2008.10 STEM CELLS Regulation of ES Cell Self Renewal and Pluripotency by Foxd3

合集下载

人脐带血间充质干细胞外泌体改善烧伤大鼠急性肺损伤的作用机制研究

人脐带血间充质干细胞外泌体改善烧伤大鼠急性肺损伤的作用机制研究

总之,脐带间充质干细胞及其来源外泌体在皮肤损伤修复中具有重要作用和潜 力。未来研究方向应包括优化细胞的来源和分离方法、探讨外泌体的最佳制备 和给药途径、评估长期疗效和安全性等。希望通过进一步深入研究,为皮肤损 伤修复提供更加有效的治疗方法,改善患者的生活质量。
摘要
本研究探讨了人脐带间充质干细胞对严重烧伤大鼠创面愈合的作用及其机制。 结果表明,人脐带间充质干细胞可显著促进严重烧伤大鼠创面的愈合,其主要 机制是通过调节炎症反应和细胞增殖来实现的。本次演示为烧伤科的临床实践 提供新的思路和方法。
hBMSCs和hADSCs均来源于成年组织,具有多向分化潜能,可以分化为神经元、 胶质细胞和内皮细胞等。在体外培养过程中,这两种干细胞均展现出了良好的 增殖能力和分化潜力。在体内应用中,hBMSCs和hADSCs均已证实对脊髓损伤 具有一定的修复作用。然而,两者在修复脊髓损伤过程中的比较研究尚不多见。
研究方法
1、实验对象:SD大鼠,建立20%体表面积的Ⅲ度烧伤模型。
2、人脐带间充质干细胞的分离、培养和鉴定:参照文献方法,将人脐带间充 质干细胞分离并培养。采用免疫荧光技术进行鉴定。
3、实验分组:大鼠随机分为两组,对照组和实验组。对照组给予常规治疗, 实验组在常规治疗基础上给予人脐带间充质干细胞治疗。
引言
烧伤是一种常见的创伤,常常导致急性肺损伤,引发肺部炎症反应、氧化应激 损伤和肺泡上皮细胞增殖障碍等问题。近年来,越来越多的研究于利用间充质 干细胞(MSCs)治疗烧伤及其并发症。人脐带血间充质干细胞(hUCB-MSCs) 具有来源丰富、免疫原性低、分化能力强等优点,成为MSCs研究的热点。
外泌体是MSCs的一种重要生物活性物质,可通过调节靶细胞功能起到治疗作用。 本研究旨在探讨人脐带血间充质干细胞外泌体对烧伤大鼠急性肺损伤的作用机 制。

【国家自然科学基金】_营养细胞_基金支持热词逐年推荐_【万方软件创新助手】_20140729

【国家自然科学基金】_营养细胞_基金支持热词逐年推荐_【万方软件创新助手】_20140729

2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
蛋鸡 葡多酚 自噬 腺相关病毒 脑缺血再灌注 脑缺血 脑络欣通 脑源性神经营养因子基因 脑源性神经生长因子 脊髓损伤 胶质源性神经营养因子 胰岛素抵抗 胃癌 肿瘤坏死因子-α 肥胖 肠黏膜屏障 肌纤维 肉鸡 缺磷 缺氧 维生素e琥珀酸酯 细胞分化 糖尿病 粘膜免疫 移植 神经移植 神经元 淋巴细胞 活性氧 水稻 氧化损伤 普洱茶 星形胶质细胞 扫描电镜 心肌细胞 小麦 小肠上皮细胞 多糖 多发性骨髓瘤 增殖 增强型绿色荧光蛋白基因 基因转染 北柴胡 分泌 减数分裂 内毒素 免疫功能 假肥大型肌营养不良症 他莫西芬 仔猪 人胃癌细胞 丙烯腈 t淋巴细胞亚群 siga
2008年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
科研热词 脑源性神经营养因子 细胞凋亡 脊髓损伤 大鼠 凋亡 神经营养因子 细胞因子 增殖 基因表达 花色苷 脑缺血 胶质细胞源性神经营养因子 神经营养因子-3 神经元 分化 光合作用 骨髓间充质干细胞 超微结构 细胞培养 神经干细胞 神经再生 显微结构 星形胶质细胞 抗氧化 干细胞 血管生成 脊髓 脂肪酸 胆固醇 老化 细胞增殖 组织工程 神经生长因子 磷 番茄 氧化应激 槲皮素ቤተ መጻሕፍቲ ባይዱ抗氧化酶 成骨细胞 帕金森病 叶酸 动脉粥样硬化 雄配子体发育 阿尔茨海默病 间充质干细胞 逆转录-聚合酶链反应 运动神经元 过氧化氢 转染 许旺细胞 视黄酸受体 血管内皮细胞

08年10月高考理科综合(生物)试题探究(2)

08年10月高考理科综合(生物)试题探究(2)

2008年10月高考理科综合(生物)试题探究(2)(非选择题)1.(8分)(现代生物科技)如图是利用基因工程技术生产人胰岛素的操作过程示意图,请据图回答。

(1)能否利用人的皮肤细胞来完成①的过程?为什么?_______________________ ___________________________________________________________。

(2)过程②必需的酶是_______________________,过程③必需的酶是______________。

(3)若A中共有a个碱基对,其中鸟嘌呤有b个,则③④⑤过程连续进行4次,至少需要提供胸腺嘧啶_______________个。

(4)在利用A、B获得C的过程中,必须用_________________________________酶切割A 和B,使它们产生相同的_________________________,再加入________________酶,才可形成C。

2.(10分)为了提高单位面积农作物的产量,科学家通过长期大量试验获得一系列数据,并对数据进行分析研究,绘成下列曲线:曲线①:光照极弱,CO2很少曲线②:全我照的1/25,CO2浓度为0.03%曲线③:全光照的1/20,CO2浓度为0.1%曲线④:全光照,CO2浓度为1.22%温度/℃试根据曲线回答下列问题:(1)光合作用强度,无论在哪种光照强度和CO2浓度下,都有一个。

(2)在一定的温度和CO2浓度下,变大,相对光合强度越大。

(3)不论光照强度、CO2浓度如何变化,当超过一定温度时,光合作用强度都下降,其原因是。

(4)上述曲线表明温室栽培蔬菜在光照、温度条件适宜时提高蔬菜产量可采取的措施及理由是。

(5)科学家研究表明,矿质元素对光合作用有直接或间接影响,试举一例说明理由:。

3.(14分)人类利用太阳辐射能的一个重要途径是光—生多的绿色植物的光合作用实现太阳能的转换与利用。

2008年细胞生物学

2008年细胞生物学

中国科学技术大学2008年硕士学位研究生入学考试试题(细胞生物学)问答题(共10题)1.根据与细胞膜的结合方式,膜蛋白可分为哪三类?如何通过实验区分它们?(10分)2.最近美国和日本两个研究小组利用基因重新编排技术,成功将人体皮肤细菌改造成了几乎可以和胚胎干细胞相媲美的“类胚胎干细胞”,被认为是生物学领域的一个重大突破。

(15分)a.胚胎干细胞潜在的主要应用有哪些?b.这种类胚胎干细胞同胚胎干细胞相比有何不同?可望解决目前胚胎干细胞研究及应用中的哪些问题?c.从理论上来说,如果要证明某种细胞具有人胚胎干细胞的全能性,则需要证明该种细胞能分化为人体中所有的细胞种类(有200多种)。

这显然是不太现实的,资源和时间都不允许。

那么目前研究人员是如何解决这一问题的?换句话说你只要做到什么程度,就可以让人们相信某种细胞具有全能性(提示:胚胎发育过程中的三大类别细胞)。

3.围绕蛋白质表达的全过程(包括转录,翻译,翻译蛋白质后加工及到达正确的作用位点),结合细胞内结构特点,简要阐述真核细胞与原核细胞的差异。

(20分)4.尽管无法用实验证实,但人们认为在进化过程中形成的第一个细胞中,其遗传材料是RNA而不是DNA。

这是为什么?进化后期细胞的遗传材料又变成了双链DNA,这又是为什么?(10分)5.细胞周期运转到分裂中期,周期蛋白A和B通过泛素化途径降解。

a.简述蛋白质的泛素化降解途径。

b.在上述泛素化降解途径中,蛋白降解的特异性(亦即确保只有该降解的蛋白质被降解)是如何实现的(4分)c.周期蛋白A和B的分子结构中含有一段由9个氨基酸序列组成的破坏框。

请设计一个实验,证明该破坏框在周期蛋白A和B的泛素化降解途径中起了重要作用。

(3分)d.如何证明周期蛋白A和B的存在对于驱动蛋白周期从M期中期向后期转化是必须的?请提出两种不同的实验方案。

(6分)6.核仁是细胞核中重要的高度动态的结构,请简要说明核仁的结构与细胞周期之间的对应关系,请用简图来表示。

scientistsusestemcellsfrom课文

scientistsusestemcellsfrom课文

scientistsusestemcellsfrom课文随着科学技术的不断发展,干细胞研究已成为近年来生物医学领域最受关注的热点之一。

干细胞具有自我更新和分化为多种细胞类型的能力,这使得它们在医学研究和治疗中具有巨大的潜力。

科学家们利用干细胞治疗疾病、修复损伤以及再生组织,为许多疾病患者带来了希望。

干细胞分为胚胎干细胞(ESC)和成体干细胞(ASC)两大类。

胚胎干细胞来源于早期胚胎,具有发育的全能性,可分化为任何类型的细胞。

而成体干细胞则存在于成年人体内,具有特定分化潜能,如造血干细胞、神经干细胞等。

这两类干细胞在生物医学领域有着广泛的应用前景。

然而,干细胞研究的发展并非一帆风顺。

干细胞疗法的安全性和伦理问题引发了社会的广泛关注。

如何确保干细胞来源的合法性、避免胚胎干细胞研究引发的道德伦理问题以及确保干细胞疗法的安全性和有效性,都是干细胞研究面临的重要挑战。

在国际上,各国对于干细胞研究的政策和法规各不相同,我国对干细胞研究采取了严格的监管措施,以确保干细胞研究的安全和可持续发展。

在我国,干细胞研究取得了一系列重要成果。

科学家们在干细胞制备、移植和治疗等方面取得了突破性进展,为许多患者带来了实实在在的好处。

此外,我国政府对干细胞研究给予了高度重视,制定了一系列政策支持干细胞研究的发展。

例如,国家重点研发计划、国家科技计划等项目的资助,为干细胞研究提供了充足的资金支持。

展望未来,干细胞研究将对医学领域产生深远影响。

随着技术的不断进步,干细胞疗法有望成为治疗许多疾病的新型手段。

此外,干细胞研究还将带动生物制品、药物研发等相关产业的发展。

然而,干细胞研究仍面临许多未知领域和挑战,如干细胞的分化调控、移植免疫反应等。

这需要广大科研工作者继续努力,不断探索,为人类的健康事业作出更大的贡献。

总之,干细胞研究作为一种具有广泛应用前景的生物技术,在医学领域具有巨大的潜力。

我国在干细胞研究方面取得了世界领先的成果,但仍需不断努力,攻克技术难题,推动干细胞研究的发展。

ES cell

ES cell
• hES分化的心肌细胞(hESCM)是药物安全 性评价中使用的唯一人源性心肌细胞; • hESCM与自动平台的结合使得筛选QT间 期延长的模型实现高通量模式。
人胚胎干细胞的应用范围

确定毒性靶器官;确定作用靶位及其机制;确定毒 性作用生物标志物。
发现临床前新安全标志物;作用机制;代谢类型; 等等。
危险度评价更符合科技发展和保护人类健康的需要,
也能缩短实验周期,增加实验的敏感性,克服用终末 细胞研究远离化学因素(药物)作用位点的不足。
hES细胞在安全性评价中的应用(一) 体外胚胎发育毒性的筛检
• 目前体外替代方法中使用的人源性细胞 只有癌细胞系或原代培养细胞; • 利用mES的EST很难将结果外推到人; • 全能性使hES成为体外发育毒性的优秀 评价模型。


将动物实验资料外推到人一直是毒理学家面临的重要课
题 , 而应用人细胞进行研究是减少种属差异造成的不确定
因素的途径之一。
目前用于毒理学研究的人细胞体外模型都有不同程度的
局限。例如:人原代细胞(如肝细胞等)难以获得, 而且变异
性大, 在体外增殖有限;人永生化细胞系的生物学特性已经 异化,与人体正常细胞差别很大 , 肿瘤细胞系已丧失了正常
胚胎干细胞在毒性评价研究中的应用
军事医学科学院毒物药物研究所 闫长会
化学物的安全性问题令人担忧
欧盟
•目前十万多种化学品在欧盟使用。
•从1993年以来,只有141种大用量化学品被定为首
批进行安全评估的化学品。
•欧盟理事会批准的《注册、评估、授权和限制化学
品》法规已在2007年6月1日生效,并据此成立了欧 洲化学品总署。计划用50-100亿欧元和10-15年时间 对尚未注册的三万多种化学品进行安全评估。

关于胚胎干细胞的文献

关于胚胎干细胞的文献

关于胚胎干细胞的文献胚胎干细胞(Embryonic Stem Cells,ESCs)是一类来源于早期胚胎的多能性干细胞,具有自我更新和多向分化的能力。

它们可以分化为体内的各种细胞类型,包括神经细胞、心肌细胞、肝细胞等等。

因此,胚胎干细胞被认为是一种潜力巨大的生物医学研究工具,可以为疾病治疗和组织工程提供新的途径。

胚胎干细胞的研究始于20世纪80年代,首次成功地从小鼠胚胎中分离出并培养出了胚胎干细胞。

随后,研究人员又成功地将这一技术应用到了人类胚胎中。

这一突破性的进展引起了科学界和公众的广泛关注。

胚胎干细胞的特点在于其多能性,即可以分化为体内任何细胞类型。

这种多能性使得胚胎干细胞具有广泛的应用前景。

例如,胚胎干细胞可以用于治疗各种疾病,如糖尿病、帕金森病、心脏病等。

研究人员可以将胚胎干细胞分化为患者所需的特定细胞类型,并将其移植到患者体内,以实现组织修复和再生。

然而,胚胎干细胞的研究也面临一些伦理和法律问题。

由于胚胎干细胞的获取需要破坏早期胚胎,这引发了一些道德和宗教上的争议。

一些人认为,早期胚胎具有生命的尊严,不能被用于研究目的。

为了解决这个问题,科学家们也在寻求其他替代方法,如诱导多能干细胞(Induced Pluripotent Stem Cells,iPSCs)的研究。

iPSCs是利用成体细胞经基因重编程使其回到多能性状态的细胞,具有类似于胚胎干细胞的特性,但不涉及胚胎的使用。

胚胎干细胞的应用也存在一些技术挑战和安全风险。

目前,胚胎干细胞的培养和分化过程仍然非常复杂,需要进一步的研究和优化。

此外,胚胎干细胞的移植也可能引发免疫排斥等问题。

因此,研究人员需要不断改进技术和解决安全问题,以确保胚胎干细胞的应用能够真正造福于人类健康。

胚胎干细胞是一种具有巨大潜力的生物医学研究工具。

它们可以分化为体内各种细胞类型,为疾病治疗和组织工程提供新的途径。

然而,胚胎干细胞的研究也面临伦理和技术上的挑战。

在未来的研究中,科学家们需要继续努力,以克服这些问题,并推动胚胎干细胞的应用进一步发展。

2008年诺贝尔化学奖简介

2008年诺贝尔化学奖简介
可对同一个细胞的不同细胞器[30]和不同细胞[31,32]进 行标记. 其中最具代表性的实验莫过于 2007 年的 “脑虹”(brainbow)[31](图 5). “脑虹”是一种脑细 胞彩色成像技术. 哈佛大学的研究人员通过转基因 技术将不同光谱的荧光蛋白基因(CFP/YFP/RFP)整 合进实验老鼠的基因组,并且只让它们在老鼠脑神 经元表达. 当神经元内的 Cre 重组酶表达后可激活 荧光蛋白表达,从而使得神经元内同时存在三种以 及三种以上的荧光蛋白. 由于研究人员采用类似显 示器彩色原理,三种不同荧光蛋白颜色可形成多种 颜色,因此不同的神经元呈现出不同的颜色. 利用 “脑虹”,研究者可对老鼠大脑内部的不同部位或不 同发育阶段脑神经进行标记,从而能够追踪神经元 在神经系统中的活动,获得对神经系统的组织和功 能的新理解. “脑虹”技术,利用丰富的色彩,极 其清楚地显示出老鼠大脑细胞的结构. 这在极大程
3 典型应用
3.1 活细胞内基因表达及蛋白质-蛋白质相互作用 的光学成像与可视化
随着人类基因组计划的完成,蛋白质功能研究 已成为生命科学面临的最重要任务之一. 传统的生 化方法只能对蛋白质进行体外分析,这些离体研究 不能反映活细胞内蛋白质动力学. GFP 标记技术结 合多种光学成像技术很好地回答了上述问题. 其中 基 于 GFP 的 荧 光 共 振 能 量 转 移 (fluorescence resonance energy transfer,FRET)技术是应用最广泛
的 , [19] 它 可 实 时 动 态 监 测 蛋 白 质 时 空 动 力 学 . FRET 是 供 体 分 子 和 受 体 分 子 在 近 距 离 范 围 内 (<10 nm)所发生的一种非辐射式能量转移现象,目 前在生物和医学中被广泛应用的是 CFP(供体)和 YFP(受体). 国内也开展了基于 FRET 的蛋白质功 能研究,并在蛋白酶活性检测[20~23]和钙离子浓度[24] 方面取得了较好进展. FRET 除了可研究蛋白酶活 性[25]、蛋白质构象[26]、蛋白质磷酸化[27]和钙离子浓 度测定[28]等之外,蛋白质相互作用的 FRET 检测是 目前最受关注的焦点. 细胞内众多生命活动都是通 过蛋白质复合体来介导的,而蛋白质复合体则是多

[vip专享]k咸阳高新一中第二次月考化学试题

[vip专享]k咸阳高新一中第二次月考化学试题

化学试题可能用到的相对原子质量: H—1 O—16 C—12第Ⅰ卷(选择题共48分)一、选择题(本题包括16小题,每小题3分,计48分。

每小题只有一个正确答案,多选、不选或错选均不给分)1.2008年10月8日诺贝尔化学奖授予美国华裔化学家钱永健,以及美国科学家马丁·沙尔菲和日本科学家下村修,以表彰他们发现和研究在生物化学领域极为重要的“绿色荧光蛋白”。

这一成果的应用,可以使人们像看电视一样观察复杂的生化反应。

下列关于蛋白质的说法中不正确的是A.蛋白质属于天然有机高分子化合物,没有蛋白质就没有生命B.HCHO溶液或(NH4)2SO4溶液均能使蛋白质变性C.某些蛋白质跟浓硝酸作用会变黄D.可以采用多次盐析的方法分离、提纯蛋白质2.生活即化学,下列分析不正确的是A.用灼烧并闻气味的方法区别纯棉织物和纯毛织物B.冬季为防止皮肤皲裂,可使用含水量30%左右的甘油护肤,由于甘油具有吸湿性,所以能保持皮肤滋润C.糖类摄入不足,人易患低血糖;而摄入过多,则可能引发动脉硬化、冠心病等疾病D.苯酚具有杀菌消毒作用,药皂中常常掺有少量苯酚,所以我们可以将苯酚直接涂抹在皮肤上起消毒作用3.下列有机物的命名肯定错误的是A. 3-甲基-2-戊烯B.2-甲基-2-丁烯C. 2,2-二甲基丙烷D. 2-甲基-3-丁炔4.糖类、油脂、蛋白质是人体所需的基本营养物质。

下列有关说法正确的是A.糖类、油脂、蛋白质都可能发生水解反应B.油脂在人体中发生水解的产物是氨基酸C.糖类的主要成分是高级脂肪酸甘油酯D.蛋白质的化学成分是高级脂肪酸的甘油酯5.下列各组物质中,属于同系物的是C H2O H O HA.HCHO、CH3COOH B.、C.CH3COOH、CH3CH2OH D. 硬脂酸、醋酸6.下列反应不属于取代反应的是①乙醇与浓H2SO4迅速加热到170℃②乙醇与浓H2SO4、溴化钠共热③溴乙烷与NaOH醇溶液共热④溴乙烷与NaOH水溶液共热⑤蘸有乙醇的铜丝放在酒精上灼烧⑥油脂与NaOH水溶液共热A.①②③B.②③⑤C.①③⑤D.②⑤7. 下列反应中不能生成乙醇的是A.淀粉在淀粉酶、酒酶作用下发酵 B.淀粉在淀粉酶作用下水解C.乙酸乙酯在稀硫酸作用下水解 D.在一定条件下乙烯与水加成8.下列物质中,在一定条件下既能发生银镜反应,又能发生水解反应的是A.葡萄糖B.淀粉C.甲酸甲酯D.油脂9.油脂的硬化是油脂进行了A.加成反应B.酯化反应C.氧化反应D.皂化反应10.下列叙述中正确的是A.能发生酯化反应的酸一定是羧酸B.油脂水解后得到的醇一定是丙三醇C.能与金属钠反应的含羟基的烃的衍生物一定是醇D.能发生银镜反应的烃的衍生物一定是醛11.下列物质溶液,都能与Na反应放出H2,其产生H2速率排列顺序正确的是①苯酚②HCl ③ CH3COOH ④ CH3 CH2 OHA. ③>②>①>④B. ②>①>③>④C. ③>①>②>④D. ②>③>①>④12.下列反应产物中,不可能存在的同分异构体的是A.甲烷在一定条件下和氯气发生取代反应B.甘氨酸分子与丙氨酸分子形成二肽的反应C.丙烯在一定条件下与HCl气体发生加成反应D.蔗糖在硫酸存在下发生水解反应13.某期刊封面上有一个如下图所示分子的球棍模型图,图中“棍”代表单键或双键或三键。

Stem Cell Biology and Regenerative Medicine

Stem Cell Biology and Regenerative Medicine

Stem Cell Biology and Regenerative Medicine Stem cell biology and regenerative medicine are fields that have gained significant attention in recent years. Stem cells are unique cells that have the ability to differentiate into various cell types and have the potential to regenerate damaged tissues. The field of regenerative medicine aims to use stem cells to replace or repair damaged tissues and organs in the body. While the potential benefits of stem cell research and regenerative medicine are vast, there are also ethical concerns and challenges that need to be addressed.One of the main ethical concerns surrounding stem cell research is the use of embryonic stem cells. Embryonic stem cells are derived from embryos that are typically discarded after in vitro fertilization. Some individuals argue that using these embryos for research purposes is unethical and violates the sanctity of human life. Others argue that the potential benefits of stem cell research outweigh these concerns and that the embryos used for research would have been discarded anyway.Another ethical concern is the potential for the commercialization of stem cells. As stem cell research continues to advance, there is a growing market for stem cell therapies. Some companies are already offering stem cell treatments for various conditions, despite the lack of sufficient clinical trials and regulatory oversight. This raises concerns about the safety and efficacy of these treatments, as well as the potential for exploitation of vulnerable patients.In addition to ethical concerns, there are also scientific and technical challenges that need to be addressed in the field of regenerative medicine. One major challenge is the ability to control the differentiation of stem cells into specific cell types. While stem cells have the potential to differentiate into any cell type, directing them to differentiate into a specific cell type can be difficult. This can limit the effectiveness of stem cell therapies and increase the risk of complications.Another challenge is the potential for immune rejection of transplanted stem cells. Since stem cells can differentiate into any cell type, they can potentially be used to replace damaged tissues and organs. However, the immune system may recognize thesetransplanted cells as foreign and mount an immune response, leading to rejection of the transplanted cells. This can limit the effectiveness of stem cell therapies and increase the risk of complications.Despite these challenges, the potential benefits of stem cell research and regenerative medicine are vast. Stem cells have the potential to revolutionize the treatment of a wide range of conditions, including cancer, heart disease, and neurological disorders. Stem cell therapies could also reduce the need for organ transplants and improve the quality of life for millions of people around the world.In conclusion, stem cell biology and regenerative medicine are fields that hold great promise for the future of medicine. While there are ethical concerns and scientific challenges that need to be addressed, the potential benefits of these fields are vast. As research in these areas continues to advance, it is important to ensure that ethical considerations are taken into account and that the safety and efficacy of stem cell therapies are rigorously tested. With careful consideration and continued research, stem cell biology and regenerative medicine could transform the way we treat a wide range of conditions and improve the lives of millions of people around the world.。

干细胞ppt课件

干细胞ppt课件

any cell of the extraembryonic membranes (e.g., placenta).
ppt精选版Lawrence M. Hinman
18
多潜能( Pluripotent)干细胞—是具有自我更新 能力和高度增殖以及多向分化潜能,并可以定向 诱导分化为三个胚层中所有种类的去了发育成完整个体的能力,发育潜能 受到一定限制。
• 在体外培养扩增时,经遗传操作、选择和 冻存,均不失其全能性;在不同生长条件 下具有不同的功能状态。
ppt精选版Lawrence M. Hinman
14
成体干细胞横向分化的普遍性
n 预测并阐明横向分化机制,就有可能利用 病人自身健康组织的干细胞诱导分化成 病损组织的功能来治疗疾病。
n 这样既可解决免疫排斥问题,又可避免胚 胎细胞来源不足和社会伦理问题。
发育生物学的新领域
第十九章 干细胞
近年来在干细胞理论和技术研究方面取得 了长足的进展。 1999 年12 月,美国《科学》杂志把干细胞生物 学和以干细胞临床应用为内容的干细胞生物 工程评为20 世纪世界科学进展的最重要领域 。 已经成为继人类基因组大规模测序之后最具 活力、最有影响和最有应用前景的生命科学 研究领域之一。
2004-2005 韩国研究者黄禹锡(Hwang Woo-suk)声称利用体细胞核 转移技术培育出几种人类胚胎干细胞系,后来被证实是伪造的
2006 英国科学家用脐带血干细胞分化出第一个人造肝细胞
ppt精选版Lawrence M. Hinman
6
干细胞的起源和进展
2007.1 科学家发现在羊水中存在一种新型干细胞,它可以在研究与治疗 中替代胚胎干细胞
2008.3 自体间充质干细胞成功治疗关节变性病

干细胞钟表遗传网络及其时态控制

干细胞钟表遗传网络及其时态控制

干细胞钟表遗传网络及其时态控制干细胞是指具有自我更新和分化能力的一类细胞,是维持生物体发育和组织修复的重要细胞基础。

为了维持干细胞的自我更新和分化能力,细胞内需要一套完整的时态控制系统,确保各个基因在合适的时机进行表达和调控。

干细胞的时态控制主要由细胞内的钟表、遗传网络和表观遗传机制共同调节,这其中相互作用错综复杂,但又密不可分。

一、干细胞内部的钟表干细胞内部的钟表系统又称为生物钟系统,这一系统的主要功能是调节细胞的基因表达和代谢活性,因此是控制细胞时态的重要机制之一。

钟表系统是由一系列生物学重复的分子和反馈回路组成,其中最重要的蛋白质分别是BMAL1和CLOCK,在细胞内向下调节一系列基因的表达。

二、干细胞内部的遗传网络干细胞内部的遗传网络主要由多个信号通路、转录因子、miRNA等多个成分构成。

这些成分相互作用,形成一套错综复杂的正、负反馈回路,通过不同的信号通路,调控细胞内基因的表达和功能的改变。

在干细胞中,常见的信号通路包括Wnt信号通路、Notch信号通路、PDGF信号通路以及多种细胞因子的作用等。

这些信号通路通过调控转录因子,影响基因的表达和系统功能,直接影响干细胞的自我更新和分化能力。

三、干细胞内部的表观遗传机制表观遗传学是探究基因表达和其它基因活动与环境相互关系的研究。

在干细胞内部,表观遗传机制主要包括DNA甲基化、组蛋白修饰、miRNA与3'UTR相互作用等。

这些机制通过基因组的改变和调控基因的表达,影响干细胞的自我更新和分化能力。

细胞内三种不同的时态调控机制之间密不可分,一个系统的失衡会导致整个干细胞系统的内部失调,甚至导致一些内部的异常基因表达,从而影响干细胞的生物学特性。

除此之外,干细胞时态也受到外界环境的影响,如睡眠时间、饮食习惯、气候等等,这些外界条件都会对生物钟、遗传网络和表观遗传机制的活动,产生影响。

总之,干细胞内部的时态控制涉及到生物钟、遗传网络和表观遗传机制的互动作用。

绿色荧光蛋白研究的三个里程碑_2008年诺贝尔化学奖简介_崔志芳

绿色荧光蛋白研究的三个里程碑_2008年诺贝尔化学奖简介_崔志芳

绿色荧光蛋白研究的三个里程碑2008年诺贝尔化学奖简介崔志芳 邹玉红 季爱云副教授, 讲师, 硕士研究生,山东科技大学化学与环境工程学院,青岛266510关键词 诺贝尔化学奖 绿色荧光蛋白 报告基因2008年10月8日,美国科学家下村修、马丁 查尔非以及钱永健因为在绿色荧光蛋白的发现以及改造方面的突出成就而获得2008年度诺贝尔化学奖。

笔者拟对绿色荧光蛋白的研究历程以及应用领域做一些粗浅介绍。

2008年10月8日,瑞典皇家科学院诺贝尔奖委员会将2008年度诺贝尔化学奖授予日裔美国科学家下村修(Osamu Shimomura)、美国科学家马丁 查尔非(M artin Chalfie),以及美国华裔科学家钱永健(Roger Y.Tsien)。

他们三人在发现绿色荧光蛋白(green f luo-rescent protein,GFP)方面作出突出成就。

GFP大家都不陌生,细胞中散发着点点绿光,煞是好看。

1962年被发现,1992年被克隆,中间隔了30年。

而它在生物界中被广泛应用,也就是这十几年的事。

GFP的具体研究历程到底是怎样的?1GFP研究的三个里程碑1962年,下村修和约翰森从维多利亚多管水母(Ae-quorea victoria)中分离生物发光蛋白 水母素(aequor-in)时,意外地得到了一个副产物[1]。

它在阳光下呈绿色、钨丝下呈黄色、紫外光下发强烈绿色。

其后他们仔细研究了其发光特性。

来源于水母的野生型GFP在395nm 和475nm分别有主要和次要的激发峰,它的发射峰在509nm,处于可见光谱的绿色区域。

1974年,他们得到了这个蛋白,当时称为绿色蛋白,之后改称绿色荧光蛋白(GFP)。

GFP在水母中之所以能发光,是因为水母素和GFP之间发生了能量转移。

水母素在钙刺激下发光,其能量可转移到GFP,刺激GFP发光。

这是物理化学中已知的荧光共振能量转移(FRET)在生物中的发现。

当时的研究者们并没有意识到G FP的应用前景,慢慢就将其遗忘了。

干细胞 背景资料

干细胞 背景资料

干细胞干细胞(stem cell)是具有自我更新并可分化形成一种以上类型细胞的多潜能细胞,这种潜能使它在临床应用方面有非常广泛的前景。

胚胎干细胞(embryonic stem cell,ESCs,简称ES或EK细胞。

)胚胎干细胞是早期胚胎(原肠胚期之前)或原始性腺种分离出来的一类细胞,它具有体外培养无限增殖、自我更新和多向分化的特性。

无论在体外还是体内环境,ES细胞都能被诱导分化为机体几乎所有的细胞类型。

胚胎干细胞研究在美国一直是一个颇具争议的领域,支持者认为这项研究有助于根治很多疑难杂症,是一种挽救生命的慈善行为,是科学进步的表现。

而反对者则认为,进行胚胎干细胞研究就必须破坏胚胎,而胚胎是人尚未成形时在子宫的生命形式。

成年动物的许多组织和器官,比如表皮和造血系统,具有修复和再生的能力。

成体干细胞在其中起着关键的作用。

在特定条件下,成体干细胞或者产生新的干细胞,或者按一定的程序分化,形成新的功能细胞,从而使组织和器官保持生长和衰退的动态平衡。

过去认为成体干细胞主要包括上皮干细胞和造血干细胞。

最近研究表明,以往认为不能再生的神经组织仍然包含神经干细胞,说明成体干细胞普遍存在,问题是如何寻找和分离各种组织特异性干细胞。

成体干细胞经常位于特定的微环境中。

微环境中的间质细胞能够产生一系列生长因子或配体,与干细胞相互作用,控制干细胞的更新和分化。

研究人员已经在多种组织和器官内发现有成体干细胞的存在。

关于成体干细胞,有一点是非常重要的:在组织内只含有极少量的干细胞。

研究人员认为,干细胞存在于组织的特定区域内,从而在数年内都维持静止休眠状态――也就是保持不分裂的状态,直到组织受到损伤或发生疾病时被激活,才开始分裂。

已经报道的含有干细胞的成体组织包括:脑、骨髓、外周血液、血管、骨骼肌、皮肤和肝脏(1)胚胎干细胞具有多向分化潜能,可分化为成年人体任何一种组织细胞。

(2)胚胎干细胞具有无限增殖性。

(3)胚胎干细胞的来源受到伦理、道德的限制,取材较为困难。

高中生物“2008年诺贝尔生理学或医学奖”相关习题

高中生物“2008年诺贝尔生理学或医学奖”相关习题

“2008年诺贝尔生理学或医学奖”相关习题瑞典卡罗林斯卡医学院2008年10月6日宣布,将2008年诺贝尔生理学或医学奖授予德国科学家哈拉尔德·楚尔·豪森及两名法国科学家弗朗索瓦丝·巴尔-西诺西和吕克·蒙塔尼。

他们分别因为发现了人乳头状瘤病毒(HPV)和艾滋病病毒(HIV)而获此殊荣。

一、HIV相关1.研究表明,艾滋病是由艾滋病病毒引起的,下列结构中与艾滋病病毒具有相同化学组成的是()A.细胞膜B.中心体C.染色体D.核糖体2.艾滋病已成为威胁人类健康的一大杀手,下列关于艾滋病的说法中正确的是()A.HIV主要攻击人体内的B淋巴细胞,使人丧失一切免疫功能B.获得性免疫缺陷病就是指艾滋病C.HIV主要由RNA和蛋白质构成,没有核糖体D.HIV在离开人体后还能活很长时间,危害很大3.治疗艾滋病(HIV为RNA病毒)的药物AZT的分子构造与胸腺嘧啶脱氧核苷酸的结构很相似。

下列对AZT作用的叙述中,正确的是()A.抑制艾滋病病毒RNA基因的转录B.抑制艾滋病病毒RNA基因的自我复制C.抑制艾滋病病毒RNA基因的逆转录D.抑制艾滋病病毒RNA基因的表达过程4.艾滋病(AIDS)是目前威胁人类生命的重大疾病之一,能导致艾滋病的HIV是RNA病毒。

请回答下列问题。

(1)该病毒进入人体后,感染人的T淋巴细胞,导致人的免疫力下降,那么下列说法中正确的是()A.患者的细胞免疫能力下降B.患者的体液免疫能力下降C.患者的细胞免疫能力和体液免疫能力都下降D.对患者的细胞免疫能力和体液免疫能力影响不大(2)如果将病毒置于细胞外,则该病毒不能繁殖,原因是________。

5.图为艾滋病病毒(HIV)侵染人体淋巴细胞及其繁殖过程的示意图。

请据图分析并说明下列问题(提示:HIV是一种球形病毒,外有蛋白质组成的外壳,内有两条RNA。

)(1)图中③表示病毒正在侵染淋巴细胞,进入淋巴细胞内的是病毒的______。

荧光蛋白

荧光蛋白
上的应用
GFP具有同宿主蛋白构成融合子的性 质,利用这一性质,可以将GFP定位 到特定的细胞器和膜系统中,进行细 胞生理过程、细胞动力学等的实时观 测,或直接应用于定量分析。目前, GFP已经被成功地用于靶向标记包括 细胞核、线粒体、质体、内质网等在 内的细胞器。用GFP进行亚细胞定位, 避免了提纯蛋白、标记异硫氰酸荧光 素等荧光染料、经显微注射或其他方 式导入细胞的复杂方法,从而使研究 蛋白在活细胞的准确定位变得简单易 行。
荧光蛋白的一些技术
1、荧光互补技术
2、荧光共振能量转移技术
3、基于“光学荧光笔”的超分辨成像技术
问题与展望
GFP近几年得到了广泛的应用与发展,成为各 研究领域的宠儿,但由于基础理论研究远不及应用 研究,因而其存在着一些问题与不足,如检测的灵敏 度还有待进一步提高;荧光强度的非线性性质使其 定量非常困难;新生GFP通过折叠和加工成为具有 活性的形式,过程十分缓慢;紫外激发对某些GFP 有光漂白和光破坏作用;多数生物具有微弱的自发 荧光现象,并有着类似的激发和发射波长,干扰某些 GFP的检测等。 考虑到上述问题与不足,GFP如要在各领域得 到更加完整全面的应用,至少还需要几个条件:基础 理论体系的成熟完善、新型优良突变体的诞生以及 与各种现代生物技术的融合。与此同时,随着基因 工程技术和细胞工程技术的日益成熟,我们有理由 相信,GFP一定会给我们带来更多的应用价值,并 进一步揭开生命的未解之谜。
药物筛选
许多新发展的光学分析方法已经开始利 用活体细胞来进行药物筛选,这一技术 能从数量众多的化合物中快速筛选出我 们所感兴趣的药物。基于细胞的荧光分 析可分为三类:即根据荧光的密度变化、 能量转移或荧光探针的分布来研究目标 蛋白如受体、离子通道或酶的状态的变 化。荧光探针分布是利用信号传导中信 号分子的迁移功能,将一荧光蛋白与信 号分子相偶联,根据荧光蛋白的分布情 况即可推断信号分子的迁移状况,并推 断该分子在迁移中的功能。由于GFP分 子量小,在活细胞内可溶且对细胞毒性 较小,因而常用作荧光探针。

2008小鼠胚胎干细胞在丝素材料上向

2008小鼠胚胎干细胞在丝素材料上向
中图分类号 Q 8 1 9 性材料, 有着很多优异的条件: 可被加工成各种形态, 如丝素膜、 丝素纤维、 水凝胶、 多孔海绵等; 有良好的生 物相容性, 无毒, 无刺激性; 在体内会被缓慢吸收降解; 可进行特 定 基 团 修 饰、 改 性, 还有望负载与干细胞增 殖、 分化有关的特定因子或诱导剂。 本实验以小鼠 E S细胞为种子 细 胞, 使用改良的 4 / 4+ R A诱导方案, 将E S细胞直接在丝素材料上向 神经细胞分化, 探讨丝素材料对其生长、 黏附、 分化等 情况的影响, 可为将来 E S细胞与具有 3 D结构并经过 修饰、 改性及负载诱导剂的丝素材料结合, 控制其分化 为特定的神经细胞, 最终用于神经系统退行性疾病的 临床治疗提供实验依据。
E B s s e e d e do n t og e l a t i n( a ) ,T S F ( b ) , S F ( c )f o r 2d : S c a l eb a r= 5 0 m μ
图4 不同材料 E S源性神经细胞形态观察 及β T u b u l i n免疫荧光染色结果 Ⅲ F i g . 4 Mo r p h o l o g i c a l o b s e r v a t i o no f E S d e r i v e dn e u r a l c e l l s o nd i f f e r e n t ma t e r i a l s a n di mmu n o f l u o r e s c e n c e 图3 不同材料上接种 E B s 的4 8h贴壁率 F i g . 3 A d h e s i v e r a t e o f E B s o nd i f f e r e n t s u b s t r a t e s i n4 8 h s t a i n i n go f T u b u l i n β Ⅲ

Ⅲ型分泌系统转位子蛋白EseC影响迟缓爱德华菌胞内生存机制

Ⅲ型分泌系统转位子蛋白EseC影响迟缓爱德华菌胞内生存机制

Ⅲ型分泌系统转位子蛋白EseC影响迟缓爱德华菌胞内生存机制迟缓爱德华菌(Edwardsiella tarda,简称E.tarda)感染宿主范围很广,是水产养殖业的重要病原体。

它能够在巨噬细胞内生存和繁殖,是其致病的关键。

已有研究表明Ⅲ型分泌系统(T3SS)是E.tarda的一个重要毒力因子,EseB、EseC和EseD是T3SS重要的转位子蛋白,其中EseC和EseD可插入宿主细胞膜,EseB则为游离部分。

当E.tarda与宿主细胞接触后,EseB、EseC和EseD会迅速组成转运复合物在宿主细胞膜钻孔,可以将E.tarda的效应蛋白输入宿主细胞,影响E.tarda的胞内生存。

EseC已被初步证明可影响E.tarda的胞内生存,但其具体机制不完全清楚。

本文利用自杀质粒pHM5构建重组自杀质粒,运用同源重组原理,缺失Et.CD株的eseC基因,得到eseC缺失株,并用PCR鉴定。

再用pACYC184质粒构建eseC基因的重组质粒,电击导入缺失株中,得到缺失菌株的互补菌株并鉴定。

为了探索EseC是否影响E.tarda细胞毒性和感染的细胞凋亡,以不同的MOI野生株,eseC缺失株和互补株分别感染巨噬细胞后,采用CCK-8试剂盒检测巨噬细胞的存活率。

结果提示,eseC基因缺失后,Et.CD株对细胞的毒性明显降低。

以MOI 10:1大肠杆菌BL21,野生株、eseC缺失株和互补株分别感染巨噬细胞,延长培养2h和6h,流式细胞仪检测细胞凋亡和焦亡情况。

结果提示,eseC基因的缺失,影响了 T3SS的表达,继而影响了 T3SS早期抑制巨噬细胞凋亡和诱导巨噬细胞焦亡。

为了证明EseC影响Et.CD株在巨噬细胞胞内的生存。

采用平板计数法,比较野生株、eseC缺失株和互补株以100:1的MOI分别感染巨噬细胞后,不同延长培养时间的胞内细菌存活数目。

结果表明,虽然野生株、eseC缺失株和互补株均可在巨噬细胞内存活并繁殖,但缺失株胞内繁殖速率明显低于野生株和互补株,野生株和互补株繁殖速率没有差异,说明eseC基因对于维持Et.CD株在巨噬细胞内的繁殖速率起重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Foxd3 is a forkhead transcription factor required for maintenance of progenitor cells in theICM, trophoblast and neural crest lineages 11-13. Foxd3−/− embryos die shortly afterimplantation and cells in the mutant ICM and epiblast undergo extensive programmed celldeath 11. ES cells express Foxd3 and expression is dramatically downregulated when cells areinduced to differentiate 14, suggesting that Foxd3 expression in pluripotent stem cells isfunctionally significant. Together, this work illustrates the important role Foxd3 plays tomaintain multipotent progenitor cells from divergent embryonic lineages, but the early lethalityof Foxd3−/− embryos and therefore inability to establish Foxd3−/− ES cell lines, hamperedefforts to study the role Foxd3 plays in ES cell maintenance.To circumvent this problem, we derived ES cell lines in which Cre-mediated inactivation ofFoxd3 function can be temporally regulated. These Foxd3fl/fl ;CAGG Cre-ER TM(Foxd3fl/fl ;Cre-ER ) ES cells are indistinguishable from normal ES cells in culture, and theFoxd3 coding region is deleted when cells are cultured in the presence of 4-hydroxytamoxifen(TM). Using this inducible system, we demonstrate that Foxd3 is not required for cellproliferation, but that mutant ES cells undergo increased apoptosis indicating Foxd3 is requiredfor ES cell survival. Mutant ES cells were defective in their ability to form colonies from singlecells, illustrating a requirement for Foxd3 in stem cell self-renewal. At the same time, whilemaintained under differentiation inhibiting conditions, Foxd3 mutant ES cells do not respondto these cues and undergo extensive differentiation despite the maintenance of expression ofmultiple stem cell genes. Together, our results shape a deeper understanding of the biologicalroles of this transcription factor in murine ES cells and allow us to propose a model that willfurther our comprehension of mechanisms regulating maintenance of self-renewal andmultipotency, the defining characteristics of all stem cells.MATERIALS AND METHODS Generation of Inducible Foxd3 Mutant mES Cell LinesFoxd3fl mice were maintained on a 129S6/SvEvTac (Taconic) genetic background 13. Micecarrying a tamoxifen-inducible variant of Cre recombinase (CAGG Cre-ER TM , also called Tg(cre/Esr1)5Amc)15(The Jackson Laboratory) were backcrossed four times to 129S6/SvEvTacmice. The resulting animals were crossed to Foxd3fl/fl mice and a line of Foxd3fl/fl ;CAGG Cre-ER TM established. These were interbred and blastocysts harvested at 3.5 dpc using standardmethods 16, 17. Blastocysts were cultured on irradiated STO fibroblasts in ES cell mediumsupplemented with 50μM MEK1 inhibitor PD98059 (Cell Signaling Technology). After 3-4days, ICM outgrowths were isolated, trypsinized in microdrops, and cell suspensionstransferred to fresh feeder layers. After 4-5 days, ES cell lines were obvious in the cultures.Lines were cryopreserved at passage number 3-4 and samples were lysed for DNA extraction.Individual cell lines were gentoyped for the Foxd3fl allele and presence of Cre using PCR asdescribed 13. Animal care was in accordance with Vanderbilt University IACUC guidelines.ES Cell CultureES cells were cultured on irradiated mouse embryonic fibroblast (MEF) feeder cells usingstandard protocols 17. 4-hydroxytamoxifen (Sigma) was dissolved in ethanol at 1mM stockconcentration, and added to the medium on a daily basis at the concentration of 2μM unlessotherwise specified. Differentiation of ES cells was carried out by generating embryoid bodies(EBs) in suspension culture on ultra-low attachment dishes (Corning) in ES medium withoutaddition of LIF.Cell Number Analysis and Self-Renewal AssayFor cell number analysis, ES cells were plated at a density of 5×104 cells/well in 12-well dishes.Two to four days after plating, cells were dissociated with trypsin and triteration to a singleNIH-PA Author Manuscript NIH-PA Author ManuscriptNIH-PA Author Manuscriptcell suspension and manually counted with a hemocytometer. Cell numbers were measured formultiple cell lines from at least three independent experiments.To assay for self-renewal, ES cells treated with or without 2μM TM for two days were dissociated and plated at clonal density (10 cells/cm 2) on MEF feeders in 12-well dishes. At day 4, cells were fixed and stained for alkaline phosphatase activity according to manufacturer's instruction (Millipore) and counter-stained with 4,6-diamidino-2-phynylindole (DAPI).Colony formation efficiency was calculated by the counting the number of AP-positive colonies divided by the total number of cells plated. Number of cells per colony was determined by manually counting DAPI-stained cells. Positively stained cells were manually counted by two individuals who were blinded to the genotypes and TM treatment. Colony formation efficiency and number of cells/colony were determined from three independent experiments.Immunocytochemistry ES cells were washed with phosphate-buffered saline (PBS), and fixed with 4%paraformaldehyde (PFA) in PBS for 30 minutes at room temperature. EBs were washed with PBS, and fixed with 4% PFA at 4°C for 1 hour. After sinking in 30% sucrose at 4°C overnight,EBs were embedded in OCT, and cryosectioned at 10μm. For immunofluorescence, cells or sections were permeabilized and blocked using 0.1% Triton X-100 (Sigma) and 1% goat serum (Jackson ImmunoResearch) in PBS. Primary antibodies were diluted in blocking buffer and incubated overnight at 4°C. Secondary antibodies diluted in blocking buffer were incubated at room temperature for 1 hour. Cells were counter-stained with DAPI. Images were captured using a Zeiss Observer A.1 fluorescent microscope and AxioCam MRc5 camera. Cells were counted manually by two individuals.Primary antibodies used include: rabbit anti-Foxd312 (1:1000), rabbit anti-phospho-Histone 3(pH3, 1:500; Millipore), mouse anti-Oct4 (1:500; Beckton Dickinson), rabbit anti-Sox2(1:3000; kind gift from Dr. Larysa Pevny), rabbit anti-Nanog (1:500; Invitrogen), mouse anti-Foxa2 (1:50; Developmental Studies Hybridoma Bank), rabbit anti-Foxa2 (1:500; kind giftfrom Dr. Chin Chiang). Secondary antibodies used were Cy3 (Jackson ImmunoResearch) andAlexa 488 (Invitrogen) goat anti-rabbit or goat anti-mouse (1:500).Proliferation and TUNEL Assays500μg/ml of 5-bromo-2′-deoxyuridine (BrdU; Sigma) was added to the culture medium forone hour. Cells were then fixed with 4% PFA in PBS, washed with PBS, and treated with 2NHCl for 20 min. Immunocytochemistry was performed as described above using a mouse anti-BrdU (1:50; Beckton Dickinson) antibody. TUNEL assays were performed using the In SituCell Death Detection Kit (Roche) according to manufacturer's instructions. BrdU-positive,pH3-positive and TUNEL-positive cells were counted and the percentages calculated againsttotal number of DAPI-stained cells. Data were collected from more than 3 independentexperiments with more than 7000 DAPI-positive cells counted for each treatment.RNA Isolation and RT-PCRTotal RNA was isolated using the RNeasy Mini Kit or RNeasy Micro Kit (Qiagen) followedby TURBO DNase treatment (Ambion) according to manufacturer's instructions. cDNAsynthesis was carried out with 500ng of total RNA using SuperScript III qRT-PCR kit(Invitrogen). Real-time quantitative RT-PCR (qRT-PCR) was performed with ABI PRISM7900 Sequence Detection System using SYBR Green Master Mix (ABI). Samples were run induplicate and relative levels of each mRNA were examined by comparing Cycle Threshold(Ct) values for each reaction among samples using the Hypoxanthine phosphoribosyltransferase (Hprt) gene as reference. Relative expression levels of each mRNA were measuredNIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author Manuscriptfrom at least 3 independent experiments, and compared by Student's t-test. Primer sequencesare listed in Supplemental Table 1.RESULTS Reduction of Foxd3 Expression by 4-Hydroxytamoxifen Treatment Foxd3 is required for maintenance of the ICM and the establishment of ES cell lines 11.Therefore, in order to generate a genetic lesion of Foxd3 in ES cells, we needed to develop a regulatable system. The Foxd3 conditional allele (Foxd3fl )13 was designed so that Cre-mediated recombination deletes the entire coding region of Foxd3 gene. The CAGG Cre-ER TM transgenic line expresses a tamoxifen-regulated fusion protein of Cre fused to a modified ligand binding domain of the estrogen receptor (ER)15. Foxd3fl/fl ; CAGG Cre-ER TM (Foxd3fl/fl ;Cre-ER ) mice appeared normal and healthy and were intercrossed to obtain blastocysts for ES cell derivation. We obtained experimental lines (Foxd3fl/fl ;Cre-ER ) and control lines without the Cre-ER transgene (Foxd3fl/fl ) in equal numbers. Genotyping scheme is show in Fig. 1A. PCR of genomic DNA isolated from wild type, Foxd3fl/fl ;Cre-ER and Foxd3fl/fl ES cells confirmed the lack of wild type and presence of Foxd3fl alleles in untreated Foxd3fl/fl ;Cre-ER and Foxd3fl/fl cells, and the presence of the Cre transgene in Foxd3fl/fl ;Cre-ER cells (Fig. 1B). When cultured in complete ES cell medium without TM, ES cells of both genotypes appeared similar to wild type ES cells and displayed comparable growth rates. When TM was added to the culture medium, the presence and intensity of the PCR product from the Foxd3fl allele was unchanged in Foxd3fl/fl control ES cells. However, recombination of the Foxd3fl allele was detected in TM-treated Foxd3fl/fl ;Cre-ER experimental cells (Fig. 1B). Cre-mediated recombination was not complete because some Foxd3fl PCR product was detected in the TM treated cultures (Fig. 1B). Real-time quantitative PCR revealed that after 3 days of TM treatment, the PCR signal from the Foxd3fl allele in TM-treated Foxd3fl/fl ;Cre-ER cultures ranged from 13 to 24% of levels in untreated ES cells (n=3 experiments, data not shown).We analyzed four independent cell lines of each genotype for Foxd3 expression at the mRNA and protein levels; E1, E2, E3 and E4 were experimental lines and C1, C2, C3, and C4 werecontrol lines. Immunocytochemistry with a Foxd3 antibody revealed that 70-90% of the EScells in untreated cultures expressed Foxd3 (Fig. 1E), consistent with the expression of Foxd3in the ICM 11. However, when cultured in the presence of TM, Foxd3 mRNA and protein levelswere significantly reduced in experimental cells but not control cells (Fig. 1C, D; see also Fig.3A and C). Real time quantitative RT-PCR (qRT-PCR) analysis revealed a greater than 90%reduction of Foxd3 mRNA in Foxd3fl/fl ;Cre-ER ES cells one day after TM treatment and after2 days mRNA levels were nearly undetectable (Fig. 1D). Quantification of the number of Foxd3expressing cells by immunocytochemistry showed that after one day of TM treatment, about15% of the cells still contained Foxd3 protein (Fig. 1E, arrowheads). Two and three days ofTM treatment resulted in further reduction of Foxd3-positive cells in the cultures (7.4% and5.8% respectively) and a decrease in total Foxd3 protein as measure by western blot analysis(data not shown), suggesting that Cre-mediated recombination occurred in the vast majorityof cells under these conditions.Foxd3 is Required for ES Cell Self-renewal and SurvivalTo examine whether Foxd3 plays a role in growth and maintenance of ES cells, we quantifiedthe effect of TM treatment on cell numbers in experimental and control ES cells. WhenFoxd3fl/fl ; Cre-ER ES cells were cultured in the presence of 2μM TM, the number of survivingcells after 2-4 days was significantly reduced compared to control cultures (Fig. 2A). ControlFoxd3fl/fl ES cells cultured in the absence or presence of 2μM TM had a similar number ofsurviving cells after 2-4 days of TM treatment (Fig. 2A). These results suggest that loss ofFoxd3, but not treatment with TM, was responsible for the decreased cell numbers and colonyNIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author Manuscriptsize (Supplemental Fig. 1A) in ES cells. A higher concentration of TM (4μM) showed a non-specific toxic effect, control cell lines cultured in the presence of 4μM TM had reduced numberof cells (Fig. 2A). Therefore, we used 2μM TM for the rest of our experiments. Serial passagingof Foxd3fl/fl ; Cre-ER ES cells with TM treatment (ten passages) resulted in decreased numberof surviving cells at each passage; however, cells did not die off and continued culture waspossible in most cases (Supplemental Fig. 1B). However, many of these cells were Foxd3-positive, suggesting that they were selectively able to proliferate despite continued TM in themedium (data not shown).Self-renewal of stem cells is defined by the ability of a single cell to give rise to a new colonyof stem cells 18-20. Cells were cultured with or without TM for 2 days and plated at clonaldensity (10 cells/cm 2). Alkaline phosphatase (AP) staining was performed after 4 days andimmunocytochemistry confirmed that the mutant AP-positive colonies no longer expressedFoxd3 (Fig. 2B). The efficiency of colony formation of untreated experimental cells was44.4%, while TM-treated cells formed colonies at only 10.6% (Fig. 2C), suggesting a defectin self-renewal of Foxd3-deficient ES cells. In addition, although both untreated and 2μM TM-treated cultures of Foxd3fl/fl ;Cre-ER ES cell lines contained AP-positive colonies (Fig. 2B),treated colonies contained 3-4 fold fewer cells than control colonies (Fig 2D). When the sameassays were performed with Foxd3fl/fl control ES cells, we saw no difference in either colonysize or efficiency of colony formation with (42.7%) or without (45.6%) TM treatment(Supplemental Fig. 1C and D). These experiments demonstrate that Foxd3 is required for self-renewal of ES cells.The reduced cell numbers and colony size we observe in ES cell cultures could be caused byincreased cell death and/or decreased cell proliferation. We measured programmed cell deathby TUNEL labeling, and while control cultures without TM treatment exhibited few apoptoticcells, we observed more Foxd3fl/fl ;Cre-ER ES cells treated with TM undergoing apoptosis at2 and3 days after TM treatment compared to controls (Fig. 3A, arrows). Quantification of thepercent of TUNEL-positive cells showed a two-fold increase in apoptosis after 2 or 3 days ofTM treatment (Fig. 3B). There was no increase of apoptosis in Foxd3fl/fl control ES cells treatedwith TM (Fig. 3A). These data indicate that Foxd3 plays an important role in maintaining EScell survival. In mutant colonies, Foxd3 positive ES cells (Fig. 3A, arrowheads) and TUNELpositive cells (Fig. 3A, arrows) were observed, but Foxd3/TUNEL-double positive cells wererarely seen (2 out of 972 cells counted at day 2 and 3/1034 for day 3), suggesting a cell-autonomous function of Foxd3 in preventing ES cells from programmed cell death. To examineproliferation of Foxd3 mutant cells, we used BrdU incorporation to identify cells in S phaseof the cell cycle, and phospho-Histone 3 (pH3) as a marker for cells in G2-M phase. In mutantcultures, many Foxd3-deficient ES cells were BrdU-positive (Fig. 3C, arrows), suggesting thatFoxd3 is not required for ES cells to enter S phase of the cell cycle. Quantification of BrdU-positive cells showed no significant difference between mutant and control cultures (Fig. 3D).Similarly, the percent of pH3-positive cells in Foxd3 mutant ES cell cultures was similar tothat of untreated cultures (Fig. 3E and F). Together, these data show that the deletion ofFoxd3 has no significant effect on ES cell proliferation, but results in increased cell death.Maintenance of Stem Cell Gene Expression in Foxd3 Mutant ES CellsPluripotent ES cells are maintained in an undifferentiated state by the function of a set of keytranscription factors including Oct4, Sox2 and Nanog 21, 22, and overexpression of thesetranscription factors in combination with Klf4, c-Myc and/or Lin28 can reprogram somaticcells to adopt a stem cell phenotype 7-10, 23. To examine whether the loss of Foxd3 affects theexpression of these stem cell genes, we analyzed mRNA levels and protein expression ofmultiple stem cell transcription factors in Foxd3 mutant ES cells. Immunocytochemistry forOct4, Sox2 and Nanog showed that all three proteins were expressed in Foxd3 mutant ES cells NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscriptafter 3 days of TM treatment (Fig. 4A). Double immunocytochemistry for Oct4 and Foxd3confirmed that most Oct4-positive cells in mutant cultures were Foxd3-deficient (Fig. 4A),suggesting that Foxd3 is not required for maintaining the expression of these stem cell genes.A time-course analysis of mRNA levels for these genes along with Zfx , Esrrb , c-Myc , Tbx3and Klf4 by qRT-PCR revealed a small decrease of transcript levels of some of the genes afterdays 1 and 2 of TM treatment, and by day 3, expression levels were either unchanged or slightlyincreased (Fig. 4B). Oct4 protein levels in the treated experimental cultures were alsomaintained as measured by western blotting (data not shown). These findings indicate thatFoxd3 is not required to maintain the expression of the stem cell genes analyzed, and suggestthat Foxd3 may function downstream of these genes, or in a parallel pathway, in mouse EScells.Aberrant Differentiation of Foxd3 Mutant ES CellsWhen ES cells are cultured in the presence of mitotically inactivated embryonic fibroblastfeeders, serum and LIF, the overwhelming majority of the cells maintain an undifferentiatedphenotype. To examine the differentiation status of Foxd3 mutant ES cells cultured underconditions that normally inhibit differentiation, we used qRT-PCR to monitor expression ofdifferentiation markers for several lineages. A 2-4 fold increase in mRNA levels of primitiveendoderm markers Foxa2, AFP and Sox17 in TM treated cultures was observed (Fig. 5A),indicating increased differentiation to primitive endoderm of Foxd3-deficient ES cells.Trophectoderm is an extra-embryonic lineage that contributes to the placenta, and normallyES cells do not contribute to trophectoderm in chimeras or in vitro 24. Despite this lineagerestriction, Foxd3 mutant ES cells showed a 12-, 3.4- and 4.4-fold increase in mRNAs fortrophectoderm markers Cdx2, Fgfr2 and Csh1/PL1, respectively (Fig. 5B). After implantation,the ICM gives rise to primitive ectoderm/epiblast cells, which then contribute to cells in thethree primary germ layers. One of the first differentiation markers expressed in epiblast cellsin vivo, Fgf525, was increased 2-fold in Foxd3 mutant ES cells (Fig. 5C). Goosecoid (Gsc )and Brachyury (T ), molecular markers for mesendoderm 26, increased 5.4- and 12-fold,respectively (Fig. 5C). Together, these results suggest that Foxd3 normally functions tomaintain ES cells in an undifferentiated state by repressing differentiation towards extra-embryonic and embryonic lineages. Interestingly, expression levels of neuroectoderm markersNestin , Pax6 and Sox1 either decreased or remained the same in mutant cells (Fig. 5D),suggesting that Foxd3 selectively represses commitment of epiblast cells into mesoderm andendoderm lineages, but not ectoderm.During lineage diversification ES cells up-regulate lineage-specific genes while down-regulating self-renewal genes. One possible mechanism for precocious and aberrantdifferentiation is the disruption of this coordinated regulation, with the induction of lineagespecific gene networks at the same time that self-renewal gene expression is maintained. Totest this possibility in Foxd3 mutant ES cells, we performed double immunocytochemistry forthe endoderm marker Foxa2 and stem cell markers Oct4 and Sox2 (Fig. 5E). Both TM-treatedFoxd3fl/fl ; Cre-ER cultures (Fig. 5E) and untreated cultures (data not shown) contained veryfew cells that were double-positive for Foxa2 and Oct4 or Sox2 (Fig. 5E, arrowheads; 4-5%cells in both mutant and control cultures), suggesting the coordination between differentiationand self-renewal was not disrupted in Foxd3 mutant ES cells. Surprisingly, the percent of Oct4-positive and Foxa2-positive cells in control and mutant cultures were similar (Fig. 5F). Becausewe observed increased apoptosis in Foxd3 mutant cultures, we performed TUNEL analysisand immunolocalization for either Oct4 or Foxa2 to examine which population of cellspreferentially undergoes apoptosis. Oct4 cells are mostly in the internal portion of the colonieswhile Foxa2 cells are at the periphery (Fig 5E and G). In control cultures, TUNEL/Oct4 double-positive cells were rarely observed (Fig. 5H; 1.5% of total Oct4-positive cells); in mutantcultures, the percentage of TUNEL/Oct4 double-positive cells was similar (Fig. 5G and H;NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript2%). In contrast, we measured 6.6% TUNEL/Foxa2 double-positive cells in control culturesversus a significantly higher 28.7% TUNEL/Foxa2 double-positive cells in mutant cultures(Fig. 5G and H). Furthermore, in mutant cultures, not only did we observe TUNEL/Foxa2double-positive cells that were DAPI-positive (Fig. 5G, arrowheads), we also observed manycells at the edge of colonies that were TUNEL/Foxa2 double-positive but DAPI-negative,suggesting these cells have lost their nuclear integrity (Fig. 5G, arrows). Together, these dataindicate that Foxd3 mutant ES cells undergo aberrant differentiation, and these differentiatedcells have a higher tendency for apoptosis.Precocious Differentiation of Foxd3 Mutant Embryoid BodiesES cells not only have the capacity to self-renew in vitro , they are also capable of differentiatinginto multiple cell types. When ES cells are grown in suspension culture without LIF, the cellsaggregate to form embryoid bodies (EBs). EBs differentiate in a manner similar to the earlyICM 27-29. First, cells in the outer layer of the EBs differentiate to primitive endoderm thatforms a thick basement membrane separating the primitive endoderm layer from the inner coreof the EBs 27. Next, EBs undergo cavitation similar to formation of the proamniotic cavity inthe embryo 30. Cells in the inner core resemble epiblast/primitive ectoderm, and undergodifferentiation into cells from all three germ layers.Foxd3fl/fl ; Cre-ER ES cells formed EBs when cultured in the presence of 2μM TM. However,the EBs were much smaller than those from cells without TM treatment (Supplemental Fig.2A), consistent with reduced cell survival in the absence of Foxd3. QRT-PCR confirmed thatFoxd3 mRNA was decreased in TM-treated cells in day 2 to day 8 EBs (Supplemental Fig. 2Band C). We examined primitive endoderm differentiation by qRT-PCR analysis of Foxa2mRNA levels in control and mutant EBs, and observed increased Foxa2 expression inFoxd3 mutant EBs at all stages examined (Fig. 6A). In control D4 EBs, Foxa2 protein wasdetected primarily in the outer layer of primitive endoderm cells (Fig. 6B). In contrast, mutantEBs contained more Foxa2-positive cells, with many located within the core of the EBs. ByD8, in addition to the outer layer Foxa2-positive primitive endoderm cells, a few Foxa2-positive cells were observed in the inner core of control EBs. The Foxa2-positive cells inFoxd3 mutant EBs were more numerous and widespread in the inside of the EBs (Fig. 6B).Comparing the percent of Foxa2-positive cells in control and mutant EBs, we found a 5-foldand 3-fold increase in mutant EBs at D4 and D8, respectively (Fig. 6C). QRT-PCR analysisshowed increased expression of another early endoderm marker, Sox17, in mutant EBs (Fig.6D). mRNA levels of Foxa2 and Sox17 in mutant D2-D8 EBs were 3-fold to 18-fold higherthan those in control EBs (Fig. 6A and 6D; note the logarithmic scale of these graphs). Twolate endoderm markers AFP and Alb1 showed a similar increase of expression in mutant EBs(Fig. 6E and F). Expression levels of the trophoblast marker Cdx2, and the mesendodermmarker Gsc , were also up-regulated in mutant EBs while the neurectoderm marker Sox1 wasslightly decreased (Fig. 6G - I). Together, these data show that Foxd3 mutant EBs undergospontaneous differentiation into the same repertoire of lineages that was demonstrated withmutant ES cells in the presence of LIF: mesendoderm and trophectoderm, not neuroectoderm.DISCUSSIONFoxd3 Maintains ES Cell Survival and Self-renewal while Repressing DifferentiationES cells are unique in their ability to remain self-renewing and pluripotent in vitro . Theseprocesses are tightly regulated by a network of transcription factors, only some of which arewell understood 31. Our results establish two intertwined roles for Foxd3 in ES cells: thisprotein is required to maintain ES cell survival and self-renewal, while simultaneouslyrepressing differentiation into either normal differentiation pathways (endoderm andmesoderm) or abnormal ones (trophectoderm) (see model in Fig. 7).NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author ManuscriptThe role of Foxd3 regulating ES cell survival is in agreement with our in vivo studiesdemonstrating similar roles for Foxd3 in both early embryos 11 and neural crestprogenitors 13. Foxd3−/− embryos exhibit increased programmed cell death at 6.5 dpc, and invitro cultures of mutant blastocysts also contain more TUNEL-positive cells than wild typeblastocyst cultures 11. Deletion of Foxd3 in the neural crest, another multipotent cell lineage,resulted in considerable apoptosis of neural crest progenitor cells 13. Our experiments heremonitoring the expression of residual Foxd3 in treated cells together with TUNEL revealedvery few, if any, double-positive cells, strongly suggesting a cell-autonomous function ofFoxd3 in maintaining ES cell survival. Furthermore, our results show that Foxd3 mutant EScells maintaining Oct4 expression are protected from programmed cell death, whereas thosemutant cells that have differentiated inappropriately (marked by Foxa2) have a much highertendency to undergo apoptosis. These results suggest that the increased apoptosis in mutantES cells could be a secondary consequence of abberant differentiation. However, our resultsdo not rule out the possibility that Foxd3 may directly regulate genes in apoptotic pathways.Interestingly, the proliferation capacity of mutant ES cells is comparable to that of control cellseven as their ability to self-renew is greatly decreased. Therefore, our results point to a specificfunction of Foxd3 in maintaining ES cell survival and self-renewal, without affectingproliferation.The early lethality of Foxd3 mutant embryos makes it difficult to study the role of Foxd3 inregulating differentiation 11. Our ES cell data presented here demonstrate up-regulation ofmultiple differentiation markers for several cell lineages in Foxd3 mutant ES cells and EBs,suggesting that Foxd3 may act as a gatekeeper in pluripotent ES cells to prevent cells frominappropriate differentiation, thereby maintaining the pool of stem cells. Similarly, in thetrophoblast lineage, Foxd3 controls differentiation of trophoblast stem cells in order to maintaina multipotent progenitor cell population 12.Positioning Foxd3 in the Transcription Factor Network Regulating ES Cell Self-Renewal and PluripotencyRecent genome-wide studies suggest that Oct4, Sox2 and Nanog form a regulatory feedbackcircuit to maintain self-renewal and pluripotency in ES cells 32, 33. These are not the onlycrucial factors, a parallel pathway involving transcription factors Esrrb and Tbx3 also repressesdifferentiation to maintain ES cell self-renewal and pluripotency 22. Expression of Oct4, Sox2and/or Nanog in concert with Klf4, c-Myc and/or Lin-28 reprograms human or murine somaticcells from multiple sources to adopt stem cell behavior and generate iPSCs that share all theproperties of ES cells 6-10. In this study, we show that mRNA levels of Pou5f1, Sox2, Nanog,Esrrb , Tbx3, Klf4 and c-Myc are maintained or slightly up-regulated in Foxd3 mutant ES cells,suggesting that Foxd3 acts downstream of, or in parallel with, these factors to regulate self-renewal and inhibit spontaneous differentiation of ES cells. In fact, iPSCs induced by theexpression of OCT4, SOX2, NANOG and LIN28 from human somatic cells 10 express FOXD3(Dr. James Thomson, personal communication), suggesting that FOXD3 could be one of thedownstream executors to induce stem cell like properties in iPSCs.Context-Dependent Function of Foxd3 during DevelopmentOur results add to previous findings suggesting that Foxd3 is a multifunctional protein playinga role in many divergent processes in the embryo and in progenitor cells. As a transcriptionfactor, Foxd3 has been shown to act either as a repressor or an activator depending upon thecellular context. During Xenopus mesoderm induction, FoxD3 functions as a repressor toinduce mesoderm and elegant structure-function analyses identified a strong transcriptionalrepression domain in the C terminus of Xenopus FoxD334, 35. Within this domain is a Grouchocorepressor interaction motif conserved in Xenopus , zebrafish, chick and mammals. InXenopus , Foxd3 binds DNA and recruits Grg4 (Groucho-related gene 4) to repressNIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript。

相关文档
最新文档