8.1二元一次方程组2
第八章《二元一次方程组》8.1-8.2复习 导学案
第八章《二元一次方程组》8.1-8.2复习 导学案【学习目标】1、进一步认识二元一次方程,了解它的解,会求二元一次方程的正整数解;2、进一步认识二元一次方程组的概念,了解它的解,会解简单的二元一次方程组;3、通过独立思考,合作探究,进一步体会解二元一次方程组的消元转化的数学思想;4、激情投入,全力以赴,养成严谨、规范的数学思维习惯。
【重点】会用两种方法解简单的二元一次方程组【难点】能根据方程组的特点选择合适的方法解方程组【使用方法与学法指导】1、先精读一遍教材P87--98页,用红笔进行勾画;再针对预习案二次阅读教材,并回答问题,时间不超过15分钟;2、找出自己的疑惑和需要讨论的问题,随时记录在课本或导学案上,准备课上讨论质疑;3、预习后,A 层同学结合探究案进行探究、拓展提升,B 层力争完成探究点的研究,C 层同学力争完成例1、例2、例3,拓展提升选做。
预 习 案一、预习自学1、每个方程都含有 未知数(x 和y ),并且未含有末知数的项的 都是1,像这样的方程叫做二元一次方程. (P88)如:________________________2、一般地,使二元一次方程_______________________的两个未知数的值,叫做二元一次方程的解.(P89)如:_________________________________3、把两个二元一次方程___________,就组成了一个二元一次方程组. 这个方程组中有________个未知数,含有每个末知数的项的次数都是____次,并且一共有____个方程。
(P88)如:_____________________________4、一般地,二元一次方程组的两个方程的 叫做二元一次方程组的解。
(P89)如:_________________________5、解二元一次方程组的基本思想是 ____________(P91)把二元一次方程组中一个方程的一个未知数用含 的式子表示出来,再 另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称__________。
数学人教版七年级下册8.1二元一次方程组教学设计
8.1 二元一次方程组教学目标1.认识二元一次方程和二元一次方程组.2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.重点、难点重点: 理解二元一次方程组的解的意义难点: 求二元一次方程的正整数解教学过程一、复习1、什么是一元一次方程?“元”指什么?“次”指什么?2、什么是方程的解?设计意图:通过学生复习以前的内容,知道用元与次的含义,为这节课所学的二元一次方程组奠定基础。
二、情境导入在NBA篮球联赛中,比赛规则是:每场比赛都要分出胜负,每队胜一场得2分,负一场得1分. 姚明所在的火箭队在10场比赛中得到16分,那么这个队胜负场数应分别是多少?思考:这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?由问题知道,题中包含两个必须同时满足的条件:胜的场数+负的场数=总场数,胜场积分+负场积分=总积分.这两个条件可以用方程表示吗?学生自己先用一元一次方程来解答此题,然后根据两个等量关系列出方程:x+y=10,2x+y=16 设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。
三、探究新知提问:这两个方程和我们以前学过的方程相同吗?什么共同特征?学生通过观察,师生共同总结:相同点1:未知数的个数都是22:含有未知数的项最高次数是1次3:含有未知数的项是整式而不是分式从而归纳出二元一次方程的定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.把两个方程合在一起,写成x+y=222x+y=40像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组.提问:对比两个方程,你能发现它们之间的关系吗?师生共同总结二元一次方程组的概念像这样方程组中有两个个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组.探究:满足x+y=10的值有哪些?请填入表中:使二元一次方程两边相等的未知数的值,叫做二元一次方程的解,记作.满足方程2x+y=16且符合问题的实际意义的x、y的值如下表:不难发现x=6,y=4既是x+y=10的解,也是2x+y=16的解,也就是说是这两个方程的公共解,我们把它们叫做方程组的解。
《第八章_二元一次方程组》基础训练.(1、2节)doc
8.1二元一次方程组(基础)1.下列方程是二元一次方程的是( )A.x-1y=2 B.x+2y=0 C.x2-x=5 D.3x-1=02.已知方程x m-3+y2-n=6是二元一次方程,则m-n=______.3.下列方程组是二元一次方程组的是( )A.x2y1y3z⎧=+⎨=-⎩B.xy12x y7⎧=⎨+=⎩C.x3y4⎧=⎨=⎩D.112x y3x2y4⎧+=⎪⎨⎪-=⎩4.二元一次方程x-2y=l有无数组解,下列四组值是该方程的解的是( )A.x01y2⎧=⎪⎨=⎪⎩B.x1y1⎧=⎨=⎩C.x1y1⎧=⎨=-⎩D.x1y0⎧=⎨=⎩5.已知x1y2⎧=⎨=⎩是二元一次方程2x+ay=4的一组解,则a的值为( )A.2 B.-2 C.1 D.-16.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m长的彩绳截成2m或1m长的彩绳,用来做手工编织,在不造成浪费的前提下,不同的截法有( )A.1种B.2种C.3种D.4种7.已知二元一次方程组5x4y5①3x2y9②⎧+=⎨+=⎩下列说法正确的是( )A.同时适合方程①和方程②的的值是方程组的解B.适合方程①的x,y的值是方程组的解C.适合方程②的x,y的值是方程组的解D.适合方程①或方程②的x,y的值是方程组的解8.解为x1y2⎧=⎨=⎩的方程组是( )A.x y13x y5⎧-=⎨+=⎩B.x y13x y5⎧-=-⎨+=-⎩C.x y33x y1⎧-=⎨-=⎩D.x2y33x y5⎧-=-⎨+=⎩9.用16元买了60分、80分两种邮票共22枚,则60分与80分的邮票分别买了( )A.6枚,16枚B.7枚,15枚C.8枚,14枚D.9枚,13枚10.若关于x,y的方程组3x y mx my n⎧-=⎨+=⎩的解是x1y1⎧=⎨=⎩,求|m-n|的值.代入消元法(基础)1.用代入法解方程组4x3y17①5x y7②⎧-=⎨+=⎩,使得代入后化简比较容易的变形是( )A.由①,得x=173y4+B.由①,得y=174y3--C.由②,得y=7-5xD.由②,得x=7y5-2.用代入法解方程组2x3y2①4x9y1②⎧+=⎨-=-⎩时,变形正确的是( )A.先将①变形为x=3y-22,再代入② B.先将①变形为y=22x3-,再代入②C.先将②变形为x=94y-1,再代入① D.先将②变形为y=9(4x+1),再代入①3.用代入法解方程组2x y53x2y8⎧-=⎨-=⎩时,消去y后得到的方程是( )A.3x-4x—10=0B.3x-4x+5=8C.3x-2(5-2x)=8D.3x-2(2x-5)=84.用代入法解方程组7x2y3①x2y12②⎧-=⎨-=-⎩有以下步骤:(1)由①,得y=7x32-③; (2)将③代入①,得7x-2×7x32-=3;(3)整理,得3=3; (4)所以x可取一切实数,原方程组有无数组解.以上解法,造成错误的一步是( ) A.(1) B.(2) C.(3) D.(4)5.方程组y2x3x y15⎧=⎨+=⎩的解是______. 6.已知a:b=3:1,且a+b=8,则a-b=______.7.(1)2x y2①y x4②⎧+=⎨=-⎩(2)2x y1①5x3y8②⎧-=⎨-=⎩(3)x y=3①5x3(x y)1②⎧+⎨-+=⎩8.某文具店练习本和水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.则练习本和水笔的单价分别为( )A.0.8元、2.2元B.0.6元、2.4元C.2.2元、0.8元D.2.4元、0.6元9.被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km,隧道累计长度的2倍比桥梁累计长度多36km.求隧道累计长度与桥梁累计长度.代入消元法(能力)1.已知x,y满足方程组x m4y5m⎧+=⎨-=⎩,则无论m取何值,x,y恒有的关系式是( )A.x+y=1B.x+y=-1C.x+y=9D.x-y=-92.已知x2y1⎧=⎨=⎩是二元一次方程组mx ny8nx my1⎧+=⎨-=⎩的解,则2m-n的平方根为______.3.若-2a m b4与5a n+2b2m+n可以合并成一项,则mn的值是______.4.3(y2)x12(x1)5y8⎧-=+⎨-=-⎩(2)4(x y1)3(1y)2x y223⎧--=--⎪⎨+=⎪⎩5.某市对八年级综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学的测试成绩和平时成绩各为多少分?(2)某同学测试成绩为70分,他的综合评价得分可能达到A等吗?为什么?(3)如果一个同学综合评价要达到A等,他的测试成绩至少为多少分?加减消元法(基础)1.对于方程组4x7y194x5y17⎧+=-⎨-=⎩,用加减法消去x得到的方程是( )A.2y=-2B.2y=-36C.12y=-2D.12y=-362.用加减法解方程组3x2y2x y5⎧-=⎨+=⎩,下列变形正确的是( )A.3x2y2x2y5⎧-=⎨+=⎩B.3x2y23x y5⎧-=⎨+=⎩C.3x2y23x3y15⎧-=⎨+=⎩D.3x2y22x2y5⎧-=⎨+=⎩3.利用加减法解方程组2x5y10①5x-3y6②⎧+=-⎨=⎩,下列做法正确的是( )A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×24.用加减法解方程组2x y8①x y1②⎧+=⎨-=⎩,其解题步骤如下:(1)①+②得3x=9,解得x=3;(2)①-②×2得3y=6,解得y=2. 所以原方程组的解为x3y2⎧=⎨=⎩.则下列说法正确的是( )A.步骤(1)(2)都不对B.步骤(1)(2)都对C.本题不适宜用加减法解D.加减法不能用两次5.x y52x y4⎧+=⎨-=⎩的解为______. 6.5x2y13x4y3⎧+=⎨+=⎩.则x-y的值是______.7.(1)x2y53x y1⎧+=⎨-=⎩; (2)9x2y153x4y10⎧+=⎨+=⎩; (3)3(x1)y55(y1)3(x5)⎧-=+⎨+=-⎩.8.有一个两位数,它的十位数字比个位数字大2,且十位数字与个位数字之和为12,则这个两位数为( )A.46B.64C.57D.759.某少年宫管弦乐队共有46人,其中管乐队人数少于23,弦乐队人数不足45.现准备购买演出服装,下面是某服装厂给出的演出服装的价格.如果管乐队、弦乐队分别单独购买服装,一共需付2500元.(1)管乐队、弦乐队各有多少人?(2)如果管乐队、弦乐队联合起来购买服装,那么比两队各自购买服装共可以节省多少钱?解二元一次方程组(基础)1.用适当的方法解下列方程组:(1)x2y81y x14⎧-=⎪⎨=+⎪⎩(2)x4y23x2y8⎧+=-⎨-=⎩(3)5(y1)3(x5)3(x1)4(y4)⎧-=+⎨-=-⎩(4)3x2y10x y1123⎧+=⎪⎨+=+⎪⎩(5)2(x y)x y134125y x3⎧-+-=-⎪⎨⎪-=⎩(6)3(x y)2(x y)10x y x y7422⎧++-=⎪⎨+-+=⎪⎩2.某次考试结束后,班主任老师和小强进行了对话:老师:小强同学,你这次考试的语数英三科总分348分,在下次考试中,要使语数英三科总分达到382分,你有何计划?小强:老师,我争取在下次考试中,语文成绩保持124分,英语成绩再多16分,数学成绩增加15%,则刚好达到382分. 请问:小强这次考试的英语、数学成绩各是多少?参考答案1.C2.B先将①移项,得3y=2-2x,再两边同除以3,得y=22x3-.故选B.3.D【解析】2x y5①3x2y8②⎧-=⎨-=⎩,由①,得y=2x-5③,将③代入②,得3x-2(2x-5)=8.故选D.4.B【解析】造成错误的一步是(2).因为③是由①得到,所以应该将③代入②而不是①.故选B.5.x3y6⎧=⎨=⎩【解析】y2x①3x y15②⎧=⎨==⎩把①代入②,得3x+2x=15,解得x=3.把x=3代入①,得y=6.所以这个方程组的解为x3 y6⎧=⎨=⎩.6.4【解析】∵a:b=3:1,且a+b=8,∴a3b①a b8②⎧=⎨+=⎩,把①代入②,得3b+b=8,解得b=2.把b=2代入①,得a=6.a-b=6-2=4.7.【解析】(1)把②代入①,得2x+x-4=2,解这个方程,得x=2.把x=2代入②,得y=-2.所以这个方程组的解为x2y2⎧=⎨=-⎩.(2)由①,得y=2x-1③把③代入②,得5x-3(2x-1)=8,解这个方程,得x=-5.把x=-5代入③,得y=-11,所以这个方程组的解为x5y11⎧=-⎨=-⎩.(3)把①代入②,得5x-3×3=1,解这个方程,得x=2.把x=2代入①,得y=1.所以这个方程组的解是x2 y1⎧=⎨=⎩.8.B【解析】设练习本和水笔的单价分别为x元、y元,根据题意,得x y3①20x10y36②⎧+=⎨+=⎩,由①,得y=3-x③,把③代入②,得20x+10(3-x)=36,解得x=0.6.把x=0.6代入③,得y=2.4.所以练习本和水笔的单价分别为0.6元、2.4元.故选B.9.【解析】设隧道累计长度为xkm,桥梁累计长度为ykm,根据题意,得x y342①2x y36②⎧+=⎨=+⎩由①,得y=342-x③把③代入②,得2x=342-x+36,解得x=126.把x=126代入③,得y=342-126=216.所以这个方程组的解为x126 y216⎧=⎨=⎩.答:隧道累计长度为126km,桥梁累计长度为216km.代入消元法(过能力)参考答案1.C【解析】将m=y-5代入x+m=4,得x+y-5=4,所以x+y=9.故选C.2.±2【解析】将x2y1⎧=⎨=⎩代入mx ny8nx my1⎧+=⎨-=⎩,得2m n8①2n m1②⎧+=⎨-=⎩,由②,得m=2n-1,将m=2n-1代入①,得2(2n-1)+n=8,解得n=2.再将n=2代入m=2n-1,得m=3.所以2m-n=6-2=4,所以2m-n的平方根为±2. 3.0【解析】因为-2a m b4与5a n+2b2m+n可以合并成一项,所以n2m2m n4⎧+=⎨+=⎩,解得m2n0⎧=⎨=⎩,所以mn=0.4.11【解析】根据题意,得a4b52a b3⎧+=⎨+=⎩,解得a1b1⎧=⎨=⎩,∴x※y=x+y2,∴2※3=2+32=11.名师点睛:本题是新定义题,解题的关键是把陌生的问题转化为方程组问题.5.【解析】(1)整理得3y x7①2x5y6②⎧-=⎨-=-⎩所以这个方程组的解为x17y8⎧=⎨=⎩.(2)整理,得4x-y5①3x2y12②⎧=⎨+=⎩所以这个方程组的解为x2y3⎧=⎨=⎩.(1)设孔明同学的测试成绩为x分,平时成绩为y分,依题意得x y18580%x20%y91⎧+=⎨+=⎩,解得x90y95⎧=⎨=⎩,所以孔明同学的测试成绩为90分,平时成绩为95分.(2)不可能.理由如下:80-70×80%=24,24÷20%=120>100,故该同学的综合评价得分不可能达到A等.(3)依题意,得(80-100×20%)÷80%=75(分).故他的测试成绩至少为75分.课时2 加减消元法(过基础)参考答案1.D【解析】4x7y19①4x5y17②⎧+=-⎨-=⎩,①-②得7y+5y=-19-17,所以12y=-36.故选D.2.C3.D4.B5.x3y2⎧=⎨=⎩,【解析】x y5①2x y4②⎧+=⎨-=⎩。
8.1二元一次方程组2
本节知识要点:
1.
认识二元一次方程和二元一次方程组. 2.
了解二元一次方程和二元一次方程组的解,会求二元一次方程的正
整数解.
本节测试:
1、下列说法正确的是( )
A、二元一次方程只有一个解
B、二元一次方程组有无数个解
C、二元一次方程组的解必是它所含的二元一次方程的解
D、三元一次方程组一定由三个三元一次方程组成 2、若方程组⎩
⎨⎧=+=+16156653y x y x 的解也是方程3x+ky=10的解,则k的值是( )
A、k=6 B、k=10 C、k=9 D、k=
10
1 三、解答题
3、解关于x 的方程)1(2)4)(1(+-=--x a x a a
4、已知方程组⎩⎨⎧=+=+c y ax y x 27,试确定c a 、的值,使方程组: (1)有一个解;(2)有无数解;(3)没有解
5、关于y x 、的方程3623-=+k y kx ,对于任何k 的值都有相同的解,试求它的
解。
试题答案 1D 2B
3、当32≠≠a a 且时,=x 32-a
4、略 、⎪⎩⎪⎨⎧==232y x。
七年级数学上册-8.1二元一次方程组 解析版
8.1二元一次方程组【考点梳理】考点一:二元一次方程的概念理解考点二:二元一次方程的解考点三:二元一次方程组的概念考点四:判断是否是二元一次方程组的解考点五:二元一次方程组的解求参数知识点一:二元一次方程的概念含有两个未知数,并且未知数的指数都是1的方程叫做二元一次方程。
知识点二:二元一次方程的解使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程的解有无数个,可以理解为在一条直线上的点的坐标。
知识点三:二元一次方程组把含有两个未知数的两个一次方程合在一起,就组成一个二元一次方程组。
即两个二元一次方程组成的方程组称二元一次方程组。
(两个方程中的未知数相同)技巧归纳:二元一次方程组的特点:1.有两个未知数.(二元)2.含未知数的指数都为1.(一次)3.两个一次方程组成.(方程组)知识点四:二元一次方程组的解二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
二元一次方程组的解只有一个,可以理解为两条直线相交点的坐标。
题型一:二元一次方程的概念理解1.(23-24七年级下·浙江·期中)下列各式是二元一次方程的是()A .223x y -=B .23x y-=C .3x y +=D .23x y z+=【答案】C【分析】本题考查了二元一次方程的定义,注意二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.根据二元一次方程的定义,依次分析各个选项,选出是二元一次方程的选项即可.【详解】解:A .该方程含未知数项的最高次数为二次,不符合二元一次方程的定义,不是二元一次方程,即A 选项不合题意;B .是分式方程,不符合二元一次方程的定义,不是二元一次方程,即B 选项不合题意;C .符合二元一次方程的定义,是二元一次方程,即C 选项符合题意;D.是三元一次方程,不符合二元一次方程的定义,不是二元一次方程,即D 选项不合题意.故选:C .2.(23-24七年级下·重庆·期中)若关于x y 、的方程1325m n x y -+-=是二元一次方程,则m n +=()A .0B .1C .2D .3【答案】A【分析】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.利用二元一次方程的定义判断即可.【详解】解:∵关于x 、y 的方程程1325m n x y -+-=是二元一次方程,∴11,31m n -=+=,解得:22m n ==-,,∴()220m n +=+-=,故选:A .3.(23-24七年级下·湖南衡阳·阶段练习)下列方程中,是二元一次方程的有()①25x y -=,②41x -=,③23xy =,④27x y z ++=,⑤152x y +=,⑥782x y +=A .1个B .2个C .4个D .6个【答案】B【分析】本题考查了二元一次方程的定义,牢记“只含有二个未知数(元),且未知数的次数是1,这样的整式方程叫二元一次方程”是解题的关键.利用二元一次方程的定义,逐一分析各方程,即可得出结论.【详解】解:①25x y -=是二元一次方程,符合题意;②41x -=是一元一次方程,不符合题意;③23xy =含有两个未知数,最高次数是2,不是二元一次方程,不符合题意;④27x y z ++=含三个未知数,不是二元一次方程,不符合题意;⑤152x y+=不是二元一次方程,不符合题意;⑥782x y +=是二元一次方程,符合题意;综上,是一元一次方程的有①⑥,共2个,故选:B .题型二:二元一次方程的解4.(23-24七年级下·河南周口·阶段练习)已知21x y =⎧⎨=-⎩是二元一次方程29ax y -=的解,则a 的值为()A .2-B .2C .12D .12-【答案】B【分析】本题考查二元一次方程解的定义、解一元一次方程等知识,将21x y =⎧⎨=-⎩代入29ax y -=,解一元一次方程即可得到答案,熟练掌握二元一次方程的解是解决问题的关键.【详解】解: 21x y =⎧⎨=-⎩是二元一次方程29ax y -=的解,()419a ∴--=,解得2a =,故选:B .5.(23-24七年级下·河南周口·阶段练习)下列哪组x ,y 的值是二元一次方程25x y +=的解()A .22x y =-⎧⎨=-⎩B .02x y =⎧⎨=⎩C .22x y =⎧⎨=⎩D .31x y =⎧⎨=⎩【答案】D【分析】本题主要考查了二元一次方程的解,二元一次方程的解是使方程左右两边相等的未知数的值,据此把四个选项中的x ,y 的值代入原方程,看方程左右两边是否相等即可得到答案.【详解】解:A 、把22x y =-⎧⎨=-代入方程25x y +=中得,左边()2226=-+⨯-=-,方程左右两边不相等,则22x y =-⎧⎨=-不是方程25x y +=的解,不符合题意;B 、把02x y =⎧⎨=⎩代入方程25x y +=中得,左边0224=+⨯=,方程左右两边不相等,则02x y =⎧⎨=⎩不是方程25x y +=的解,不符合题意;C 、把22x y =⎧⎨=⎩代入方程25x y +=中得,左边2226=+⨯=,方程左右两边不相等,则22x y =⎧⎨=⎩不是方程25x y +=的解,不符合题意;D 、把31x y =⎧⎨=⎩代入方程25x y +=中得,左边3215=+⨯=,方程左右两边相等,则31x y =⎧⎨=⎩是方程25x y +=的解,符合题意;故选:D .6.(23-24八年级上·安徽宿州·期末)方程组2?3x y x y +=⎧⎨+=⎩的解为2?x y =⎧⎨=⎩,则被遮盖的两个数分别为()A .1,2B .1,3C .5,1D .2,4【答案】C【分析】本题主要考查二元一次方程组的解,根据题意,把2x =代入方程3x y +=中可求出y 的值,由此即可求解,掌握解二元一次方程组的方法是解题的关键.【详解】解:根据题意,把2x =代入方程3x y +=得,1y =,把21x y ==,代入方程2?x y +=得,2215⨯+=,∴被遮盖的两个数分别是51,,故选:C .题型三:二元一次方程组的概念7.(2024七年级下·全国·专题练习)下列方程组中,是二元一次方程组的是()A .34m n mn +=⎧⎨=⎩B .23324x yx ⎧-=-⎪⎨⎪=⎩C .2125s t t s=+⎧⎨=⎩D .7116x y x y -=⎧⎪⎨+=⎪⎩【答案】C【分析】本题考查了二元一次方程组的定义,熟练掌握二元一次方程组的定义是解答本题的关键.根据二元一次方程组的定义判断逐项分析即可,方程的两边都是整式,含有两个未知数,并且未知数的项的次数都是1次的方程叫做二元一次方程.【详解】解:A .34m n mn +=⎧⎨=⎩的最高项的次数是2,故不是二元一次方程组;B .23324x yx ⎧-=-⎪⎨⎪=⎩的最高项的次数是2,故不是二元一次方程组;C .2125s t t s=+⎧⎨=⎩是二元一次方程组;D .7116x y x y -=⎧⎪⎨+=⎪⎩的分母含未知数,故不是二元一次方程组;故选C .8.(23-24七年级下·浙江杭州·阶段练习)下列是二元一次方程组的是()A .141y xx y ⎧+=⎪⎨⎪-=⎩B .12x y =⎧⎨=⎩C .2132x y y z -=⎧⎨+=⎩D .521x y xy +=⎧⎨=⎩【答案】B【分析】本题考查了二元一次方程组的定义,熟练掌握定义是解题的关键.由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组,据此判断即可.【详解】A.141y x x y ⎧+=⎪⎨⎪-=⎩,不是二元一次方程组,不符合题意;B.12x y =⎧⎨=⎩,是二元一次方程组,符合题意;C.2132x y y z -=⎧⎨+=⎩,不是二元一次方程组,不符合题意;D.521x y xy +=⎧⎨=⎩,不是二元一次方程组,不符合题意;故选:B .9.(23-24八年级上·河南平顶山·阶段练习)下列方程组,属于二元一次方程组的是().A .52x y y +=⎧⎨=⎩B .28x y y z +=⎧⎨-=⎩C .41y xy ⎧=⎪⎨⎪=⎩D .2103x x y ⎧-=⎨+=⎩【分析】本题主要考查二元一次方程组的概念,组成二元一次方程组的两个方程应共含有两个未知数,且含未知数的项最高次数都是一次,方程的两边都是整式,那么这样的方程组叫做二元一次方程组.根据二元一次方程组的定义逐项分析即可解答.【详解】解:A .52x y y +=⎧⎨=⎩是二元一次方程组,符合题意;B .28x y y z +=⎧⎨-=⎩含有3个未知数,不是二元一次方程组,不符合题意;C .4yx=不是整式方程,不符合题意;D .2103x x y ⎧-=⎨+=⎩含有2次项,不是二元一次方程组,不符合题意.故选A .题型四:判断是否是二元一次方程组的解10.(23-24八年级上·河南驻马店·期末)下列方程组中,解为82x y =⎧⎨=⎩的方程组是()A .104x y x y +=⎧⎨-=⎩B .1024x y x y +=⎧⎨-=⎩C .2113218x y x y +=⎧⎨-=⎩D .253220x y x y -=⎧⎨-=⎩【答案】B【分析】本题主要考查了二元一次方程组的解的定义,正确理解定义是关键.根据方程组的解的定义,只要检验12x y =⎧⎨=⎩是否是选项中方程的解即可.【详解】解:A 、把82x y =⎧⎨=⎩代入方程4x y -=,左边64=≠,故不是方程组的解,故选项错误;B 、把82x y =⎧⎨=⎩满足1024x y x y +=⎧⎨-=⎩中的两个方程,故是方程组的解,故选项正确;C 、把82x y =⎧⎨=⎩代入方程211x y +=,左边1211=≠,故不是方程组的解,故选项错误;D 、把82x y =⎧⎨=代入方程25x y -=,左边45=≠,故不是方程组的解,故选项错误.11.(22-23七年级下·湖北随州·期中)若方程组231328a b a b -=⎧⎨+=⎩的解是21a b =⎧⎨=⎩,则方程组()()()()2132131228x y x y ⎧+--=⎪⎨++-=⎪⎩的解为()A .31x y =⎧⎨=-⎩B .13x y =⎧⎨=⎩C .11x y =-⎧⎨=-⎩D .21x y =⎧⎨=⎩【答案】B【分析】设1,2x m y n +=-=,则原方程组即为231328m n m n -=⎧⎨+=⎩,根据题意可得方程组231328m n m n -=⎧⎨+=⎩的解是21m n =⎧⎨=⎩,可得12,21x y +=-=,即可求解.【详解】解:设1,2x m y n +=-=,则方程组()()()()2132131228x y x y ⎧+--=⎪⎨++-=⎪⎩即为231328m n m n -=⎧⎨+=⎩,因为方程组231328a b a b -=⎧⎨+=⎩的解是21a b =⎧⎨=⎩,所以方程组231328m n m n -=⎧⎨+=⎩的解是21m n =⎧⎨=⎩,所以12,21x y +=-=,解得:13x y =⎧⎨=⎩;故选:B.【点睛】本题考查了二元一次方程组的解,正确理解二元一次方程组的解的含义是解题的关键.12.(22-23七年级下·河北廊坊·期中)若二元一次方程组4313x y -=⎧⎨⊗⎩的解为13x y =⎧⎨=-⎩,则⊗表示的方程可以是()A .4x y +=B .14y x-=C .3xy =-D .=3y -【答案】D【分析】将方程组的解代入每个选项分别计算即可判断.【详解】解:A 、将13x y =⎧⎨=-⎩代入4x y +=,左边≠右边,故不符合题意;B 、将13x y =⎧⎨=-⎩代入14y x -=,左边=右边,但不是整式方程,故不符合题意;C 、将13x y =⎧⎨=-⎩代入3xy =-,左边=右边,但不是二元一次方程,故不符合题意;D 、将13x y =⎧⎨=-⎩代入=3y -,故符合题意;故选:D .【点睛】此题考查了二元一次方程组的解,正确理解二元一次方程组的定义及正确代入计算是解题的关键.题型五:二元一次方程组的解求参数13.(23-24七年级下·河南周口)若关于x ,y 的二元一次方程组42x y +=⎧⎨=⎩ 的解为13x y =⎧⎨=⎩,则“W ”可以表示为()A .xB .23x y-C .y x-D .x y-【答案】C【分析】本题主要考查了二元一次方程组的解和二元一次方程组的定义,分别把13x y =⎧⎨=⎩代入四个选项中的式子中看计算的结果是否为2,以及根据二元一次方程组的定义进行求解即可.【详解】解:A 、∵12x =≠,∴“W ”不可以表示为x ,故此选项不符合题意;B 、232x y -=不是二元一次方程,故此选项不符合题意;C 、当13x y =⎧⎨=⎩时,312y x -=-=,则“W ”可以表示为y x -,故此选项符合题意;D 、当13x y =⎧⎨=⎩时,1322x y =-=-≠-,则“W ”不可以表示为x y -,故此选项不符合题意;故选:C .14.(23-24七年级下·湖南衡阳·阶段练习)已知关于x 、y 的二元一次方程组79ax by bx ay +=⎧⎨+=⎩的解为23x y =⎧⎨=⎩,那么关于m 、n 的二元一次方程组(1)(2)7(1)(2)9a m b n b m a n ++-=⎧⎨++-=⎩的解为()A .23m n =⎧⎨=⎩B .12m n =⎧⎨=⎩C .34m n =⎧⎨=⎩D .15m n =⎧⎨=⎩【答案】D【分析】本题主要考查了二元一次方程组的解,解题的关键是掌握整体代值的数学思想.首先利用整体代值的数学思想可以得到1m +与2n -的值,然后解关于m 、n 的方程组即可求解.【详解】解:∵二元一次方程组79ax by bx ay +=⎧⎨+=⎩的解为23x y =⎧⎨=⎩,∴关于m 、n 的二元一次方程组()()()()127129a m b n b m a n ⎧++-=⎪⎨++-=⎪⎩中1223m n +=⎧⎨-=⎩,解得:15m n =⎧⎨=⎩,故选D .15.(23-24八年级上·陕西西安·期末)若关于x ,y 的方程组32mx y n x ny m -=⎧⎨+=⎩的解为11x y =⎧⎨=⎩则2()m n -等于()A .1B .4C .9D .25【答案】B【分析】此题考查了二元一次方程组的解和解二元一次方程组,代数式求值.解决本题的关键是理解二元一次方程组的解.将x 、y 的值代入,可得关于m 、n 的二元一次方程组,解出m 、n 的值,代入代数式即可.【详解】解:把11x y =⎧⎨=⎩代入方程组32mx y nx ny m -=⎧⎨+=⎩得312m n n m-=⎧⎨+=⎩,解得:1252m n ⎧=-⎪⎪⎨⎪=-⎪⎩∴2215()()422m n -=-+=.故选:B .一、单选题16.(23-24七年级下·山东潍坊)下列方程组中,是二元一次方程组的是()A .23124x y x y ⎧+=⎨-=⎩B .24124x y xy +=⎧⎨=⎩C .2363x y y +=⎧⎨=⎩D .3113y x y =⎧⎪⎨-=⎪⎩【答案】C【分析】本题考查二元一次方程组的定义,根据二元一次方程组的基本形式及特点,①方程组中的两个方程都是整式方程;②方程共含有两个未知数;③每个方程都是一次方程.【详解】解:A .23124x y x y ⎧+=⎨-=⎩,第一个方程是二次方程,方程组不是二元一次方程组,故该选项不符合题意;B .24124x y xy +=⎧⎨=⎩,第二个方程是二次方程,方程组不是二元一次方程组,故该选项不符合题意;C .2363x y y +=⎧⎨=⎩符合二元一次方程组的定义,故该选项符合题意;D .3113y x y =⎧⎪⎨-=⎪⎩,第二个方程是分式方程,方程组不是二元一次方程组,故该选项不符合题意;故选:C .17.(23-24七年级下·浙江金华·阶段练习)二元一次方程21x y -=有无数多个解,下列四组值中不是该方程的解的是()A .11x y =-⎧⎨=-⎩B .11x y =⎧⎨=⎩C .10x y =⎧⎨=⎩D .012x y =⎧⎪⎨=-⎪⎩【答案】B【分析】此题主要考查了二元一次方程的解,关键是把结果代入原方程,看方程两边是否相等.【详解】解:A、把=1x -代入方程21x y -=可得1y =-,故该选项是方程的解;B、把1x =代入21x y -=可得0y =,故该选项不是方程的解;C、把1x =代入方程21x y -=可得0y =,故该选项是方程的解;D、把0x =代入21x y -=可得12y =-,故该选项是方程的解.故选:B .18.(23-24七年级下·湖北·周测)已知11x y =-⎧⎨=⎩是方程3mx y +=的解,m 的值是()A .2-B .2C .1-D .1【答案】A【分析】此题考查了二元一次方程解的定义和一元一次方程的解法,熟练掌握二元一次方程解的定义是解题的关键.根据方程解的定义代入方程进行求解即可.【详解】解:∵11x y =-⎧⎨=⎩是方程3mx y +=的解,∴13m -+=,解得2m =-,故选:A .19.(2024七年级下·全国·专题练习)若458kx y x -=+是关于x 、y 的二元一次方程,则k 的取值范围是()A .0k ≠B .5k ≠C .3k ≠D .1k ≠-【答案】B【分析】本题考查了二元一次方程的定义,熟练掌握二元一次方程组的定义是解答本题的关键.方程的两边都是整式,含有两个未知数,并且未知数的项的次数都是1次的方程叫做二元一次方程.先移项并合并关于x 同类项,然后令未知数的系数不等于零列式求解即可.【详解】解:∵458kx y x -=+,∴5480kx x y ---=,∴()5480k x y ---=,∵458kx y x -=+是关于x 、y 的二元一次方程,∴50k -≠,∴5k ≠.故选B .20.(23-24七年级下·河南周口·阶段练习)已知34x y =⎧⎨=⎩是二元一次方程31x my -=的一个解,则m 的值是()A .2-B .1-C .1D .2【答案】D【分析】本题考查了二元一次方程的解以及解一元一次方程,将34x y =⎧⎨=⎩代入二元一次方程,得到关于m 的一元一次方程,求解即可.【详解】解:34x y =⎧⎨=⎩是二元一次方程31x my -=的一个解,3341m ∴⨯-=,2m ∴=,故选:D .21.(23-24七年级下·湖南长沙·阶段练习)解方程组274ax y cx dy +=⎧⎨-=⎩时,一学生把a 看错后得到51x y =⎧⎨=⎩,而正确的解为31x y =⎧⎨=-⎩,(1)求a ,b ,c 的值;(2)求2a c d ++的立方根.【答案】(1)3a =,1c =,1d =(2)2【分析】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.(1)将51x y =⎧⎨=⎩代入第二个方程,将31x y =⎧⎨=-⎩代入第二个方程,组成方程组求出c 与d 的值,将正确解代入第一个方程求出a 即可;(2)由(1)知a ,b ,c 的值,代入2a c d ++即可求解.【详解】(1)解:将51x y =⎧⎨=⎩;31x y =⎧⎨=-⎩分别代入4cx dy -=得:5434c d c d -=⎧⎨+=⎩,解得:11c d =⎧⎨=⎩,将31x y =⎧⎨=-⎩代入27ax y +=中得:327a -=,解得:3a =,则3a =,1c =,1d =;(2)解:把3a =,1c =,1d =代入2a c d ++得223118a c d ++=⨯++=,8的立方根是2,2a c d ∴++的立方根为2.22.(23-24七年级下·湖南衡阳·阶段练习)两个同学对问题“若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解”.提出了各自的想法,甲说:“这个题目好像条件不够,不能求解.”乙说:“它们的系数有一定规律,可以试试.”请你参考他们的讨论,求出这个题目的正确答案.【答案】510x y =⎧⎨=⎩【分析】本题考查了二元一次方程组的解,熟练掌握二元一次方程组的解的含义是解题的关键.先把所求方程组变形后,根据已知方程组的解求出解即可.【详解】解:将方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩化简得11122232553255a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩,335245x y ⎧=⎪⎪∴⎨⎪=⎪⎩,解得510x y =⎧⎨=⎩.一、单选题23.(23-24七年级下·江苏南通·阶段练习)已知关于x ,y 的方程组()21223ax a y a x y ⎧+-=⎨+=⎩有下列几种说法:①一定有唯一解;②可能有无数多解;③当2a =时方程组无解;④若方程组的一个解中y 的值为0,则0a =.其中正确的说法有()A .0种B .1种C .2种D .3种【答案】C【分析】本题考查了解二元一次方程组.方程组整理得()122a y a -=-,针对四种说法逐一分析即可判断.【详解】解:()21223ax a y a x y ⎧+-=⎨+=⎩①②,由②得322y x -=,把322y x -=代入①得()32221a a y a y ⎛⎫+- ⎪⎝-=⎭,整理得()122a y a -=-,当2a =时,方程组无解;当2a ≠时,方程组有唯一解;如果0y =,则()1202a a -⨯=-,解得0a =,观察四种说法,①②错误,③④正确,故选:C .24.(23-24七年级下·河北沧州·阶段练习)方程组23x y x y +=⎧⎨-=⎩ 的解为1x y =⎧⎨=◊⎩,则“ ”“◊”代表的两个数分别为()A .4,2B .1,3C .0,2-D .2,3【答案】C 【分析】本题主要考查了二元一次方程组的解的定义,根据二元一次方程组的解是使方程组两个方程都成立的未知数的值,把1x =代入方程3x y -=中求出y 的值,进而求出2x y +的值即可得到答案.【详解】解:∵方程组23x y x y +=⎧⎨-=⎩ 的解为1x y =⎧⎨=◊⎩,∴13y -=,∴=2y -,∴2220x y +=-=,∴“ ”“◊”代表的两个数分别为0,2-,故选:C .25.(23-24七年级下·浙江金华·阶段练习)已知二元一次方程组1*x y +=⎧⎨⎩的解是1x y a =-⎧⎨=⎩,则*表示的方程可能是()A .3x y -=-B .4x y +=C .23x y -=-D .234x y +=-【答案】A 【分析】本题考查二元一次方程组的解,根据方程组的解使方程组中的每一个方程都成立,求出a 的值,再将方程组的解分别代入各个选项中,进行判断即可.【详解】解:∵二元一次方程组1*x y +=⎧⎨⎩的解是1x y a =-⎧⎨=⎩,∴11a -+=,∴2a =,∴12x y =-⎧⎨=⎩,∴123x y -=--=-,1x y +=,24x y -=-,234x y +=;故*表示的方程可能是3x y -=-;故选A .26.(2024七年级下·全国·专题练习)若()()217a x b y ++-=是关于x y 、的二元一次方程,则()A .2,1a b ≠-=B .2a ≠-且1b ≠C .2a ≠且1b ≠D .2a ≠-【答案】B 【分析】本题考查了二元一次方程的概念;根据方程中只含有2个未知数;含未知数的项的最高次数为一次的整式方程是二元一次方程可得20,10a b +≠-≠,据此求解即可.【详解】解:∵()()217a x b y ++-=是关于x y 、的二元一次方程,∴20,a +≠且10b -≠,∴2a ≠-且1b ≠,故选:B .27.(2024七年级下·全国·专题练习)如果12x y =⎧⎨=⎩是二元一次方程组12ax by bx ay +=⎧⎨+=⎩的解,那么a ,b 是()A .10a b =-=,B .10a b ==,C .01a b ==,D .01a b ==-,【答案】B【分析】此题考查了二元一次方程组的解的定义和解二元一次方程组的方法,把方程组的解代入方程组,解关于a b ,的方程组,即可求出 a b ,的值.【详解】解:根据题意可得2122a b b a +=⎧⎨+=⎩,即24222a b a b +=⎧⎨+=⎩,两个方程相减得到0b =,把0b =代入可得1a =,故选:B .二、填空题28.(23-24七年级下·江苏南通·阶段练习)若12323m m x y --+=是关于,x y 的二元一次方程,则m =.【答案】0【分析】本题主要考查了二元一次方程的定义,只含有两个未知数,且含未知数的项的次数为1的整式方程叫做二元一次方程,据此得到2011m m -≠-=,,解之即可得到答案.【详解】解:∵12323m m x y --+=是关于,x y 的二元一次方程,∴2011m m -≠-=,,解得0m =,故答案为:0.29.(23-24九年级下·江苏无锡·阶段练习)请写出一个二元一次方程,使得它的一个解为12x y =⎧⎨=⎩.【答案】3x y +=(答案不唯一)【分析】本题考查了二元一次方程的解以及解二元一次方程,根据二元一次方程的解使方程左右两边值相等进行列式,即可作答.【详解】解:依题意,3x y +=是二元一次方程,且满足它的一个解为12x y =⎧⎨=⎩故答案为:3x y +=(答案不唯一)30.(23-24七年级下·江西赣州·期中)若21x y =⎧⎨=-⎩是方程2ax by -=-的一个解,则1065a b +-的值是.【答案】16【分析】本题考查了二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.把21x y =⎧⎨=-⎩代入2ax by -=-求出22a b -=,然后用整体代入法求解即可.【详解】把21x y =⎧⎨=-⎩代入2ax by -=-,得22a b -=,∴22a b -=,∴1065a b+-()526a b =-+52616=⨯+=.故答案为:16.31.(2024·河南郑州·模拟预测)已知21x y =⎧⎨=⎩是方程123ax by bx ay +=⎧⎨+=⎩的解,则(())a b a b +-的值为.【答案】45【分析】本题主要考查二元一次方程的解,把x ,y 的值代入方程组,求出a b +和a b -的值代入计算即可.【详解】解:把21x y =⎧⎨=⎩代入方程组123ax by bx ay +=⎧⎨+=⎩①②中,-①②得,9a b -=,+①②得,5a b +=,则()()5945a b a b +-=⨯=,故答案为:45.32.(23-24七年级下·浙江嘉兴·阶段练习)三个同学对问题“若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是56x y =⎧⎨=⎩,求方程组111222534534a x b y c a x b y c +=⎧⎨+=⎩的解”提出各自的想法.甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,这可以试试”;丙说:“能不能通过换元替代的方法来解决”,参照他们的讨论,你认为这个题目的解应该是.【答案】48x y =⎧⎨=⎩【分析】本题考查了二元一次方程的解,所求方程组变形后,根据已知方程组的解求出解即可.【详解】111222534534a x b y c a x b y c +=⎧⎨+=⎩,方程组中两个方程的两边都除以4,得11122253445344a x b y c a x b y c ⎧+=⎪⎪⎨⎪+=⎪⎩,∵方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是56x y =⎧⎨=⎩,∴55 436 4xy⎧=⎪⎪⎨⎪=⎪⎩,∴48 xy=⎧⎨=⎩,故答案为48 xy=⎧⎨=⎩.三、解答题33.(23-24七年级下·山西长治·阶段练习)解方程组2718ax bycx y+=⎧⎨-=⎩时,小明本应该解出32xy=⎧⎨=-⎩,由于看错了系数c,从而得到解22xy=-⎧⎨=⎩,试求出a b c-+的值【答案】1 3【分析】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.将第一对x与y的值代入方程组第二个方程求出c的值,将两对x与y的值代入方程组中第一个方程,求出a,b 的值即可.【详解】解:把32xy=⎧⎨=-⎩代入718cx y-=,得31418c+=,解得43c=,把32xy=⎧⎨=-⎩代入2ax by+=,得322a b-=①,把22xy=-⎧⎨=⎩代入2ax by+=,得222a b-+=②,①,②联立方程组,得322 222 a ba b-=⎧⎨-+=⎩解得45 ab=⎧⎨=⎩,∴414533 a b c-+=-+=.34.(22-23七年级下·重庆开州·期中)对于任意一个三位数m,将个位数字和百位数字对调后得到新的三位数n,记22m nP -=,若P 为整数,则称m 为“有趣数”,此时的P 值称为m 的“有趣值”.例如:432对调后的三位数为234,则432234922P -==,∵9为整数,∴432为“有趣数”.(1)试判断826,326是否为“有趣数”.(2)若f 和s 都是“有趣数”,且满足10042f x =+,120s y =+(19x ≤≤,19y ≤≤,且x ,y 均为整数),把f 和s 的“有趣值”分别记1P 和2P ,满足12236P P -=,求出满足条件的三位数f 和s .【答案】(1)826是有趣数;326不是有趣数(2)642123f s =⎧⎨=⎩或242125f s =⎧⎨=⎩【分析】(1)根据“有趣数”的定义进行验证即可;(2)根据“有趣数”的定义表示出1P 和2P ,结合12236P P -=可得212x y +=,找到满足条件的x 和y 值,分别根据定义验证是否满足题意即可.【详解】(1)解:826628922P -==,∵9为整数,∴826为“有趣数”,32662313.522P -==-,∵13.5-不是整数,∴13.5-不是“有趣数”,(2)解:∵10042f x =+,120s y =+,f 和s 的“有趣值”分别记1P 和2P ,∴()()110042240929919822222P x x x x +-+--===,()29112010021999922222P y y y y -+---===,∵12236P P -=,∴()()929123622x y ---⨯=,整理可得212x y +=,∵19x ≤≤,19y ≤≤,且x ,y 均为整数,∴25x y =⎧⎨=⎩,44x y =⎧⎨=⎩,63x y =⎧⎨=⎩或82x y =⎧⎨=⎩,将25x y =⎧⎨=⎩代入,可得()192202P ⨯-==,()2915182P ⨯-==-,符合题意,∴242125f s =⎧⎨=⎩将44x y =⎧⎨=⎩代入,可得()194292P ⨯-==,()291413.52P ⨯-==-,13.5-不是整数,不符合题意;将63x y =⎧⎨=⎩代入,可得()1962182P ⨯-==,()291392P ⨯-==-,符合题意,∴642123f s =⎧⎨=⎩将82x y =⎧⎨=⎩代入,可得()1982272P ⨯-==,()2912 4.52P ⨯-==-,4.5-不是整数,不符合题意,∴满足条件的三位数f 和s 分别为642123f s =⎧⎨=⎩或242125f s =⎧⎨=⎩.【点睛】本题考查新定义的运算,掌握二元一次方程的解法,新定义的运算是解题的关键.35.(22-23七年级下·河北沧州·期中)按一定规律排列方程组和它的解的对应关系如下:111__________,,,12439__________x y x y x y x y x y x y ⎧⎧⎧+=+=+=⎧⎪⎪⎨⎨⎨⎨-=-=-=⎩⎪⎩⎪⎩⎩.……123______,,,012______x x x x y y y y ⎧⎧⎧====⎧⎪⎪⎨⎨⎨⎨==-=-=⎩⎪⎩⎪⎩⎩.……(1)依据方程组和它的解的变化规律,将第4个方程组和它的解直接填入横线处.(2)猜想第n 个方程组和它的解并验证.(3)若方程组116x y x my +=⎧⎨-=⎩的解是54x y =⎧⎨=-⎩,求m 的值,并判断该方程组是否符合(1)中的规律.【答案】(1)43x y =⎧⎨=-⎩(2)见解析(3)114m =,它不符合(1)中的规律21【分析】(1)根据已知的方程组,观察方程未知数系数,常数与解的关系,确定第4个方程组;(2)通过观察,知第n 个方程组为21x y x ny n +=⎧⎨-=⎩解为1x n y n =⎧⎨=-⎩,将解代入方程组验证;(3)将解代入方程求得参数值,故可知本方程组不符合规律.【详解】(1)解:1,4,4163x y x x y y ⎧+==⎧⎨⎨-==-⎩⎩(2)21,,1x y x n x ny n y n ⎧+==⎧⎨⎨-==-⎩⎩把1x n y n=⎧⎨=-⎩代入21,x y x ny n +=⎧⎨-=⎩得()()211,1n n n n n n +-=--=,所以成立.(3)将54x y =⎧⎨=-⎩代入16x my -=,解得114m =,即方程组为111164x y x y +=⎧⎪⎨-=⎪⎩,所以它不符合(1)中的规律.【点睛】本题考查规律探索,观察方程组,探索出方程未知数系数,常数与解的关系是解题的关键.。
8.1-二元一次方程组(单元教学设计)-【大单元教学】七年级数学下册
8.1 二元一次方程组(大单元教学设计)一、【单元目标】通过情景导入,了解二元一次方程与二元一次方程组的概念与区别,学会根据题目的条件列出二元一次方程或二元一次方程组,学会根据实际情况,找出二元一次方程组的整数解情况等;(1)用生活中常见的事例,让学生可以根据题目中所给的条件,列出二元一次方程组,从中提炼出二元一次方程和二元一次方程组的概念;由之前所学内容“一元一次方程”,归纳总结出二元一次方程与一元一次方程的联系与区别,从而加深学生对方程的理解;(2)通过小组合作探究,让学生参与教学过程,加深对二元一次方程和二元一次方程组解的理解,同时会根据实际情况找出满足要求的整数解,提升了学生的数学抽象素养,进一步发展了学生的类比推理素养;(3)通过典型例题的训练,加强学生的做题技巧,训练做题的方法,提升学生的逻辑推理素养;(4)在师生共同思考与合作下,学生通过概括与抽象、类比的方法,体会了归因与转化的数学思想,同时提升了学生的数学抽象素养,并发展了学生的逻辑推理素养;(5)通过生活中的事例,提高学生对周围事物的感知能力,同时激发学生的学习兴趣,提升学生的人文素养;二、【单元知识结构框架】二元一次方程组{二元一次方程及其解的定义二元一次方程组及其解的定义列二元一次方程组三、【学情分析】1.认知基础二元一次方程和二元一次方程组及其解的定义,对我们后面学习的消元法解二元一次方程组和二元一次方程组的应用题具有关键作用,本节内容强调基础概念,锻炼学生的思维能力和判断能力;2.认知障碍学生在理解二元一次方程组的概念时,会和分式方程混淆,导致概念不清晰;在讲到二元一次方程的解时,要理解此时的解具有无数组,但一旦限定在整数范围内,那就要根据题目实际含义缩小范围;根据题意列二元一次方程组时,要读清题意,加强对逻辑关系的分辨,准确列出二元一次方程组;四、【教学设计思路/过程】课时安排: 约1课时教学重点: 二元一次方程及其解的定义,二元一次方程组及其解的定义;根据实际情况列二元一次方程组;教学难点: 二元一次方程组的认识与识别,根据二元一次方程组解的情况求参数的值;五、【教学问题诊断分析】 情境导入小红到邮局寄挂号信,需要邮费3元8角.小红有票额为6角和8角的邮票若干张,问各需要多少张这两种票额的邮票?这个问题中有几个未知数,能列一元一次方程求解吗?如果设需要票额为6角的邮票x 张,需要票额为8角的邮票y 张,你能列出方程吗?8.1.1二元一次方程及其解的定义问题1(利用二元一次方程的定义求参数):已知|m -1|x |m |+y 2n -1=3是二元一次方程,则m +n =________.问题2(二元一次方程的解):已知⎩⎪⎨⎪⎧x =1,y =-1是方程2x -ay =3的一个解,那么a 的值是( )A .1B .3C .-3D .-1 8.1.2二元一次方程组及其解的定义问题3(识别二元一次方程组):有下列方程组:①⎩⎪⎨⎪⎧xy =1,x +y =2;②⎩⎪⎨⎪⎧x -y =3,1x+y =1;③⎩⎪⎨⎪⎧2x +z =0,3x -y =15;④⎩⎪⎨⎪⎧x =5,x 2+y3=7;⑤⎩⎪⎨⎪⎧x +π=3,x -y =1,其中二元一次方程组有( )A .1个B .2个C .3个D .4个问题4(利用二元一次方程组的解求参数的值)甲、乙两人共同解方程组⎩⎪⎨⎪⎧ax +5y =15;①4x -by =-2.②由于甲看错了方程①中的a ,得到方程组的解为⎩⎪⎨⎪⎧x =-3,y =-1;乙看错了方程②中的b ,得到方程组的解为⎩⎪⎨⎪⎧x =5,y =4.试计算a 2014+(-110b )2015的值.8.1.3列二元一次方程组问题5:小刘同学用10元钱购买了两种不同的贺卡共8张,单价分别是1元与2元.设他购买了1元的贺卡x 张,2元的贺卡y 张,那么可列方程组( )A.⎩⎪⎨⎪⎧x +y 2=10,x +y =8B.⎩⎪⎨⎪⎧x 2+y 10=8,x +2y =10C.⎩⎪⎨⎪⎧x +y =10,x +2y =8D.⎩⎪⎨⎪⎧x +y =8,x +2y =10六、【教学成果自我检测】 1.课前预习设计意图:落实与理解教材要求的基本教学内容. 1.下列方程组是二元一次方程组的是( ) A .57x y y z +=⎧⎨=+⎩B .24257x y x y ⎧+=⎨+=⎩C .23xy x y =⎧⎨+=⎩D .515328y x y =⎧⎨+=⎩2.下列方程的解为21x y =⎧⎨=-⎩的是( )A .3410x y -=B .1232x y += C .32x y += D .2()6x y y -=3.已知12x y =-⎧⎨=⎩是二元一次方程组321x y mnx y +=⎧⎨-=⎩的解,则m n +的值是( )A .2B .2-C .3D .3-4.若方程()135mm x y ++=是关于x ,y 的二元一次方程,则m 的值为 ______ .5.已知11x y =⎧⎨=-⎩是方程35x ay -=的一个解,那么a 的值是______.6.哪些是二元一次方程?为什么?(1)x 2+y =20;(2)2x +5=10;(3)2a +3b =1;(4)x 2+2x +1=0;(5)2x +y +z =1.2.课堂检测设计意图:例题变式练.【变式1】在下列方程组中,不是二元一次方程组的是( )A .331x y y -=⎧⎨=-⎩B .1321x y +=⎧⎨+=-⎩C .23321x y x y +=⎧⎨-=-⎩D .34xy x y ⎧=⎪⎨⎪-=⎩【变式2】已知21x y =⎧⎨=-⎩是二元一次方程7y kx -=的解,则k 的值是( )A .2B .2-C .4D .4-【变式3】已知21x y =⎧⎨=⎩是方程3ax by +=的解,则代数式631a b +-的值为_________.【变式4】已知124x y ⎧=⎪⎨⎪=⎩是二元一次方程2x y a +=的一个解. (1)则=a _________(2)试直接写出二元一次方程2x y a +=的所有正整数解. 3.课后作业设计意图:巩固提升.1.下列是二元一次方程35x y +=的解为( )A .10x y =⎧⎨=⎩B .21x y =⎧⎨=-⎩C .12x y =-⎧⎨=-⎩D .05x y =⎧⎨=-⎩2.下列方程组中,表示二元一次方程组的是( )A .35x y z x +=⎧⎨+=⎩B .51x y x y +=⎧⎪⎨=⎪⎩C .2512x y x y +=⎧⎨+=⎩D .11122x y y x =+⎧⎪⎨+=⎪⎩3.下列方程中,二元一次方程的个数是( ) ①423=-x ,②57=+y x ,③02=-y x ,④x y =,⑤122=++x yx ,⑥2210x x -+=,⑦z y x 4=+-,⑧20.x y -=,⑨1xy =. A .2B .3C .4D .54.方程22136m n x y -+-=是关于x ,y 的二元一次方程,则2m n +的值为______.5.若32x y =⎧⎨=-⎩是二元一次方程2ax by +=-的一个解,则322025a b -+的值为______________.6.哪些是二元一次方程组?为什么?(1)32950x y y x -=⎧⎨+=⎩;(2)39835x y z y z -+=⎧⎨+=⎩;(3)21x x y =⎧⎨+=⎩;(4)54xy y x y +=⎧⎨-=⎩7.(1)找到几组适合方程0x y +=的x ,y 值; (2)找到几组适合方程2x y -=的x ,y 值;(3)找出一组x ,y 值,使它们同时适合方程0x y +=和2x y -=;(4)根据上面的结论,你能直接写出二元一次方程组02x y x y +=⎧⎨-=⎩的解吗?七、【教学反思】。
人教版七年级数学 下册 第八章 8.1 二元一次方程组 教案(表格式)
教学设计定义2:把两个二元一次方程合在一起,就组成了一个二元一次方程组.探究活动:满足x +y=35的值有哪些? 教师启发: (1)若不考虑此方程与上面实际问题的联系,还可以取哪些值? (2)你能模仿一元一次方程解给二元一次方程的解下定义吗? (3)它与一元一次方程的解有什么区别?定义3:使二元一次方程两边相等的两个未知数的值,叫二元一次方程的解,记为目标导学二:二元一次方程组及其解的定义例2: 有下列方程组:①x +y =2;xy =1,②+y =1;1③;1④=7;y⑤x -y =1,x +π=3,其中二元一次方程组有( )A .1个B .2个C .3个D .4个解析:①方程组中第一个方程含未知数的项xy 的次数不是1;②方程组中第二个方程不是整式方程;③方程组中共有3个未知数.只有④⑤满足,其中⑤方程组中的π是常数.故选B.方法总结:识别一个方程组是否为二元一次方程组的方法:一看方程组中的方程是否都是整式方程;二看方程组中是不是只含两个未知数;三看含未知数的项的次数是不是都为1.例3:用库存化肥给麦田追肥,如果每亩施肥6公斤,就缺少200公斤,如果每亩施肥5公斤,就剩余300公斤,问有多少亩麦田?库存化肥有多少?分析:本题有两上未知数:麦田的亩数和库存化肥的数量。
相等关系:1、每亩施肥6公斤所需化肥量=库存化肥量+200公斤。
2、每亩施肥5公斤,所需化肥量=库存化肥量-300公斤 小组讨论,解答。
四、课堂总结我们学习二元一次方程和方程组,要结合一元一次方程来理解。
1、方程mx−2y=3x+4是关于x、y的二元一次方程,则m的值范围是( )A.m≠0 B.m≠−2 C.m≠3 D.m≠42、已知是方程3x-my=1的一个解,则m=__________。
3、已知方程,若x==6,则y=_____;若y=0,则x=_____;当x=____时,y=4.4、写出二元一次方程3x-5y=1的一个正整数解______.5、下列方程组中,是二元一次方程组的是()A、B、C、D、。
8.1二元一次方程组课件(共29张PPT)
1 x 1 3 C 1 D 1 y 2 y 2
)
一、选择题
1、二元一次方程3x+2y=11
( D )
A、 任何一对有理数都是它的解 B、只有一个解 C、只有两个解 D、无穷多个解
一、选择题
s=1 S t 2、若 是方程 -k=0 t=-2 2 3
x=2
y=3
为一组解的二元一次
鸡兔同笼
著名的“鸡兔同笼”问题:“今有鸡兔同 笼,上有三十五头,下有九十四足,问鸡兔各 几何?” 解:设鸡有x只,兔y只,根据题意, 得: x y 35 两个方程!
2x 4 y 94
两个二元一次方程所组成的一组 方程叫做二元一次方程组
牛刀小试
一般地,一个二元一次方程有无数个解。 如果对未知数的取值附加某些限制条件,则 可能有有限个解
课堂练习:
1、下面4组数值中,哪些是二元一次方程 2x+y=10的解?
x = -2 x=3 x=4 x=6
(1)
y=6
(2)
y=4
(3)
y=3
(4)
y = -2
2、找出上述方程的所有正整数解
3、请写出一个以 方程
x y 35 2x 4 y 94
二元一次方程
xy 22 2 xy40
x y 35 2 x 4 y 94
观察上面四个方程,有何共同特征? (1)2个未知数 (2)未知数的项的次数是1
含有两个未知数 ,并且所含未知数的 两个 项的次数都是1次 次的方程叫做二元一次方程.
二、填空题
x=-3 2、已知 是方程2x-4y+2a=3一 y=-2
1 2 个解,则a=_______ ;
人教版七年级数学下册8.1《二元一次方程组》说课稿
人教版七年级数学下册8.1《二元一次方程组》说课稿一. 教材分析《二元一次方程组》是人教版七年级数学下册第8.1节的内容,主要包括二元一次方程组的定义、解法及其应用。
这部分内容是学生学习方程组的基础,对于培养学生的逻辑思维和解决问题的能力具有重要意义。
在教材中,通过引入实际问题,引导学生认识和理解二元一次方程组,并运用数学方法解决实际问题。
二. 学情分析学生在学习本节内容前,已经掌握了整式的加减、一元一次方程的解法等基础知识。
但七年级的学生对抽象的数学概念和逻辑推理能力尚在培养中,因此,在教学过程中,需要注重引导学生从具体问题中提炼出数学模型,培养学生的逻辑思维和解决问题的能力。
三. 说教学目标1.知识与技能:让学生掌握二元一次方程组的定义、解法及其应用,能运用所学知识解决实际问题。
2.过程与方法:通过合作学习、探究学习,培养学生提出问题、分析问题、解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,提高学生运用数学知识解决实际问题的能力。
四. 说教学重难点1.重点:二元一次方程组的定义、解法及其应用。
2.难点:如何引导学生从具体问题中提炼出数学模型,以及运用方程组解决实际问题。
五. 说教学方法与手段1.教学方法:采用启发式教学、案例教学、合作学习等方法,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学手段,结合数学软件、网络资源等现代教育技术,提高教学效果。
六. 说教学过程1.导入:通过生活实例引入二元一次方程组的概念,激发学生学习兴趣。
2.新课导入:讲解二元一次方程组的定义、解法,引导学生掌握解题方法。
3.案例分析:分析实际问题,引导学生运用方程组解决问题。
4.小组讨论:学生分组讨论,总结解题方法,分享解题心得。
5.练习巩固:布置练习题,让学生巩固所学知识。
6.课堂小结:总结本节课的主要内容,强调重点知识点。
7.课后作业:布置课后作业,巩固所学知识,提高解题能力。
人教版数学七年级下册8.1 二元一次方程组 课件(共26张PPT)
8.1 二元一次方程组
1.经历根据实际问题列二元一次方程(组)的过程,让学生体 会方程组是刻画现实世界中含有多个未知数的数学模型. 2.通过复习类比一元一次方程,探究掌握二元一次方程(组) 及其解的概念. 3.培养学生的数学类比思想,感受方程组的实际应用价值.
学习重点:二元一次方程(组)以及解的概念. 学习难点:二元一次方程组的解的概念.
写出二元一次方程3x+2y=19的正整数解. 解:ቊyx==81;, ቊyx==53;, ቊxy==25.,
例3 二元一次方程组ቊxx−+yy==180, 的解是( C )
A.ቊxy==35,
B.ቊxy==111,
C.ቊyx==−91,
D.ቊxy==16..55,
下列各组值中是二元一次方程组ቊxx−+yy==35,的解的 是( C )
我们已经学习了一元一次方程,并学会了用它解 决实际问题。 一元一次方程中只含有一个未知数,下面我们来 看下这些问题含有几个未知数?
篮球比赛不仅出现在奥运赛场上,在生活中也随处可见,请 同学们看下面这个问题:在某次篮球联赛中,每场比赛都要分 出胜负,每队胜1场得2分,负1场得1分.某队在10场比赛中得到 16分,那么这个队胜负场数分别是多少呢?
思考:这个问题中包含了 哪些必须同时满足的条件?
分析:胜的场数+负的场数=总场数,胜场积分+负场积分=
总积分.
胜
负
合计
场数
x
y
10
积分
2x
y
16
解:设这个队胜的场数为x场,负的场数为y场. 依据题意,得x+y=10,2x+y=16.
学生活动一【一起探究】
人教版七年级下册8.1二元一次方程组_8.2消元—解二元一次方程组(共25张PPT)
数,那么就把二元一次方程组转化为我们熟悉的一元一次方
程.我们可以先求出一个未知数,然后再求另一个未知数.
这种将未知数的个数由多化少、逐一解决的思想,叫做消元
思想.
上面的解法,是把二元一次方程组中的一个方程的一个未知
数用含另一个未知数的式子表示出来,再代入另一个方程,
实现消元,进而求得这个二元一次方程组的解.这种方法叫 做
x=20 000. 把x=20 000代入③,得
y=50 000.
所以这个方程组的解是 x=20 000,
y=50 000. 答:这些消毒液应该分装20 000大瓶和50 000小瓶.
2019年 中 学 德 育 工 作总结 计划: 春风化 雨 润物 有声学 德育工 作总结:春风化雨 润 物有声
学 德 育 工 作 总结:春 风化雨 润物有 声 党 的 十 八 大 报告提 出,倡导 富强、 民主、 文明、 和谐;倡 导自 由、平 等、公 正、法 治 ;倡 导 爱 国 、敬业 、诚信 、友善 ,积极 培育社 会主义 核心价 值观。 价值观 是人们 心 深 层 的 信 念系统 ,党的十 八大报 告将社 会主义 核心价 值观分 为国家 、社会 、公民 三 个 层 面 ,用 高度浓 缩的24个 字进 行了最 精辟的 阐述,三 个层面 之间的关系是相互依 存 的 ,但 价 值 观最基 本的主 体还是 个人。 培育社 会主义 核心价 值观是 青少年 学生全
(1) 7x-3y=9; 3x+4y=16,
(3) 5x-6y=33;
(2) (4)
3s-t=5,
5s+2t=15; 4(x-y-1)=3(1-y)-2,
+ =2
答案 (1)解:把①代入②,得7x+5(x+3)=9, 所以x=- .
人教版七年级下册数学知识点归纳:第八章二元一次方程组
人教版七年级下册数学知识点归纳第八章 二元一次方程组8.1 二元一次方程组1.二元一次方程:含有两个未知数的方程并且所含未知项的最高次数是1,这样的整式方程叫做二元一次方程。
2.方程组:有几个方程组成的一组方程叫做方程组。
如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。
二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。
8.2 消元——解二元一次方程组二元一次方程组有两种解法:一种是代入消元法,一种是加减消元法.1.代入消元法:把二元一次方程中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
2.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。
8.3 实际问题与二元一次方程组 实际应用:审题→设未知数→列方程组→解方程组→检验→作答。
关键:找等量关系常见的类型有:分配问题、追及问题、顺流逆流、药物配制、行程问题 顺流逆流公式: v v v =+顺静水 v v v =-逆静水8.4 三元一次方程组的解法三元一次方程组:方程组含有三个未知数,每个方程中含有未知数的项的次数都是1,并且一共有三个方程组,像这样的方程组叫做三元一次方程组。
解三元一次方程组的基本思路:通过“代入”或“加减”进行消元。
把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程。
七年级数学下册8.1二元一次方程组思路点拨另类方法巧解方程组素材
另类方法巧解方程组
代入法与加减法是解二元一次方程组的基本方法.在解方程组时若能仔细观察方程组的结构特征,根据它的特征选择合适的方法,不仅能使问题化繁为简,还有助于培养同学们的创新思维和探索精神。
下面举例说明解方程组的三种特殊方法,供大家参考。
一、整体代入法
例1 解方程组:
解析:由①可得x+1=2y③,把(x+1)看作一个整体,将③代入②,得3×2y+5y=11。
解得y=1。
再把y=1代入③,解得x=
1,从而得到原方程组的解为
二、整体加减法
例2 解方程组:
解析:此题数字较大,若按常规加减,运算量很大,仔细观察方程组未知数的系数,发现具有对称轮换的特征,可采用整体相加减,使系数绝对值减小,从而可以得到一个同解的简易方程组,新颖别致,简捷明快.
①+②,化简整理,得x+y=2;①﹣②,化简整理,得x﹣y=6.
将所得方程联立成方程组解得原方程组的解为
三、参数消元法
例3 解方程组:
解析:本题的常规解法是将①化简后再求解,但因为①是比例式的形式,可设(x+1)/3=错误!=k,可得x=3k﹣1,y=2k+3,代入②得9k﹣3+2k+3=11,解得k=1。
再把k=1代入x=3k﹣1,y=2k+3得x=2,y=5.
所以原方程组的解是
点评:在方程组中,当某个方程是比例式时,一般采用设比值
法,达到消元求解的目的.
解二元一次方程组其实还有一些其他解法,同学们可以在熟练掌握课本上两种最基本的方法的同时,通过做题来体会其他解法,从而提高自己灵活运用所学知识解决问题的能力.。
人教版七年级数学下册 教学设计8.1 第1课时《二元一次方程组》
人教版七年级数学下册教学设计8.1 第1课时《二元一次方程组》一. 教材分析《二元一次方程组》是人教版七年级数学下册的教学内容,本节课的主要内容是让学生掌握二元一次方程组的定义、解法和应用。
通过学习,学生能够解决实际问题,提高解决问题的能力。
教材通过丰富的例题和练习题,帮助学生巩固知识点,提高解题技巧。
二. 学情分析学生在学习本节课之前,已经掌握了整式、方程等基础知识,具备一定的逻辑思维能力和问题解决能力。
但部分学生对抽象的数学概念理解仍有困难,需要教师在教学中给予关注和引导。
同时,学生对于实际问题的解决方法还不够熟练,需要在教学中加强训练。
三. 教学目标1.知识与技能:理解二元一次方程组的定义,学会解二元一次方程组的方法,能够应用二元一次方程组解决实际问题。
2.过程与方法:通过自主学习、合作交流,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:二元一次方程组的定义、解法和应用。
2.难点:如何将实际问题转化为二元一次方程组,以及解二元一次方程组的方法。
五. 教学方法1.情境教学法:通过生活实例引入二元一次方程组,激发学生的学习兴趣。
2.自主学习法:引导学生自主探究二元一次方程组的解法,培养学生的自主学习能力。
3.合作交流法:学生进行小组讨论,共同解决问题,提高学生的团队合作能力。
4.实践操作法:让学生通过解决实际问题,巩固二元一次方程组的应用。
六. 教学准备1.教学课件:制作课件,展示二元一次方程组的相关知识点。
2.练习题:准备一些有关二元一次方程组的练习题,用于巩固所学知识。
3.教学道具:准备一些实物道具,帮助学生更好地理解二元一次方程组的概念。
七. 教学过程1.导入(5分钟)利用生活实例,如购物问题,引入二元一次方程组的概念,激发学生的学习兴趣。
2.呈现(10分钟)呈现二元一次方程组的定义和解法,引导学生自主学习,理解相关知识点。
8.1二元一次方程组教学设计人教版数学七年级下册
《8.1 二元一次方程组》教学设计教材分析二元一次方程组是第八章第一节的内容,在此之前,学生已学习了一元一次方程,这为过渡到本节的学习起着铺垫作用.本节内容主要学习和二元一次方程组有关的几个概念.本节内容既是前面知识的深化和应用,又是今后用二元一次方程组解决生活中的实际问题的准备知识,占据重要的地位,是学生新的方程建模的基础课,为今后学习一次函数以及其他学科(如:物理)的学习奠定基础,同时建模的思想方法对学生今后的发展有引导作用,因此本节课具有承上启下的作用.备课素材一、新知导入【情景导入】古老的“鸡兔同笼问题”“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡、兔各几何?”方法一:算数方法把兔子都看成鸡,则多出94—35×2=24只脚,每只兔子比鸡多出两只脚,由此可先求出兔子有24÷2=12(只),进而求出鸡有35—12=23(只).方法二:列一元一次方程求解设有x只鸡,则有(35—x)只兔子.根据题意,得2x+4(35—x)=94.问题:上面的问题可以用一元一次方程来解,还有其他方法吗?【说明与建议】说明:以古老的数学名题引入,可以增强学生的民族自豪感,激发学生学习数学的兴趣.能用方法一来解的学生算术功底比较好,应给予高度赞赏.方法二既是对一元一次方程的复习与巩固,又为二元一次方程组的引出做好了铺垫.建议:教师利用课件出示问题,学生思考,自行解答,教师巡视.最后,在学生动手动脑的基础上,通过讨论给出各种解决方案.【置疑导入】播放多媒体:姚明和刘翔的合影照片.已知姚明比刘翔高37 cm,刘翔身高的2倍比姚明高152 cm,则他们的身高分别是多少?假设姚明的身高为x cm,刘翔的身高为y cm,你能得到怎样的方程?能列几个?【说明与建议】说明:由同学们熟悉的姚明和刘翔的身高,为新课的引入做准备,还可以调节气氛,给学生以轻松的感觉,以对话的形式再次引出方程问题,让学生再次经历建模的同时,以相对轻松的状态进入后面的学习.建议:引导学生回答问题,小组合作完成题目,教师参与并指导.二、命题热点命题角度1 认识二元一次方程(组) 1.下列方程中,为二元一次方程的是(D)A .2x +3=0B .3x -y =2zC .x 2=3D .2x -y =52.若关于x ,y 的方程7x |m|+(m -1)y =6是二元一次方程,则m 的值为(A) A .-1 B .0 C . 1 D .2 3.下列方程组中,是二元一次方程组的是(D)A.⎩⎨⎧3x -y =52y -z =6B.⎩⎨⎧x +3=1y =x 2C.⎩⎨⎧5x +2y =1xy =-1D.⎩⎨⎧x +y =2y -2x =4命题角度2 二元一次方程(组)的解4.在下列各组数中,是方程组⎩⎨⎧2x -3y =-8,x +2y =3的解的是(D)A.⎩⎨⎧x =2y =4B.⎩⎨⎧x =-3y =1C.⎩⎨⎧x =1y =1D.⎩⎨⎧x =-1y =25.已知⎩⎨⎧x =4,y =1是关于x ,y 的二元一次方程x -ay =3的一个解,则a 的值是1.命题角度3 建立二元一次方程(组)模型6.“今有50鹿进舍,小舍容4鹿,大舍容6鹿,需舍几何?(改编自《缉古算经》)”大意为:今有50只鹿进圈舍,小圈舍可以容纳4头鹿,大圈舍可以容纳6头鹿,若每个圈舍都住满,求所需圈舍的间数.设需要大圈舍x 间,小圈舍y 间,则列二元一次方程为6x +4y =50.7.某公司要购买办公桌,A 型办公桌每张500元,B 型办公桌每张300元,购买10张办公桌共花费4 200元.设购买A 型办公桌x 张,B 型办公桌y 张,则根据题意可列方程组为⎩⎨⎧x +y =10500x +300y =4 200.教学设计授课类型新授课课时教学活动教学步骤师生活动设计意图回顾1.方程2x-3=1是一元一次方程,其解是x=2,有1个解.2.下列方程中,解为x=4的方程是(C)A.x-1=4 B.4x=1C.4x-1=3x+3 D.2(x-1)=1师生活动:学生独立完成,班内统一答案.师生共同回顾一元一次方程及其解.通过简单的提问,帮助学生回顾一元一次方程,为学习新课做好准备.活动一:创设情境、导入新课【课堂引入】活动一:对话老牛喘着气吃力地说:“累死我了!”小马说:“你还累?这么大的个,才比我多驮了2个.”老牛气喘吁吁地说:“哼,我从你背上拿来1个,我的包裹数就是你的2倍!”小马天真而不信地说:“真的?”它们各驮了多少包裹呢?设老牛驮了x个包裹,小马驮了y个包裹,你能得到怎样的方程?能列几个?问题1:老牛驮的包裹数比小马驮的多2个,由此你能得到怎样的方程?问题2:若老牛从小马背上拿来1个包裹,老牛的包裹数就是小马的包裹数的2倍,由此你又能得到怎样的方程?活动二:多媒体展示公园门票问题,学生认真观看图片,部分学生开始在练习本上计算.设他们中有x个成人,y个儿童,由此你能得到怎样的方程?根据学生的生活实际和认知实际,创设具体的问题情境,让学生经历建模的同时,调节心情,以相对轻松的状态进入后面的学习.活动二:【探究新知】习,抓住二元一次A.⎩⎪⎨⎪⎧x =4y =3B.⎩⎪⎨⎪⎧x =3y =6C.⎩⎪⎨⎪⎧x =2y =4D.⎩⎪⎨⎪⎧x =4y =2 例5 某旅店一共有70个房间,大房间每间住8个人,小房间每间住6个人,480个学生刚好住满.设大房间有x 个,小房间有y 个,则列出方程组为⎩⎪⎨⎪⎧x +y =708x +6y =480. 【变式训练】1.若(a -1)x +4y |a|=3是二元一次方程,则a =-1.2.小明在解题时发现二元一次方程□x-y =3中,x 的系数已经模糊不清(用“□”表示),但查看答案发现⎩⎪⎨⎪⎧x =-2,y =5是这个方程的一组解,则“□”表示的数为-4.师生活动:学生先独立思考并作答,然后分小组交流讨论,派学生代表进行讲解,教师最后进行完善. 活动四: 课堂检测【课堂检测】1.下列各组数中,不是x +y =5的解的是(B)A.⎩⎪⎨⎪⎧x =2y =3B.⎩⎪⎨⎪⎧x =1y =6C.⎩⎪⎨⎪⎧x =-2y =7D.⎩⎪⎨⎪⎧x =0y =5 2.在方程组⎩⎪⎨⎪⎧2x -y =1,y =3z +1;⎩⎪⎨⎪⎧x =2,3y -x =1;⎩⎪⎨⎪⎧x +y =0,3x -y =5;⎩⎪⎨⎪⎧xy =1,x +2y =3;⎩⎪⎨⎪⎧1x +1y =1,x +y =1中, 是二元一次方程组的有(A)A .2个B .3个C .4个D .5个3.下列各组数是二元一次方程组⎩⎪⎨⎪⎧x +3y =7,y -x =1的解的是(A)A.⎩⎪⎨⎪⎧x =1y =2B.⎩⎪⎨⎪⎧x =0y =1C.⎩⎪⎨⎪⎧x =7y =0D.⎩⎪⎨⎪⎧x =1y =-24.如图,设他们中有x 个成人,y 个儿童,根据图中的对话可得方程组(C)A.⎩⎪⎨⎪⎧x +y =3030x +15y =195B.⎩⎪⎨⎪⎧x +y =19530x +15y =8 针对本课时的主要问题,分层次进行检测,达到了解课堂学习效果的目的.。
人教版数学七年级下册知识重点与单元测-第八章8-1二元一次方程(组)的相关概念(能力提升)
第八章 二元一次方程(组)8.1 二元一次方程(组)的相关概念(能力提升)【要点梳理】知识点一、二元一次方程含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:二元一次方程满足的三个条件:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式.要点二、二元一次方程的解一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的一组解. 要点诠释:(1)二元一次方程的解都是一对数值,而不是一个数值,一般用大括号联立起来,如:2,5.x y =⎧⎨=⎩. (2)一般情况下,二元一次方程有无数个解,即有无数多对数适合这个二元一次方程.要点三、二元一次方程组把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.要点诠释:组成方程组的两个方程不必同时含有两个未知数,例如⎩⎨⎧=-=+52013y x x 也是二元一次方程组.要点四、二元一次方程组的解一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释:(1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成x ay b=⎧⎨=⎩的形式.(2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组2526x y x y +=⎧⎨+=⎩无解,而方程组1222x y x y +=-⎧⎨+=-⎩的解有无数个.【典型例题】 类型一、二元一次方程例1.已知方程(m ﹣2)x n ﹣1+2y |m﹣1|=m 是关于x 、y 的二元一次方程,求m 、n 的值.【答案与解析】解:∵(m ﹣2)x n ﹣1+2y |m﹣1|=m 是关于x 、y 的二元一次方程,∴n ﹣1=1,|m ﹣1|=1, 解得:n=2,m=0或2,若m=2,方程为2y=2,不合题意,舍去, 则m=0,n=2. 举一反三:【变式1】已知方程3241252m nx y +--=是二元一次方程,则m= ,n= . 【答案】-2,14【变式2】方程(1)(1)0a x a y ++-=,当______a a ≠=时,它是二元一次方程,当时,它是一元一次方程.【答案】1±;11-或 类型二、二元一次方程的解 例2.已知是方程2x ﹣6my+8=0的一组解,求m 的值.【答案与解析】 解:∵是方程2x ﹣6my+8=0的一组解,∴2×2﹣6m ×(﹣1)+8=0,解得m=﹣2. 举一反三:【变式】已知方程2x-y+m-3=0的一个解是11x m y m =-⎧⎨=+⎩,求m 的值.【答案】 解:将11x m y m =-⎧⎨=+⎩代入方程2x-y+m-3=0得2(1)(1)30m m m --++-=,解得3m =.答:m 的值为3.例3.写出二元一次方程204=+y x 的所有正整数解. 【答案与解析】解:由原方程得x y 420-=,因为y x 、都是正整数, 所以当4321, , , =x 时,481216, , , =y . 所以方程204=+y x 的所有正整数解为:⎩⎨⎧==161y x , ⎩⎨⎧==122y x , ⎩⎨⎧==83y x , ⎩⎨⎧==44y x .举一反三: 【变式1】已知是关于x 、y 的二元一次方程ax ﹣(2a ﹣3)y=7的解,求a 的值.【答案】 解:把代入方程ax ﹣(2a ﹣3)y=7,可得:2a+3(2a ﹣3)=7, 解得:a=2.【变式2】在方程0243=-+y x 中,若y 分别取2、41、0、-1、-4,求相应的x 的值.【答案】将0243=-+y x 变形得342yx -=. 把已知y 值依次代入方程的右边,计算相应值,如下表:类型三、二元一次方程组及解 例4.甲、乙两人共同解方程组51542ax y x by +=⎧⎨-=-⎩①②由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=-⎩.乙看错了方程②中的b .得到方程组的解为54x y =⎧⎨=⎩.试计算:20112010110a b ⎛⎫+- ⎪⎝⎭的值.【答案与解析】 解:把31x y =-⎧⎨=-⎩代入②,得-12+b =-2,所以b =10.把54x y =⎧⎨=⎩代入①,得5a+20=15,所以a =-1, 所以201120112010201011(1)101(1)01010ab ⎛⎫⎛⎫+-=-+-⨯=+-= ⎪ ⎪⎝⎭⎝⎭.举一反三:【变式】已知关于,x y 的二元一次方程组41323x ay x by x y +==⎧⎧⎨⎨+==-⎩⎩的解是 , 求的值a b +. 【答案】解:将13x y =⎧⎨=-⎩代入原方程组得:134332a b -=⎧⎨-+=⎩ ,解得113a b =-⎧⎪⎨=⎪⎩,所以23a b +=-.【巩固练习】一、选择题1.一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( ) A .5 个 B. 6 个 C.7 个 D.8 个2.方程2x ﹣=0,3x+y=0,2x+xy=1,3x+y ﹣2x=0,x 2﹣x+1=0中,二元一次方程的个数是( )A .5个B .4个C .3个D .2个3.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m 的值为( ) A .4B .﹣4C .D .﹣4.若5x -6y =0,且xy ≠0,则的值等于( )A .23 B. 32C.1D. -1 5.若x 、y 均为非负数,则方程6x=-7y 的解的情况是( ) A .无解 B.有唯一一个解 C.有无数多个解 D.不能确定6.在早餐店里,王伯伯买5个馒头,3个包子,老板少拿2元,只要50元.李太太买了11个馒头,5个包子,老板以售价的九折优待,只要90元.若馒头每个x 元,包子每个y 元,则下列哪一个二元一次联立方程式可表示题目中的数量关系? ( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩ D .53502115900.9x y x y +=-⎧⎨+=÷⎩二、填空题 7.已知方程3241252m nxy +--=是二元一次方程,则m =________,n =_________. 8.若方程组的解为,则点P (a ,b )在第象限.9.在13,72x y ⎧=⎪⎪⎨⎪=⎪⎩ 04x y =⎧⎨=⎩,21x y =⎧⎨=⎩,33x y =⎧⎨=⎩这四对数值中,是二元一次方程组32823x y x y +=⎧⎨-=⎩的解的是________ .10. 方程2x+3y=10 中,当3x-6=0 时,y=_________; 11. 方程|a |+|b |=2 的自然数解是_____________; 12.若二元一次方程组的解中,则等于____________.三、解答题13.请你写出一个二元一次方程组,使它的解是.14.甲、乙二人共同解方程组2623mx y x ny +=-⎧⎨-=-⎩①②由于看错了方程①中的m 值,得到方程组的解为32x y =-⎧⎨=-⎩;乙看错了方程②中的n 的值,得到方程组的解为52x y =-⎧⎨=⎩,试求代数式22m n m n ++的值.15.某球迷协会组织36名球迷租乘汽车赴比赛场地,为中国国家男子足球队呐喊助威,可租用的汽车有两种:一种是每辆车可乘8人,另一种是每辆车可乘4人.要求租用的车子不留空座,也不超载.(1)请你给出三种不同的租车方案;(2)若8个座位的车子租金是300元/天,4个座位的车子租金是200元/天,请你设计费用最少的租车方案,并简述你的理由.【答案与解析】一、选择题1. 【答案】B;2. 【答案】D;【解析】解:2x ﹣=0是分式方程,不是二元一次方程;3x+y=0是二元次方程;2x+xy=1不是二元一次方程;3x+y﹣2x=0是二元一次方程;x2﹣x+1=0不是二元一次方程.故选:D.3.【答案】【解析】把x=2,y=﹣3代入二元一次方程5x+my+2=0,得10﹣3m+2=0,解得m=4.4. 【答案】A;【解析】将5x=6y代入后面的代数式化简即得答案.5. 【答案】B;【解析】76x y=-可知:,x y异号或均为0,所以不可能同时为正,只能同时为0.6. 【答案】B;【解析】根据题意知,x,y同时满足两个相等关系:①老板少拿2元,只要50元;②老板以售价的九折优待,只要90元,故选B.二、填空题7. 【答案】-2,14;【解析】由二元一次方程的定义可得:31241mn+=⎧⎨-=⎩,所以214mn=-⎧⎪⎨=⎪⎩8.【答案】四【解析】:将x=2,y=1代入方程组得:,解得:a=2,b=﹣3,则P(2,﹣3)在第四象限.9. 【答案】21 xy=⎧⎨=⎩;【解析】把4组解分别代入方程组验证即可.10.【答案】2;【解析】将2x=代入2x+3y=10中可得y值.11.【答案】;12.【答案】-3∶4;【解析】将代入中,得,即;将代入,得,即,即.三、解答题13.【解析】解:答案不唯一,例如:∵,∴x+y=5, x-y=-1,∴所求的二元一次方程组可以是.14.【解析】解:将32xy=-⎧⎨=-⎩代入②中2(3)23n⨯-+=-,32n=.将52xy=-⎧⎨=⎩代入①中-5m+4=-6,m=2.∴229374344 m n mn++=++=.15.【解析】解:(1)设8个座位的车租x辆,4个座位的车租y辆.则8x+4y=36,即2x+y=9.∵ x,y必须都为非负整数,∴ x可取0,1,2,3,4,∴ y的对应值分别为9,7,5,3,1.因此租车方案有5种,任取三种即可.(2)因为8个座位的车座位多,相对日租金较少,所以要使费用最少,必须尽量多租8个座位的车.所以符合要求的租车方案为8个座位的车租4辆.4个座位的车租1辆,此时租车费用为4×300+1×200=1400(元).。
兴山县二中七年级数学下册第八章二元一次方程组8.1二元一次方程组教案新版新人教版
8.1 二元一次方程组1.理解二元一次方程、二元一次方程组和它们的解的含义,并会检验一对数是不是某个二元一次方程组的解.2.学会用类比的方法迁移知识,体验二元一次方程组在处理实际问题中的优越性,感受学习数学的乐趣.重点理解二元一次方程组的解的意义.难点求二元一次方程的正整数解.一、创设情境,引入新课古老的“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡、兔各几何?”解:设鸡有x 只,则兔有(35-x)只,则可列方程:2x +4(35-x)=94,解得:x =23,则鸡有23只,兔有12只.二、尝试活动,探索新知1.讨论二元一次方程、二元一次方程组的概念.教师提问:上面的问题可以用一元一次方程来解,那么还有其他方法吗?设有x 只鸡,y 只兔,依题意得:x +y =35 ①2x +4y =94 ②针对学生列出的这两个方程,教师提出如下问题:(1)你能给这两个方程起个名字吗?(2)为什么叫二元一次方程呢?(3)什么样的方程叫二元一次方程呢?教师结合学生的回答,板书定义1:含有两个未知数,并且未知数的指数都是1的方程,叫做二元一次方程.同时教师引导学生利用一元一次方程进行知识的迁移和类比,让学生用原有的认知结构去同化新知识,符合建构主义理念.教师追问:在上面的问题中,鸡、兔的只数必须同时满足①、②两个方程.把①、②两个二元一次方程结合在一起,用大括号来连接.我们也给它起个名字,叫什么好呢?⎩⎪⎨⎪⎧x +y =35,2x +4y =94. 学生思考,教师板书定义2:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.2.讨论二元一次方程、二元一次方程组的解的概念.探究活动:满足x +y =35,且符合问题的实际意义的值有哪些?请填入表中.教师启发:(1)若不考虑此方程与上面实际问题的联系,还可以取哪些值?(2)你能模仿一元一次方程的解给二元一次方程的解下定义吗?(3)它与一元一次方程的解有什么区别?教师板书定义3:使二元一次方程两边相等的两个未知数的值,叫做二元一次方程的解,记为⎩⎪⎨⎪⎧x =a ,y =b. 二元一次方程组的两个方程的公共解叫做二元一次方程组的解.注意:二元一次方程组的解是成对出现的,用大括号来连接,表示“且’.三、例题讲解【例】 下列各对数值中不是二元一次方程x +2y =2的解的是( )A .⎩⎪⎨⎪⎧x =2,y =0B .⎩⎪⎨⎪⎧x =-2,y =2 C .⎩⎪⎨⎪⎧x =0,y =1 D .⎩⎪⎨⎪⎧x =-1,y =0 解法分析:将A 、B 、C 、D 中各对数值逐一代入方程检验是否满足方程,选D .变式练习:上题中的选项是二元一次方程组⎩⎪⎨⎪⎧x +2y =2,2x +y =-2的解的是( ) 解法分析:在例题的基础上,进一步检验A 、B 、C 、D 中各对值是否满足方程2x +y =-2,使学生明确认识到二元一次方程组的解必须同时满足两个方程.四、巩固练习1.根据下列语句,列出二元一次方程:(1)甲数的一半与乙数的3倍的和为11;(2)甲数和乙数的2倍的差为17.2.方程x +2y =7在自然数范围内的解( )A .有无数组B .有一组C .有两组D .有四组3.若mx +y =1是关于x ,y 的二元一次方程,那么( )A .m ≠0B .m =0C .m 是正有理数D .m 是负有理数【答案】 1. (1)0.5x +3y =11 (2)x -2y =172. D3. A五、课堂小结本节课学习了哪些内容?你有哪些收获?(什么叫二元一次方程?什么叫二元一次方程组?什么叫二元一次方程组的解?)本课的设计是从提出“鸡兔同笼”的求解问题入手,让学生经历了从不同角度寻求不同解决方法的过程,体现了解决问题策略的多样性,以列一元一次方程求解衬托出列二元一次方程组求解的优越性,更使学生感到二元一次方程组的引入顺理成章,所以本课的整体设计,突出了一元一次方程的样板作用,让学生在类比中,主动迁移知识,建立新的概念,使得基础知识和基本技能在学生的头脑中留下较深刻的印象.2 探索轴对称的性质【知识与技能】掌握轴对称的性质,学会运用轴对称性质作图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备课教师潘家勇学科数学年段七年级课题8.1二元一次方程组时间2013.5.27
教学目标知识与技能
1、使学生了解二元一次方程的概念,能把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式,能举例说明二元一次方程及其中的已知数和未知数;
2、使学生理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。
过程与方法
学会用类比的方法迁移知识,体验二元一次方程组在处理实际问题中的优越性。
情感、态度与价值观
通过对二元一次方程(组)的概念的学习,感受数学与生活的联系,感受数学的乐趣
教学重点二元一次方程(组)的含义及检验一对数是否是某个二元一次方程(组)的解,用一个未知数表示另一个未知数
教学难点二元一次方程组的解的含义及用一个未知数表示另一个未知数
教学步骤教学手段
学法指导
一、板书课题,揭示目标
今天我们来学习“8.1二元一次方程组”,本节课的学习目标为:
1.理解二元一次方程(组)的概念;
2.二元一次方程(组)的含义及检验一对数是否是某个二元一
次方程(组)的解,用一个未知数表示另一个未知数。
教师出示学习目标,学生观察学习目标
二、指导自学
自学指导
请认真看P.92—94的内容.思考:1、在P.92引例中,你能
用一元一次方程解吗?对于引例中的这两种解法:一种是设一个未知
数,另一种是设两个未知数,哪种解法更好理解呢?
2、对于第二种解法,列出了两个方程,这两个方程与我们前面
学习过的一元一次方程有什么异同点?
3、把两个二元一次方程合在一起,就形成一个二元一次方程组,
是通过什么符号实现的?
4、二元一次方程组的相同的字母它们所表示的意义能不一样
吗?任意两个二元一次方程都能组成二元一次方程组吗?
5、二元一次方程组的解与一元一次方程的解它们有什么异同
点?
5分钟后,比谁能说出以上问题答案.
三.学生自学
1.学生按照自学指导看书,教师巡视,确保人人学得紧张高效.
2.检查自学效果
自学检测题
1、3x +2y =6,它有______个未知数,且求知数是___次,因此是_____元______次方程
2、3x=6是____元____次方程,其解x=_____,有______个解,3x +2y =6,当x=0时,y=_____;当x=2时,y=_____;当y=5时,x=____
(因此,使二元一次方程左右两边相等的______个未知数的值,叫作二元一次方程的解。
由此可知,二元一次方程的解是由两个未知数的值组成。
想想,二元一次方程的解固定吗?)
3、3x +2y =6,通过怎样的变化可使x =_____ ,如用x 来表示y ,则y =__________
4、x+2y=3, 用x 表示y=________;用y 表示x=________
5、下列各式是不是二元一次方程:
○1 3x +2y ○2 2-x+3+5=0 ○3 3x-4y=z
○4 x+xy=1 ○5x 2+3x=5y ○67x-y=0
6、下列方程组是不是二元一次方程组
⎩⎨⎧=+=+75243)1(y x y x ⎩
⎨⎧=+=7524)2(y x xy ⎩⎨⎧=+=+7243)3(z x y x ⎩⎨⎧=+=+7
5243)4(2y x y x 7、以下4组x 、y 的值,哪组是⎩
⎨⎧-=+=-4272y x y x 的解?( ) A .⎩⎨⎧-==51y x B .⎩⎨⎧-==20y x C .⎩⎨⎧-==32y x D .⎩⎨⎧-==1
3y x 8、把下列方程中的y 用x 表示出来:
(1)y +2x=0 (2) 3y-4x=6
9、二元一次方程组是由两个二元一次方程组成的吗?请举例说明。
请同学们先独立完成,再小组交流,交换解法.
四.讨论更正,合作探究
1.学生自由更正,或写出不同解法;
2.评讲
①涉及二元一次方程(组)的概念问题时,要注意二元、一次,整式三方面考查;
②数学概念是数学的基础与出发点,当遇到与方程的解相关的问题时,要回到定义中去;
③在求二元一次方程的整数解时,往往采用“给一个,求一个”的方法
五、课堂小节,作业布置
1、小结(以提问进行):
(1)、二元一次方程(组)的特征是什么?
(2)、二元一次方程组的解要满足什么条件?
2、作业
必做题:P95、1、2、3
选做题:P95、4、5。