人教版八年级上期末模拟考试.doc

合集下载

2022-2023学年人教版英语八年级上册期末模拟质量检测卷(一) 广东通用(word 版 无答案)

2022-2023学年人教版英语八年级上册期末模拟质量检测卷(一) 广东通用(word 版 无答案)

八年级上学期期末质量检测(一)一、语法选择(本大题共10小题,每小题1分,共10分)请通读下面短文,掌握其大意,根据语法和上下文连贯的要求,从每小题所给的三个选项中选出一个最佳答案。

Every year,there are a lot of student plays at school.However, quite a few students don't enjoy joining school plays.Some think they are too shy on the stage (舞台). Some say they are too busy. Others think that is very boring. When I heard the English club would have an English play Sno w White,I 1 to join it.The main reason was that I really wanted to be on stage. The play Sno w White was very famous. Everyone in the club knew a lot 2 it.There were many characters in the play.Of course,the girls all looked forward to playing the Princess (公主). Li Fan played the King. Wang Ping and other six boys in the club played the seven dwarfs (矮人).I thought I 3 get the role of the Princess, but I lost it. He Yan got it. Miss Wang asked me to act 4 role of the Queen. I wasn't very happy about this. But Miss Wang said,“The 5 thing of all is the acting.”From then on, I tried 6 the Queen. It was difficult for me to do it 7 I had no experience in acting. After two 8 hard practice, we wereready to perform on the stage.It was successful.9 happy we were! People in the hall enjoyed 10 very much.()1.A.plan B.was planning C.planned()2.A.about B.on C.for()3.A.might B.must C.should()4.A.a B.an C.the()5.A.important B.more important C.most important ()6.A.act B.to act C.to acting()7.A.so B.because C.but()8.A.months B.month C.months'()9.A.What B.How C.What a()10.A.it B.them C.its二、完形填空(本大题共10小题,每小题1分,共10分)请通读下面短文,掌握其大意,从每小题所给的四个选项中选出一个最佳答案。

2023-2024八年级物理期末模拟卷01(考试版A4)(人教版)

2023-2024八年级物理期末模拟卷01(考试版A4)(人教版)

2023-2024学年八年级物理上学期期末模拟考试卷01(人教版)(考试版A4)(考试时间:90分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.答题时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:人教版八年级上册。

5.考试结束后,将本试卷和答题卡一并交回。

一、选择题(12个小题,1-10题是单选题,每题2分。

11-12是多选题,每题3分,选对少选得2分,选错不得分。

共26分)1. 下列数据最接近实际情况的是()。

A. 适宜洗澡的水温约为60℃B. 一瓶矿泉水的质量约为50gC. 人心脏正常跳动一次的时间约为5sD. 初中生所坐凳子的高度约为40cm2.关于错误和误差,下列说法中正确的是()。

A.错误是不可避免的;B.通过多次测量取平均值可以减小误差;C.误差是由不规范的操作造成的;D.错误是由于测量工具不够精密造成的3.如图所示,用悬挂着的乒乓球接触正在发声的音叉,乒乓球会多次被弹开。

这个实验是探究()。

A.响度是否与振幅有关B.音调是否与频率有关C.声音的传播是否需要介质D.声音产生的原因4.关于声现象的描述,下列说法正确的是()。

A.禁鸣喇叭是在传播过程中减弱噪声;B.将发声的音叉触及面颊可以探究声音产生的原因;C.“闻其声而知其人”主要是根据声音的响度来判断的;D.超声波能粉碎人体内的“结石”说明声波可以传递信息5.下列各图所举的事例中,利用了相对运动原理的是()。

A.联合收割机和运输车 B.歼﹣10空中加油C.大飞机风洞实验 D.接力赛交接棒6.甲、乙两名同学进行百米赛跑,把他俩的运动近似看作匀速直线运动。

他俩同时从起跑线起跑,经过一段时间后,他们的位置如图所示。

则关于他俩在这段时间内运动的路程s、速度v和时间t,下列的关系图象中正确的是()。

人教版2022-2023学年八年级数学上册期末模拟测试题(附答案)

人教版2022-2023学年八年级数学上册期末模拟测试题(附答案)

2022-2023学年八年级数学上册期末模拟测试题(附答案)一、选择题(共计24分)1.点P(1,2)关于y轴对称点的坐标是()A.(﹣1,2)B.(1,﹣2)C.(1,2)D.(﹣1,﹣2)2.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.1、2、3B.2、3、4C.3、4、5D.4、5、63.如图,点D为△ABC的边BC延长线上一点,关于∠B与∠ACD的大小关系,下列说法正确的是()A.∠B>∠ACD B.∠B=∠ACD C.∠B<∠ACD D.无法确定4.明明在对一组数据:9,1■,25,25,进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A.众数B.中位数C.平均数D.方差5.代入法解方程组时,代入正确的是()A.x﹣2﹣x=7B.x﹣2﹣2x=7C.x﹣2+2x=7D.x﹣2+x=7 6.下列计算不正确的是()A.3﹣=2B.×=C.+==3D.÷==27.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头y两,根据题意可列方程组为()A.B.C.D.8.下表中列出的是一个一次函数的自变量x与函数y的几组对应值:x…﹣2﹣11…y…﹣128…若将该一次函数的图象向下平移2个单位,得到一个新一次函数,下列关于新一次函数的说法中,正确的是()A.函数值y随自变量x的增大而减小B.函数图象不经过第四象限C.函数图象经过原点D.当x=2时,y的值为7二、填空题(共计15分)9.请写出一个大于3的无理数.10.命题“同位角相等”是命题(填“真”或“假”).11.甲,乙两人进行射击比赛,每人射击5次,所得平均环数相等,其中甲所得环数的方差为 2.1,乙所得环数分别为:8,7,9,7,9,那么成绩较稳定的是(填“甲”或“乙”).12.如图,点P(m+n,4m﹣n)为平面直角坐标系中第一象限内一点,PM⊥x轴于点M,PN⊥y轴于点N,若四边形OMPN是边长为5的正方形,则mn的值为.13.如图,长方体的高为9dm,底面是边长为6dm的正方形,一只蚂蚁从顶点A开始爬向顶点B,那么它爬行的最短路程为dm.三、解答题(计81分)14.计算:(π﹣3)0﹣×+|﹣1|.15.解方程组:16.如图,求图中x的值.17.若是二元一次方程4x﹣3y=10的一个解,求m的值.18.某校招聘一名数学老师,对应聘者分别进行了教学能力、教研能力和组织能力三项测试,并按教学能力占70%,教研能力占20%,组织能力占10%,计算加权平均数,作为最后评定的总成绩.王伟和李婷都应聘了该岗位,经计算,王伟的最后评定总成绩为87.8分,已知李婷的教学能力、教研能力和组织能力三项成绩依次为88分、84分、86分.若该校要在李婷和王伟两人中录用一人,谁将被录用?19.已知a+b是25的算术平方根,2a﹣b是﹣8的立方根,c是的整数部分,求a+bc的平方根.20.已知:如图:∠BEC=∠B+∠C.求证:AB∥CD.21.2021年12月12日是西安事变85周年纪念日,西安事变及其和平解决在中国社会发展中占有重要的历史地位,为中国社会的发展起到了无可替代的作用.为此,某社区开展了系列纪念活动,如图,有一块三角形空地ABC,社区计划将其布置成展区,△BCD区域摆放花草,阴影部分陈列有关西安事变的历史图片,现测得AB=20米,AC=10米,BD=6米,CD=8米,且∠BDC=90°.(1)求BC的长;(2)求阴影部分的面积.22.为巩固“精准扶贫”成果,市农科院专家指导李大爷种植某种优质水果喜获丰收,上市20天全部销售完,专家对销售情况进行了跟踪记录,并将记录情况绘制成如图所示的函数图象,其中x(天)表示上市时间,y(千克)表示日销售量.(1)当12≤x≤20时,求日销售量y与上市时间x的函数关系式;(2)求出第15天的日销售量.23.如图,在平面直角坐标系中,已知四边形ABCD的四个顶点都在网格的格点上.(1)在图中画出四边形ABCD关于x轴对称的四边形A'B'C'D';(2)在(1)的条件下,分别写出点A、B、D的对应点A'、B'、D'的坐标.24.某公司对消费者进行了随机问卷调查,共发放1000份调查问卷,并全部收回,根据调查问卷,将消费者年收入情况整理后,制成如下表格(被调查的消费者年收入情况):年收入/万元38102050被调查的消费者数/人1005003005050(1)根据表中数据,被调查的消费者平均年收入为多少万元?(2)被调查的消费者年收入的中位数和众数分别是和万元.(3)在平均数、中位数这两个数据中,谁更能反映被调查的消费者的收入水平?请说明理由.25.某山区有23名中、小学生因贫困失学需要捐助.资助一名中学生的学习费用需要a元,一名小学生的学习费用需要b元.某校学生积极捐助,初中各年级学生捐款数额与用其恰好捐助贫困中学生和小学生人数的部分情况如下表:年级捐款数额(元)捐助贫困中学生人数(名)捐助贫困小学生人数(名)初一年级400024初二年级420033初三年级7400(1)求a、b的值;(2)初三年级学生的捐款解决了其余贫困中小学生的学习费用,求初三年级学生可捐助的贫困中小学生人数.26.如图,已知直线AB经过点(1,﹣2),且与x轴交于点A(2,0),与y轴交于点B,作直线AB关于y轴对称的直线BC交x轴于点C,点P为OC的中点.(1)求直线AB的函数表达式和点B的坐标;(2)若经过点P的直线l将△ABC的面积分为1:3的两部分,求所有符合条件的直线l的函数表达式.参考答案一、选择题(共计24分)1.解:∵点P(1,2)关于y轴对称,∴点P(1,2)关于y轴对称的点的坐标是(﹣1,2).故选:A.2.解:A、∵12+22≠32,∴不能组成直角三角形,故A选项错误;B、∵22+32≠42,∴不能组成直角三角形,故B选项错误;C、∵32+42=52,∴组成直角三角形,故C选项正确;D、∵42+52≠62,∴不能组成直角三角形,故D选项错误.故选:C.3.解:∵∠ACD是△ABC的外角,∴∠ACD=∠B+∠A,∴∠B<∠ACD.故选:C.4.解:这组数据的平均数、方差和中位数都与被涂污数字有关,而这组数据的众数为25,与被涂污数字无关.故选:A.5.解:把②代入①得,x﹣2(1﹣x)=7,去括号得,x﹣2+2x=7.故选:C.6.解:A.3﹣=2,故此选项不合题意;B.×=,故此选项不合题意;C.+无法合并计算,故此选项符合题意;D.÷==2,故此选项不合题意.故选:C.7.解:设马每匹x两,牛每头y两,根据题意可列方程组为:.故选:A.8.解:设原来的一次函数解析式为y=kx+b(k≠0),代入(﹣2,﹣1),(﹣1,2),得,解得,∴原来的一次函数解析式为y=3x+5,将该一次函数图象向下平移2个单位,得到新的一次函数的解析式为y=3x+3,∵k=3>0,∴函数值y随自变量x的增大而增大,故A选项不符合题意;∵函数y=3x+3经过第一、二、三象限,不经过第四象限,故B选项符合题意;∵函数y=3x+3不是正比例函数,不经过原点,故C选项不符合题意;当x=2时,y=3×2+3=9,故D选项不符合题意,故选:B.二、填空题(共计15分)9.解:由题意可得,>3,并且是无理数.故答案为:.10.解:两直线平行,同位角相等,命题“同位角相等”是假命题,因为没有说明前提条件.故答案为:假.11.解:∵乙的平均环数为=8,∴乙射击成绩的方差为×[2×(7﹣8)2+(8﹣8)2+2×(9﹣8)2]=0.8,∵甲所得环数的方差为2.1,0.8<2.1,∴成绩比较稳定的是乙,故答案为:乙.12.解:∵P(m+n,4m﹣n)为平面直角坐标系中第一象限内一点,PM⊥x轴于点M,PN⊥y轴于点N,∴PN=m+n,PM=4m﹣n,∵四边形OMPN是边长为5的正方形,∴PM=PN=5,,∴,则mn的值为6.故答案为:6.13.解:如图,(1)AB===3;(2)AB==15,由于15<3;则蚂蚁爬行的最短路程为15dm.故答案为:15.三、解答题(共计81分)14.解:(π﹣3)0﹣×+|﹣1|=1﹣3+﹣1=﹣2.15.解:①×2得:4x+6y=16③,③﹣②得:11y=22,解得:y=2,把y=2代入②,得4x﹣10=﹣6,解得:x=1,故原方程组的解为:.16.解:由题意得:x°+(x+10)°=(x+70)°,解得:x=60.即x的值为60.17.解:把代入方程4x﹣3y=10,可得:12m+4﹣6m+6=10,解得:m=0.18.解:李婷的最后评定总成绩为:88×70%+84×20%+86×10%=87(分),∵王伟的最后评定总成绩为87.8分,87<87.8,∴王伟将被录用.19.解:∵a+b是25的算术平方根,2a﹣b是﹣8的立方根,∴,解得:,∵4<5<9,∴2<<3,∴的整数部分是2,∴c=2,∴a+bc=1+4×2=1+8=9,∴a+bc的平方根为±3.20.证明:如图,过点E作EM∥AB,∴∠B=∠BEM,∵∠BEC=∠B+∠C,∠BEC=∠BEM+∠CEM,∴∠C=∠CEM,∴EM∥CD,∴AB∥CD.21.解:(1)∵BD=6米,CD=8米,∠BDC=90°,∴BC===10(米),答:BC的长为10米;(2)∵AB=20米,AC=10米,BC=10米,∴AB2+BC2=202+102=(10)2=AC2,∴△ABC是直角三角形,且∠ABC=90,∴S阴影=S△ABC﹣S△BCD=AB•BC﹣BD•CD=×20×10﹣×6×8=76(平方米).22.解:(1)当12≤x≤20时,设y与x的函数关系式为y=kx+b,由题意得:,解得:,∴当12≤x≤20时,y与x的函数关系式为:y=﹣120x+2 400;(2)当x=15时,y=﹣120×15+2 400=600,所以第15天的日销售量为600千克.23.解:(1)如图所示:四边形A'B'C'D'即为所求;(2)点A、B、D的对应点:A'(﹣5,﹣6),B'(﹣5,﹣2),D'(3,﹣7).24.解:(1)==10.8(万元),答:被调查的消费者平均年收入约为10.8万元;(2)这组数据从小到大排列后,处在中间位置的两个数都是8万元,因此中位数为8万元;这组数据中出现次数最多的是8万元,因此众数为8万元;故答案为:8,8;(3)中位数更能反映被调查的消费者的收入水平,理由:虽然平均数,中位数均能反映一组数据的集中程度,但平均数易受极端数值影响,所以中位数更能反映被调查的消费者的收入水平.25.解:(1)依题意得:,解得:.答:a的值为800,b的值为600.(2)设初三年级学生可捐助贫困中学生x人,小学生y人,依题意得:,解得:.答:初三年级学生可捐助贫困中学生4人,小学生7人.26.解:(1)设直线AB的函数表达式为y=kx+b(h≠0).把点(1,﹣2),(2,0)代入得,解得,∴直线AB为y=2x﹣4.当x=0时,y=2x﹣4=﹣4,∴B(0,﹣4).(2)①当直线l经过点B时,如图1.∵直线AB关于y轴对称的直线BC交x轴于点C,∴OA=OC=2,∴C(﹣2,0).∵P为OC的中点,∴P(﹣1,0),∴AP=3CP,∴S△BCP:S△BAP=1:3.设此时直线l的表达式为y=mx+n(m≠0).将点P(﹣1,0)、B(0,﹣4)代入得,解得,∴此时直线l的表达式为y=﹣4x﹣4;②当直线l与AB的交点D在第四象限时,如图2.∵A(2,0),C(﹣2,0),B(0,﹣4),∴AC=4,OB=4,∴S△ABC=AC•OB=×4×4=8.∵直线l将△ABC的面积分为1:3的两部分,∴S△APD=S△ABC=2,∴•AP•|y D|=2,即×3×|y D|=2,解得|y D|=,将y=﹣代入y=2x﹣4,得x=,∴D(,﹣).设此时直线l的函数表达式为y=m2x+n2(m2≠0).将点D(,﹣)、P(﹣1,0)代入得,解得,∴此时直线l的函数表达式为y=﹣.综上所述,所有符合条件的直线l的函数表达式为y=﹣4x﹣4或y=﹣x﹣.。

人教版2022-2023学年八年级上册数学期末模拟测试卷含答案

人教版2022-2023学年八年级上册数学期末模拟测试卷含答案
(1)求证:PA⊥PB;
(2)若点A(8,0),请直接写出B的坐标并求出OAOB的值;
(3)如图2,若点B在y轴正半轴上运动,其他条件不变,请直接写出OAOB的值.
参考答案及解析
一.选择题
1.【答案】:C
【解析】:解:第1个是轴对称图形;
第2个是轴对称图形;
第3个不是轴对称图形;
第4个是轴对称图形;
所以用到的是两角及这两角的夹边对应相等即ASA这一方法.
故选D
7.【答案】:D
【解析】:A.代数式 不是分式,故该选项不正确,不符合题意;
B.分式 中x,y都扩大3倍,分式的值扩大3倍,故该选项不正确,不符合题意;
C.分式 的值为0,则x的值为 ,故该选项不正确,不符合题意;
D.分式 是最简分式,故该选项正确,符合题意;
解: , ,





24【答案】:
(1)A;(2)①4;②5050
【解析】:
(1)图1表示 ,图2的面积表示 ,两个图形阴影面积相等,得到
故选A;
(2)①

∴ ,解得
②原式=(1002-992)+(982-972)+…+(42-32)+(22-12)
=(100+99)(100-99)+(98+97)(98-97)+…+(4+3)(4-3)+(2+1)(2-1)
【小问3详解】
解:过x轴作点A的对称点为A1,连接A1C交于x轴的点即为点P,使得 最小.点P如图所示:
【画龙点睛】本题考查作轴对称图形,找关于坐标轴对称的点的坐标,以及动点问题.关键是掌握画轴对称图形的方法:先找对称点,再连线;熟记关于坐标轴对称的点的坐标变化特征;利用对称性解决动点问题.

人教版数学八年级上册期末考试试卷附答案

人教版数学八年级上册期末考试试卷附答案

人教版数学八年级上册期末考试试题一、选择题(每小题只有一个正确答案。

每小题2分,共12分)1.(2分)下列平面图形中,不是轴对称图形的是()A.B.C.D.2.(2分)计算(﹣2x2y)3的结果是()A.﹣2x5y3B.﹣8x6y3C.﹣2x6y3D.﹣8x5y33.(2分)如果代数式有意义,那么x的取值范围是()A.x≥0B.x≠1C.x>0D.x≥0且x≠1 4.(2分)一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3B.1<x≤3C.1≤x<3D.1<x<3 5.(2分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°6.(2分)如图,已知∠1=∠2,∠B=∠C,下列结论:(1)AB=AC;(2)∠BAE=∠CAD;(3)BE=DC;(4)AD=DE.中正确的个数是()A.1B.2C.3D.4二、填空题(每小题3分,共24分)7.(3分)芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为.8.(3分)因式分解:ax2﹣ay2=.9.(3分)已知等腰三角形两边的长分别是9和4,则它的周长为.10.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是.(只需添加一个条件即可)11.(3分)如图是某超市一层到二层滚梯示意图.其中AB、CD分别表示超市一层、二层滚梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘滚梯从点B到点C上升的高度h约为米.12.(3分)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF =90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=.13.(3分)计算+的结果是.14.(3分)如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=6cm,DE =2cm,则△BCD的面积为cm2.三、解答题(每题5分,共20分)15.(5分)计算:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020.16.(5分)计算:(a+3)(a﹣1)+a(a﹣2)17.(5分)已知一个多边形的内角和与外角和之比为9:2,求它的边数.18.(5分)解分式方程:﹣=1.四、解答题(每小题7分,共28分)19.(7分)如图,在平面直角坐标系中.(1)请画出△ABC关于y轴对称的△AB1C1,并写出B1、C1的坐标;=;(2)直接写出△ABC的面积:S△ABC(3)在x轴上找到一点P,使PA+PC的值最小,请标出点P在坐标轴上的位置.20.(7分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.21.(7分)已知:a+b=4,ab=2,求下列式子的值:①a2+b2②(a﹣b)222.(7分)如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.(1)若∠BAC=70°,求:∠BOC的度数;(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)五、解答题(每小题8分,共16分)23.(8分)学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?24.(8分)如图1,等边△ABC中,AD是BC边上的中线,E为AD上一点(点E与点A 不重合),以CE为一边且在CE下方作等边△CEF,连接BF.(1)猜想线段AE,BF的数量关系:(不必证明);(2)当点E为AD延长线上一点时,其它条件不变.①请你在图2中补全图形;②(1)中结论成立吗?若成立,请证明;若不成立请说明理由.六、解答题(每小题10分,共20分)25.(10分)如图①所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿虚线AB剪开,把剪成的两张纸片拼成如图②所示的等腰梯形.(1)设图①中阴影部分的面积为S1,图②中阴影部分面积为S2,请直接用含a,b的式子表示S1和S2.(2)请写出上述过程中所揭示的乘法公式;(3)用这个乘法公式计算:①(x﹣)(x+)(x2+);②107×93.26.(10分)在△ABC中,AB=AC=2,∠B=40°,D是线段BC上一动点(不与B、C 两点重合),且∠ADE=40°.(1)若∠BDA=115°,则∠CDE=,∠AED=;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)在D点运动过程中,能使△ADE是等腰三角形吗?若能,请求出使△ADE是等腰三角形时的∠ADB的度数;若不能,请说明理由.答案与解析一、单项选择题1.(2分)下列平面图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不合题意;故选:C.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(2分)计算(﹣2x2y)3的结果是()A.﹣2x5y3B.﹣8x6y3C.﹣2x6y3D.﹣8x5y3【分析】积的乘方法则,把每一个因式分别乘方,再把所得的幂相乘,据此求解即可.【解答】解:(﹣2x2y)3=(﹣2)3(x2)3y3=﹣8x6y3.故选:B.【点评】本题主要考查了幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.3.(2分)如果代数式有意义,那么x的取值范围是()A.x≥0B.x≠1C.x>0D.x≥0且x≠1【分析】代数式有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选:D.【点评】式子必须同时满足分式有意义和二次根式有意义两个条件.分式有意义的条件为:分母≠0;二次根式有意义的条件为:被开方数≥0.此类题的易错点是忽视了二次根式有意义的条件,导致漏解情况.4.(2分)一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3B.1<x≤3C.1≤x<3D.1<x<3【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围.【解答】解:根据题意得:2﹣1<x<2+1,即1<x<3.故选:D.【点评】考查了三角形三边关系,本题需要理解的是如何根据已知的两条边求第三边的范围.5.(2分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选:C.【点评】本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题6.(2分)如图,已知∠1=∠2,∠B=∠C,下列结论:(1)AB=AC;(2)∠BAE=∠CAD;(3)BE=DC;(4)AD=DE.中正确的个数是()A.1B.2C.3D.4【分析】先证AB=AC,再证△ABE≌△ACD(AAS)得AD=AE,BE=CD,∠BAE =∠CAD,即可得出结论.【解答】解:∵∠B=∠C,∴AB=AC,故(1)正确;在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE,BE=CD,∠BAE=∠CAD,故(2)(3)正确,(4)错误,正确的个数有3个,故选:C.【点评】本题考查了全等三角形的判定与性质、等腰三角形的判定等知识,熟练掌握全等三角形的判定与性质是本题的关键.二、填空题(每小题3分,共24分)7.(3分)芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为 2.01×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000201=2.01×10﹣6.故答案为:2.01×10﹣6.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)因式分解:ax2﹣ay2=a(x+y)(x﹣y).【分析】首先提取公因式a,再利用平方差公式分解因式得出答案.【解答】解:ax2﹣ay2=a(x2﹣y2)=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用平方差公式是解题关键.9.(3分)已知等腰三角形两边的长分别是9和4,则它的周长为22.【分析】因为等腰三角形的两边分别为4和9,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【解答】解:当4为底时,其它两边都为9,即:9、9、4可以构成三角形,周长为22;当4为腰时,其它两边为9和4,因为4+4=8<9,所以不能构成三角形,故舍去.所以答案只有22.故答案为:22.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.10.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是∠D=∠B.(只需添加一个条件即可)【分析】利用全等三角形的判定与性质进而得出当∠D=∠B时,△ADF≌△CBE.【解答】解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),故答案为:∠D=∠B.(答案不唯一)11.(3分)如图是某超市一层到二层滚梯示意图.其中AB、CD分别表示超市一层、二层滚梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘滚梯从点B到点C上升的高度h约为6米.【分析】先过点C作CE⊥AB,交AB的延长线于E,易求∠CBE=30°,在Rt△BCE中可知CE=BC,进而可求CE.【解答】解:过点C作CE⊥AB,交AB的延长线于E,如右图,∵∠ABC=150°,∴∠CBE=30°,在Rt△BCE中,∵BC=12,∠CBE=30°,∴CE=BC=6.故答案是6.【点评】本题考查了含30°角的直角三角形的性质,解题的关键是作辅助线构造直角三角形.12.(3分)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF =90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=25°.【分析】由∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,可求得∠ACE的度数,又由三角形外角的性质,可得∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F,继而求得答案.【解答】解:∵AB=AC,∠A=90°,∴∠ACB=∠B=45°,∵∠EDF=90°,∠E=30°,∴∠F=90°﹣∠E=60°,∵∠ACE=∠CDF+∠F,∠BCE=40°,∴∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F=45°+40°﹣60°=25°.故答案为:25°.13.(3分)计算+的结果是.【分析】利用分式加减法的计算方法进行计算即可.【解答】解:原式=﹣===,故答案为:.14.(3分)如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=6cm,DE =2cm,则△BCD的面积为6cm2.【分析】作DF⊥BC于F,根据角平分线的性质求出DF,根据三角形的面积公式计算即可.【解答】解:作DF⊥BC于F,∵CD是它的角平分线,DE⊥AC,DF⊥BC,∴DF=DE=2,∴△BCD的面积=×BC×DF=6(cm2),故答案为:6.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.三、解答题(每题5分,共20分)15.(5分)计算:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020.【分析】先算零指数幂、负整数指数幂、绝对值、乘方,再算加减法即可求解.【解答】解:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020=1+2﹣2﹣1=0.【点评】考查了实数的运算,解决此类题目的关键是熟练掌握零指数幂、负整数指数幂、绝对值、乘方等知识点的运算.16.(5分)计算:(a+3)(a﹣1)+a(a﹣2)【分析】根据整式混合运算的顺序和法则分别进行计算,再把所得结果合并即可.【解答】解:(a+3)(a﹣1)+a(a﹣2)=a2+2a﹣3+a2﹣2a=2a2﹣3;【点评】此题考查了整式的混合运算,在计算时要注意混合运算的顺序和法则以及运算结果的符号,是一道基础题.17.(5分)已知一个多边形的内角和与外角和之比为9:2,求它的边数.【分析】根据多边形的内角和与外角和之间的关系列出有关边数n的方程求解即可.【解答】解:设该多边形的边数为n则(n﹣2)×180°:360=9:2,解得:n=11.故它的边数为11.【点评】本题考查了多边形的内角与外角,解题的关键是牢记多边形的内角和公式与外角和定理.18.(5分)解分式方程:﹣=1.【分析】先去分母,再解整式方程,一定要验根.【解答】解:﹣=1(x+1)2﹣4=x2﹣1x2+2x+1﹣4=x2﹣1x=1,检验:把x=1代入x2﹣1=1﹣1=0,∴x=1不是原方程的根,原方程无解.【点评】本题考查了解分式方程,掌握分式方程一定要验根是解题的关键.四、解答题(每小题7分,共28分)19.(7分)如图,在平面直角坐标系中.(1)请画出△ABC关于y轴对称的△AB1C1,并写出B1、C1的坐标;=5;(2)直接写出△ABC的面积:S△ABC(3)在x轴上找到一点P,使PA+PC的值最小,请标出点P在坐标轴上的位置.【分析】(1)利用关于y轴对称的点的坐标特征写出B1、C1的坐标,然后描点即可;(2)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积;(3)作A点关于x轴的对称点A′,然后连接A′C交x轴于P点.【解答】解:(1)如图,△AB1C1为所作,B1(﹣2,﹣4),C1(﹣4,﹣1);=3×4﹣×2×2﹣×2×3﹣×4×1=5;(2)S△ABC故答案为5;(3)如图,点P为所作.【点评】本题考查了作图﹣轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.20.(7分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【分析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF即可.【解答】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.(7分)已知:a+b=4,ab=2,求下列式子的值:①a2+b2;②(a﹣b)2.【分析】①根据(a+b)2=a2+2ab+b2,可得a2+b2=(a+b)2﹣2ab,再把a+b=4,ab=2代入计算即可;②根据(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab,再把a+b=4,ab=2代入计算即可.【解答】解:∵a+b=4,ab=2,∴①a2+b2=(a+b)2﹣2ab=42﹣2×2=16﹣4=12;②(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab=42﹣4×2=16﹣8=8.【点评】本题考查完全平方公式的应用,根据题中条件,变换形式即可.22.(7分)如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.(1)若∠BAC=70°,求:∠BOC的度数;(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)【分析】(1)根据三角形的角平分线定义和三角形的内角和定理求出∠OBC+∠OCB的度数,再根据三角形的内角和定理即可求出∠BOC的度数;(2)根据三角形外角平分线的性质可得∠BCD=(∠A+∠ABC)、∠DBC=(∠A+∠ACB);根据三角形内角和定理可得∠BDC=90°﹣∠A.【解答】解:(1)∵OB、OC分别是∠ABC和∠ACB的角平分线,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB),∵∠A=70°,∴∠OBC+∠OCB=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°;(2)∠BDC=90°﹣∠A.理由如下:∵BD、CD为△ABC两外角∠ABC、∠ACB的平分线,∴∠BCD=(∠A+∠ABC)、∠DBC=(∠A+∠ACB),由三角形内角和定理得,∠BDC=180°﹣∠BCD﹣∠DBC,=180°﹣[∠A+(∠A+∠ABC+∠ACB)],=180°﹣(∠A+180°),=90°﹣∠A;【点评】本题考查的是三角形内角和定理,涉及到三角形内角与外角的关系,角平分线的性质,三角形内角和定理,结合图形,灵活运用基本知识解决问题.五、解答题(每小题8分,共16分)23.(8分)学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?【分析】由题意可知甲的工作效率=1÷规定日期,乙的工作效率=1÷(规定日期+3);根据“结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成”可知甲做两天的工作量+乙做规定日期的工作量=1,由此可列出方程.【解答】解:设规定日期为x天,根据题意,得2(+)+×(x﹣2)=1解这个方程,得x=6经检验,x=6是原方程的解.∴原方程的解是x=6.答:规定日期是6天.【点评】找到关键描述语,找到等量关系是解决问题的关键.本题主要考查的等量关系为:工作时间=工作总量÷工作效率,当题中没有一些必须的量时,为了简便,应设其为1.24.(8分)如图1,等边△ABC中,AD是BC边上的中线,E为AD上一点(点E与点A 不重合),以CE为一边且在CE下方作等边△CEF,连接BF.(1)猜想线段AE,BF的数量关系:AE=BF(不必证明);(2)当点E为AD延长线上一点时,其它条件不变.①请你在图2中补全图形;②(1)中结论成立吗?若成立,请证明;若不成立请说明理由.【分析】(1)利用等边三角形的性质得出AC=BC,CE=CF,∠ACB=∠ECF=60°,进而得出∠ACE=∠BCF,进而判断出△ACE≌△BCF,即可得出结论;(2)①由题意补全图形,即可得出结论;②同(1)的方法,即可得出结论.【解答】解:(1)AE=BF,理由:∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB﹣∠BCE=∠ECF﹣∠BCE,∴∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴AE=BF,故答案为:AE=BF;(2)①补全图形如图2所示;②AE=BF仍然成立,理由:∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB+∠BCE=∠ECF+∠BCE,∴∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴AE=BF.【点评】此题是三角形综合题,主要考查了等边三角形的性质,全等三角形的判定和性质,判断出△ACE≌△BCF是解本题的关键.六、解答题(每小题10分,共20分)25.(10分)如图①所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿虚线AB剪开,把剪成的两张纸片拼成如图②所示的等腰梯形.(1)设图①中阴影部分的面积为S1,图②中阴影部分面积为S2,请直接用含a,b的式子表示S1和S2.(2)请写出上述过程中所揭示的乘法公式;(3)用这个乘法公式计算:①(x﹣)(x+)(x2+);②107×93.【分析】(1)图①中的阴影部分的面积为两个正方形的面积差,图②中的阴影部分是上底为2b,下底为2a,高为a﹣b的梯形,利用梯形面积公式可得答案;(2)图①、图②面积相等可得等式;(3)①连续两次利用平方差公式可求结果;②将107×93转化为(100+7)(100﹣7),即可利用平方差公式求出结果.【解答】解:(1)S1=a2﹣b2,S2=(2a+2b)(a﹣b)=(a+b)(a﹣b);(2)a2﹣b2=(a+b)(a﹣b);(3)①原式=(x2﹣)(x2+)=x4﹣;②107×93=(100+7)(100﹣7)=1002﹣72=10000﹣49=9951.【点评】本题考查平方差公式的几何背景,掌握平方差公式的结构特征是解决问题的关键.26.(10分)在△ABC中,AB=AC=2,∠B=40°,D是线段BC上一动点(不与B、C 两点重合),且∠ADE=40°.(1)若∠BDA=115°,则∠CDE=25°,∠AED=65°;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)在D点运动过程中,能使△ADE是等腰三角形吗?若能,请求出使△ADE是等腰三角形时的∠ADB的度数;若不能,请说明理由.【分析】(1)利用等腰三角形的性质和三角形的外角性质解答即可;(2)先求出∠ADB=∠DEC,再由∠B=∠C,AB=DC=2,即可得出△ABD≌△DCE (AAS);(3)分两种情况讨论即可.【解答】解:(1)∵AB=AC,∴∠B=∠C=∠40°,∵∠BDA=115°,∴∠ADC=180°﹣115°=65°,∴∠CDE=∠ADC﹣∠ADE=65°﹣40°=25°,∴∠AED=∠CDE+∠C=25°+40°=65°,故答案为:25°,65°;(2)当DC=2时,△ABD≌△DCE,理由如下:∵∠C=40°,∴∠DEC+∠EDC=140°,∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)△ADE能成为等腰三角形,理由如下:∵∠ADE=∠C=40°,∠AED>∠C,∴△ADE为等腰三角形时,只能是AD=DE或AE=DE,当AD=DE时,∠DAE=∠DEA=(180°﹣40°)=70°,∴∠EDC=∠AED﹣∠C=70°﹣40°=30°,∴∠ADB=180°﹣40°﹣30°=110°;当EA=ED时,∠ADE=∠DAE=40°,∴∠AED=180°﹣40°﹣40°=100°,∴∠EDC=∠AED﹣∠C=100°﹣40°=60°,∴∠ADB=180°﹣40°﹣60°=80°;综上所述,当∠ADB的度数为110°或80°时,△ADE是等腰三角形.【点评】此题考查了等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质等知识点,此题涉及到的知识点较多,综合性较强.21。

人教版八年级英语期末模拟试题及参考答案

人教版八年级英语期末模拟试题及参考答案

人教版八年级英语期末模拟试题温馨提示:1.本试卷共12页,满分为120分。

考试时间120分钟。

2.答卷前务必将自己的学校、班级、姓名、座位号填写在本试卷相应位置上。

听力部分(20分)一、听对话,选答案。

(每小题1分,共15分)第一节听下面10段对话,每段对话后面有一个问题,对话读两遍,请根据每段对话的内容和后面的问题,从所给的选项中选出最恰当的一项。

( )1. A. Once a week. B. Every day. C. Never.( )2. A. In English. B. In Australia. C. In the USA.( )3. A. A new camera. B. Some photos. C. A computer.( )4. A. He has a stomachache. B. He has a toothache. C. He likes eating.( )5. A. Sh e’s outgo ing. B. She’s cute. C. She’s quiet.( )6. A. To the P eople’s Hospital. B. To the post office. C. To the cinema.( )7. A. The film is wonderful. B. The film is not interesting.C. She missed the film.( )8. A. He played soccer. B. He stayed at home. C. He went swimming.( )9. A. On next Friday. B. On next Saturday. C. On next Sunday.( )10. A. Peter. B. John. C. Jane.第二节:听下面两段对话,每段对话后有几道小题,请根据每段对话的内容和后面的问题,从所给的三个选项中选出最恰当的一项。

人教版八年级上册《物理》期末考试卷及答案【可打印】

人教版八年级上册《物理》期末考试卷及答案【可打印】

人教版八年级上册《物理》期末考试卷及答案一、选择题(每题1分,共5分)1. 下列哪个不是力学的基本单位?A. 牛顿(N)B. 焦耳(J)C. 千克(kg)D. 秒(s)2. 在平直公路上匀速直线行驶的汽车,其动能大小取决于哪些因素?A. 质量、速度、时间B. 质量、速度、距离C. 质量、速度 D. 质量、加速度3. 下列哪个现象属于光的反射现象?A. 小孔成像B. 彩虹C. 镜子中的像D. 海市蜃楼4. 下列哪种电路元件是利用电磁感应原理工作的?A. 发电机B. 电灯C. 电动机D. 电热水器5. 下列哪个过程是放热反应?A. 燃烧B. 融化C. 汽化D. 照射二、判断题(每题1分,共5分)1. 力的作用是相互的,且作用力和反作用力大小相等、方向相反。

()2. 在平直公路上匀速直线行驶的汽车,其动能大小与时间无关。

()3. 光的传播速度在真空中是最快的。

()4. 电流的方向是由正电荷向负电荷流动。

()5. 水在0℃时结冰。

()三、填空题(每题1分,共5分)1. 力的单位是______,能量的单位是______。

2. 光在真空中的传播速度是______。

3. 电流的单位是______,电压的单位是______。

4. 水的密度是______,冰的密度是______。

5. 一切物质都是由______组成的。

四、简答题(每题2分,共10分)1. 简述牛顿第一定律的内容。

2. 简述光的反射定律的内容。

3. 简述电磁感应现象的原理。

4. 简述热力学第一定律的内容。

5. 简述声音的传播原理。

五、应用题(每题2分,共10分)1. 一辆质量为1000kg的汽车以20m/s的速度行驶,求其动能。

2. 一束光从空气斜射入水中,入射角为30°,求折射角。

3. 一条电阻为10Ω的导线,通过它的电流为2A,求导线两端的电压。

4. 一定质量的水从10℃加热到100℃,求水吸收的热量。

5. 一辆自行车行驶在平直公路上,速度为10m/s,求自行车行驶100m所需的时间。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.下列图形中,不是..轴对称图形的是()A .B .C .D .2.要使分式12x x +-有意义,则x 的取值应满足()A .2x ≠B .1x ≠-C .2x =D .1x =-3.点M (3,2)关于y 轴的对称点的坐标为()A .(﹣3,2)B .(3,﹣2)C .(﹣3,﹣2)D .(1,2)4.12020-的值是()A .2020-B .12020-C .12020D .15.用科学记数法表示0.0000098是()A .0.98×10﹣5B .9.8×106C .9.8×10﹣5D .9.8×10﹣66.下列设计的原理不是利用三角形的稳定性的是()A .由四边形组成的伸缩门B .自行车的三角形车架C .斜钉一根木条的长方形窗框D .照相机的三脚架7.如图,ABC 中,36A ∠=︒,AB AC =,BD 平分ABC ∠交AC 于点D ,则图中的等腰三角形共有()个.A .2B .3C .4D .58.下列计算正确的是()A .()22224a b a b -=-B .()222224a b a ab b -=-+C .()()2571235x x x x +-=--D .()232324612x x x x x --=-+9.如图,AC ,BD 相交于点O ,OA=OC ,要使△AOB ≌△COD ,则下列添加的条件中错误的是()A .∠A =∠CB .∠B =∠DC .OB =OD D .AB =CD10.如图所示,OP 平分∠AOB ,PA ⊥OA 于点A ,PB ⊥OB 于点B .下列结论中,不一定成立的是()A .PA=PBB .PO 平分∠APBC .OA=OBD .AB 垂直平分OP二、填空题11.当x_____时,分式25x x -有意义.12.因式分解:22ax ax a -+=_________.13.某个等腰三角形的一个角为50°,则它的底角为______.14.(9a 2﹣6ab )÷3a =_____.15.若一条长为24cm 的细线能围成一边长等于9cm 的等腰三角形,则该等腰三角形的腰长为_____cm .16.若x-y=3,xy=2,则x 2+y 2=_____.17.如图,五边形ABCDE 中,//AE BC ,则C D E ∠+∠+∠的度数为__________.18.如图,M 为∠AOB 内一定点,E 、F 分别是射线OA 、OB 上一点,当 MEF 周长最小时,若∠OME =40°,则∠AOB =_____.三、解答题19.计算:(a+b )(a-b )-(a-2b )220.如图,在ABC 中,AB AD DC ==,26BAD ∠=︒,求B Ð和C ∠的度数.21.如图,AB ⊥CB ,DC ⊥CB ,E 、F 在BC 上,∠A=∠D ,BE=CF ,求证:AF=DE .22.如图,在平面直角坐标系中,A (-1,5),B (-1,0),C (-4,3).(1)作出△ABC 关于y 轴的对称图形△A'B'C';(2)写出点A',B',C'的坐标;(3)在y 轴上找一点P ,使PA+PC 的长最短.23.先化简,再求值:(32)2xx x -++,其中32x =-.24.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y )2+2(x+y )+1.解:将“x+y”看成整体,令x+y=A ,则原式=A 2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请解答下列问题:(1)因式分解:1+2(2x-3y )+(2x-3y )2.(2)因式分解:(a+b )(a+b-4)+4;25.如图,△ABD ,△AEC 都是等边三角形,连接CD ,BE 交于点F .求证:(1)∠BFC =120°;(2)FA 平分∠DFE .26.如图,在 ABC 是等腰直角三角形,∠ACB=90°,点D 、E 分别是 ABC 内的点,且EA=EB ,BD=AC ,BE 平分∠DBC .(1)求证: DBE ≌ CBE ;(2)求证:∠BDE=45°.27.数学课上,我们知道可以用图形的面积来解释一些代数恒等式,如图1可以解释完全平方公式:()2222a b a ab b +=++.(1)如图2(图中各小长方形大小均相等),请用两种不同的方法求图2中阴影部分的面积(不化简):方法1:S =阴影_________________;方法2∶S =阴影_________________.(2)由(1)中两种不同的方法,你能得到怎样的等式?(3)①已知()216+=m n ,3mn =,请利用(2)中的等式,求m n -的值.②已知()2213m n +=,()225m n -=,请利用(2)中的等式,求mn 的值.参考答案1.C【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A 、B 、D 选项中的图形都能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;C 选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;故选:C .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.【分析】根据分式有意义的条件即可求出答案.【详解】解:∵12x x +-在实数范围内有意义,∴-20x ≠.∴2x ≠故选A .【点睛】本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.3.A【分析】根据“关于y 轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】解:点(3,2)关于y 轴的对称点的坐标是(-3,2).故选:A .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数.4.C【分析】根据负整数指数幂的计算公式解答.【详解】12020-的值是12020,故选:C .【点睛】此题考查负整数指数幂计算公式,熟记公式是解题的关键.5.D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:用科学记数法表示0.0000098是9.8×10-6.故选:D .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.【分析】利用三角形的稳定性进行解答.【详解】解:由四边形组成的伸缩门是利用了四边形的不稳定性,故A 不是利用三角形的稳定性;B 、C 、D 都是利用三角形的稳定性;故选:A .【点睛】此题主要考查了三角形的稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.7.B【分析】由已知条件,利用三角形的内角和定理及角平分线的性质得到各角的度数,根据等腰三角形的定义及等角对等边得出答案.【详解】解:∵AB AC =,∴ABC 是等腰三角形,∵36A ∠=︒,∴72C ABC ∠=∠=︒,∵BD 平分ABC ∠交AC 于D ,∴36ABD DBC ∠=∠=︒,∴36A ABD ∠=∠=︒,∴ABD △是等腰三角形.∵363672BDC A ABD C ∠=∠+∠=︒+︒=︒=∠,∴BDC 是等腰三角形.∴共有3个等腰三角形.故选B .【点睛】本题考查了等腰三角形的判定与性质及三角形内角和定理,解题的关键是正确求得各角的度数.8.D【分析】分别依据完全平方公式和多项式乘多项式法则、单项式乘多项式法则计算即可.【详解】解:A .(a-2b )2=a 2-4ab+4b 2,此选项不符合题意;B .(a-2b )2=a 2-4ab+4b 2,此选项不符合题意;C .(x+5)(x-7)=x 2-2x-35,此选项不符合题意;D.-3x(2x2-4x)=-6x3+12x2,此选项符合题意;故选D.【点睛】本题考查完全平方公式和多项式乘多项式,解题的关键是熟练掌握完全平方公式和多项式乘多项式法则.9.D【分析】根据全等三角形的判定定理依次分析判断即可.【详解】∵∠AOB=∠COD,OB=OD,∴当添加∠A=∠C时,可根据“AAS”判断△AOB≌△COD;当添加∠B=∠D时,可根据“ASA”判断△AOB≌△COD;当添加OB=OD时,可根据“SAS”判断△AOB≌△COD.如果添加AB=CD,则根据“SSA”不能判定△AOB≌△COD.故选:D.【点睛】此题考查了全等三角形的判定定理,熟记全等三角形的判定定理并应用是解题的关键.10.D【分析】根据角平分线上的点到角的两边距离相等可得PA=PB,再利用“AAS”证明△AOP 和△BOP全等,根据全等三角形对应角相等可得∠AOP=∠BOP,全等三角形对应边相等可得OA=OB.【详解】解:∵OP平分∠AOB,PA⊥OA,PB⊥OB,∴PA=PB,故A选项正确;∵∠PAO=∠PBO=90°,∠POA=∠POB,OP=OP,∴△AOP≌△BOP(AAS),∴∠APO=∠BPO,OA=OB,故B,C选项正确;∵OA=OB,∴∠OBA=∠OAB,由等腰三角形三线合一的性质,OP垂直平分AB,AB不一定垂直平分OP,故D选项错误;即不一定成立的是选项D,故选:D.11.≠5【详解】解:由分式有意义的条件可知:x-5≠0,∴x≠5,故答案为:≠5.12.()21a x -【详解】解:22ax ax a-+=()221a x x -+=()21a x -,故答案为:()21a x -.13.50°或65°【详解】解:当底角为50°时,根据等腰三角形两个底角相等,∴等腰三角形的另一个底角为50°;当顶角为50°时,根据等腰三角形两个底角相等,∴等腰三角形的底角为180501306522︒-︒︒==︒,故答案为:50°或65°.14.3a-2b【详解】解:(9a 2-6ab )÷3a=9a 2÷3a-6ab÷3a=3a-2b .故答案为:3a-2b15.9或7.5【详解】解:若9cm 为底时,腰长应该是12(24-9)=7.5cm ,故三角形的三边分别为7.5cm 、7.5cm 、9cm ,∵7.5+7.5=15>9,故能围成等腰三角形;若9cm 为腰时,底边长应该是24-9×2=6,故三角形的三边为9cm 、9cm 、6cm ,∵6+9=15>9,∴以9cm 、9cm 、6cm 为三边能围成三角形,综上所述,腰长是9cm 或7.5cm ,故答案为:9或7.5.16.13【详解】解:因为x-y=3,xy=2,则x 2+y 2=(x-y)2+2xy=9+4=13,故答案为:13.17.360︒【详解】∵//AE BC ,∴180A B ∠+∠=︒,∵五边形内角和=5218540(0)-⨯︒=︒,∴C D E ∠+∠+∠=540180︒-︒=360︒,故答案为:360︒.18.50°【详解】分别作M 关于,OA OB 的对称点12,M M ,连接12,OM OM ,当,E F 分别为12M M 与,OA OB 的交点时, MEF 周长最小,连接12,M M ,∴1OM OM =,2OM OM =,12OM OM ∴=,2112OM M OM M ∴∠=∠,对称,112,M OA MOA M OB M OB ∴∠=∠∠=∠,1212AOB M OM ∴∠=∠,∠OME =40°,140OM E ∴∠=︒,121221180100M OM OM M OM M ∴∠=︒-∠-∠=︒,50AOB ∴∠=︒.故答案为:50°19.4ab-5b 2.【详解】解:原式=a 2-b 2-(a 2-4ab+4b 2)=a 2-b 2-a 2+4ab-4b 2=4ab-5b 2.故答案为4ab-5b 2.20.∠B =77°,∠C =38.5︒【详解】解:∵AB =AD ,26BAD ∠=︒∴∠B =∠ADB =12×(180°﹣26°)=77°,∵AD =DC ,∴∠C=∠DAC ,∴∠C =12∠ADB =12×77°=38.5︒.21.【详解】证明:∵AB ⊥CB ,DC ⊥CB ,∴∠B=∠C=90°,∵BE=CF ,∴BF=CE ,且∠A=∠D ,∠B=∠C=90°,∴△ABF ≌△DCE (AAS ),∴AF=DE ,22.(1)见解析;(2)A′(1,5),B′(1,0),C′(4,3);(3)见解析【分析】(1)分别作出点A 、B 、C 关于y 轴的对称点,再收尾顺次连接即可得;(2)根据△A'B'C'各顶点的位置,写出其坐标即可;(3)连接PC ,则PC=PC′,根据两点之间线段最短,可得PA+PC 的值最小.【详解】解:(1)如图所示,△A′B′C′为所求作;(2)由图可得,A′(1,5),B′(1,0),C′(4,3);(3)如图所示,连接AC′,交y轴于点P,则点P即为所求作.23.26x+,3【分析】根据整式与分式的加减计算括号内的,进而根据分式的性质化简,再将32 x=-代入求解即可【详解】原式=362(3)(2)(2)2622x x xx x xx x+-+⋅+=⋅+=+ ++当32x=-时,原式=32()62⨯-+=3.24.(1)(1+2x-3y)2;(2)(a+b-2)2.【分析】(1)将(2x-3y)看作一个整体,利用完全平方公式进行因式分解.(2)令A=a+b,代入后因式分解,再代入即可将原式因式分解.【详解】解:(1)原式=(1+2x-3y)2.(2)令A=a+b,则原式变为A(A-4)+4=A2-4A+4=(A-2)2,故:(a+b)(a+b-4)+4=(a+b-2)2.故答案为(1)(1+2x-3y)2;(2)(a+b-2)2.25.(1)见解析;(2)见解析【分析】(1)利用△ABD、△AEC都是等边三角形,求证△DAC≌△BAE,根据全等三角形的性质解答即可;(2)过点A作AH⊥DC,AG⊥BE,垂足分别为H、G.首先证明△DAH≌△BAG,依据全等三角形的性质得到AH=AG,最后依据到角两边距离相等的点在角的平分线上.【详解】证明:(1)∵△ABD、△AEC都是等边三角形,∴AD=AB,AE=AC,∠DAB=∠CAE=60°,∴∠DAC=∠BAC+60°,∠BAE=∠BAC+60°,∴∠DAC=∠BAE ,在△DAC 和△BAE 中,AD AB DAC BAE AE AC =⎧⎪∠=∠⎨⎪=⎩,∴△DAC ≌△BAE (SAS ),∴∠ABE=∠ADC ,令AB 与DC 的交点为G ,∵∠BGD=∠ABE+∠BFG ,∠BGD=∠ADC+∠DAG ,∴∠ABE+∠BFG=∠ADC+∠DAG ,∴∠BFG=∠DAG=60°,∴∠BFC=180°-∠BFG=120°;(2)过点A 作AH ⊥DC ,AG ⊥BE ,垂足分别为H 、G.∵AH ⊥DC ,AG ⊥BE ,∴∠DHA=∠BGA=90°.∵△DAC ≌△BAE ,∴∠ADC=∠ABE .在△DAH 和△BAG 中ADC ABE DHA BGA AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DAH ≌△BAG .∴AH=AG .又∵AH ⊥DC ,AG ⊥BE ,∴FA 为∠DFE 的角平分线.【点睛】本题主要考查的是等边三角形的性质、全等三角形的性质和判定、角平分线的判定,掌握本题辅助线的做法是解题的关键.26.(1)见解析(2)见解析【分析】(1)根据BE 平分DBC ∠,可得DBE CBE ∠=∠,根据等腰三角形的定义可得BC AC =,根据SAS 即可证明DBE ≌CBE△(2)根据SSS 直接证明ACE ≌BCE ,可得∠BCE=∠ACE ,由(1)可得DBE ≌CBE △,∠BDE=∠BCE ,进而根据∠ACB=90°,(1)∵ABC 是等腰直角三角形,∴BC AC =,∠ACB=90°.∵BD AC =,∴BC BD =.∵BE 平分DBC ∠,∴DBE CBE ∠=∠.∴在△CBE 与△DBE 中,BC DBDBE CBE BE BE=⎧⎪∠=∠⎨⎪=⎩∴DBE ≌CBE △(SAS).(2)解:在△CBE 与△CAE 中,BC ACCE CE BE AE=⎧⎪=⎨⎪=⎩∴ACE ≌BCE (SSS).∴∠BCE=∠ACE.∵∠BCE+∠ACE=90°∴∠BCE=∠ACE=45°.∵DBE ≌CBE △,∴∠BDE=∠BCE.∴∠BDE=∠BCE=45°【点睛】本题考查了等腰三角形的定义,三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键.27.(1)4ab ,()()22a b a b +--;(2)()()224a b a b ab +--=;(3)①2±;②1【分析】(1)根据阴影部分的面积=4个小长方形的面积=大正方形的面积-小正方形的面积即可解答;(2)根据(1)求得的结果,利用两种方法求得的阴影面积相等即可解答;(3)①根据()22()4m n m n mn +--=即可得到22()()4m n m n mn +=--,由此求解即可;②根据()22()4m n m n mn +--=可得()()22(2)2428m n m n m n mn +--=⋅=,由此求解即可.【详解】解:(1)方法1:阴影部分面积为4个相同的小长方形的面积之和,∴阴影部分面积=4ab ;方法2:阴影部分面积=大正方形的面积-小正方形面积∴阴影部分面积=()()22a b a b +--.故答案为:4ab ,()()22a b a b +--;(2)∵(1)中两种方法求得的阴影部分面积相等,∴()()224a b a b ab +--=;(3)①∵2()=16m n +,3mn =,()22()4m n m n mn +--=,∴224161()(24)m n m n mn =-=--=+,∴2m n -=±;②2(2)=13m n +,2=25()m n -,()()22(2)2428m n m n m n mn +--=⋅=,∴228(2)(2)8mn m n m n =+-=-,∴1mn =.。

新人教版八年级化学上册期末模拟考试含答案

新人教版八年级化学上册期末模拟考试含答案

新人教版八年级化学上册期末模拟考试含答案(时间: 60分钟分数: 100分)班级: 姓名: 分数:一、选择题(每小题只有1个选项符合题意。

共20小题, 每题2分, 共40分)1.下列关于空气的说法中, 错误的是()A. 空气是一种十分重要的天然资源B. 少量有害气体进入空气中, 依靠大自然的自净能力, 空气仍能保持洁净C. 按质量计算, 空气中约含氮气78%, 氧气21%, 其他气体和杂质约占1%D.空气中的稀有气体一般不跟其他物质反应, 曾被称为“惰性气体”2.下列古代文明或工艺一定包含化学变化的是()A. 在甲骨上刻文字B. 指南针指引航海C. 用泥土烧制陶瓷D. 用石块修筑长城3.氧气与世间万物如影随形。

下列关于氧气说法错误的是()A. 空气中的氧气与水中溶解的氧气化学性质同样活泼B. 工业上可以利用分离液态空气法制取氧气C. 氧气可以支持燃烧, 说明氧气具有可燃性D. 氧气能供给呼吸, 它和体内物质反应, 释放能量, 维持生命活动4、如图所示, 在蒸馏烧瓶中加入几粒碎瓷片, 再加入约1/3体积的自来水, 连接装置进行制取蒸馏水的实验。

下列说法不正确的是()A. 实验时, 冷凝管应该用铁架台夹持固定B. 实验时, 冷凝管进、出水的方向: b进a出C. 图中所示装置, 温度计的位置不对, 水银球应该插入液态水中D. 石棉网的作用是使蒸馏烧瓶均匀受热, 碎瓷片的作用是防止加热时出现暴沸5.下列各组化合物中, 铁元素质量分数按由低到高的顺序排列的是()A.FeO、Fe2O3.Fe3O4.FeS B.FeS, Fe2O3.Fe3O4.FeOC. FeO、Fe3O4、Fe2O3.FeSD. FeS、FeO、Fe2O3.Fe3O46、“茉莉的香气清新淡雅, 能够使人心情放松, 檀木的香气持久醇厚, 能缓解紧张焦虑的情绪……。

”从微观角度分析, 语句中隐含的分子性质有()①分子的质量很小②分子之间有间隔③分子是不断运动的④不同分子性质不同A. ①②B. ③④C. ①③D. ②④7、下列关于浓硫酸的说法正确的是()A. 易挥发B. 有腐蚀性C. 无吸水性D. 密度比水小8、推理是研究和学习化学的一种重要方法。

2022-2023学年人教版八年级数学上册期末模拟试卷(含答案)

2022-2023学年人教版八年级数学上册期末模拟试卷(含答案)

2022-2023学年八年级(上)期末数学模拟试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题所给的四个选项中,有且只有一项是符合题目要求的)1.(3分)下列体育运动图标中,是轴对称图形的是()A.B.C.D.2.(3分)如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是()A.三角形的稳定性B.长方形的对称性C.长方形的四个角都是直角D.两点之间线段最短3.(3分)光刻机采用类似照片冲印的技术,把掩膜版上的精细图形通过光线的曝光印制到硅片上,是制造芯片的核心装备.ArF准分子激光是光刻机常用光源之一,其波长为0.000000193米,该光源波长用科学记数法表示为()A.193×106米B.193×10﹣9米C.1.93×10﹣7米D.1.93×10﹣9米4.(3分)如图,用直尺和圆规作一个三角形O1A1B1,使得△O1A1B1≌△OAB的示意图,依据()定理可以判定两个三角形全等.A.SSS B.SAS C.ASA D.AAS5.(3分)下列由左边到右边的变形中,是因式分解的为()A.10x2y3=5xy2•2xy B.m2﹣n2=(m+n)(m﹣n)C.3m(R+r)=3mR+3mr D.x2﹣x﹣5=(x+2)(x﹣3)+16.(3分)已知一个正多边形的每个外角的度数都是60°,则该多边形的对角线条数为()A.6B.9C.12D.187.(3分)如图,AE,BE,CE分别平分∠BAC,∠ABC,∠ACB,ED⊥BC于点D,ED=3,△ABC的周长为24,则△ABC的面积为()A.18B.24C.36D.728.(3分)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.=B.+80=C.=﹣80D.=9.(3分)如图,点D为△ABC的边BC上一点,且满足AD=DC,作BE⊥AD于点E,若∠BAC=70°,∠C=40°,AB=6,则BE的长为()A.2B.3C.4D.510.(3分)下列说法:①三角形中至少有一个内角不小于60°;②三角形的重心是三角形三条中线的交点;③周长相等的两个圆是全等图形;④到三角形的三条边距离相等的点是三角形三条高的交点.其中正确说法的个数是()A.1B.2C.3D.411.(3分)如图,由4个全等的小长方形与1个小正方形密铺成正方形图案,该图案的面积为49,小正方形的面积为4,若分别用x ,y (x >y )表示小长方形的长和宽,则下列关系式中不正确的是( )A .x 2+2xy +y 2=49B .x 2﹣2xy +y 2=4C .x 2+y 2=25D .x 2﹣y 2=1412.(3分)如图,已知∠ABC =120°,BD 平分∠ABC ,∠DAC =60°,若AB =2,BC =3,则BD 的长是( )A .5B .7C .8D .9二、填空题(本大题共4小题,每小题4分,共16分) 13.(4分)当x=时,分式的值为0.14.(4分)已知点P (4,2a ﹣3)关于x 轴对称的点在第一象限,则a 的取值范围是 . 15.(4分)已知a =+2021,b =+2022,c =+2023,则代数式2(a 2+b 2+c 2﹣ab ﹣bc ﹣ac )的值为 .16.(4分)如图,△ABC 中,BF 是高,延长CB 至点D ,使BD =BA ,连接AD ,过点D 作DE ⊥AB 交AB 的延长线于点E ,当AF =BE ,∠CAD =96°时,∠C = .三、解答题(本大题共9小题,共98分。

人教版数学八年级上册期末考试试卷带答案

人教版数学八年级上册期末考试试卷带答案

人教版数学八年级上册期末考试试题一、选择题(30分)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.某病毒直径约为0.00012毫米,则这个数字用科学记数法表示正确的是()A.1.2×104B.1.2×10﹣4C.0.12×105D.0.12×10﹣5 3.分式有意义的条件是()A.x=0B.x≠0C.x=﹣1D.x≠﹣14.点P(﹣1,2)关于y轴对称点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)5.下列计算正确的是()A.a2•a3=a6B.(2a)3=6a3C.(a+b)2=a2+b2D.(﹣a2)3=﹣a66.如图,四边形ABCD中,∠A=80°,BC、CD的垂直平分线交于A点,则∠BCD的度数为()A.150°B.140°C.130°D.120°7.已知a+b=2,则a2﹣b2+4b的值是()A.2B.3C.4D.68.小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x本笔记本,则根据题意可列方程()A.=1B.=1C.=1D.=19.当x分别取2020、2018、2016、…、2、0、、、…、、、时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.202010.如图,四边形ABCD中,∠DAB+∠ABC=90°,对角线AC、BD相交于O点,且分别平分∠DAB和∠ABC,若BO=4OD,则的值为()A.B.C.D.二、填空题(18分)11.计算:x2y÷xy2=.12.若x2+6x+m是完全平方式,则m=.13.已知x﹣=3,则x2+=.14.若某三角形两边长为2,4,第三边上的中线为x,则x的取值范围为.15.若关于x的方程=+1无解,则a的值是.16.如图,Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,D为BC上一动点,EF垂直平分AD分别交AC于E、交AB于F,则BF的最大值为.三、解答题(72分)17.(8分)计算:(1)(2x+y)(2xy);(2)(4x6y﹣6x3)÷2x3.18.(8分)因式分解:(1)2x2﹣2;(2)x3﹣4x2y+4xy2.19.(8分)解方程:﹣1=.20.(8分)先化简,再求值:(1﹣)÷,其中a=﹣1.21.(8分)如图,是由边长为1的小正方形组成的网格,网格线的交点称为格点,△AOB 的顶点在格点上,以O为原点建立平面直角坐标系.(1)∠OAB=;O点关于直线AB的对称点的坐标为;(2)作A点关于OB的对称点F可按下列操作,要求:仅用无刻度直尺作图(保留作图过程与痕迹);①在网格中取格点C,连接AC,使AC⊥OB,则C的坐标为;②延长AO使OD=OA,则D的坐标为;③在网格中取格点E,连接DE,使DE⊥AC,则E的坐标为,AC与DE的交点F即为A点关于OB的对称点.22.(10分)某道路工程项目,若由甲、乙两工程队合作20天可完工;若甲工程队先单独施工40天,再由乙工程队单独施工10天也可完工.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲、乙工程队合作施工时对道路交通有影响,独施工时对交通无影响,且要求整个工期不能超过24天,问如何安排两队施工,对道路交通的影响会最小?23.(10分)已知△ABC中,∠BAC=60°,以AB和BC为边向外作等边△ABD和等边△BCE.(1)连接AE、CD,如图1,求证:AE=CD;(2)若N为CD中点,连接AN,如图2,求证:CE=2AN;(3)若AB⊥BC,延长AB交DE于M,DB=,如图3,则BM =.(直接写出结果)24.(12分)已知点A(0,4)、B(﹣4,0)分别为面直角坐标中y、x轴上一点,将线段OA绕O点顺时针旋转至OC,连接AC、BC.(1)如图1,求∠ACB的度数;(2)若∠AOC=60°,∠AOB的平分线OD交BC于D,如图2,求证:OD+BD=CD;(3)若∠AOC=30°,过A作AE⊥AC交BC于E,如图3,求BE的长.参考答案与试题解析一、选择题(30分)1.下列图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【解答】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意.故选:A.【点评】此题主要考查了轴对称图形,正确掌握轴对称图形的性质是解题关键.2.目前发现的新冠病毒其直径约为0.00012毫米,则这个数字用科学记数法表示正确的是()A.1.2×104B.1.2×10﹣4C.0.12×105D.0.12×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00012=1.2×10﹣4.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.分式有意义的条件是()A.x=0B.x≠0C.x=﹣1D.x≠﹣1【分析】根据分式的分母不为0列出不等式,解不等式得到答案.【解答】解:分式有意义的条件是x+1≠0,解得x≠﹣1,故选:D.【点评】本题考查的是分式有意义的条件,掌握分式的分母不为0是解题的关键.4.点P(﹣1,2)关于y轴对称点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)【分析】根据关于y轴对称,横坐标互为相反数,纵坐标不变.【解答】解:点P(﹣1,2)关于y轴对称点的坐标为(1,2).故选:A.【点评】本题考查了关于x轴、y轴对称点的坐标,注:关于y轴对称,横坐标互为相反数,纵坐标不变;关于x轴对称,纵坐标互为相反数,横坐标不变;关于原点对称,横纵坐标都互为相反数.5.下列计算正确的是()A.a2•a3=a6B.(2a)3=6a3C.(a+b)2=a2+b2D.(﹣a2)3=﹣a6【分析】分别根据同底数幂的乘法法则,幂的乘方与积的乘方运算法则,完全平方公式逐一判断即可.【解答】解:A、a2•a3=a5,故本选项不合题意;B、(2a)3=8a3,故本选项不合题意;C、(a+b)2=a2+2ab+b2,故本选项不合题意;D、(﹣a2)3=﹣a6,故本选项符合题意.故选:D.【点评】本题主要考查了同底数幂的乘法,完全平方公式以及幂的乘方与积的乘方,熟记相关公式与运算法则是解答本题的关键.6.如图,四边形ABCD中,∠A=80°,BC、CD的垂直平分线交于A点,则∠BCD的度数为()A.150°B.140°C.130°D.120°【分析】根据垂直平分线的性质及等腰三角形的性质求解即可.【解答】解:连接AC,∵BC、CD的垂直平分线交于A点,∴AB=AC,AC=AD,∴∠B=∠ACB,∠D=∠ACD,在△ABC中,∠ACB=(180°﹣∠BAC)=90°﹣∠BAC,同理,∠ACD=90°﹣∠CAD,∴∠BCD=∠ACB+∠ACD=180°﹣(∠BAC+CAD)=180°﹣∠BAD,∵∠BAD=80°,∴∠BCD=140°.故选:B.【点评】此题考查了多边形的内角与外角,熟练掌握多边形内角和公式及等腰三角形的性质是解题的关键.7.已知a+b=2,则a2﹣b2+4b的值是()A.2B.3C.4D.6【分析】把a2﹣b2+4b变形为(a﹣b)(a+b)+4b,代入a+b=2后,再变形为2(a+b)即可求得最后结果.【解答】解:∵a+b=2,∴a2﹣b2+4b=(a﹣b)(a+b)+4b,=2(a﹣b)+4b,=2a﹣2b+4b,=2(a+b),=2×2,=4.故选:C.【点评】本题考查了代数式求值的方法,同时还利用了整体思想.8.小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x本笔记本,则根据题意可列方程()A.=1B.=1C.=1D.=1【分析】由设他上月买了x本笔记本,则这次买了(x+2)本,然后可求得两次每本笔记本的价格,由等量关系:每本比上月便宜1元,即可得到方程.【解答】解:设他上月买了x本笔记本,则这次买了(x+2)本,根据题意得:﹣=1,即:﹣=1.故选:B.【点评】此题考查了分式方程的应用.注意准确找到等量关系是关键.9.当x分别取2020、2018、2016、…、2、0、、、…、、、时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2020【分析】把互为倒数的两个数代入分式可得它们的和是0,把0代入分式得﹣1,故得出结果为﹣1.【解答】解:当x=a(a≠0)时,=,当x=时,==﹣,即互为倒数的两个数代入分式的和为0,当x=0时,=﹣1,故选:A.【点评】本题考查数字的变化规律,总结出数字的变化规律是解题的关键.10.如图,四边形ABCD中,∠DAB+∠ABC=90°,对角线AC、BD相交于O点,且分别平分∠DAB和∠ABC,若BO=4OD,则的值为()A.B.C.D.【分析】在AB上截取AE=AD,BF=BC,连接OE、OF,根据题意易证△AOD≌△AOE (SAS),△BOC=△BOF(SAS),即得出结论∠AOD=∠AOE,∠BOC=∠BOF,OD =OE,OC=OF.继而求出∠AOD=∠BOC=∠AOE=∠BOF=∠EOF=45°,再由题意可知,==4,即又可推出,AE=AB,BE=AB,由OF平分∠BOE,得===4,可推出BF=×AB=AB,最后由BO平分∠ABC,可得==,即可求出的值.【解答】解:如图,在AB上截取AE=AD,BF=BC,连接OE,OF,∵AC、BD相交于O点,且分别平分∠DAB和∠ABC,∴∠OAB=∠OAD=∠DAB,∠OBC=∠OBA=∠ABC,在△AOD和△AOE中,,∵AD=AE,BC=BF,∴△AOD≌△AOE(SAS),同理,△BOC≌△BOF,∴∠AOD=∠AOE,OD=OE,∠BOC=∠BOF,OC=OF,∵∠DAB+∠ABC=90°,∴∠OAB+∠OBA=45°,∵∠AOD=∠BOC=∠OBA+∠OAB,∴∠AOD=∠BOC=45°,∴∠AOE=∠BOF=45°,∴∠EOF=180°﹣(∠OAB+∠OBA)﹣∠AOE﹣∠BOF=180°﹣45°﹣45°﹣45°=45°,∵AO平分∠BAD,BO=4OD,∴==4,即AB=4AD,∴AE=AB,BE=AB,∵∠EOF=∠BOF=45°,∴OF平分∠BOE,∴===,即EF=BF,∴BF=BE,∴BF=×AB=AB,∵BO平分∠ABC,∴====,故选:B.【点评】此题主要考查全等三角形的判定与性质,角平分线的判定与性质,推理论证过程较难,作出辅助线是解题的关键.二、填空题(18分)11.计算:x2y÷xy2=xy﹣1.【分析】直接利用整式的除法运算法则计算得出答案.【解答】解:x2y÷xy2=xy﹣1.故答案为:xy﹣1.【点评】此题主要考查了整式的除法,正确掌握相关运算法则是解题关键.12.若x2+6x+m是完全平方式,则m=9.【分析】由题意,x2+6x+m是完全平方式,所以,可得x2+6x+m=(x+3)2,展开即可解答.【解答】解:根据题意,x2+6x+m是完全平方式,∴x2+6x+m=(x+3)2,解得,m=9.故答案为9.【点评】本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号.13.已知x﹣=3,则x2+=11.【分析】将原式两边平方即可得.【解答】解:∵x﹣=3,∴x2+﹣2=9,∴x2+=11,故答案为:11.【点评】本题主要考查分式的混合运算,解题的关键是掌握完全平方公式和分式的运算法则.14.若某三角形两边长为2,4,第三边上的中线为x,则x的取值范围为1<x<3.【分析】作出图形,延长中线AD到E,使DE=AD,利用“边角边”证明△ACD和△EBD 全等,根据全等三角形对应边相等可得AC=BE,然后根据三角形任意两边之和大于第三边,两边之差小于第三边求出AE的范围,再除以2即可得解.【解答】解:如图,延长中线AD到E,使DE=AD,∵AD是三角形的中线,∴BD=CD,在△ACD和△EBD中,∵,∴△ACD≌△EBD(SAS),∴AC=BE,∵角形两边长为2,4,第三边上的中线为x,∴4﹣2<2x<2+4,即2<2x<6,∴1<x<3.故答案为:1<x<3.【点评】本题考查了三角形的三边关系,全等三角形的判定与性质,根据辅助线的作法,“遇中线加倍延”作出辅助线构造全等三角形是解题的关键.15.若关于x的方程=+1无解,则a的值是2或1.【分析】把方程去分母得到一个整式方程,把方程的增根x=2代入即可求得a的值.【解答】解:x﹣2=0,解得:x=2.方程去分母,得:ax=4+x﹣2,即(a﹣1)x=2当a﹣1≠0时,把x=2代入方程得:2a=4+2﹣2,解得:a=2.当a﹣1=0,即a=1时,原方程无解.故答案是:2或1.【点评】首先根据题意写出a的新方程,然后解出a的值.16.如图,Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,D为BC上一动点,EF垂直平分AD分别交AC于E、交AB于F,则BF的最大值为.【分析】要使BF最大,则AF需要最小,而AF=FD,从而通过圆与BC相切来解决问题.【解答】解:∵Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,∴AB=2AC=4,∵EF垂直平分AD,∴AF=DF,若要使BF最大,则AF需要最小,∴以F为圆心,AF为半径的圆与BC相切即可,∴FD⊥BD,∴AB=AF+2AF=4,∴AF=,∴BF的最大值为4﹣=,故答案为:.【点评】本题主要考查了线段垂直平分线的性质、30°角所对直角边是斜边的一半以及圆与直线的位置关系,将BF的最大值转化为AF最小是解决本题的关键,属于压轴题.三、解答题(72分)17.(8分)计算:(1)(2x+y)(2xy);(2)(4x6y﹣6x3)÷2x3.【分析】(1)直接利用单项式乘多项式运算法则计算得出答案;(2)直接利用整式的除法运算法则计算得出答案.【解答】解:(1)原式=(2x•2xy)+(y•2xy)=4x2y+2xy2;(2)原式=(4x6y)÷(2x3)+(﹣6x3)÷(2x3)=2x3y﹣3.【点评】此题主要考查了整式的除法以及单项式乘多项式,正确掌握相关运算法则是解题关键.18.(8分)因式分解:(1)2x2﹣2;(2)x3﹣4x2y+4xy2.【分析】(1)直接提取公因式2,再利用公式法分解因式即可;(2)直接提取公因式x,再利用公式法分解因式即可.【解答】解:(1)原式=2(x2﹣1)=2(x+1)(x﹣1);(2)原式=x(x2﹣4xy+4y2)=x(x﹣2y)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.19.(8分)解方程:﹣1=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:(x﹣1)2﹣(x2﹣1)=2,整理得:﹣2x+2=2,解得:x=0,检验:x=0时,分母x2﹣1≠0,∴原方程的解为x=0.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.(8分)先化简,再求值:(1﹣)÷,其中a=﹣1.【分析】这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【解答】解:原式=•=,当a=﹣1时,原式==.【点评】考查分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.21.(8分)如图,是由边长为1的小正方形组成的网格,网格线的交点称为格点,△AOB 的顶点在格点上,以O为原点建立平面直角坐标系.(1)∠OAB=90°;O点关于直线AB的对称点的坐标为(2,2);(2)作A点关于OB的对称点F可按下列操作,要求:仅用无刻度直尺作图(保留作图过程与痕迹);①在网格中取格点C,连接AC,使AC⊥OB,则C的坐标为(0,﹣2);②延长AO使OD=OA,则D的坐标为(﹣1,﹣1);③在网格中取格点E,连接DE,使DE⊥AC,则E的坐标为(2,﹣2),AC与DE的交点F即为A点关于OB的对称点.【分析】(1)利用图象法解决问题即可.(2)根据步骤要求画出图形即可解决问题.【解答】解:(1)观察图象可知∠OAB=90°,O点关于直线AB的对称点的坐标为(2,2),故答案为:90°,(2,2).(2)图形如图所示:①C(0,﹣2);②D(﹣1,﹣1);③E(2,﹣2).故答案为:(0,﹣2),(﹣1,﹣1),(2,﹣2).【点评】本题考查轴对称变换,坐标与图形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(10分)武汉某道路工程项目,若由甲、乙两工程队合作20天可完工;若甲工程队先单独施工40天,再由乙工程队单独施工10天也可完工.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲、乙工程队合作施工时对道路交通有影响,独施工时对交通无影响,且要求整个工期不能超过24天,问如何安排两队施工,对道路交通的影响会最小?【分析】(1)设甲工程队单独完成此项工程需要x天,则甲工程队的工作效率为,乙工程队的工作效率为(﹣),根据“甲工程队先单独施工40天,再由乙工程队单独施工10天也可完工”,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设甲、乙合作了m天,分剩下的工程由甲工程队单独完成和剩下的工程由乙工程队单独完成两种情况考虑,根据整个工期不能超过24天,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再结合要求对道路交通的影响最小即可得出结论.【解答】解:(1)设甲工程队单独完成此项工程需要x天,则甲工程队的工作效率为,乙工程队的工作效率为(﹣),依题意得:+10(﹣)=1,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴1÷(﹣)=30.答:甲工程队单独完成此项工程需要60天,乙工程队单独完成此项工程需要30天.(2)设甲、乙合作了m天.①若剩下的工程由甲工程队单独完成还需=(60﹣3m)天,依题意得:m+60﹣3m≤24,解得:m≥18;②若剩下的工程由乙工程队单独完成还需=(30﹣m)天,依题意得:m+30﹣m≤24,解得:m≥12.由①②可知m的最小值为12,∴应安排甲乙合作12天,然后再由乙队单独施工12天,对道路交通影响了会最小.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.(10分)已知△ABC中,∠BAC=60°,以AB和BC为边向外作等边△ABD和等边△BCE.(1)连接AE、CD,如图1,求证:AE=CD;(2)若N为CD中点,连接AN,如图2,求证:CE=2AN;(3)若AB⊥BC,延长AB交DE于M,DB=,如图3,则BM=.(直接写出结果)【分析】(1)先判断出∠DBC=∠ABE,进而判断出△DBC≌△ABE,即可得出结论;(2)先判断出△ADN≌△FCN,得出CF=AD,∠NCF=∠AND,进而判断出∠BAC =∠ACF,即可判断出△ABC≌△CFA,即可得出结论;(3)先判断出△ABC≌△HEB(ASA),得出BH=AC=2,AB=EH,再判断出△ADM≌△HEM(AAS),得出AM=HM,即可得出结论.【解答】(1)∵△ABD和△BCE是等边三角形,∴BD=AB,BC=BE,∠ABD=∠CBE=60°,∴∠ABD+∠ABC=∠CBE+∠ABC,∴∠DBC=∠ABE,∴△ABE≌△DBC(SAS),∴AE=CD;(2)如图2,延长AN使NF=AN,连接FC,∵点N是CD中点,∴DN=CN,∵∠AND=∠FNC,∴△ADN≌△FCN(SAS),∴CF=AD,∠NCF=∠AND,∴∠ACF=∠ACD+∠NCF=∠ACD+∠ADN=60°,∴∠BAC=∠ACF,∵△ABD是等边三角形,∴AB=AD,∴AB=CF,∵AC=CA,∴△ABC≌△CFA(SAS),∴BC=AF,∵△BCE是等边三角形,∴CE=BC=AF=2AN;(3)如图3,∵△ABD是等边三角形,∴AB=AD=DB=,∠BAD=60°,在Rt△ABC中,∠ACB=90°﹣∠BAC=30°,∴AC=2AB=2,过点E作EH∥AD交AM的延长线于H,∴∠H=∠BAD=60°,∵△BCE是等边三角形,∴BC=BE,∠CBE=60°,∵∠ABC=90°,∴∠EBH=90°﹣∠CBE=30°=∠ACB,∴∠BEH=180°﹣∠EBH﹣∠H=90°=∠ABC,∴△ABC≌△HEB(ASA),∴BH=AC=2,AB=EH,∴AD=EH,∵∠AMD=∠HME,∴△ADM≌△HEM(AAS),∴AM=HM,∴BM=AM﹣AB=AH﹣AB=(AB+BH)﹣AB=BH﹣AB=(BH﹣AB)=(2﹣)=,故答案为:.【点评】此题是三角形综合题,主要考查了等边三角形的性质,含30度角的直角三角形的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键.24.(12分)已知点A(0,4)、B(﹣4,0)分别为面直角坐标中y、x轴上一点,将线段OA绕O点顺时针旋转至OC,连接AC、BC.(1)如图1,求∠ACB的度数;(2)若∠AOC=60°,∠AOB的平分线OD交BC于D,如图2,求证:OD+BD=CD;(3)若∠AOC=30°,过A作AE⊥AC交BC于E,如图3,求BE的长.【分析】(1)由旋转的性质得出CO=OB=OA,设∠AOC=2α,由等腰三角形的性质得出∠OAC=∠OCA=90°﹣α,可得出答案;(2)在BC上取点H,使∠COH=45°,证明△DOH为等边三角形,由等边三角形的性质得出OD=OH=DH,证明△BOD≌△COH(SAS),由全等三角形的性质得出BD=CH,则可得出结论;(3)过点C作CN⊥AO于点N,过点E作EM⊥AO于点M,连接OE,证明△AEM≌△CAN (AAS),由全等三角形的性质得出AM=CN,由等腰三角形的性质证出∠BOE=∠BEO,则可得出答案.【解答】解:(1)∵A(0,4)、B(﹣4,0),∴OA=OB=4,∵将线段OA绕O点顺时针旋转至OC,∴CO=OB=OA,设∠AOC=2α,∵∠BOC=90°+2α,∴∠OBC=∠OCB=45°﹣α,∵∠AOC=2α,∴∠OAC=∠OCA=90°﹣α,∴∠ACB=∠OCA﹣∠OCB=45°;(2)证明:如图2,在BC上取点H,使∠COH=45°,∵OD平分∠AOB,∠AOB=90°,∴∠BOD=∠AOD=45°,∵∠AOC=60°,∴∠BOC=150°,∵OB=OC,∴∠OBC=∠OCB=15°,∴∠DOH=∠BOC﹣∠BOD﹣∠COH=150°﹣45°﹣45°=60°,∠ODH=∠CBO+∠BOD =15°+45°=60°,∴∠DHO=60°,∴△DOH为等边三角形,∴OD=OH=DH,∴△BOD≌△COH(SAS),∴BD=CH,∴OD+BD=DH+CH=CD;(3)过点C作CN⊥AO于点N,过点E作EM⊥AO于点M,连接OE,由(1)得∠ACB=45°,∵AE⊥AC,∴△AEC为等腰直角三角形,∴AC=AE,∵∠ACN+∠NAC=∠EAM+∠NAC=90°,∴∠ACN=∠EAM,∵∠ANC=∠AME=90°,∴△AEM≌△CAN(AAS),∴AM=CN,∵OB=OA=OC=4,∠AOC=30°,∴CN=CO=2,∴AM=2,∴M为OA的中点,∵EM⊥AO,∴AE=EO,∵∠AOB=90°,∠AOC=30°,∴∠BOC=120°,∴∠CBO=∠OCB=30°,∴∠OAC=∠OCA=75°,∴∠EAO=∠EOA=15°,∴∠BOE=75°,∴∠BEO=180°﹣∠CBO﹣∠BOE=180°﹣30°﹣75°=75°,∴∠BOE=∠BEO,∴BE=BO=4.【点评】本题是几何变换综合题,考查了等边三角形的判定与性质,角平分线的性质,旋转的性质,等腰三角形的判定与性质,等腰直角三角形的性质,坐标与图形的性质,全等三角形的判定与性质,熟练掌握等边三角形的判定与性质及全等三角形的判定与性质是解题的关键.。

人教版八年级上册地理期末考试模拟试卷及答案

人教版八年级上册地理期末考试模拟试卷及答案

人教版八年级上册地理期末考试模拟试卷及答案第一部分选择题1. 地球是一个近似于什么形状的球体?A. 正方体B. 球体C. 圆柱体D. 圆锥体答案:B2. 下列运输方式中,哪种运输方式是最经济、最节能的?A. 空运B. 铁路C. 汽车D. 航运答案:B3. 我国北方地区较为丰富的能源资源是?A. 天然气B. 石油C. 煤炭D. 水能答案:C4. 在《经济地理》一书中,提出了我国城市的发展方式,以下哪一种不属于我国城市的发展方式?A. 短期快速发展型B. 偏重资本积累型C. 偏重需求满足型D. 按自然条件供建设型答案:D5. 下列地貌类型中,最为适合人们进行居住和经济活动的是什么地貌?A. 山地B. 高原C. 平原D. 台地答案:C第二部分填空题1. 亚欧大陆的连接处在______________。

答案:乌拉尔山脉。

2. 中国的国土面积约为_________________。

答案:960万平方公里。

3. 现代农业发展趋势是__________________。

答案:生产特色化,经营规模化,科技保障化。

4. 北京市__%以上的市政自来水来自引自海河。

答案:70%。

5. 一带一路经济带是由中国与沿线__多个国家和地区共同构建的发展共同体。

答案:60。

第三部分简答题1. 什么是人口密度?如何计算人口密度?答案:人口密度指单位面积或单位体积内的人口数,通过公式:“人口密度=总人口数÷总面积”或“人口密度=总人口数÷总土地面积”计算。

2. 世界人口分布存在明显的地理格局,请简述全球人口分布的地理特点。

答案:全球人口数量众多,人口分布不均,密度落差大,人口集中于少数地带(如:亚洲、欧洲、北美洲),人口多的地区也是经济、文化中心。

南美洲、非洲、澳洲等地区人口分布相对分散。

3. 中国农业发展面临哪些问题?答案:农业现代化水平不高,资源约束加强,农村经济结构不合理,农村人员流动加大等问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷 桑水出品八年级上期末模拟考试数 学 试 卷(总分130分 答卷时间120分钟)一、选择题(本题共10小题;每小题3分,共30分)下列各题都有代号为A 、B 、C 、D 的四个结论供选择,其中只有一个结论是正确的.请把正确选项的代号填入题后括号内。

1. 反映某种股票的涨跌情况,应选择 【 】A .条形统计图B .折线统计图C .扇形统计图D .直方图2. 下列各式从左往右计算正确的是 【 】 A .()a b c a b c -+=-+ B .22)2(4-=-x xC .bc ac ab a c a b a -+-=+-2))((D .)0()(33≠=÷-x x x x3. 如图是跷跷板的示意图,支柱OC 与地面垂直,点O是横板AB 的中点,AB 可以绕着点O 上下转动,当A端落地时,∠OAC =20°,横板上下可转动的最大角度(即∠A ′OA )是 【 】 A .80° B .60° C .40° D .20°4. 一个容量为80的样本中,最大值是141,最小值是50,取组距为10,则这个样本可以成【 】A .10组B .9组C .8组D .7组5. 下列命题中,不正确的是 【 】A .关于直线对称的两个三角形一定全等B .角是轴对称图形C .等边三角形有3条对称轴D .等腰三角形一边上的高、中线及这边所对角的角平分线重合6. 等腰三角形的一个内角是50°,则这个三角形的底角的大小是 【 】A .65°或50°B .80°或40°C .65°或80°D .50°或80°7.使两个直角三角形全等的条件是 【 】A .一锐角对应相等B .两锐角对应相等C .一条边对应相等D .两条直角边对应相等8. 直线62-=x y 关于y 轴对称的直线的解析式为 【 】A .62+=x yB .62+-=x yC .62--=x yD .62-=x y9. 如图,AB=AC ,AD=AE ,∠B=50°,∠AEC=120°,则∠DAC 的度数等于 【 】A .120°B .70°C .60°D .50°10.已知如图,图中最大的正方形的面积是 【 】A .2aB .22b a +C .222b ab a ++D .22b ab a ++二、填空题(本题共8小题;每小题3分,共24分)请把最后结果填在题中横线上.11.多项式132是 次 项式.12.若1)7(0=-x ,则x 的取值范围为__________________.13.在一幅扇形统计图中,扇形表示的部分占总体的百分比为20%,则此扇形的圆心角为°.14.已知一次函数1-=kx y ,请你补充一个条件__________,使函数图象经过第二、三、四象限.15.已知在一个样本中有50个数据,它们分别落在5个组内,第一、二、三、四、五组数据的个数分别为2,8,15,x ,5,则x 等于______,第四组的频率为_________.16.Rt △ABC 中,∠C=90°,∠B=2∠A ,BC=3cm ,AB=_________cm .17.如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,BC=10cm ,BD=7cm ,则点D 到AB 的距离为_____________cm .18.在平面直角坐标系xOy 中,已知点A (2,-2),在y 轴上 确定点P ,使△AOP 为等腰三角形,则符合条件的有_______个.三、解答题(本题共3小题;共20分) 19.(本小题4分) 计算:(1))22(4)25(22a a a +-+; (2))1)(1(52-+x x x .20.(本小题4分)用乘法公式计算:(1)2.608.59⨯; (2)2198.21.(本小题12分)分解因式:(1)x x -22; (2)1162-x ;(3)32296y y x xy --; (4)2)(9)(124y x y x -+-+.四、解答题(本题共3小题;共14分) 22.(本小题5分)先化简,再求值:x y x y x y x 2)])(()[(2÷-++-,其中x =2005,y =2004.23.(本小题5分)求证:等腰三角形两底角相等.24.(本小题4分)作图题(不写作图步骤,保留作图痕迹).已知:如图,求作点P ,使点P 到A 、B 两点的距离相等,且P 到∠MON 两边的距离(第17题) C B A也相等.五、解答题(本题共2小题;共15分)25.(本小题9分) 已知一次函数的图象经过(3,5)和(-4,-9)两点.(1)求这个一次函数的解析式;(2)画出这个一次函数的图象;(3)若点(a ,2)在这个函数图象上,求a 的值.26.(本小题6分)已知A (5,5),B (2,4),M 是x 轴上一动点,求使得MA +MB 最小时的点M 的坐标.六、解答题(本题共3小题;共27分)27.(本小题7分) 金鹰集团对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20分,最后的打分制成条形统计图(如图).(1)利用图中提供的信息,回答下列问题:在专业知识方面3人得分谁是最过硬的?在工作经验方面3人得分谁是最丰富的?在仪表形象方面谁最有优势?(2)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10∶7∶3,那么作为人事主管,你应该录用哪一位应聘者?为什么?(328.(本小60吨,该市的C 县和D C 、D 两县(1)设析式,并写出自变量x 的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.29.(本小题12分) 如图,直线y=-2x +4分别与x 轴、y 轴相交于点A 和点B ,如果线段CD 两 端点在坐标轴上滑动(C 点在 y (1)当△COD 和△AOB 全等时,求C 、D (2)是否存在经过第一、二、三象限的直线CD ,使CD ⊥AB 在,请求出直线CD 一、选择题(每小题3分,共30分)1.B 2.C 3.C 4.A 5.D 6.A 7.D 8.C 9.(第27题)二、填空题(每小题3分,共24分)11.二、三 12.x ≠7 13.72° 14.0<k 15.20,0.4 16.32 17.3 18.4三、解答题(共76分)19.(1)原式=228825a a a --+ …………………………………………………1分=8232-+-a a . …………………………………………………2分(2)原式=)1(522-x x ………………………………………………………1分 =2455x x -. ………………………………………………………2分20.(1)原式=(60-0.2 )(60+0.2) ……………………………………………1分=222.060-=3599.96. …………………………………………………2分(2)原式=2)2200(- ……………………………………………………………1分=22222002200+⨯⨯-=39204. ………………………………………2分21.(1)原式=)12(-x x . ………………………………………………………3分(2)原式=)14)(14(-+x x . …………………………………………………3分(3)原式=)96(22y x xy y -- ………………………………………………1分=)69(22y xy x y +-- ………………………………………………2分=2)3(y x y --. ………………………………………………………3分(4)原式=[]2)(32y x -+ ………………………………………………………2分=2)233(+-y x . …………………………………………………………3分22.原式=x y x y xy x 2)2(2222÷-++-……………………………………………2分 =x xy x 2)22(2÷-……………………………………………………………3分 =y x -. ……………………………………………………………………4分 当2005x =,2004y =时,原式=2005-2004 =1. …………………………………………………………5分23.已知:如图,△ABC 中,AB=AC (包括画图).求证:∠B=∠C . ………………………………………………………………2分 证明:略. ………………………………………………………………………5分24.作图题.略,角平分线和线段的垂直平分线每画对一个得2分.25.(1)设一次函数解析式为b kx y +=,由题意,得3549.k b k b +=⎧⎨-+=-⎩,…………………………………………………………………2分 解之,得2,1.k b =⎧⎨=-⎩………………………………………………………………4分 因此一次函数的解析式为12-=x y .………………………………………5分(2)图略. ………………………………………………………………………7分(3)将(a ,2)代入12-=x y ,得212=-a . ……………………………8分 解得23=a . ………………………………………………………………9分 26.点B 关于x 轴对称的点的坐标是B ′(2,-4).连AB ′,则AB ′与x 轴的交点即为所求. …………………………………1分 设AB ′所在直线的解析式为b kx y +=,则55,2 4.k b k b +=⎧⎨+=-⎩ ………………………………………………………………2分 则3,10.k b =⎧⎨=-⎩ ……………………………………………………………………3分 所以直线AB 的解析式为103-=x y . ……………………………………4分 当0=y 时,310=x .故所求的点为)0,310(M . …………………………6分 27.(1)乙,甲,丙; ……………………………………………………………3分(2)甲14.75,乙15.9,丙15.35,录取乙; ………………………………5分(3)略. …………………………………………………………………………7分28.(1)由题意,得 )40(45)100(30)90(4035-+-+-+=x x x x W104800(4090)x x =+≤≤. …………………………6分(2)因为W 随着x 的减小而减小,所以当40=x 时,W 最小=10×40+4800=5200(元).答:略. …………………………8分29.(1)由题意,得A (2,0),B (0,4),即AO =2,OB =4. …………………………………………………………2分①当线段CD 在第一象限时,点C (0,4),D (2,0)或C (0,2),D (4,0).………………………4分②当线段CD 在第二象限时,点C(0,4),D(-2,0)或C(0,2),D(-4,0).…………………6分③当线段CD在第三象限时,点C(0,-4),D(-2,0)或C(0,-2),D(-4,0).……………8分④当线段CD在第一象限时,点C(0,-4),D(2,0)或C(0,-2),D(4,0)………………10分(2)C(0,2),D(-4,0).直线CD的解析式为。

相关文档
最新文档