江苏省无锡市滨湖区中学八年级数学下学期期末复习试题(4)(无答案) 北师大版
江苏省无锡市滨湖区中学八年级数学下学期期末复习试题
第4题图x yO C D A B 江苏省无锡市滨湖区中学2012-2013学年八年级下学期期末复习数学试题(3) 北师大版班级_________姓名____________1. (1)解不等式组:⎩⎨⎧2(x +5)≥6; ①3-2x >1+2x . ② (2) 解不等式组:()⎪⎩⎪⎨⎧-->-+≤+31183322x xx x2.先化简,再求值:13)2)(1(4212-+÷⎥⎦⎤⎢⎣⎡-+-+x x x x x ,其中x x 562-=+.3.如图,反比例函数y 1= k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3)、B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是 ( ▲ )A .-1<x <0B .-1<x <1C .x <-1或0<x <1D .-1<x <0或x >14. 如图,在直角坐标系中,矩形OABC 的顶点A 、B 在双曲线(0)ky x x=>上,BC 与x 轴交于点D .若点A 的坐标为(1,2),则点B 的坐标为( )A .(3,32) B .(4,21) C .(29,94) D .(5,52) 5.解方程2422x x x =-- 6. 化简112+-+a a a7.有3张扑克牌,分别是红桃3、红桃4和黑桃6.把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.(1)甲、乙两人抽得的数字分别记为s 和t ,则︱s -t ︱≥2的概率为 ▲ . (2)甲、乙两人做游戏,现有两种方案.A 方案 :若两人抽得相同花色则甲胜,否则乙胜.B 方案:若两人抽得数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案胜率更高并说明理由.8.已知一次函数y =mx +2m -3的图象与反比例函数y =nx的图象相交于点A (2,-5). (1)求m 、n 的值;(2)若题中的一次函数的图象交x 轴于点B ,O 为坐标原点,请求出△OAB 的面积S .9.某车间的李师傅每天能加工A 零件25个,或B 零件40个,或C 零件60个,每天只能加工一种零件,每月(按22天计算)的加工定额为1000个.在刚好完成定额的前提下,请解答下列问题:(1)设李师傅每月用x 天加工A 零件,y 天加工B 零件,请写出y 与x 的函数关系式; (2)若每种零件每月至少加工2天,李师傅有哪几种安排加工的方案(加工天数取整数)? (3)若李师傅的月工资分为基本工资与计件工资两部分,其中计件工资的计算方法是: 加工1个A 零件计0.5元,加工1个B 零件计0.3元,加工1个C 零件计0.2元.请写出计件工资w (元)与x (天)的关系式,并在(2)提供的方案中帮助李师傅选择一个最佳方案,使他的计件工资尽可能高,计件工资最多能得到多少元?10.如图,直角梯形ABCD 中,AB ∥DC ,∠DAB =90°,AD =2DC =4,AB =6.动点M 以每秒1个单位长的速度,从点A 沿线段AB 向点B 运动;同时点P 以相同的速度,从点C 沿折线C -D -A 向点A 运动.当点M 到达点B 时,两点同时停止运动.过点M 作直线l ∥AD ,与线段CD 的交点为E ,与折线A -C -B 的交点为Q .点M 运动的时间为t (秒). (1)当t =0.5时,求线段QM 的长;(2)当0<t <2时,如果以C 、P 、Q 为顶点的三角形为直角三角形,求t 的值;(3)当t >2时,连接PQ 交线段AC 于点R .请探究CQ RQ是否为定值,若是,试求这个定值;若不是,请说明理由.ABCD(备用图1)ABCD(备用图2)QAB CDl MP (第10题)EAF D ECB1.在比例尺为1︰20000的地图上测得AB 两地间的图上距离为8cm ,则AB 两地间的实际距离为_______________________km.2.某一时刻,身高为165cm 的小丽影长是55cm ,此时,小玲在同一地点测得旗杆的影长为5m ,则该旗杆的高度为 m .3. 如图,△ABC 中,D 、E 分别AB 、AC 上的点, 要使△ADE∽△ACB,需添加一个条件 是 。
无锡市滨湖区中学八年级下学期期末复习数学试题
5. 某晚的海滨路,小明和小亮与安装彳j 路灯的电线杆整齐划一地排列在马路的一侧,地面上仃他们两人在路灯灯光下的影子(如图1所示)・在图2中,线段而和⑦分别表示 20XX 上初二数学期末复习(1) 20XX/06/19 班级 姓名 1.解卜列不等式,并把解集在数轴上表示出来. (1) <2) x + 4<3(x+2) x-\ x ,< — 2 一 3 2.先化简, 再求值: Af —2x+1 . - --- :~~: - ,其中 *=一5. x —4 3.解方程:4.如图,甲转盘被分成3个面枳相等的扇形,乙转盘被分成4个面枳相等的扇形,每一个 扇形都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指管所指区域内的 数字为*,乙转盘中指针所指区域内的数字为尸(当指针指在边界线上时.重转-•次.直到 指针指向一个区域为止)・(1)(r *)落在第二象限内的概率:<2)直接写出点(x, y )落在函数y = ~ 图象上的概率.小明和小亮的身高,4*夕和C" 〃表示所对应的影子.(1)«用尺规作图的方法,在图]化出路灯。
和电线杆伊的位置(不写作法,但须保存作图痕迹〉: :, 5A4 厂C9 D图2(2)假设』^CZM80cm. 4 扶270 cm. C ZM20cm,羽200 cm,你能否计算出路灯。
的高度?假设能,请求出路灯高度:假设不能,说明理由・6. 无锡某校准备组织学生及学:生家长到上海进行社会实践活动.为便于管理,所有人员必须乘坐同•列火乍;根据报名人数,假设都买•等座单程火车票需18 060元,假设都买二等座单程火车票且花钱板少,那么需11 850元:己知学生家长与教师的人数之比为2:1.无锡到上海的火车票价格(怖分)如下表所示:<1)参加社会实践的老师、家长与学生冬有多少人?(2)由于各种原因,二等座火车票单程只能买x张(*小丁•参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,诸你设计最经济的购票方案,并求出此时购置火车票的总费用(单程)y与x之间的函数关系式7.如图(1),△州C与△抒•刀为等腰直角三角形与重合,册AOF, /BACNDgV, 固定△/!«,将△仞k绕点"顺时针淀转,当必边与初边页合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,或它们的延长线)分别交敬或它的延长线)于G, 〃点,如图⑵题7图(1)题7图⑵ 及__<1)何:始终与△40相似的三角形有.<2)设田仁y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由):<3)何:当*为何值时,△X67/是等腰三角形。
无锡滨湖区雪浪中学初中数学八年级下期末经典复习题(含答案)
一、选择题1.(0分)[ID :10230]当12a <<时,代数式2(2)1a a -+-的值为( ) A .1B .-1C .2a-3D .3-2a2.(0分)[ID :10229]如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,√3),则点C 的坐标为( )A .(-√3,1)B .(-1,√3)C .(√3,1)D .(-√3,-1)3.(0分)[ID :10216]如图,矩形OABC 的顶点O 与平面直角坐标系的原点重合,点A ,C 分别在x 轴,y 轴上,点B 的坐标为(-5,4),点D 为边BC 上一点,连接OD ,若线段OD 绕点D 顺时针旋转90°后,点O 恰好落在AB 边上的点E 处,则点E 的坐标为( )A .(-5,3)B .(-5,4)C .(-5,52) D .(-5,2)4.(0分)[ID :10206]下列命题中,真命题是( ) A .两条对角线垂直的四边形是菱形 B .对角线垂直且相等的四边形是正方形 C .两条对角线相等的四边形是矩形 D .两条对角线相等的平行四边形是矩形 5.(0分)[ID :10142]如图,在ABCD 中, 对角线AC 、BD 相交于点O. E 、F 是对角线AC 上的两个不同点,当E 、F 两点满足下列条件时,四边形DEBF 不一定是平行四边形( ).A .AE =CFB .DE =BFC .ADE CBF ∠=∠D .AED CFB ∠=∠6.(0分)[ID :10136]已知一次函数y=-0.5x+2,当1≤x≤4时,y 的最大值是( ) A .1.5B .2C .2.5D .-67.(0分)[ID:10134]对于函数y=2x+1下列结论不正确是()A.它的图象必过点(1,3)B.它的图象经过一、二、三象限C.当x>12时,y>0D.y值随x值的增大而增大8.(0分)[ID:10180]如图,一次函数y=mx+n与y=mnx(m≠0,n≠0)在同一坐标系内的图象可能是()A.B.C.D.9.(0分)[ID:10176]如图(1),四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为S,S关于t的函数图象如图(2)所示,当P运动到BC中点时,△APD的面积为()A.4B.5C.6D.710.(0分)[ID:10167]如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于()A .2B .3C .4D .611.(0分)[ID :10157]如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑( )米A .0.4B .0.6C .0.7D .0.812.(0分)[ID :10154]在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( ) A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)13.(0分)[ID :10153]正方形具有而菱形不一定具有的性质是( )A .对角线互相平分B .每条对角线平分一组对角C .对边相等D .对角线相等14.(0分)[ID :10150]如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .8015.(0分)[ID :10149]如图,函数y =ax +b 和y =kx 的图像交于点P ,关于x ,y 的方程组y ax bkx y -=⎧⎨-=⎩的解是( )A .23x y =-⎧⎨=-⎩B .32x y =-⎧⎨=⎩C .32x y =⎧⎨=-⎩D .32x y =-⎧⎨=-⎩二、填空题16.(0分)[ID :10315]计算:182-=______. 17.(0分)[ID :10312]2+1的倒数是____.18.(0分)[ID :10292]如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.19.(0分)[ID :10272]将直线y =2x 向下平移3个单位长度得到的直线解析式为_____. 20.(0分)[ID :10271]如图,已知ABC ∆中,10AB =,8AC =,6BC =,DE 是AC 的垂直平分线,DE 交AB 于点D ,连接CD ,则=CD ___21.(0分)[ID :10256]已知一次函数y=kx+b 的图象如图,则关于x 的不等式kx+b >0的解集是______.22.(0分)[ID :10250]如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需______米.23.(0分)[ID :10246]一组数据:1、2、5、3、3、4、2、4,它们的平均数为_______,中位数为_______,方差是_______.24.(0分)[ID :10243]如图,已如长方形纸片,ABCD O 是BC 边上一点,P 为CD 中点,沿AO 折叠使得顶点B 落在CD 边上的点P 处,则OAB ∠的度数是______.25.(0分)[ID:10241]一组数据1,2,3,x,5的平均数是3,则该组数据的方差是_____.三、解答题26.(0分)[ID:10413]在学校组织的“文明出行”知识竞赛中,8(1)和8(2)班参赛人数相同,成绩分为A、B、C三个等级,其中相应等级的得分依次记为A级100分、B级90分、C级80分,达到B级以上(含B级)为优秀,其中8(2)班有2人达到A级,将两个班的成绩整理并绘制成如下的统计图,请解答下列问题:(1)求各班参赛人数,并补全条形统计图;(2)此次竞赛中8(2)班成绩为C级的人数为_______人;(3)小明同学根据以上信息制作了如下统计表:平均数(分)中位数(分)方差8(1)班m90n8(2)班919029请分别求出m和n的值,并从优秀率和稳定性方面比较两个班的成绩;27.(0分)[ID:10395]某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?28.(0分)[ID:10386]某经销商从市场得知如下信息:A品牌手表B品牌手表进价(元/块)700100售价(元/块)900160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x 块,这两种品牌手表全部销售完后获得利润为y元.(1)试写出y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;(3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元.29.(0分)[ID:10377]甲、乙两名射击选示在10次射击训练中的成绩统计图(部分)如图所示:根据以上信息,请解答下面的问题;选手A平均数中位数众数方差甲a88c乙7.5b6和9 2.65(1)补全甲选手10次成绩频数分布图.(2)a=,b=,c=.(3)教练根据两名选手手的10次成绩,决定选甲选手参加射击比赛,教练的理由是什么?(至少从两个不同角度说明理由).30.(0分)[ID:10359]已知:如图,E,F是正方形ABCD的对角线BD上的两点,且BE DF.求证:四边形AECF是菱形.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.A3.A4.D5.B6.A7.C8.C9.B10.C11.D12.B13.D14.C15.D二、填空题16.【解析】【分析】先化简二次根式然后再合并同类二次根式【详解】解:=故答案为:【点睛】本题考查二次根式的减法化成最简二次根式再计算这是通常最直接的做法17.【解析】【分析】由倒数的定义可得的倒数是然后利用分母有理化的知识求解即可求得答案【详解】∵∴的倒数是:故答案为:【点睛】此题考查了分母有理化的知识与倒数的定义此题比较简单注意二次根式有理化主要利用了18.【解析】在Rt△ABC中AB=5米BC=3米∠ACB=90°∴AC=∴AC+BC=3+4=7米故答案是:719.【解析】【分析】根据直线的平移规律上加下减左加右减求解即可【详解】解:直线y2x向下平移3个单位长度得到的直线解析式为【点睛】本题考查了直线的平移变换直线平移变换的规律是:对直线y=kx+b而言:20.5【解析】【分析】由是的垂直平分线可得AD=CD可得∠CAD=∠ACD利用勾股定理逆定理可得∠ACB=90°由等角的余角相等可得:∠DCB=∠B可得CD=BD可知CD=BD=AD=【详解】解:∵是的21.【解析】【分析】直接利用一次函数图象结合式kx+b>0时则y的值>0时对应x的取值范围进而得出答案【详解】如图所示:关于x的不等式kx+b>0的解集是:x<2故答案为:x<2【点睛】此题主要考查了一22.2+2【解析】【分析】地毯的竖直的线段加起来等于BC水平的线段相加正好等于AC 即地毯的总长度至少为(AC+BC)【详解】在Rt△ABC中∠A=30°BC=2m∠C=90°∴AB=2BC=4m∴AC=23.33【解析】【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:1223344524.30°【解析】【分析】根据题意先通过△ADP求出∠DAP的因为△ABO≌△APO即可求出∠OAB的度数【详解】解:∵P是CD的中点沿折叠使得顶点落在边上的点∴DP=PC=CD△ABO≌△APO∵四边25.2【解析】【分析】先用平均数是3可得x的值再结合方差公式计算即可【详解】平均数是3(1+2+3+x+5)解得:x=4∴方差是S2(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)21三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】分析:首先由,即可将原式化简,然后由1<a<2,去绝对值符号,继而求得答案.详解:∵1<a<2,(a-2),|a-1|=a-1,(a-2)+(a-1)=2-1=1.故选A.点睛:此题考查了二次根式的性质与化简以及绝对值的性质,解答本题的关键在于熟练掌握二次根式的性质.2.A解析:A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.∴点C的坐标为(-,1)故选A.考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质.3.A解析:A【解析】【分析】先判定△DBE≌△OCD,可得BD=OC=4,设AE=x,则BE=4﹣x=CD,依据BD+CD=5,可得4+4﹣x=5,进而得到AE=3,据此可得E(﹣5,3).【详解】由题可得:AO=BC=5,AB=CO=4,由旋转可得:DE=OD,∠EDO=90°.又∵∠B=∠OCD=90°,∴∠EDB+∠CDO=90°=∠COD+∠CDO,∴∠EDB=∠DOC,∴△DBE≌△OCD,∴BD=OC=4,设AE=x,则BE=4﹣x=CD.∵BD+CD=5,∴4+4﹣x=5,解得:x=3,∴AE=3,∴E(﹣5,3).故选A.【点睛】本题考查了全等三角形的判定与性质,矩形的性质以及旋转的性质的运用,解题时注意:全等三角形的对应边相等.4.D解析:D【解析】A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.5.B解析:B【解析】【分析】根据平行四边形的性质以及平行四边形的判定定理即可作出判断.【详解】解:A、∵在平行四边形ABCD中,OA=OC,OB=OD,若AE=CF,则OE=OF,∴四边形DEBF是平行四边形;B、若DE=BF,没有条件能够说明四边形DEBF是平行四边形,则选项错误;C、∵在平行四边形ABCD中,OB=OD,AD∥BC,∴∠ADB=∠CBD,若∠ADE=∠CBF,则∠EDB=∠FBO,∴DE∥BF,则△DOE和△BOF中,EDB FBO OD OBDOE BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DOE≌△BOF,∴DE=BF,∴四边形DEBF是平行四边形.故选项正确;D、∵∠AED=∠CFB,∴∠DEO=∠BFO,∴DE∥BF,在△DOE和△BOF中,DOE BOFDEO BFO OD OB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DOE≌△BOF,∴DE=BF,∴四边形DEBF是平行四边形.故选项正确.故选B.【点睛】本题考查了平行四边形的性质以及判定定理,熟练掌握定理是关键.6.A解析:A【解析】【分析】根据一次函数的系数k=-0.5<0,可得出y随x值的增大而减小,将x=1代入一次函数解析式中求出y值即可.【详解】在一次函数y=-0.5x+2中k=-0.5<0,∴y随x值的增大而减小,∴当x=1时,y取最大值,最大值为-0.5×1+2=1.5,故选A.【点睛】本题考查了一次函数的性质,牢记“k<0,y随x的增大而减小”是解题的关键.7.C解析:C【解析】【分析】利用k、b的值依据函数的性质解答即可.【详解】解:当x=1时,y=3,故A选项正确,∵函数y=2x+1图象经过第一、二、三象限,y随x的增大而增大,∴B、D正确,∵y>0,∴2x+1>0,∴x>﹣12,∴C选项错误,故选:C.【点睛】此题考查一次函数的性质,熟记性质并运用解题是关键.8.C解析:C【解析】【分析】根据m、n同正,同负,一正一负时利用一次函数的性质进行判断.【详解】解:①当mn>0时,m、n同号,y=mnx过一三象限;同正时,y=mx+n经过一、二、三象限,同负时,y=mx+n过二、三、四象限;②当mn<0时,m、n异号,y=mnx过二四象限,m>0,n<0时,y=mx+n经过一、三、四象限;m<0,n>0时,y=mx+n过一、二、四象限;故选:C.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.9.B解析:B【解析】【分析】根据函数图象和三角形面积得出AB+BC=6,CD=4,AD=4,AB=1,当P运动到BC中点时,梯形ABCD的中位线也是△APD的高,求出梯形ABCD的中位线长,再代入三角形面积公式即可得出结果.【详解】解:根据题意得:四边形ABCD是梯形,AB+BC=6,CD=10-6=4,∵12AD×CD=8,∴AD=4,又∵12AD×AB=2,∴AB=1,当P运动到BC中点时,梯形ABCD的中位线也是△APD的高,∵梯形ABCD的中位线长=12(AB+CD)=52,∴△PAD的面积1545 22;=⨯⨯=故选B.【点睛】本题考查了动点问题的函数图象、三角形面积公式、梯形中位线定理等知识;看懂函数图象是解决问题的关键.10.C解析:C【解析】【分析】【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵∠C平分线为CF,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF−AB=2,AE=AD−DE=2∴AE+AF=4故选C11.D解析:D【解析】【分析】【详解】解:∵AB =2.5米,AC =0.7米,∴BC (米).∵梯子的顶部下滑0.4米,∴BE =0.4米,∴EC =BC ﹣0.4=2(米),∴DC (米),∴梯子的底部向外滑出AD =1.5﹣0.7=0.8(米).故选D .【点睛】此题主要考查了勾股定理在实际生活中的应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.12.B解析:B【解析】【分析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案.【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+, 此时与x 轴相交,则0y =,∴360x +=,即2x =-,∴点坐标为(-2,0),故选B.【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.13.D解析:D【解析】【分析】列举出正方形具有而菱形不一定具有的所有性质,由此即可得出答案.【详解】正方形具有而菱形不一定具有的性质是:①正方形的对角线相等,而菱形不一定对角线相等;②正方形的四个角是直角,而菱形的四个角不一定是直角.故选D .【点睛】本题考查了正方形、菱形的性质,熟知正方形及菱形的性质是解决问题的关键.14.C解析:C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴10==∴S 阴影部分=S 正方形ABCD -S Rt △ABE =102-1682⨯⨯ =100-24=76.故选C.考点:勾股定理.15.D解析:D【解析】【分析】根据两图象的交点坐标满足方程组,方程组的解就是交点坐标.【详解】由图可知,交点坐标为(﹣3,﹣2),所以方程组的解是32x y =-⎧⎨=-⎩. 故选D .【点睛】本题考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.二、填空题16.【解析】【分析】先化简二次根式然后再合并同类二次根式【详解】解:=故答案为:【点睛】本题考查二次根式的减法化成最简二次根式再计算这是通常最直接的做法【解析】【分析】先化简二次根式,然后再合并同类二次根式.【详解】2=1(22-【点睛】本题考查二次根式的减法,化成最简二次根式再计算,这是通常最直接的做法. 17.【解析】【分析】由倒数的定义可得的倒数是然后利用分母有理化的知识求解即可求得答案【详解】∵∴的倒数是:故答案为:【点睛】此题考查了分母有理化的知识与倒数的定义此题比较简单注意二次根式有理化主要利用了 解析:21-. 【解析】 【分析】 由倒数的定义可得2+1的倒数是12+1,然后利用分母有理化的知识求解即可求得答案.【详解】∵121=212+1(21)(21)-=-+-. ∴2+1的倒数是:21-.故答案为:21-.【点睛】此题考查了分母有理化的知识与倒数的定义.此题比较简单,注意二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.18.【解析】在Rt△ABC 中AB=5米BC=3米∠ACB=90°∴AC=∴AC+BC=3+4=7米故答案是:7解析:【解析】在Rt△ABC 中,AB=5米,BC=3米,∠ACB=90°,∴AC=224AB BC -=∴AC+BC=3+4=7米.故答案是:7.19.【解析】【分析】根据直线的平移规律上加下减左加右减求解即可【详解】解:直线y 2x 向下平移3个单位长度得到的直线解析式为【点睛】本题考查了直线的平移变换直线平移变换的规律是:对直线y=kx+b 而言: 解析:23y x =-.【解析】【分析】根据直线的平移规律“上加下减,左加右减”求解即可.【详解】解:直线y =2x 向下平移3个单位长度得到的直线解析式为23y x =-.【点睛】本题考查了直线的平移变换. 直线平移变换的规律是:对直线y=kx+b 而言:上下移动,上加下减;左右移动,左加右减.例如,直线y=kx+b 如上移3个单位,得y=kx+b +3;如下移3个单位,得y=kx+b -3;如左移3个单位,得y=k (x +3)+b ;如右移3个单位,得y=k (x -3)+b .掌握其中变与不变的规律是解决直线平移变换问题的基本方法.20.5【解析】【分析】由是的垂直平分线可得AD=CD 可得∠CAD=∠ACD 利用勾股定理逆定理可得∠ACB=90°由等角的余角相等可得:∠DCB=∠B 可得CD=BD 可知CD=BD=AD=【详解】解:∵是的解析:5【解析】【分析】由DE 是AC 的垂直平分线可得AD=CD ,可得∠CAD=∠ACD ,利用勾股定理逆定理可得∠ACB=90°由等角的余角相等可得:∠DCB=∠B ,可得CD=BD ,可知CD=BD=AD=152AB = 【详解】解:∵DE 是AC 的垂直平分线∴AD=CD∴∠CAD=∠ACD∵10AB =,8AC =,6BC =又∵2226+8=10∴222AC BC AB +=∴∠ACB=90°∵∠ACD+∠DCB=90°, ∠CAB+∠B=90°∴∠DCB=∠B∴CD=BD∴CD=BD=AD=152AB = 故答案为5【点睛】本题考查了线段垂直平分线、勾股定理逆定理以及等腰三角形的性质,掌握勾股定理逆定理及利用等腰三角形求线段是解题的关键. 21.【解析】【分析】直接利用一次函数图象结合式kx+b >0时则y 的值>0时对应x 的取值范围进而得出答案【详解】如图所示:关于x 的不等式kx+b >0的解集是:x <2故答案为:x <2【点睛】此题主要考查了一解析:2x <【解析】【分析】直接利用一次函数图象,结合式kx+b >0时,则y 的值>0时对应x 的取值范围,进而得出答案.【详解】如图所示:关于x的不等式kx+b>0的解集是:x<2.故答案为:x<2.【点睛】此题主要考查了一次函数与一元一次不等式,正确利用数形结合是解题关键.22.2+2【解析】【分析】地毯的竖直的线段加起来等于BC水平的线段相加正好等于AC即地毯的总长度至少为(AC+BC)【详解】在Rt△ABC中∠A=30°BC=2m∠C=90°∴AB=2BC=4m∴AC=解析:2+23【解析】【分析】地毯的竖直的线段加起来等于BC,水平的线段相加正好等于AC,即地毯的总长度至少为(AC+BC).【详解】在Rt△ABC中,∠A=30°,BC=2m,∠C=90°,∴AB=2BC=4m,∴2223AB BC-=m,∴3(m).故答案为:3【点睛】本题主要考查勾股定理的应用,解此题的关键在于准确理解题中地毯的长度为水平与竖直的线段的和.23.33【解析】【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445解析:3,3,3 2 .【解析】【分析】根据平均数的公式即可求出答案,将数据按照由小到大的顺序重新排列,中间两个数的平均数即是中位数,根据方差的公式计算即可得到这组数据的方差.【详解】平均数=1(12533424)38⨯+++++++=,将数据重新排列是:1、2、2、3、3、4、4、5,∴中位数是3332+=, 方差=222221(13)2(23)2(33)2(43)(53)8⎡⎤⨯-+⨯-+⨯-+⨯-+-⎣⎦=32, 故答案为:3,3,32. 【点睛】此题考查计算能力,计算平均数,中位数,方差,正确掌握各计算的公式是解题的关键. 24.30°【解析】【分析】根据题意先通过△ADP 求出∠DAP 的因为△ABO ≌△A PO 即可求出∠OAB 的度数【详解】解:∵P 是CD 的中点沿折叠使得顶点落在边上的点∴DP=PC=CD △ABO ≌△APO ∵四边解析:30°【解析】【分析】根据题意先通过△ADP 求出∠DAP 的,因为△ABO ≌△APO ,即可求出∠OAB 的度数.【详解】解:∵ P 是CD 的中点,沿AO 折叠使得顶点B 落在CD 边上的点P∴DP=PC=12CD, △ABO ≌△APO ∵四边形ABCD 为长方形∴∠D=∠DAB=90°,AB=CD=AP=2DP∴∠DAP=30°∵△ABO ≌△APO∴∠PAO=∠OAP=12∠BAP ∴∠OAP=12∠BAP=12(∠DAB-∠DAP)=12(90°-30°)=30° 故答案为:30°【点睛】此题主要考查了全等三角形的性质和特殊直角三角形的性质,解题的关键是折叠前后图形全等.25.2【解析】【分析】先用平均数是3可得x 的值再结合方差公式计算即可【详解】平均数是3(1+2+3+x+5)解得:x=4∴方差是S2(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)21解析:2【解析】【分析】先用平均数是3可得x的值,再结合方差公式计算即可.【详解】平均数是315=(1+2+3+x+5),解得:x=4,∴方差是S215=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]15=⨯10=2.故答案为2.【点睛】本题考查了平均数和方差的概念,解题的关键是牢记方差的计算公式,难度不大.三、解答题26.(1)详见解析;(2)1人;(3)从优秀率看8(2)班更好,从稳定性看8(2)班的成绩更稳定;【解析】【分析】(1)由8(2)班A级人数及其所占百分比可得两个班的人数,班级人数减去A、B级人数可求出C等级人数;(2)班级人数乘以C等级对应的百分比可得其人数;(3)根据平均数和方差的定义求解可得;【详解】(1)∵8(2)班有2人达到A级,且A等级人数占被调查的人数为20%,∴8(2)班参赛的人数为2÷20%=10(人),∵8(1)和8(2)班参赛人数相同,∴8(1)班参赛人数也是10人,则8(1)班C等级人数为10-3-5=2(人),补全图形如下:(2)此次竞赛中8(2)班成绩为C级的人数为10×(1-20%-70%)=1(人),故答案为:1.(3)m=110×(100×3+90×5+80×2)=91(分),n=110×[(100-91)2×3+(90-91)2×5+(80-91)2×2]=49,∵8(1)班的优秀率为3510×100%=80%,8(2)班的优秀率为20%+70%=90%,∴从优秀率看8(2)班更好;∵8(1)班的方差大于8(2)班的方差,∴从稳定性看8(2)班的成绩更稳定;【点睛】此题考查条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.除此之外,本题也考查了对平均数、方差的认识.27.(1) y =﹣600x+18000(2)6(3)6【解析】【分析】(1)根据每个工人每天生产的产品个数以及每个产品的利润,表示出总利润即可.(2)根据每天获取利润为14400元,则y=14400,求出即可.(3)根据每天获取利润不低于15600元即y≥15600,求出即可.【详解】解:(1)根据题意得:y=12x×100+10(10﹣x)×180=﹣600x+18000.(2)当y=14400时,有14400=﹣600x+18000,解得:x=6.∴要派6名工人去生产甲种产品.(3)根据题意可得,y≥15600,即﹣600x+18000≥15600,解得:x≤4,∴10﹣x≥6,∴至少要派6名工人去生产乙种产品才合适.28.(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.【解析】【分析】(1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;(2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;(3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.【详解】解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.由700x+100(100﹣x)≤40000得x≤50.∴y与x之间的函数关系式为y=140x+6000(x≤50)(2)令y≥12600,即140x+6000≥12600,解得x≥47.1.又∵x≤50,∴经销商有以下三种进货方案:方案A品牌(块)B品牌(块)①4852②4951③5050(3)∵140>0,∴y随x的增大而增大.∴x=50时y取得最大值.又∵140×50+6000=13000,∴选择方案③进货时,经销商可获利最大,最大利润是13000元.【点睛】本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用.29.(1)4;(2)8、1.2、7.5;(3)从平均数看,甲成绩优于乙的成绩;从方差看,甲的方差小,说明甲的成绩稳定.【解析】【分析】(1)根据甲的成绩频数分布图及题意列出10﹣(1+2+2+1),计算即可得到答案;(2)根据平均数公式、中位数的求法和方差公式计算得到答案;(3)从平均数和方差进行分析即可得到答案.【详解】解:(1)甲选手命中8环的次数为10﹣(1+2+2+1)=4,补全图形如下:(2)a=67284921010+⨯+⨯+⨯+=8(环),c=110×[(6﹣8)2+2×(7﹣8)2+4×(8﹣8)2+2×(9﹣8)2+(10﹣8)2]=1.2,b=872=7.5,故答案为:8、1.2、7.5;(3)从平均数看,甲成绩优于乙的成绩;从方差看,甲的方差小,说明甲的成绩稳定.【点睛】本题考查频数分布直方图、平均数、中位数和方差,解题的关键是读懂频数分布直方图,掌握平均数、中位数和方差的求法.30.见解析【解析】【分析】连接AC,交BD于O,由正方形的性质可得OA=OC,OB=OD,AC⊥BD根据BE=DF可得OE=OF,由对角线互相垂直平分的四边形是菱形即可判定,【详解】∵四边形ABCD是正方形,∴OD=OB,OA=OC,BD⊥AC,∵BE=DF,∴DE=BF,∴OE=OF,∵OA=OC,AC⊥EF,OE=OF,∴四边形AECF为菱形.【点睛】本题考查了正方形对角线互相垂直平分的性质,考查了菱形的判定,对角线互相垂直且互相平分的四边形是菱形,熟练掌握菱形的判定方法是解题关键.。
江苏省无锡市滨湖区中学2012学年八年级数学下学期期末复习试题(6)(无答案) 北师大版
江苏省无锡市滨湖区中学2012-2013学年八年级下学期期末复习数学试题(6) 北师大版班级_________姓名____________一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在函数11y x =+中,自变量x 必须满足的条件是( ) A .x ≠1 B . x ≠-1 C . x ≠0 D . x>12.分式()1111a a a +++的计算结果是( ) A .11a + B .1a a + C .1a D .1a a+ 3.以下说法正确的是( )A .在367人中至少有两个人的生日相同;B .一次摸奖活动的中奖率是l%,那么摸100次奖必然会中一次奖;C .一副扑克牌中,随意抽取一张是红桃K ,这是必然事件;D .一个不透明的袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是35. 4.如图,矩形ABCD 的两条对角线相交于点O ,∠AOB =60°,AB =2,则AC 的长是( )A .2B .4C .23D .435.已知反比例函数y =k x的图象过点P(1,3),则该反比例函数的图象位于( ) A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第三、四象限6.小宸同学的身高为1.8m ,测得他站立在阳光下的影长为0.9m ,紧接着他把手臂竖直举起,测得影长为1.2m ,那么小宸举起的手臂超出头顶的高度为( )A .0.3mB .0.5mC . 0.6mD .2.1m7.高跟鞋的奥秘:当人肚脐以下部分的长m 与身高,的比值越接近0.618时,越给人以一种匀称的美感,如图,某女士身高170cm ,脱去鞋后量得下半身长为97cm ,则建议她穿的高跟鞋高度大约为( )A .4cmB .6cmC .8cmD .10cm8.为了早日实现“绿色太仓,花园之城”的目标,太仓对4000米长的城北河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x 米,则所列方程正确的是( )A .40004000210x x -=+B .40004000210x x -=+C .40004000210x x -=-D .40004000210x x -=- 9.如图是反比例函数1k y x =和2k y x =(k 1<k 2)在第一象限的图象,直 线AB//y 轴,并分别交两条曲线于A 、B 两点,若S △AOB =4,则k 2-k 1的值是( )A .1B .2C .4D .810.如图,已知DE 是直角梯形ABCD 的高,将△ADE 沿DE 翻折,腰AD 恰好经过腰BC 的中点,则AE :BE 等于( )A .2:1B .1:2C .3:2D .2:3二、填空题(本大题共8小题,每小题3分.共24分)11.画在比例尺为1:20的图纸上的某个零件的长是32cm ,这个零件的实际长是 cm .12.当x = 时,分式211x x --的值为0. 13.若一次函数y =(m -1)x +2的图象,y 随x 的增大而减小,则m 的取值范围是 .14.若23a b =,则a b b+= . 15.如图,在△ABC 中,已知DE ∥BC ,AB =8,BD =BC =6,则DE = .16.使分式41m -的值为整数的所有整数m 的和是 .17.如图,已知两点A(6,3),B(6,0),以原点O 为位似中心,相似比为1:3把线段AB 缩小,则点A的对应点坐标是 .18.如图,将三角形纸片的一角折叠,使点B 落在AC 边上的F 处,折痕为DE .已知AB =AC =3,BC =4,若以点E ,F ,C 为顶点的三角形与△ABC 相似,那么BE 的长是 .三、解答题(本大题共11小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(本题共5分)解方程:31144x x x--=--.20.(本题共5分)先化简,再求值:2224111442a a a a ⎛⎫+⎛⎫-÷- ⎪ ⎪-⎝⎭⎝⎭,其中12a =.21.(本题共6分)解不等式组:()302133x x x +>⎧⎪⎨-+≥⎪⎩,并判断32是否为该不等式组的解.22.(本题共6分)如图,在正方形ABCD 中,已知CE ⊥DF 于H .(1)求证:△BCE ≌△CDF :(2)若AB =6,BE =2,求HF 的长.23.(本题共6分)有两堆背面完全相同的扑克,第一堆正面分别写有数字1、2、3、4,第二堆正面分别写有数字1、2、3.分别混合后,小玲从第一堆中随机抽取一张,把卡片上的数字作为被减数;小惠从第二堆中随机抽取一张,把卡片上的数字作为减数,然后计算出这两个数的差.(1)请用画树状图或列表的方法,求这两数差为0的概率;(2)小玲与小惠作游戏,规则是:若这两数的差为非负数,则小玲胜;否则,小惠胜.你认为该游戏规则公平吗?如果公平,请说明理由.如果不公平,请你修改游戏规则,使游戏公平.24.(本题共7分)教材第97页在证明“两边对应成比例且夹角对应相等的两个三角形相似”(如图,已知DE DF AB AC=(AB>DE),∠A =∠D ,求证:△ABC ∽△DEF)时,利用了转化的数学思想,通过添设辅助线,将未知的判定方法转化为前两节课已经解决的方法(即已知两组角对应相等推得相似或已知平行推得相似).请利用上述方法完成这个定理的证明.25.(本题共7分)如图,某一时刻垂直于地面的大楼AC的影子一部分在地上(BC),另一部分在斜坡上(BD).已知坡角,∠DBE=45°,BC=20米,BD=22米,且同一时刻竖直于地面长1米的标杆的影长恰好也为1米,求大楼的高度AC.26.(本题共8分)如图,在平面直角坐标系内,已知OA=OB=2,∠AOB=30°.(1)点A的坐标为( , );(2)将△AOB绕点O顺时针旋转a度(0<a<90).①当a=30时,点B恰好落在反比例函数y=kx(x>0)的图象上,求k的值;②在旋转过程中,点A、B能否同时落在上述反比例函数的图象上,若能,求出a的值;若不能,请说明理由.连结BC,作BC的中垂线分别交OB、AB交于点D、E.(l)当点C与点O重合时,DE=▲;(2)当CE∥OB时,证明此时四边形BDCE为菱形;(3)在点C的运动过程中,直接写出OD的取值范围.28.(本题共9分)如图①,将直角梯形OABC放在平面直角坐标系中,已知OA=5,OC=4,BC∥OA,BC =3,点E在OA上,且OE=1,连结OB、BE.(1)求证:∠OBC=∠ABE;(2)如图②,过点B作BD⊥x轴于D,点P在直线BD上运动,连结PC、P、PA和CE.①当△PCE的周长最短时,求点P的坐标;②如果点P在x轴上方,且满足S△CEP:S△ABP=2:1,求DP的长.如在相似三角形中,K字形是非常重要的基本图形,可以建立如下的“模块”(如图①):(1)请就图①证明上述“模块”的合理性;(2)请直接利用....上述“模块”的结论解决下面两个问题:①如图②,已知点A(-2,1),点B在直线y=-2x+3上运动,若∠AOB=90°,求此时点B的坐标;②如图③,过点A(-2,1)作x轴与y轴的平行线,交直线y=-2x+3于点C、D,求点A关于直线CD的对称点E的坐标.。
八年级数学下学期期末复习试题7试题
滨湖区中学2021-2021学年八年级下学期期末复习数学试题〔7〕北师大版制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日班级_________姓名____________一、选择题〔本大题一一共10小题,每一小题3分,一共30分,〕1.使分式11x-有意义的x的取值是( )(A)x≠0 (B)x≠1 (C)x≠-1 (D)x≠±12.化简22a ba b a b---的结果是( )(A)a2-b2 (B)a+b (C)a-b (D)13.假设两个相似三角形的周长比为4:3,那么它们的相似比为( )(A)4:3 (B)3:4 (C) 16:9 (D) 9:16 4.以下各图中,∠1大于∠2的是( )5.以下说法正确的选项是( )(A)掷一颗骰子,点数一定小于等于6;(B)抛一枚硬币,反面一定朝上;(C)为理解一种灯泡的使用寿命,宜采用普查的方法;(D)“明天的降水概率为90%〞,表示明天会有90%的地方下雨.6.如图,小“鱼〞与大“鱼〞是位似图形,假如小“鱼〞上一个“顶点〞的坐标为〔a,b〕,那么大“鱼〞上对应“顶点〞的坐标为 ( )(A)(-a,-2b) (B)(-2a,-b)(C)(-2a,-2b) (D)(-2b,-2a)7.以下各点中,在双曲线y=-3x上的点是( )(A)〔13,-9〕 (B)(3,1) (C)〔-1,-3〕 (D)(6,12)8.反比例函数y=mx,以下结论中,不正确的选项是( )(A)图象必经过点(1,m). (B)y随x的增大而减少.(C)当m>0时,图象在第一、三象限内. (D)假设y=2m,那么x=12.9.在同一平面直角坐标系中,函数y=1x与函数y=-x+b〔其中6是实数〕的图象交点个数是 ( )(A)0个 (B)1个 (C)2个 (D)0或者1或者2个10.观察以下命题:(1)假如a<0,b>0,那么a+b<0;(2)假如两个三角形的3个角对应相等,那么这两个三角形全等;(3)同角的补角相等;(4)直角都相等,其中真命题的个数是( )(A)0 (B)1 (C)2 (D)3二、填空题〔本大题一一共8小题,每一小题3分,一共24分.把答案填在答题卷相应位置上.〕11.命题“假如a2=b2,那么a=b.〞的逆命题是命题〔填“真〞或者“假〞〕.12.化简:()()2223612x y x y x x ++÷= .13.假设分式21x -的值与1互为相反数,那么x 的值是 . 14.如图,AD ∥EF ∥GH ∥PQ ∥BC ,AE =EG =GP =PB ,AD =2,BC =10,那么EF +PQ 长为 .15.在盒子里放有三张分别写有整式a +1、a +2、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,那么能组成分式的概率是 .16.如图,在正方形ABCD 中,点E ,H ,F ,G 分别在边AB ,BC ,CD ,DA 上,EF ,GH 交于点O ,∠FOH =90°,EF =4.那么GH 的长为 .17.如图,在等腰梯形ABCD 中,AC ⊥BD ,AC =6cm ,那么等腰梯形ABCD 的面积为__________cm 2.18.在反比例函数y =12m x-的图象上有两点A(x 1,y 1),B(x 2,y 2),当x 1<0<x 2时,有y 1<y 2,那么m 的取值范围是 .三、解答题〔本大题一一共10题,一共76分.解答时应写出文字说明、证明过程或者演算步骤.〕19.〔此题6分〕先化简,再求值:22142a a a -+-+,其中a =5.20.〔此题6分〕解方程:111xx x+=-.21.〔此题6分〕y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=3;当x=12时,y=1.求x=-12时,y的值.22.〔此题6分〕有3个完全一样的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)用树状图〔或者列表法〕列出两次摸球出现的所有可能结果;(2)求摸出的两个球号码之和等于5的概率.23.〔此题8分〕如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR 分别交AC、CD于点P、Q.(1)求证:△PCQ∽△RDQ;(2)求BP:PQ:QR的值.24.〔此题8分〕如图,请在以下四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD是平行四边形,并予以证明.〔写出一种即可〕关系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.:在四边形ABCD中,,.求证:四边形ABCD是平行四边形.25.〔此题8分〕某校九年级两个班学生在“助残日〞各为残疾儿童捐款1800元.2班比1班人均捐款多4元,2班的人数比1班的人数少10%.求两个班人均捐款各多少元?26.〔此题8分〕:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.(1)求证:BE=DF;(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.27.〔此题10分〕函数y=2x和y=62x-,A(1,n)、B〔m,4〕两点均在函数y=2x的图像上,设两函数y=2x和y=62x-的图像交于一点P.(1)务实数m,n的值;(2)求P,A,B三点构成的三角形PAB的面积.28.〔此题10分〕如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE-EF-FC-CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK ⊥AB,交折线BC-CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停顿运动,点Q也随之停顿.设点P,Q运动的时间是是t秒(t>0).(1)D,F两点间的间隔是▲;(2)射线QK能否把四边形CDEF分成面积相等的两局部?假设能,求出t的值.假设不能,说明理由;(3)当点P运动到折线EF-FC上,且点P又恰好落在射线QK上时,求t的值;(4)连结PG,当PG∥AB时,请直接写出t的值.制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日。
无锡滨湖区胡埭中学初中数学八年级下期末经典练习(含答案)
一、选择题1.(0分)[ID :10231]某商场试销一种新款衬衫,一周内售出型号记录情况如表所示: 型号(厘米) 38 39 40 41 42 43 数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数B .中位数C .众数D .方差2.(0分)[ID :10228]如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB 生长在它的正中央,高出水面部分BC 的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B′,则这根芦苇AB 的长是( )A .15尺B .16尺C .17尺D .18尺3.(0分)[ID :10222]一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥4.(0分)[ID :10212]如图,矩形ABCD 中,对角线AC BD 、交于点O .若60,8AOB BD ∠==,则AB 的长为( )A.3B.4C.43D.55.(0分)[ID:10205]以下命题,正确的是().A.对角线相等的菱形是正方形B.对角线相等的平行四边形是正方形C.对角线互相垂直的平行四边形是正方形D.对角线互相垂直平分的四边形是正方形6.(0分)[ID:10137]下列有关一次函数y=﹣3x+2的说法中,错误的是()A.当x值增大时,y的值随着x增大而减小B.函数图象与y轴的交点坐标为(0,2)C.函数图象经过第一、二、四象限D.图象经过点(1,5)7.(0分)[ID:10136]已知一次函数y=-0.5x+2,当1≤x≤4时,y的最大值是()A.1.5B.2C.2.5D.-68.(0分)[ID:10195]如图,菱形ABCD中,∠B=60°,AB=2cm,E,F分别是BC,CD的中点,连接AE,EF,AF,则△AEF的周长为()A.2√3cm B.3cm C.4√3cm D.3√3cm9.(0分)[ID:10190]下列计算中正确的是()A325=B321=C.3333+=D 33 4=10.(0分)[ID:10187]某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A.参加本次植树活动共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵11.(0分)[ID:10182]“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.312.(0分)[ID:10177]明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t (单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m213.(0分)[ID:10173]如图,长方形纸片ABCD中,AB=4,BC=6,点E在AB边上,将纸片沿CE折叠,点B落在点F处,EF,CF分别交AD于点G,H,且EG=GH,则AE的长为( )A .23B .1C .32D .214.(0分)[ID :10163]下列各组数,可以作为直角三角形的三边长的是( ) A .2,3,4B .7,24,25C .8,12,20D .5,13,1515.(0分)[ID :10160]如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 的中点C '上.若6AB =,9BC =,则BF 的长为( )A .4B .32C .4.5D .5二、填空题16.(0分)[ID :10329]如图,在正方形ABCD 的外侧,作等边△ADE ,则∠AEB=_________°.17.(0分)[ID :10313]函数1y=x的定义域____.18.(0分)[ID :10310]如果二次根式4x -有意义,那么x 的取值范围是__________. 19.(0分)[ID :10303]已知13y x =-+,234y x =-,当x 时,12y y <. 20.(0分)[ID :10301]如图所示,将四根木条组成的矩形木框变成▱ABCD 的形状,并使其面积变为原来的一半,则这个平行四边形的一个最小的内角的度数是_____.21.(0分)[ID :10284]如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为 .22.(0分)[ID :10249]如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是_______23.(0分)[ID:10248]已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a 与b的大小关系是_________.24.(0分)[ID:10240]已知一组数据1,2,3,4,5的方差为2,则另一组数据11,12,13,14,15的方差为___.25.(0分)[ID:10239]若m=√n−2+√2−n+5,则m n=___.三、解答题26.(0分)[ID:10419]某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下:甲1061068乙79789经过计算,甲进球的平均数为8,方差为3.2.(1)求乙进球的平均数和方差;(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么?27.(0分)[ID:10391]某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y(件)与销售时间x(天)之间的函数关系.(1)求y与x之间的函数表达式,并写出x的取值范围;(2)若该节能产品的日销售利润为W(元),求W与x之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?(3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元?28.(0分)[ID:10382]如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE 到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE 是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE 的面积.29.(0分)[ID :10378]如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E . (1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,ABCD 的面积是 .30.(0分)[ID :10340]设a 8x =-b 3x 4=+c x 2=+.(1)当x 取什么实数时,a ,b ,c 都有意义;(2)若Rt △ABC 三条边的长分别为a ,b ,c ,求x 的值.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.C 2.C 3.A 4.B 5.A 6.D 7.A8.D9.D10.D11.D12.B13.B14.B15.A二、填空题16.15°【解析】【分析】【详解】解:由题意可知:是等腰三角形故答案为17.【解析】【分析】由根式的被开方数大于等于0分式的分母不等于0联立不等式组求解x 的取值即可【详解】根据题意得解得故答案为:【点睛】本题考查了函数的定义域及其求法函数的定义域就是使函数解析式有意义的自变18.x≥4【解析】分析:根据二次根式有意义的条件列出不等式解不等式即可详解:由题意得x−4⩾0解得x⩾4故答案为x⩾4点睛:此题考查二次根式有意义的条件二次根式有意义的条件是被开方部分大于或等于零二次根19.【解析】【分析】根据题意列出不等式求出解集即可确定出x的范围【详解】根据题意得:-x+3<3x-4移项合并得:4x>7解得:x故答案为:20.30°【解析】【分析】过A作AE⊥BC于点E由四根木条组成的矩形木框变成▱ABCD的形状面积变为原来的一半可得AE=AB由此即可求得∠ABE=30°即平行四边形中最小的内角为30°【详解】解:过A作21.【解析】试题解析:根据题意将周长为8的△ABC沿边BC向右平移1个单位得到△DEF则AD=1BF=BC+CF=BC+1DF=AC又∵AB+BC+AC=10∴四边形ABFD的周长=AD+AB+BF+D22.—1【解析】【分析】首先根据勾股定理计算出AC的长进而得到AE的长再根据A点表示-1可得E点表示的数【详解】∵AD长为2AB长为1∴AC=∵A点表示-1∴E点表示的数为:-1故答案为-1【点睛】本题23.a>b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2∴该函数中y随着x的增大而减小∵1<2∴a>b故答案为a>b【点睛】本题考查一次函数图象上点的坐标特征24.2【解析】试题分析:根据方差的性质当一组数据同时加减一个数时方差不变进而得出答案∵一组数据12345的方差为2∴则另一组数据1112131415的方差为2故答案为2考点:方差25.【解析】【分析】直接利用二次根式有意义的条件得出mn的值进而得出答案【详解】∵m=n-2+2-n+5∴n=2则m=5故mn=25故答案为:25【点睛】此题主要考查了二次根式有意义的条件正确得出mn的三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数.详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.故选C.点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2.C解析:C 【解析】 【分析】我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB'的长为16尺,则B'C=8尺,设出AB=AB'=x 尺,表示出水深AC ,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长. 【详解】解:依题意画出图形,设芦苇长AB=AB′=x 尺,则水深AC=(x-2)尺, 因为B'E=16尺,所以B'C=8尺 在Rt △AB'C 中,82+(x-2)2=x 2, 解之得:x=17, 即芦苇长17尺. 故选C . 【点睛】本题主要考查勾股定理的应用,熟悉数形结合的解题思想是解题关键.3.A解析:A 【解析】 【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集. 【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤. 故选:A . 【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键. 4.B解析:B 【解析】 【分析】由四边形ABCD 为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB 为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,据此即可求得AB长.【详解】∵在矩形ABCD中,BD=8,∴AO=12AC, BO=12BD=4,AC=BD,∴AO=BO,又∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=4,故选B.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟练掌握矩形的对角线相等且互相平分是解本题的关键.5.A解析:A【解析】【分析】利用正方形的判定方法分别判断后即可确定正确的选项.【详解】A、对角线相等的菱形是正方形,正确,是真命题;B、对角线相等的平行四边形是矩形,故错误,是假命题;C、对角线互相垂直的平行四边形是菱形,故错误,是假命题;D、对角线互相垂直平分的四边形是菱形,故错误,是假命题,故选:A.【点睛】考查了命题与定理的知识,解题的关键是了解正方形的判定方法.6.D解析:D【解析】【分析】A、由k=﹣3<0,可得出:当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、利用一次函数图象上点的坐标特征,可得出:函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、由k=﹣3<0,b=2>0,利用一次函数图象与系数的关系可得出:一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、利用一次函数图象上点的坐标特征,可得出:一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.此题得解.【详解】解:A、∵k=﹣3<0,∴当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、当x=0时,y=﹣3x+2=2,∴函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、∵k=﹣3<0,b=2>0,∴一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、当x=1时,y=﹣3x+2=﹣1,∴一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.故选:D.【点睛】此题考查一次函数图象上点的坐标特征以及一次函数的性质,逐一分析四个选项的正误是解题的关键.7.A解析:A【解析】【分析】根据一次函数的系数k=-0.5<0,可得出y随x值的增大而减小,将x=1代入一次函数解析式中求出y值即可.【详解】在一次函数y=-0.5x+2中k=-0.5<0,∴y随x值的增大而减小,∴当x=1时,y取最大值,最大值为-0.5×1+2=1.5,故选A.【点睛】本题考查了一次函数的性质,牢记“k<0,y随x的增大而减小”是解题的关键.8.D解析:D【解析】【分析】首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等边三角形三线合一的性质又可推出△AEF是等边三角形.根据勾股定理可求出AE的长,继而求出周长.【详解】解:∵四边形ABCD是菱形,∴AB=AD=BC=CD=2cm,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF,在△ABE 和△ADF 中,{AB =AD∠B =∠D BE =DF,∴△ABE ≌△ADF (SAS ),∴AE =AF ,∠BAE =∠DAF .连接AC ,∵∠B =∠D =60°,∴△ABC 与△ACD 是等边三角形,∴AE ⊥BC ,AF ⊥CD ,∴∠BAE =∠DAF =30°,∴∠EAF =60°,BE=12AB=1cm , ∴△AEF 是等边三角形,AE =√AB 2−BE 2=√22−12=√3,∴周长是3√3cm .故选:D .【点睛】本题主要考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理,涉及知识点较多,也考察了学生推理计算的能力.9.D解析:D【解析】分析:根据二次根式的加减法则对各选项进行逐一计算即可.详解:A 23B 23不是同类项,不能合并,故本选项错误;C 、33不是同类项,不能合并,故本选项错误;D 34334 故选:D .点睛:本题考查的是二次根式的加减法,在进行二次根式的加减运算时要把各二次根式化为最简二次根式,再合并同类项即可.10.D解析:D【解析】试题解析:A 、∵4+10+8+6+2=30(人),∴参加本次植树活动共有30人,结论A 正确;B 、∵10>8>6>4>2,∴每人植树量的众数是4棵,结论B 正确;C 、∵共有30个数,第15、16个数为5,∴每人植树量的中位数是5棵,结论C 正确;D 、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植树量的平均数约是4.73棵,结论D 不正确.故选D .考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.11.D解析:D【解析】【分析】已知ab =8可求出四个三角形的面积,用大正方形面积减去四个三角形的面积得到小正方形的面积,根据面积利用算术平方根求小正方形的边长.【详解】a b -由题意可知:中间小正方形的边长为:,11ab 8422=⨯=每一个直角三角形的面积为:, 214ab a b 252(),∴⨯+-= 2a b 25169∴-=-=(),a b 3∴-=,故选D.【点睛】本题考查勾股定理的推导,有较多变形题,解题的关键是找出图形间面积关系,同时熟练运用勾股定理以及完全平方公式,本题属于基础题型.12.B解析:B【解析】【分析】【详解】解:如图,设直线AB 的解析式为y=kx+b ,则4+=1200{5k+b=1650k b , 解得450{600k b ==- 故直线AB 的解析式为y=450x ﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m 2)故选B .【点睛】本题考查一次函数的应用.13.B解析:B【解析】【分析】根据折叠的性质得到∠F=∠B=∠A=90°,BE=EF ,根据全等三角形的性质得到FH=AE ,GF=AG ,得到AH=BE=EF ,设AE=x ,则AH=BE=EF=4-x ,根据勾股定理即可得到结论.【详解】∵将△CBE 沿CE 翻折至△CFE ,∴∠F=∠B=∠A=90°,BE=EF ,在△AGE 与△FGH 中,A F AGE FGH EG GH ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AGE ≌△FGH (AAS ),∴FH=AE ,GF=AG ,∴AH=BE=EF ,设AE=x ,则AH=BE=EF=4-x∴DH=x+2,CH=6-x ,∵CD 2+DH 2=CH 2,∴42+(2+x )2=(6-x )2,∴x=1,∴AE=1,故选B .【点睛】考查了翻折变换,矩形的性质,全等三角形的判定和性质,熟练掌握折叠的性质是解题的关键.14.B解析:B【解析】试题解析:A 、∵22+32≠42,∴不能构成直角三角形;B 、∵72+242=252,∴能构成直角三角形;C 、∵82+122≠202,∴不能构成直角三角形;D 、∵52+132≠152,∴不能构成直角三角形.故选B .15.A解析:A【解析】【分析】【详解】∵点C′是AB 边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC -BF=9-BF ,在Rt △C′BF 中,BF 2+BC′2=C′F 2,∴BF 2+9=(9-BF )2,解得,BF=4,故选A .二、填空题16.15°【解析】【分析】【详解】解:由题意可知:是等腰三角形故答案为 解析:15°【解析】【分析】【详解】解:由题意可知:90,60.BAD DAE ∠=∠= .AB AD AE ==150.BAE ∴∠=ABE △是等腰三角形15.AEB ∴∠=故答案为15.17.【解析】【分析】由根式的被开方数大于等于0分式的分母不等于0联立不等式组求解x 的取值即可【详解】根据题意得解得故答案为:【点睛】本题考查了函数的定义域及其求法函数的定义域就是使函数解析式有意义的自变 解析:0x >.【解析】【分析】由根式的被开方数大于等于0,分式的分母不等于0联立不等式组求解x 的取值即可.【详解】根据题意得,0 xx≥⎧⎨≠⎩解得,0x>故答案为:0x>.【点睛】本题考查了函数的定义域及其求法,函数的定义域,就是使函数解析式有意义的自变量的取值范围,是基础题.18.x≥4【解析】分析:根据二次根式有意义的条件列出不等式解不等式即可详解:由题意得x−4⩾0解得x⩾4故答案为x⩾4点睛:此题考查二次根式有意义的条件二次根式有意义的条件是被开方部分大于或等于零二次根解析:x≥4【解析】分析:根据二次根式有意义的条件列出不等式,解不等式即可.详解:由题意得,x−4⩾0,解得,x⩾4,故答案为x⩾4.点睛:此题考查二次根式有意义的条件,二次根式有意义的条件是被开方部分大于或等于零,二次根式无意义的条件是被开方部分小于0.19.【解析】【分析】根据题意列出不等式求出解集即可确定出x的范围【详解】根据题意得:-x+3<3x-4移项合并得:4x>7解得:x故答案为:解析:74 >.【解析】【分析】根据题意列出不等式,求出解集即可确定出x的范围.【详解】根据题意得:-x+3<3x-4,移项合并得:4x>7,解得:x74 >.故答案为:7 4 >20.30°【解析】【分析】过A作AE⊥BC于点E由四根木条组成的矩形木框变成▱ABCD的形状面积变为原来的一半可得AE=AB由此即可求得∠ABE=30°即平行四边形中最小的内角为30°【详解】解:过A作解析:30°【解析】【分析】过A作AE⊥BC于点E,由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,可得AE=12AB,由此即可求得∠ABE=30°,即平行四边形中最小的内角为30°.【详解】解:过A作AE⊥BC于点E,如图所示:由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,得到AE=12AB,又△ABE为直角三角形,∴∠ABE=30°,则平行四边形中最小的内角为30°.故答案为:30°【点睛】本题考查了平行四边形的面积公式及性质,根据题意求得AE=12AB是解决问题的关键.21.【解析】试题解析:根据题意将周长为8的△ABC沿边BC向右平移1个单位得到△DEF则AD=1BF=BC+CF=BC+1DF=AC又∵AB+BC+AC=10∴四边形ABFD的周长=AD+AB+BF+D解析:【解析】试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=10,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.考点:平移的性质.22.—1【解析】【分析】首先根据勾股定理计算出AC的长进而得到AE的长再根据A点表示-1可得E点表示的数【详解】∵AD长为2AB长为1∴AC=∵A 点表示-1∴E点表示的数为:-1故答案为-1【点睛】本题51【解析】【分析】首先根据勾股定理计算出AC的长,进而得到AE的长,再根据A点表示-1,可得E点表示的数.【详解】∵AD长为2,AB长为1,∴22215+,∵A点表示-1,∴E-1,【点睛】本题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.23.a>b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2∴该函数中y随着x的增大而减小∵1<2∴a>b故答案为a>b【点睛】本题考查一次函数图象上点的坐标特征解析:a>b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为a>b.【点睛】本题考查一次函数图象上点的坐标特征.24.2【解析】试题分析:根据方差的性质当一组数据同时加减一个数时方差不变进而得出答案∵一组数据12345的方差为2∴则另一组数据1112131415的方差为2故答案为2考点:方差解析:2【解析】试题分析:根据方差的性质,当一组数据同时加减一个数时方差不变,进而得出答案.∵一组数据1,2,3,4,5的方差为2,∴则另一组数据11,12,13,14,15的方差为2.故答案为2考点:方差25.【解析】【分析】直接利用二次根式有意义的条件得出mn的值进而得出答案【详解】∵m=n-2+2-n+5∴n=2则m=5故mn=25故答案为:25【点睛】此题主要考查了二次根式有意义的条件正确得出mn的解析:【解析】【分析】直接利用二次根式有意义的条件得出m,n的值进而得出答案.【详解】∵m=√n−2+√2−n+5,∴n=2,则m=5,故m n=25.故答案为:25.【点睛】此题主要考查了二次根式有意义的条件,正确得出m,n的值是解题关键.三、解答题26.(1)乙平均数为8,方差为0.8;(2)乙.【解析】【分析】(1)根据平均数、方差的计算公式计算即可;(2)根据平均数相同时,方差越大,波动越大,成绩越不稳定;方差越小,波动越小,成绩越稳定进行解答.【详解】(1)乙进球的平均数为:(7+9+7+8+9)÷5=8,乙进球的方差为:15[(7﹣8)2+(9﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2]=0.8;(2)∵二人的平均数相同,而S甲2=3.2,S乙2=0.8,∴S甲2>S乙2,∴乙的波动较小,成绩更稳定,∴应选乙去参加定点投篮比赛.【点睛】本题考查了方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S21n=[(x1x-)2+(x2x-)2+…+(x n x-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数.27.(1)20320(110)1420(1030)x xyx x-+≤≤⎧=⎨-<≤⎩;(2)日销售利润不超过1040元的天数共有18天;(3)第5天的日销售利润最大,最大日销售利润是880元.【解析】【分析】(1)这是一个分段函数,利用待定系数法求y与x之间的函数表达式,并确定x的取值范围;(2)根据利润=(售价-成本)×日销售量可得w与x之间的函数表达式,并分别根据分段函数计算日销售利润不超过1040元对应的x的值;(3)分别根据5≤x≤10和10<x≤17两个范围的最大日销售利润,对比可得结论.【详解】(1)设线段AB段所表示的函数关系式为y=ax+b(1≤x≤10);BC段表示的函数关系式为y=mx+n(10<x≤30),把(1,300)、(10,120)带入y=ax+b中得,解得,∴线段AB表示的函数关系式为y=-20x+320(1≤x≤10);把(10,120),(30,400)代入y=mx+n中得,解得,∴线段BC表示的函数关系式为y=14x-20(10<x≤30),综上所述.(2)由题意可知单件商品的利润为10-6=4(元/件),∴当1≤x≤10时,w=4×(-20x+320)=-80x+1280;当10<x≤30时,w=4×(14x-20)=56x-80,∴,日销售利润不超过1040元,即w≤1040,∴当1≤x≤10时,w=-80x+1280≤1040,解得x≥3;当10<x≤30时,w=56x-80≤1040,解得x≤20,∴3≤x≤20,∴日销售利润不超过1040元的天数共有18天.(3)当5≤x≤17,第5天的日销售利润最大,最大日销售利润是880元.【点睛】本题考查应用题解方程,解题的关键是读懂题意.28.(1)见解析;(2)见解析【解析】【分析】(1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF 平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以四边形BCFE是菱形.(2)因为∠BCF=120°,所以∠EBC=60°,所以菱形的边长也为4,求出菱形的高面积就可.【详解】解:(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC.∴四边形BCFE是平行四边形.又∵BE=FE,∴四边形BCFE是菱形.(2)∵∠BCF=120°,∴∠EBC=60°.∴△EBC是等边三角形.∴菱形的边长为4,高为23∴菱形的面积为4×38329.(1)证明见解析;(2)4.【解析】【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为:12AC•BD=12×4×2=4,故答案为4.【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.30.(1)483x-≤≤;(2)x=25或2.【解析】【分析】(1)根据二次根式的被开方数为非负数,列不等式组求解;(2)根据a、b、c分别作直角三角形的斜边,由勾股定理分别求解.【详解】解:(1)由二次根式的性质,得80 34020xxx-≥⎧⎪+≥⎨⎪+≥⎩,解得48 3x-≤≤;(2)当c为斜边时,由a2+b2=c2,即8-x+3x+4=x+2,解得x=-10,当b为斜边时,a2+c2=b2,即8-x+x+2=3x+4,解得x=2,当a为斜边时,b2+c2=a2,即3x+4+x+2=8-x,解得x=2 5∵48 3x-≤≤∴x=25或2.【点睛】本题考查二次根式的性质及勾股定理的运用.在没有指定直角三角形的斜边的情况下,注意分类讨论.。
江苏无锡锡北片八年级下期末考试数学试题及答案
八年级数学期末试卷注意事项:1.本卷考试时间为100分钟,满分120分;2.卷中除要求近似计算的按要求给出近似结果外,其余结果均应给出精确结果.一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.) 1.下列图形中,既是中心对称图形又是轴对称图形的是( )A .B .C .D . 2.下列二次根式中属于最简二次根式的是( )A .24B .36C .abD .a +43.下面调查中,适合采用普查的是( )A .调查全国中学生心理健康现状B .调查你所在的班级同学的身高情况C .调查我市食品合格情况D .调查无锡电视台《第一看点》收视率 4.下列事件是随机事件的是( )A .购买一张福利彩票,中特等奖B .在一个标准大气压下,加热水到100℃,沸腾C .任意三角形的内角和为180°D .在一个仅装着白球和黑球的袋中摸出红球 5.如图,矩形ABOC 的面积为2,反比例函数y =kx的图象过点A ,则k的值为( ) A .2 B .-2 C .2D .-26.下列性质中,矩形、菱形、正方形都具有的是( )A .对角线相等B .对角线互相垂直C .对角线平分一组对角D .对角线互相平分 7.下列算式正确的( )A . ()-a +b 2()a -b 2=1 B .-a -1-a 2+8=a -1a 2+8 C . x 2+y 2x +y =x +y D .0.5+2y 0.1+x =5+2y1+x8.若关于x 的分式方程2x -ax +1=1的解为正数,则字母a 的取值范围为( )A .a ≥-1B .a >-1C .a ≤-1D .a <-19.如图,在 ABCD 中,点E 为AB 的中点,F 为BC 上任意一点,把△BEF 沿直线EF 翻折,点B 的对应点B ′落在对角线AC 上,则与∠FEB 一定相等的角(不含∠FEB )F EDCBAB ′(第9题图)有( )A .2个B .3个C .4个D .5个10.已知点(a -1,y 1)、(a +1,y 2)在反比例函数y =kx(k >0)的图像上,若y 1<y 2,则a 的范围是( ) A .a >1B .a <-1C .-1<a <1D .-1<a <0或0<a <1二、填空题(本大题共有8小题,每小题3分,共24分.请把结果直接填在题中的横线上.) 11.当x =_________时,分式2x +12x -1的值为0. 12.若2-x 在实数范围内有意义,则x 的取值范围是_________.13.一组数据共有50个,分成四组后其中前三组的频率分别是0.25、0.15、0.3,则第四组数据的个数为_________.14.在结束了初中阶段数学内容的新课教学后,数学老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制了如图所示的扇形统计图,则数学老师安排复习“统计与概率”内容的时间为__________课时.(第14题图) (第16题图) (第17题图)15.反比例函数y =kx与一次函数y =x +2的图象交于点A (-1,a ),则k =_________.16.已知:如图,在四边形ABCD 中,∠C =90°,E 、F 分别为AB 、AD 的中点,BC =6,CD =4,则EF =_________.17.如图,在平面直角坐标系中,四边形ABCD 是矩形,AD ∥x 轴,A (-3,32),AB =1,AD =2,将矩形ABCD 向右平移m 个单位,使点A ,C 恰好同时落在反比例函数y = k x 的图象上,得矩形A ′B ′C ′D ′,则反比例函数的解析式为__________.18.如图,在△ABC 中,AB =BC =4,S △ABC =43,点P 、Q 、K 分别为线段AB 、BC 、AC 上任意一点,则PK +QK 的最小值为_________. 三、解答题(本大题共9小题,共66分.解答时应写出文字说明、说理过程或演算步骤.) 19.(本题满分8分)计算:(1)8+32-2; (2)(2+3)2-(2+3)(2-3).20.(本题满分9分)(1)计算:m +n m -n +2m n -m ; (2)先化简,再求值:(x 2+4x -4)÷x 2-4x 2+2x,其中xFE DCB AK Q PC BA (第18题图)=1.21.(本题满分5分)解方程:1x -3-6-x 3-x=-2.22.(本题满分6分)某校分别于2015年、2016年春季随机调查相同数量的学生,对学生做家务的情况进行调查(开展情况分为“基本不做”、“有时做”、“常常做”、“每天做”四种),绘制成部分统计图如下.2015、2016年做家务每天做常常做有时做基本不做每天做 40%常常做 21%有时做 b基本不做 a 2016年做家务情况扇形统计图请根据图中信息,解答下列问题: (1)a =_______%,b =_______%,“每天做”对应阴影的圆心角为_______°; (2)请你补全条形统计图;(3)若该校2016年共有1200名学生,请你估计其中“每天做”家务的学生有多少名?23.(本题满分4分)大家看过中央电视台“购物街”节目吗?其中有一个游戏环节是大转轮比赛,转轮上平均分布着5、10、15、20一直到100共20个数字.选手依次转动转轮,每个人最多有两次机会.选手转动的数字之和最大不超过100者为胜出;若超过100则成绩无效,称为“爆掉”.(1)某选手第一次转到了数字5,若再转第二次,则两次数字之和为100的概率有多大? (2)某选手第一次转到了数字65,若再转第二次则有可能“爆掉”,请你分析“爆掉”的概率有多大?24.(本题满分8分)如图,在矩形ABCD 中,点E 在AD 上, 且EC 平分∠BED . (1)△BEC 是否为等腰三角形?证明你的结论; (2)若AB =2,∠DCE =22.5°,求BC 长.25.(本题满分8分)如图,反比例函数y =k x (k >0)的图像与一次函数y =34x 的图像交于A 、B 两点(点A 在第一象限). (1)当点A 的横坐标为4时.① 求k 的值;② 根据反比例函数的图像,直接写出当-4<x <1(x ≠0)时,y 的取值范围; (2)点C 为y 轴正半轴上一点,∠ACB =90°,且△ACB 的面积为10,求k 的值.26.(本题满分9分)某高速公路工程指挥部要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23 ;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.27.(本题满分9分)已知:如图1,在平面直角坐标中,A (12,0),B (6,6),点C 为线段AB的中点,点D 与原点O 关于点C 对称.(1)利用直尺和圆规在图1中作出点D 的位置(保留作图痕迹),判断四边形OBDA 的形状,并说明理由;(2)在图1中,动点E 从点O 出发,以每秒1个单位的速度沿线段OA 运动,到达点A 时停止;同时,动点F 从点O 出发,以每秒a 个单位的速度沿OB →BD →DA 运动,到达点A 时停止.设运动的时间为t (秒).① 当t =4时,直线EF 恰好平分四边形OBDA 的面积,求a 的值; ② 当t =5时,CE =CF ,请直接写出a 的值.(备用图1)(备用图2)(图1)无锡市港下中学 班级____________姓名____________学号 得分_____________…………………………密…………封…………线…………内…………不…………要…………答…………题…………………………2016年春学期八年级数学期末试卷参考答案一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1. B2. D3. B4. A5. B6. D7. A8. B9. C 10. C 二、填空题(本大题共有8小题,每小题3分,共24分.请把结果直接填在题中的横线上.)11. -1212. x ≤213. 1514. 615. -116. 1317. y =32x18. 23三、解答题(本大题共9小题,共66分.解答时应写出文字说明、说理过程或演算步骤.)19. 解:(1)原式=22+42-2=5 2 ;…………(4分)(2)原式=2+26+3-(2-3)=5+26+1=6+26;…………(4分)20. (1)原式=m +n m -n -2m m -n =m +n -2m m -n =n -m m -n=-1;…………(4分) (2)化简得x -2,…………(4分),求值得-1.…………(1分)21. x =-1(无验根扣1分)…………(5分)22. (1)19,20,144;…………(3分)(2)“有时做”的人数为:20%×200=40,“常常做”的人数为:200×21%=42,图略;…………(2分)(3)1200×80200=480(人).答:估计该校每天做家务的学生有480人.…………(1分) 23. 解:(1)要使他两次数字之和为100,则第二次必须转到95,…………(1分)因为总共有20个数字,所以他两次数字之和为100的概率为120;…………(1分) (2)由题意分析可得:转到数字35以上就会“爆掉”,共有13种情况,…………(1分)因为总共有20个数字,所以“爆掉”的概率为1320.…………(1分) 24. 解:(1)△BEC 是等腰三角形,…………(1分)理由如下:∵矩形ABCD ,∴AD ∥BC ,∴∠DEC =∠ECB ,∵CE 平分∠BED ,∴∠DEC =∠CEB ,∴∠CEB =∠ECB ,∴BE =BC ,即△BEC 是等腰三角形.…………(3分)(2)解:∵矩形ABCD ,∴∠A =∠D =90°,∵∠DCE =22.5°,∴∠DEB =2×(90°-22.5°)=135°,∴∠AEB =180°-∠DEB =45°,∴∠ABE =∠AEB =45°,∴AE =AB =2,由勾股定理得:BE =BC =AE 2+AB 2=22,答:BC 的长是22.…………(4分)25. (1)①A (4,3),…………(1分),k =12;…………(1分)②y <-3或y >12;…………(2分)(2)设A (a ,34a )(a >0),则OA =OB =OC =54a ,由S △ACB =12⋅54a ⋅2a =10,解得a =22,∴A (22,322),得k =6.…………(4分) 26. 解:(1)设乙队单独完成这项工程需要x 天,则甲队单独完成这项工程需要23x 天. 根据题意得1023x +30(123x +1x ) =1,…………(2分) 解得x =90.…………(1分)经检验,x =90是原方程的根,也符合题意.…………(1分)∴23x =23×90=60.…………(1分) 答:甲、乙两队单独完成这项工程分别需60天和90天.(2)设甲、乙两队合作完成这项工程需要y 天,则y (160+190) =1,解得 y =36.…………(2分) 需要施工费用:36×(8.4+5.6)=504(万元).∵504>500.∴工程预算的施工费用不够用,需追加预算4万元.…………(2分)27. (1)作图略,…………(1分)四边形OBDA 是平行四边形,理由如下:∵点C 为线段AB 的中点,∴CB =CA ,…………(1分)∵点D 与原点O 关于点C 对称,∴CO =CD ,…………(1分)∴四边形OBDA 是平行四边形.…………(1分)(2)①若直线EF 恰好平分四边形OBDA 的面积,则直线EF 必过C (9,3),只有当F 在BD 上时,此时4a -62+4=12,a =2+322;…………(2分) ②方法说明:CE =CF =5,并利用∠OBA =∠OAB =90°,可得a =62-75,62+75,122-7+125.……(3分)。
江苏省无锡市滨湖区中学八年级数学下学期期末复习试题
江苏省无锡市滨湖区中学2012-2013学年八年级下学期期末复习数学试题(19) 北师大版班级_________姓名____________得分___________一、选择题(本大题共有10小题,每小题2分,共20分)1.如果b a <,下列各式中不.一定..正确..的是……………………………………( )A . 11-<-b aB .b a 33->-C .ba 11< D . 44b a <2.把分式yx xy+2中的x 、y 都扩大到原来的3倍,则分式的值……………………( )A .扩大到原来的9倍B .扩大到原来的3倍C .缩小到原来的31D .不变3.下列各式中,正确的是 ( )A .22b b a a =B .22a b a b a b +=++C .22y y x y x y =++D .11x y x y=--+-4.反比例函数y = 1―2m x(m 为常数),当0<x 时,y 随x 的增大而增大,则m 的取值范围是( ) A .0<m B .21<m C .21>m D .21≥m 5.为抢修一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车,问原计划每天修多少米?若设原计划每天修x 米,则所列方程正确的是 ( ) A .12012045x x -=+ B .12012045x x -=+ C .12012045x x -=- D .12012045x x -=-6.小刚身高1.7 m ,测得他站立在阳光下的影长为0. 85 m ,紧接着他把手臂竖直举起,测得影长为1.1 m ,那么小刚举起手臂超出头顶( )A .0.5 mB .0. 55 mC .0.6 mD .2.2 m7.下面命题的逆命题是真命题的是 ( ) A .菱形的对角线互相垂直 B .全等三角形是相似三角形 C .等腰三角形的两个底角相等 D .如果ac 2>bc 2,那么a >b8.设反比例函数的图象上有两点、,当 时,21y y > ,则的取值范围是( )A .0>k B .0<k C .1->k D .1-<k9. 如图,点A 在双曲线y =6x上,且OA =4,过A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为( ) A .112 B .5 C .28 D .2210.已知P 1(x 1,y 1)、P 2(x 2,y 2)、…、P n (x n ,y n )(n 为正整数)是反比例函数ky x=图象上的点,其中x 1=1、x 2=2、…、x n =n .记T 1=x 1·y 2、T 2=x 2·y 3、…、T 2012=x 2012·y 2013.若T 1=12,则T 1·T 2·…·T 2012=…………………………………………( ) A .20121 B .20131C .2012D .2013 (第9题)二、填空题(本大题共有8小题, 每空2分,共18分.请把结果直接填在题中的横线上.)11.当x 时,代数式2x +有意义;当x 时,分式x 2―9x ―3值为0.12.不等式()22-x ≤2-x 的非负整数解.....为 . 13.形如dc b a 的式子叫做二阶行列式,它的运算法则用公式表示为dc b a =ad -bc ,依此法则计算5431321<-mx的解集为x <4则m = . 14.地图上某城市面积为80cm 2,实际该城市面积为320 km 2.这地图的比例尺为 . 15.已知a 、b 、c 三条线段,其中2,8a c ==,若线段b 是线段a 、c 的比例中项,则b = . 16.将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是 . 17.若关于x 的不等式{127<-≤-m x x 的整数解共有4个,则m 的取值范围是 .18. 如图,n +1个边长为2的等边三角形有一条边在同一直线上,设△B 2D 1C 1的面积为S 1,△B 3D 2C 2的面积为S 2,…,△B n+1D n C n 的面积为S n ,则S n = (用含n 的式子表示).三、解答题(本大题共有10小题,共62分,解答需写出必要的文字说明、演算步骤或证明过程.) 19.(每题5分,共15分)(1) 解分式方程: 14143=----x x x (2)解不等式组()⎪⎩⎪⎨⎧>+≤--x x x x 352312 ,将它的解集表示在数轴上,(第18题图)第16题图·B(3)先化简,再求值:35(2)22x x x x -÷----,其中x =-420.(5分)如图所示的网格中有A 、B 、C 三点。
江苏无锡锡北片八年级下期末考试数学试题及答案
2016年春学期八年级数学期末试卷 2016.6.注意事项:1.本卷考试时间为100分钟,满分120分;2.卷中除要求近似计算的按要求给出近似结果外,其余结果均应给出精确结果.一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.) 1.下列图形中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .2.下列二次根式中属于最简二次根式的是( )A .24B .36C .abD .a +43.下面调查中,适合采用普查的是( )A .调查全国中学生心理健康现状B .调查你所在的班级同学的身高情况C .调查我市食品合格情况D .调查无锡电视台《第一看点》收视率4.下列事件是随机事件的是( )A .购买一张福利彩票,中特等奖B .在一个标准大气压下,加热水到100℃,沸腾C .任意三角形的内角和为180°D .在一个仅装着白球和黑球的袋中摸出红球5.如图,矩形ABOC 的面积为2,反比例函数y =k x的图象过点A ,则k 的值为( ) A . 2 B .- 2 C .2 D .-2 6.下列性质中,矩形、菱形、正方形都具有的是( )A .对角线相等B .对角线互相垂直C .对角线平分一组对角D .对角线互相平分7.下列算式正确的( )A . ()-a +b 2()a -b 2=1 B .-a -1-a 2+8=a -1a 2+8 C . x 2+y 2x +y =x +y D .0.5+2y 0.1+x =5+2y 1+x8.若关于x 的分式方程2x -ax +1=1的解为正数,则字母a 的取值范围为( )A .a ≥-1B .a >-1C .a ≤-1D .a <-19.如图,在 ABCD 中,点E 为AB 的中点,F 为BC 上任意一点,把△BEF 沿直线EF 翻折,点B 的对应点B ′落在对角线AC 上,则与∠FEB 一定相等的角(不含∠FEB )有( )(第5题图)F EDCBAB ′(第9题图)A .2个B .3个C .4个D .5个10.已知点(a -1,y 1)、(a +1,y 2)在反比例函数y =kx(k >0)的图像上,若y 1<y 2,则a 的范围是( )A .a >1B .a <-1C .-1<a <1D .-1<a <0或0<a <1二、填空题(本大题共有8小题,每小题3分,共24分.请把结果直接填在题中的横线上.) 11.当x =_________时,分式 2x +12x -1的值为0.12.若2-x 在实数范围内有意义,则x 的取值范围是_________.13.一组数据共有50个,分成四组后其中前三组的频率分别是0.25、0.15、0.3,则第四组数据的个数为_________.14.在结束了初中阶段数学内容的新课教学后,数学老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制了如图所示的扇形统计图,则数学老师安排复习“统计与概率”内容的时间为__________课时.(第14题图) (第16题图) (第17题图) 15.反比例函数y =k x与一次函数y =x +2的图象交于点A (-1,a ),则k =_________.16.已知:如图,在四边形ABCD 中,∠C =90°,E 、F 分别为AB 、AD 的中点,BC =6,CD =4,则EF =_________.17.如图,在平面直角坐标系中,四边形ABCD 是矩形,AD ∥x 轴,A (-3,32),AB =1,AD =2,将矩形ABCD 向右平移m 个单位,使点A ,C 恰好同时落在反比例函数y = kx的图象上,得矩形A ′B ′C ′D ′,则反比例函数的解析式为__________.18.如图,在△ABC 中,AB =BC =4,S △ABC =43,点P 、Q 、K 分别为线段AB 、BC 、AC 上任意一点,则PK +QK 的最小值为_________.三、解答题(本大题共9小题,共66分.解答时应写出文字说明、说理过程或演算步骤.) 19.(本题满分8分)计算:(1)8+32-2; (2)(2+3)2-(2+3)(2-3).20.(本题满分9分)数与代数 45%图形与几何 40%5%统计与概率FE DCB AKQPCB A(第18题图)(1)计算:m +n m -n +2m n -m ; (2)先化简,再求值:(x 2+4x -4)÷x 2-4x 2+2x,其中x =1.21.(本题满分5分)解方程:1x -3-6-x 3-x=-2.22.(本题满分6分)某校分别于2015年、2016年春季随机调查相同数量的学生,对学生做家务的情况进行调查(开展情况分为“基本不做”、“有时做”、“常常做”、“每天做”四种),绘制成部分统计图如下.2015、2016年做家务情况条形统计图523862424480调查情况每天做常常做有时做基本不做人数每天做 40%常常做 21%有时做 b基本不做 a 2016年做家务情况扇形统计图请根据图中信息,解答下列问题:(1)a =_______%,b =_______%,“每天做”对应阴影的圆心角为_______°; (2)请你补全条形统计图;(3)若该校2016年共有1200名学生,请你估计其中“每天做”家务的学生有多少名?23.(本题满分4分)大家看过中央电视台“购物街”节目吗?其中有一个游戏环节是大转轮比赛,转轮上平均分布着5、10、15、20一直到100共20个数字.选手依次转动转轮,每个人最多有两次机会.选手转动的数字之和最大不超过100者为胜出;若超过100则成绩无效,称为“爆掉”. (1)某选手第一次转到了数字5,若再转第二次,则两次数字之和为100的概率有多大?(2)某选手第一次转到了数字65,若再转第二次则有可能“爆掉”,请你分析“爆掉”的概率有多大?24.(本题满分8分)如图,在矩形ABCD 中,点E 在AD 上, 且EC 平分∠BED . (1)△BEC 是否为等腰三角形?证明你的结论; (2)若AB =2,∠DCE =22.5°,求BC 长.25.(本题满分8分)如图,反比例函数y =k x (k >0)的图像与一次函数y =34x 的图像交于A 、B 两点(点A 在第一象限).(1)当点A 的横坐标为4时.① 求k 的值;② 根据反比例函数的图像,直接写出当-4<x <1(x ≠0)时,y 的取值范围; (2)点C 为y 轴正半轴上一点,∠ACB =90°,且△ACB 的面积为10,求k 的值.AOBCxy26.(本题满分9分)某高速公路工程指挥部要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23 ;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成. (1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.27.(本题满分9分)已知:如图1,在平面直角坐标中,A (12,0),B (6,6),点C 为线段AB 的中点,点D 与原点O 关于点C 对称.(1)利用直尺和圆规在图1中作出点D 的位置(保留作图痕迹),判断四边形OBDA 的形状,并说明理由; (2)在图1中,动点E 从点O 出发,以每秒1个单位的速度沿线段OA 运动,到达点A 时停止;同时,动点F 从点O 出发,以每秒a 个单位的速度沿OB →BD →DA 运动,到达点A 时停止.设运动的时间为t (秒).① 当t =4时,直线EF 恰好平分四边形OBDA 的面积,求a 的值; ② 当t =5时,CE =CF ,请直接写出a 的值.(备用图1)AO BCxy(备用图2)AO BCxyAOEFB Cxy(图1)2016年春学期八年级数学期末试卷 答卷 2016.6一、选择题(共30分,每题3分)题号 1 2 3 4 5 6 7 89 10答案二、填空题(共24分,每题3分,用0.5毫米黑色墨水签字笔作答)11.__________; 12. __ _____ ;13.__________ ; 14. ____ ; 15. ;16. ;17. ;18.___________. 三、解答题(用0.5毫米黑色墨水签字笔作答) 19.计算(本题8分) (1)8+32-2;(2)()22+3(23)(23)-+-20.解方程(本题满9分)(1)计算:m +n m -n +2m n -m ; (2)先化简,再求值: (x 2+4x -4)÷x 2-4x 2+2x,其中x =1.无锡市港下中学 班级____________姓名____________学号 得分_____________…………………………密…………封…………线…………内…………不…………要…………答…………题…………………………24. (本题8分)(1)△BEC是否为等腰三角形?证明你的结论;(2)若AB=2,∠DCE=22.5°,求BC长.25.(本题8分)(1)当点A的横坐标为4时.①求k的值;②根据反比例函数的图像,直接写出当-4<x<1(x≠0)时,y的取值范围;(2)(1)(2)①当t=4时,直线EF恰好平分四边形OBDA的面积,求a的值;②当t=5时,CE=CF,请直接写出a的值.2016年春学期八年级数学期末试卷参考答案一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1. B2. D3. B4. A5. B6. D7. A8. B9. C10. C二、填空题(本大题共有8小题,每小题3分,共24分.请把结果直接填在题中的横线上.)11. -1212. x ≤213. 1514. 615. -1 16. 1317. y =32x18. 2 3三、解答题(本大题共9小题,共66分.解答时应写出文字说明、说理过程或演算步骤.)19. 解:(1)原式=22+42-2=5 2 ;…………(4分)(2)原式=2+26+3-(2-3)=5+26+1=6+26;…………(4分)20. (1)原式=m +n m -n -2m m -n =m +n -2m m -n =n -m m -n=-1;…………(4分) (2)化简得x -2,…………(4分),求值得-1.…………(1分)21. x =-1(无验根扣1分)…………(5分)22. (1)19,20,144;…………(3分)(2)“有时做”的人数为:20%×200=40,“常常做”的人数为:200×21%=42,图略;…………(2分)(3)1200×80200=480(人).答:估计该校每天做家务的学生有480人.…………(1分) 23. 解:(1)要使他两次数字之和为100,则第二次必须转到95,…………(1分)因为总共有20个数字,所以他两次数字之和为100的概率为120;…………(1分) (2)由题意分析可得:转到数字35以上就会“爆掉”,共有13种情况,…………(1分)因为总共有20个数字,所以“爆掉”的概率为1320.…………(1分) 24. 解:(1)△BEC 是等腰三角形,…………(1分)理由如下:∵矩形ABCD ,∴AD ∥BC ,∴∠DEC =∠ECB ,∵CE 平分∠BED ,∴∠DEC =∠CEB ,∴∠CEB =∠ECB ,∴BE =BC ,即△BEC 是等腰三角形.…………(3分)(2)解:∵矩形ABCD ,∴∠A =∠D =90°,∵∠DCE =22.5°,∴∠DEB =2×(90°-22.5°)=135°,∴∠AEB =180°-∠DEB =45°,∴∠ABE =∠AEB =45°,∴AE =AB =2,由勾股定理得:BE =BC =AE 2+AB 2=22,答:BC 的长是22.…………(4分)25. (1)①A (4,3),…………(1分),k =12;…………(1分)②y <-3或y >12;…………(2分)(2)设A (a ,34a )(a >0),则OA =OB =OC =54a , 由S △ACB =12⋅54a ⋅2a =10,解得a =22,∴A (22,322),得k =6.…………(4分) 26. 解:(1)设乙队单独完成这项工程需要x 天,则甲队单独完成这项工程需要23x 天. 根据题意得1023x +30(123x +1x ) =1,…………(2分) 解得x =90.…………(1分)经检验,x =90是原方程的根,也符合题意.…………(1分)∴23x =23×90=60.…………(1分) 答:甲、乙两队单独完成这项工程分别需60天和90天.(2)设甲、乙两队合作完成这项工程需要y 天,则y (160+190) =1,解得 y =36.…………(2分) 需要施工费用:36×(8.4+5.6)=504(万元).∵504>500.∴工程预算的施工费用不够用,需追加预算4万元.…………(2分)27. (1)作图略,…………(1分)四边形OBDA 是平行四边形,理由如下:∵点C 为线段AB 的中点,∴CB =CA ,…………(1分)∵点D 与原点O 关于点C 对称,∴CO =CD ,…………(1分)∴四边形OBDA 是平行四边形.…………(1分)(2)①若直线EF 恰好平分四边形OBDA 的面积,则直线EF 必过C (9,3),只有当F 在BD 上时,此时4a -62+4=12,a =2+322;…………(2分) ②方法说明:CE =CF =5,并利用∠OBA =∠OAB =90°,可得a =62-75,62+75,122-7+125.……(3分)。
江苏省无锡市滨湖区2022-2023学年八年级下学期期末数学试题
江苏省无锡市滨湖区2022-2023学年八年级下学期期末数学
试题
学校:___________姓名:___________班级:___________考号:___________
A.B.C.
D.
二、填空题
三、解答题
(1)本次抽样调查的样本容量是多少?
(2)请将条形统计图补充完整;
(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数;
(4)根据本次抽样调查,试估计该校1200名学生中日均阅读时间不少于1小时的有多少人.
24.如图,方格纸中每个小正方形的边长都是1个单位长度.Rt ABC △的三个顶点()2,2A -,()0,5B ,()0,2C .
(1)将ABC V 以点C 为旋转中心旋转180︒,得到11A B C V ,请在方格纸中画出图形11A B C V .
(2)请用无刻度的直尺在第一、四象限内画出一个以11A B 为边,面积是9的矩形11A B EF .(保留作图痕迹,不写作法)
25.服装店购进一批甲、乙两种款型的时尚T 恤衫,甲种款型共用了10400元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的2倍,甲种款型每件的进价比乙种款型每件的进价少30元.
(1)甲、乙两种款型的T 恤衫各购进多少件?
(2)该服装店第一个月甲种款型的T 恤衫以200元/件的价格售出20件、乙种款型的T 恤衫以250元/件的价格售出10件;为了促销,第二个月决定对甲、乙两种款式的T 恤衫都进行降价a 元销售,其中甲种款型的T 恤衫的销售量增加4a 件、乙种款型的T 恤衫的销售增加a 件,结果第二个月的销售总额比第一个月的销售总额增加了1000a 元,求第二个月的销售利润.。
江苏省无锡市滨湖区中学八年级数学下学期期末复习试题
江苏省无锡市滨湖区中学2012-2013学年八年级下学期期末复习数学试题(5) 北师大版班级_________姓名____________1.解不等式组(1)⎩⎪⎨⎪⎧2x +2≥3x +3 x -13-x +42<-2 (2)⎩⎪⎨⎪⎧x -1>2 ……①x -3≤2+12x ……②;2.解分式方程: 5x -42x -4=2x +53x -6-123.化简:(1)2x x 2-4-1 x -2.(2)先化简代数式(a +1a -1+1a 2-2a +1)÷a a -1,然后从-1,0,1中选取一个你认为合适的a 值代入求值.4.有一道题:“先化简再求值:(x -1x +1 + 2x x 2-1)÷1x 2-1,其中x =-2012”,小明做题时把“x =-2012”错抄成了“x =2012”,但他的计算结果也正确,请你通过计算解释这是为什么?5.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x ;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y .(1)求小明、小华各取一次小球所确定的点(x ,y )落在反比例函数y = 4x的图象上的概率; (2)求小明、小华各取一次小球所确定的数x 、y 满足y <4x的概率.6.小明设计了一种游戏,游戏规则是: 开始时,一枚棋子先放在如图①所示的起始位置,然后掷一枚均匀的正四面体骰子,如图②所示,各顶点分别表示1,2,3,4,朝上顶点所表示的数即为骰子所掷的点数,根据骰子所掷的点数相应的移动棋子的步数,每一步棋子就移动一格,若步数用尽,棋子正好到达迷宫中心,小明就获胜,若棋子到达迷宫中心, 步数仍然没有用尽,则棋子还要从迷宫中心后退余下的步数(例如小明第一次抛到3, 则棋子应落在图①中的第三格位置,第二次仍抛到3,则棋子最后应落在图①中的第四格位置).现在小明连续掷骰子两次,求小明获胜的概率.(请用“画树状图”或“列表”的方法给出分析过程,并写出结果)7.在一个不透明的口袋里装有红、黄、蓝三种颜色的球(除颜色外其余都相同),其中红球有2个,蓝球1个,现从中任意摸出一个是红球的概率为0.5.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法求两次摸到都是红球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有几种摸法?(不分颜色的先后)8.在3×3的方格纸中,点A 、B 、C 、D 、E 、F 分别位于如图所示的小正方形的顶点上.从A 、D 、E 、F 四个点中先后任意取两个不同的点,以所取的这两点及点B 、C 为顶点画四边形,请用树状图或列表法表示出所有可能的结果,并求出所画四边形是平行四边形的概率.4321起始位置 第一格 第二格 第三格 第四格 迷宫中心 图①图②10.如图,直线AG 交□ABCD 的对角线BD 于点E ,交BC 于点F ,交DC 的延长线于G .(1)请找出一个..与△ADG 相似的三角形,并说明理由; (2)若点F 恰为BC 的中点,且△BEF 的面积为6,求△ADE 的面积.11.等腰△ABC ,AB=AC ,∠BAC=120°,P 为BC 的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点P ,三角板绕P 点旋转.(1)如图a ,当三角板的两边分别交AB 、AC 于点E 、F 时.求证:△BPE ∽△CFP ;(2)操作:将三角板绕点P 旋转到图b 情形时,三角板的两边分别交BA 的延长线、边AC 于点E 、F .① 探究1:△BPE 与△CFP 还相似吗?(只需写出结论)② 探究2:连结EF ,△BPE 与△PFE 是否相似?请说明理由;12.如图,Rt △ABC 中,∠C =90°,BC =6,AC =8.点P ,Q 都是斜边AB 上的动点,点P 从B 向A 运动(不与点B 重合),点Q 从A 向B 运动,BP =AQ .点D ,E 分别是点A ,B 以Q ,P 为对称中心的对称点,HQ ⊥AB 于Q ,交AC 于点H .当点E 到达顶点A 时,P 、Q 同时停止运动.设BP 的长为x ,△HDE 的面积为y .(1)求证:△DHQ ∽△ABC ;(2)求y 关于x 的函数解析式,并写出自变量x 的取值范围;A F DE C B G A B PE F A B C E F(3)当x 为何值时,△HDE 为等腰三角形?13.在ABC △中,90BAC AB AC M ∠=<°,,是BC 边的中点,MN BC ⊥交AC 于点N .动点P 从点B 出发沿线段BA 以每秒3厘米的速度运动.同时,动点Q 从点N 出发沿线段NC 运动,且始终保持MQ MP ⊥.设运动时间为t 秒(0<t <4).(1)①试说明∠B=∠MNQ ;②PBM △与QNM △相似吗?以图1为例说明理由;(2)若6043ABC AB ∠==°,厘米. ①求动点Q 的运动速度;②设APQ △的面积为S (平方厘米),求S 与t 的函数关系式;③探求22BP PQ CQ 2、、三者之间的数量关系,以图1为例说明理由.14.如图,在平面直角坐标系中,点(30)C -,,点A B ,分别在x 轴,y 轴的正半轴上,且满足2310OB OA -+-=.(1)求点A ,点B 的坐标.(2)若点P 从C 点出发,以每秒1个单位的速度沿线段CB 运动,连结AP .设ABP △的面积为S ,点P 的运动时间为t 秒,求S 与t 的函数关系式,并写出自变量的取值范围.(3)在(2)的条件下,是否存在点P ,使以点A B P ,,为顶点的三角形与AOB △相似?若存在,请直接写出点P 的坐标;若不存在,请说明理由.A B P N Q C M A B C N M 图1 图2(备用图) y B。
无锡市2021-2022学年八年级下学期期末数学试题(解析版)
数的增减性分析自变量的大小.
8. 在矩形 ABCD 中,E,F,G,H 分别是边 AB,BC,CD,DA 上的点(不与端点重合),
对于任意矩形 ABCD,以下结论:
①存在且仅有一个四边形 EFGH 是菱形;
②存在无数个四边形 EFGH 是平行四边形;
③存在无数个四边形 EFGH 是矩形;
④除非矩形 ABCD 为正方形,否则不存在四边形 EFGH 是正方形.
【解析】
【分析】以 AB 为边作等边△ABE,根据题意得到△DAB≌△CAE (SAS),根据全等三角形
的性质得出 BD=CE,据此即可得解.
【详解】解:如图,以 AB 为边作等边△ABE,
∵△ACD,△ABE 是等边三角形, ∴AD=AC,AB=AE=BE=1,∠EAB=∠DAC=60°, ∴∠EAB+∠BAC=∠DAC+∠BAC, 即∠EAC=∠BAD,
B.
C.
D.
【答案】D
【解析】
【分析】根据轴对称图形和中心对称图形的特征进行判断即可.
【详解】解:A 选项是轴对称图形不是中心对称图形; B 选项是中心对称图形,也不是轴对称图形; C 选项是轴对称图形,不是中心对称图形; D 选项既是轴对称图形又是中心对称图形; 故选:D. 【点睛】本题考查了轴对称图形和中心对称图形的识别,解题关键是抓住对称图形的特征,
a2 1(a 是常数)的图象 x
上,且 y1 y2 0 y3 ,则 x1 , x2 , x3 的大小关系为( )
A. x2 x1 x3
B. x1 x2 x3
C. x3 x2 x1
D.
x3 x1 x2
【答案】D
【解析】
【分析】根据 a2 1 0 ,判断反比例函数的图象所在位置,结合图象分析函数增减性,利
江苏省无锡市滨湖区中学2012-2013学年八年级下学期期末复习数学试题(4)
班级_________姓名____________1.(1)解方程:(2)解不等式组:2.(1)化简-(2)化简并求值:-,其中a =.3.如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为平行四边形,则它的面积为。
4.已知:如图,在平面直角坐标系中,直线AB分别与轴交于点B、A,与反比例函数的图象分别交于点C、D,轴于点E,BO=2BA,OB=4,OE=2.(1)求直线AB的解析式.(2)求该反比例函数的解析式;5.学了“统计与概率”的相关知识后,自作聪明的小明就常常用掷骰子的方法来“解答”选择题.在某次单元测验卷上,共有两道选择题,每题都有四个选项,且恰有一项是符合题意的.小明准备抛掷一枚质地均匀的正方体骰子来确定“答案”.并作规定:若掷得1、2、3、4点,则分别代表A、B、C、D;若掷得5、6点,则无效并重新抛掷.请用“画树状图”或“列表”的方法求出小明两道题都碰对的概率.6.如图所示的转盘,分成三个相同的扇形,指针位置固定转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,当作指向右边的扇形).(1)求事件“转动一次,得到的数恰好是0”发生的概率;(2)写出此情景下一个不可能发生的事件.(3)用树状图或列表法,求事件“转动两次,第一次得到的数与第二次得到的数绝对值相等”发生的概率.7.小明家将于5月1日进行自驾游,由于交通便利,准备将行程分为上午和下午.上午的备选地点为:A—鼋头渚、B—常州淹城春秋乐园、C—苏州乐园,下午的备选地点为:D—常州恐龙园、E—无锡动物园.(1)请用画树状图或列表的方法分析并写出小明家所有可能的游玩方式(用字母表示即可);(2)求小明家恰好在同一城市游玩的概率.8.在一个袋子中,有完全相同的4张卡片,把它们分别编号为l,2,3,4.(1)从袋子中随机取两张卡片.求取出的卡片编号之和等于4的概率:(2)先从袋子中随机取一张卡片,记该卡片的编号为a,然后将其放回,再从袋中随机取出一张卡片,级该卡片的编号为b,利用画树状图或表格求满足a+1>b的概率.22.(本题满分7分)有四张背面图案相同的卡片A、B、C、D,其正面分别画有四个不同的几何图形(如图).小聪将这四张卡片背面朝上洗匀摸出一张,放回洗匀再摸出一张.(1)用树状图(或列表法)表示两次摸出卡片所有可能的结果;(卡片可用A、B、C、D表示)(2)求摸出的两张卡片图形都是中心对称图形的概率.1.在比例尺为1:200 000的交通图上,距离为15厘米的两地之间的实际距离约为______千米.2.地图上某城市面积为80cm,实际该城市面积为320 km.这地图的比例尺为 .3.已知、、三条线段,其中,若线段是线段、的比例中项,则=.4.命题“对顶角相等"的逆命题是,该逆命题是命题.(填“真”或“假”)5.如图,双曲线(x>0)与矩形OABC的边CB, BA分别交于点E,F,且AF=BF,连接EF,则△OEF的面积为()A.B.C. 2 D. 16. 若函数y =与y=x+1的图象交于点A(a,b),则-的值为()A.-B.C.-3 D.37.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.若四边形ODBE的面积为12,则k的值为()A. 1B. 2C. 3D. 48.如图,在正方形网格中,△OBC的顶点分别为O(0,0), B(3,-1)、C(2,1).(1)以点O(0,0)为位似中心,按比例尺2:1在位似中心的异侧将△OBC放大为△OB’ C’ ,放大后点B、C两点的对应点分别为B′、C′ ,画出△OB’ C’,并写出点B′、C′的坐标:B’(,),C’(,)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省无锡市滨湖区中学2012-2013学年八年级下学期期末复习数
学试题(4) 北师大版
班级_________姓名____________
1.(1)解方程:22122=-+-x x x x (2)解不等式组:⎪⎩⎪
⎨⎧≥->--x x x 3
121)1(21
2.(1)化简2x -2 - 8x 2-4 (2)化简并求值:a 2
-1a -1 - a 2
-2a +1a 2
-a ,其中a = 1
2+3.
3.如图,点A 在双曲线x y 3=
上,点B 在双曲线x
y 5
=上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为平行四边形,则它的面积为 。
4.已知:如图,在平面直角坐标系xOy 中,直线AB 分别与x y 、轴交于点B 、A ,与反比例函数的图象分别交于点C 、D , CE x ⊥轴于点E ,BO=2BA,OB=4,OE=2. (1)求直线AB 的解析式.
(2)求该反比例函数的解析式;
5.学了“统计与概率”的相关知识后,自作聪明的小明就常常用掷骰子的方法来“解答”选
择题.在某次单元测验卷上,共有两道选择题,每题都有四个选项,且恰有一项是符合题意的.小明准备抛掷一枚质地均匀的正方体骰子来确定“答案”.并作规定:若掷得1、2、3、4点,则分别代表A 、B 、C 、D ;若掷得5、6点,则无效并重新抛掷.请用“画树状图”或“列表”的方法求出小明两道题都碰对的概率.
y
x
O A
B
C
D 22题图
6. 如图所示的转盘,分成三个相同的扇形,指针位置固定转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,当作指向右边的扇形).
(1) 求事件“转动一次,得到的数恰好是0”发生的概率; (2) 写出此情景下一个不可能发生的事件.
(3) 用树状图或列表法,求事件“转动两次,第一次得到的数与第二次得到的数绝对值
相等”发生的概率.
7.小明家将于5月1日进行自驾游,由于交通便利,准备将行程分为上午和下午.上午的备选地点为:A —鼋头渚、B —常州淹城春秋乐园、C —苏州乐园,下午的备选地点为:D —常州恐龙园、E —无锡动物园. (1)请用画树状图或列表的方法分析并写出小明家所有可能的游玩方式(用字母表示即可);
(2)求小明家恰好在同一城市游玩的概率.
8.在一个袋子中,有完全相同的4张卡片,把它们分别编号为l ,2,3,4. (1)从袋子中随机取两张卡片.求取出的卡片编号之和等于4的概率:
(2)先从袋子中随机取一张卡片,记该卡片的编号为a ,然后将其放回,再从袋中随机取
出一张卡片,级该卡片的编号为b ,利用画树状图或表格求满足a +1>b 的概率. 22.(本题满分7分)有四张背面图案相同的卡片A 、B 、C 、D ,其正面分别画有四个不同的几何图形(如图).小聪将这四张卡片背面朝上洗匀摸出一张,放回洗匀再摸出一张.
(1)用树状图(或列表法)表示两次摸出卡片所有可能的结果;(卡片可用A 、B 、C 、D 表示)
(2)求摸出的两张卡片图形都是中心对称图形的概率.
1 -1
A B
C
D E
y x O M 第7题
1.在比例尺为1:200 000的交通图上,距离为15厘米的两地之间的实际距离约为______千米. 2.地图上某城市面积为80cm 2,实际该城市面积为320 km 2.这地图的比例尺为 . 3.已知a 、b 、c 三条线段,其中2,8a c ==,若线段b 是线段a 、c 的比例中项,则b = .
4.命题“对顶角相等"的逆命题是 ,该逆命题是 命题.(填“真”或“假”)
5.如图,双曲线x
y 2=
(x >0)与矩形OABC 的边CB , BA 分别 交于点E ,F ,且AF=BF ,连接EF ,则△OEF 的面积为 ( ) A .32 B .1
2
C . 2
D . 1 6. 若函数y = 3x 与y =x +1的图象交于点A (a ,b ),则1a -1b
的值为( )
A .-13
B .1
3 C .-3 D .3
7.如图,反比例函数y =k
x
(x >0)的图象经过矩形OABC 对角线
的交点M ,分别与AB 、BC 相交于点D 、E .若四边形ODBE 的面积为12,则k 的值为 ( )
A . 1
B . 2
C . 3
D . 4
8.如图,在正方形网格中,△OBC 的顶点分别为
O (0,0), B (3,-1)、C (2,1).
(1)以点O (0,0)为位似中心,按比例尺2:1在位似中心的异侧将△OBC 放大为△OB ’ C ’ ,放大后点B 、C 两点的对应点分别为B′、C′ ,画出△OB ’ C ’,并写出点B′、C′的坐标:B’( , ),C ’( , )。
(2)在(1)中,若点M (x ,y )为线段BC 上任一点,写出变化后点M 的对应点M ′的坐标( , )。
9.如图所示的网格中有A 、B 、C 三点。
(1)请你以网格线所在直线为坐标轴建立坐标系,使A ,B 两点的坐标分别为A (2,-4)
B (4,-2),则
C 的坐标是 ;
· B
(2)连结AB 、BC 、CA ,先以坐标原点O 为位似中
心,按比例尺1:2在y 轴的左侧画出....
△ABC 缩小后的△A ′B ′C ′,再写出点C 的对应点C ′的坐标 .
10.有一个可自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4(如图所示),另有一个不透明的口袋装有分别标有数0、1、3的三个小球(除数不同外,其余都相同),小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积. (1)请你用画树状图或列表的方法,求这两个数的积为0的概率;
(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.
11.甲、乙两同学用一副扑克牌中牌面数字分别是3、4、5、6的4张牌做抽数学游戏.游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数.若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用列表(或画树状图)等概率的知识说明理由.
12.伟和小欣玩一种抽卡片游戏:将背面完全相同,正面分别写有1、2、3、4的四张卡片混合后,小伟从中随机抽取一张.记下数字后放回,混合后小欣再随机抽取一张,记下数字.如果所记的两数字之和大于4,则小伟胜;如果所记的两数字之和不大于4,则小欣胜.
①请用列表或画树形图的方法分别求出小伟、小欣获胜的概率; ②若小伟抽取的卡片数字是1,问两人谁获胜的可能性大?为什么?
10题图
1 2 4 3
13.如图,在梯形ABCD中,AB∥CD,且AB=2CD,E、F分别是AB、AD的中点,连结AC、CE和EF,设AC和EF的交点为M.
(1)求证:△AMF∽△CME;
(2)若AC=12 cm,求AM的长;
(3)若△AMF的面积为l cm2,求梯形ABCD的面积.。