()21ax b f x x-=+[]1,1-()11f =-()f x ()f x []1,1-()()()210f t f t f -+>()f x D M D ⊆t x M ∈x t D +∈()()f x t f x +>()f x M ()P t 2()f x x =()f x [1,0]-(1)P 3()f x x x =-()f x [0,1]()P n n ()f x R 0x ≥()()f x x a a a =--∈R ()f x R (6)P a数学参考答案题号12345678910答案D D C C B B D C AD ABC题号11答案ABD 填空题12.13.414.【详解】因为的图象关于直线对称,则①,又,即,结合①得②,因为,则,结合②得,则,令,得,令,得,由,得,由,得,则,所以.15.【详解】(1)将的替换为得联立()(],22,1∞--⋃-()y f x =1x =()()11f x f x -=+()()110f x g x -+=()()110f x g x -=-()()110g x f x ++=()()45f x g x --=()()135f x g x +--=()()35g x g x +-=1x =()()125g g +-=2x =()()125g g -+=()()110f x g x -+=()()2110f g +-=()()45f x g x --=()()225f g --=()()125g g -+-=()()125g g +=()()2223f x f x x x +-=-+x x -()()2223f x f x x x -+=++()()()()22223223f x f x x x f x f x x x ⎧+-=-+⎪⎨-+=++⎪⎩解得(2)不等式为,化简得,要使其在上恒成立,则,,当且仅当取等,所以.16.【详解】(1)由,所以或,故集合.因为,所以,将代入中的方程,得,解得或,当时,,满足条件;当时,,满足条件,综上,实数的值为或(2)因为“”是“”的必要条件,所以对于集合.当,即时,,此时;当,即时,,此时;当,即时,要想有,须有,此时:,该方程组无解.综上,实数的取值范围是.17.【详解】(1)设,则,由勾股定理可得,即,由题意,,()21213f x x x =++()21f x ax ≥-2121213x x ax ++≥-116x a x ≤++[]1,3min116x a x ⎛⎫≤++ ⎪⎝⎭11116x x ++≥=x =1a ≤+()()2320120x x x x -+=⇒--=1x =2x ={}1,2A ={}2A B ⋂=2B ∈2x =B 2430a a ++=1a =-3a =-1a =-{}{}2402,2B x x =-==-∣3a =-{}{}24402B x x x =-+==∣a 1-3-x A ∈x B ∈B A⊆()()22,Δ4(1)4583B a a a =+--=+Δ0<3a <-B =∅B A ⊆Δ0=3a =-{}2B =B A ⊆Δ0>3a >-B A ⊆{}1,2B A ==()221352a a ⎧+=-⎨-=⎩a (],3∞--,,01BM x BF y x ==<<1CF MF y ==-222(1)x y y +=-212x y -=90GMF DCF ∠∠==即,可知,设的周长分别为,则又因为,所以,的周长为定值,且定值为2.(2)设的面积为,则,因为,所以,.因为,则,因为,所以,当且仅当,即时,等号成立,满足故的面积的最大值为.18.【详解】(1)函数是定义在上的奇函数,,解得,,而,解得,.(2)函数在上为减函数;90AMG BMF ∠∠+= Rt Rt AMG BFM ∽,AMG BFM 1,p p 11p AM x p BF y -==111p x y y x =++-=+()2111112x x x p p x y y y---==⋅+==AMG BFM 1S 22122(1)S AM x S BF y-==112S xy =()2221221(1)(1)(1)211x x x x x x x S S y y x x ----====-+()()()211121311x x x x x⎡⎤⎡⎤-++-⎣⎦⎣⎦==-+-+++10x +>201x>+211x x ++≥=+3S ≤-211x x+=+1x =-()0,1x ∈AMG 3-()21ax b f x x-=+[]1,1-()()22;11ax b ax b f x f x x x ----=-=-++0b =()21ax f x x ∴=+()11f =-2a =-()[]22,1,11x f x x x -∴=∈-+()221x f x x -=+[]1,1-证明如下:任意且,则因为,所以,又因为,所以,所以,即,所以函数在上为减函数.(3)由题意,,又,所以,即解不等式,所以,所以,解得,所以该不等式的解集为.19.【详解】(1),当时,,故在区间[―1,0]上不具有性质;(2)函数的定义域为,对任意,则,在区间上具有性质,则,即,因为是正整数,化简可得:对任意恒成立,设,其对称轴为,则在区间上是严格增函数,所以,,解得,故正整数的最小值为2;[]12,1,1x x ∈-12x x <()()()()()()121212122222121221221111x x x x x x f x f x x x x x ------=-=++++12x x <120x x -<[]12,1,1x x ∈-1210x x ->()()120f x f x ->()()12f x f x >()()12f x f x >[]1,1-()()()210f t f tf -+>()00f =()()210f t f t -+>()()21f t f t >--()()21f t f t >-22111111t t t t ⎧-≤≤⎪-≤-≤⎨⎪<-⎩0t≤<()()221(1)21f x f x x x x +-=+-=+0.8x =-()()10.60f x f x +-=-<()f x ()1P ()3f x x x =-R []0,1x ∈x n +∈R ()f x [0,1]()P n ()()f x n f x +>33()()x n x n x x +-+>-n 223310x nx n ++->[]0,1x ∈22()331g x x nx n =++-02n x =-<()g x [0,1]2min ()(0)10g x g n ==->1n >n(3)法一:由是定义域为上的奇函数,则,解得,若,,有恒成立,所以符合题意,若,当时,,所以有,若在上具有性质,则对任意恒成立,在上单调递减,则,x 不能同在区间内,,又当时,,当时,,若时,今,则,故,不合题意;,解得,下证:当时,恒成立,若,则,当时,则,,所以成立;当时,则,可得,,即成立;当时,则,即成立;综上所述:当时,对任意x ∈R 均有成立,()f x R (0)0f a a =-=0a ≥0a =()f x x =6x x +>0a >0x <()()()f x f x x a a x a a =--=----=-++()2,,2,x a x a f x x a x a x a x a +<-⎧⎪=--≤≤⎨⎪->⎩()f x R (6)P (6)()f x f x +>x ∈R ()f x [,]a a -6x +[,]a a -6()2a a a ∴>--= [2,0]x a ∈-()0f x ≥[0,2]x a ∈()0f x ≤264a a <≤2x a =-6[0,2]x a +∈(6)()f x f x +≤46a ∴<302a <<302a <<()()6f x f x +>302a <<46a <6x a +≤-()662f x x a +=++()2f x x a =+()()6f x f x +>6a x a -<+<63x a a <-<-()()66f x x a +=-+>-()2f x x a a =+<-()()6f x f x +>6x a +>()()()6622f x x a x a f x +=+->+≥()()6f x f x +>302a ≤<()()6f x f x +>故实数的取值范围为.法二:由是定义域为上的奇函数,则,解得.作出函数图像:由题意得:,解得,若,,有恒成立,所以符合题意,若,则,当时,则,,所以成立;当时,则,可得,,即成立;当时,则,即成立;综上所述:当时,对任意x ∈R 均有成立,故实数的取值范围为.a 30,2⎡⎫⎪⎢⎣⎭()f x R (0)0f a a =-=0a ≥2(2)46a a a --=<302a ≤<0a =()f x x =6x x +>302a <<46a <6x a +≤-()662f x x a +=++()2f x x a =+()()6f x f x +>6a x a -<+<63x a a <-<-()()66f x x a +=-+>-()2f x x a a =+<-()()6f x f x +>6x a +>()()()6622f x x a x a f x +=+->+≥()()6f x f x +>302a ≤<()()6f x f x +>a 30,2⎡⎫⎪⎢⎣⎭。
2023-2024学年常州中学高一数学上学期期中考试卷附答案解析
2023-2024学年常州中学高一数学上学期期中考试卷2023-11(试卷总分为150分,考试时间为120分钟.)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若{}{}{}1,2,3,4,1,2,2,3U M N ===,则()U M N ð是()A .{}4B .{}2,4C .{}1,3,4D .{}1,2,32.下列函数中,值域为()0,∞+的偶函数是()A.y =B .y x=C .1y x=D .21y x =3.设x ∈R ,则“23x ->”是“2560x x -->”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.已知奇函数()f x 在R 上单调递增,若()31f =,则满足()120f x -≤-≤的x 取值范围是()A .[]1,0-B .[]1,2-C .[]1,2D .[]1,35.设R A ⊆,且A ≠∅,从A 到R 的两个函数分别为()()21,35f x x g x x =+=+,若对于A 中的任意一个x ,都有()()f xg x =,则集合A 的个数是()A .1B .2C .3D .无穷多6.已知函数()225,1,1x ax x f x ax x ⎧-+≤⎪=⎨>⎪⎩是R 上的堿函数,则实数a 的取值范围是()A .0a >B .01a <≤C .12a ≤<D .12a ≤≤7.若0ab >>,则下列不等式一定成立的是()A .11b b a a +>+B .11a b a b +>+C .a b a b b a +>+D .22a b a a b b +>+8.已知函数()()221R f x x ax a =-+∈,若非空集合(){}()(){}0,1A x f x B x f f x=≤=≤∣∣,满足A B =,则实数a 的取值范围是()A.11⎡⎤--⎣⎦B.1⎡⎤-⎣⎦C.⎡⎣D.1,1⎡⎣二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.关于x 的方程2210mx x ++=有两个实数解的一个充分条件是()A .1m ≤-B .10m -<<C .01m ≤<D .m 1≥10.若正实数a ,b 满足1a b +=则下列说法正确的是()A .ab 有最大值14B.11a b +有最小值4D .22a b+有最大值1211.已知集合{}1,1A =-,非空集合{}3210B x x ax bx =++-=∣,下列条件能够使得B A ⊆的是()A .1,1a b ==-B .1,1a b =-=C .3,3a b ==-D .3,3a b =-=12.已知函数()2211x xf x x x +=++,则下列结论正确的是()A .()f x 在()1,+∞上单调递增B .()f x 值域为][(),22,∞∞--⋃+C .当0x >时,恒有()f x x>成立D .若12120,0,x x x x >>≠,且()()12f x f x =,则122x x +>三、填空题:本题共4小题,每小题5分,共20分.13.由命题“存在x ∈R ,使220x x m ++≤”是假命题,求得m 的取值范围是(,)a +∞,则实数a 的值是.14.已知函数()21,,2x c f x xx x c x ⎧-≤⎪=⎨⎪-<≤⎩,若()f x 的值域为[]22-,,则实数c 的值是.15.某网店统计了连续三天售出商品的种类情况:第一天售出17种商品,第二天售出13种商品,第三天售出14种商品;前两天都售出的商品有3种,后两天都售出的商品有5种,则该网店这三天售出的商品最少有种.16.已知一块直角梯形状铁皮ABCD ,其中//AD ,90,1,3BC A AB BC AD ∠=︒===,现欲截取一块以CD 为一底的梯形铁皮CDEF ,点,E F 分别在,AD AB 上,记梯形CDEF 的面积为1S ,剩余部分的面积为2S ,则21S S 的最小值是.四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知二次函数()()21,f x ax bx a b =++∈R 的最小值为4a -.(1)若()51f -=,求a 的值;(2)设关于x 的方程()0f x =的两个根分别为12,x x ,求12x x -的值.18.已知全集U =R ,集合()(){}210,203x A x B x x a x a x -⎧⎫=≤=---≤⎨⎬-⎩⎭∣∣.(1)当12a =时,求()U A B ð;(2)若x B ∈是x A ∈的必要不充分条件,求实数a 的取值范围.19.已知函数()f x 是定义在R 上的奇函数,当0x >时,()332f x x x =-+.(1)求函数()f x 的解析式;(2)①用定义证明函数()f x 在()0,1上是单调递减函数;②判断函数()f x 在[)1,+∞上的单调性,请直接写出结果;(3)根据你对该函数的理解,在坐标系中直接作出函数()()R f x x ∈的图象.20.某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”,经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系;()()253,0250,251x x W x xx x ⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)30x 元.已知这种水果的市场售价为20元/千克,且销售畅通供不应求,记该水果单株利润为()f x (单位:元)(1)求()f x 的解析式;(2)当施用肥料为多少千克时,该水果单株利润最大?最大利润是多少?21.已知函数()()f xg x =(1)求函数()f x 的定义域和值域:(2)若a 为非零实数,设函数()()()h x f x ag x =+的最大值为()m a .①求()m a ;②确定满足()1m a m a ⎛⎫= ⎪⎝⎭的实数a ,直接写出所有a 的值组成的集合.22.已知函数()()3R af x x a x =-+∈.(1)求关于x 的不等式()()2221f x f x -->的解集,(2)若对任意的正实数a ,存在01,12x ⎡⎤∈⎢⎥⎣⎦,使得()0f x m ≥,求实数m 的取值范围.1.A【分析】根据给定条件求出M N ⋃,再求()U M N ð即可得解.【详解】因{}1,2M =,{}2,3N =,则{1,2,3}M N = ,而{}1,2,3,4U =,所以(){4}U M N ⋃=ð.故选:A.2.D【分析】利用函数奇偶性的判断与值域的求法,逐一分析判断各选项即可.【详解】对于A ,因为y =的定义域为[)0+∞,,所以此函数不是偶函数,故A 错误;对于B ,因为y x =≥,即y x=的值域为[)0+∞,,故B 错误;对于C ,当=1x -时,11y x ==-,显然值域不为()0,∞+,故C 错误;对于D ,因为()21y f x x ==的定义域为()(),00,∞-+∞U ,且21y x =>,又()()()2211f x f x x x -===-,所以21y x =是值域为()0,∞+的偶函数,故D 正确.故选:D.3.B【分析】先化简“23x ->”和“2560x x -->”,再利用充分必要条件的定义分析判断即可得解.【详解】因为23x ->等价于1x <-或5x >,2560x x -->等价于1x <-或6x >,而{1x x <-或}5x >{1x x <-或}6x >,所以23x ->⇐2560x x -->,故“23x ->”是“2560x x -->”的必要而不充分条件.故选:B.4.B 【分析】利用()f x 的奇偶性可得()31f -=-,()00f =,再结合()f x 的单调性得到320x -≤-≤,从而得解.【详解】因为函数()f x 为R 上的奇函数,()31f =,则()()331f f -=-=-,()00f =,所以()120f x -≤-≤可化()()()320f f x f -≤-≤,又函数()f x 在R 上单调递增,所以320x -≤-≤,解得12x -≤≤.故选:B .5.C【分析】令2135x x +=+.解得1x =-或4x =,进而可列举出满足条件的集合A ,从而得解.【详解】因为()()21,35f x xg x x =+=+,令2135x x +=+,解得1x =-或4x =,故由题意可知{}1,4A ⊆-,且A ≠∅,则当{1}A =-,{4}A =,{}1,4A =-时,满足条件.故选:C.6.D【分析】根据分段函数的单调性可得出关于实数a 的不等式组,由此可解得实数的取值范围.【详解】易知二次函数225y x ax =-+的对称轴为x a =,因为函数25,1(),1x ax x f x ax x ⎧-+≤⎪=⎨>⎪⎩是R 上的减函数,所以1125a a a a ≥⎧⎪>⎨⎪-+≥⎩,解得12a ≤≤.故选:D.7.C【分析】利用作差比较法及不等式的性质逐项判断即可求解.【详解】对于A ,()111b b b a a a a a +--=++,因为0a b >>,所以0,10b a a -<+>,所以()1b aa a -<+,即101b b a a +-<+,于是有11b b a a +<+故A 错误;对于B ,因为()()222211111a b ab a b a b b ab a a b a b a b ab ab --+++--⎛⎫+-+=-== ⎪⎝⎭,因为0a b >>,所以0,0a b ab ->>,但ab 与1的大小不确定,故不一定成立,故B 错误;对于C ,因为2222a b ab a ab b a b a ab b a b b a b a ab +++--⎛⎫+-+= ⎪⎝⎭()()a b ab a b ab -++=,因为0a b >>,所以0,0,0a b ab ab a b ->>++>,所以()()0a b ab a b ab -++>,即0a b a b b a ⎛⎫+-+> ⎪⎝⎭,于是有a b a b b a +>+,故C 正确;对于D ,因为()()()()()()222222a b b a a b b a b a a b a a b b b a b b a b +-+-++-==+++,因为0a b >>,所以0,0,20b a b a a b -<+>+>,所以()()()02b a b a b a b -+<+,即202a b a a b b +-<+,于是有22a b aa b b +<+,故D 错误.故选:C.8.A【分析】不妨设()1f x ≤的解集为[,]m n ,从而得(){}n B x m f x ≤=≤∣,进而得到0n =且min ()0m f x ≤≤,又m ,()n m n ≤为方程()1f x =的两个根,可得2m a =,由此得到关于a 的不等式组,解之即可得解..【详解】因为()221f x x ax =-+,不妨设()1f x ≤的解集为[,]m n ,则由()()1f f x ≤得()m f x n≤≤,所以()(){}(){}1n B f x f f x x m x =≤=≤≤∣∣,又(){}0A x f x =≤∣,A B =≠∅,所以0n =且min ()0m f x ≤<,因为()1f x ≤的解集为[,]m n ,所以,m n 是()1f x =,即2211x ax -+=的两个根,故2m n a +=,即2m a =,此时由0m n <=,得20a <,则a<0,因为()221f x x ax =-+,显然2440a ∆=+>,且()f x开口向上,对称轴为x a =,所以()()222min 211f a a a a f x =-+=-+=,则2210a a ≤-+≤,又a<0,解得11a ≤≤-,即11a ⎡⎤∈--⎣⎦.故选:A.【点睛】关键点睛:本题解决的关键在于假设()1f x ≤的解集为[,]m n ,进而得到0n =且min ()0m f x ≤<,从而得解.9.AB【分析】利用二次方程的性质,结合充分条件的性质即可得解.【详解】因为2210mx x ++=有两个实数解,当0m =时,210x +=,显然不满足题意;当0m ≠时,440m ∆=->,得1m <;综上,1m <且0m ≠,即2210mx x ++=有两个实数解等价于1m <且0m ≠,即0m <或01m <<,要使得选项中m 的范围是题设条件的充分条件,则选项中m 的范围对应的集合是{0m m <或}01m <<的子集,经检验,AB 满足要求,CD 不满足要求.故选:AB.10.ABC【分析】由已知结合基本不等式一一判断计算可得.【详解】解:因为正实数a ,b 满足1a b +=,由基本不等式可得21()24a b ab += ,当且仅当a b =时取等号,故A 正确;因为2112a b a b =++=+++=,当且仅当a b =时取等号,,故B 正确;1114a b a b ab ab ++== ,当且仅当a b =时取等号,即11a b +有最小值4,故C 正确;222()212a b a b ab ab +=+-=-,由A 可知14ab ≤,所以2212a b +≥即22a b+有最小值12,当且仅当a b =时取等号,故D 错误;故选:ABC .11.ABD【分析】利用因式分解求三次方程的根化简集合B ,再利用集合关系即可判断.【详解】对于A ,方程3210x x x +--=,因式分解得()()2110x x -+=,解得1x =-或1x =,所以{}1,1B =-,满足B A ⊆,故A 正确;对于B ,方程3210x x x -+-=,因式分解得()()2110x x -+=,解得1x =,所以{}1B =,满足B A ⊆,故B 正确;对于C ,方程323310x xx +-=-,因式分解得()()21410x x x -++=,解得1x =或2x =-,所以{1,22B =--,不满足B A ⊆,故C 错误;对于D ,方程323310x x x -+-=,因式分解得()310x -=,解得1x =,所以{}1B =,满足B A ⊆,故D 正确;故选:ABD.12.ACD【分析】先判断()f x 的奇偶性,再在,()0x ∈+∞上,令211x t x x x +==+研究其单调性和值域,再判断()f x 的区间单调性和值域判断AB ;利用解析式推出1()()f f x x =,根据已知得到211x x =,再应用基本不等式判断C ;特殊值法,将2x =代入判断D.【详解】对于AB ,因为()2211x xf x x x +=++,则由解析式知()f x 的定义域为{|0}x x ≠,又2222()11()()()11x x x x f x f x x x x x ⎛⎫-+-+-=+=-+=- ⎪--++⎝⎭,所以()f x 为奇函数,当,()0x ∈+∞时,由对勾函数性质知:1t x x =+在(0,1)上单调递减,在(1,)+∞上单调递增,且值域为[2,)t ∈+∞,而1y t t =+在[2,)t ∈+∞上递增,所以()f x 在(0,1)x ∈上单调递减,在(1,)x ∈+∞上单调递增,且5(),2f x ⎡⎫∈+∞⎪⎢⎣⎭,由奇函数的对称性知:()f x 在(,1)x ∈-∞-上单调递增,在(1,0)x ∈-上单调递减,且5(),2f x ⎛⎤∈-∞ ⎝⎦,所以()f x 值域为55,,22⎛⎤⎡⎫-∞-+∞⎪⎥⎢⎝⎦⎣⎭ ,故A 正确,B 错误;对于C ,当0x >时,()22211011x x x f x x x x x x x +-=+-=+>++恒成立,所以恒有()f x x>成立,故C 正确;对于D ,由222211111()1111x x x x f f x x x x x x ⎛⎫+ ⎪+⎛⎫⎝⎭=+=+= ⎪+⎝⎭⎛⎫+ ⎪⎝⎭,因为12120,0,x x x x >>≠,且12()()f x f x =,所以211x x =,故121112x x x x +=+≥=,当且仅当11x =时等号成立,而11x =时,211x x ==,故等号不成立,所以122x x +>,故D 正确;故选:ACD.【点睛】关键点睛:对于D 选项,根据解析式推导出1()f f x x ⎛⎫= ⎪⎝⎭,进而得到211x x =为关键.13.1【分析】根据命题的否定为真,转化为二次不等式恒成立,利用判别式求解.【详解】因为命题“存在x ∈R ,使220x x m ++≤”是假命题,所以命题“R x ∀∈,220x x m ++>”是真命题,故2240m ∆=-<,即1m >,故1a =.故答案为:114.12-##0.5-【分析】先由反比例函数的性质分析得0c <,再由二次函数的性质确定c 的取值范围,从而结合函数图像即可得解.【详解】因为()21,,2x c f x xx x c x ⎧-≤⎪=⎨⎪-<≤⎩,当0c >时,当0x c <≤时,1(1),x c f x ⎛⎤-∈-∞- ⎝=⎥⎦,不合题意;当0c =时,当0x <时,()(0,)1x f x ∈-=+∞,不合题意;所以0c <,当x c ≤时,110x c <-≤-,即()10,f x c ⎛⎤∈- ⎥⎝⎦,当2c x <≤时,()221124f x x x x ⎛⎫=--+ ⎪⎝⎭=-开口向下,对称轴为12x =,当2x =时,()2242f =-=-,令()2f c =-,即22c c -=-,解得1c =-或2c =(舍去),令()0f c =,即20c c -=,解得0c =或1c =,作出()f x 的大致图象,如图,因为()f x 的值域为[]22-,,所以12c -=,解得12c =-,经检验,满足题意.故答案为:12-.15.27【分析】先分析得前两天共售出的商品种类,再考虑第三天售出商品种类的情况,根据题意即可得解.【详解】由题意,第一天售出17种商品,第二天售出13种商品,前两天都售出的商品有3种,所以第一天售出但第二天未售出的商品有17314-=种,第二天售出但第一天未售出的商品有13310-=种,所以前两天共售出的商品有1410327++=种,第三天售出14种商品,后两天都售出的商品有5种,所以第三天售出但第二天未售出的商品有1459-=种,因为914<,所以这9种商品都是第一天售出但第二天未售出的商品时,该网店这三天售出的商品种类最少,其最小值为27.故答案为:27.16.725##0.28【分析】利用直角梯形的几何性质,求出()211232x x S =-++,从而可得21S S 的表达式,结合函数的单调性,即可得解.【详解】依题意,作CG AD ⊥于G,则2,1GD AD BC CG AB =-===,则CD =由题意知//EF CD ,则FEA D ∠=∠,而1tan 2CG D GD ∠==,sin D =;故1tan 2FEA ∠=,设(01)AF x x =<<,则2AE x =,故EF =,作EH CD ⊥于H,则)sin 32EH ED D x =⋅-,故)()()()()2111132132232522S x x x x x =⋅-=+-=-++,则()()()2221111312321222x S x x x =⨯+⨯--++=-+,故22212321S x x x S x --=+++,令223t x x =-++,则223x x t -=-+,因为01x <<,故252,8t ⎛⎤∈ ⎥⎝⎦,则213141S t S t t -++==-+,而41y t =-+在252,8⎛⎤ ⎥⎝⎦上单调递减,故41y t =-+的最小值为47125258-+=,即21S S 的最小值为725.故答案为:725.【点睛】关键点睛:解答本题的关键是结合梯形的几何性质表示出相关线段长,求出梯形CDEF 的面积表达式,即可求解答案.17.(1)49(2)4【分析】(1)利用二次函数的性质得到42b f aa ⎛⎫-=- ⎪⎝⎭,结合()51f -=得到关于,a b 的方程组,解之即可得解;(2)利用韦达定理,结合(1)中结论与完全平方公式即可得解.【详解】(1)因为二次函数()()21,f x ax bx a b =++∈R 的最小值为4a -,所以0a >,则()f x 开口向上,对称轴为2b x a =-,所以42b f a a ⎛⎫-=- ⎪⎝⎭,即21422b b a b a a a ⎛⎫⎛⎫-+-+=- ⎪ ⎪⎝⎭⎝⎭,则22164b a a =+,因为()51f -=,即()()21155a b -++-⨯=,则5b a =,将5b a =代入22164b a a =+,得2225164a a a =+,解得49a =或0a =(舍去),所以49a =.(2)因为()0f x =,即210ax bx ++=的两个根分别为12,x x ,所以2121,b x x a a x x +=-=,所以()()22222222114144b b a x x x a a x x a x -⎛⎫-+=--⨯=⎪⎝⎭=-,由(1)可知22164b a a =+,即22164a b a =-,所以()221221616a x x a =-=,故124x x -=.18.(1)934x x ⎧⎫<<⎨⎬⎩⎭(2)(]{},11-∞-⋃【分析】(1)分别解出集合A 与集合B ,然后求得U B ð,进而求得()U AB ð的值;(2)由题意得A 是B 的真子集,由此列不等式组,解不等式组可求得a 的取值范围.【详解】(1)因为{}10|133x A x x x x -⎧⎫=≤=≤<⎨⎬-⎩⎭∣,当12a =时,1190|22944B x x x x x ⎧⎫⎛⎫⎛⎫⎧⎫=--≤=≤⎨⎬⎨⎬ ⎪⎪⎝⎭⎝⎭⎩⎭⎩⎭∣,则{1|2U B x x =<ð或94x ⎫>⎬⎭,所以()934UB A x x ⎧⎫⋂=<<⎨⎬⎩⎭ð.(2)因为{}()(){}2|13,|20A x xB x x a x a =≤<=---≤,又()22172024a a a ⎛⎫+-=-+> ⎪⎝⎭,所以22a a +>,由()()220x a x a ---≤得22a x a ≤≤+,所以{}2|2B x a x a =≤≤+,因为x B ∈是x A ∈的必要不充分条件,所以A B ,所以2123a a ≤⎧⎨+≥⎩,解得1a ≤-或1a =,所以实数a 的取值范围为(]{},11-∞-⋃.19.(1)3332,0()0,032,0x x x f x x x x x ⎧-+>⎪==⎨⎪--<⎩(2)①证明见解析;②()f x 在[)1,+∞上单调递增(3)图像见解析【分析】(1)利用函数奇偶性,结合题设条件即可求得()f x 的解析式;(2)①利用函数单调性的定义,结合作差法即可得证;②在①的基本上继续判断即可;(3)利用(1)与(2)中的结论,结合()f x 的单调性与奇偶性即可作图.【详解】(1)因为当0x >时,()332f x x x =-+,所以当0x <时,0x ->,则()()()333232f x x x x x -=---+=-++,又()f x 是定义在R 上的奇函数,所以()()332f x f x x x =--=--,且()00f =,所以3332,0()0,032,0x x x f x x x x x ⎧-+>⎪==⎨⎪--<⎩.(2)①设1201x x <<<,则3111()32f x x x =-+,3222()32f x x x =-+,所以3322121122121122()()(32)(32)()(3)f x f x x x x x x x x x x x -=-+--+=-++-,因为1201x x <<<,所以120x x -<,且22112201,01,01x x x x <<<<<<,则22112230x x x x ++-<,所以12())0(f x f x ->,即12()()f x f x >,故()f x 在()0,1上是单调递减函数.②()f x 在[)1,+∞上单调递增,理由如下:当121x x >≥时,120x x ->,22112230x x x x ++->,则12()()f x f x >,所以()f x 在[)1,+∞上单调递增.(3)由(2)知,()f x 在()0,1上单调递减,在[)1,+∞上单调递增,且()10f =,又()f x 是定义在R 上的奇函数,所以()f x 在()1,0-上单调递减,在(],1-∞-上单调递增,且()()110f f -=-=,所以()f x的图象如图,.20.(1)()210040300,021000100040,251x x x f x x x x ⎧-+≤≤⎪=⎨--<≤⎪+⎩(2)当施用肥料为4千克时,该水果单株最大利润,最大利润为640元【分析】(1)根据题意,利用销售额减去成本投入可得出利润解析式;(2)利用分段函数的单调性及基本不等式计算最值即可得解.【详解】(1)依题意,当02x ≤≤时,()()203010f x W x x x=--()2220534010040300x x x x =⨯+-=-+;当25x <≤时,()()203010f x W x x x=--5010001000204040100040111x x x x x x x x =⨯-=-=--+++;所以()210040300,021000100040,251x x x f x x x x ⎧-+≤≤⎪=⎨--<≤⎪+⎩;(2)当02x ≤≤时,()221100403001002965f x x x x ⎛⎫=-+=-+ ⎪⎝⎭,此时由二次函数的性质可知()()max 21004402300620f x f ==⨯-⨯+=;当25x <≤时,()()10001000100040104040111f x x x x x =--=--+++1040640≤-,当且仅当()10004011x x =++,即4x =时,等号成立;综上,当施用肥料为4千克时,该水果单株最大利润,最大利润为640元.21.(1)定义域为[]0,2;值域为2⎤⎦(2)①12,02121(),22222a a a m a a a a a ⎧+≥-≠⎪⎪⎪=---<<-⎨⎪≤且;②{}212⎡⎤⎢⎥⎣⎦ 【分析】(1)根据根式的概念可得()f x 定义域,再计算()22f x =+求解可得()f x 值域;(2)①令2t ⎤=⎦,设函数()22a F t t t a =-++,2t ⎤∈⎦,再根据二次函数对称轴与区间的位置关系分类讨论求解即可;②分类讨论a 的取值范围,结合()m a 的解析式即可得解.【详解】(1)因为()f x =,所以020x x ≥⎧⎨-≥⎩,则[]0,2x ∈,又()222f x x x ==+-+2=+当[]0,2x ∈时,()[]2110,1x --+∈,所以()[]22,4f x ∈,又()0f x ≥,所以()2f x ⎤∈⎦;(2)依题意,得()h x =令2t ⎤=⎦,则22222t t -=+=,令()22222t a F t t a t t a -=+⋅=+-,2t ⎤∈⎦,当0a >时,此时二次函数对称轴10t a =-<<()()max 2F t F =2a =+.当a<0时,此时对称轴10t a =->,当12a -≥,即102a -≤<时,开口向下,则()()max 2F t F =2a=+;12a <-<,即2122a -<<-,对称轴1t a =-,开口向下,则()max 1F t F a ⎛⎫=- ⎪⎝⎭12a a =--,当1a -≤22a ≤-时,开口向下,()max Ft F=综上,12,0211(),22222a a a m a a a a a ⎧+≥-≠⎪⎪⎪=---<<-⎨⎪≤且.②当0a >时,1a >,则122a a +=+,解得1a =或1a =-(舍去);当102a -≤<时,12a≤-,则2a +=2a (舍去);当2122a -<<-时,12a -<<12a a --=2a =(舍去);当a ≤≤时,1a ≤≤,则()1m a m a ⎛⎫== ⎪⎝⎭;当2a -<<1122a <<-12a a =--,解得a =(舍去);当2a ≤-时,1102a -≤<12a =+,解得212a =--(舍去);综上,1a =或22a ≤≤,即{}1a ⎡∈⎢⎣⎦ .【点睛】关键点睛:本题解决的关键是熟练掌握分类讨论的方法,利用二次函数的性质,结合轴动区间定即可得解.22.(1)答案见解析(2)3,2⎛⎤-∞ ⎥⎝⎦【分析】(1)依题意化简不等式得()()22320ax x x -+>,从而分类讨论即可得解;(2)由题意可得()ax 0m f x m ≥,然后分704a <≤,744a <<和4a ≥三种情况讨论()y f x =的最大值,从而可求得结果.【详解】(1)因为()()3R af x x a x =-+∈,所以由()()2221f x f x -->,得()23223122a a x x x x ⎡⎤-+---+>⎢⎥-⎣⎦,化简得2022a a x x ->-,即()()32022a x x x +>-,即()()22320ax x x -+>,当0a =时,该不等式无解,当0a >时,不等式化为()()22320x x x -+>,解得203x -<<或2x >,当a<0时,不等式化为()()22320x x x -+<,解得23x <-或02x <<,综上,当0a =时,()()2221f x f x -->的解集为∅,当0a >时,()()2221f x f x -->的解集为()2,02,3⎛⎫-+∞ ⎪⎝⎭ ,当a<0时,()()2221f x f x -->的解集为()2,0,23⎛⎫-∞- ⎪⎝⎭ .(2)因为对任意的正实数a ,存在01,12x ⎡⎤∈⎢⎥⎣⎦,使得()0f x m ≥,所以()ax 0m f x m ≥,易知当0a >时,()3af x x x =-+在1,12⎡⎤⎢⎥⎣⎦上单调递增,所以1,12x ⎡⎤∈⎢⎥⎣⎦时,()1()max ,12f x f f ⎧⎫⎛⎫≤⎨⎬ ⎪⎝⎭⎩⎭,且()112f f ⎛⎫< ⎪⎝⎭,因为()117232,14222f a a f a⎛⎫=-+=-=- ⎪⎝⎭,所以()172,1422f a f a ⎛⎫=-=- ⎪⎝⎭,当720240a a ⎧-≥⎪⎨⎪-≥⎩,即704a <≤时,max ()4f x a =-,因为704a <≤,所以9444a ≤-<,所以94m ≤;当720240a a ⎧-<⎪⎨⎪->⎩,即744a <<时,令7242a a ⎛⎫--=- ⎪⎝⎭,得52a =,所以()153max ,14222f f ⎧⎫⎛⎫≥-=⎨⎬ ⎪⎝⎭⎩⎭,故32m ≤;当720240a a ⎧-≤⎪⎨⎪-≤⎩,即4a ≥时,所以max 77()2222f x a a =-=-,因为4a ≥,所以79222a -≥,所以92m ≤;综上,32m ≤,所以m 的取值范围为3,2⎛⎤-∞⎥⎝⎦.【点睛】关键点睛:本题第2小题的解决关键在于分类讨论()1,12f f ⎛⎫⎪⎝⎭的正负情况,从而确定()0maxf x ,由此得解.。
2023-2024学年江苏省苏州市高一(上)期中数学试卷【答案版】
2023-2024学年江苏省苏州市高一(上)期中数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U =R ,集合A ={0,1,2,3},B ={x |x >1},则图中阴影部分所表示的集合为( )A .{0}B .{0,1}C .{2,3}D .{0,1,2}2.函数f(x)=x−11+x的定义域为( )A .(1,+∞)B .(﹣1,1)C .(﹣1,+∞)D .(﹣∞,﹣1)∪(1,+∞)3.“|x |>2”的一个充分不必要条件是 ( ) A .﹣2<x <2B .﹣4<x ≤﹣2C .x >﹣2D .x >24.19世纪德国数学家狄利克雷提出了一个有趣的函数D (x )={1,x 是有理数,0,x 是无理数.若函数f (x )=D (x )﹣x 2,则下列实数中不属于函数f (x )值域的是( ) A .0B .﹣1C .﹣2D .﹣35.若f (x )是定义在[﹣6,6]上的偶函数,且f (5)>f (2),下列各式中一定成立的是( ) A .f (﹣2)<f (5) B .f (0)<f (6) C .f (4)<f (5)D .f (0)<f (4)6.已知函数f (x )=x 4+x 2﹣2,x ∈R ,则满足f (2x )<f (x +2)的x 的取值范围为( ) A .(0,2)B .(−23,2)C .(﹣∞,0)∪(2,+∞)D .(−∞,−23)∪(2,+∞)7.给定函数f (x )=x 2﹣2,g (x )=−12x +1,用M (x )表示函数f (x ),g (x )中的较大者,即M (x )=max {f (x ),g (x )},则M (x )的最小值为( ) A .0B .7−√178C .14D .28.已知f (x )={x 2+4x +3,x ≤0,|3−2x |,x >0,若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则1x 1+1x 2+1x 3+1x 4的取值范围是( )A.(−∞,53)B.(﹣∞,2)C.(−∞,133)D.(53,133)二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.设a,b为正数,且a>b,下列不等式中一定成立的是()A.ba4>ab4B.ba <b+1a+1C.a+1a>b+1b D.b−a b<a−b a10.将某几何图形置于坐标系xOy中,直线l:x=t从左向右扫过,将该几何图形分成两部分,其中位于直线l左侧部分的面积为S,若函数S=f(t)的大致图象如图所示,则该几何图形可以是()A.B.C.D.11.定义在R上的函数f(x)满足:对任意的x,y∈R,f(x+y)=f(x)+f(y),则下列结论一定正确的有()A.f(0)=0B.f(x﹣y)=f(x)﹣f(y)C.f(x)为R上的增函数D.f(x)为奇函数12.某数学兴趣小组对函数f(x)=1−x|x|+1进行研究,得出如下结论,其中正确的有()A.f(﹣2023)+f(2023)=2B.∃x1≠x2,都有f(x1)=f(x2)C.f(x)的值域为(0,2)D.∀x1,x2∈(0,+∞),都有f(x1+x22)≤f(x1)+f(x2)2三、填空题:本题共4小题,每小题5分,共20分.13.若幂函数f(x)=xα(α∈R)是奇函数,且在(﹣∞,0)上单调递减,则α的值可以是.(只要写一个即可)14.命题“∃x >1,x 2<1”的否定为 .15.函数f (x )=[x ]的函数值表示不超过x 的最大整数,例如,[﹣3.5]=﹣4,[2.1]=2,若集合A ={y |y =[2x 2−3x 2+1],x ∈R },则A 中元素的个数是 . 16.已知函数f (x )=﹣x +2,g (x )=x 2+5x+10x+3+m ,若对任意x 1∈[1,2],存在x 2∈(﹣2,3),使得f (x 1)=g (x 2),则实数m 的取值范围 .四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)设全集为U =R ,集合A ={x |x <﹣3或x >5},B ={x |﹣2<x <10}. (1)求(∁U A )∩B ;(2)已知C ={x |a <x <a +1},若C ⊆B ,求实数a 的取值范围. 18.(12分)若正数a ,b 满足ab =4a +b +t ,t ∈R . (1)当t =0时,求a +4b 的最小值; (2)当t =5时,求ab 的取值范围.19.(12分)已知二次函数f (x )=ax 2+bx +c 的图象与直线y =﹣4有且仅有一个公共点,且不等式f (x )<0的解集为[﹣1,3]. (1)求f (x )的解析式;(2)关于x 的不等式f (x )<(m ﹣1)x ﹣3﹣m 的解集中恰有两个整数,求实数m 的取值范围. 20.(12分)立德中学学生在社会实践活动中,通过对某商店一种换季商品销售情况的调查发现:该商品在过去的两个月内(以60天计)的日销售价格P (x )(元)与时间x (天)的函数关系近似满足P (x )=1+2x.该商品的日销售量 Q (x )(个)与时间x (天)部分数据如下表所示:给出以下两种函数模型:①Q (x )=a (x ﹣25)2+b ,②Q (x )=a |x ﹣30|+b .(1)请你根据上表中的数据,从中选择你认为最合适的一种函数模型来描述该商品的日销售量Q (x )与时间x 的关系,并求出该函数的解析式;(2)求该商品的日销售收入f (x )(1≤x ≤60,x ∈N *)的最小值.21.(12分)定义:对于函数f 1(x ),f 2(x ),h (x ),如果存在实数a ,b ,使得af 1(x )+bf 2(x )=h (x ),那么称h (x )为f 1(x )和f 2(x )的生成函数.(1)给出函数f 1(x )=−14x 2−12x +154,f 2(x )=x 2﹣4x ﹣5,h (x )=x 2﹣10x +5,请判断h (x )是否为f(x)和f2(x)的生成函数?并说明理由;(2)设f1(x)=x(x>0),f2(x)=1x(x>0),当a=2,b=8时,f1(x)和f2(x)的生成函数为h (x).若对于任意正实数x1,x2且x1+x2=2,是否存在实数m,使得h(x1)h(x2)>m恒成立?若存在,求出m的最大值;若不存在,请说明理由.22.(12分)已知f(x)=x(|x﹣4a|+2),a∈R.(1)若f(1)=3,判断f(x)的奇偶性;(2)若f(x)在[1,3]上的最小值是3,求正数a的值.2023-2024学年江苏省苏州市高一(上)期中数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U =R ,集合A ={0,1,2,3},B ={x |x >1},则图中阴影部分所表示的集合为( )A .{0}B .{0,1}C .{2,3}D .{0,1,2}解:由Venn 图可知,阴影部分所表示的集合为A ∩(∁U B )={0,1,2,3}∩{x |x ≤1}={0,1}. 故选:B . 2.函数f(x)=2x√x−1√1+x的定义域为( )A .(1,+∞)B .(﹣1,1)C .(﹣1,+∞)D .(﹣∞,﹣1)∪(1,+∞)解:要使原函数有意义,则{x −1>01+x >0,解得x >1.∴函数f(x)=2x√x−1√1+x的定义域为(1,+∞).故选:A .3.“|x |>2”的一个充分不必要条件是 ( ) A .﹣2<x <2B .﹣4<x ≤﹣2C .x >﹣2D .x >2解:由|x |>2解得:x <﹣2或x >2,找“|x |>2”的一个充分不必要条件,即找集合{x |x <﹣2或x >2}的真子集, ∵{x |x >2}⫋{x |x <﹣2或x >2},∴“|x |>2”的一个充分不必要条件是{x |x >2}. 故选:D .4.19世纪德国数学家狄利克雷提出了一个有趣的函数D (x )={1,x 是有理数,0,x 是无理数.若函数f (x )=D (x )﹣x 2,则下列实数中不属于函数f (x )值域的是( ) A .0B .﹣1C .﹣2D .﹣3解:由题意得f(x)={1−x2,x是有理数−x2,x是无理数,A:由于f(1)=0,A正确;B:由f(x)=﹣1,当x是有理数时,1﹣x2=﹣1,则x=±√2,不合题意;当x是无理数时,﹣x2=﹣1,则x=±1,不合题意;C:因为f(√2)=﹣2,故﹣2为函数的一个函数值;D:由f(√3)=﹣3,故﹣3为函数的一个函数值.故选:B.5.若f(x)是定义在[﹣6,6]上的偶函数,且f(5)>f(2),下列各式中一定成立的是()A.f(﹣2)<f(5)B.f(0)<f(6)C.f(4)<f(5)D.f(0)<f(4)解:因为f(x)是定义在[﹣6,6]上的偶函数,所以f(﹣5)=f(5),f(﹣2)=f(2),因为f(5)>f(2),所以f(5)>f(﹣2),故A正确,因为无法判断函数的单调性,故其余选项不能判断.故选:A.6.已知函数f(x)=x4+x2﹣2,x∈R,则满足f(2x)<f(x+2)的x的取值范围为()A.(0,2)B.(−23,2)C.(﹣∞,0)∪(2,+∞)D.(−∞,−23)∪(2,+∞)解:因为f(﹣x)=x4+x2﹣2,所以f(﹣x)=f(x),所以f(x)为偶函数,当x>0时,y=x4,y=x2单调递增,所以函数f(x)=x4+x2﹣2在(0,+∞)上单调递增,在(﹣∞,0)上单调递减,因为f(2x)<f(x+2),所以|2x|<|x+2|,所以(2x)2<(x+2)2,整理得3x2﹣4x﹣4<0,解得−23<x<2,所以x的取值范围为(−23,2).故选:B.7.给定函数f (x )=x 2﹣2,g (x )=−12x +1,用M (x )表示函数f (x ),g (x )中的较大者,即M (x )=max {f (x ),g (x )},则M (x )的最小值为( ) A .0B .7−√178C .14D .2解:令x 2﹣2=−12x +1,解得x =﹣2或x =32, 作出函数M (x )的图象如图所示:由图象可知,当x =32时,M (x )取得最小值为M (32)=14.故选:C .8.已知f (x )={x 2+4x +3,x ≤0,|3−2x |,x >0,若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则1x 1+1x 2+1x 3+1x 4的取值范围是( )A .(−∞,53) B .(﹣∞,2)C .(−∞,133)D .(53,133)解:画出f (x )={x 2+4x +3,x ≤0|3−2x |,x >0的图象,如图所示:设f(x1)=f(x2)=f(x3)=f(x4)=a,则a∈(0,3),令x2+4x+3=3,解得x=﹣4或0,因为y=x2+4x+3的对称轴为x=﹣2,由对称性可得x1+x2=﹣4,且x1∈(﹣4,﹣3),x2∈(﹣1,0),其中1x1+1x2=x1+x2x1x2=−4x1x2=−4(−4−x2)x2=4(x2+2)2−4,因为x2∈(﹣1,0),所以(x2+2)2﹣4∈(﹣3,0),故1x1+1x2=4(x2+2)2−4∈(﹣∞,−43),又2x3−3=3−2x4,故1x3+1x4=3,所以1x1+1x2+1x3+1x4∈(﹣∞,53).故选:A.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.设a,b为正数,且a>b,下列不等式中一定成立的是()A.ba4>ab4B.ba <b+1a+1C.a+1a>b+1b D.b−a b<a−b a解:对于A,因为a,b为正数,且a>b,则ba4﹣ab4=ab(a3﹣b3)>0,故A正确;对于B,b(a+1)﹣a(b+1)=b﹣a<0,则B正确;对于C,(a+1a)﹣(b+1b)=(a﹣b)−a−bab=(a﹣b)(1−1ab),由于1−1ab的符号不确定,故C错误;对于D,(b−ab)﹣(a−ba)=(b﹣a)−a2−b2ab=(b﹣a)(1+a+bab),由于b﹣a<0,ab>0,a+b>0,则(b﹣a)(1+a+bab)<0,则D正确.故选:ABD.10.将某几何图形置于坐标系xOy中,直线l:x=t从左向右扫过,将该几何图形分成两部分,其中位于直线l左侧部分的面积为S,若函数S=f(t)的大致图象如图所示,则该几何图形可以是()A.B.C.D.解:由已知图像可知面积S的增速经历三种变化,首先面积S增速越来越大,之后面积S匀速增加,最后面积S增速越来越小,A选项:由圆的性质可知,面积S的增速先越来越大,后越来越小,A选项不符合;B选项:面积S增速越来越大,之后面积S匀速增加,最后面积S增速越来越小,B选项符合;C选项:面积S增速越来越大,之后面积S匀速增加,最后面积S增速越来越小,C选项符合;D选项:面积S增速越来越小,之后面积S匀速增加,最后面积S增速越来越大,D选项不符合.故选:BC.11.定义在R上的函数f(x)满足:对任意的x,y∈R,f(x+y)=f(x)+f(y),则下列结论一定正确的有()A.f(0)=0B.f(x﹣y)=f(x)﹣f(y)C.f(x)为R上的增函数D.f(x)为奇函数解:令x=y=0,可得f(0)=2f(0),即f(0)=0,故A正确;令y=﹣x,可得f(0)=f(x)+f(﹣x)=0,即f(﹣x)=﹣f(x),且定义域为R,则f(x)为奇函数,故D正确;由f(x)为奇函数,可得f(x﹣y)=f(x)+f(﹣y)=f(x)﹣f(y),故B正确;设f(x)=﹣x,满足对任意的x,y∈R,都有f(x+y)=f(x)+f(y),但f(x)=﹣x为递减函数,故C错误.故选:ABD.12.某数学兴趣小组对函数f(x)=1−x进行研究,得出如下结论,其中正确的有()|x|+1A.f(﹣2023)+f(2023)=2B.∃x1≠x2,都有f(x1)=f(x2)C.f(x)的值域为(0,2)D .∀x 1,x 2∈(0,+∞),都有f(x 1+x 22)≤f(x 1)+f(x 2)2 解:根据题意,可得f(x)=1−x|x|+1的定义域为R , 对于A ,因为f(−x)=1−−x |−x|+1=1+x |x|+1,所以f (﹣x )+f (x )=2,对任意x ∈R 成立,故f (﹣2023)+f (2023)=2成立,A 正确;对于B ,化简得f(x)={1x+1,x ≥02+1x−1,x <0,可知f (x )在(﹣∞,0)上与在[0,+∞)上都是减函数,所以f (x )在R 上为减函数,不存在x 1≠x 2,使f (x 1)=f (x 2)成立,故B 错误;对于C ,由f(x)={1x+1,x ≥02+1x−1,x <0,可知当x ∈(﹣∞,0)时,−1<1x−1<0,f (x )=2+1x−1∈(1,2),当x ∈[0,+∞)时,f (x )=1x+1∈(0,1],所以f (x )在R 上的值域为(0,2),C 正确; 对于D ,当x ∈(0,+∞)时,f (x )=1x+1,其图像是由反比例函数y =1x 向左平移1个单位而得, 图象是单调递减的曲线且以x 轴为渐近线,可知f (x )是凹函数, 可知∀x 1,x 2∈(0,+∞),都有f(x 1+x 22)≤f(x 1)+f(x 2)2成立,故D 正确. 故选:ACD .三、填空题:本题共4小题,每小题5分,共20分.13.若幂函数f (x )=x α(α∈R )是奇函数,且在(﹣∞,0)上单调递减,则α的值可以是 .(只要写一个即可) 解:当α=﹣1时,则f (x )=1x为奇函数,且在(﹣∞,0)上单调递减,符合题意. 故答案为:﹣1(答案不唯一).14.命题“∃x >1,x 2<1”的否定为 . 解:“∃x >1,x 2<1”的否定为:∀x >1,x 2≥1. 故答案为:x >1,x 2≥1.15.函数f (x )=[x ]的函数值表示不超过x 的最大整数,例如,[﹣3.5]=﹣4,[2.1]=2,若集合A ={y |y =[2x 2−3x 2+1],x ∈R },则A 中元素的个数是 . 解:∵2x 2−3x 2+1=2(x 2+1)−5x 2+1=2−5x 2+1,x 2+1≥1,0<5x 2+1≤5,∴−3≤2−5x 2+1<2, ∴−3≤2x 2−3x 2+1<2, ∴A ={﹣3,﹣2,﹣1,0,1},A 中元素的个数为5. 故答案为:5.16.已知函数f (x )=﹣x +2,g (x )=x 2+5x+10x+3+m ,若对任意x 1∈[1,2],存在x 2∈(﹣2,3),使得f (x 1)=g (x 2),则实数m 的取值范围 .解:∵f (x )=﹣x +2为减函数,∴当x ∈[1,2]时,其值域A =[0,1]; ∵x ∈(﹣2,3),∴x +3∈(1,6), 令t =x +3,则t ∈(1,6),g (x )=x 2+5x+10x+3+m ,可化为y =(t−3)2+5(t−3)+10t +m =t +4t+m ﹣1(1<t <6), 由对勾函数的性质可知,h (t )=t +4t+m ﹣1在区间(1,2]上单调递减,在区间[2,6)上单调递增, ∴h (t )min =h (2)=3+m ,又h (1)=4+m ,h (6)=173+m ,h (6)>h (1), ∴h (t )∈[3+m ,173+m ),∴当x ∈(﹣2,3)时,g (x )的值域为B =[3+m ,173+m );∵对任意x 1∈[1,2],存在x 2∈(﹣2,3),使得f (x 1)=g (x 2), ∴A ⊆B , ∴{3+m ≤0173+m >1,解得−143<m ≤﹣3.故答案为:(−143,﹣3]. 四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)设全集为U =R ,集合A ={x |x <﹣3或x >5},B ={x |﹣2<x <10}. (1)求(∁U A )∩B ;(2)已知C ={x |a <x <a +1},若C ⊆B ,求实数a 的取值范围. 解:(1)因为集合A ={x |x <﹣3或x >5},B ={x |﹣2<x <10}, 所以∁U A ={x |﹣3≤x ≤5},(∁U A )∩B =(﹣2,5];(2)因为C ⊆B ,所以{a +1≤10a ≥−2,解得﹣2≤a ≤9,即a 的取值范围[﹣2,9].18.(12分)若正数a ,b 满足ab =4a +b +t ,t ∈R . (1)当t =0时,求a +4b 的最小值;(2)当t =5时,求ab 的取值范围. 解:(1)当t =0时,4a +b =ab , 所以4b +1a=1,所以a +4b =(a +4b )(1a +4b )=17+4ba +4ab ≥17+2√4b a ⋅4ab =25,当且仅当4a b=4b a且ab =4a +b ,即a =b =5时取等号;(2)当t =5时,ab =4a +b +5≥2√4ab +5,当且仅当b =4a ,即a =52,b =10时取等号, 解得ab ≥25,故ab 的取值范围为[25,+∞).19.(12分)已知二次函数f (x )=ax 2+bx +c 的图象与直线y =﹣4有且仅有一个公共点,且不等式f (x )<0的解集为[﹣1,3]. (1)求f (x )的解析式;(2)关于x 的不等式f (x )<(m ﹣1)x ﹣3﹣m 的解集中恰有两个整数,求实数m 的取值范围. 解:(1)根据题意,可得f (x )<0的根为﹣1和3,且ax 2+bx +c +4=0有两个相等的实数根, 故{−1+3=−ba −1×3=c a ,且b 2﹣4a (c +4)=0,解得a =1,b =﹣2,c =﹣3,f (x )=x 2﹣2x ﹣3;(2)f (x )<(m ﹣1)x ﹣3﹣m ,即x 2﹣2x ﹣3<(m ﹣1)x ﹣3﹣m ,整理得x 2﹣(m +1)x +m <0, 若m =1,不等式化为(x ﹣1)2<0,解集为空集,不符合题意; 若m ≠1,不等式化为(x ﹣m )(x ﹣1)<0,当m <1时,解集为(m ,1),若恰有两个整数在区间(m ,1),则﹣2≤m <﹣1; 当m >1时,解集为(1,m ),若恰有两个整数在区间(1,m ),则3<m ≤4. 综上所述,实数m 的取值范围是[﹣2,﹣1)∪(3,4].20.(12分)立德中学学生在社会实践活动中,通过对某商店一种换季商品销售情况的调查发现:该商品在过去的两个月内(以60天计)的日销售价格P (x )(元)与时间x (天)的函数关系近似满足P (x )=1+2x.该商品的日销售量 Q (x )(个)与时间x (天)部分数据如下表所示:给出以下两种函数模型:①Q (x )=a (x ﹣25)2+b ,②Q (x )=a |x ﹣30|+b .(1)请你根据上表中的数据,从中选择你认为最合适的一种函数模型来描述该商品的日销售量Q (x )与时间x 的关系,并求出该函数的解析式;(2)求该商品的日销售收入f (x )(1≤x ≤60,x ∈N *)的最小值.解:(1)模型①:Q (x )=a (x ﹣25)2+b ,x =25时,Q (25)=b =1670, x =20时,Q (20)=25a +1670=1680,解得a =0.4; 所以Q (x )=0.4(x ﹣25)2+1670;计算Q (45)=0.4×202+1670=1830>1690, Q (60)=0.4×352+1670=2160>1720;模型②:Q (x )=a |x ﹣30|+b ,表示在x =30两侧“等距”的函数值相等, 由{Q(25)=5a +b =1670Q(20)=10a +b =1680,解得a =2,b =1660, 所以Q (x )=2|x ﹣30|+1660,所以Q (45)=15×2+1660=1690,Q (60)=30×2+1660=1720; 所以利用模型②最合适,此时Q (x )=2|x ﹣30|+1660;(2)由(1)知,该商品的日销售收入f (x )=P (x )•Q (x )=(1+2x)(2|x ﹣30|+1660)={3440x −2x +1716,1≤x ≤302x +3200x+1604,30<x ≤60, 当1≤x ≤30时,f (x )是单调递减函数,最小值为f (30)=344030−60+1716≈1771, 当30<x ≤60时,f (x )=2x +3200x +1604≥2√2x ⋅3200x +1604=1764,当且仅当2x =3200x,即x =40时“=”成立,综上,f (x )的最小值是1764.21.(12分)定义:对于函数f 1(x ),f 2(x ),h (x ),如果存在实数a ,b ,使得af 1(x )+bf 2(x )=h (x ),那么称h (x )为f 1(x )和f 2(x )的生成函数. (1)给出函数f 1(x )=−14x 2−12x +154,f 2(x )=x 2﹣4x ﹣5,h (x )=x 2﹣10x +5,请判断h (x )是否为f (x )和f 2(x )的生成函数?并说明理由;(2)设f 1(x )=x (x >0),f 2(x )=1x (x >0),当a =2,b =8时,f 1(x )和f 2(x )的生成函数为h (x ).若对于任意正实数x 1,x 2且x 1+x 2=2,是否存在实数m ,使得h (x 1)h (x 2)>m 恒成立?若存在,求出m 的最大值;若不存在,请说明理由.解:(1)h (x )是f 1(x ),f 2(x )的生成函数,理由如下:若h (x )是f 1(x ),f 2(x )的生成函数,则存在实数a ,b 使得h (x )=af 1(x )+bf 2(x )成立, 所以x 2−10x +5=a(−14x 2−12x +154)+b(x 2−4x −5),即{ −14a +b =1−12a −4b =−10154a −5b =5,解得a =4,b =2, 所以h (x )是f 1(x ),f 2(x )的生成函数.(2)f 1(x )=x (x >0),f 2(x)=1x (x >0),当a =2,b =8时的生成函数ℎ(x)=2x +8x, 假设存在实数m ,使得对任意正实数x 1,x 2,满足x 1+x 2=2,h (x 1)h (x 2)≥m 恒成立, 所以ℎ=ℎ(x 1)ℎ(x 2)=4x 1x 2+64x 1x 2+16(x 1x 2+x2x 1)=4x 1x 2+64x 1x 2+16[(x 1+x 2)2x 1x 2−2]=4x 1x 2+128x 1x 2−32,令t =x 1x 2,t =x 1x 2≤(x 1+x 22)2=1, 因为ℎ=4t +128I−32在(0,1]单调递减, 所以h 的最小值为100,所以m 的最大值为100. 22.(12分)已知f (x )=x (|x ﹣4a |+2),a ∈R . (1)若f (1)=3,判断f (x )的奇偶性;(2)若f (x )在[1,3]上的最小值是3,求正数a 的值. 解:(1)根据题意,f (x )=x (|x ﹣4a |+2),其定义域为R , 若f (1)=3,即|1﹣4a |+2=3,解得a =0或a =12, 当a =0时,f (x )=x |x |+2x ,因为f (﹣x )=﹣x |﹣x |﹣2x =﹣x |x |﹣2x =﹣f (x ),所以f (x )是奇函数, 当a =12时,f (x )=x |x ﹣2|+2x ,所以 f (﹣1)=﹣5,f (1)≠f (﹣1),f (1)≠﹣f (﹣1), 所以f (x )既不是奇函数,也不是偶函数; (2)由题意得f (x )={x 2−(4a −2)x ,x ≥4a −x 2+(4a +2)x ,x <4a,对于f (x )=x 2﹣(4a ﹣2)x ,其对称轴为x =2a ﹣1,开口向上, 对于f (x )=﹣x 2﹣(4a +2)x ,其对称轴为x =2a +1,开口向下, 又由f (x )在[1,3]上的最小值是3,则有f (1)=|1﹣4a |+2≥3, 解可得a ≤0或a ≥12,又由a为正数,则a≥1 2,当a=12时,f(x)=x|x﹣2|+2x,易得f(x)在[1,3]上递增,且f(1)=3,符合题意;当a>12时,有4a>2a+1>2a﹣1,f(x)在(﹣∞,2a+1]单调递增,在[2a+1,4a]单调递减,在[4a,+∞)单调递增.有1<2a+1且f(4a)=8a>4>3,则f(x)在[1,3]上的最小值只能在x=1处取到,但f(1)=4a+2>3,与之矛盾;故a>12不符合题意,综合可得:a=1 2.。
广西壮族自治区南宁市2024-2025学年高一上学期期中考试数学试题(含答案)
南宁市2024-2025学年秋季学期期中考试高一数学试卷考试时长: 120分钟满分: 150分一、选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 全称量词命题“∀x∈R,x²≥0”的否定是,( )^ ∀x∈R,x²≤0 B. ∃x∈R, x²<0C. ∃x∈R,x²≥0 D ∀x∈R, x²<02. 已知集合A={0,1,2}, B={x|-2<x≤3},则A∩B= ( )A. {1}B. {1,2}C. {0,1}D. {0,1,2}3. 集合{1,2}的子集个数为( )A. 1个B. 2个C. 3个D. 4个4. “我住在广西”是“我住在中国”的( )A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件5. 如果m>0, 那么m+4的最小值为( )mA. 2B. 22C. 4D. 86. 函数f(x)=x+3的定义域是( )A. {x|x≥-3}B. {x|x>0}C. {x|x≥3}D. {x|x≥4}7. 已知f(x―3)=2x²―3x+1,则f(1)= ( )A. 15B. 21C. 3D. 08. 若不等式kx²―6kx+k+8≥0的解集为R,则实数k的取值范围是 ( )A. 0≤k≤1B. 0<k≤1C. k<0或k>1D. k≤0或k≥1第1页,共4页二、选择题:本题共3小题,每小题6分,共18分. 在每小题给出的选项中,有多项符合题目要求. 全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 若a<b<0, 则下列不等式正确的是 ( )A1 a <1bB.ab<a⁷ c |a| D.1a>1b10. 下列各组函数表示同一函数的是( )A.f(x)=x,g(x)=x2B.f(x)=x²,g(x)=|x|²C.f(x)=x+1,g(x)=x2―1x―1D.f(x)=x0x,g(x)=xx211. 若函数y=x²+bx+c的图象与x轴的两个交点是A(-2,0),B(1,0),则下列结论正确的是( )A. b+c=-1B. 方程x²+bx+c=0的两根是-2, 1C. 不等式.x²+bx+c>0的解集是{x|-2<x<1}D. 不等式x²+bx+c≤0的解集是{x|-2≤x≤1}三、填空题:本题共3小题,每小题5分,共15分.12. 设集合A={2,1-a,5}, 若4∈A,则a= .13. 已知函数那么f(f(3))= .14. 不等式x+3x―5<0的解集为 .四、解答题:本题共5小题,共77分. 解答应写出文字说明、证明过程或演算步骤.15.(本题13分) 已知全集U=R, 集合.A=x|x≥4,B=x|―6≤x≤6.(1)求A∩B和A∪B;(2)求((C U A)∩(C U B)第2页,共4页16.(本题15分) 设集合U=R,A=x|0≤x≤3,B=x|m―1≤x≤2m.(1)m=3,求A∪(C U B);(2) 若B⊆A求m的取值范围.17.(本题15分) 已知二次函数f(x)=x²―ax+b,f(1)=2,f(3)=―6.(1) 求f(x)的解析式;(2) 写出f(x)的单调区间; 并求.x∈[―1,5]时,f(x)的最大值与最小值.第3页,共4页18.(本题17分) 求下列函数的最值. (1) 已知x>2, 求y=x+1x―2的最小值;(2) 已知:x>0,y>0,且2x+y=1.求1x +9y的最小值.(3) 已知(0<x<4,求x(4―3x)的最大值.19.(本题17分)已知函数f(x)=,且f(1)=10.(1) 求a的值;(2) 判断函数f(x)在[3,+∞)上的单调性,并用定义法证明;(3) 求函数f(x)在区间[3,6]上的最大值和最小值.第4页,共4页高一数学11月期中考试参考答案题号1234567891011答案BDDBCABABDBDABD1. B 【详解】全称量词命题“∀x∈R, x²≥0”的否定是 ∃x ∈R,x²<0,故选: B.2. D 【详解】由题意. A =0.1,2,B =x|―2<x ≤3,所以A∩B={0,1,2}.故选: D.3. D 【详解】因为A={0.1}, 所以集合A 有∅,{0},{1},{0,1}共4个子集.故选: D4. B 【详解】“我住在广西”则一定有“我住在中国”,反之不成立,所以“我住在广西”则一定有“我住在中国”的充分不必要条件.故选:B5. C 【详解】 m >0,m +4m ≥2m ⋅4m =4,当且仅当 m =4m ,即m=2时取等号,所以 m +4m 的最小值为4.故选:C6. A 【详解】要使函数 f (x )=x +3有意义, 需x+3≥0, 解得x≥-3, 即得函数的定义域为:{x|x≥-3}.故选: A.7. B 【详解】∵f(x-3)=2x²-3x+1, ∴f(1)=(4-3)=2×4²-3×4+1=21,故选B.8. A 【详解】若k=0, 则不等式为8>0, 满足条件,若k≠0,要使不等式恒成立,则满足 {k >0=36k 2―4k (k +8)≤0, 即 {k >0k 2―k ≤0 则 {k >00≤k ≤1,所以0<k≤1, 综上, 实数k 的取值范围为0≤k≤1. 故选: A9. BD 【详解】对于A 、D,因为a<b<0,所以 ab>0,则 1ab >0,所以 a ⋅1ab <b ⋅1ab ,即 1b <1a ,故A 错误, D 正确; 对于B, 因为a<b<0, 所以a·a>b·a, 即 ab <a²,故 B 正确;对于C, 若a<-1<b<0, 则|a|>1, 0<|b|<1, 所以有|a|>|b|, 故C 错误.故选: BD.10. BD 【分析】同一个函数的定义:如果两个函数的定义域相同,对应关系完全一致,那么这两个函数为同一个函数.根据定义判断选项.【详解】A. f(x)=x,g(x)=|x|,对应关系不一致,不是同一函数.B.f (x )=x²,g (x )=|x|²=x²,定义域相同,对应关系一致,是同一函数.C. f(x)定义域为R, g(x)定义域为{x|x≠1}, 定义域不同, 不是同一函数.D. f(x)定义域为{x|x≠0},可化为 f (x )=1x ,g(x)定义域为 x|x ≠0,可化为 g (x )=1x ,是同一函数.故选: BD.11. ABD 【详解】依题意, 方程 x²+bx +c =0的两根是-2, 1, B 正确;显然-b=-1,c=-2,即b=1,c=-2,b+c=-1, A 正确;不等式 x²+bx +c >0, 即 x²+x ―2>0的解集为{x|x<-2或x>1}, C 错误;不等式 x²+bx +c ≤0,即 x²+x ―2≤0的解集是 x|―2≤x ≤1,D 正确.故选: ABD 12. - 3【详解】集合A={2,1-a,5},若4∈A, 则1-a=4⇒a=-3.故答案为: - 313. - 1【详解】因为 f (x )={2―x (x ≥1)x 2+x ―1(x <1),所以f(3)=2-3=-1,所以 f (f (3))=f (―1)=(―1)²―1―1=―1, 故答案为: -1.14. {x|-3<x<5}【详解】 x +3x ―5<0(x +3)(x ―5)<0,解得 ―3<x <5..故答案为: x|―3<x <5答案第1页,共3页15.【详解】(1) A={x|x≥4},B={x|-6≤x≤6},A∩B={x|4≤x≤6}3分A∪B=x|x≥―6 .6分(2)C U A={x|x<4} .8分或x>6}- .10分(C U A)∩(C U B)={x|x<―6} .13分16. 【详解】A={x|0≤x≤3}(1)1分故可得或x>6}- .3分所以或x>6}-(2) 由题B⊆A:当B=∅时,m-1>2m,解得m<-1,符合题意;分 (9)分 (13)综上可得,m的取值范围为m<-1或 (15)17.【详解】(1) 因为f(x)=x²―ax+b,且f(1)=2,f(3)=-6,.............................................................................................2分解得(a=8, b=9, .........................................................5分(只有一个正确得2分)....................................................................................所以6分(2)由(1)知.对称轴为x=4,图象开口朝上分 (8)所以f(x)的减区间是(-∞,4],增区间是....................................[4,+∞)10又4∈[-1,5],所以f(x)在区间[-1,4]上单调递减,在区间[4,5]上单调递增, (12)所以f(x)ₘᵢₙ=f(4)=―7, ………………………………13分f(x)最大值在f(-1)或f(5)取到, f(-1)=18, f(5)=-6,∴f(-1)>f(5)·f(x)ₘₐₓ=f(―1)=18 ………………………………………15分18.【详解】(1)∵x>2,x―2>0,1x―2>0.6分…14分而y=x+1x―2=x―2+1x―2+2≥2(x―2)⋅1x―2+2=4, .3分当且仅当即x=3时取等号,所以……………………………………………………………5分(2)1x+9y=(1x+9y)(2x+y)=11+y x+18x y211+2yx ⋅18xy=11+62, ..8分当且仅当时,取等号,又2x+y=1,即时分101 x +9y取得最小值11+62 11分(3)15分当且仅当3x=4-3x时取等号,即(满足0<x<4)时x(4-3x)最大值为 (17)法二:函数y=x(4―3x)=―3x²+4x的开口向下,对称轴为x=―4―6=23, ..15分所以当时,x(4-3x)取得最大值为1719.【详解】(1) 函数f(x)=x2+ax,因为f(1)=10,…………………………………………………………………………………………………3分(2)函数f(x)在[3,+∞)上单调递增,知由下面证明单调区间,设3≤x₁<x₂,则f(x1)―f(x2)=x1―x2+9x1―9x2=(x1―x2)(x1x2―9x1x2), .8分由3≤x₁<x₂,则x₁x₂―9>0,x₁―x₂<0,x₁x₂>0, 11分所以(x1―x2)x1x2―9x1x2<0⇒f(x1)―f(x2)<0,即f(x₁)<f(x₂), ..12分……………………………………………………………………………………………13分(3)由(2)可知f(x)在区间[3,+∞)上单调递增,则在区间[3,6]上单调递增…………14分所以f(x)mn=f(3)=3+93=6,f(x)max=f(6)=6+96=152, 16分 (6)答案第3页,共3页。
广东省广州科学城中学2023-2024学年高一上学期期中检测数学试题(含答案)
广州科学城中学2023-2024学年高一上学期期中检测数学科试卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则( )A. B.C. D.2.设,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.函数的定义域为( )A.B.C. D.4.下列函数中,既是奇函数又是增函数的为( )A.B.C.D.5.定义在上的偶函数满足:对任意的,有,则()A. B.C.D.6.已知命题:函数与轴有两个交点;恒成立.若和均为真命题,则实数的取值范围为( )A.B. C.D.7.已知是定义在上的奇函数,当时,,那么不等式的解集是{}210,,{03,}A xx x R B x x x R =-≥∈=≤<∈∣∣A B ⋂={13,}xx x R <<∈∣{}13,xx x R ≤≤∈∣{13,}xx x R ≤<∈∣{03,}xx x R <<∈∣a ∈R 1a >2a a >()f x =1,2∞⎡⎫+⎪⎢⎣⎭()1,∞+()11,1,2∞⎛⎫-⋃+ ⎪⎝⎭()1,11,2∞⎡⎫⋃+⎪⎢⎣⎭1y x=-3y x =-1y x =+y x x=R ()f x [)1212,0,,x x x x ∞∈+≠()()()21210x x f x f x ⎡⎤--<⎣⎦()()()321f f f <-<()()()123f f f <-<()()()312f f f <<-()()()213f f f -<<p 21y x mx =++x ()2:,44210q x R x m x ∀∈+-+>pq ⌝m ()2,3(](),12,∞∞-⋃+()[),23,∞∞--⋃+()(],21,2∞--⋃()y f x =R 0x >()2f x x =-()12f x <A. B.C.或 D.或8.定义在上的函数满足:,且,则不等式的解集为( )A.B.C.D.二、多选题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知实数满足,则下列不等式一定成立的有( )A. B.C.D.10.下列命题中,真命题的是()A.是的充分不必要条件B.“”是“”的充要条件C.命题“,使得”的否定是“,都有”D.命题“”的否定是“”11.若函数在上是单调函数,则的取值可能是( )A.0B.1C.D.312.已知,下列命题中正确的是( )A.若,则B.若,则C.若D.若,则三、填空题:本题共4小题,每小题5分,共20分.502xx ⎧⎫<<⎨⎬⎩⎭302x x ⎧⎫-<≤⎨⎬⎩⎭302x x ⎧-<<⎨⎩502x ⎫≤<⎬⎭32x x ⎧<-⎨⎩502x ⎫≤<⎬⎭()0,∞+()f x ()()1122120x f x x f x x x -<-()24f =()80f x x->()2,∞+()0,2()0,4()4,∞+a b 、0a b >>22a b <a b-<-2b aa b+>a b ab +>1,1a b >>1ab >1x =21x =0x ∃∈R 20010x x ++<x ∀∈R 210x x ++≥2,10x x x ∀∈++≠R 2000,10x x x ∃∈++=R ()22,14,1x a x f x ax x ⎧-+≤-=⎨+>-⎩R a 320,0a b >>20ab a b --=28a b +≥2a b +=45b a b+≥1a b +=+≤111123a b +=++14ab a b ++≥+13.已知幂函数的图象经过点,则的值为__________.14.已知函数,若,则__________.15.已知函数,且,则__________.16.记表示中的最大者,设函数,若,则实数的取值范围__________.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)已知集合.(1)若,求;(2)若,求实数的取值范围.18.(12分)某商场预计全年分批购入每台价值为2000元的电视机共3600台.每批都购入台,且每批均需付运费400元.贮存购入所有的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比,比例系数为若每批购入400台,则全年需用去运输和保管总费用43600元.(1)求的值;(2)现在全年只有24000元资金用于支付这笔费用,请问能否恰当安排每批进货的数量使资金够用?写出你的结论,并说明理由.19.(12分)已知二次函数,且,且的解集为.(1)求的解析式.(2)求在区间的最大值记为,并求的最大值.20.(12分)已知函数.(1)若关于的不等式的解集为,求的值;(2)当时,解关于的不等式.21.(12分)已知函数是定义在上的奇函数,且.(1)求的解析式;(2)判断函数在上的单调性,并证明;(3)求使成立的实数的取值范围.()y f x =()4,2()2f ()21,0,0x x f x x x +≥⎧=⎨<⎩()3f x =x =()35bf x ax x=++()79f =()7f -={}max ,,x y z ,,x y z (){}2max 42,,3f x x x x x =-+---()1f m >m {}{27},32A xx B x a x a =-<<=≤≤-∣∣4a =(),R A B A B ⋃⋂ðA B A ⋃=a x ()*x N∈(0),k k >k ()2f x ax bx c =++()()22f x f x +=-()0f x >()2,c -()f x ()f x [],1m m +()h m ()h m ()()2f x x a b x a =-++x ()0f x <()1,2,a b 1b =x ()0f x >()21ax bf x x+=+[]1,1-()11f =()f x ()f x []1,1-()()22110f m f m ++-<m22.(12分)已知函数.(1)若函数的值域为,求的取值集合;(2)若对于任意的,总存在,使得成立,求实数的取值范围.广州科学城中学2023-2024学年高一上学期期中检测数学科试卷评分标准一、单选题,每小题5分,共8小题,40分题号12345678答案CADDACDB二、多选题(每小题5分,共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,全部选对得5分,选对但不全的得2分,错选得0分)题号9101112答案BCACDBCAD三、填空题(每小题5分,共计20分.)14.2或15.116.或或四、解答题17.【详解】(1),瘷(2),①若;②若.综上所述,18.【详解】(1)设全年需用去的运费和保管费的总费用为元题中的比例系数设为,每批购入台,则共需分批,每批费用元()()()215,243R 22f x xg x x ax a a =+=-+-∈()g x [)0,∞+a []11,1x ∈-[]21,1x ∈-()()12f x g x =a {1mm <-∣13m <<4}m >[]()(]4,4,10,2,72,10a B A A B ===-⇒⋃=-][()()[],27,7,10R A A B ∞∞=--⋃+⇒⋂=ðA B A B A ⋃=⇒⊆321B a a a =∅⇒>-⇒<32122133273a a a B a a a a a ⎧≤-≥⎧⎪⎪≠∅⇒>-⇒>-⇒≤<⎨⎨⎪⎪-<<⎩⎩{3}a aa ∈<∣y k x 3600x2000x由题意知:当时,解得:(2)由(1)可得:(元)当且仅当,即时等号成立故只需每批购入120台,可以使资金够用.19.【详解】(1)函数的对称轴为,二次函数,①又的解集为,的两个根是;并且.即②,③联立①②③,解得.函数的解析式为:.(2)由(1)知开口向下,且对称轴为,在区间的最大值记为,当,即时,在上是增函数,函数的最大值为.当时,在上是减函数,函数的最大值为.当,即时,在上函数的最大值为.36004002000y k x x=⨯+⨯400x =43600y =120k =360040010024000y x x =⨯+≥=3600400100x x⨯=120x =()()22,f x f x +=-∴ 2x = ()2f x ax bx c =++22ba∴-=()0f x >()2,,2c c -≠20ax bx c ∴++=2,c -0a <2b c a -+=-2c c a-=1,2,62a b c =-==∴()21262f x x x =-++()f x 2x =[],1m m +()h m 12m +<1m <()21262f x x x =-++[],1m m +()2115122f m m m +=-++2m >()21262f x x x =-++[],1m m +()21262f m m m =-++21m m ≤≤+12m ≤≤()21262f x x x =-++[],1m m +()28f =综上:,当时,;当时,;当时,;所以函数的最大值为8.20.【详解】(1)由函数,不等式化为,由不等式的解集为,所以方程的两根为1和2,由根与系数的关系知:,解得;(2)时不等式,可化为即当时,解不等式得或;当时,解不等式得;当时,解不等式得或.综上,时,不等式的解集为或;时,不等式的解集为;时,不等式的解集为或.21.【详解】(1)根据题意,是奇函数,则有,则有,解得;.,解得,()22115,1228,12126,22m m m h m m m m m ⎧-++<⎪⎪=≤≤⎨⎪⎪-++>⎩1m <()221151(1)88222h m m m m =-++=--+<12m ≤≤()8h m =2m >()221126(2)8822h m m m m =-++=--+<()h m ()()2f x x a b x a =-++()0f x <()20x a b x a -++<()1,2()20x a b x a -++=1212a ba +=+⎧⎨⨯=⎩2,1a b ==1b =()0f x >()210x a x a -++>()()10;x a x -->1a >1x <x a >1a =1x ≠1a <x a <1x >1a >{1x x <∣}x a >1a ={}1xx ≠∣1a <{xx a <∣1}x >()21ax bf x x+=+()()f x f x -=-()221()1a x b ax bx x -++=-+-+0b =()21axf x x∴=+()11,1112a af =∴==+ 2a =()221xf x x ∴=+(2)在上为增函数;证明如下:设则,,,则有,即.在上为增函数;(3),又是定义在上的奇函数,,则有,解得,即实数的取值范围为22.【详解】(1)函数的值域为,,解得或3;(2)由题意在上的值域是在上的值域的子集即对于函数在上是增函数,,函数图象开口向上,对称轴为直线.①当时,函数在上为增函数,,,,此时()f x []1,1-1211,x x -≤≤<()()()()()()121212122222121221221111x x x x x x f x f x x x x x ---=-=++++1211x x -≤<≤ 2212121210,10,10,0x x x x x x ∴+>+>->-<()()120f x f x -<()()12f x f x <()f x []1,1-()()()()222110,211f m f m f m f m ++-<∴+<-- ()f x []1,1-()()2211f m f m∴+<-221211111211m m m m -≤+≤⎧⎪-≤-≤⎨⎪+<-⎩10m -≤<m [)1,0-()2243g x x ax a =-+-[)0,∞+()2Δ(2)4430a a ∴=--=1a =()f x []1,1-()g x []1,1-min min max max()()()()f x g x f x g x ≥⎧⎨≤⎩()1522f x x =+[]1,1-()()min max ()12,()13f x f f x f ∴=-===()2243g x x ax a =-+-x a =1a ≤-()g x []1,1-()min ()162g x g a =-=-()max ()122g x g a ==-622223a a -≤⎧∴⎨-≥⎩;a ∈∅②当时,函数在区间上为减函数,在上为增函数,,,此时;③当时,函数在区间上为减函数,在上为增函数,,,此时;④当时,函数在上是减函数,,,,此时;综上所述,实数的取值范围是,10a -<≤()g x []1,a -[],1a ()()2min max ()43,()122g x g a a a g x g a ==-+-==-2432223a a a ⎧-+-≤∴⎨-≥⎩a ∈∅01a <<()g x []1,a -[],1a ()()2min max ()43,()162g x g a a a g x g a ==-+-=-=-2432623a a a ⎧-+-≤∴⎨-≥⎩516a ≤<1a ≥()g x []1,1-()max ()162g x g a ∴=-=-()min ()122g x g a ==-623222a a -≥⎧∴⎨-≤⎩12a ≤≤a 5,26⎡⎤⎢⎥⎣⎦。
高一第一学期期中考试数学试卷含答案(共5套)
2019~2020学年度第一学期期中考试高一数学试卷本试卷分第Ⅰ卷(1—2页,选择题)和第Ⅱ卷(3—8页,非选择题)两部分,共150分.考试用时120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,有且只有一项符合题目要求。
1、已知集合A=,那么A、0B、1C、D、02、下列各式错误..的是A、B、C、D、lg1.63、下列函数中,与函数y=有相同值域的是A、=lnB、C、=||D、=4、下列函数中,既是奇函数又是减函数的为A、y=+1B、y=C、y=D、y=ln||5、下列四组中,与表示同一函数的是A、f=,gB、f=, gC、f=,gD、f=,g6、函数y=+1(a>0且a≠1)的图象必经过点A、(0,1)B、(2,2)C、(1,1)D、(2,0)7、设函数f =,则满足f=4的的值是A 、或16B 、2或16C、2D、168、函数f =的单调递增区间是A 、B 、C 、D 、9、已知集合A={1,1},B={x|ax+2=0},若B⊆A,则实数a的所有可能取值的集合为A、{2}B、{2}C、{2,2}D、{2,0,2}10、如果幂函数f =的图象经过点,则f的值等于A 、B 、C、2D、1611、已知函数f =(其中a),若f的图象如右图所示,则函数g =的图象是yx O-11Oyx11xyO1xyO1xyOA B C D12、已知f 是偶函数,且在上是增函数,若f ,则x 的取值范围是A 、(),e +∞B 、1,e e ⎛⎫ ⎪⎝⎭C 、()10,,e e ⎛⎫+∞ ⎪⎝⎭D 、()1,,e e e ⎛⎫+∞ ⎪⎝⎭Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分。
把答案填写在题中横线上。
13、集合{1,2,3}的真子集共有 个.14、函数y=的定义域为 .15、若=5,=2,则2a +b= .16、函数f是R 上的奇函数,且当x >0时,函数的解析式为f .则函数的f 解析式f =.三、解答题:本大题共6小题,共70分。
四川省成都市2023-2024学年高一上学期期中数学试题(含答案)
成都2023-2024学年度上期高2026届半期考试数学试题(答案在最后)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.全称量词命题“5,lg 4x x x ∀∈+≠R ”的否定是()A.x ∃∈R ,5lg 4x x +=B.x ∀∈R ,5lg 4x x +=C.x ∃∈R ,5lg 4x x +≠D.x ∀∉R ,5lg 4x x +≠【答案】A 【解析】【分析】全称量词命题的否定是存在量词命题.【详解】“5,lg 4x x x ∀∈+≠R ”的否定是“x ∃∈R ,5lg 4x x +=”.故选:A .2.下列命题为真命题的是()A.若33a bc c<,则a b < B.若a b <,则33<ac bc C.若a b <,c d <,则a c b d -<- D.若a c b d -<-,c d <,则a c b d+<+【答案】D 【解析】【分析】举反例可判断选项A 、B 、C ,由不等式的性质可判断选项D.【详解】对于选项A ,当1c =-时,若33a bc c<,则a b >,与a b <矛盾,故选项A 错误;对于选项B ,当0c =时,若a b <,则330ac bc ==,与33<ac bc 矛盾,故选项B 错误;对于选项C ,当56a b ==,,10c d =-=,,满足a b <,c d <,但a c b d -=-,这与a c b d -<-矛盾,故选项C 错误;对于选项D ,因为a c b d -<-,c d <,所以由不等式性质可得:()()a c c b d d -+<-+,即a b <.因为a b <,c d <,由不等式性质可得:a c b d +<+,故选项D 正确.故选:D.3.设函数()ln 26f x x x x =+-,用二分法求方程ln 260x x x +-=在()2,3x ∈内的近似解的过程中,计算得(2)0,(2.5)0,(2.25)0f f f <>>,则下列必有方程的根的区间为()A.()2.5,3 B.()2.25,2.5 C.()2,2.25 D.不能确定【答案】C 【解析】【分析】利用零点存在性定理及二分法的相关知识即可判断.【详解】显然函数()ln 26f x x x x =+-在[]2,3x ∈上是连续不断的曲线,由于(2)0,(2.25)0f f <>,所以()()2· 2.250f f <,由零点存在性定理可得:()ln 26f x x x x =+-的零点所在区间为()2,2.25,所以方程ln 260x x x +-=在区间()2,2.25内一定有根.故选:C.4.函数2||3()33x x f x =-的图象大致为()A. B. C. D.【答案】D 【解析】【分析】根据函数的奇偶性、定义域、正负性,结合指数函数的单调性进行判断即可.【详解】由33011xx x -≠⇒≠⇒≠±,所以该函数的定义域为()()(),11,11,-∞-⋃-⋃+∞,显然关于原点对称,因为()()()22||||333333x x x x f x f x ---===--,所以该函数是偶函数,图象关于纵轴对称,故排除选项AC ,当1x >时,()33=3300xxf x --<⇒<,排除选项B ,故选:D5.若0a >,0b >,则“221a b +≤”是“a b +≤”的()A .充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据不等式之间的关系,利用充分条件和必要条件的定义进行判断即可得到结论.【详解】当0a >,0b >,且221a b +≤时,()()22222222a b a b ab a b +=++≤+≤,当且仅当2a b ==时等号成立,所以a b +≤,充分性成立;1a =,14b =,满足0a >,0b >且a b +≤,此时221a b +>,必要性不成立.则“221a b +≤”是“a b +≤”的充分不必要条件.故选:A6.已知当生物死亡后,它机体内原有的碳14含量y 与死亡年数x 的关系为573012x y ⎛⎫= ⎪⎝⎭.不久前,考古学家在某遗址中提取了数百份不同类型的样品,包括木炭、骨头、陶器等,得到了一系列的碳14测年数据,发现生物组织内碳14的含量是死亡前的34.则可以推断,该遗址距离今天大约多少年(参考数据ln 20.7≈,ln 3 1.1≈)()A.2355B.2455C.2555D.2655【答案】B 【解析】【分析】设该遗址距离今天大约0x 年,则0573005730132412x ⎛⎫ ⎪⎝⎭=⎛⎫ ⎪⎝⎭,再根据对数的运算性质及换底公式计算即可.【详解】设该遗址距离今天大约0x 年,则0573005730132412x ⎛⎫ ⎪⎝⎭=⎛⎫ ⎪⎝⎭,即057301324x ⎛⎫= ⎪⎝⎭,所以01222234ln 3 1.1log log log 4log 322573043ln 20.7x ===-=-≈-,所以0115730224557x ⎛⎫≈⨯-= ⎪⎝⎭,即该遗址距离今天大约2455年.故选:B .7.已知函数2295,1()1,1a x ax x f x xx -⎧-+≤=⎨+>⎩,是R 上的减函数,则a 的取值范围是()A.92,2⎡⎫⎪⎢⎣⎭B.94,2⎡⎫⎪⎢⎣⎭C.[]2,4 D.(]9,2,2⎛⎤-∞+∞⎥⎝⎦【答案】C 【解析】【分析】根据函数的单调性列不等式,由此求得a 的取值范围.【详解】依题意,()f x 在R 上单调递减,所以2291229011511a aa a -⎧≥⎪⎪-<⎨⎪-⨯+≥+⎪⎩,解得24a ≤≤,所以a 的取值范围是[]2,4故选:C8.设358log 2,log 3,log 5a b c ===,则()A.a c b <<B.a b c<< C.b<c<aD.c<a<b【答案】B 【解析】【分析】利用中间值比较大小得到23<a ,2334b <<,34c >,从而得到答案.【详解】333log 22log 20o 33938l g a --=-=<,故23<a ,555log 27log 2522log 30333b --=-=>,555log 81log 12533log 30444b --=-=<,故2334b <<,888log 5log 33log 5054246124c --=-=>,34c >,故a b c <<故选:B二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.任何集合都是它自身的真子集B.集合{},,,a b c d 共有16个子集C.集合{}{}42,Z 42,Zx x n n x x n n =+∈==-∈D.集合{}{}22|1,|22,x x a a x x a a a ++=+∈==-+∈N N 【答案】BC 【解析】【分析】根据真子集的性质、子集个数公式,结合集合的描述法逐一判断即可.【详解】A :根据真子集的定义可知:任何集合都不是它自身的真子集,所以本选项说法不正确;B :集合{},,,a b c d 中有四个元素,所以它的子集个数为42=16,所以本选项说法正确;C :因为{}(){}42,Z 412,Z x x n n x x n n =-∈==-+∈,所以{}42,Z x x n n =+∈与{}42,Z x x n n =-∈均表示4的倍数与2的和所组成的集合,所以{}{}42,Z 42,Z x x n n x x n n =+∈==-∈,因此本选项说法正确;D :对于{}2|22,x x a a a +=-+∈N ,当1a =时,2221x a a =-+=,即{}21|22,x x a a a +∈=-+∈N ,但{}21|1,x x a a +∉=+∈N ,所以两个集合不相等,因此本选项说法不正确.故选:BC.10.已知正实数x ,y 满足1x y +=,则下列不等式成立的有()A.22x y +≥ B.14≤xy C.124x x y+≥ D.1174xy xy +≥【答案】ABD【解析】【分析】选项A 用基本不等式性质判断即可;选项B 用基本不等式的推论即可;选项C 将1x y +=带入,再用基本不等式判断;D 利用对勾函数的单调性判断.【详解】对A :因为x ,y为正实数22x y +≥==,当且仅当12x y ==时取等号,所以A 正确;对B :因为2211224x y xy +⎛⎫⎛⎫≤== ⎪ ⎪⎝⎭⎝⎭,当且仅当12x y ==时取等号,所以B 正确;对C:因为1222111x x y x y x x y x y x y ++=+=++≥+=+2y x x y =时取等号,所以C 错误;对D :由B 选项可知14≤xy ,令xy t =,则104t <≤,11xy t xy t +=+()1104f t t t t ⎛⎫=+<≤ ⎪⎝⎭因为对勾函数在104t <≤上是减函数,所以()11744f t f ⎛⎫≥= ⎪⎝⎭,所以D 正确;故选:ABD 11.已知()1121xa f x +=+-是奇函数,则()A.1a = B.()f x 在()(),00,x ∈-∞⋃+∞上单调递减C.()f x 的值域为()(),11,-∞-⋃+∞ D.()()3log 2f x f >的解集为()0,9x ∈【答案】AC 【解析】【分析】由奇函数的定义可判定A 项,利用指数函数的性质可判定B 项,进而可求值域判定C 项,可结合对数函数的性质解不等式判定D 项.【详解】因为函数()1121xa f x +=+-是奇函数,易知2100x x -≠⇒≠,则有()()()()()11211112210212121x x x xa a a f x f x a -+-++-+=+++=+=-+=---,解之得1a =,故A 正确;则()2121xf x =+-,易知当0210x x y >⇒=->且有21xy =-单调递增,故此时()2121x f x =+-单调递减,又由奇函数的性质可知0x <时()f x 也是单调递减,故()f x 在(),0∞-和()0,∞+上单调递减,故B 错误;由上可知0x >时,222100112121xx x ->⇒>⇒+>--,即此时()1f x >,由奇函数的性质可知0x <时,()1f x <-,则函数()f x 的值域为()(),11,-∞-⋃+∞,故C 正确;由上可知()()()33log 20log 21,9f x f x x >⇒<<⇒∈,故D 错误.故选:AC12.已知定义在(0,)+∞上的函数()f x 在区间()0,6上满足()()6f x f x -=,当(]0,3x ∈时,()13log f x x =;当[)6,x ∈+∞时,()21448f x x x =-+-.若直线y m =与函数()f x 的图象有6个不同的交点,各交点的横坐标为()1,2,3,4,5,6i x i =,且123456x x x x x x <<<<<,则下列结论正确的是()A.122x x +>B.()5648,49x x ∈C.()()34661x x --> D.()()()()1122660,26x f x x f x x f x +++∈⎡⎤⎣⎦ 【答案】ABD 【解析】【分析】先利用函数的对称性和解析式作出函数图象,分别求出直线y m =与函数()f x 的图象的交点的横坐标的范围,运用基本不等式和二次函数的值域依次检验选项即得.【详解】如图,依题意可得13132log ,03()log (6),361448,6x x f x x x x x x ⎧<≤⎪⎪⎪⎪=-<<⎨⎪⎪-+-≥⎪⎪⎩,作出函数()y f x =在(0,)+∞上的图象,设直线1y =与()y f x =的图象分别交于,,,A B C D 四点,显然有1(,1),(3,1),(7,1)3A B D ,由()()6f x f x -=知函数()f x 在区间()0,6上关于直线3x =对称,故可得:17(,1)3C .对于A 选项,由12()()f x f x =可得121133x x <<<<,111233log log x x =-,化简得121=x x ,由基本不等式得:122x x +>=,故A 项正确;对于B 选项,当[)6,x ∈+∞时,由()21448f x x x =-+-可知其对称轴为直线7x =,故562714,x x +=⨯=又因56678x x <<<<,故()25655551414x x x x x x =-=-+25(7)+49x =--在区间()6,7上为增函数,则有564849x x <<,故B 项正确;对于C 选项,由34()()f x f x =可得34356x x <<<<,131433log (6)log (6)x x -=--,化简得1343log [(6)(6)]0x x --=,故有()()34661x x --=,即C 项错误;对于D 选项,依题意,1236()()()(),f x f x f x f x m ===== 且01m <<,故()()()112266126()x f x x f x x f x x x x m +++=+++ ,又因函数()f x 在区间()0,6上关于直线3x =对称,故1423236,x x x x +=+=⨯=又由B 项分析知5614,x x +=于是126661426,x x x +++=++= 故得:()()()()1122660,26x f x x f x x f x +++∈⎡⎤⎣⎦ ,故D 项正确.故选:ABD.【点睛】关键点点睛:本题考查分段函数与直线y m =的交点横坐标的范围界定,关键在于充分利用绝对值函数与对称函数的图象特征进行作图,运用数形结合的思想进行结论检验.三、填空题:本大题共4小题,每小题5分,共20分.13.若定义在[]4,4-上的奇函数()f x 的部分图象如图所示,则()f x 的单调增区间为______.【答案】[]2,4和[]4,2--【解析】【分析】直接根据图象结合奇函数性质得到答案.【详解】根据图象,0x >时函数在[]2,4上单调递增,函数为奇函数,故函数在[]4,2--上也单调递增.故答案为:[]2,4和[]4,2--.14.若()()2log ,0215,0xx x f x f x x >⎧=⎨++≤⎩,则(1)(7)f f --=______.【答案】32【解析】【分析】直接计算得到答案.【详解】()()2log ,0215,0x x x f x f x x >⎧=⎨++≤⎩,则()()2221113(1)(7)147log 14log 7log 22222f f f f --=+-=+-=+=.故答案为:32.15.石室中学“跳蚤市场”活动即将开启,学生们在该活动中的商品所卖款项将用来支持慈善事业.为了在这次活动中最大限度地筹集资金,某班进行了前期调查.若商品进货价每件10元,当售卖价格(每件x 元)在1025x <≤时,本次活动售出的件数()42105P x =-,若想在本次活动中筹集的资金最多,则售卖价格每件应定为______元.【答案】15【解析】【分析】结合已知条件,求出利润()f x 的解析式,然后结合换元法和基本不等式即可求解.【详解】由题意可知,利润4210(10)()(5)x f x x -=-,1025x <≤,不妨令10(0,15]t x =-∈,则利润44421010()50025(5)10t f x y t t t ===≤+++,当且仅当25t t=时,即5t =时,即15x =时,不等式取等号,故销售价格每件应定为15元.故答案为:15.16.我们知道,函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,有同学发现可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.那么,函数()323f x x x x =--图象的对称中心是______.【答案】()1,3-【解析】【分析】计算出()()b f x a b f x a +-++--()232662622a x a a a b =-+---,得到3266026220a a a a b -=⎧⎨---=⎩,求出13a b =⎧⎨=-⎩,得到对称中心.【详解】()()bf x a b f x a +-++--()()()()()()3232332x a x a x a x a x a x a b =+-+-++-+--+--+-32232232233336333x ax a x a x ax a x a x ax a x a =+++------+-+223632x ax a x a b-+-+--()232662622a x a a a b =-+---,要想函数()y f x a b =+-为奇函数,只需()2326626220a x a a a b -+---=恒成立,即3266026220a a a a b -=⎧⎨---=⎩,解得13a b =⎧⎨=-⎩,故()323f x x x x =--图象的对称中心为()1,3-故答案为:()1,3-四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(1)计算2173ln 383log 210e 22lg 527log 10-⎛⎫-⨯--⎪⎝⎭;(2)已知11224x x-+=,求3322x x -+的值.【答案】(1)0(2)52【解析】【分析】(1)结合指数运算及对数运算性质,换底公式即可求解;(2)考察两式间的内在联系,结合立方和公式即可求解.【详解】(1)21723ln 3833log 2101727e22lg 52()(lg 5lg 2)27log 10864-⎛⎫-⨯--=--+ ⎪⎝⎭1791088--==;(2)由11224x x-+=,则112122()216x x x x --+=++=,则114x x -+=,则3322x x-+()11122141352x x x x --⎛⎫=+-+=⨯= ⎪⎝⎭.18.已知全集R U =,集合5|1,{|16}2A x B x x x ⎧⎫=>=<≤⎨⎬-⎩⎭,{1C x x a =≤-∣或21}x a ≥+.(1)求()U A B ∩ð;(2)若()A B C ⊆ ,求实数a 的取值范围.【答案】(1){31}xx -<≤∣(2)(],2[7,)-∞-+∞ 【解析】【分析】(1)解出分式不等式,求出集合A ,再利用交集和补集的含义即可得到答案;(2)分R C =和R C ≠讨论即可.【小问1详解】{}5310(3)(2)0{32}22x A x x x x x x x x x +⎧⎫⎧⎫=>=>=+->=-<<⎨⎬⎨⎬--⎩⎭⎩⎭∣∣∣∣{16}B x x =<≤∣,{1U B x x ∴=≤∣ð或6}x >,(){31}U A B x x ∴=-<≤ ∣ð.【小问2详解】{36}A B x x =-<≤ ∣,且()A B C ⊆ ,①R C =,1212a a a -≥+⇒≤-,此时满足()A B C ⊆ ,②R C ≠,2a >-,此时213a +>-,则167-≥⇒≥a a ,此时满足()A B C ⊆ ,综上所述,实数a 的取值范围为(],2[7,)-∞-+∞ .19.在“①函数()f x 是偶函数;②函数()f x 是奇函数.”这两个条件中选择一个补充在下列的横线上,并作答问题.注:如果选择多个条件分别解答,按第一个解答计分.已知函数()ln(e )ln(e )f x x k x =++-,且______.(1)求()f x 的解析式;(2)判断()f x 在()0,e 上的单调性,并根据单调性定义证明你的结论.【答案】(1)选择①时,()ln(e )ln(e )f x x x =++-;选择②时,()ln(e )ln(e )f x x x =+--(2)答案见解析【解析】【分析】(1)根据函数的奇偶性的定义求解参数k ,即可得()f x 的解析式;(2)根据函数单调性的定义证明即可得结论.【小问1详解】选择①:函数()ln(e )ln(e )f x x k x =++-的定义域满足e 0e 0x x +>⎧⎨->⎩,解得e e x -<<,故定义域为()e,e -,若函数()f x 是偶函数,所以()()()()ln e ln e f x x k x f x -=-++=,则()()()()ln e ln e ln e ln e x k x x k x -++=++-,则1k =所以()ln(e )ln(e )f x x x =++-;选择②:函数()ln(e )ln(e )f x x k x =++-的定义域满足e 0e 0x x +>⎧⎨->⎩,解得e e x -<<,故定义域为()e,e -,若函数()f x 是奇函数,所以()()()()ln e ln e f x x k x f x -=-++=-,则()()()()ln e ln e ln e ln e x k x x k x -++=-+--,则1k =-所以()ln(e )ln(e )f x x x =+--;【小问2详解】选择①:函数22()ln(e )ln(e )ln(e )f x x x x =++-=-在()0,e 上单调递减.证明:1x ∀,()20,e x ∈,且12x x <,有,有22222221121212(e )(e )()()x x x x x x x x ---=-=+-,由120e x x <<<,得120x x +>,120x x -<,所以1212()()0x x x x +-<,于是222212e e 0x x ->->,所以222221e 01e x x -<<-,所以22222222121221e ()()ln(e )ln(e )ln ln10e xf x f x x x x --=---=<=-,即12()()f x f x >,所以函数22()ln(e )f x x =-在()0,e 上单调递减.选择②:函数e ()ln(e )ln(e )ln e xf x x x x+=+--=-在()0,e 上单调递增.证明:1x ∀,()20,e x ∈,且12x x <,则21211221212121e e (e )(e )(e )(e )2()e e (e )(e )(e )(e )x x x x x x x x x x x x x x +++--+---==------由120e x x <<<,得210x x ->,2e 0x ->,1e 0x ->,所以21212()0(e )(e )x x x x ->--,即2121e e 0e e x x x x ++>>--,于是2211e e 1e e x x x x +->+-,所以2212211211e e e e ()()lnln ln ln10e e e e x x x x f x f x x x x x +++--=-=>=+---,即12()()f x f x <,所以函数e ()lne xf x x+=-在()0,e 上单调递增.20.酒驾是严重危害交通安全的违法行为,为了保障交通安全,根据国家有关规定:100mL 血液中酒精含量达到20~79mg 的驾驶员即为酒后驾车,80mg 及以上认定为醉酒驾车.经过反复试验,喝一瓶啤酒后酒精在人体血液中的含量变化规律的“散点图"”如图,该函数近似模型如下:()20.43()49.18,02256.26e14.73,2x a x x f x x -⎧-+≤<⎪=⎨⎪⋅+≥⎩,又已知酒后1小时测得酒精含量值为46.18毫克/百毫升,根据上述条件,解答以下问题:(1)当02x ≤<时,确定()f x 的表达式;(2)喝1瓶啤酒后多长时间后才可以驾车?(时间以整分钟计算)(附参考数据:ln527 6.27,ln56268.63,ln14737.29===)【答案】(1)23()12()49.182f x x =--+(2)314分钟后【解析】【分析】(1)根据题中条件,建立方程(1)46.18f =,解出即可;(2)根据题意建立不等式,解出即可.【小问1详解】根据题意知,当02x ≤<时,23()()49.182f x a x =-+,所以23(1)(149.1846.182f a =-+=,解得12a =-,所以当02x ≤<,23()12()49.182f x x =--+.【小问2详解】由题意知,当车辆驾驶人员血液中的酒精含量小于20mg /百毫升时可以驾车,当02x ≤<时,()20f x >,此时2x ≥,由0.456.26e 14.7320x -⋅+<,得0.4 5.27527e56.265626x-<=,两边取自然对数可得,0.4ln 527ln 5626 6.278.36 2.09x -<-=-=-,所以 2.095.2250.4x >=,又5.225小时=313.5分钟,故喝1瓶啤酒314分钟后才可以驾车.21.已知函数12x y a -=-(0a >,且1a ≠)过定点A ,且点A 在函数()()ln 1f x x m =+-,(R)m ∈的图象上.(1)求函数()f x 的解析式;(2)若定义在[]1,2上的函数()()ln 2y f x k x =+-恰有一个零点,求实数k 的取值范围.【答案】(1)()ln 1f x x =-(2)e 2e,42⎛⎤++ ⎥⎝⎦【解析】【分析】(1)把定点A 代入函数()f x 的解析式求出m 的值即可;(2)问题等价于()22e g x x kx =-+在[]1,2上恰有一个零点,根据函数零点的定义,结合二次函数的性质进行求解即可;【小问1详解】函数12x y a -=-(0a >,且1a ≠)过定点()1,1A -,函数()()ln 1f x x m =+-(R)m ∈的图象过点()1,1A -,即()ln 111m +-=-,解得0m =,函数()f x 的解析式为()ln 1f x x =-.【小问2详解】函数()()()ln 2ln 1ln 2y f x k x x k x +--==+-定义在[]1,2上,20k x ->在[]1,2上恒成立,可得4k >,令()()2ln 1ln 2ln 210y x k x kx x =-+--=-=,得22e 0xkx -+=,设()22e g x x kx =-+,函数()()ln 2y f x k x =+-在[]1,2上恰有一个零点,等价于()g x 在[]1,2上恰有一个零点,函数()22e g x x kx =-+图像抛物线开口向上,对称轴14kx =>,若()()12e 0282e 0g k g k ⎧=-+=⎪⎨=-+<⎪⎩,无解,不成立;若()()()()122e 82e 0g g k k ⋅=-+-+<,解得e2e 42k +<<+,满足题意;若()24282e 0k g k ⎧≥⎪⎨⎪=-+=⎩,无解,不成立;若()()12e 0124282e 0g k kg k ⎧=-+<⎪⎪<<⎨⎪=-+=⎪⎩,解得e 42k =+,满足题意.所以实数k 的取值范围为e 2e,42⎛⎤++ ⎥⎝⎦.22.若函数()f x 与()g x 满足:对任意的1x D ∈,总存在唯一的2x D ∈,使()()12f x g x m =成立,则称()f x 是()g x 在区间D 上的“m 阶伴随函数”;对任意的1x D ∈,总存在唯一的2x D ∈,使()()12f x f x m=成立,则称()f x 是区间D 上的“m 阶自伴函数”.(1)判断()22111f x x x =+++是否为区间[]0,4上的“2阶自伴函数”?并说明理由;(2)若函数()32πx f x -=区间1,3b ⎡⎤⎢⎥⎣⎦上的“1阶自伴函数”,求b 的值;(3)若()2214f x x ax a =-+-是()4log (167)g x x =--在区间[0,2]上的“2阶伴随函数”,求实数a 的取值范围.【答案】(1)不是,理由见解析(2)1b =(3)314a ≤≤【解析】【分析】(1)根据给定的定义,取12x =,判断2()1f x =在[]0,4是否有实数解即可;(2)根据给定的定义,当11,3x b ⎡⎤∈⎢⎥⎣⎦时,用1x 表示2x 并判断单调性,求出值域,借助集合的包含关系求解即可;(3)根据()g x 的单调性求解其在区间[0,2]上的值域,进而将问题转化为()f x 在区间[0,2]上的值域是[]4,1--的子集,再结合二次函数的性质,分类讨论即可求解.【小问1详解】假定函数()22111f x x x =+++是区间[]0,4上的“2阶自伴函数”,则对任意的[]10,4x ∈,总存在唯一的[]20,4x ∈,使()()122f x f x =成立,取10x =,1()2f x =,由12()()2f x f x =,得2()1f x =,则()222221111f x x x =++=+,则()()222221110x x +-++=,进而可得()222131024x ⎡⎤+-+=⎢⎣⎦显然此方程无实数解,所以函数()22111f x x x =+++不是区间[]0,4上的“2阶自伴函数”,【小问2详解】函数()32πx f x -=为区间1,3b ⎡⎤⎢⎥⎣⎦上的“1阶自伴函数”,则对任意11,3x b ⎡⎤∈⎢⎥⎣⎦,总存在唯一的21,3x b ⎡⎤∈⎢⎥⎣⎦,使得12()()1f x f x =,即123232ππ1x x --=,进而1243x x +=,得2143x x =-,显然函数2143x x =-在11,3x b ⎡⎤∈⎢⎥⎣⎦上单调递减,且当113x =时,21x =,当1x b =时,243x b =-,因此对1,3b ⎡⎤⎢⎥⎣⎦内的每一个1x ,在4[,1]3b -内有唯一2x 值与之对应,而21,3x b ⎡⎤∈⎢⎥⎣⎦,所以41[,1][,]33b b -⊆,所以14133b b ≥⎧⎪⎨-≥⎪⎩,解得11b b ≥⎧⎨≤⎩,即1b =,所以b 的值是1.【小问3详解】由于41log 67,t x y t =-=分别为定义域内单调递增和单调递减函数,所以函数()4log (167)g x x =--在[0,2]上单调递增,且()()102,22g g =-=-得函数()g x 的值域为12,2⎡⎤--⎢⎥⎣⎦,由函数()2214f x x ax a =-+-是()4log (167)g x x =--在区间[0,2]上的“2阶伴随函数”可知,对任意的1[0x ∈,2],总存在唯一的2[0x ∈,2]时,使得12()()2f x g x =成立,于是[]122()4,1()f xg x =∈--,则()2214f x x ax a =-+-在区间上[0,2]的值域是区间[]4,1--的子集,而函数()2214f x x ax a =-+-图象开口向上,对称轴为x a =,显然(0)14f a =-,()258f a =-,()241f a a a =--+,当0a ≤时,()f x 在[0,2]上单调递增,则min max ()(0)4()(2)1f x f f x f =≥-⎧⎨=≤-⎩,即0144581a a a ≤⎧⎪-≥-⎨⎪-≤-⎩,无解;当2a ≥时,()f x 在[0,2]上单调递减,则min max ()(2)4()(0)1f x f f x f =≥-⎧⎨=≤-⎩,即2584141a a a ≥⎧⎪-≥-⎨⎪-≤-⎩,无解;当02a <<时,()f x 在[0,]a 上单调递减,在[a ,2]上单调递增,则()()4(2)101f a f f ≥-⎧⎪≤-⎨⎪≤-⎩,即202581141144a a a a a <<⎧⎪-≤-⎪⎨-≤-⎪⎪-+-≥-⎩,解得314a ≤≤;综上,a 的取值范围是314a ≤≤.。
南通中学2023-2024学年高一上学期期中数学试题(含答案)
江苏省南通中学2023-2024学年第一学期期中考试高一数学一、选择题:本题共8小题,每小题5分,共40分.1.设集合{}02A x x =≤≤,{}1B x x =≤,则A B = ()A.(],1-∞ B.(],2∞- C.[]0,1 D.[]1,22.函数()f x =)A .(,0]-∞ B.[0,)+∞ C.(0,)+∞ D.(,)∞∞-+3.已知0.5log 2a =,0.52b =,20.5c =,则a ,b ,c 的大小关系为()A.a b c<< B.b c a<< C.a c b<< D.c b a <<4.已知,,R a b c ∈,则a b c ==是222a b c ab bc ac ++=++成立的()A .充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.德国天文学家,数学家开普勒(J.Kepier ,1571—1630)发现了八大行星的运动规律:它们公转时间的平方与离太阳平均距离的立方成正比.已知天王星离太阳平均距离是土星离太阳平均距离的2倍,土星的公转时间约为10753d .则天王星的公转时间约为()A.4329dB.30323dC.60150dD.90670d6.下列可能是函数2||1x x y e-=(e 是自然对数的底数)的图象的是()A.B.C.D.7.已知函数()2,75,63x x m f x x x m⎧≥⎪=⎨+<⎪⎩的值域为R ,则实数m 的取值范围为()A.[]0,1 B.[]0,2 C.[]1,1- D.[]1,2-8.已知0x >,0y >,且2x y xy +=,则211x yx y +++的最小值为()A.45B.1C.32D.2二、选择题:本题共4小题,每小题5分,共20分.9.已知幂函数()y x R αα=∈的图象过点(2,8),下列说法正确的是()A.函数y x α=的图象过原点B.函数y x α=是偶函数C.函数y x α=是单调减函数D.函数y x α=的值域为R 10.下列不等式中成立的是()A.若0a b >>,则22ac bc >B.若0a b >>,则22a b >C.若0a b <<,则22a ab b >> D.若0a b <<,则11a b>11.已知()f x 是R 上的偶函数,且在[)0,∞+上是单调减函数,则满足不等式()()212f t f t +>-的所有整数t 的值为()A.2- B.1- C.0D.112.已知()f x 、()g x 都是定义在R 上的函数,且()f x 为奇函数,()g x 的图像关于直线1x =对称,则下列说法中一定正确的是()A.()00f = B.()10g =C.()y g f x =⎡⎤⎣⎦为奇函数D.()y f g x ⎡⎤=⎣⎦的图像关于直线1x =对称三、填空题:本题共4小题,每小题5分,共20分.13.式子1239log 27+的值是________14.已知函数()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且()()21f x g x x x +=-+,则()3g 的值是______.15.已知a ,b 是非零实数,若关于x 的不等式20x ax b -+≥恒成立,则212ba +的最小值是______.16.已知函数()2f x x ax =+-,当1a =时,函数()f x 的值域为______;若函数()f x 的最小值为2,则正实数a 的取值范围为______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.设全集U =R ,集合12644x A x ⎧⎫=≤≤⎨⎬⎩⎭,{}5B x x =>.(1)求U A B ð:(2)若集合{}C x x a =>满足B C B = ,求实数a 的取值范围.18.已知函数()222f x x x a =-+-,()xg x a =(0a >且1a ≠).(1)若函数()f x 在(],21m -∞-上单调递减,求实数m 的取值范围;(2)若()()20f g =.①求实数a 的值;②设()1t f x =,()2t g x =,当()0,1x ∈时,试比较1t ,2t 的大小.19.已知某观光海域AB 段的长度为3百公里,一超级快艇在AB 段航行,经过多次试验得到其每小时航行费用Q (单位:万元)与速度v (单位:百公里/小时)(03v ≤≤)的以下数据:v 0123Q0.71.63.3为描述该超级块艇每小时航行费用Q 与速度v 的关系,现有以下两种函数模型供选择:32Q av bv cv =++,0.5v Q a =+.(1)试从中确定最符合实际的函数模型,并求出相应的函数解析式;(2)该超级快艇应以多大速度航行才能使AB 段的航行费用最少?并求出期少航行费用.20.已知()42135x f x a++=+(0a >且1a ≠).(1)求函数()y f x =的解析式,并写出函数()y f x =图象恒过的定点;(2)若()235f x a>+,求x 的取值范围.21.已知二次函数()()2,f x x ax b a b =++∈R .(1)若()20f -=,且对于x ∈R ,()()11f x f x +=-恒成立,求a ,b 的值;(2)若函数()f x 的值域为[)1,+∞,关于x 的不等式()f x c <的解集为()(),8m m m +∈R ,求实数c 的值.22.设函数()()0,1xxf x a k aa a -=+⋅>≠是定义域为R 的奇函数.(1)求实数k 值;(2)若()10f <,试判断函数()f x 的单调性,并证明你的结论;(3)在(2)的条件下,不等式()()1192430x x f t f -+-+⋅++⋅<对任意实数x 均成立,求实数t 的取值范围.江苏省南通中学2023-2024学年第一学期期中考试高一数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}02A x x =≤≤,{}1B x x =≤,则A B = ()A.(],1-∞ B.(],2∞- C.[]0,1 D.[]1,2【答案】C 【解析】【分析】由交集定义计算.【详解】由已知{|01}A B x x = ≤≤.故选:C .2.函数()f x =)A.(,0]-∞ B.[0,)+∞ C.(0,)+∞ D.(,)∞∞-+【答案】A 【解析】【分析】根据函数的解析式有意义,列出不等式,结合指数函数的性质,即可求解.【详解】由题意,函数()f x =120x-≥,即21x ≤,解得0x ≤,所以函数()f x 的定义域为(,0]-∞.故选:A.3.已知0.5log 2a =,0.52b =,20.5c =,则a ,b ,c 的大小关系为()A.a b c << B.b c a<< C.a cb << D.c b a<<【答案】C 【解析】详解】分析:利用对数函数与指数函数的性质,将a ,b ,c 与0和1比较即可.详解:0.5log 20a=<,0.521b =>;210.54c ==.故a c b <<.故选:C.点睛:对数函数值大小的比较一般有三种方法:①单调性法,在同底的情况下直接得到大小关系,若不同底,先化为同底.②中间值过渡法,即寻找中间数联系要比较的两个数,一般是用“0”,“1”或其他特殊值进行“比较传递”.③图象法,根据图象观察得出大小关系.4.已知,,R a b c ∈,则a b c ==是222a b c ab bc ac ++=++成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】根据充分条件和必要条件的定义分析判断即可.【详解】当a b c ==时,222223,3a b c a ab bc ac a ++=++=,所以222a b c ab bc ac ++=++,当222a b c ab bc ac ++=++时,2220a b c ab bc ac ++---=,所以2222222220a b c ab bc ac ++---=,所以()()()2222222220aab b a ac c b bc c -++-++-+=,所以()()()2220a b a c b c -+-+-=,因为()()()2220,0,0a b a c b c -≥-≥-≥,所以()()()2220a b a c b c -=-=-=,所以a b c ==,所以a b c ==是222a b c ab bc ac ++=++成立的充要条件,故选:C5.德国天文学家,数学家开普勒(J.Kepier ,1571—1630)发现了八大行星的运动规律:它们公转时间的平方与离太阳平均距离的立方成正比.已知天王星离太阳平均距离是土星离太阳平均距离的2倍,土星的公转时间约为10753d .则天王星的公转时间约为()A.4329dB.30323d C.60150d D.90670d【答案】B 【解析】【分析】设天王星和土星的公转时间为分别为T 和T ',距离太阳的平均距离为r 和r ',根据2323T r T r ='',2rr '=,结合已知条件即可求解.【详解】设天王星的公转时间为T ,距离太阳的平均距离为r ,土星的公转时间为T ',距离太阳的平均距离为r ',由题意知:2r r '=,10753T d '=,所以323238T r r T r r ⎛⎫=== ⎪'''⎝⎭,所以1075310753 2.82830409.484T d '==≈⨯=,故选:B.6.下列可能是函数2||1x x y e -=(e 是自然对数的底数)的图象的是()A. B.C.D.【答案】C 【解析】【分析】根据函数的定义域和部分区间的函数值确定正确选项.【详解】函数2||1x x y e -=的定义域为R ,所以AB 选项错误.当1x >时,2||10x x y e-=>,所以D 选项错误.故选:C 【点睛】本小题主要考查函数图象的识别,属于基础题.7.已知函数()2,75,63x x m f x x x m⎧≥⎪=⎨+<⎪⎩的值域为R ,则实数m 的取值范围为()A.[]0,1 B.[]0,2 C.[]1,1- D.[]1,2-【答案】D 【解析】【分析】由函数值域为R ,利用指数函数和一次函数函数单调性以及画出函数图像分析即可解决问题.【详解】当x m <时,()7563f x x =+单调递增,所以()7563f x m <+当x m ≥时,()2x f x =单调递增,所以()2m f x ≥,要使得函数值域为R ,则75263m m +≥恒成立,令1275,263m y m y =+=,如图所示:由图可知12,y y 有两个交点,且交点的横坐标分别为121,2m m =-=,所以若要75263m m +≥,则[]1,2m Î-,也即函数()f x 的值域为R 时,则实数m 的取值范围为:[]1,2m Î-,故选:D.8.已知0x>,0y >,且2x y xy +=,则211x yx y +++的最小值为()A.45B.1C.32D.2【答案】A 【解析】【分析】先根据题意得到112y x +=,从而得到1215y x y x+++=,再根据“1”的妙用及基本不等式即可求解.【详解】由0x>,0y >,2x y xy +=,则112y x +=,则11121125y x y x y x+++++=+=,所以12112112115x y x y y x x y x y y x ⎛⎫⎛⎫+++=+⨯+⨯ ⎪ ⎪++++⎝⎭⎝⎭1211112115x y y x x y y x ⎛⎫++=⨯+++⨯++⎝⎭12114221155x y y x x y y x ⎛⎫++≥+⨯⨯⨯⨯= ⎪ ⎪++⎝⎭.当且仅当121211x y y x x y y x ++⨯=⨯++,即2x =,23y =时,等号成立,所以211x y x y +++的最小值为45.故选:A .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知幂函数()y x R αα=∈的图象过点(2,8),下列说法正确的是()A.函数y x α=的图象过原点B.函数y x α=是偶函数C.函数y x α=是单调减函数D.函数y x α=的值域为R 【答案】AD 【解析】【分析】根据幂函数所过点求得幂函数解析式,结合幂函数的图象与性质对选项逐一分析,由此确定正确选项.【详解】由于幂函数y x α=过点()2,8,所以28α=,解得3α=,所以3y x =.()0,0,满足3y x =,A 选项正确.3y x =是奇函数,所以B 选项错误.3y x =在R 上递增,所以C 选项错误.3y x =值域为R ,所以D 选项正确.故选:AD【点睛】本小题主要考查幂函数的图象与性质,属于基础题.10.下列不等式中成立的是()A.若0a b >>,则22ac bc > B.若0a b >>,则22a b >C.若0a b <<,则22a ab b >> D.若0a b <<,则11a b>【答案】BCD 解析】【分析】根据不等式的性质、差比较法判断出正确答案.【详解】A 选项,若0,0ab c >>=,则22ac bc =,所以A 选项错误.B 选项,若0a b >>,则()()22220,a b a b a b a b -=+->>,所以B 选项正确.C 选项,若0a b <<,0a b -<,则()220,a ab a a b a ab -=->>,()220,ab b b a b ab b -=->>,则22a ab b >>,所以C 选项正确.D 选项,若0a b <<,0b a ->,所以11110,b a a b ab a b--=>>,所以D 选项正确.故选:BCD 11.已知()f x 是R 上的偶函数,且在[)0,∞+上是单调减函数,则满足不等式()()212f t f t +>-的所有整数t 的值为()A.2- B.1- C.0 D.1【答案】ABC 【解析】【分析】利用函数的奇偶性和单调性,不等式转化为21<2t t +-,求解即可.【详解】已知()f x 是R 上的偶函数,且在[)0,∞+上是单调减函数,则()f x 在(),0-∞上是单调增函数,由()()212f t f t +>-,得21<2t t +-,即23830t t +-<,解得133t -<<,范围内的整数有2,1,0--.故选:ABC12.已知()f x 、()g x 都是定义在R 上的函数,且()f x 为奇函数,()g x 的图像关于直线1x =对称,则下列说法中一定正确的是()A.()00f = B.()10g =C.()y g f x =⎡⎤⎣⎦为奇函数D.()y f g x ⎡⎤=⎣⎦的图像关于直线1x =对称【答案】AD 【解析】【分析】A.根据()f x 是定义在R 上的函数,且()f x 为奇函数判断;B.由()g x 的图像关于直线1x =对称,得到()()11g x g x -=+判断;C.利用奇偶性的定义判断;D.由()()11g x g x -=+,得到()()11f g x f g x 轾轾-=+臌臌判断.【详解】解:因为()f x 是定义在R 上的函数,且()f x 为奇函数,所以()00f =,故A 正确;因为()g x 是定义在R 上的函数,且()g x 的图像关于直线1x =对称,所以()()11g x g x -=+,()1g 不一定为0,故B 错误;因为()()()g f x g f x g f x 轾轾轾-=-¹-臌臌臌,故C 错误;因为()()11g x g x -=+,则()()11f g x f g x 轾轾-=+臌臌,所以()y f g x ⎡⎤=⎣⎦的图像关于直线1x =对称,故D 正确.故选:AD三、填空题:本题共4小题,每小题5分,共20分.13.式子1239log 27+的值是________【答案】6【解析】【分析】根据指数、对数运算,化简求得表达式的值.【详解】依题意,原式()123233log 3336=+=+=.故答案为:6【点睛】本小题主要考查指数、对数运算,属于基础题.14.已知函数()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且()()21f x g x x x +=-+,则()3g 的值是______.【答案】3-【解析】【分析】由()()21f xg x x x +=-+可得()()21f xg x x x -+-=++,从而结合奇偶性根据函数的奇偶性可得()()21f x g x x x -=++,于是解得()g x x =-,即可得所求.【详解】因为()()21f x g x x x +=-+①,所以()()21f xg x x x -+-=++由函数()f x ,()g x 分别是定义在R 上的偶函数和奇函数,则()(),()()f x f xg x g x =-=--所以()()21f x g x x x -=++②则①-②可得:()22g x x =-,所以()g x x =-则()33g =-.故答案为:3-.15.已知a ,b 是非零实数,若关于x 的不等式20x ax b -+≥恒成立,则212ba +的最小值是______.【答案】2解析】【分析】由题意得240a b -≤,再利用基本不等式求解即可【详解】因为a ,b 是非零实数,且不等式20x ax b -+≥恒成立,所以20x ax b -+=有两个相等的实数根或无实数根,即240a b ∆=-≤得24a b ≤,2112422b b a b +≥+≥=,当且仅当24142a bb b ⎧=⎪⎨=⎪⎩,解得22a b ⎧=⎪⎨=⎪⎩满足条件且同时取等号.故答案为:216.已知函数()2f x x ax =+-,当1a =时,函数()f x 的值域为______;若函数()f x 的最小值为2,则正实数a 的取值范围为______.【答案】①.[)2,+∞②.(]0,1【解析】【分析】(1)1a =代入函数解析式,利用零点分段讨论,去绝对值,根据单调性,求函数的值域.(2)a 为正实数时,利用零点分段讨论,去绝对值,分类讨论函数的单调性,求函数最小值,得到函数最小值为2时a 的取值范围.【详解】(1)当1a =,函数()22,02=2,0222,2x x f x x x x x x -<⎧⎪=+-≤<⎨⎪-≥⎩,0x <时,()22f x x =-单调递减,有()()02f x f >=;02x ≤<时,()2f x =;2x ≥时,()22f x x =-单调递增,有()()22f x f ≥=,所以当1a =,函数()f x 的值域为[)2,+∞.(2)a 为正实数时,()()()()21,022=12,0212,a x x f x x ax a x x a a x x a ⎧⎪-+<⎪⎪=+--+≤<⎨⎪⎪+-≥⎪⎩,0x <时,()()21f x a x =-+单调递减,有()()02f x f >=;2x a ≥时,()()12f x a x =+-单调递增,有()22f x f a a⎛⎫≥= ⎪⎝⎭,20x a ≤<时,()()12f x a x =-+,①若01a <<,函数()()12f x a x =-+单调递增,有a 22<,()22f x a ≤<,此时函数()2f x x ax =+-有最小值2,符合题意;②若1a =,()2f x =,22a=,此时函数()2f x x ax =+-有最小值2,符合题意;③若1a >,函数()()12f x a x =-+单调递减,有a 22>,()22f x a <≤,此时函数()2f x x ax =+-有最小值2a ,a22>,不合题意.综上可知,正实数a 的取值范围为(]0,1.故答案为:[)2,+∞;(]0,1.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.设全集U =R ,集合12644x A x ⎧⎫=≤≤⎨⎬⎩⎭,{}5B x x =>.(1)求U A B ð:(2)若集合{}Cx x a =>满足B C B = ,求实数a 的取值范围.【答案】(1){}|25U A B x x =-<≤ ð(2)5a ≤【解析】【分析】(1)求出集合A 、U B ð,再求交集可得答案;(2)根据B CB = 可得BC ⊆,求出a 的范围即可.【小问1详解】{}{}261264222264x x A x x x x -⎧⎫=≤≤=≤≤=-≤≤⎨⎬⎩⎭,{}|5U B x x =≤ð,所以{}|25U A B x x =-<≤ ð;【小问2详解】若B CB = ,则B ⊆,所以5a ≤,所以实数a 的取值范围为5a ≤.18.已知函数()222f x x x a =-+-,()x g x a =(0a >且1a ≠).(1)若函数()f x 在(],21m -∞-上单调递减,求实数m 的取值范围;(2)若()()20f g =.①求实数a 的值;②设()1t f x =,()2t g x =,当()0,1x ∈时,试比较1t ,2t 的大小.【答案】(1)(],1-∞(2)12t t <【解析】【分析】(1)根据二次函数的单调性求解即可;(2)根据两个函数在()0,1上的值域来比较较1t ,2t 的大小即可.【小问1详解】函数()222f x x x a =-+-,对称轴1x =,所以函数()f x 在(],1-∞上单调递减,在()1,+∞上单调递增,若函数()f x 在(],21m -∞-上单调递减,则211m -≤,1m £,故实数m 的取值范围为(],1-∞.【小问2详解】①()()20f g =,即20242=a a -+-,解得3a =;②当()0,1x ∈时,()()()212232=10,1x x t f x x =-+-∈=-,()()2=31,3x t g x =∈,所以121t t <<,即12t t <.19.已知某观光海域AB 段的长度为3百公里,一超级快艇在AB 段航行,经过多次试验得到其每小时航行费用Q (单位:万元)与速度v (单位:百公里/小时)(03v ≤≤)的以下数据:v0123Q 00.7 1.6 3.3为描述该超级块艇每小时航行费用Q 与速度v 的关系,现有以下两种函数模型供选择:32Q av bv cv =++,0.5v Q a =+.(1)试从中确定最符合实际的函数模型,并求出相应的函数解析式;(2)该超级快艇应以多大速度航行才能使AB 段的航行费用最少?并求出期少航行费用.【答案】(1)选择函数模型32Q av bv cv =++;()320.10.20.803Q v v v v =-+≤≤(2)该超级快艇应以1百公里/小时速度航行才能使AB 段的航行费用最少为2.1【解析】【分析】(1)对题中所给的函数解析式进行分析,对应其性质,结合题中所给的条件,作出正确的选择,之后利用待定系数法求得解析式;(2)根据题意列出函数解析式,之后应用配方法求得最值,得到结果.【小问1详解】若选择函数模型0.5v Q a =+,则该函数在[]0,3v ∈上为单调减函数,这与实验数据相矛盾,所以不选择该函数模型.从而只能选择函数模型32Q av bv cv =++,由实验数据可得:0.7842 1.62793 3.3a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,得0.10.20.8a b c =⎧⎪=-⎨⎪=⎩,故所求函数解析式为()320.10.20.803Q v v v v =-+≤≤.【小问2详解】设超级快艇在AB 段的航行费为y (万元),则所需时间为3v(小时),其中03v ≤≤,结合(1)知()()23230.10.20.8v 0.317y v v v v ⎡⎤=-+=-+⎣⎦,所以当1v =时,y 取最小值为2.1所以当该超级快艇应以1百公里/小时速度航行才能使AB 段的航行费用最少为2.120.已知()42135x f x a ++=+(0a >且1a ≠).(1)求函数()y f x =的解析式,并写出函数()y f x =图象恒过的定点;(2)若()235f x a>+,求x 的取值范围.【答案】(1)()7235x f x a +=+,定点()7,8-;(2)见解析.【解析】【分析】(1)令21xt +=,可得出12t x -=,然后利用换元法可求出函数()y f x =的解析式,并利用指数等于零求出函数()y f x =图象所过定点的坐标;(2)由()235f x a>+,可得出722x a a +->,然后分01a <<和1a >两种情况讨论,利用函数x y a =的单调性可解出不等式722x a a +->.【详解】(1)令21x t +=,可得出12t x -=,()174223535t t f t a a -++∴=+=+,()7235x f x a +∴=+,令702x +=,得7x =-,且()07358f a -=+=,因此,函数()y f x =图象恒过的定点坐标为()7,8-;(2)由()235f x a >+,即7223355x a a++>+,可得722x a a +->.当01a <<时,函数x y a =是减函数,则有722x +<-,解得11x <-;当1a >时,函数x y a =是增函数,则有722x +>-,解得11x >-.【点睛】本题考查利用换元法求函数解析式,同时也考查了指数型函数图象过定点以及指数不等式的求解,一般在解指数不等式时,需要对底数的取值范围进行分类讨论,考查分析问题和解决问题的能力,属于中等题.21.已知二次函数()()2,f x x ax b a b =++∈R .(1)若()20f -=,且对于x ∈R ,()()11f x f x +=-恒成立,求a ,b 的值;(2)若函数()f x 的值域为[)1,+∞,关于x 的不等式()f x c <的解集为()(),8m m m +∈R ,求实数c 的值.【答案】(1)2a=-,8b =-(2)=17c 【解析】【分析】(1)根据条件得出关于,a b 的方程,解出即可;(2)先由顶点坐标得,a b 关系,则不等式化为2244a x ax c +++<,则,8m m +是对应方程的两根,结合韦达定理即可求.【小问1详解】由()()11f x f x +=-,得22(1)(1)1)1(()a b a bx x x x ++=+-+++-,解得2a =-由()20f -=,得()2420f a b -=-+=,则8b =-.【小问2详解】函数()f x 的值域为[)1,+∞,又其顶点坐标为24(,24a b a --,即2414b a -=,则244a b +=,不等式()f x c <可化为:2244a x ax c +++<,即22404a x ax c +++-<的解集为(),8m m +,即方程22404a x ax c +++-=的两根为12,8x m x m ==+,所以1221244x x a a x x c +=-⎧⎪⎨+⋅=-⎪⎩,可得22121212||()464x x x x x x -=+-⋅=,即224()4()644a a c +---=,解得=17c 22.设函数()()0,1x x f x a k a a a -=+⋅>≠是定义域为R 的奇函数.(1)求实数k 值;(2)若()10f <,试判断函数()f x 的单调性,并证明你的结论;(3)在(2)的条件下,不等式()()1192430x x f t f -+-+⋅++⋅<对任意实数x 均成立,求实数t 的取值范围.【答案】22.1k =-23.()f x 在R 上单调递减,证明见解析24.6t >-【解析】【分析】(1)由()00f =求得k 的值.(2)由()10f <求得a 的取值范围,利用函数单调性的定义证得()f x 在R 上单调递减.(3)根据函数的单调性、奇偶性化简不等式()()1192430x x f t f -+-+⋅++⋅<,利用分离常数法,结合二次函数的性质求得t 的取值范围.【小问1详解】由于()f x 是定义域为R 的奇函数,所以()010,1f k k =+==-,此时()x x f x a a -=-,()()x x f x a a f x --=-=-,满足()f x 是奇函数,所以1k =-.【小问2详解】由(1)得()()0,1x x f x a a a a -=->≠,若()()()2111110a a a f a a a a+--=-==<,则01a <<,所以()f x 是减函数,证明如下:任取12x x <,则()()()112212x x x x f x f x a a a a ---=---1221122111x x x x x x x x a a a a a a a a --=-+-=-+-()121212121211x x x x x x x x x x a a a a a a a a a a -⎛⎫=-+=-+ ⎪⎝⎭,由于12x x <,01a <<,所以1212,0x x x x a a a a >->,所以()()()()12120,f x f x f x f x ->>,所以()f x 在R 上单调递减.【小问3详解】由(1)得()()0,1x x f x a a a a -=->≠,()f x 是定义在R 上的奇函数,依题意,不等式()()1192430x x f t f -+-+⋅++⋅<恒成立,即()()119243x x f t f -+-+⋅+<-⋅恒成立,由(2)得()f x 在R 上单调递减,所以119243x x t -+-+⋅+>-⋅,1112143439322x x x x t -+-+-+-+-+=⋅--⋅>()211211122232333x x x x ++-+-+⎛⎫=-+=-+⋅ ⎪⎝⎭恒成立,令13,10,1x t x t +=+≥≥,则对于函数()221y t t t =+≥,函数在[)1,+∞上单调递增,最小值为21213+⨯=,所以()2113232x x ++-+⋅的最大值为236-´=-,所以6t >-.【点睛】根据奇函数的定义求参数,当奇函数在0x =处有定义时,必有()00f =,由这个方程求得参数后,要注意验证函数是否满足奇偶性的定义.求解二次项的函数的最值问题,可以考虑利用换元法,结合二次函数的性质来进行求解.。
2023-2024学年江苏省徐州市高一(上)期中数学试卷【答案版】
2023-2024学年江苏省徐州市高一(上)期中数学试卷一、单选题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={﹣1,0,1,2},B ={x |﹣1<x <2},则A ∩B =( ) A .{0,1}B .{﹣1,1}C .{﹣1,0,1}D .{0,1,2}2.设a ∈R ,则“a =﹣2”是“关于x 的方程x 2+x +a =0有实数根”的( ) A .充分条件B .必要条件C .充分必要条件D .既不充分也不必要条件3.下列各组函数表示相同函数的是( ) A .y =x +1,y =|x +1|B .y =2x (x >0),y =2x (x <0)C .y =√x 2,y =(√x)2D .y =x 3+xx 2+1,y =x 4.已知a >0,b >0,且a +2b =ab ,则a +b 的最小值是( ) A .4√2B .3+2√2C .16D .325.命题p :“∀x ∈(2,3),3x 2﹣a >0”,若命题p 是真命题,则a 的取值范围为( ) A .a >27B .a ≤12C .a <12D .a ≥276.已知关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3},则关于x 的不等式bx 2+ax +c <0的解集为( ) A .{x|−1<x <65} B .{x|x <−1或x >65} C .{x|−23<x <1}D .{x|x <−23或x >1}7.设a =lg 6,b =lg 20,则log 43=( ) A .a+b−12(b+1)B .a+b−1b−1 C .a−b+12(b−1)D .a−b+1b+18.已知f (x )=ax +b (a >0),满足f (f (x ))=x +2,则函数y =x −√f(x)的值域为( ) A .[1,+∞)B .[﹣1,+∞)C .[−54,+∞)D .[0,+∞)二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分) 9.下列图形不可能是函数y =f (x )图象的是( )A .B .C .D .10.下列命题是真命题的是( ) A .若a >b ,则ab >1B .若a >b ,且1a>1b,则ab >0C .若a >b >0,则b+1a+1>baD .若1≤a ﹣b ≤2,2≤a +b ≤4,则5≤4a ﹣2b ≤1011.早在公元前6世纪,毕达哥拉斯学派已经知道算术中项,几何中项以及调和中项,毕达哥拉斯学派哲学家阿契塔在《论音乐》中定义了上述三类中项,其中算术中项,几何中项的定义与今天大致相同.而今我们称a+b 2为正数a ,b 的算术平均数,√ab 为正数a ,b 的几何平均数,并把这两者结合的不等式√ab ≤a+b2(a >0,b >0)叫做基本不等式.下列与基本不等式有关的命题中正确的是( ) A .若ab =1,则a +b ≥2B .若a >b >0,且1a +1b=1,则a +b 最小值为4C .若a >0,b >0,则(a +1a )(b +1b )≥4 D .若a >0,b >0且a +b =4,则a 2a+2+b 2b+2的最小值为212.在R 上定义运算:x ⊗y =x (1﹣y ),若命题p :∃x ∈R ,使得(x ﹣a )⊗(x +a )>1,则命题p 成立的充分不必要条件是( ) A .{a|a <−12或a >32} B .{a|a ≤−12或a >32} C .{a|a <−1或a >32}D .{a |a >2}三、填空题(本大题共4题,每小题5分,共20分)13.命题p :所有的质数都是奇数,则命题p 的否定是 .14.已知函数f (x )对任意实数x 都有f (x )+2f (﹣x )=2x +1,则f (x )= .15.已知函数f (x )=ax 2﹣2x +1(x ∈R )有两个零点,一个大于1另一个小于1,则实数a 的取值范围为 .16.我们可以把(1+1%)365看作每天的“进步”率都是1%,一年后是1.01365;而把(1﹣1%)365看作每天的“落后”率都是1%,一年后是0.99365,则一年后“进步”的是“落后”的 倍;大约经过 天后“进步”的分别是“落后”的10倍.(参考数据:lg 101≈2.004,lg 99≈1.996,102.91≈812.831,102.92≈831.764,102.93≈851.138,结果保留整数)四、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤) 17.(10分)计算:(1)(214)12+(−2.5)0+√6−2√5(23)−2;(2)log 3√27+lg25−3log 32+2lg2. 18.(12分)已知集合A ={x|x−3x+2<0},B ={x ||x ﹣1|>2},C ={x |x 2﹣4ax +3a 2<0}. (1)求集合A ∪B ;(2)若a <0且(A ∩B )⊆C ,求实数a 的取值范围. 19.(12分)已知函数y =x 2﹣mx +3.(1)若y ≤﹣4的解集为[2,n ],求实数m ,n 的值;(2)对于∀x ∈[12,+∞),不等式y ≥2﹣x 2恒成立,求实数m 的取值范围. 20.(12分)已知命题:“∀x ∈R ,x 2﹣x ﹣m >0”为真命题. (1)求实数m 的取值集合M ;(2)设集合N ={x |3a <x <a +4},若“x ∈N ”是“x ∈M ”的充分条件,求实数a 的取值范围. 21.(12分)某公司为了竞标某体育赛事配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件成本为20元,售价为25元,每月销售8万件.(1)若售价每件提高1元,月销售量将相应减少2000件,要使月总利润不低于原来的月总利润(月总利润=月销售总收入﹣月总成本),该产品每件售价最多为多少元? (2)厂家决定下月进行营销策略改革,计划每件售价x (x ≥26)元,并投入334(x −26)万元作为营销策略改革费用.据市场调查,若每件售价每提高1元,月销售量将相应减少0.45(x−25)2万件.则当每件售价为多少时,下月的月总利润最大?并求出下月最大总利润.22.(12分)已知二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R )只能同时满足下列三个条件中的两个: ①a =2;②不等式f (x )>0的解集为{x |﹣1<x <3};③函数f (x )的最大值为4. (1)请写出满足题意的两个条件的序号,并求出函数f (x )的解析式; (2)求关于x 的不等式f (x )≥(m ﹣1)x 2+2(m ∈R )的解集.2023-2024学年江苏省徐州市高一(上)期中数学试卷参考答案与试题解析一、单选题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={﹣1,0,1,2},B ={x |﹣1<x <2},则A ∩B =( ) A .{0,1}B .{﹣1,1}C .{﹣1,0,1}D .{0,1,2}解:由已知集合A ={﹣1,0,1,2},B ={x |﹣1<x <2},则A ∩B ={0,1}. 故选:A .2.设a ∈R ,则“a =﹣2”是“关于x 的方程x 2+x +a =0有实数根”的( ) A .充分条件B .必要条件C .充分必要条件D .既不充分也不必要条件解:若关于x 的方程x 2+x +a =0有实数根, 则Δ=12﹣4a ≥0,解得a ≤14, 而﹣2∈(−∞,14],所以“a =﹣2”是“关于x 的方程x 2+x +a =0有实数根”的充分条件, 故选:A .3.下列各组函数表示相同函数的是( ) A .y =x +1,y =|x +1|B .y =2x (x >0),y =2x (x <0)C .y =√x 2,y =(√x)2D .y =x 3+xx 2+1,y =x 解:y =x +1与y =|x +1|的对应关系不同,不是同一函数; y =2x ,x >0与y =2x ,x <0定义域不同,不是同一函数;y =√x 2的定义域为R ,y =(√x )2的定义域为[0,+∞)不同,不是同一函数; y =x+x 3x 2+1=x 与y =x 的定义域都为R ,对应关系相同,是同一函数. 故选:D .4.已知a >0,b >0,且a +2b =ab ,则a +b 的最小值是( ) A .4√2B .3+2√2C .16D .32解:在a +2b =ab 的两边都除以ab ,整理得2a+1b=1,所以a +b =(2a +1b )(a +b)=3+ab +2ba ≥3+2√ab ⋅2ba =3+2√2,当且仅当a b=2b a时,即a =2+√2,b =√2+1时,a +b 的最小值是3+2√2.故选:B .5.命题p :“∀x ∈(2,3),3x 2﹣a >0”,若命题p 是真命题,则a 的取值范围为( ) A .a >27B .a ≤12C .a <12D .a ≥27解:命题p :“∀x ∈(2,3),3x 2﹣a >0”,命题p 是真命题, 当∀x ∈(2,3)时, 则a <(3x 2)min <3×22, 故a <12. 故选:C .6.已知关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3},则关于x 的不等式bx 2+ax +c <0的解集为( ) A .{x|−1<x <65} B .{x|x <−1或x >65} C .{x|−23<x <1}D .{x|x <−23或x >1}解:因为不等式ax 2+bx +c >0的解集为{x |2<x <3}, 所以2和3是方程ax 2+bx +c =0的两个实数解,且a <0; 由根与系数的关系知,{2+3=−ba 2×3=c a ,所以b =﹣5a ,c =6a ;所以不等式bx 2+ax +c <0可化为﹣5ax 2+ax +6a <0, 即5x 2﹣x ﹣6<0,解得﹣1<x <65, 所求不等式的解集为{x |﹣1<x <65}. 故选:A .7.设a =lg 6,b =lg 20,则log 43=( ) A .a+b−12(b+1)B .a+b−1b−1 C .a−b+12(b−1)D .a−b+1b+1解:∵a =lg 6=lg 2+lg 3,b =lg 20=1+lg 2, ∴lg 2=b ﹣1,lg 3=a ﹣lg 2=a ﹣(b ﹣1), ∴log 43=lg3lg4=lg32lg2=a−(b−1)2(b−1)=a−b+12(b−1). 故选:C .8.已知f (x )=ax +b (a >0),满足f (f (x ))=x +2,则函数y =x −√f(x)的值域为( ) A .[1,+∞)B .[﹣1,+∞)C .[−54,+∞)D .[0,+∞)解:因为f (x )=ax +b (a >0),满足f (f (x ))=f (ax +b )=a (ax +b )+b =x +2, 所以{a 2=1ab +b =2,解得a =1,b =1或a =﹣1(舍), 故f (x )=x +1,则函数y =x −√f(x)=x −√x +1, 令t =√x +1,则t ≥0,原函数化为y =t 2﹣t ﹣1=(t −12)2−54≥−54. 故选:C .二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分) 9.下列图形不可能是函数y =f (x )图象的是( )A .B .C .D .解:对于A ,D ,存在一个x 对应两个y 的情况,故不满足函数的定义,故排除A ,D , B ,C 均满足函数定义. 故选:AD .10.下列命题是真命题的是( ) A .若a >b ,则ab >1B .若a >b ,且1a>1b,则ab >0C .若a >b >0,则b+1a+1>baD .若1≤a ﹣b ≤2,2≤a +b ≤4,则5≤4a ﹣2b ≤10解:当a =1,b =﹣1时,A ,B 显然错误; 若a >b >0,则b+1a+1−b a=a−b a(a+1)>0,则b+1a+1>ba,C 正确;若1≤a ﹣b ≤2,2≤a +b ≤4,则4a ﹣2b =3(a ﹣b )+a +b ∈[5,10],D 正确.故选:CD .11.早在公元前6世纪,毕达哥拉斯学派已经知道算术中项,几何中项以及调和中项,毕达哥拉斯学派哲学家阿契塔在《论音乐》中定义了上述三类中项,其中算术中项,几何中项的定义与今天大致相同.而今我们称a+b 2为正数a ,b 的算术平均数,√ab 为正数a ,b 的几何平均数,并把这两者结合的不等式√ab ≤a+b2(a >0,b >0)叫做基本不等式.下列与基本不等式有关的命题中正确的是( ) A .若ab =1,则a +b ≥2B .若a >b >0,且1a +1b=1,则a +b 最小值为4C .若a >0,b >0,则(a +1a)(b +1b)≥4 D .若a >0,b >0且a +b =4,则a 2a+2+b 2b+2的最小值为2解:对于A ,ab =1,可能a =b =﹣1,此时a +b ≥2不成立,故A 不正确; 对于B ,a +b =(1a +1b )(a +b)=2+ba +ab ≥2+2√b a ⋅ab =4, 由于取等号的条件是ba =a b=1,即a =b ,与题设a >b >0矛盾,故a +b 最小值大于4,故B 不正确;对于C ,a >0,b >0,由a +1a ≥2√a ⋅1a =2,b +1b ≥2√b ⋅1b =2,两不等式相乘,得(a +1a )(b +1b)≥4,当且仅当a =1且b =1时,等号成立,故C 正确;对于D ,a >0,b >0且a +b =4,设m =a +2,n =b +2,则m >2,n >2,且m +n =8,a 2a+2+b 2b+2=(m−2)2m+(n−2)2n =m +4m−4+n +4n−4=(m +n)+4m+4n−8=4m+4n,因为4m+4n=4(m+n)mn=32mn≥32(m+n 2)2=2,当且仅当m =n =4时,即a =b =2时,等号成立,所以a 2a+2+b 2b+2的最小值为2,故D 正确.故选:CD .12.在R 上定义运算:x ⊗y =x (1﹣y ),若命题p :∃x ∈R ,使得(x ﹣a )⊗(x +a )>1,则命题p 成立的充分不必要条件是( ) A .{a|a <−12或a >32} B .{a|a ≤−12或a >32} C .{a|a <−1或a >32}D .{a |a >2}解:根据题意,可得(x ﹣a )⊗(x +a )>1,即(x ﹣a )[1﹣(x +a )]>1,命题p 可化为:∃x ∈R ,使得(x ﹣a )[1﹣(x +a )]>1,即:∃x ∈R ,使﹣x 2+x +a 2﹣a ﹣1>0成立.化简得:∃x∈R,使x2﹣x﹣a2+a+1<0成立,故Δ=1﹣4(﹣a2+a+1)>0,解得a<−12或a>32.综上所述,命题p成立的充要条件是a<−12或a>32,因此,命题p成立的充分不必要条件,对应的集合是{a|a<−12或a>32}的真子集,对照各个选项,可知C、D两项符合题意.故选:CD.三、填空题(本大题共4题,每小题5分,共20分)13.命题p:所有的质数都是奇数,则命题p的否定是存在某个质数不是奇数.解:命题p:所有的质数都是奇数,则命题p的否定是:存在某个质数不是奇数.故答案为:存在某个质数不是奇数.14.已知函数f(x)对任意实数x都有f(x)+2f(﹣x)=2x+1,则f(x)=﹣2x+13.解:因为函数f(x)对任意实数x都有f(x)+2f(﹣x)=2x+1,所以f(﹣x)+2f(x)=﹣2x+1,解得f(x)=﹣2x+1 3.故答案为:﹣2x+1 3.15.已知函数f(x)=ax2﹣2x+1(x∈R)有两个零点,一个大于1另一个小于1,则实数a的取值范围为(0,1).解:∵函数f(x)=ax2﹣2x+1(x∈R)有两个零点,∴a≠0,而且一个大于1另一个小于1,则{a>0f(1)=a−2+1<0或{a<0f(1)=a−2+1>0,解得:0<a<1.∴实数a的取值范围为(0,1).故答案为:(0,1).16.我们可以把(1+1%)365看作每天的“进步”率都是1%,一年后是1.01365;而把(1﹣1%)365看作每天的“落后”率都是1%,一年后是0.99365,则一年后“进步”的是“落后”的832倍;大约经过125天后“进步”的分别是“落后”的10倍.(参考数据:lg101≈2.004,lg99≈1.996,102.91≈812.831,102.92≈831.764,102.93≈851.138,结果保留整数)解:lg 1.013650.99365lg 1.01365﹣lg 0.99365=365(lg 1.01﹣lg 0.99)=365(lg 101﹣lg 99)≈2.92,故1.013650.99365=102.92≈832,设x 天后“进步”的分别是“落后”的10倍,则1.01x 0.99x=10,即lg 1.01x0.99x =lg1.01x −lg0.99x =x(lg1.01−lg0.99)=x(lg101−lg99)=1, 解得x =1lg101−lg99≈125. 故答案为:832;125.四、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤) 17.(10分)计算:(1)(214)12+(−2.5)0+√6−2√5(23)−2;(2)log 3√27+lg25−3log 32+2lg2.解:(1)原式=32+1+√(√5−1)2+94=32+1+√5−1+94=154+√5; (2)原式=log 3332+2lg 5﹣2+2lg 2=32+2(lg 5+lg 2)﹣2=32+2﹣2=32.18.(12分)已知集合A ={x|x−3x+2<0},B ={x ||x ﹣1|>2},C ={x |x 2﹣4ax +3a 2<0}. (1)求集合A ∪B ;(2)若a <0且(A ∩B )⊆C ,求实数a 的取值范围.解:(1)∵集合A ={x|x−3x+2<0}={x |﹣2<x <3},B ={x ||x ﹣1|>2}={x |x >3或x <﹣1}, ∴集合A ∪B ={x |x ≠3}.(2)由(1)可得A ∩B ={x |﹣2<x <﹣1},若a <0,则C ={x |x 2﹣4ax +3a 2<0}={x |(x ﹣a )(x ﹣3a )<0}={x |3a <x <a }. 由(A ∩B )⊆C ,可得{3a ≤−2a ≥−1,求得﹣1≤a ≤−23,即实数a 的取值范围为[﹣1,−23].19.(12分)已知函数y =x 2﹣mx +3.(1)若y ≤﹣4的解集为[2,n ],求实数m ,n 的值;(2)对于∀x ∈[12,+∞),不等式y ≥2﹣x 2恒成立,求实数m 的取值范围. 解:(1)由题意可得x 2﹣mx +3≤﹣4,即x 2﹣mx +7≤0,其解集为[2,n ], 所以x 1=2和x 2=n 是方程x 2﹣mx +7=0的两根,由韦达定理可得{2+n =m2n =7,解得n =72,m =112;(2)因为对于∀x ∈[12,+∞),不等式y ≥2﹣x 2恒成立, 即对于∀x ∈[12,+∞),不等式x 2﹣mx +3≥2﹣x 2恒成立, 即m ≤2x +1x 对于∀x ∈[12,+∞)恒成立, 又因为2x +1x≥2√2x ⋅1x=2√2, 当且仅当2x =1x ,即x =√22∈[12,+∞)时,等号成立,所以m ≤2√2,即实数m 的取值范围为(﹣∞,2√2].20.(12分)已知命题:“∀x ∈R ,x 2﹣x ﹣m >0”为真命题. (1)求实数m 的取值集合M ;(2)设集合N ={x |3a <x <a +4},若“x ∈N ”是“x ∈M ”的充分条件,求实数a 的取值范围. 解:(1)命题:“∀x ∈R ,x 2﹣x ﹣m >0”为真命题,即不等式x 2﹣x >m 在R 上恒成立, 因为当x =12时,x 2﹣x 的最小值为−14,所以−14>m ,即实数m 的取值集合M =(−∞,−14); (2)若“x ∈N ”是“x ∈M ”的充分条件,则N ⊆M , 而M =(−∞,−14),N ={x |3a <x <a +4},有以下两种情况: ①若3a ≥a +4,则N =∅,符合题意,此时a ≥2; ②若N ≠∅,则a <2且a +4≤−14,解得a ≤−174. 综上所述,实数a 的取值范围是(−∞,−174]∪[2,+∞).21.(12分)某公司为了竞标某体育赛事配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件成本为20元,售价为25元,每月销售8万件.(1)若售价每件提高1元,月销售量将相应减少2000件,要使月总利润不低于原来的月总利润(月总利润=月销售总收入﹣月总成本),该产品每件售价最多为多少元? (2)厂家决定下月进行营销策略改革,计划每件售价x (x ≥26)元,并投入334(x −26)万元作为营销策略改革费用.据市场调查,若每件售价每提高1元,月销售量将相应减少0.45(x−25)2万件.则当每件售价为多少时,下月的月总利润最大?并求出下月最大总利润.解:(1)该产品每件售价为x 元,则[8﹣(x ﹣25)×0.2](x ﹣20)≥(25﹣20)×8,解得25≤x ≤60,故产品每件售价最多为60元;(2)设下个月的总利润为W ,则W =(x −20)[8−0.45(x−25)2(x −25)]−334(x −26)=47.8−(x−254+2.25x−25) ≤47.8−2√x−254⋅2.25x−25=46.3, 当且仅当x−254= 2.25x−25,即x =28时等号成立,故当每件售价为28时,下月的月总利润最大,最大总利润为46.3.22.(12分)已知二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R )只能同时满足下列三个条件中的两个: ①a =2;②不等式f (x )>0的解集为{x |﹣1<x <3};③函数f (x )的最大值为4.(1)请写出满足题意的两个条件的序号,并求出函数f (x )的解析式;(2)求关于x 的不等式f (x )≥(m ﹣1)x 2+2(m ∈R )的解集.解:(1)当a =2时,不等式f (x )>0的解集不能为{x |﹣3<x <1},且函数f (x )没有最大值,所以a =2不成立,即满足题意的两个条件是②③,由f (x )>0的解集为{x |﹣3<x <1},可令f (x )=a (x +3)(x ﹣1)=ax 2+2ax ﹣3a (a <0), f (x )的最大值为4,所以4a×(−3a)−(2a)24a =4,解得a =﹣1,所以f (x )=﹣x 2﹣2x +3;(2)不等式f (x )≥(m ﹣1)x 2+2可化为mx 2+2x ﹣1≤0,当m =0时,不等式等价于2x ﹣1≤0,解得x ≤12,所以不等式的解集为(−∞,12];当m >0时,对于一元二次方程mx 2+2x ﹣1=0,由于Δ=4+4m >0,方程有两个不相等的实数根x 1=−1+√m+1m ,x 2=−1−√m+1m , 不等式的解集为[−1−√m+1m ,−1+√m+1m ]; 当m <0时,对于一元二次方程mx 2+2x ﹣1=0,Δ=4+4m ,当m <﹣1时,Δ<0,一元二次方程无实数根,所以不等式的解集为R ;当m =﹣1时,Δ=0,一元二次方程有两个相等的实数根,此时不等式的解集也为R ;当﹣1<m <0时,Δ>0,一元二次方程有两个不相等的实数根x 1=−1+√m+1m ,x 2=−1−√m+1m,且x 1<x 2,所以不等式的解集为(−∞,−1+√m+1m ]∪[−1−√m+1m,+∞),综上,当m=0时,不等式的解集为(−∞,12 ];当m>0时,不等式的解集为[−1−√m+1m,−1+√m+1m];当m≤﹣1时,不等式的解集为R;当﹣1<m<0时,不等式的解集为(−∞,−1+√m+1m]∪[−1−√m+1m,+∞).。
安徽省六安2023-2024学年高一上学期期中考试数学试题含解析
六安2023年秋学期高一年级期中考试数学试卷(答案在最后)满分:150分时间:120分钟一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.命题“1x ∀>,20x x ->”的否定是()A.1x ∃≤,20x x ->B.1x ∀>,20x x -≤C.1x ∃>,20x x -≤D.1x ∀≤,20x x ->【答案】C 【解析】【分析】根据全称量词命题的否定为存在量词命题即可得解.【详解】因为全称量词命题的否定为存在量词命题,所以命题“1x ∀>,20x x ->”的否定是1x ∃>,20x x -≤.故选:C.2.若12162x A x ⎧⎫=≤≤⎨⎬⎩⎭,501x B x x ⎧⎫-=≥⎨⎬-⎩⎭,则()R A B =I ð()A.{}14x x <≤ B.{}14x x ≤< C.{}14x x << D.{}14x x ≤≤【答案】D 【解析】【分析】分别解指数不等式和分式不等式求出集合A 与集合B ,再由补集和交集知识进行求解即可.【详解】由12162x ≤≤,得14222x -≤≤,∵2x y =在R 上单调递增,∴解得14x -≤≤,∴{}1216142x A xx x ⎧⎫=≤≤=-≤≤⎨⎬⎩⎭,又∵501x x -≥-()()51010x x x ⎧--≥⇔⎨-≠⎩,解得1x <或5x ≥,∴501x B x x ⎧⎫-=≥⎨⎬-⎩⎭{1x x =<或}5x ≥,∴{}15B x x =≤<R ð,又∵{}14A x x =-≤≤,∴(){}14A B x x ⋂=≤≤R ð.故选:D.3.已知p :12a >,q :指数函数()()32xf x a =-是增函数,则p 是q 的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件【答案】C 【解析】【分析】求出命题q 中a 的范围,判断两个命题间的充分性与必要性即可.【详解】因为指数函数()()32xf x a =-是增函数,所以3211a a ->⇒>,又p :12a >,所以p 是q 的必要不充分条件,故选:C4.若0.62a =,30.6b =,0.63c =,则它们的大小关系是()A.c a b >>B.c b a>> C.a c b>> D.b a c>>【答案】A 【解析】【分析】利用函数0.6y x =和0.6x y =的单调性即可比较.【详解】因为0.6y x =在()0,∞+上单调递增,所以0.60.60.6123<<,即1c a >>又0.6x y =在R 上单调递减,所以300.60.6<,即1b <,综上,c a b >>.故选:A5.若,x y 满足0,0,3x y xy x y >>=+,则3x y +的最小值为()A.10+B.10+C.12D.16【答案】D 【解析】【分析】利用乘“1”法即可得到答案.【详解】因为3xy x y =+,0,0x y >>,两边同除xy 得131x y+=,所以()133********y x x y x y x y x y ⎛⎫⎛⎫+=++=++≥+⎪ ⎪⎝⎭⎝⎭.当且仅当4x y ==时等号成立,故选:D .6.已知函数()x f x a b =+的图象如图所示,则函数()()()g x x a x b =--的大致图象为()A. B.C. D.【答案】A 【解析】【分析】根据指数函数的图象与性质结合函数()x f x a b =+的图象可求得,a b 的范围,再根据二次函数的图象即可得解.【详解】函数()x f x a b =+的图象是由函数x y a =的图象向下或向上平移b 个单位得到的,由函数()x f x a b =+的图象可得函数为单调递减函数,则01a <<,令0x =得()11,0b +∈-,则()2,1b ∈--,则函数()()()g x x a x b =--的大致图象为A 选项.故选:A .7.设定义在()2,2-上的函数()2112x f x x +=-,则使得()()121f x f x +>-成立的实数x 的取值范围是()A.1,02⎛⎫-⎪⎝⎭B.1,12⎛⎫-⎪⎝⎭C.()0,1 D.()0,2【答案】C 【解析】【分析】利用函数的单调性和奇偶性解不等式即可.【详解】()()()211=2x f x x x f -+=---,且定义域是()2,2-,所以()f x 为偶函数,且2112,x y x y +=-=在()0,2均为增函数,所以()f x 在()0,2为增函数,且()f x 为偶函数,所以()()121f x f x +>-,即1212122212x x x x ⎧+>-⎪-<+<⎨⎪-<-<⎩,解得01x <<.故选:C8.已知函数()f x 满足()()()1f x y f x f y +=++(,R x y ∈),当0x >时,()10f x +>且()12f =,若当[]1,3x ∈时,()()221f ax x f x ++<有解,则实数a 的取值范围为()A.9,4⎛⎫-∞- ⎪⎝⎭B.8,9⎛⎫-∞- ⎪⎝⎭C.(),2-∞- D.82,9⎛⎫--⎪⎝⎭【答案】B 【解析】【分析】证明函数单调递增,变换得到()()231f ax x f +<,根据单调性得到231ax x +<,计算函数最值得到答案.【详解】设12x x <,故()2110f x x -+>,则()()()()()2121112110f x f x f x x x f x f x x -=-+-=-+>,函数单调递增,()()221f ax x f x ++<,即()222f ax x x ++<,即()()231f ax x f +<,即231ax x +<在[]1,3x ∈有解,即221313924a x x x ⎛⎫<-=-- ⎪⎝⎭,2max1398249x ⎧⎫⎪⎪⎛⎫--=-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,故8,9a ⎛⎫∈-∞- ⎪⎝⎭.故选:B.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.已知关于x 的不等式20ax bx c ++≥的解集为{3x x ≤-或}4x ≥,则下列说法正确的是()A.0a >B.不等式0bx c +>的解集为{}4x x <-C.不等式20cx bx a -+<的解集为{14x x <-或13x ⎫>⎬⎭D.0a b c ++>【答案】AC 【解析】【分析】由题意可得3,4-是方程20ax bx c ++=的两个根,且0a >,然后利用根与系数的关系表示出,b c ,再逐个分析判断即可.【详解】关于x 的不等式20ax bx c ++≥的解集为(][),34,-∞-⋃+∞,所以二次函数2y ax bx c =++的开口方向向上,即0a >,故A 正确;且方程20ax bx c ++=的两根为-3、4,由韦达定理得3434bac a⎧-=-+⎪⎪⎨⎪=-⨯⎪⎩,解得12b a c a =-⎧⎨=-⎩.对于B ,0120bx c ax a +>⇔-->,由于0a >,所以12x <-,所以不等式0bx c +>的解集为{}12x x <-,故B 不正确;对于C ,因为12b ac a=-⎧⎨=-⎩,所以20cx bx a -+<,即2120ax ax a -++<,所以21210x x -->,解得14x <-或13x >,所以不等式20cx bx a -+<的解集为{14x x <-或13x ⎫>⎬⎭,故C 正确;对于D ,12120a b c a a a a ++=--=-<,故D 不正确.故选:AC .10.以下从M 到N 的对应关系表示函数的是()A.R M =,R N =,1:f x y x→=B.R M =,{}0N y y =≥,:f x y x →=C.{}0M x x =>,R N =,:f x y →=D.*{|2,N }M x x x =≥∈*{|0,N },N y y y =≥∈2:22f x y x x →=-+【答案】BD 【解析】【分析】判断从M 到N 的对应关系是否表示函数,主要是判断集合M 中的每一个元素在集合N 中是否都有唯一的元素与之对应即可.【详解】对于A 选项,因0,M ∈而0没有倒数,故A 项错误;对于B 选项,因任意实数的绝对值都是非负数,即集合M 中的每一个元素在集合N 中都有唯一的元素与之对应,故B 项正确;对于C 选项,因每个正数的平方根都有两个,即集合M 中的每个元素在集合N 中都有两个元素与之对应,故C 项错误;对于D 选项,因2222(1)1,y x x x =-+=-+当*2,N x x ≥∈时,即有*,2,N y y ∈≥且每个x 对应唯一的y 值,故必有y N ∈成立,故D 项正确.故选:BD.11.已知函数()33f x x =--,下列说法正确的是()A.()f x 定义域为[)(]3,00,3-B.()f x 在(]0,3上单调递增C.()f x 为奇函数D.()f x 值城为()3,3-【答案】ABC 【解析】【分析】根据函数的性质逐个判定即可.【详解】对于A :函数定义域需满足290330x x ⎧-≥⎪⎨--≠⎪⎩,解得[)(]3,00,3x -∈ ,A 正确;对于B :当(]0,3x ∈时()f x ====,在(]0,3单调递减,所以()f x 在(]0,3内单调递增,B 正确;对于C :由A 知函数定义域为[)(]3,00,3- ,所以()f x ==,所以()()f x f x x-==-,所以()f x 为奇函数,C 正确;对于D :由B 知()f x 在(]0,3内单调递增,所以(]0,3x ∈时()(],0f x ∈-∞,又由C 知()f x 为奇函数,所以[)3,0x ∈-时()[)0,f x ∈+∞,所以()f x 得值域为(),-∞+∞,D 错误,故选:ABC12.一般地,若函数()f x 的定义域为[],a b ,值域为[],ka kb ,则称[],a b 为()f x 的“k 倍跟随区间”;特别地,若函数()f x 的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”.下列结论正确的是()A.函数()922f x x=-不存在跟随区间B.若[]1,a 为()222f x x x =-+的跟随区间,则2a =C.二次函数()22f x x x =-+存在“3倍跟随区间”D.若函数()f x m =-存在跟随区间,则1,04m ⎡⎤∈-⎢⎥⎣⎦【答案】BC 【解析】【分析】根据“跟随区间”的定义对选项逐一分析,根据函数的单调性、值域等知识确定正确答案.【详解】对于A 选项,由题,因为函数()922f x x=-在区间(),0∞-与()0,∞+上均为增函数,若()922f x x =-存在跟随区间[],a b 则有922922a ab b ⎧=-⎪⎪⎨⎪=-⎪⎩,即,a b 为922x x =-的两根.即22940x x -+=的根,故1,42a b ==,故A 错误.对于B 选项,若[]1,a 为()222f x x x =-+的跟随区间,因为()222f x x x =-+在区间[]1,a 为增函数,故其值域为21,22a a ⎡⎤-+⎣⎦,根据题意有222a a a -+=,解得1a =或2a =,因为1a >故2a =,故B 正确.对于C 选项,若()22f x x x =-+存在“3倍跟随区间”,则可设定义域为[],a b ,值域为[]3,3a b ,当1a b <≤时,易得()22f x x x =-+在区间上单调递增,此时易得,a b 为方程232x x x =-+的两根,求解得=1x -或0x =.故定义域[]1,0-,则值域为[]3,0-.故C 正确.对于D 选项,若函数()f x m =-存在跟随区间[],a b ,因为()f x m =-为减函数,故由跟随区间的定义可知b m a b a m ⎧=-⎪⇒-=⎨=-⎪⎩即()()11a b a b a b -=+-+=-(,因为a b <1=.易得01≤<.所以(1a m m ==--,令t =[]()0,1t ∈代入化简可得20t t m --=,同理t =也满足20t t m --=,即20t t m --=在区间[]0,1上有两不相等的实数根.故1400m m +>⎧⎨-≥⎩,解得1,04m ⎛⎤∈- ⎥⎝⎦,故D 错误.故选:BC三、填空题:本题共4小题,每小题5分,共20分.13.)2232711644-⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭________.【答案】13【解析】【分析】根据题意,由指数幂的运算,即可得到结果.【详解】原式2332345194134⨯⎛⎫=⨯+-=+= ⎪⎝⎭.故答案为:1314.已知函数()f x 的定义域为()1,3,则函数()3g x -=的定义域为________.【答案】()5,6【解析】【分析】根据复合函数的定义域的性质求解即可.【详解】因为()f x 的定义域为()1,3,所以()3f x -满足13346x x <-<⇒<<,又函数()3g x -=有意义,所以505x x ->⇒>,所以函数()3g x -=的定义域为()5,6,故答案为:()5,615.已知)132fx +=++,则()f x 的解析式为________.【答案】()2354f x x x =-+,1x ≥【解析】【分析】换元法求解表达式,第一步令括号内的表达式为t ,第二步将表达式中的x 换成t 即可.【详解】)132f x +=++的定义域为[)0,∞+.令1,1t t =≥,则2(1)x t =-,所以,由)132fx +=++得()23(1)2,1f t t t =-++≥,即()2354,1f t t t t =-+≥.于是()2354,1f x x x x =-+≥.故答案为:()2354,1f x x x x =-+≥.16.已知函数()f x x x a =-,当[]0,1x ∈时()f x 的最大值为3,则实数a 的值为________.【答案】2-或4【解析】【分析】化简()f x x x a =-解析式为分段函数形式,讨论0a ≤时,结合最大值求得a 的值;0a >时,数形结合,讨论12a ≥和1122a a +<£以及112a <,确定函数在何处取得最值,求得a 的值,综合可得答案.【详解】由题意知函数的定义域为R ,()22,,x ax x af x x x a x ax x a ⎧-≥=-=⎨-+<⎩,当0a ≤时,由[]0,1x ∈得()()2224a a f x x x a x ⎛⎫=-=--⎪⎝⎭,所以当1x =时,()max 13,2f x a a =-=∴=-,当0a >时,()f x 的图象如图所示,当12a≥,即2a ≥时,()f x 在[0,1]上单调递增,所以()f x 函数在[0,1]上的最大值为(1)13,4f a a =-=∴=,当1122a a <£,即22a ≤<时,()f x 在[0,1]上的图象在2a x =处达到最高点,所以()f x 在[0,1]上的最大值为2(324a a f ==,不符合题意;当112a <,即02a <<-时,()f x 在[0,1]上的图象在1x =处达到最高点,所以()f x 在[0,1]上的最大值为(1)13,2f a a =-==-,不符合题意,故a 的值为2-或4,故答案为:2-或4四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.设集合U =R ,{}03A x x =≤≤,{}21,R B x m x m m =≤≤+∈.(1)2m =,求A B ⋃;(2)若“x B ∈”是“x A ∈”的充分不必要条件,求m 的取值范围.【答案】(1){}05A B x x ⋃=≤≤(2)()[],10,1-∞-⋃【解析】【分析】(1)根据集合的并集运算求解即可.(2)根据命题间的充分不必要关系转化为集合间的包含关系,进而求出参数取值范围.【小问1详解】当2m =时,{}25B x x =≤≤,因为{}03A x x =≤≤,所以{}05A B x x ⋃=≤≤【小问2详解】由题意“x B ∈”是“x A ∈”的充分不必要条件得B AÜ①若B =∅,则21m m >+,解得1m <-;②若B ≠∅,则21m m ≤+,解得1m ≥-;B A Ü,∴0213m m ≥⎧⎨+<⎩或0213m m >⎧⎨+≤⎩,∴01m ≤≤综合①②得:m 的取值范围是()[],10,1-∞-⋃.18.已知幂函数()()233af a a x x =-+为偶函数,a ∈R .(1)求()f x 的解析式;(2)若函数()g x 是定义在R 上的奇函数,当0x >时,()()1g x f x x =++,求函数()g x 的解析式.【答案】(1)()2f x x=(2)()221,00,01,0x x x g x x x x x ⎧++>⎪==⎨⎪-+-<⎩【解析】【分析】(1)根据题意,由幂函数的定义,列出方程,即可得到结果;(2)根据题意,由函数的奇偶性求解函数解析式,即可得到结果.【小问1详解】()f x 为幂函数,∴2331a a -+=,解得1a =或2a =,又()f x 为偶函数,∴2a =,∴()2f x x =.【小问2详解】由(1)得,当0x >时,()21g x x x =++①当0x =时,()0g x =;②当0x <时,0x ->;∴()()()2211g x x x x x -=-+-+=-+,∴()()21g x g x x x =--=-+-综上得()221,00,01,0x x x g x x x x x ⎧++>⎪==⎨⎪-+-<⎩19.已知二次函数()f x 是R 上的偶函数,且()04f =,()15f =.(1)设()()f x g x x=,根据函数单调性的定义证明()g x 在区间[)2,+∞上单调递增;(2)当0a >时,解关于x 的不等式()()()21212f x a x a x <-+++.【答案】(1)证明见解析(2)答案见解析【解析】【分析】(1)待定系数法求的()f x ,应用定义法证明函数的单调性;(2)分类讨论两根的大小关系即可求解.【小问1详解】设()2f x ax bx c =++,(0a ≠)()f x 为偶函数,∴0b =.()04f =,∴4c =,∴()24f x ax =+又()15f =,∴1a =,∴()24f x x =+,∴()244x g x x x x+==+.证明:[)12,2,x x ∀∈+∞,且12x x <,()()12121244g x g x x x x x ⎛⎫-=+-+ ⎪⎝⎭()()1212124x x x x x x --=[)12,2,x x ∈+∞,且12x x <,∴120x x -<,1240x x ->,120x x >∴()()120g x g x -<,∴()()12g x g x <∴()g x 在[)2,+∞上单调递增.【小问2详解】()()2241212x a x a x +<-+++整理得:()22120ax a x -++<,因式分解得()()120ax x --<当0a >,方程()()120ax x --=的两根为1a 和2,且1122aaa--=.①当102a <<时,12a >,原不等式的解集为12x x a ⎧⎫<<⎨⎬⎩⎭②当12a =时,12a =,原不等式的解集为∅③12a >时,12a <,原不等式的解集为12x x a ⎧⎫<<⎨⎬⎩⎭综上:当102a <<时,不等式的解集为12x x a ⎧⎫<<⎨⎬⎩⎭当12a =时,不等式的解集为∅当12a >时,不等式的解集为12x x a ⎧⎫<<⎨⎬⎩⎭.20.天气转冷,宁波某暖手宝厂商为扩大销量,拟进行促销活动.根据前期调研,获得该产品的销售量a 万件与投入的促销费用x 万元(0x ≥)满足关系式91ka x =-+(k 为常数),而如果不搞促销活动,该产品的销售量为6万件.已知该产品每一万件需要投入成本20万元,厂家将每件产品的销售价格定为432a ⎛⎫+ ⎪⎝⎭元,设该产品的利润为y 万元.(注:利润=销售收入-投入成本-促销费用)(1)求出k 的值,并将y 表示为x 的函数;(2)促销费用为多少万元时,该产品的利润最大?此时最大利润为多少?【答案】(1)3k =,361121y x x =--+,0x ≥(2)当促销费用为5万元时,该产品的利润最大,最大利润为101万元【解析】【分析】(1)由题意求得k ,再利用利润公式即可求得y 关于x 的函数;(2)利用基本不等式即可得解.【小问1详解】依题意,当0x =时,96a k =-=,∴3k =,∴391a x =-+,所以43632201241121y a a x a x x a x ⎛⎫=+--=+-=-- ⎪+⎝⎭,∴361121y x x =--+,0x ≥.【小问2详解】因为3636112113111y x x x x ⎛⎫=--=-++ ⎪++⎝⎭113101≤-=,当且仅当3611x x =++,即5x =时,等号成立.∴当促销费用为5万元时,该产品的利润最大,最大利润为101万元.21.已知函数()133x x bf x a++=+是定义在R 上的奇函数.(1)求实数a ,b 的值;(2)若对任意()1,2x ∈,不等式()()222210f x x f x k +-+->恒成立,求实数k 的取值范围.【答案】(1)3a =,1b =-.(2)4k ≤【解析】【分析】(1)利用()00f =,()()11f f -=-,求得a ,b 的值,再检验即可;(2)先证明()f x 为R 上单调递增,再结合奇偶性可得2321k x x <+-恒成立,利用二次函数的性质求得()2321g x x x =+-,()1,2x ∈的最小值,进而可解.【小问1详解】由()f x 是R 上的奇函数得()1003b f a +==+,∴1b =-,∴()1313xx f x a+-=+,又()()11f f -=-,解得3a =,∴()()1313133331x x x x f x +--==++,则()()()()()311331331313331x xx xxxf x f x ------===-=-+++∴()f x 为R 上的奇函数,∴3a =,1b =-.【小问2详解】()()()31312121331331331x x x x x f x -+-⎛⎫===- ⎪+++⎝⎭任取12,R x x ∈,且12x x <,则()()()()()212121122332231313131x x x x x x f x f x --=-=++++,因为3x y =在R 上单调递增,所以当12x x <时,1233x x <,即12330x x -<,又2110,1033x x +>+>,所以()()120f x f x -<,即()()12f x f x <,∴()f x 在R 上单调递增.()1,2x ∀∈,()()22221f x x f x k +->--由()f x 为奇函数,上式可变形为()()22221f x x f k x+->-由()f x 为R 上增函数得22221x x k x +->-即2321k x x <+-恒成立,令()2321,12g x x x x =+-<<,而()2214321333g x x x x ⎛⎫=+-=+- ⎪⎝⎭,所以()g x 在()1,2单调递增,所以()()14g x g >=,∴4k ≤.22.已知定义在R 上的函数()142xx f x m m +=⋅--(m ∈R ).(1)当1m =时,求()f x 的值域;(2)若函数()f x 在()1,+∞上单调递增,求实数m 的取值范围;(3)若函数()y g x =的定义域内存在0x ,使得()()002g a x g a x b ++-=成立,则称()g x 为局部对称函数,其中(),a b 为函数()g x 的局部对称点,若()1,0是()f x 的局部对称点,求实数m 的取值范围.【答案】(1)[)2,-+∞(2)1,2⎡⎫+∞⎪⎢⎣⎭(3)40,3⎛⎤ ⎥⎝⎦【解析】【分析】(1)根据题意,由换元法,结合二次函数值域,即可得到结果;(2)根据题意,分0,0,0m m m =<>讨论,结合条件,代入计算,即可得到结果;(3)根据题意,由局部对称点的定义,结合函数的单调性,代入计算,即可得到结果.【小问1详解】当1m =时,()1421xx f x +=--令20x t =>,()2221122y t t t =--=--≥-,∴()f x 的值域为[)2,-+∞.【小问2详解】令22x t =>,22y mt t m=-- 2x t =在()1,+∞上单调递增,∴要使()f x 在()1,+∞上单调递增,只需22y mt t m =--在()2,+∞上单调递增①当0m =时,2y t m =--在()2,+∞上单减不符合题意;②当0m <时,22y mt t m =--开口向下不符合题意;③当0m >时,012m m>⎧⎪⎨≤⎪⎩,解得12m ≥,∴实数m 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.【小问3详解】由()1,0是()f x 的局部对称点得x ∃∈R ,()()110f x f x ++-=代入整理得()()2442220x xxx m m --+-+-=①令222x x t -=+≥,则()22442222x x x xt --+=+-=-代入①式得22250mt t m --=,2225252tm t t t==--当2t ≥时,函数2y t =和5y t=-均为增函数∴52t t -在[)2,+∞上单调递增,∴5322t t -≥,∴240,32t t t⎛⎤∈ ⎥⎝⎦-,∴实数m 的取值范围为40,3⎛⎤ ⎥⎝⎦.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.
[ −
1
,
0
)
4
16. (−∞,−2)∪(−1,1)∪(2,+∞)
三%FG(
17. (1)
{ 由已知,A = x |
x−3
}{ ⩾ 1 = x|
x+3
} ⩽ 0 = {x | − 3 ⩽ x < 0} ;
{ B = x|
1
} 2x
2x
< 2x < 2 = {x | 2−3 < 2x < 21} = {x | − 3 < x < 1}.
2
18. (1)
函数
f
(x)
=
x − 1, g (x) ,
x > 0 是奇函数. x<0
当 x < 0 时,−x > 0,
故:f (−x) = −x − 1,
则 −f (x) = −x − 1,
解得:f (x) = x + 1,
即 g (x) = x + 1. x,
(2) f (x + 1) = x + 2,
数学试题参考答案 !"!
因为
y
=
2x,y
=
−
1 2x
,y
=
x
都是递增函数.
所以 y = 2x −
1 2x
+ x 在区间 [−1, 1] 上递增,
因为 2x −
1 2x
+ x > m 在 x ∈ [−1, 1] 上恒成立,
当
x
=
−1
时,可得
ymin
=− (
5 2
,
所以实数 m 的取值范围是 −∞, −
−1,1 +即√−22,<
m
<
0
时,g
[−
(m
+
1)]
⩾
0,
所以 −2 < m < 0;
数学试题参考答案 ! !2
③当 − (m + 1) ⩾ 1,即 m ⩽ −2 时,g (1) = 2m + 5 ⩾ 0,
解得:m ⩾ − 5 ,
2
所以 − 5 ⩽ m ⩽ −2;
2
综上可得:− 5 ⩽ m ⩽ 1 .
20. 已知函数 f (x) = ax + ta−x(a > 0 且 a ̸= 1)是偶函数. (1) 求实数 t 的值; (2) 当 a > 1 时,判断并证明 f (x) 的单调性.
高一 数学第(页 共)页
21.
已知二次函数 长为 2√3,且
f f
(x) (0)
= =
ax2 1.
+
bx
+
高一第一学期期中考试
!!"
!!8#9*))$:;"$%<=$><"&%<$
#$#!!!!!!!
%%&'(#本题共# 小题&每小题&分&共'$分!-,+(./012&34&56%3789(:;<0!
1. 集合
M
=
{x |
x2
−
x
−
6
⩾
0},集合
N
=
{x |
−
3
⩽
x
⩽
1},则
() ∁RM
∩
N
等于
(
)
A. (−2, 3)
8. 若函数 f (x) = a−x(a > 0 且 a ≠ 1)在 (−∞, +∞) 上是减函数,则 g (x) = loga (x − 1) 的大致图象是 ( )
A
B
C
D
9. 已知函数 f (x) = | ln x|,若 0 < a < b 且 f (a) = f (b),则 a + 4b 的取值范围是 ( )
为
.
15. 方程 2x + a = 22x 在 x ∈ (−∞, 0) 上有解,则 a 的取值范围为
.
16. 已知函数
f
(x)
=
x2 + 2x, 2x − x2,
.
x ⩾ 0 ,函数 g (x) = |f (x) |,若 g (2 − a2) > g (a),则实数 a 的取值范围是 x<0
三%FG(#)(*3+(&*5%$!FGHI/JKLM%NMOPQRSTU!
[√ ] C. 0, 3 − 1
(
√]
D. −∞, 1 − 3
=%DE(#)(*'+(&,+(&$&*$%$!
13. (log29 + log43) (log32 + log98) =
.
14. 已知函数 f (x) 对任意实数 a,b,都有 f (ab) = f (a) + f (b) 成立,若 f (2) = 2,f (3) = 3,则 f (36) 的值
所以 f (x) = a (x + 1)2 + k (a ̸= 0),
又 f (0) = 1,
所以 a + k = 1, · · · · · · ① 又所因以为f 二(x)次过函点数(f−(1x+) 的√对3, 0称),轴是
x
=
−1,且
f
(x)
的图象被
x
轴截得的弦长为
2√3,
所以 3a + k = 0, · · · · · · ②
1 a
> 0,即
a2 − 1 a
> 0,等价于 (a2 − 1) a > 0.
因为 a > 0 且 a ̸= 1,所以 a2 > 1,即 a > 1,
所以 a 的取值范围是 (1, +∞).
(2) 当 a = 2 时,不等式 f (x) > m − x 转化为 y = 2x −
1 2x
+ x > m,
令 x1 < x2 < 0,
则
f (x1) − f (x2)
=ax1 + a−x1 − ax2 − a−x2
( = (ax1 − ax2 ) 1 −
1 ax1 ax2
) ,
因为 x1 < x2 < 0,
所以 ax1 − ax2 < 0,1 −
1 ax1 ax2
< 0,
则 f (x1) − f (x2) > 0,
A. c < a < b
B. c < b < a
√ 4. 函数 y = −x2 − 3x + 4 的定义域是 ( )
ln (x + 1)
A. (−1, 1]
B. (−1, 0) ∪ (0, 1]
C. a < b < c C. [−4, 1]
D. a < c < b D. (−1, 0) ∪ (0, 1)
① f (x) = ax · g (x)(a > 0, a ≠ 1);
② g (x)̸= 0;
③ f (x) · g′ (x) > f ′ (x) · g (x).
若 f (1) + f (−1) =
A.
(g0(,1)1
)
g (−1) ∪ (2, +∞)
5 2
,则使 (
B. 0,
logax 1)
>
)
D.
{ 1,
1
,
} 4
4
7. 在以下四组函数中,表示同一个函数的是 ( A. f (x) = x + 1,g (x) = x (x + 1) x C. y = f (x),y = f (t)
) B. f (x) = 1,g (x) = x |x| D. f (x) = x2 + 1,g (x) = x2
8
所以 A ∩ B = (−3, 0);
(2) 由(1)得 A ∩ B = (−3, 0),
① C = ∅ 时,2a > a + 1 ⇒ a > 1;
2a ⩽ a + 1,
②
C
≠
∅
时,要使
(A
∩
B)
⊇
C ,只要
2aa+>1
−3, < 0,
⇒ − 3 < a < −1 2
综上:满足条件的实数 a 的取值范围为:− 3 < a < −1 或 a > 1.
c
(a
̸=
0)
满足条件
y
=
f
(x
−
1)
是偶函数,f
(x)
的图象被
x
轴截得的弦
(1) 求 f (x) 的解析式;
(2) 若 x ∈ [−1, 1] 时,f (x) ⩽ mx + 2 恒成立,求实数 m 的取值范围.
22. 已知关于 x 的不等式 (log2x)2 − 2log2x − 3 ⩽ 0 的解集为 M .
故 f (x) 在 (−∞, 0) 上递减,
同理可证,f (x) 在 (0, +∞) 上递增,
所以,当 a > 1 时,f (x) 在 (−∞, 0) 上递减,在 (0, +∞) 上递增.
21. (1) 因为 y = f (x − 1) 是偶函数,
所以二次函数 f (x) 的对称轴是 x = −1,
x > −1 , x < −1