聚苯并咪唑树脂的合成与性能研究
A-O-34_新型可溶性聚苯并咪唑的合成与性能研究
新型可溶性聚苯并咪唑的合成与性能研究 徐静,刘程 ,蹇锡高(大连理工大学高分子材料系,大连市中山路158号42信箱,116012) 关键词: 聚苯并咪唑 二氮杂萘酮 耐热性 溶解性聚苯并咪唑(Polybenzimidazole )是一类重要的特种工程塑料,具有优异的热稳定性、阻燃性、耐腐蚀性和机械性能等特点[1-2],广泛应用于航空航天、电子电气等领域。
聚苯并咪唑通常具有刚性的主链结构,导致其具有很高的熔点以及溶解性差的缺点,如商品化的聚苯并咪唑是由间苯二甲酸和3,3’-二氨基联苯二胺缩聚合成的,具有刚性结构,而且加工性差,使其应用范围受到一定的限制。
在分子主链中引入柔性基团(如醚键、砜基、烷基等)[3-5]或体积较大的基团[6]等可以改善聚苯并咪唑的溶解性,但会降低其耐热性能;也有文献报道了将咪唑环上的氢进行芳环取代可以提高聚苯并咪唑的耐热和氧化稳定性[7];除此之外,在聚合物主链中引入芳杂环结构可以提高聚合物的耐热性能,如吡啶、三唑等[8]。
本文通过在聚苯并咪唑的分子主链中引入扭曲、非公平面二氮杂萘酮联苯结构,以改善其溶解性能,同时赋予其优异的耐热性,报道了一系列新型含二氮杂萘酮联苯结构的聚苯并咪唑均聚物和共聚物的合成、表征和性能。
PPBI NH N NN H O N N O n N H N N H N NN HH NN O N N O coPPBI m n Scheme 1 Structures of polybenzimidazole containing phthalazinone moiety (PPBI and coPPBI ) 本文采用溶液缩聚法合成聚苯并咪唑,以自制的二酸单体4-[4-(4-羧基苯氧基)苯基]-2-(4-羧基苯基)二氮杂萘-1-酮(DHPZ-DA ),为二酸单体,与3,3’-二氨基联苯胺(DAB )进行缩聚反应,制备了含二氮杂萘酮联苯结构聚苯并咪唑均聚物(PPBI );并以DHPZ-DA 和间苯二酸(IPA )为二酸单体,采用不用摩尔配比,与DAB 进行共缩聚(coPPBI ),制备了一系列具有不同二氮杂萘酮联苯结构含量的聚苯并咪唑共聚物。
聚苯并咪唑的合成及应用研究进展
V ol 36N o 8 36 化 工 新 型 材 料N EW CH EM ICAL M A T ERIA L S 第36卷第8期2008年8月作者简介:马涛(1978-),男,兰州大学高分子化学与物理专业在读博士,师承李彦锋教授,从事于耐高温高分子材料的研究。
联系人:李彦锋。
聚苯并咪唑的合成及应用研究进展马 涛 李彦锋* 赵 鑫 邵 瑜 宫琛亮 杨逢春(兰州大学化学化工学院,兰州大学生物化工及环境技术研究所,兰州730000)摘 要 介绍了国内外有关聚苯并咪唑高分子材料的研究状况。
论述了聚苯并咪唑的发展,二元酸和四胺单体的合成方法、聚合工艺、种类及国内外应用状况,并对聚苯并咪唑的发展方向和研究热点进行了分析。
关键词 聚苯并咪唑,单体合成,聚合,应用Progress on synthesis and application of polybenzimidazolesM a Tao Li Yanfeng Zhao Xin Shao Yu Go ng Chenliang Yang Feng chun (College of Chemistr y and Chemical Eng ineering ,Institute of Biochemical Eng ineering &Environmental Technolog y,Lanzhou U niversity ,Lanzhou 730000)Abstract T he pro g ress of polybenzim idazoles was reviewed.T he char act er o f polybenzimizo les on phylog eny ,monomer,poly merization technolog y,and applicatio ns w ere detailedly descr ibed,meanwhile,the develo pments of po ly benzim izo les w ere obviously presented.Key words po ly benzimidazo le,monomer sy nthesis,polymer ization,applicat ion随着航天技术的发展,特别是航天器飞行速度和有效载荷与结构质量比的提高,耐高温先进复合材料正在成为最主要的航天结构新材料。
苯并咪唑研究进展
苯并咪唑合成研究进展摘要:苯并咪唑类化合物具有广泛的生物活性, 如抗癌、抗真菌、消炎、治疗低血糖和生理紊乱等, 在药物化学中具有非常重要的意义; 并可用于模拟天然超氧化物歧化酶(SOD)的活性部位研究生物活性, 以及环氧树脂新型固化剂、催化剂和某些金属的表面处理剂, 还可作为有机合成反应的中间体等。
绿色合成苯并咪唑化合物显得尤为重要。
本文主要讲述了苯并咪唑的合成方法,以及在离子鉴定、航空航天等方面的应用介绍。
关键词:苯并咪唑配合物合成应用1合成苯并咪唑类化合物1.1以邻苯二胺和羧酸(及其衍生物)为原料的合成继1872年Hoebrecker首次合成第一个苯并咪唑类化合物2,5-二甲基苯并咪唑(1)后, Ladenburg用乙酸和4-甲基邻苯二胺加热回流, 也同样得到化合物1 。
从此, 邻苯二胺衍生物和有机酸的关环反应就成为苯并咪唑类化合物制备最通用的方法, 但通常需要很强的酸性条件[常采用HCl、多聚磷酸(PPA)、混酸体系、对甲苯磺酸等作为催化剂]和很高的反应温度[1].1986 年Gedye 等[2]首次报道了微波作为有机反应的热源, 具有速度快、产率高、污染少、安全性高等优点。
例如, 路军等[3]在无溶剂条件下, 利用微波间歇加热合成苯并咪唑衍生物。
只需反应8 min, 产率一般可达64%~88%。
Zhang[4]成功报道了以邻苯二胺和原酸酯为原料合成苯并咪唑类化合物.。
他们用路易斯酸为催化剂,在乙醇溶剂中室温搅拌进行反应, 合成条件比较温和.当以ZrCl4为催化剂时, 反应2h, 产率为95%. 用相同的原料, 他们[5]还研究了用磺酸作为催化剂, 在甲醇体系中室温下合成苯并咪唑类化合物, 产率达到96%, 反应时间也缩短为1h。
1.2液相合成考虑到载体合成的某些缺点, 研究者们对同样以卤代硝基苯为原料的传统液相合成法也比较重视. 例如,Raju 等[6]报道了在室温下用邻氟取代硝基苯合成含硫和含氧的取代苯并咪唑. 与别人不同的是, 在还原芳环上的硝基时, 他们用的是Raney Ni 的甲醇溶液, 最后在THF 溶液中进行关环缩合反应。
聚苯并咪唑树脂的合成与性能研究
II
聚..............................................1
1.1 聚苯并咪唑树脂的概述.....................................................................................................1 1.2 聚苯并咪唑的发展概况.....................................................................................................1 1.3 合成聚苯并咪唑的主要单体与工艺.................................................................................3
学校代码 10530 分 类 号 O633.5
学 号 200706020975 密级
硕士学位论文
聚苯并咪唑树脂的合成与性能研究
学位申请人 指导教师 学院名称 学科专业 研究方向
张海 林原斌 教授
化学学院 有机化学 精细有机合成
二零一零年 五 月 二十 日
Study on the Preparation and Performance of Polybenzimidazole resin
作者签名:
日期: 年 月 日
学位论文版权使用授权书
本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意 学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文 被查阅和借阅。本人授权湘潭大学可以将本学位论文的全部或部分内容编 入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇 编本学位论文。
3_3_4_4_四氨基二苯醚的合成及聚苯并咪唑树脂的制备
作者简介:虞鑫海,男,1969年生,博士。
主要从事耐高温高分子材料及其单体合成,以及合成纤维成形机理、电缆屏蔽带、胶粘剂、聚酰亚胺新材料等方面的研究开发工作,在国内外发表科技论文20余篇,发明专利2项。
3,3’,4,4’-四氨基二苯醚的合成及聚苯并咪唑树脂的制备虞鑫海(上海化学试剂研究所,上海 200333)摘 要 以4,4’-二氨基二苯醚(4,4’-DADPE )单体为起始原料,通过多步反应合成得到了理想的3,3’,4,4’-四氨基二苯醚(TADE )目标产物,同时,利用F TIR 光谱技术、熔点测试技术、核磁共振技术对其进行了表征。
另外,基于TADE 单体,在亚磷酸三苯酯(TPP )的催化作用下,进一步聚合得到了聚苯并咪唑树脂(PB I )。
关键词 3,3’,4,4’-四氨基二苯醚,聚苯并咪唑树脂,合成,表征Syntesis of 3,3’,4,4’-tetraaminodiphenyl etherand polymerization of polybenzimidazole resinYu Xinhai(Shanghai Chemical Reagent Research Institute ,Shanghai 200333)Abstract Based on the original material of 4,4’-diamino diphenyl ether (4,4’-DADPE )monomer ,the desired ob 2jective product of 3,3’,4,4’-tetraamino diphenyl ether (TADE )monomer was synthesized by multistep reactions.Mean 2while ,the obtained TADE monomer was characterized b y FTIR spectroscopy technology ,melting point testing technology and nuclear magnetic resonance (NMR )technology.Moreover ,the polybenzimidazole resin (PBI )from TADE monomer and diphenyl isophthalate (DPIP )monomer was further polymerized in the present of triphenyl phosphite (TPP )catalyst.K ey w ords 3,3’,4,4’-tetraaminodiphenyl ether ,polybenzimidazole resin ,synthesis ,characterization 随着航天技术的发展,特别是航天器飞行速度和有效载荷与结构质量比的提高,耐高温先进复合材料正在成为最主要的航天结构新材料。
一种聚苯并咪唑类树脂的制备方法
专利名称:一种聚苯并咪唑类树脂的制备方法专利类型:发明专利
发明人:沈晶茹,李利红
申请号:CN202111185144.5
申请日:20211012
公开号:CN114058013A
公开日:
20220218
专利内容由知识产权出版社提供
摘要:本发明公开了一种聚苯并咪唑类树脂的制备方法,是由具有式2所示化学结构的芳族四胺与具有式3所示化学结构的六氯丙酮在反应溶剂中、于45~55℃下反应得到具有式1所示化学结构的聚苯并咪唑类树脂,其化学反应式如下:其中,R为四价芳基核,化合物2中的四个氨基成对出现在R中相邻碳原子的邻位碳原子上,n选自10至100中的任一整数。
本发明提供的制备方法,芳族四胺与六氯丙酮在45~55℃下反应即可制得聚苯并咪唑类树脂,操作简单,绿色环保、反应条件温和、生产效率高,适用于工业化生产聚苯并咪唑类树脂。
申请人:上海工程技术大学
地址:201620 上海市松江区龙腾路333号
国籍:CN
代理机构:上海海颂知识产权代理事务所(普通合伙)
代理人:马云
更多信息请下载全文后查看。
可溶性共聚型聚苯并咪唑的合成及性能
和热 重分 析等 手段对 聚合 物 的结构 及热 性能 进行 了分 析 ,同时研 究 了聚合 物 的溶 解性 、成膜 性 及 聚合 物薄 膜 的力学 性能 .结 果表 明 , 所得 到 的共 聚型 P I 有 良好 的 溶解 性 和 热 稳定 性 ,并且 具 有 很好 的 B具 成膜 性 , 聚合 物膜 具有很 高 的力学 强度 .
收稿 日期 : 0 90 -8 2 0 -92 .
基金项 目:国家 自然科学基金 ( 批准号 : 0 7 0 2 资助. 5 93 6 ) 联 系人简介 : 宏杰 , , 士 , 徐 女 博 高级工程 师,主要从事有机及高分子合成 、 微电子及光电材料 、 燃料电池 用质 子交换膜材料研究
盛 丽 ,徐 宏 杰 ,房 建 华 ,印 杰
( 上海交通大学化学化 工学 院 , 金属基复合材料 国家重点实验 室 , 上海 2 0 4 ) 02 0 摘要 以对苯 二酚 和对氟苯 甲腈 为原料 , 合成了 14二 ( 一 ,- 4羧基苯 氧基 ) , 与实 验 部分
1 1 试剂 与仪器 .
3 3 . 氨基 联 苯 胺 ( A ,纯 度 9 % ,A rs 司 ;4 4 . 羧 酸 二 苯 醚 ( C P 、甲基 磺 酸 , 二 D B) 9 co 公 , 二 D D E) ( A) MS 、二 甲基 亚砜 ( MS 、 D O) 对苯 二酚 、 氟 苯 甲腈 、碳 酸 钾 、氢 氧 化 钾 、 酸 氢 钠 、乙二 醇 、』 甲 对 碳 V 一 基 吡 咯烷酮 ( M ) Ⅳ, _ 甲基 乙酰胺 ( MA ) 均为 分析 纯试 剂 ,上海 化 学试 剂 公 司.溶剂 P MA N P和 Ⅳ二 D c等 P
Vo . 1 3l
21 0 0年 7月
聚苯并咪唑材料及其展望
聚苯并咪唑材料及其展望杨金田(湖州师范学院化学系,浙江湖州313000)随着航天技术的发展,特别是航天器飞行速度和有效载荷与结构质量比的提高,对低密度、高强度、高模量、耐高温的先进复合材料的需求越来越多。
常规的耐高温基体树脂(如双马来酰亚胺树脂、聚酰亚胺树脂)一般只能在300℃以下使用,因此无法满足上述特殊领域的使用要求。
聚苯并咪唑(PBI)正是在此背景下应运而生的一类芳杂环聚合物,被认为是新一代高强度、高模量、耐高温高分子材料的代表之一。
PBI耐热性高、阻燃性好,在空气中几乎完全不燃烧。
长期使用温度达300~370℃,瞬间可耐500℃以上高温。
在400℃以上的高温条件下仍具有优良的力学性能、电学性能、耐低温性、自润滑性、耐辐射性、耐水解性、阻燃耐烧蚀性和良好的高温弯曲强度[1~2],因此倍受青睐。
1聚苯并咪唑的发展历程PBI原指主链上连接苯并咪唑侧基的聚合物。
早在上世纪20年代,人们就研究在生化、催化剂、炼油以及橡胶、纤维和涂料等领域使用的N-乙烯基、2-乙烯基和5-乙烯基苯并咪唑类聚合物和共聚物[3~5]。
50年代中期以后,人们把越来越多的兴趣投入主链结构型PBI中,主要由芳香族四胺与二元羧酸通过缩聚反应来制备PBI。
Dupont 公司的Binker和Robinson等人对3,3′,4,4′-联苯四胺及各种双-(邻二氨基苯基)烷烃与一系列脂肪族二元羧酸之间的缩合反应进行了广泛研究[6];Marvel与V ogel、Mulvaney 等人合成了全芳型的PBI,并将硅氧烷单元引入PBI中[7];70年代,Yoel Tsur等人研究了分子结构对芳香脂肪型PBI树脂性能的影响,得出间苯二甲酸和间苯二乙酸以3:1摩尔比混合后与3,3′-二氨基联苯胺反应所得到的PBI树脂具有最佳耐热性、加工性以及耐高温氧化性等性能[8];90年代,Richard W Thies等开发了双酚A型PBI,制得了性能优良的气体分离膜和中空纤维,较大地改善了其加工性能[9];近几年来,基于PBI 的酸、碱、二氧化硅或杂多酸掺杂膜以及接枝膜的研究较多,采用磺化单体直接聚合制备磺化度可控的磺化PBI的研究也有部分报道[10~13]。
聚苯并咪唑胶粘剂的合成
聚苯并咪唑胶粘剂的合成一、聚苯并咪唑的合成及性能聚苯并咪唑是杂环高分子中第一个被考虑作为耐高温结构胶粘剂的,它是从3,3’-二氨基联苯胺(DAB)和间苯二甲酸二苯酯进行熔融缩聚反应制得。
合成聚苯并咪唑的方法除熔融缩聚以外,还可以用溶液缩聚方法合成,而不同方法制备的聚苯并咪唑,其粘度也不相同。
聚苯并咪唑的特点是瞬时耐高温性优良,在538℃不分解,而聚酰亚胺的分解温度比它低。
到目前为止,研究得比较多的是聚[2,2’-间苯基-5,5’-二苯并咪唑]。
它的预聚物能溶于二甲基甲酰胺(DMF)、二甲基乙酰胺(DMAc)、二甲基亚砜(DMSO),N-甲基吡咯酮(NMP)、六次甲基磷酰胺(HMPA)、甲酸、硫酸等强极性溶剂中。
在70%硫酸或25%氢氧化钾溶液中不分解,在浓盐酸中加热也不溶解。
但预聚物再400℃处理一段时间待固化完全后,分子量增大,溶解度降低,就成为不溶不熔的树脂而难以加工成型。
因此在应用过程中先制成低分子量的预聚物。
这种低分子量的预聚物,具有比较好的流动性和对基材的浸润性。
作为胶粘剂和复合材料所需的树脂,一般是二聚体和三聚体,不过这就意味着在进一步缩合中会产生挥发分(水与苯酚),致使胶层及界面上出现针孔。
若大面积胶接则必须在高温(399℃)和加压0.686MPa下固化。
研究表明聚苯并咪唑核上NH的H原子是氧化破坏的活性中心,如用苯基C6H5-或甲基CH3-来取代该H原子,则高聚物的性能发生一定的变化。
当R=C6H5-时,热稳定性比未取代的略佳,但高聚物是热塑性的,应力受到了限制。
研究还表明甲基的取代位置对高聚物的性能有很大的影响,此外,在聚苯并咪唑的主链中引入氧、硫、亚甲基或其他基团可以改变聚苯并咪唑的性能。
比如引入醚键可以增加聚苯并咪唑的溶解性和分子链的柔性,改进成膜性能,还有良好的耐热性,但醚键的位置对热稳定性有一定的影响。
间苯二乙酸和间苯二甲酸混合物与DAB起反应制得的高聚物性能较好,溶解性也有改进,所有聚合反应都是在170℃多聚磷酸(PPA)中进行的。
聚苯并咪唑的合成_性能及在燃料电池膜材料中的应用_浦鸿汀
[ 22 ]
[ 15 ]
[ 23 ][ 23 ]源自[2][ 23 ][ 24 ] [2]
[ 24 ]
[ 16 ]
参考文献 [ 17 ] [7] [7] [7] [ 18 ] [ 18 ]
[ 19 ]
[ 20 ]
[ 16 ]
·12 ·
R1 为
;
R2 为以下结构
—CH2 —
CH3
—( CH2 —) 2 C
反应温度与时间
400 ℃,1h
第一步 :270 ℃,115h ;第二步 :360 ℃,110h
副产物
水
苯酚和水
是否发泡
不发泡
由反应过程决定
催化剂
使用催化剂
可选择是否使用催化剂
成本
中等
高
112 溶液聚合法 溶液聚合法是先将四胺或四胺盐酸盐加到多聚磷酸 ( PPA) 中 ,氮气保护 ,加热搅拌使之溶解 ,然后加
亲核取代法是通过先合成含有苯并咪唑环的有亲核取代位的中间体 ,然后在碱性条件下和醇反应得 到 PBI。亲核取代法的优点是反应单体较易制备 ,扩大了可得到的 PBI 种类 。缺点为相对直接缩聚法来 说 ,亲核反应法对反应过程中生成的小分子物质的去除要求更为严格 。Harris 等[14] 用可以自聚合的单体 来合成聚苯并咪唑 ,先合成出一种特定的单体 ,其中含有卤素原子 、羟基和苯并咪唑单元 ,然后将这种单 体自聚合 ,羟基和卤素亲核取代反应得到聚苯并咪唑 。
一种硼酸取代的聚苯并咪唑聚合物及其制备方法
一种硼酸取代的聚苯并咪唑聚合物及其制备方法嘿,朋友们!今天咱要来聊聊一种特别有意思的东西,那就是硼酸取代的聚苯并咪唑聚合物。
这玩意儿可神奇啦!你想想看啊,聚合物就像是一个大家庭,里面有各种不同的成员。
而硼酸取代的聚苯并咪唑聚合物呢,就是这个大家庭中很独特的一位。
它有着自己独特的性格和本领。
先来说说它的制备方法吧。
这就好比是做菜,得有合适的食材和步骤。
首先呢,得准备好各种原料,就像做菜要准备好蔬菜、肉类啥的。
然后呢,通过一系列巧妙的操作,让这些原料发生反应,就像把菜在锅里翻炒一样。
最后,神奇的事情发生了,就得到了我们想要的硼酸取代的聚苯并咪唑聚合物。
这过程可不简单啊!就像你要盖一座漂亮的房子,得精心设计、仔细施工。
要是有一个环节出了差错,那可就麻烦啦!但一旦成功了,那可真是让人兴奋不已。
你说这硼酸取代的聚苯并咪唑聚合物有啥用呢?嘿,用处可大了去了!它就像是一把万能钥匙,可以打开很多神奇的大门。
比如说,在一些高科技领域,它能发挥重要作用呢。
它可以让一些材料变得更坚固、更耐用,就像给它们穿上了一层坚固的铠甲。
而且哦,它还可能在未来给我们带来更多的惊喜呢!说不定哪天,你就会发现身边到处都有它的身影。
也许你的手机变得更轻薄、更耐用了,也许一些新的高科技产品因为它而诞生了。
咱再回过头来想想,这一切是多么神奇啊!从一些普通的原料,经过一系列复杂的过程,最后变成了这么厉害的硼酸取代的聚苯并咪唑聚合物。
这难道不像是一场奇妙的魔法吗?真的,朋友们,科技的力量就是这么强大。
它能让我们看到以前想都不敢想的事情。
这硼酸取代的聚苯并咪唑聚合物就是一个很好的例子。
所以说啊,大家可别小看了这些看似普通的东西,它们背后可能隐藏着巨大的潜力和惊喜呢!让我们一起期待着硼酸取代的聚苯并咪唑聚合物在未来能给我们带来更多的精彩吧!。
聚苯并咪唑PBI的制备及性能研究
N-alkyl polybenzimidazole:Effect of alkyl chainlengthSudhangshu Maity,Arindam Sannigrahi,Sandip Ghosh,Tushar Jana ⇑School of Chemistry,University of Hyderabad,Hyderabad,Indiaa r t i c l e i n f o Article history:Received 10December 2012Received in revised form 26March 2013Accepted 13May 2013Available online 6June 2013Keywords:PolybenzimidazoleProton exchange membrane Fuel cell Membrane Polyelectrolytea b s t r a c tDespite the presence of bulk literature on polybenzimidazole (PBI),unavailability of readily soluble and processable PBI remains as the tallest challenge for the end-use.N-alkyl PBIs (N-PBIs)were synthesized by grafting the alkyl chain in the imidazole backbone to resolve this key constrain.The chain length of substituted alkyl groups was varied to evaluate the influence of chain size on the structures and properties of N-PBIs.Significant enhancement of solubility of N-PBIs compared to parent PBI in formic acid offered the opportunity to fab-ricate the homogeneous mechanically tough membranes with minimal efforts.The substi-tuted long alkyl chains pushes apart the PBI chains and hence increases the face-to-face packing distance by breaking the self-association between the chains;resulted into less rigid highly soluble N-PBIs.Alkyl chain length dependent weight loss at $300°C,presence of two glass transition temperatures and peculiar deep rubbery modulus in storage mod-ulus vs.temperature plots resembled the copolymer molecular structure of N-PBIs.Hydro-phobic character of alkyl chains and loosely packed structure of N-PBIs facilitated decrease in water uptake and swelling of the N-PBI membranes compared to parent PBI membrane.The temperature dependent proton conductivity of PA loaded N-PBIs membranes were found to be satisfactory.Ó2013Elsevier Ltd.All rights reserved.1.IntroductionDue to large demand of efficient,powerful and eco-friendly source of energy devices,polymer electrolyte membrane fuel cell (PEMFC)has become the one of the most promising candidate for mobile and as well as sta-tionary applications.Although varieties of PEMs are known to the literature,till today the perfluoro sulfonic acid based membrane (Nafion)[1]is mostly used despite of many drawbacks like its high cost and relatively low stability at high temperature etc.As an alternative of Nafion,recently phosphoric acid (PA)doped polybenzimidazole (PBI)mem-brane [2]has been used and found to be the best alterna-tive because of unique properties such as excellent thermo-chemical and mechanical stability [3],high proton conductivity up to 180°C,zero water osmotic drag coeffi-cient etc.[4–6].However,one of the major drawbacks of PBI is its poor solubility in common organic solvents.It is soluble in only highly polar solvents like N ,N -dimethyl acetamide (DMAc),N ,N -dimethyl formamide (DMF),1-methyl-2-pyrrolidone (NMP),dimethyl sulfoxide (DMSO)at higher temperature [7–9].Hence,structural modifica-tion of the PBI polymer to increase the solubility and pro-cessability in common organic solvents and low boiling solvents is one of the key challenge to be addressed for the development of PBI based PEMFC.Till today many research groups made efforts to produce different types of PBI structure like poly(2,5-benzimidazole)(AB-PBI)[10],sulfonated PBI [11–13],hyperbranched poly-benzimidazole [14],crosslinked polybenzimidazole [15],pyridine based polybenzimidazole [16],N-substituted poly-benzimidazole [17–31]etc.Unfortunately,the solubility and processability of PBI as discussed above were not re-solved very satisfactorily.Among various efforts,it has been noticed that substitution on the A N atoms of the imidazole rings of the PBI backbone by appropriate functionalities re-sulted better solubility and processability of PBI in common organic solvents.Synthetically,PBI can be modified in two ways either by modification of monomers or substitution0014-3057/$-see front matter Ó2013Elsevier Ltd.All rights reserved./10.1016/j.eurpolymj.2013.05.011⇑Corresponding author.Tel.:+914023134808;fax:+914023012460.E-mail addresses:tjsc@uohyd.ernet.in ,tjscuoh@ (T.Jana).(grafting)to the A N atoms of mother PBI.PBI backbone has highly rigid rod aromatic structure which influences and controls the crucial physical properties of PBI.Upon grafting the PBI chain rigid structure might get affected which in turn may alters the mechanical strength,thermal stability and other physical properties.The chainflexibility which en-hances the solubility of polymer can be adjusted by intro-ducing theflexible group[32,33]in the polymer backbone or by substitution in the A N atoms with alkyl[30],alkyl sul-fonate[34]or benzene sulfonate[24]groups.However,a careful optimization has to be made between the chainflex-ibility and thermo-mechanical stability.Imidazolium hydrogens are acidic in nature;in each repeat unit backbone has two substitutable hydrogen atoms.So,when DMAc solution of PBI treated with alkali hydride like NaH at higher temperature,it forms a polyanion and then one can do sub-stitution reaction with electrophile like R A CH2A X.Earlier,it has been reported that the degree of substitu-tion does not depend on the concentration of alkali hydride and electrophile[23].However,the effect of electrophile molecular size or other words the effect of alkyl chain length in case the electrophile is alkyl halide on the degree of substitution has not been studied.PBI has very high glass transition temperature(T g>400°C)attributing the rigid structure which resulting poor solubility.The very small free volume because of intra and inter hydrogen bonding in PBI are found to be the main reason for high T g and less solubility.It can be hypothesized that grafting of long alkyl chain in the PBI backbone may decrease the packing density and thereby increase the free volume by disrupting the hydrogen bonding which in turns decrease the T g and increase theflexibility of PBI.Earlier,in few re-ports it was observed that T g can be decrease with grafting [25],unfortunately no systematic study has been carried out to understand the effect alkyl chain length size on the T g and other physical properties.Also it will be inter-esting to analyze the effect of alkyl chain length on the properties of PA doped N-PBI.In this paper,we have synthesized a series of N-alkyl grafted(ethyl,pentyl,hexyl,heptyl,octyl,decyl,dodecyl, tetradecyl and hexadecyl)polybenzimidazoles.The chem-ical modification of polybenzimidazole established by1H NMR and FT-IR technique.The thermal stability,mechani-cal property and the glass transition temperature(T g)are measured by thermogravimetric analyzer(TGA),dynamic mechanical analyzer(DMA),respectively.Efforts have been made to prepare PA doped membranes and all types of essential characterization were carried out to evaluate the potential of these acid doped membranes for their use as PEM in fuel cell.In this present work,our goal is to improve theflexibility and solubility of PBI by grafting alkyl chain in the backbone.2.Experimental section2.1.Materials3,30,4,40-Tetraaminobiphenyl(TAB)and polyphosphoric acid(PPA,115%)were purchased from Sigma–Aldrich.Iso-phthalic acid(IPA),1-bromoheptane,1-bromodecane,1-bromododecane,1-bromotetradecane,1-bromohexadec-ane were received from SRL,India.1-bromopentane,1-bro-mohexane,1-bromooctane,1-iodoethane were received from Avra Synthesis Pvt.Ltd.,India.NaH was received from Finar Chemicals India Pvt.Ltd.Dimethylacetamide(HPLC grade)and deuterated dimethyl sulfoxides(DMSO-d6) were procured from Qualigens,India.Sulfuric acid(98%) and phosphoric acid(PA)(85%)were received from Merck, India.All the chemicals were used without further purification.2.2.PBI synthesisThe synthetic procedure for PBI was similar to our ear-lier reports[35,36].Briefly the process was as follows: equal moles of TAB and IPA were taken into a three neck flask with PPA(115%)and the reaction mixture continu-ously stirred by mechanical stirrer in nitrogen atmosphere at190–210°C for24h.After completion of the reaction PBI was poured into water,then neutralized by sodium hydro-gen carbonate and thoroughly washed with water.The PBI was dried in vacuum oven at120°C for24h.The inherent viscosity(IV)of polymer was measured to evaluate the molecular weight of the synthesized polymer.The mea-sured IV of PBI was1.02dL/g at30°C in H2SO4(98%).2.3.Synthesis of N-alkyl substituted PBIThe different chain lengths(from C2to C16)alkyl groups were substituted to the imidazole A NH functional group of the PBI backbone(Scheme1).The reactions were carried out as follows:firstly250ml0.5%(w/v)PBI(4.06mmol) solution in DMAc solvent was prepared and the solution wasfiltered through0.5l m PTFE membrane.This PBI solution in DMAc was stirred in500ml three neckflask for1h at30°C in nitrogen atmosphere.Then0.195g (8.12mmol)NaH was added and then stirring was contin-ued for another12h.The PBI in DMAc solution became red in color after addition of NaH.Then alkyl halide (8.12mmol)was added to this solution and reflux at 100°C for overnight(12h).Then this solution was poured into ice-water mixture andfiltered.The residue was thor-oughly washed with water which was light brown color. The N-substituted PBIs(N-PBIs)were kept in vacuum at 120°C for48h to remove the moisture and other solvents.2.4.Preparation of membraneThe parent PBI and N-PBIs were dissolved in DMAc sol-vent at2%(w/v)concentration by continuous stirring for 12h.Then solutions werefiltered through0.5l m PTFEfil-ter paper,poured intoflat glass petridis and kept at120°C for12h.Homogeneousfilms were obtained,taken out from glass petridis,soaked in water and then boiled for three days to remove trace amount of DMAc.Thesefilms werefinally kept in vacuum oven at120°C for2days for complete removing of solvent.The thickness of thesefilms was approximately from30to40l m.Thesefilms were stored in the desiccator for further studying.S.Maity et al./European Polymer Journal49(2013)2280–229222812.5.Characterization2.5.1.Solubility testThe solubility of parent PBI and N-PBIs were measured in various solvents in room temperature,under sonication and as well as in reflux condition.The solubility was tested up to3%(w/v)polymer concentration.2.5.2.Spectroscopic studyFT-IR spectra were recorded from the membranes made from DMAc(2wt%)solutions.The IR spectra were recorded using Nicolet5700FT-IR spectrometer.The NMR spectra were recorded from Bruker AV400-MHz NMR spectrome-ter with DMSO-d6as a NMR solvent at room temperature. The1H NMR peaks integral ratio was used to evaluate the% of n-alkylation.2.5.3.Thermal studyThe thermal stability of N-PBIs was carried out using thermogravimetric and differential thermal analysis(TG-DTA,Netzsch STA409PC)instrument.The data was re-corded using TG-DTA instrument with the scanning rate 10°C/min from30to800°C with continuous nitrogen purging.2.5.4.X-ray diffraction studyThe X-ray diffraction(XRD)patterns of dry powder samples were collected from a Philips powder diffraction instrument(model No.PW1830).The powder was taken in a glass slide and the diffractograms were recorded using nickel-filtered Cu K a radiation at a scanning rate of0.6°2h/ min from2h=5–50°.Temperature dependent XRD pat-terns from50to400°C with50°C intervals were collected by keeping the samples inside the temperature control chamber of the instrument.Samples were equilibrated for30min at each temperature prior to the collection of XRD pattern.2.5.5.Thermo-mechanical studyThe mechanical properties of N-PBIs were measured by using a dynamic mechanical analyzer(DMA)(TA Instru-ment,model Q-800).The N-PBI membranes which were casted from DMAc solvent were cut into25mmÂ5mmÂ0.05mm dimension and then clamped on the ten-sion clamp of the instrument.The samples were scanned separately in the DMA in sub-ambient temperature(À120 to100°C)range and as well as from100to450°C.Two dif-ferent pieces of same samples were used separately for scanning in two different temperature ranges.The scanning rate for both the temperature ranges was4°C/min.The membranes were annealed at100°C for30min before scan-ning from100to450°C.The storage modulus(E0),loss mod-ulus(E00)and tan d values were recorded at a constant linear frequency10Hz and preload force0.01N.2.5.6.Water uptake and swellingPBI and N-PBIs membranes of similar dimension (2cmÂ1cmÂ40l m)were dipped into deionized water at room temperature for7days for the measurement of water uptake,swelling ratio and swelling volume of the membranes.The weight and dimensions of membranes were measured before and after immersed into the water. The water uptake was measured gravimetrically.The data presented in the manuscript are the average of three equal dimension samples.The percentage of water uptake,swell-ing ratio and swelling volume were calculated using the following equations.%Water uptake¼W wÀW dW dÂ100%ð1Þ%Swelling volume¼V wÀV ddÂ100%ð2Þ%Swelling ratio¼L wÀL dL dÂ100%ð3Þwhere W w,V w,L w are wet membranes weight,volume, length,respectively and W d,V d,L d are dry membranes weight,volume,length,respectively.2.5.7.Acid loadingPreviously dried mother and N-PBIs membranes were dipped in different concentration of phosphoric acid solu-tion for seven days at room temperature.The dimensions of dipped membranes were3cmÂ2cmÂ40l m.The membranes were taken out from phosphoric acidafter Scheme1.Synthesis of N-substituted PBI(N-PBI).seven days,blotted byfilter paper and titrated by pre-stan-dardized0.1N NaOH solution using an Autotitrator(Metr-ohm Titrino Titrator).The acid loading was calculated from average of three membranes for each type samples as the number of mol per PBI repeat unit.The number of acid loading per repeat unit of polymer was calculated by the following equation:Acid doping level¼W21where W2,W1arebrane,respectively.weight of PBI,N-PBIF N-PBI is the fraction2.5.8.ConductivityThe protonsured by using a fourin a Zahnerwith a frequencyzero humidityfor its superiorityeliminates thebrane surface as wellsize(3cmÂ1.5cmÂa homemadewires.The inner twolon plates apart fromthe potential drop ofwere measured inand second heating.thefirst heating dataity calculation.Aftera desiccator and thenperature secondity of acid doped160°C at20°intervaleach temperature thereach themeasured atintercept of theplot).The protonlowing equation:r¼Dwhere D is the(0.5cm),L and B arebranes,respectively,value.3.Results and3.1.Synthesis ofThe linear alkyl(C2A C16)are grafted conditions as presented in Scheme1.FT-IR and1H NMRspectroscopy are used to characterize the grafting of alkyl chains in the backbone.The FT-IR spectra of parent PBI and alkyl grafted PBI(N-PBI)membranes are shown in Fig.1.PBI is hygroscopic in nature and can absorb mois-ture up to5–15%of its weight[37].The presence of O A H stretching frequency at3620cmÀ1is confirmed the hygro-scopic nature of parent PBI and N-PBIs.Fig.1shows that with increasing alkyl chain length,the intensity of O A H stretching frequency gradually decreases which indicates1.FT-IR spectra of N-substituted Polybenzimidazoles.All spectra recorded from the thinfilms($40l m).S.Maity et al./European Polymer Journal49(2013)2280–22922283imidazole A NH group and long alkyl chain in the N-PBIs indicates that 100%alkyl substitution did not take place and therefore the molecular structure of the N-PBIs is as shown in Scheme 1.Hence it becomes necessary to esti-mate the %of N-alkylation in N-PBIs and we have utilized NMR spectroscopy as described in the following section.The representative 1H NMR spectra of N-PBIs along with peak assignments and chemical structures are shown in Fig.2.The NMR signal matches perfectly as expected from the chemical structure.The characteristic aromatic C A H THF,formic acid (FA),chloroform etc.and the solubility chart is shown in Table 1.It is clearly evident from the sol-ubility chart (Table 1)that the PBI and N-PBIs are highly soluble in DMAc and NMP.Interestingly,N-PBIs show very high solubility in formic acid (FA)whereas parent PBI is partially soluble.This enhanced solubility of N-PBI is be-cause after alkyl substitution the PBI backbone becomes less rigid (as seen from the T g data in the later section)by increasing their face-to face packing distances (dis-cussed in the XRD section)which helps to decrease the self-association between the chains.FA is a low boiling sol-vent and hence one can readily remove the solvents to cast the film from the polymer solution.Earlier,we have ob-served that certain type of PBI structure like [poly(4,40diphenylether-5,50-bibenzimidazole)],an ether linkage present in the polymer backbone,forms very transparent homogeneous films when films were made from FA solu-tion [39].Therefore the solubility in FA helps easy process-ability.Table 1clearly shows that N-PBIs have very high solubility compared to parent PBI which makes these mod-ified PBI as easily processable material when FA is used as2.1H NMR spectra of few representative N-substituted PBI along parent PBI.DMSO-d 6is used as NMR solvent.Table 1Solubility of N-substituted PBI in different organic solvents and %of N-alkylation.Polymer %of N-alkylation a DMAc NMP FA CH 2Cl 2CHCl 3THF PBI À+++++ÀÀÀPBI-C 242.25++++++ÀÀÀPBI-C 546.25++++++ÀÀÀPBI-C 650.25++++++ÀÀÀPBI-C 757.75++++++ÀÀÀPBI-C 1060.75++++++ÀÀÀFig.3.TGA curves of N-PBI under N 2atmosphere.2284S.Maity et al./European Polymer Journal 49(2013)2280–2292processing medium.Supplementary data Fig.1compares the photographs of PBI and N-PBI membranes obtained from DMAc and FA.It is very clear from photographs that the N-PBI membranes obtained from FA are very much homogeneous and transparent compared to all other membranes.Also,parent PBI membrane from FAis120to 100°C)plots of mechanical properties obtained from DMA of few representative and (C)tan d .mechanically weak owing to its low solubility as evident from the photographs.Therefore it can be summarized that N-substitution with alkyl group in the PBI backbone en-hances the processability and solubility of rigid PBI.3.3.Structural prediction of N-PBIsThe thermal stability of N-PBI samples obtained from TG-DTA studies under nitrogen atmosphere are presented in Fig.3.It is known that approximately 5–15%weight loss occurs for PBI due to its hygroscopic nature at 100°C.We observed here from TGA that with increasing alkyl chain length the initial weight loss due to hygroscopic nature de-creases indicating that N-PBIs are less hydrophilic than PBI,which is also observed from FT-IR studies presented in ear-lier section.Although N-PBIs are found to be less thermally stable compared to parent PBI,however all the samples show first major degradation above $300°C,indicating good and enough thermal stability for the use as thermally stable processable materials.All the N-PBIs samples display weight losses in three stages;first one is at $100°C due to absorb moisture,the second weight loss is at $300°C followed by third weight loss at $510°C owing to the degradation of PBI backbone (Fig.3and Supplementary data Fig.2).Parent PBI does not exhibit second weight loss at $300°C.This attributes that at $300°C,the grafted alkyl chains are knocked out form the PBI backbone.The extent of this weight loss for N-PBI samples increases with increasing alkyl chain length attributing the fact that this weight loss is associated with N-substituted PBI backbone.Hence the second weight loss is due to degradation of grafted alkyl chains.The degrada-tion behavior of N-PBIs also predicts the partial grafting of alkyl group in the polymer backbone and copolymer type molecular structure as discussed in the previous section from NMR results.The effect of alkyl substitution on the glass transition temperature (T g )and the mechanical properties of the PBI are studied using DMA both in the sub-ambient tem-perature (À120°C to 100°C)as well as in the higher tem-perature (100–450°C).DMA data for both the temperature ranges are shown in Fig.4and 5and Supplementary data Figs.3and 4.It is known that the peaks appeared in the loss modulus (E 00)and tan d plot corresponds to the thermal transitions of the polymer.Parent PBI exhibits a transition at À78°C (from E 00plot)[À71°C from tan d plot]which cor-responds to the rotation of the m-phenylene ring [40]This transition can be called as d transition and it shifts towards higher temperature with increasing size of alkyl chain length in case of N-PBIs (Fig.4,Supplementary data Fig.3Fig.5.Temperature dependent (100–450°C)plots of mechanical prop-erties obtained from DMA of few representative N-PBI samples;(A)storage modulus (E 0),(B)loss modulus (E 00),and (C)tan d .Inset of (C)is the magnified tan d plot of parent PBI.Table 2Various thermal transition data of N-PBI films obtained from DMA study.Polymer T g (°C)from E 00T g (°C)from tan d d (°C)from E 00d (°C)from tan d PBI 327350À78À71C 5320341––C 6297324À62À58C 7275309À54À55C 8279,361315À57À55C 10240,366278,343À55À54C 12225,353264,340À41À32C 14215,359258,335––C 16220,359270,330À36À27Journal 49(2013)2280–2292and Table2).This indicates that the substituted alkyl group interferes the m-phenylene ring rotation resulting the d-transition shift.Parent PBI also displays a transition at $30°C which is known as c transition[40]but this transi-tion is absent in N-PBI(Fig.4).The d transition and T g values obtained from loss modulus(E00)and tan d plots are listed in Table2.The parent PBI shows only one T g at 350°C(tan d,inset of Fig.5)which is in agreement with previous results[36].DMA studies exhibit peculiar thermo-mechanical prop-erties for N-PBI samples.The decrease in T g valueFig.6.Temperature dependent(first and second heating scans)plots of mechanical properties obtained from DMA of C14and C16N-PBI samples;(A)storage modulus(E0),(B)loss modulus(E00),and(C)tan d.Inset of(C)is the magnified second heating scan plot of C14and C16samples.7.FT-IR spectra of PBI,C14and C16samples after DMA scan and annealing at400°C.Fig.8.WAXD patterns of N-PBI samples at room temperature.Powder samples are used to record the WAXD pattern.compared to parent PBI is expected asflexible alkyl groups are incorporated in the PBI backbone;T g value of N-PBI de-creases with increasing alkyl chain length up to C7(Ta-ble2).We observed two distinct T g’s from C8substitution onwards for all N-PBI(Table2,Fig.5and Supplementary data Fig.4);in which one T g(T g1<300°C)appears much below than the parent PBI T g($350°C)and other T g(T g2) appears quite close to T g of parent PBI.It also must be noted that T g1decreases with increasing alkyl chain length; however T g2remains almost unaltered with size of alkyl chain length.The presence of two T g’s and variation of one T g with altering the chemical structures clearly attri-butes the copolymer structure of the N-PBI backbone. The lower T g(T g1)is the segmental motion of the PBI back-bone in which N-substitution has taken place with the al-kyl chain and the higher T g(T g2)is the segmental motion of the unsubstituted PBI backbone.The alteration in T g1with increasing alkyl chain length is due to the increase alkyl is crossed the rubber modulus increases sharply with increasing temperature.This deep rubbery modulus is quite uncommon and very interesting.This kind of obser-vation was observed earlier in case of PVDF/PMMA blend where deep rubbery modulus is explained as the result of non-equilibrium crystalline states of PVDF[41].But in the current system,no crystallization is observed since all PBI and N-PBI are amorphous in nature(discussed in la-ter section).It is also noticed that(Fig.5)the deepness of rubbery modulus increases with increasing size of the alkyl chain length.We believe this deep may be the result of fol-lowing;as we increase the temperature the N-PBI shows the T g1(N-substituted chains)at$<300°C(onset of deep is<300°C),after that with increasing temperature the N-substituted part degrades;as seen in TGA studies where at$300°C a major weight loss is observed and which var-ies with alkyl chain length size;and then only unsubstitut-ed PBI exists which has T g beyond350°C(T g2).To displayFig.9.Variable temperature WAXD patterns;(A)PBI,and(B)C14N-PBI sample. 2288S.Maity et al./European Polymer Journal49(2013)2280–2292results are shown in Fig.7.It is clear that the parent PBI does not show any significant changes in the spectrum; however N-PBI spectra after annealing display a peak around$2235cmÀ1which corresponds to A C…N vibra-tion resulting from the degradation of imidazole group; attributing that N-substituted part are degrading after heating at400°C.The wide angle X-ray diffraction(WAXD)patterns of the parent PBI and representative N-PBI samples are pre-sented in Fig.8.Absence of any sharp peak in all the sam-ples suggests the amorphous nature of all N-PBIs.It is known in the literature that PBI is amorphous in nature and our results indicate that substitution did not alter the amorphous nature of the PBI.Earlier several authors [42–44]pointed out two broad peaks at around$25and 11°2h for the PBI.These peaks correspondence to d-spac-ing 3.64and7.29Å,respectively.Thefirst d-spacing is the characteristic of the planes formed by face to face pack-ing of PBI chain and the later is due to the length of one re-peat unit.Fig.8clearly shows that in case of N-PBI samples the peak corresponding to7.29Åd-spacing does not alter with increasing alkyl length size.However d-spacing for face to face packing increases with increasing alkyl chain length size and reaches to maximum value at 4.38Å(2h=20.25°)for C16sample.These observations clearly attributes that with increasing alkyl chain length size the distance between the PBI chains are increasing and as a re-sult the self-association between the PBI chains decreases with increasing alkyl length.Therefore,substituted alkyl chains in the PBI backbone pushes the PBI chains apart and hence decrease the self association between the Fig.9.Both the cases the d-spacing increase(2h decreases) with increasing temperature indicating the increase in dis-tance between the PBI chains.However in case of parent PBI a significant peak broadening is observed which is not observed in case of C14N-PBI.This attributes that in case of N-PBI,part of the polymer chain has already been separated apart by the long alkyl chain.In earlier section,we have concluded that the N-PBI samples have copolymer structure,in which one part is N-PBI and other part is unsubstituted PBI,and the N-PBI part degrades upon annealing at400°C.Fig.10data recon-firms our claims.The XRD pattern of N-PBI(C14)samples recorded at room temperature after annealing at400°C for30min is similar with the parent PBI,indicating that the N-PBI structure is indeed a copolymer in nature and degradable at400°C.3.4.Studies of crucial PEM membrane properties of N-PBIsIt is well known that PBI is hydrophilic and moisture sensitive.Even at room temperature PBI can absorb water up to15wt%when dipped into deionized water for several days.This may be due to hydrogen bonding formation be-tween two nitrogen atoms of amine and imine groups [45,46].In the imidazole moiety there are two nitrogen atoms one is proton accepter and one is proton donor and these nitrogen atoms undergo hydrogen bonding read-ily with H2O molecule.Fig.11displays that the water absorption capacity gradually decreases with increasing size of the alkyl chain length.In our earlier sections(FTIR and TGA study),we have seen the exactly similar observa-Fig.10.WAXD patterns of PBI,C14samples and C14sample afterannealing at400°C for30min.Fig.11.Water uptake of N-PBI samples.S.Maity et al./European Polymer Journal49(2013)2280–22922289。
耐高温聚苯并咪唑树脂的制备研究
3 3一 氨 基 联 苯 胺 ( A , 度 ≥ 9 % , , 二 D B) 纯 7 山东
泰山染 料公 司 ;己二 酸 , 析 纯 , 龙 化 工 试 剂 厂 ; 分 科 亚磷酸 三 苯酯 ( P )化 学 纯 , 龙 化 工 试 剂 厂 ; T P, 科 无
收 稿 日期 :0 71+7 2 0 —01 基 金 项 目 : 育 部 重点 科技 攻 关基 金 资助 项 目( .3 1 3 ) 教 No 0 2 0 7 作者简介 : 陈宝书( 9 7)男 , 1 7 一, 安徽省蚌埠市人 , 讲师 , 硕士 , 主要从事聚合物材料合成方面研 究。
摘
要 : 3 3- 将 ,' 二氨基 联 苯胺 ( A ) 己二 酸加 入 亚磷 酸 三 苯酯 中, 过 熔融 缩 聚 反应 合 成 聚苯 并 咪唑 T B和 通
(B ) P I树脂 。利用红外光谱 ( T R)热失重分析 ( G , 示扫描 量热法 ( S 等方法 对其分 子结构 、 F I 、 T A)差 D C) 热稳定 性进 行了表 征 , 并研究 了耐高温 聚苯并 咪唑树 脂的性能 。结果表 明 : 成 的含脂肪链 的 聚苯并 咪唑树脂 的熔融 温度在 合 40℃ 以上 , 0 并且具有非常好 的热稳定性 , 在 5 6℃ 左右才会 发生分解 , 其 1 最大失重 速率 温度为 5 6℃ 。 3 关键词 : 聚苯并咪 唑; 熔融缩聚 ;傅立叶变换红外光谱 ;热失重
中 图 分 类 号 : Q0 0 4 T 5 . 3 文献 标 识 码 : A
聚苯 并咪 唑( B ) ] 指分 子 中含有 苯并 咪 唑 P I[ 是 环 的芳 杂 环聚合 物 , 其结 构单 元如 图 1所示 。
水 乙醇 , 析纯 , 分 科龙 化工 试 剂厂 ; 真空 酯 , 龙化工 科
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
II
聚苯并咪唑树脂的合成与性能研究
目录
第一章 文献综述....................................................1
1.1 聚苯并咪唑树脂的概述.....................................................................................................1 1.2 聚苯并咪唑的发展概况.....................................................................................................1 1.3 合成聚苯并咪唑的主要单体与工艺.................................................................................3
1.3.1 熔融缩聚法工艺.........................................................................................................4 1.3.2 溶液聚合法工艺.........................................................................................................5 1.3.3 母体合成法.................................................................................................................5 1.3.4 亲核取代法.................................................................................................................5 1.4 聚苯并咪唑树脂的种类.....................................................................................................6 1.4.1 全芳香型聚苯并咪唑树脂.........................................................................................6 1.4.2 含芳香醚基的 A-B 型聚苯并咪唑树脂 .....................................................................6 1.4.3 双酚型聚苯并咪唑类树脂.........................................................................................7 1.4.4 含酮基(-CO-)和砜基(-SO2-)的聚苯并咪唑树脂 ............................................7 1.5 性能及其推广应用.............................................................................................................8 1.5.1 在纤维与纺织方面的应用.........................................................................................8 1.5.2 在耐火材料方面的应用.............................................................................................8 1.5.3 在质子交换膜方面的应用.........................................................................................9 1.5.4 在其他材料方面的应用.............................................................................................9 1.5.5 在航空航天方面的应用.............................................................................................9 1.6 本论文的基本设想与工作内容.........................................................................................9 1.6.1 实验方法的选择.........................................................................................................9 1.6.2 溶剂的选择...............................................................................................................10 1.6.3 主要研究内容...........................................................................................................10
作者签名:
日期: 年 月 日
学位论文版权使用授权书
本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意 学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文 被查阅和借阅。本人授权湘潭大学可以将本学位论文的全部或部分内容编 入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇 编本学位论文。
University
Xiangtan University
Date
May 20, 2010
湘潭大学
学位论文原创性声明
本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所 取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任 何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡 献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的 法律后果由本人承担。
Candidate
Zhang Hai
Supervisor
Lin Yuan bin
College
College of Chemistry
Program
Organirganic Synthesis
Degree
Master of Science
学校代码 10530 分 类 号 O633.5
学 号 200706020975 密级
硕士学位论文
聚苯并咪唑树脂的合成与性能研究
学位申请人 指导教师 学院名称 学科专业 研究方向
张海 林原斌 教授
化学学院 有机化学 精细有机合成
二零一零年 五 月 二十 日
Study on the Preparation and Performance of Polybenzimidazole resin
涉密论文按学校规定处理。
作者签名: 导师签名:
日期: 年 月 日 日期: 年 月 日
聚苯并咪唑树脂的合成与性能研究
摘要
本文首先介绍了聚苯并咪唑树脂(PBI)的发展由来,目前的发展状况,单 体的合成,聚合物合成工艺、种类、性能以及推广应用。本文研究了以 3,3'-二 氨基联苯胺和 3,3',4,4'-四氨基二苯甲烷为四元胺单体分别与多种二元羧酸进行 缩聚反应生成两个系列的聚苯并咪唑树脂,并通过 1H NMR、13C NMR、FT-IR、 DSC、TGA 等分析测试技术对单体和聚合物进行了结构表征和性能测试,考察 了聚合物的溶解性、热性能。具体的研究内容如下:1、以 4,4'-二氨基联苯为原 料,经乙酰化、硝化、水解、还原、中和五步反应合成 3,3'-二氨基联苯胺;并对 该化合物的合成路线进行了优化,在还原过程中我们采用了氯化亚锡/盐酸体系, 对比文献所报道的高压氢气还原,反应条件更加温和、后处理更加简单,并能得 到较高的纯度和产率。2、以邻硝基苯胺、甲醛为原料合成 3,3'-二硝基-4,4'-二氨 基二苯甲烷,经还原生成 3,3',4,4'-四氨基二苯甲烷。3、在聚合过程中我们选用 了比较常用的溶液聚合法,即以多聚磷酸作为溶剂,在氮气保护中,高温条件下 用 3,3'-二氨基联苯胺和 3,3',4,4'-四氨基二苯甲烷分别与对苯二甲酸、间苯二甲 酸、4,4'-联苯二甲酸、2-氟对苯二甲酸、4-硝基-1,3-苯二甲酸、2-硝基对苯二 甲酸进行二聚,制备了两类聚苯并咪唑树脂,并测试了两类聚合物的性能。 关键词:4,4'-二氨基联苯;3,3'-二氨基联苯胺;3,3',4,4'-四氨基二苯甲烷;聚苯
并咪唑;热稳定性
I
湘潭大学硕士学位论文
Abstract
In this dissertation,polybenzimidazole resins,(PBI) history of development,the current state of development,synthetic methodology,type,performance,application and the synthesis of monomer is first briefed introduced. The paper has studied take 3,3'-diaminobenzidine and 3,3',4,4'-Tetraaminodiphenylmethane as four amine monomers , react with many kinds of binary acid to yield two series of polybenzimidazole resins. The structure and properties of copolymers were investigated by 1HNMR,13CNMR,FT-IR,DSC,TGA etc,and we inspected polymers, solubility and thermal properties. The concrete research content and the result are as follows:1) 3,3'-diaminobenzidine was prepared with 4,4'-diaminobiphenyl as starting material in five steps by N-acylation,nitration,hydrolysis, reduction and neutralization. Synthetic route of the compounds were optimized by use the stannous chloride and hydrochloric acid during the restore process. In comparison to the reduction of hydrogen under high pressure condition which described in the literatures,this synthetic strategy is superior in reaction conditions,simple disposal, and easily obtained high yield and purity. 2)O-nitroaniline, formaldehyde as raw materials to synthesize 3,3'-dinitro-4,4'-diaminodiphenylmethane, through the reduction into 3,3',4,4'-Tetraaminodiphenylmethane. 3)In the polymerization process, we choose the common solution polymerization method, polyphosphoric acid as solvent,nitrogen protection,under high temperature,using 3,3'-diaminobenzidine and 3,3',4,4'-Tetraaminodiphenylmethane react with p-phthalic acid,m-phthalic acid, biphenyl-4,4'-dicarboxylic acid,2-fluoroterephthalic acid,4-nitrobenzene-1,3-dioic acid,2-nitroterephthalic acid. Generated two types of polybenzimidazole resins, and tested their performances. Key words:4,4'-diaminobiphenyl;3,3'-diaminobenzidine;3,3',4,4'-tetraaminodiphen-