运筹学期中1考试答案

合集下载

运筹学 期中测试题(答案)

运筹学 期中测试题(答案)

答案:一、解:化为标准型123max 20z x x x -+-=s.t. 1234123512363621220,1,2,,6i x x x x x x x x x x x x x i +++=⎧⎪-++=⎪⎨+-+=⎪⎪≥=⎩单纯形表如下:故最优解为(1.5,0.5,0)x =,最优值为 2.5z =.二、解:设其对偶问题的变量为12,y y ,则其对偶线性规划为12min 43y y ω=+s.t. 12121212121222;3;2352;33;,0y y y y y y y y y y y y +≤-≤+≤⎧⎨+≤+≤≥⎩因**124/50,3/50y y =>=>,由互补松弛性条件知原问题的两个约束条件应取等式,即1234512345234233x x x x x x x x x x ++++=⎧⎨-+++=⎩;将**124/5,3/5y y ==代入约束条件得,**124322255y y +=+⨯=, 2**143355y y -=-<,12**431723235555y y +=⨯+⨯=<,12**43255y y +=+<, 12**4333355y y +=⨯+=. 第二至四个约束条件为严格不等式,由互补松弛性条件,必有234***0,0,0x x x ===.从而1515****3423x x x x ⎧+=⎪⎨+=⎪⎩.故15**1,1x x ==.因此,原问题的最优解为()*1,0,0,0,1Tx =.最优值为*5z =.三、解:用最小元素法确定初始调运方案用沃格尔法确定初始调运方案五、解:六、解:用逆序法.全过程分四个阶段,从最后一个阶段开始. (1)4k =.第四阶段.有两种状态12,D D .41()1f D =,42()5f D =;**4142()()u D u D ==E. (2)3k =.第三阶段.有三种状态123,,C C C .3131141()(,)()415f C d C D f D =+=+=,即由1C E -的最短路径为11C D E --,最短距离为5,相应决策为*311()u C D =.同理,有 321413232242(,)()31()min min 4(,)()25d C D f D f C d C D f D +⎧⎫+⎧⎫===⎨⎬⎨⎬++⎩⎭⎩⎭即由2C E -的最短路径为21C D E --,最短距离为4,相应决策为*321()u C D = 3333242()(,)()156f C d C D f D =+=+=即由3C E -的最短路径为32C D E --,最短距离为6,相应决策为*332()u C D = (3)2k =,第二阶段.有两种初始状态12,B B .同理,有211312121232(,)()75()min min 10(,)()64d B C f C f B d B C f C +⎧⎫+⎧⎫===⎨⎬⎨⎬++⎩⎭⎩⎭222322222333(,)()24()min min 6(,)()46d B C f C f B d B C f C +⎧⎫+⎧⎫===⎨⎬⎨⎬++⎩⎭⎩⎭即由1B E -的最短路径为1B -21C D E --,最短距离为10,相应决策为*212()u B C =由2B E -的最短路径为221B C D E ---,最短距离为6,相应决策为*222()u B C =(4)1k =,第一阶段.只有一种状态A112111222(,)()110()min min 9(,)()36d A B f B f A d A B f B +⎧⎫+⎧⎫===⎨⎬⎨⎬++⎩⎭⎩⎭,相应决策为*12()u A B =即从A E -全过程的最短路径为221A B C D E ----,最短距离为9。

《管理运筹学》期中复习题答案

《管理运筹学》期中复习题答案

《管理运筹学》期中复习题答案标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-《管理运筹学》期中测试题 第一部分 线性规划 一、填空题 1.线性规划问题是求一个 目标函数 在一组 约束条件 下的最值问题。

2.图解法适用于含有 两个 _ 变量的线性规划问题。

3.线性规划问题的可行解是指满足 所有约束条件_ 的解。

4.在线性规划问题的基本解中,所有的非基变量等于 零 。

5.在线性规划问题中,基本可行解的非零分量所对应的列向量线性 无 关 6.若线性规划问题有最优解,则最优解一定可以在可行域的 顶点_ 达到。

7.若线性规划问题有可行解,则 一定 _ 有基本可行解。

8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其 可行解 的集合中进行搜索即可得到最优解。

9.满足 非负 _ 条件的基本解称为基本可行解。

10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰变量在目标函数中的系数为 正 。

11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入 松弛 _ 变量。

12.线性规划模型包括 决策变量 、目标函数 、约束条件 三个要素。

13.线性规划问题可分为目标函数求 最大 _ 值和 最小 _值两类。

14.线性规划问题的标准形式中,约束条件取 等 _ 式,目标函数求 最大 _值,而所有决策变量必须 非负 。

15.线性规划问题的基本可行解与基本解的关系是 基本可行解一定是基本解,反之不然16.在用图解法求解线性规划问题时,如果取得最值的等值线与可行域的一段边界重合,则 _ 最优解不唯一 。

17.求解线性规划问题可能的结果有 唯一最优解,无穷多最优解,无界解,无可行解 。

18.如果某个约束条件是“ ”情形,若化为标准形式,需要引入一个 剩余 _ 变量。

19.如果某个变量X j 为自由变量,则应引进两个非负变量X j ′ , X j 〞, 同时令X j = X j ′ - X j 〞 j 。

《运筹学》试题及答案大全

《运筹学》试题及答案大全

《运筹学》试题及参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。

2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。

3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。

4、在图论中,称无圈的连通图为树。

5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。

二、(每小题5分,共10分)用图解法求解下列线性规划问题:1)max z =6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x ,解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。

2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:可行解域为abcda ,最优解为b 点。

⑴⑵⑶⑷⑸⑹、⑺由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫⎝⎛21x x =(11,0)T∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:AB C 甲94370乙46101203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。

(10分)解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x ,2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0x 3+0x 4+0x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x 解:用大M 法,先化为等效的标准模型:max z /=-5x 1-2x 2-4x 3s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z /=-5x 1-2x 2-4x 3-M x 6-M x 7s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)B 1B 2B 3B 4s iA 1A 2A 312348765910119108015d j82212181)用最小费用法求初始运输方案,并写出相应的总运费;(5分)2)用1)得到的基本可行解,继续迭代求该问题的最优解。

运筹学期中测试参考答案汇总

运筹学期中测试参考答案汇总

1线性规划问题,设为问题的最优解。

若目标函数中用代替后,问题的最优解变为,证明:证明:因为为问题的最优解,同时为问题的可行解。

所以有:(1)同理可得:(2)由不等式(1),(2)可知:2、已知线性规划:要求:(1)用单纯形法求解该线性规划问题的最优解和最优值;(2)写出线性规划的对偶问题;(3)根据对偶问题的性质求解对偶问题的最优解和最优值;解:(1)化标准型:根据标准型列单纯形表jB 1 2 3 4 53 14 25 1Z34 31 1Z 9 33 2/5 1/5 /52 /5 /5 3/51 8/5 /5 /5 Z 12 1所以,此线性规划有无穷多最优解最优解之一(18/5,3/5,32/5,0,0)最优值 Zmax=12(2)线性规划的对偶问题为:(3)由原问题的最优单纯形表可知:对偶问题的最优解为:(0,1,0)最优值为:Wmin=123 下表给出了各产地和各销地的产量和销量,以及各产地至各销地的单位运价,试用表上作业法求最优解:销地产地B1B2B3B4产量A122213A 218546A376686销量4344解:利用Vogel法求解第一个运输方案:32221311 0825446131 7362686004344 54333214利用对偶变量法求解检验数:21212113-54 1038546-17663860 43447665所有非基变量的检验数全部大于零,所以此运输方案是最优的运输方案。

最优值为:3*2+1*7+3*6+2*6+2*5+4*4=694 某钻井队要从以下10个可供选择的井位中确定5个钻井探油,使总的钻井费用最小。

若10个井位的代号为,相应的钻井费用为,并且井位选择上要满足下列限制条件:①选择和就不能选择钻探;反过来也一样;②选择了或就不能选,反过来也一样;③在中最多只能选两个;试建立这个问题的整数规划模型。

(不求解)解:设用xi表示第i个井位是否钻井探油,即由题意可知数学模型如下:5 友谊农场有3万亩(每亩等于666.66平方米)农田,欲种植玉米、大豆和小麦三种农作物。

运筹学试题及详细答案

运筹学试题及详细答案

运筹学试题及详细答案
一、选择题
1、Nash均衡的定义是:
A、每位参与者的行为均达到最佳利益的状态
B、每位参与者的行为均达到得到最大胜利的状态
C、每位参与者的行为均达到合作的最佳状态
D、每位参与者的行为均达到合作的最大胜利的状态
答案:A
2、决策就是参与者用来实现选择的:
A、计划
B、机构
C、程序
D、工具
答案:D
3、运筹学可以分为:
A、组合数学
B、运动学
C、博弈论
D、概率论
答案:A、B、C、D
4、非线性规划有:
A、分支定界法
B、梯度下降法
C、基于格法的解法
D、对偶法
答案:A、B、C、D
5、关于迭代法,下列表述正确的有:
A、可以求解非凸优化问题
B、单次迭代过程简单
C、收敛性较好
D、用于非线性规划
答案:A、B、C
二、填空题:
1、博弈论是研究__参与者之间的__的科学。

答案:多,竞争。

管理运筹学期中测试答案

管理运筹学期中测试答案

一、下表为求解某线性规划问题的最终单纯形表,已知该LP 问题的目标函数为极大化类型,表中为x 4、x 5为松弛变量,原问题的约束全部为“≤”形式。

C B x B b c 1 c 2 c 3 0 0 x 1 x 2 x 3 x 4 x 5 c 3 x 3 5/2 0 1/2 1 1/2 0 c 1 x 15/2 1 -1/2 0 -1/6 1/3 σn-4-4-2(1)写出原线性规划问题; (2)写出原问题的对偶问题;(3)直接由表写出对偶问题的最优解。

(1)【解一】511222(1)25511111126322632010012105(|)10100404204042A b z z ⨯⎛⎫⎛⎫ ⎪ ⎪=--−−−→-- ⎪ ⎪⎪ ⎪------⎝⎭⎝⎭ 16(2)(1)'101113333(3)(1)'4012105100080220z +⨯+⨯⎛⎫ ⎪−−−−→- ⎪ ⎪-+⎝⎭(2)'3(3)'(2)'6012105311011062100040z ⨯+⨯⎛⎫ ⎪−−−−→- ⎪ ⎪-+⎝⎭因此,原问题为:()12323123max 621025..31001,2,3jz x x x x x s t x x x x j =-+⎧+≤⎪-+≤⎨⎪≥=⎩【解二】由最优表可知12111630B -⎛⎫= ⎪-⎝⎭,则2013B ⎛⎫= ⎪⎝⎭。

由此: 51122251112632012001210510133110110⎛⎫⎛⎫⎛⎫→ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭。

求目标函数系数c 1、c 2、c 3,在最终单纯形表中,考虑变量x 5的检验数的计算应有:11302c -=-,得c 1=6,考虑变量x 4的检验数的计算应有:11312604c c -+=-,得c 3=10,在此基础上,考虑变量x2的检验数计算应有:11231224c c c -+=-,得c 2=-2。

《运筹学》课程考试试卷及答案

《运筹学》课程考试试卷及答案

《运筹学》课程考试试卷一、填空题(共10分,每空1分)1、线性规划问题的3个要素是: 、 和 。

2、单纯形法最优性检验和解的判别,当 现有顶点对应的基可行解是最优解,当 线性规划问题有无穷多最优解,当 线性规划问题存在无界解。

4、连通图的是指: 。

5、树图指 ,最小树是 。

6、在产销平衡运输问题中,设产地为m 个,销地为n 个,运输问题的解中的基变量数为 。

二、简答题 简算题(共20分) 1、已知线性规划问题,如下: max Z=71x -22x +53x⎪⎩⎪⎨⎧=≥≤+≤+-3,2,1,084632..31321i x x x x x x t s i请写出其对偶问题。

(10分)2、已知整数规划问题:1212121212max105349..528,0,,z x x x x s t x x x x x x =++≤⎧⎪+≤⎨⎪≥⎩且为整数在解除整数约束后的非整数最优解为(x1, x2)=(1, 1.5),根据分支定界法,请选择一个变量进行分支并写出对应的2个子问题(不需求解)。

(10分)三、计算题(共70分)1、某厂用A1,A2两种原料生产B1,B2,B3三种产品,工厂现有原料,每吨所需原料数量以及每吨产品可得利润如下表。

在现有原料的条件下,应如何组织生产才能使该厂获利最大?(共20分) (1) 写出该线性规划问题的数学模型(4分)(2)将上面的数学模型化为标准形式(2分)(3)利用单纯形法求解上述问题(14分,单纯形表格已给出, 如若不够, 可自行添加)(3)利用单纯形法求解上述问题(14分,单纯形表格已给出, 如若不够, 可自行添加)2、考虑下列运输问题:请用表上作业法求解此问题,要求:使用V ogel法求初始解。

若表格不够可自行添加(15分)3、有4台机器都可以做A、B、C、D四种工作,都所需费用不同,其费用如下表所示。

请用匈牙利法求总费用最小的分配方案。

(10分)4、某工厂内联结6个车间的道路如下图所示,已知每条道路的的距离,求沿部分道路架设6个车间的电话网,使电话线总距离最短。

《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。

A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。

答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。

答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。

答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。

答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。

答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。

()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。

()答案:错误3. 目标规划中的偏差变量可以是负数。

()答案:正确4. 在动态规划中,最优策略具有最优子结构。

()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。

运筹学考试试卷及答案

运筹学考试试卷及答案

运筹学考试试卷及答案一、选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量都非负B. 目标函数是最大化C. 所有约束条件都是等式D. 所有约束条件都是不等式答案:A2. 单纯形法中,如果某个变量的检验数为负数,那么:A. 该变量可以增大B. 该变量可以减小C. 该变量保持不变D. 该变量不能进入基答案:A3. 在运输问题中,如果某种资源的供应量大于需求量,那么应该:A. 增加供应量B. 减少需求量C. 增加需求量D. 减少供应量答案:C4. 动态规划的基本原理是:A. 递归B. 迭代C. 回溯D. 分解答案:D5. 决策树中,每个节点代表:A. 一个决策B. 一个状态C. 一个结果D. 一个概率答案:A6. 排队论中,M/M/1队列的特点是:A. 到达时间服从泊松分布,服务时间服从指数分布,且只有一个服务台B. 到达时间服从指数分布,服务时间服从泊松分布,且只有一个服务台C. 到达时间服从泊松分布,服务时间服从指数分布,且有两个服务台D. 到达时间服从指数分布,服务时间服从泊松分布,且有两个服务台答案:A7. 网络流问题中,最大流最小割定理说明:A. 最大流等于最小割B. 最大流小于最小割C. 最大流大于最小割D. 最大流与最小割无关答案:A8. 整数规划问题中,分支定界法的基本思想是:A. 将问题分解为多个子问题B. 将问题转化为线性规划问题C. 将问题转化为非线性规划问题D. 将问题转化为动态规划问题答案:A9. 在多目标决策中,如果目标之间存在冲突,通常采用的方法是:A. 目标排序B. 目标加权C. 目标合并D. 目标替换答案:B10. 敏感性分析的目的是:A. 确定最优解的稳定性B. 确定最优解的唯一性C. 确定最优解的可行性D. 确定最优解的最优性答案:A二、填空题(每题2分,共20分)1. 线性规划问题的可行域是由所有_________约束条件构成的集合。

答案:可行2. 在单纯形法中,如果目标函数的系数都是正数,则该问题为_________问题。

运筹学期中试题参考答案

运筹学期中试题参考答案

运筹学期中试题参考答案(2010-2011 第一学期)试题一:单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。

每小题2分,共16分)1 •线性规划具有唯一最优解,是指( B )。

A .最优单纯形表中存在有常数项为零B.最优单纯形表中非基变量的检验数全部不等于零C •最优单纯形表中存在非基变量的检验数为零D .可行解集有界2•设线性规划的约束条件为x1x2x3= 32 x1 2 x2x4二4x1,…,x4兰0下可行列解中,非基可行解为( D )。

A. (0,2,1,0)TB. (0, 0,3,4)TC . (2,0,1, 0)T D. (1, 1, 1, 0)T3. 设线性规划原问题为(P),其对偶问题为(D),则下列说法错误的是(D )。

A . (P)、(D)均有可行解则都有最优解;B .若(P )有m个变量,则(D)就有m个约束条件;C .若(P)的约束均为等式,则(D)的所有变量均无非负限制;D .若(P)的约束均为不等式,则(D)的约束也均为不等式。

4、maxZ 二CX,AX < b, X - 0 及minW 二Yb,YA_C,Y - 0 是互为对偶的两个线性规划问题,则对于其任意可行解X和Y,存在关系( D )。

5•有6个产地4个销地的平衡运输问题模型具有特征( B )。

A .有10个变量24个约束B .有24个变量10个约束C .有24个变量9约束D.有9个基变量10个非基变量6. 互为对偶的两个线性规划问题存在关系(D )。

A .原问题无可行解,对偶问题也无可行解B .对偶问题有可行解,原问题也有可行解C .原问题有最优解,对偶问题可能没有最优解D .原问题有无界解,对偶问题无可行解7. 下列说法正确的是(D )oA. 线性规划问题的基解对应可行域的顶点。

B、若X i, X2分别是某一线性规划问题的可行解,贝V X=収! +冰2也是该线性规划问题的可行解,其中心?2为正的实数。

运筹学试题及答案

运筹学试题及答案

运筹学试题及答案一、单项选择题(每题2分,共20分)1. 线性规划问题的标准形式中,目标函数的系数是:A. 非负B. 非正C. 任意实数D. 非零答案:A2. 整数规划问题与线性规划问题的主要区别在于:A. 目标函数B. 约束条件C. 变量D. 解的类型答案:C3. 以下哪个不是网络流问题的组成部分?A. 节点B. 边C. 权重D. 目标函数答案:D4. 动态规划的基本原理是:A. 贪心算法B. 分治法C. 迭代法D. 穷举法答案:B5. 以下哪个算法不是用于求解旅行商问题(TSP)?A. 分支定界法B. 动态规划C. 遗传算法D. 线性规划答案:D6. 以下哪个不是图论中的基本概念?A. 节点B. 边C. 权重D. 目标函数答案:D7. 以下哪个是最短路径问题的特例?A. 最小生成树B. 最大流C. 旅行商问题D. 网络流问题答案:A8. 在运输问题中,目标函数通常是:A. 最小化成本B. 最大化利润C. 最小化时间D. 最大化距离答案:A9. 以下哪个是排队论中的基本概念?A. 节点B. 边C. 服务台D. 权重答案:C10. 以下哪个是库存管理中的基本概念?A. 节点B. 边C. 订货点D. 权重答案:C二、多项选择题(每题3分,共15分)1. 以下哪些是线性规划问题的特点?A. 线性目标函数B. 线性约束条件C. 非线性目标函数D. 非线性约束条件答案:A, B2. 以下哪些是动态规划算法的步骤?A. 确定状态B. 确定决策C. 确定状态转移方程D. 确定目标函数答案:A, B, C3. 以下哪些是整数规划问题的求解方法?A. 线性规划B. 分支定界法C. 贪心算法D. 动态规划答案:B, D4. 以下哪些是网络流问题的类型?A. 最大流B. 最小生成树C. 旅行商问题D. 最短路径答案:A, D5. 以下哪些是排队论中的基本概念?A. 到达率B. 服务率C. 服务台数量D. 权重答案:A, B, C三、判断题(每题1分,共10分)1. 线性规划问题的目标函数一定是最大化。

运筹学期中考试试卷(含答案)

运筹学期中考试试卷(含答案)

大连大学2010/2011学年第一学期期中考试卷考试科目: 运 筹 学 (考试时间90分钟)(共4页)给定下述线性规划问题: 12m ax 2z x x =-1212124333,0x x x x x x -+≤⎧⎪-≤⎨⎪≥⎩画出其可行域并找出其最优解。

解:可行域:最优解为(3,0), 3z *=二、模型转换(10分)写出下列线性规划问题的对偶问题2311m in ijij i j z cx ===∑∑11121314212223242112111222213233142440ij x x x x a x x x x a x x b x x b x x b x x b x +++=⎧⎪+++=⎪⎪+=⎪+=⎨⎪+=⎪+=⎪⎪≥⎩一切 密封线解:112211223344max w a u a u b v b v b v b v =+++++ 111112121313142121222223232412123400,,,,,u v c u v c u v c u v u v c u v c u v c u v u u v v v v +≤⎧⎪+≤⎪⎪+≤⎪+≤⎪⎪+≤⎨⎪+≤⎪+≤⎪⎪+≤⎪⎪⎩无符号限制三、计算题(每小题20分,共80分)1. 用单纯形法求解下列线性规划问题(列出计算过程)。

12m in 35z x x =--12121282123436,0x x x x x x -≥-⎧⎪≤⎪⎨+≤⎪⎪≤⎩ 解:标准化:123451324125123453500082123436,,,,0M axW x x x x x x x x x x x x x x x x x ''=--+++'-+=⎧⎪'-+=⎪⎨''--+=⎪⎪''≥⎩(标准化可分两段,第一步把决策变量变量,第二步标准化)2. 用单纯形法中两阶段法求解下述线性规划问题(列出计算过程)。

运筹学期中试题答案汇总

运筹学期中试题答案汇总

《管理运筹学》期中考试试题班级学号姓名成绩注意:①答题可直接写明题号和答案,不必抄题。

②考试过程中,不得抄袭。

一、多项选择题(每小题3分,共24分1、线性规划模型有特点()。

A、所有函数都是线性函数;B、目标求最大;C、有等式或不等式约束;D、变量非负。

2、下面命题正确的是()。

A、线性规划的最优解是基本可行解;B、基本可行解一定是基本解;C、线性规划一定有可行解;D、线性规划的最优值至多有一个。

3、一个线性规划问题(P)与它的对偶问题(D)有关系()。

A、(P)有可行解则(D)有最优解;B、(P)、(D)均有可行解则都有最优解;C、(P)可行(D)无解,则(P)无有限最优解;D、(P)(D)互为对偶。

4、运输问题的基本可行解有特点()。

A、有m+n-1个基变量;B、有m+n个位势;C、产销平衡;D、不含闭回路。

5、下面命题正确的是()。

A、线性规划标准型要求右端项非负;B、任何线性规划都可化为标准形式;C、线性规划的目标函数可以为不等式;D、可行线性规划的最优解存在。

6、单纯形法计算中哪些说法正确()。

A、非基变量的检验数不为零;B、要保持基变量的取值非负;C、计算中应进行矩阵的初等行变换;D、要保持检验数的取值非正。

7、线性规划问题的灵敏度分析研究()。

A、对偶单纯形法的计算结果;B、目标函数中决策变量系数的变化与最优解的关系;C、资源数量变化与最优解的关系;D、最优单纯形表中的检验数与影子价格的联系。

8、在运输问题的表上作业法选择初始基本可行解时,必须注意()。

A、针对产销平衡的表;B、位势的个数与基变量个数相同;C、填写的运输量要等于行、列限制中较大的数值;D、填写的运输量要等于行、列限制中较小的数值。

二、回答下列各题(每小题8分,共24分)1、考虑线性规划问题Min f(x = -x1 + 5 x2S.t. 2x1– 3x2≥3 (P)5x1 +2x2=4x1≥ 0写出(P)的标准形式;答案:( P 的标准形式:Max z(x = x1 - 5 x2’+ 5 x2’’S.t. 2x1– 3x2’+ 3 x2’’- x3 = 35x1 +2x2’ - 2 x2’’ = 4x1, x2’, x2’’, x3≥ 02、某企业生产3种产品甲、乙、丙,产品所需的主要原料有A、B两种,原料A 每单位分别可生产产品甲、乙、丙底座12、18、16个;产品甲、乙、丙每个需要原料B分别为13kg、8kg、10kg,设备生产用时分别为10.5、12.5、8台时,每个产品的利润分别为1450元、1650元、1300元。

运筹学习题(期中考试试题)

运筹学习题(期中考试试题)

紧前工 工序时 序 间/d
— a a b,c b,c c c d,e g h,i 3 4 5 7 7 8 4 2 3 2
7.(2004研)某厂每年使用某种配件,经 ABC分类法分析该配件属于A类物资,年需 要量为12500件,消耗均匀发生.该配件的 单价为每件50元,年存贮费用是平均存贮额 的20%,每次订货是费用为400元,每次订 货后货物即可随时送到,不允许发生缺货. (1)求每次的订货数量; (2) 该厂为减少占用资金,希望降低存贮量, 决定宁可使总费用超过最低费用的20%作为 存贮策略,试决定该配件的存贮策略.
产品单位 消耗 A 资源 设备 原料甲 原料乙 单位利润 1 2 0 50
2. 某公司从两个产地A1,A2将物品运往三个 销地B1,B2,B3,各产地产量和个销地销 量以及各产地运往各销地的每件物品的运输 费列表如下:
销地 B1 单位运价 产地 A1 A2 6 6
B2 4 5
B3 6 5
产 量 300 300
a) 问工厂分别生产多少A产品和 B产品才能使工厂获利最多? b) 原料甲的影子价格是多少?如 果工厂可以在市场上购得该原 料,单价为60,那么该工厂是 B 资源限制 c) 否应该购进该原料? 1 300台时 d) 若工厂想保持A产品的生产, 1 400千克 则A产品的单位利润不能低于 1 250千克 多少? e) 求保持当前最优基不变时,原 100 料乙的容许变动范围.
4. 某公司有资金400万元,向A,B,C三个 项目追加投资,三个项目可以有不同的投 资额度,相应的效益之如下表所示,问如 何分配资金,才使总效益值最大? (用动 态规划方法进行求解)
投资额 效益值 项目 A B C 0 1 2 3 4
47 49 46
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学期中1考试答案
1.(10分)已知线性规划
332211max x c x c x c Z ++=
⎪⎩⎪
⎨⎧≥≤++≤++0,,3
2123232221211313212111x x x b x a x a x a b x a x a x a
-1
【解】11162615,05105B B -⎡⎤
⎢⎥
-⎡⎤==⎢⎥⎢⎥⎣⎦⎢⎥
⎢⎥⎣⎦
,c 4=c 5=0, c 1=12,c 2=11,c 3=14 由 1
A B
A -=
得 621046230
050130515
A B A --⎡⎤⎡⎤
⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣

由 1
b B b -=
得 6263205210b B b -⎡⎤⎡⎤⎡
⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣
⎦ 则有 623032(12,11,14),,051510C A b -⎡⎤⎡

===⎢⎥⎢⎥-⎣⎦⎣

,11162615,05105B B -⎡⎤
⎢⎥-⎡⎤==⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦
2.(10分)已知线性规划
123123123123123max 1520555
56631070,0,Z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎨
++≤⎪⎪≥≥⎩无约束
的最优解1
19(,0,
)44
T
X =,求对偶问题的最优解. 【解】其对偶问题是:
123123123
123123min 5675315561020
5,,0
w y y y y y y y y y y y y y y y =++++≥⎧⎪++≥⎪⎨
++=⎪⎪≥⎩ 由原问题的最优解知,原问题约束①等于零,x 1、x 2不等于零,则对偶问题的约束①、约束
③为等式,y 1=0;解方程
23235315
5
y y y y +=⎧⎨
+=⎩ 得到对偶问题的最优解Y=(5/2,5/2,0);w =55/2=27.5
3.(10分)用对偶单纯形法求解下列线性规划
⎪⎩⎪
⎨⎧≥≥++≥++++=0,,10228
32543min 3
213213213
21x x x x x x x x x x x x Z 【解】将模型化为
12312341235min 345238
22100,1,2,3,4,5j
Z x x x x x x x x x x x x j =++⎧---+=-⎪
---+=-⎨⎪≥=⎩
2
**360)0,100,180,0,0,0,0,50(P f X T
==解得满意解为:
(扣分值每行1分,结果1分)
(1)怎样安排生产,使利润最大.
(2)若增加1kg 原材料甲,总利润增加多少.
(3)设原材料乙的市场价格为1.2元/Kg ,若要转卖原材料乙,工厂应至少叫价多少,为什么?
(4)单位产品利润分别在什么范围内变化时,原生产计划不变.
(5)原材料分别单独在什么范围内波动时,仍只生产A 和C 两种产品.
(6)由于市场的变化,产品B 、C 的单件利润变为3元和2元,这时应如何调整生产计划. (7)工厂计划生产新产品D ,每件产品D 消耗原材料甲、乙、丙分别为2kg ,2kg 及1kg ,每件产品D 应获利多少时才有利于投产. 【解】(1)设 x 1、x 2、x 3分别为产品A 、B 、C 的月生产量,数学模型为
123123123123123max 4321200
2350026000,0,0
Z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎨
++≤⎪⎪≥≥≥⎩ 最优单纯形表:
560元。

(2)则最优表可知,影子价格为12392
,,055
y y y =
==,故增加利润1.8元。

(3)因为y 2=0.4,所以叫价应不少于1.6元。

(4)依据最优表计算得
1231238
32,,19
5
13
[1,6],(,],[2,12]
5
c c c c c c -≤∆≤∆≤-≤∆≤∈∈-∞∈
(5)依据最优表计算得
123123100
400,400100,4003500[,600],[100,600],[200,).
3b b b b b b -
≤∆≤-≤∆≤-≤∆∈∈∈+∞ (6)变化后的检验数为λ2=1,λ4=-2,λ5=0。

故x 2进基x 1出基,得到最最优解X=(0,200,0),即只生产产品B 200件,总利润为600元。

(7)设产品D 的产量为x 7, 单件产品利润为c 7,只有当17770B c C B P λ-=->时才有利于投产。

177729222
,,02555
1B c C B P YP -⎛⎫
⎛⎫ ⎪>=== ⎪ ⎪⎝⎭ ⎪⎝⎭
则当单位产品D 的利润超过4.4元时才有利于投产。

6。

(10分)建立数学模型
设x ij (I=1,2,3;j=1,2)为甲、乙、丙三种型号的客车每天发往B 1,B 2两城市的台班数,则
11122122313211213112
2232111211223132max 40(806560505040)404040400404040600
510150(1,2,3;1,2)
ij Z x x x x x x x x x x x x x x x x x x x i j =+++++++=⎧⎪++=⎪⎪+≤⎪⎨
+≤⎪⎪+≤⎪≥==⎪⎩
(2)写平衡运价表
为了平衡表简单,故表中运价没有乘以40,最优解不变
(3)最优调度方案:
即甲第天发5辆车到B1城市,乙每天发5辆车到B1城市,5辆车到B2城市,丙每天发10辆车到B2城市,多余5辆,最大收入为
Z=40(5×80+5×60+5×50+10×40)=54000(元)。

相关文档
最新文档