期末专题复习 专题四 命题,全等三角形
专题04 全等三角形解答题压轴训练(原卷版)-2020-2021学年八年级数学期末复习压轴题训练
专题04 全等三角形解答题压轴训练(原卷版)解答题(共15小题)1.如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC =FE=8,顶点D与边AB的中点重合.(1)若DE经过点C,DF交AC于点G,求重叠部分(△DCG)的面积;(2)合作交流:“希望”小组受问题(1)的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC 于点G,如图2,求重叠部分(△DGH)的面积.2.如图1,∠BAC=∠DAE=90°,AB=AC,AD=AE,CE与BD相交于O,(1)求证:△ABD≌△ACE;(2)求∠BOC的度数;(3)如图2,若将条件∠BAC=∠DAE=90°换成∠BAC=∠DAE=60°,其他条件不变,求∠BOC的度数(4)若将∠BAC=∠DAE=60°换成∠BAC=∠DAE=x°,其他条件仍不变,猜想∠BOC=.(直接写出答案)3.有一张矩形纸片ABCD,E、F、分别是BC、AD上的点(但不与顶点重合),若EF将矩形ABCD分成面积相等的两部分,设AB=a,AD=b,BE=x.(1)求证:AF=EC;(2)用剪刀将该纸片沿直线EF剪开后,再将梯形纸片ABEF沿AB对称翻折,平移拼接在梯形ECDF的下方,使一底边重合,一腰落在DC的延长线上,拼接后,下方梯形记作EE'B'C.①当x:b为何值时,直线E'E经过原矩形的一个顶点?②在直线E'E经过原矩形的一个顶点的情形下,连接BE',直线BE'与EF是否平行?你若认为平行,请给予证明;你若认为不平行,试探究当a与b有何种数量关系时,它们就垂直?4.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠F AE的度数;(3)求证:CD=2BF+DE.5.如图,在△ABC中,AC=BC,∠ACB=90°,点D为△ABC内一点,且BD=AD.(1)求证:CD⊥AB;(2)∠CAD=15°,E为AD延长线上的一点,且CE=CA.①求证:DE平分∠BDC;②若点M在DE上,且DC=DM,请判断ME、BD的数量关系,并给出证明;③若N为直线AE上一点,且△CEN为等腰三角形,直接写出∠CNE的度数.6.如图,已知△ABC中,AB=6cm,∠B=∠C,BC=4cm,点D为AB的中点.若点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?7.已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG.若AG平分∠CAD,求证:AH=AC.8.在△ABC与△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,延长DE交BC于点F,连接DC,BE.(1)如图1,当点B,A,E同一直线上时,且∠ABD=30°,AE=2,求BC的长.(2)如图2,当F是中点时,求证:AE⊥CE.9.已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B,点C重合).以AD为边作等边三角形ADE,连接CE.(1)如图1,当点D在边BC上时.①求证:△ABD≌△ACE;②直接判断结论BC=DC+CE是否成立(不需证明);(2)如图2,当点D在边BC的延长线上时,其他条件不变,请写出BC,DC,CE之间存在的数量关系,并写出证明过程.10.把两个全等的直角三角板的斜边重合,组成一个四边形ACBD以D为顶点作∠MDN,交边AC、BC于M、N.(1)若∠ACD=30°,∠MDN=60°,当∠MDN绕点D旋转时,AM、MN、BN三条线段之间有何种数量关系?证明你的结论;(2)当∠ACD+∠MDN=90°时,AM、MN、BN三条线段之间有何数量关系?证明你的结论;(3)如图③,在(2)的结论下,若将M、N改在CA、BC的延长线上,完成图3,其余条件不变,则AM、MN、BN之间有何数量关系(直接写出结论,不必证明)11.如图:AE⊥AB,AF⊥AC,AE=AB,AF=AC,(1)图中EC、BF有怎样的数量和位置关系?试证明你的结论.(2)连接AM,求证:MA平分∠EMF.12.已知:△ABC的高AD所在直线与高BE所在直线相交于点F,过点F作FG∥BC,交直线AB于点G.(1)如图1,若△ABC为锐角三角形,且∠ABC=45°.求证:①△BDF≌△ADC;②FG+DC=AD;(2)如图2,若∠ABC=135°,直接写出FG、DC、AD之间满足的数量关系.13.探究问题1已知:如图1,三角形ABC中,点D是AB边的中点,AE⊥BC,BF⊥AC,垂足分别为点E,F,AE,BF 交于点M,连接DE,DF.若DE=kDF,则k的值为.拓展问题2已知:如图2,三角形ABC中,CB=CA,点D是AB边的中点,点M在三角形ABC的内部,且∠MAC =∠MBC,过点M分别作ME⊥BC,MF⊥AC,垂足分别为点E,F,连接DE,DF.求证:DE=DF.推广问题3如图3,若将上面问题2中的条件“CB=CA”变为“CB≠CA”,其他条件不变,试探究DE与DF之间的数量关系,并证明你的结论.14.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是.A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是.A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.15.如图,已知B(﹣1,0),C(1,0),A为y轴正半轴上一点,点D为第二象限一动点,E在BD的延长线上,CD交AB于F,且∠BDC=∠BAC.(1)求证:∠ABD=∠ACD;(2)求证:AD平分∠CDE;(3)若在D点运动的过程中,始终有DC=DA+DB,在此过程中,∠BAC的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC的度数?。
九年级二轮专题复习材料全等三角形、相似三角形
相似比。 2.相似三角形周长的比等于相似比。 3.相似三角形面积的比等于相似比的平方 相似三角形的判定方法有: 1.平行与三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似。
EF AB=a、BC=b,求 的值. EG
2. (2012•临沂 T18) 在 Rt△ABC 中,∠ACB=90,BC=2cm,CD⊥AB,在 AC 上取一点 E, 使 EC=BC,过点 E 作 EF⊥AC 交 CD 的延长线于点 F,若 EF=5cm,则 AE=
九年级二轮专题复习材料
专题四:全等三角形、相似三角形 【近 3 年临沂市中考试题】 1. (2011•临沂,T25,11 分)如图 1,将三角板放在正方形 ABCD 上,使三角板的直角顶点 E 与正方形 ABCD 的顶点 A 重合,三角扳的一边交 CD 于点 F.另一边交 CB 的延长线于点 G.
【知识点】 全等图形的性质:全等多边形的对应边、对应角分别相等。全等三角形对应边上的高,中线相等,对应角 的平分线相等;全等三角形的周长,面积也都相等。 1. 一般三角形全等的判定 (1)边边 边公理:三边对应相等的两个三角形全等(“边边边”或“SSS”) 。 (2)边角公理:两边和它们的夹角对应相等的两个三角形全等(“边角边”或“SAS”)。 (3)角边角公理: 两个角和它们的夹边分别对应相等的两个三角形全等(“角边角”或“ASA”)。 (4)角角边定理:有两角和其中一角的对边对应相等的两个三角形全等(“角角边”或“AAS”)。 2.直角三角形全等的判定 (1)利用一般三角形全等的判定都能证明直角三角形全等. (2)斜边和一条直角边对应相等的两个直角三角形全等(“斜边、直角边”或“HL”). 相似三角形的性质 1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于
2022年中考数学总复习微专题 第四章 全等三角形的常见模型
全等三角形的常见模型模型一平移模型典例1(2021·湖南衡阳)如图,点A,B,D,E在同一条直线上,AB=DE,AC∥DF,BC∥EF.求证:△ABC≌△DEF.【答案】∵AC∥DF,∴∠CAB=∠FDE,∵BC∥EF,∴∠ABC=∠DEF,在△ABC和△DEF中,∴△ABC≌△DEF(ASA).平移模型的本质是两个全等的三角形,其中一个可以通过另一个平移得到,所以这种模型往往与平行相联系.常见的平移模型的图形有:模型二对称模型典例2(2021·云南)如图,在四边形ABCD中,AD=BC,AC=BD,AC与BD相交于点E.求证:∠DAC=∠CBD.【答案】在△ACD和△BCD中,∴△ACD≌△BDC(SSS),∴∠DAC=∠CBD.对称模型的本质是两个全等的三角形能关于某条直线对称.常见的对称模型的图形有:模型三旋转模型类型1不共顶点的旋转模型典例3如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=CD.求证:BC∥EF.【答案】∵AB∥DE,∴∠A=∠D.∵AF=CD,∴AF+CF=CD+CF,∴AC=DF.在△ABC与△DEF中,∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴BC∥EF.类型2共顶点的旋转模型(手拉手模型)典例4(2021·湖南湘西州)如图,在△ABC中,点D在AB边上,CB=CD,将边CA绕点C旋转到CE的位置,使得∠ECA=∠BCD,连接DE与AC交于点F,且∠B=70°,∠A=10°.(1)求证:AB=ED;(2)求∠AFE的度数.【答案】(1)∵∠ECA=∠BCD,∴∠ECA+∠ACD=∠BCD+∠ACD,即∠DCE=∠ACB.由旋转可得AC=EC,在△BCA和△DCE中,∴△BCA≌△DCE(SAS),∴AB=ED.(2)由(1)中结论可得∠CDE=∠B=70°,又∵BC=CD,∴∠B=∠BDC=70°,∴∠ADE=180°-∠BDE=180°-70°×2=40°,∴∠AFE=∠ADE+∠A=40°+10°=50°.无论哪种类型,图中两个全等三角形都满足其中一个可以通过另一个旋转得到.其常见图形有:典例5如图,在△ABC中,∠ACB=90°,AC=BC,点D,E在边AB上,且∠DCE=45°.试说明:AD2+BE2=DE2.【答案】如图所示,将△BCE绕点C顺时针旋转90°得到△ACF,连接DF.∵AC=BC,∠ACB=90°,∴∠CAB=∠B=45°.由旋转可知∠FCE=90°,CF=CE,AF=BE,∠FAC=∠B=45°,∴∠FAD=90°.∵∠DCE=45°,∴∠DCF=45°,∴∠DCF=∠DCE,∴△CDF≌△CDE(SAS),∴DF=DE.∵AD2+AF2=DF2,∴AD2+BE2=DE2.半角模型也是旋转模型的特殊情况.等边三角形含半角(∠BDC=120°)等腰直角三角形含半角正方形含半角模型四一线三等角模型典例6如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是D,E,AD=3,BE=1,求DE的长.【答案】∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠ACB=∠BCE+∠DCA=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,∴△CEB≌△ADC(AAS),∴DC=BE=1,CE=AD=3,∴DE=CE-DC=3-1=2.一线三等角模型是以一条直线构造三个相等的角构造全等三角形.常见图形有:提分训练1.如图,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.解:连接BE.∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD.在△ACD和△BCE中,∴△ACD≌△BCE(SAS),∴AD=BE.∵AC=BC=6,∴AB =6.∵∠BAC=∠CAE=45°,∴∠BAE=90°.在Rt△BAE中,BE ==9,∴AD=9.2.(2021·陕西改编)如图,AB,BC,CD,DE是四根长度均为5 cm的火柴棒,点A,C,E共线.若AC=6 cm,CD⊥BC,求线段CE的长度.解:过点B作BM⊥AC于点M,过点D作DN⊥CE于点N.∵BA=BC,DC=DE,∴AM=CM=3,CN=EN.∵CD⊥BC,∴∠BCD=90°,∴∠BCM+∠CBM=∠BCM+∠DCN=90°,∴∠CBM=∠DCN.在△BCM和△CDN中,∴△BCM≌△CDN(AAS),∴BM=CN.在Rt△BCM中,∵BC=5,CM=3,∴CN=BM==4,∴CE=2CN=2×4=8(cm).3.(2021·贵州黔东南州)在四边形ABCD中,对角线AC平分∠BAD.【探究发现】(1)如图1,若∠BAD=120°,∠ABC=∠ADC=90°.求证:AD+AB=AC; 【拓展迁移】(2)如图2,若∠BAD=120°,∠ABC+∠ADC=180°.猜想AB,AD,AC三条线段的数量关系,并说明理由.解:(1)∵AC平分∠BAD,∠BAD=120°,∴∠DAC=∠BAC=60°.∵∠ADC=∠ABC=90°,∴∠ACD=∠ACB=30°,∴AD=AC,∴AD+AB=AC.(2)AD+AB=AC.理由:过点C分别作CE⊥AD于点E,CF⊥AB于点F.∵AC平分∠BAD,∴CF=CE.∵∠ABC+∠ADC=180°,∠EDC+∠ADC=180°,∴∠FBC=∠EDC.在△CED和△CFB中,∴△CED≌△CFB(AAS),∴FB=DE,∴AD+AB=AD+DE+AF=AE+AF.在四边形AFCE中,由(1)知AE+AF=AC,∴AD+AB=AC.。
全等三角形题型归类及解析
全等三角形难题题型归类及解析一、角平分线型角平分线是轴对称图形,所以我们要充分的利用它的轴对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是经过平分线上一点作两边的垂线。
另外掌握两个常用的结论:角平分线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。
1. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC ,连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。
2. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M ,•PN ⊥CD 于N ,判断PM 与PN 的关系.3. 已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC 。
(1) 求证:∠ABE=∠C ;(2) 若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=5,AC=8,求DC 的长。
.AB C DE PD A CBM N5、如图所示,已知∠1=∠2,EF ⊥AD 于P ,交BC 延长线于M ,求证:2∠M=(∠ACB-∠B )21PFMDBA CE6、如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E .(1) 若BD 平分∠ABC ,求证CE=12BD ;(2) 若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围;若不变,求出它的度数,并说明理由。
8、如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB ,求证:AC=AE+CD .二、中点型由中点应产生以下联想:ED C BA1、想到中线,倍长中线2、利用中心对称图形构造8字型全等三角形3、在直角三角形中联想直角三角形斜边上的中线4、三角形的中位线2、已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且BE A C ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G . (1)求证:BF AC =;(2)求证:12CE BF =D AE FCHGB3、如图,△ABC 中,D 是BC 的中点,DE ⊥DF ,试判断BE+CF 与EF 的大小关 系,并证明你的结论。
全等三角形的判定总复习
AB=A´B´
BC=B´C´
∴Rt△ABC≌ Rt△A´B´C´(HL)
B
B′
A
C
已知:如图,在△ABC和△ABD中,AC⊥BC,
BD⊥AD,垂足分别为C,D,AC=BD
(1)求证: △ABC≌△BAD.
(2)求证:BC=AD
(1)解: ∵ AC⊥BC, BD⊥AD D
C
∴ ∠C=∠D=90°
在Rt△ABC和 Rt△BAD中
例子1:如图,在△AEC和△ADB中,已 知AE=AD,AC=AB,请说明△AEC ≌ △ADB的理由。
解:在△AEC和△ADB中
C
_A_E__=__A_D_(已知)
D
∠A= ∠A( 公共角)
A
E
B
_A_C___=_A__B_(已知)
∴ △AEC≌△ADB( SAS )
例2:如图,AC=BD,∠CAB= ∠DBA,
用符号语言表达为:
在△ABC和△DEF中
∠A=∠D (已知 )
AB=DE(已知 )
∠B=∠E(已知 )
B
∴ △ABC≌△DEF(ASA)
A
D
CF E
例1: 已知如图,O是AB的中点,∠A=∠B,
求证:△AOC≌△BOD
证明:
∵ O是AB的中点(已知) C
∴ OA=OB(中点定义)
在△AOC和△BOD中 A
,有
AB=AB,
A
B
AC=AD. ∴ Rt△ACB≌Rt△ADB (HL). (2)∵ Rt△ACB≌Rt△ADB (HL). ∴ BC=AD
例2. 如图,AC=AD,∠C,∠D是直角, 将上述条件标注在图中,求证BC=BD
全等三角形的讲义整理讲义
全等三角形专题一 全等三角形的性质【知识点1】能够完全重合的两个三角形叫做全等三角形。
(两个三角形全等是指两个三角形的大小和形状完全一样,与他们的位置没有关系。
)【知识点2】两个三角形重合在一起,重合的顶点叫做对应顶点;重合的边叫做 对应边;重合的角叫做对应角。
【例题1】如图,已知图中的两个三角形全等,填空:(1)AB 与 是对应边,BC 与 是对应边, CA 与 是对应边;(2)∠A 与 是对应角,∠ABC 与 是对应角, ∠BAC 与 是对应角【方法总结】在两个全等三角形中找对应边和对应角的方法。
(1)有公共边的,公 共边一定是对应边;(2)有公共角的,公共角一定是对应角;(3)有对顶角的,对顶角是对应角;(4)在两个全等三角形中,最长的边对最长的边,最短的边对最短的边,最大的角对最大的角,最小的角对最小的角。
【练习1】 如图,图中有两对三角形全等,填空: (1)△BOD ≌ ; (2)△ACD ≌ .【知识点3】 全等三角形的对应边相等,对应角相等。
(由定义还可知道,全等三角形的周长相等,面积相等,对应边上的中线和高相DABCOE ABCD等,对应角的角平分线相等)【例题2】 (海南省中考卷第5题) 已知图2中的两个三角形全等,则∠α度数是( )A.72°B.60°C.58°D.50°【例题3】(清远)如图,若111ABC A B C △≌△,且11040A B ∠=∠=°,°,则1C ∠= .【练习2】 如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( )A 20° B.30° C .35° D .40°【练习3】如图,△ABD 绕着点B 沿顺时针方向旋转90°到△EBC , 且∠ABD=90°。
(完整版)全等三角形的判定常考典型例题及练习
(完整版)全等三角形的判定常考典型例题及练习-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN全等三角形的判定一、知识点复习 ①“边角边”定理:两边和它们的夹角对应相等的两个三角形全等。
(SAS )图形分析:书写格式: 在△ABC 和△DEF 中⎪⎩⎪⎨⎧=∠=∠=EFBC E B DEAB∴△ABC ≌△DEF (SAS )②“角边角”定理:两角和它们的夹边对应相等的两个三角形全等。
(ASA)图形分析:书写格式: 在△ABC 和△DEF 中 ⎪⎩⎪⎨⎧∠=∠=∠=∠FC EF BC EB∴△ABC ≌△DEF(ASA)③“角角边”定理:两个角和其中一个角的对边对应相等的两个三角形全等。
(AAS )图形分析:书写格式:在△ABC 和△DEF 中⎪⎩⎪⎨⎧=∠=∠∠=∠EFBC F C EB∴△ABC ≌△DEF(AAS)④“边边边”定理:三边对应相等的两个三角形全等。
(SSS )图形分析:书写格式: 在△ABC 和△DEF 中 ⎪⎩⎪⎨⎧===EF BC DF AC DE AB∴△ABC ≌△DEF(AAS)⑤“斜边、直角边”定理:斜边和一条直角边对应相等的两个直角三角形全等。
(HL )图形分析:书写格式:在△ABC 和△DEF 中 ⎩⎨⎧==DF AC DE AB ∴△ABC ≌△DEF (HL )一个三角形共有三条边与三个角,你是否想到这样一问题了:除了上述四种识别法,还有其他的三角形全等识别法吗比如说“SSA ”、“AAA ”能成为判定两个三角形全等的条件吗两个三角形中对应相等的元素 两个三角形是否全等反例 SSA⨯AAA⨯二、常考典型例题分析第一部分:基础巩固1.下列条件,不能使两个三角形全等的是( )A.两边一角对应相等 B.两角一边对应相等 C.直角边和一个锐角对应相等 D.三边对应相等2.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙4.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE5.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD6.如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线OC,作法用得的三角形全等的判定方法是()A.SAS B.SSS C.ASA D.HL第二部分:考点讲解考点1:利用“SAS ”判定两个三角形全等1.如图,A 、D 、F 、B 在同一直线上,AD=BF ,AE=BC ,且AE ∥BC .求证:△AEF ≌△BCD .2.如图,AB=AC ,AD=AE ,∠BAC=∠DAE .求证:△ABD ≌△ACE .考点2:利用“SAS ”的判定方法解与全等三角形性质有关的综合问题3.已知:如图,A 、F 、C 、D 四点在一直线上,AF=CD ,AB ∥DE ,且AB=DE ,求证:FEC CBF ∠=∠考点3:利用“SAS ”判定三角形全等解决实际问题 4.有一座小山,现要在小山A 、B 的两端开一条隧道,施工队要知道A 、B 两端的距离,于是先在平地上取一个可以直接到达A 和B 的点C ,连接AC 并延长到D ,使CD=CA ,连接BC 并延长到E ,使CE=CB ,连接DE ,那么量出DE 的长,就是A 、B 的距离,你能说说其中的道理吗?考点4:利用“ASA”判定两个三角形全等5.如图,已知AB=AD,∠B=∠D,∠1=∠2,求证:△AEC≌△ADE.6.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;考点6:利用“ASA”与全等三角形的性质解决问题:7.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E;求证:BC=DC考点7:利用“SSS”证明两个三角形全等8.如图,A、D、B、E四点顺次在同一条直线上,AC=DF,BC=EF,AD=BE,求证:△ABC≌△EDF.考点8:利用全等三角形证明线段(或角)相等9.如图,AE=DF,AC=DB,CE=BF.求证:∠A=∠D.考点9:利用“AAS”证明两个三角形全等10.如图,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,求证:△ABD≌△ACE.考点10:利用“AAS”与全等三角形的性质求证边相等11.(2017秋?娄星区期末)已知:如图所示,△ABC中,∠ABC=45°,高AE与高BD交于点M,BE=4,EM=3.(1)求证:BM=AC;(2)求△ABC的面积.考点11:利用“HL”证明两三角形全等12.如图,在△ABC中,D是BC边的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF。
初三复习专题--全等三角形
•
OA=OC,EA=EC,
•
请阐明∠ A=∠C。
AO C
DB
E
• 分析:欲证明∠A= ∠C,有三条思路,一 是证明△AOD与△COB全等,而由已知条件 不可直接得到,二是连结OE,阐明△AOE与 △COE全等,这条路显而易得, ∠A=∠C, 三是证明 △ABE与△CDE全等,这也是不能 直接证明到的,因此应采用第二条思路。
全等三角形
• 一:考纲规定与命题趋势
• 1. 理解并掌握五种识别三角形全等的办法, 会灵活的对的选择适宜的识别办法判断两 个三角形与否全等。
• 2. 对的运用全等三角形的性质计算三角形 中未知的边或角,逐步培养逻辑推理能力 和形象思维能力。
• 3. 全等三角形的应用是学习几何证明题的 基础,因此它自然是中考必考知识点,同 窗们务必学好它。
• 阐明:在解决几何问题的过程中,有时根 据条件不能较顺利的得到结论,这时添加 必要的辅助线是十分重要的捷径。
• 例3.P是线段AB上一点,△APC与△BPD都是
等边三角形,请你判断:AD与BC相等吗?
试阐明理由。
D
C
AP
B
• 分析:观察图形发现它们所在的三角形全
等,故考虑通过全等来阐明。
• 解:由△APC和△BPD都是等边三角形可知 AP=PC,BP=DP,∠APC=∠BPD=60°,
变化,结论往往仍然成立,解决大同小异,
要善于抓住规律。
A
A
B
l
3
E
12
D
C
E
①
D
1
l
2
B
C
②
• 例9.如图,等边△ABC的边长为a,在BC的 延长线上取点D,使CD=b,在BA的延长线 上取点E,使AE=a+b,证明EC=ED。
人教版八年级上册第十二章全等三角形知识点复习
A. ①④
B.①②
C.②③
D.③④
2.如图,ABD ≌ CDB ,且 AB 和 CD 是对应边,下面四个结论中不正确的是( )
A. ABD和CDB 的面积相等
A
D
B. ABD和CDB 的周长相等 C. A + ABD = C + CBD
B
C
D.DAD//BC 且 AD=BC
3.如图, ABC ≌ BAD ,A 和 B 以及 C 和 D 分别是对应点,如果
4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边”或“SSS”.
AB = DE 如图,在 ABC 和 DEF 中 BC = EF
AC =
【典型例题】
例1.如图, ABC ≌ ADC ,点 B 与点 D 是对应点, BAC = 26 ,且 B = 20 , SABC = 1,求 CAD , D, ACD 的度数及 ACD 的面积.
数及 BC 的长.
E
F
A
BC
D
本文来源于网络,如果侵权行为,请联系删除!
精品文档,助力人生,欢迎关注小编!
11.如图,在 ABC与ABD 中,AC=BD,AD=BC,求证: ABC ≌ ABD
D A
C B
全等三角形(一)作业
1.如图, ABC ≌ CDA ,AC=7cm,AB=5cm.,则 AD 的长是( )
求证:(1) DE ⊥ AB ; (2)BD 平分 ABC (角平分线的相关证明及性质)
B
A E
D
C
【巩固练习】 1.下面给出四个结论:①若两个图形是全等图形,则它们形状一定相同;②若两个图形的
形状相同,则它们一定是全等图形;③若两个图形的面积相等,则它们一定是全等图形; ④若两个图形是全等图形,则它们的大小一定相同,其中正确的是( )
人教版八年级数学上册全等三角形期末复习专题试卷及答案
2016-2017学年度第一学期八年级数学期末复习专题全等三角形姓名:_______________班级:_______________得分:_______________一选择题:1.下列结论错误的是()A.全等三角形对应边上的中线相等B.两个直角三角形中,两个锐角相等,则这两个三角形全等C.全等三角形对应边上的高相等D.两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等2.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°3.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是1000,那么△ABC中与这个角对应的角是()A.∠AB.∠BC.∠CD.∠D4.如图,△ABC≌△DEF,则此图中相等的线段有()A.1对B.2对C.3对D.4对5.要测量河两岸相对的两点,的距离,先在的垂线上取两点,,使,再作出的垂线,使,,在一条直线上(如图所示),可以说明△≌△,得,因此测得的长就是的长,判定△≌△最恰当的理由是( )A.边角边B.角边角C.边边边D.边边角6.如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不正确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE7.如图,已知点E在△ABC的外部,点D在BC边上,DE交AC于F,若∠1=∠2=∠3,AC=AE,则有( )A.△ABD≌△AFDB.△AFE≌△ADCC.△AEF≌△ACBD.△ABC≌△ADE8.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有()A.1个B.2个C.3个D.4个9.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1 B.2 C.3 D.410.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于( )A.5B.4C.3D.211.如图,在△ABC中,BD平分∠ABC,与AC交于点D,DE⊥AB于点E,若BC=5,△BCD的面积为5,则ED的长为().A. B. 1 C.2 D.512.如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A.①B.②C.①②D.①②③13.如图所示,△ABC是等边三角形,AQ=PQ, PR⊥AB于R点,PS⊥AC于S点,PR=PS.则四个结论:①点P在∠BAC的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的结论是( )A.①②③④B.只有①②C.只有②③D.只有①③14.如图,AC=AD,BC=BD,连结CD交AB于点E,F是AB上一点,连结FC,FD,则图中的全等三角形共有()A.3对B.4对C.5对D.6对15.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.416.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论共有( )A.4个B.3个C.2个D.1个17.正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为( )A.10B.12C.14D.1618.如图,△ABC中,∠ACB=90°,D为AB上任一点,过D作AB的垂线,分别交边AC、BC的延长线于EF两点,∠BAC∠BFD的平分线交于点I,AI交DF于点M,FI交AC于点N,连接BI.下列结论:①∠BAC=∠BFD;②∠ENI=∠EMI;③AI⊥FI;④∠ABI=∠FBI;其中正确结论的个数是( )A.1个B.2个C.3个D.4个19.如图,点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点(其中P、Q不与端点重合),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,下列结论:⑴BP=CM;⑵△ABQ≌△CAP;⑶∠CMQ的度数始终等于60°;⑷当第秒或第秒时,△PBQ为直角三角形.其中正确的结论有( )A.1个B.2个C.3个D.420.如图,在不等边△ABC中,PM⊥AB于点M,PN⊥AC于点N,且PM=PN,Q在AC上,PQ=QA,MP=3,△AMP的面积是6,下列结论:① AM<PQ+QN,②QP∥AM,③△BMP≌△PQC,④∠QPC+∠MPB=90°,⑤△PQN的周长是7,其中正确的有()个.A.1B.2C.3D.4二填空题:21.小明将一块三角形的玻璃棒摔碎成如图所示的四块(即图中标有1,2,3,4的四块),若只带一块配成原来一样大小的三角形,则应该带第_______块.22.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=________.23.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是______.24.如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△ABO ≌△ADO.下列结论:①AC ⊥BD;②CB=CD;③△ABC ≌△ADC;④DA=DC.其中所有正确结论的序号 是 .25.如图,△ABC 的角平分线交于点P ,已知AB ,BC ,CA 的长分别为5,7,6,则S △ABP ∶S △BPC ∶S △APC =___________.26.如图,BD 平分∠ABC ,DE ⊥AB 于E ,DF ⊥BC 于F ,AB=6,BC=8.若S △ABC =28,则DE= .27.如图,OP 平分∠AOB ,PB ⊥OB ,OA=8cm ,PB=3cm ,则△POA 的面积等于 cm 2.28.如图的三角形纸片中,AB=8cm,BC=6cm,AC=7cm,沿过点B的直线折叠三角形,使点C落在AB边的点E处,折痕为BD,则△AED的周长为.29.如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC 上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE与△CQP全等时,时间t为s.30.如图,在△ABC中,AB=AC,BE=CD,BD=CF,则∠α与∠A之间的数量关系为.31.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC,判断 EC与BF的关系,并说明理由.32.如图,已知△ABC中,点D在边AC上,且BC=CD(1)用尺规作出∠ACB的平分线CP(保留作图痕迹,不要求写作法);(2)在(1)中,设CP与AB相交于点E,连接DE,求证:BE=DE.33.如图,四边形ABDC中,∠D=∠ABD=90゜,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:AB+CD=AC.34.在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,△ABD和△AFD关于直线AD对称,∠FAC的平分线交BC 于点G,连接FG.(1)求∠DFG的度数;(2)设∠BAD=θ,①当θ为何值时,△DFG为等腰三角形;②△DFG有可能是直角三角形吗?若有,请求出相应的θ值;若没有,请说明理由.35.如图,在△ABC中,AD为BC边上的中线,E为AC上的一点,BE交AD于点F,已知AE=EF. 求证:AC=BF.36.已知三角形ABC中,∠A=90°,AB=AC,D为BC的中点,(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论.37.如图(1)边长为6的等边三角形ABC中,点D沿射线AB方向由A向B运动,点F同时从C出发,以相同的速度沿射线BC方向运动,过点D作DE⊥AC,连结DF交射线AC于点G.(1)当点D运动到AB的中点时,求AE的长;(2)当DF⊥AB时,求AD的长及△BDF的面积;(3)小明通过测量发现,当点D在线段AB上时,EG的长始终等于AC的一半,他想当点D运动到图(2)的情况时,EG的长始终等于AC的一半吗?若改变,说明理由,若不变,请证明EG等于AC的一半.38.问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠D=90°.E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系,并说明理由.拓展应用:如图2,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西40°的A处,舰艇乙在指挥中心南偏东80°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以50海里/小时的速度,同时舰艇乙沿北偏东50°的方向以70海里/小时的速度各自前进2小时后,在指挥中心观测到甲、乙两舰艇分别到达E,F处,两舰艇与指挥中心之间的夹角为70°,试求此时两舰艇之间的距离.参考答案1、B2、B3、A4、D5、B6、D7、D8、C9、D 10、B 11、C 12、D 13、A 14、D 15、C 16、A 17、D.18、C 19、C 20、C 21、2 块. 22、55° 23、4 .24、①②③25、5∶7∶6 26、4; 27、12 cm2.28、9cm .29、1或4 30、2∠α+∠A=180°.31、平行且相等32、【解答】(1)解:如图1,射线CP为所求作的图形.(2)证明:∵CP是∠ACB的平分线∴∠DCE=∠BCE.在△CDE和△CBE中,,∴△DCE≌△BCE(SAS),∴BE=DE.33、1,∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴DM=EM.在△ADM和△NEM中,∴.∴△ADM≌△NEM.∴AM=MN.∴M为AN的中点.(2)证明:如图2,∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.(3)△ACN仍为等腰直角三角形.证明:如图3,此时A、B、N三点在同一条直线上.∵AD∥EN,∠DAB=90°,∴∠ENA=∠DAN=90°.∵∠BCE=90°,∴∠CBN+∠CEN=360°﹣90°﹣90°=180°.∵A、B、N三点在同一条直线上,∴∠ABC+∠CBN=180°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.34、35、证:延长AD到G,使得DG=AD.(1分)在△ADC和△GDB中∴△ADC≌△GDB ∴AC=BG 且∠CAD=∠G∵AE=EF∴∠EFA=∠EAF∴∠G=∠EFA∵∠EFA=∠BFG∴∠G=∠BFG∴BG=BF∵AC=BG∴BF=AC36、(1)证明:连结AD.∵AB=AC ∠BAC=90° D为BC的中点∴∠B=∠BAD=∠DAC=45°,AD⊥BC∴BD=AD, ∠BDA=90°又BE=AF∴△BDE≌△ADF (SAS)∴ED=FD ∠BDE=∠ADF∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°∴△DEF为等腰直角三角形(2)△DEF仍为等腰直角三角形证明:连结AD∵AB=AC ∠BAC=90° D为BC的中点∴∠DAC=∠BAD=∠ABD=45°,AD⊥BC∴BD=AD, ∠BDA=90°∴∠DAF=∠DBE=135°又AF=BE∴△DAF≌△DBE (SAS)∴FD=ED ∠FDA=∠EDB∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°∴△DEF仍为等腰直角三角形37、(1)AE=(2)设AD=x,则CF=x,BD=6-x,BF=6+x∵∠B=60°,∠BDF=90°∴BF=2BD 即6+x=2×(6-x)∴x=2即AD=2 ∴BD=4,DF==×4×=∴S△BDF(3)不变过F作FM⊥AG延长线于M由AD=CF,∠AED=∠FMC=90°,∠A=∠FCM=60°可得FM=DE易知△DEG≌△FMG由全等可得CM=AE,FG=GM即AC=AE+EC=CM+CE=EG+GM=2GE38、(1)延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论应是EF=BE+DF ;(2)如图,连接EF,延长AE、BF相交于点C,∵∠AOB=40°+90°+(90°﹣80°)=140°,∠EOF=70°,∴∠EAF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣40°)+(80°+50°)=180°,延长FB到G,使BG=AE,连接OG,先证明△AOE≌△BOG,再证明△OEF≌△OGF,可得出结论应是EF=AE+BF ;即EF=2×(50+70)=240海里.答:此时两舰艇之间的距离是240海里.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
全等三角形知识点演练(5大核心考点,91题)讲练)2023年中考数学一轮大单元复习
专题4.3 全等三角形考点1:全等形和全等三角形性质例1.(1)(2022秋·江苏连云港·八年级校考阶段练习)下列图标中,不是由全等图形组合成的是()A.B.C.D.(2)(2023秋·浙江台州·八年级统考期末)如图,△ABC≌△DEF,且∠A=55°,∠B=75°,则∠F=______°.(3)(2022秋·湖南岳阳·八年级校考期中)如图,△ABC≌△DEC,点B、C、D在同一直线上,且BD=12,AC=7,则CE长为____________.知识点训练1.(2023秋·河北邢台·八年级统考期末)与下图全等的图形是()A.B.C.D.2.(2020秋·江苏常州·八年级常州市清潭中学校考期中)找出下列各组图中的全等图形()A.②和⑥B.②和⑦C.③和④D.⑥和⑦3.(2022秋·福建龙岩·八年级统考期末)如图,△DBC≌△ECB,且BE与CD相交于点A,下列结论错误的是()A.BE=CD B.AB=ACC.∠D=∠E D.BD=AE4.(2023秋·四川自贡·八年级统考期末)如图所示,△ABC≌△AEF,∠B=∠E,有以下结论:①AC=AE;②EF=BC;③∠EAB=∠FAC;④∠EFA=∠AFC.其中正确的个数是()5.(河北省唐山市2022-2023学年八年级上学期期末考试数学试题)如图,△ABC≌△DEC,点B,C,D在同一条直线上,且CE=1,CD=3,则BD的长是()A.1.5B.2C.3.5D.46.(2023秋·四川南充·八年级统考期末)如图,点A,E,C在同一直线上,△ABC≌△DEC,AE=3,CD=8,则BC的长为()A.3B.5C.8D.117.(2023秋·天津·八年级统考期末)如图,已知△ABC≌△DEF,CD平分∠BCA,DF与BC交于点G.若∠A=26°,∠CGF=83°,则∠E的度数是()A.34°B.36°C.38°D.40°8.(2022秋·河南许昌·八年级统考期中)如图所示的图案是由全等的图形拼成的,其中AD=0.8,BC=1.6,则AF=()9.(2022秋·山东菏泽·八年级统考期中)下列说法正确的是()A.形状相同的两个三角形全等B.三个角都分别相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等10.(2022秋·山东烟台·七年级统考期中)下列说法:①角是轴对称图形;②等腰三角形有三条对称轴;③关于某直线成轴对称的两个三角形全等;④两个全等三角形一定关于某条直线成轴对称.其中正确的个数是()A.1个B.2个C.3个D.4个11.(2022秋·江苏宿迁·八年级统考期中)如图所示的网格是由9个相同的小正方形拼成的,图形的各个顶点均为格点,则∠1−∠2−∠3的度数为().A.30°B.45°C.55°D.60°12.(2023·福建南平·统考一模)如图,在△ABC中,∠BAC=135°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E.当点A、D、E在同一条直线上时,下列结论不正确...的是()A.△ABC≌△DEC B.AE=AB+CDC.AD=√2AC D.AB⊥AE13.(2021秋·陕西商洛·八年级统考期末)在平面直角坐标系内,点O为坐标原点,A(−4,0),B(0,3).若在该坐标平面内有一点P(不与点A、B、O重合)为一个顶点的直角三角形与Rt△ABO全等,且这个以点P 为顶点的直角三角形与Rt△ABO有一条公共边,则所有符合条件的三角形个数为()A.3个B.4个C.6个D.7个14.(2023秋·云南曲靖·八年级统考期末)如图,在平面直角坐标系中,点A的坐标为(3,0),点B的坐标为(0,6),点C在x轴上运动(不与点A重合),点D在y轴上运动(不与点B重合),当以点C、O、D为顶点的三角形与△AOB全等时,则点D的坐标为______.15.(2023秋·江苏镇江·八年级统考期末)如图,△AOD≌△BOC,∠A=30°,∠C=50°,∠AOC=150°,则∠COD=______°.16.(2023秋·四川南充·八年级统考期末)如图,△ABC绕点C旋转得到△DEC,点E在边AB上,若∠B=75°,则∠ACD的度数是_________.考点2:全等三角形的判定及应用例2.(1)(2023秋·山东威海·七年级统考期末)为了测量湖的宽度AB,小明同学先从A点走到点O处,再继续向前走相同的距离到达点C(即OC=OA),然后从点C沿与AB平行的方向,走到与点O,B共线的点D处,测量C,D间的距离就是湖的宽度.下列可以判断△OCD≌△OAB的是()A.SSS B.SSA C.SAS D.ASA(2)(2023秋·黑龙江齐齐哈尔·八年级统考期末)如图,已知∠CAE=∠DAB,AC=AD,请你再添加一个条件:___________,使△ABC≌△AED.(3)(2023秋·江苏徐州·八年级统考期末)根据下列条件,能确定△ABC(存在且唯一)的是()A.AB=2,BC=3,AC=6B.AC=4,BC=3,∠A=60°C.AB=5,BC=3,∠B=30°D.∠A=45°,∠B=45°,∠C=90°(4)(2023秋·广东汕头·八年级统考期末)如图,在△ABC中,∠ACB=65°,∠BAC=70°,AD⊥BC于点D,BM⊥AC于点M,AD与BM交于点P,则∠BPC=______.例3(2022秋·浙江宁波·八年级校考期末)如图,在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,P是OC的中点,D是BC延长线上一点,满足PB=PD.(1)求证∠1=∠2;(2)探究CD与AP之间的数量关系,并给出证明.例4.(2023秋·黑龙江齐齐哈尔·八年级统考期末)综合与实践【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图(1),△ABC中,AB=8,AC=6,求BC边上的中线AD的取值范围,经过组内合作交流.小明得到了如下的解决方法:延长AD到点E,使DE=AD请根据小明的方法思考:(1)由已知和作图得到△ADC≌△EDB的理由是()A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是___________.【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑倍长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图(2),AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.知识点训练1.(2022秋·浙江温州·八年级校考期中)如图,在Rt△ABC中,∠ACB=90∘,∠ABC=25∘,O为斜边中点,将线段OA绕点O逆时针旋转a(0∘<α<90∘)至OP,若CB=CP,则α的值为()A.80∘B.65∘C.50∘D.40∘2.(2023秋·山东威海·七年级统考期末)如图,△ABC和△BDE都是等边三角形,点A,D,E在同一条直线上,BE=2,CE=4,则AE=()A.6B.5C.8D.73.(海南省海口市(部分校)2022-2023学年八年级上学期期末检测数学试题(A))如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,等腰直角△ABC的三个顶点A、B、C分别在直线l2、l1、l3上,∠ACB=90°,则△ABC的面积为()D.25A.10B.12C.2524.(2022秋·黑龙江双鸭山·八年级统考期末)如图所示的网格是由9个相同的小正方形拼成的,图形的各个顶点均为格点,则∠2+∠3的度数为()A.30°B.45°C.55°D.60°5.(2022秋·安徽黄山·八年级统考期末)如图,已知等边△ABC和等边△BPE,点P在BC的延长线上,EC的延长线交AP于点M,连接BM,有下列结论:①AP=CE;②∠PME=60°;③MB平分∠AME;④AM+MC=BM,其中正确的结论是()A.①②③B.①②④C.①③④D.①②③④6.(2022秋·山西吕梁·八年级统考期末)如图,点E,F在线段AC上,AE=CF,AD⊥DF,CB⊥BE,要根据“HL”证明Rt△ADF≌Rt△CBE,则还需添加的一个条件是()A.AF=CE B.∠A=∠C C.AD=CB D.AD∥BC7.(2023·全国·九年级专题练习)如图,点O为△ABC的内心,∠B=60°,BM≠BN,点M,N分别为AB,BC上的点,且OM=ON.甲、乙、丙三人有如下判断:甲:∠MON=120°;乙:四边形OMBN的面积为定值;丙:当MN⊥BC时,△MON的周长有最小值.则下列说法正确的是()A.只有甲正确B.只有乙错误C.乙、丙都正确D.只有丙错误8.(2023秋·浙江台州·八年级统考期末)如图,AB与CD相交于点O,且OA=OB,添加下列选项中的一个条件,不能判定△AOC和△BOD全等的是()A.OC=ODB.∠A=∠BC.AC=BDD.AC∥BD9.(2023秋·浙江台州·八年级统考期末)如图,射线OC为∠AOB的平分线,点M,N分别是边OA,OB上的两个定点,且OM<ON,点P在OC上,满足PM=PN的点P的个数有()A.0个B.1个C.2个D.无数个10.(2023秋·河南新乡·八年级统考期末)在△ABC和△DEF中,已知AB=DE,∠A=∠D,下列条件:①AC= DF;②∠B=∠E;③∠C=∠F;④BC=EF.其中一定能判定△ABC≌△DEF的个数为()A.1B.2C.3D.411.(2022秋·四川广安·八年级统考期末)如图,AB=DC,若要用“SSS”证明△ABC≌△DCB,需要补充一个条件,这个条件是__________.12.(2022秋·福建莆田·八年级统考期末)数学社团活动课上,甲乙两位同学玩数学游戏.游戏规则是:两人轮流对△ABC及△A′B′C′的对应边或对应角添加一组等量条件(点A′,B′,C′分别是点A,B,C的对应点),某轮添加条件后,若能判定△ABC与△A′B′C′全等,则当轮添加条件者失败,另一人获胜.1甲AB=A′B′=2cm2乙∠A=∠A′=35°3甲…上表记录了两人游戏的部分过程,则下列说法正确的是___________.(填写所有正确结论的序号)①若第3轮甲添加∠C=∠C′=45°,则甲获胜;②若第3轮甲添加BC=B′C′=3cm,则甲必胜;③若第2轮乙添加条件修改为∠A=∠A′=90°,则乙必胜;④若第2轮乙添加条件修改为BC=B′C′=3cm,则此游戏最多4轮必分胜负.13.(2023秋·山东淄博·七年级统考期末)如图,点C,E,B,F在同一条直线上,AB=DE,AC=DF,BF=CE.说明AC∥DF.14.(2023秋·江苏南京·八年级统考期末)如图AB=AD,CB=CD,AC,BD相交于点E.(1)求证△ABC≅△ADC;(2)求证BE=DE.15.(2022秋·山西吕梁·八年级统考期末)如图,△ABC是等边三角形,点D,E分别在BC,CA的延长线上,且CD=AE.求证:∠D=∠E.16.(2023秋·广东汕头·八年级统考期末)如图,已知点O在等边△ABC的内部,∠AOB=105°,∠BOC=α,以OC为边作等边△COD,连接AD.(1)求证:AD=BO;(2)当α=150∘时,试判断△AOD的形状,并说明理由;17.(2023秋·江苏南京·八年级统考期末)如图,在四边形ABCD中,连接BD,AB∥CD,且AB=CD.(1)求证:△ABD≅△CDB;(2)若AB=BD,∠ABD=48°,求∠C的度数.18.(2023秋·浙江宁波·八年级校考期末)如图,在四边形ABCD中,P为CD边上的一点,BC∥AD.AP、BP 分别是∠BAD、∠ABC的角平分线.(1)若∠BAD=70°,则∠ABP的度数为_______,∠APB的度数为____________;(2)求证:AB=BC+AD;(3)设BP=3a,AP=4a,过点P作一条直线,分别与AD,BC所在直线交于点E、F,若AB=EF,直接写出AE的长(用含a的代数式表示)考点3:角平分线性质定理和逆定理例5.(2023秋·广东汕头·八年级统考期末)如图,DE⊥AB于点E,DF⊥AC于点F,若BD=CD,BE=CF.(1)求证:AD 平分∠BAC ;(2)请猜想AB +AC 与AE 之间的数量关系,并给予证明.例6.(2022秋·湖北武汉·八年级校考期末)如图,在△ABC 中,E 是BC 中垂线上一点,EM ⊥AB 于M ,EN ⊥AC 于N ,BM =CN .求证:AE 平分∠BAC .知识点训练1.(2022秋·贵州铜仁·九年级统考期中)如图,在平面直角坐标系中,△OAB 的顶点B 的坐标为(6,0),OC 平分∠AOB 交AB 于点C ,反比例函数y =k x (x >0)的图象经过点A ,C .若S △AOC :S △BOC =2:3,则k 的值为( )A .5√716B .45√716C .454D .916 2.(2023秋·山东济宁·八年级统考期末)如图,Rt △ABC 中,∠C =90°,∠ABC =60°,以顶点B 为圆心、适当长为半径作弧,在边BC 、BA 上截取BE 、BD ;然后分别以点D 、E 为圆心、以大于DE 的长为半径作弧,两弧在∠CBA 内交于点F ;作射线BF 交AC 于点G .若AC =6,P 为边AB 上一动点,则GP 的最小值为( )A.3B.2C.1D.无法确定3.(2023秋·山东淄博·七年级统考期末)如图,已知AB=AC,∠A=36°,AB的垂直平分线MD交AC于点D,AB于点M,以下结论:①△BCD是等腰三角形;②BD是△ACB的角平分线;③△BCD的周长C△BCD=AC+ BC;④△ADM≌△BCD.正确的有()A.①③B.①②C.①②③D.③④4.(2023秋·黑龙江牡丹江·八年级统考期末)如图,已知△ABC和△ADE都是等腰直角三角形,∠BAC=∠EAD=90°,BD,CE交于点F,连接AF,下列结论:①BD=CE;②∠AEF=∠ADF;③BD⊥CE;④AF 平分∠CAD;⑤∠AFE=45°,其中结论正确的序号是()A.①②③④B.①②④⑤C.①③④⑤D.①②③⑤5.(2022秋·福建泉州·八年级统考期末)小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角两边距离相等的点在这个角的平分线上.B.角平分线上的点到角两边的距离相等.C.三角形三个内角的平分线交于同一个点.D.三角形三个内角的平分线的交点到三条边的距离相等.6.(2023秋·河北邢台·八年级统考期末)如图,在△ABC中,∠BAC=60°,角平分线BE,CD相交于点P,若AP=4,AC=6,则S△APC=().A.4B.6C.12D.247.(2023秋·江苏泰州·八年级统考期末)已知,如图,△ABC中,∠ABC=48°,∠ACB=84°,点D、E分别在BA、BC延长线上,BP平分∠ABC,CP平分∠ACE,连接AP,则∠PAC的度数为()A.45°B.48°C.60°D.66°8.(2023秋·河北沧州·八年级统考期末)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=108∘,连接AC,BD交于点M,连接OM.甲、乙、丙三人的说法如下,下列判断正确的是()甲:AC=BD;乙:∠CMD>∠COD;丙:MO平分∠BMCA.乙错,丙对B.甲和乙都对C.甲对,丙错D.甲错,丙对9.(2023秋·重庆大足·八年级统考期末)如图,△ABC的三边AC、BC、AB的长分别是8、12、16,点O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S△OAC的值为()A.4:3:2B.5:3:2C.2:3:4D.3:4:510.(2022秋·甘肃庆阳·八年级统考期中)庆阳市是传统的中药材生产区,优越的地理气候条件形成了较独特的资源禀赋,孕育了丰富的中药植物资源和优良品种,素有“天然药库”“中药之乡”的美称.如图,三条公路把A、B、C三个盛产中药材的村庄连成一个三角形区域,此地区决定在这个三角形区域内修建一个中药材批发市场,要使批发市场到三条公路的距离相等,则这个批发市场应建在()A.三角形的三条中线的交点处B.三角形的三条角平分线的交点处C.三角形的三条高的交点处D.以上位置都不对11.(2022秋·海南海口·八年级校联考期末)如图,在△ABC中,∠A=90°,BD平分∠ABC,BC=12,AD=4,则△DBC的面积为__________.12.(2023·湖南衡阳·校考一模)如图所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥AB于点M,ON⊥BC于点N,若OM=ON,则∠ABO=_______度.13.(2023秋·湖北省直辖县级单位·八年级统考期末)如图,△ABC与△BDE都为等边三角形,连接AE与CD,延长AE交CD于点F,连接FB.给出下面四个结论:①AE=CD;②∠AFC=60°;③BF平分∠EBD;④FB 平分∠EFD.其中所有正确结论的序号是__________.14.(2023春·浙江金华·八年级浙江省义乌市后宅中学校考阶段练习)已知:OP平分∠MON,点A,B分别在边OM,ON上,且∠OAP+∠OBP=180°.(1)如图1,当∠OAP=90°时,求证:OA=OB;(2)如图2,当∠OAP<90°时,作PC⊥OM于点C.求证:①PA=PB;②请直接写出OA,OB,AC之间的数量关系.15.(2022春·广东茂名·八年级统考期中)如图,在Rt△ABC中,∠A=90°,∠B=30°,CM平分∠ACB交AB 于点M,过点M作MN∥BC交AC于点N,若AN=1,求BC的长.考点4:线段垂直平分线性质定理和逆定理例7. (1)(2023秋·浙江宁波·八年级宁波市第七中学校考期末)如图,△ABC中,AB<AC<BC,如果要使用尺规作图的方法在BC上确定一点P,使PA+PB=BC,那么符合要求的作图痕迹是()A.B.C.D.(2)(2023秋·云南曲靖·八年级统考期末)如图,在△ABC中,∠BAC=110°,EF是边AB的垂直平分线,垂足为E,交BC于F.MN是边AC的垂直平分线,垂足为M,交BC于N.连接AF、AN则∠FAN的度数是()A.70B.55C.40D.30(3)(2022秋·新疆乌鲁木齐·八年级校考期末)电信部门要再S区修建一座手机信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条高速公路OC,OD的距离也必须相等,则发射塔应建在()A.∠COD的平分线上任意某点处B.线段AB的垂直平分线上任意某点处C.∠COD的平分线和线段AB的交点处D.∠COD的平分线和线段AB垂直平分线的交点处例8.(2023春·重庆沙坪坝·八年级重庆南开中学校考开学考试)如图,在△ABC中,EF是AB的垂直平分线,AD⊥BC于点D,且D为CE的中点.(1)求证:BE=AC;(2)若∠C=70°,求∠BAC的度数.知识点训练1.(2022秋·海南海口·八年级校联考期末)如图,在△ABC中,DE垂直平分BC,若AB=6,AC=8,则△ABD 的周长等于()A.11B.13C.14D.162.(2023秋·河南南阳·八年级统考期末)如图,等腰△ABC的底边BC长为6,面积是24,E为腰AB的垂直平分线MN上一动点.点D为BC的中点,则△BDE的周长的最小值为()A.6B.8C.10D.113.(2023秋·福建泉州·八年级校联考期末)如图,根据尺规作图的痕迹,计算∠α的度数为()A.56∘B.68∘C.28∘D.34∘4.(2023秋·山东东营·八年级统考期末)如图,平行四边形ABCD的对角线AC、BD交于点O,DE平分∠ADCAB,连接OE.下列结论:①S▱ABCD=AD⋅BC;②DB平分∠CDE;③AO=交AB于点E,∠BCD=60°,AD=12DE;④OE垂直平分BD.其中正确的个数有()A.1个B.2个C.3个D.4个5.(2022秋·河北石家庄·八年级统考期末)如图,在△ABC中,AB=AC,尺规作图:(1)分别以B,C为圆心,BC长为半径作弧,两弧交于点D;(2)连接AD,BD,CD,AD与BC交于点E,则下列结论中错误的是()A.△ABD≌△ACD B.△DBE≌△DCEC.△BCD是等边三角形D.BC垂直平分AD6.(2023秋·黑龙江牡丹江·八年级统考期末)如图,在△ABC中,∠ACB=90°,∠A=75°,DE垂直平分AB,交AB于点D,交BC于点E,若BE=8cm,则AC为______cm.7.(2023秋·重庆万州·八年级统考期末)如图,在△ABC中,边AC的垂直平分线交BC于点D,交AC于点E,连接AD,若AD是∠BAC的角平分线,且AB=AD时,则∠B=___________°.8.(2023秋·山东淄博·七年级统考期末)如图,已知AB是线段CD的垂直平分线,垂足为点F.E是AB上的一点,∠CEF=30°,CF=2.试求△CED的周长.9.(2022秋·山西吕梁·八年级统考期末)如图,在△ABC中,AB=BC,EF是AB的垂直平分线,交AB于点E,交BC于点F.(1)按要求作图:作∠ABC的平分线BD,交AC于点D,交EF于点O,连接OA,OC(尺规作图,保留痕迹,不写作法);(2)求证:点O在BC的垂直平分线上;(3)若∠CBD=20°,求∠COF的度数.10.(2023秋·黑龙江齐齐哈尔·八年级统考期末)如图,∠AOB=30°,M,N分别是射线OA,OB上的动点,OP平分∠AOB,OP=9,则△PMN的周长的最小值为()C.6D.27A.9B.9211.(2022秋·山东临沂·八年级校考期末).如图,电信部门要在S区修建一座电视信号发射塔.按照设计要求,发射塔到两个城镇A,B距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应修建在什么位置?在图上标出它的位置.(保留作图痕迹)12.(2023·全国·九年级专题练习)如图,∠HAB=30°,点B与点C关于射线AH对称,连接AC.D点为射线AH 上任意一点,连接CD.将线段CD绕点C顺时针旋转60°,得到线段CE,连接BE.(1)求证:直线EB是线段AC的垂直平分线;(2)点D是射线AH上一动点,请你直接写出∠ADC与∠ECA之间的数量关系.13.(2023秋·山西运城·九年级统考期末)综合与实践问题情境:课堂上老师展示了一张直角三角形纸片.请同学们进行折纸活动,已知在Rt△ABC中.∠ACB=90°,点D、F分别是BC、AB上的一点.连接DF.(1)如图1.小红将△BDF 沿直线DF 折叠,点B 恰好落在BC 上点E 处,若S △BDF S 四边形ACEF=17,则DEDC的值______.(2)如图2,小明将△BDF 沿直线DF 折叠,点B 落在AC 上点E 处,若FE ⊥AC ,求证:四边形BDEF 是菱形; (3)如图3.小亮将△BDF 沿直线DF 折叠,点B 落在AC 延长线上点E 处,且EF 平分∠AED ,若AC =3,BC =4,求CE 的长.14.(2023秋·江苏南京·八年级统考期末)(1)如图1,在△ABC 中,∠A =30°,∠C =90°.求证BC =12AB .①补全证明过程.证明:如图2,取AB 中点D ,连接CD . ∴BD =AD =12AB .在△ABC 中,∠C =90°, ∴______; ∴CD =BD . 又∠A =30°,∴∠B =90°−∠A =60°. ∴△BCD 为______三角形. ∴BC =BD =12AB .②请用文字概括①所证明的命题:____________.(2)如图3,某市三个城镇中心D,E,F恰好分别位于一个等边三角形的三个顶点处,在三个城镇中心之间铺设通信光缆,以城镇D为出发点设计了三种连接方案:方案1:DE+EF;方案2:DG+EF(G为EF的中点);方案3:OD+OE+OF(O为△DEF三边的垂直平分线的交点).①设DE=6,通过计算,比较三种连接方案中铺设的光缆长度的长短;②不计算,比较三种连接方案中铺设的光缆长度的长短,并说明理由.15.(2023秋·河南洛阳·八年级统考期末)我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图1,直线MN是线段AB的垂直平分线,P是MN上任一点,连接PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等.解答下列问题:(1)请你结合图形把已知和求证补充完整,并写出证明过程.已知:如图1,MN⊥AB,垂足为点C,______,点P是直线MN上的任意一点.求证:______.(2)证明:如图2,CD是线段AB垂直平分线,则∠CAD与∠CBD有何关系?请说明理由.考点5:全等三角形的综合问题例9.(2023秋·河南南阳·八年级统考期末)如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB交CE于点F,DF的延长线交AC于点G.(1)求证:DF∥BC;(2)若AE=6,CE=8,求线段GF的长.例10.(2022秋·湖北黄冈·八年级统考期末)已知OM是∠AOB的平分线,点P是射线OM上一定点,点C、D分别在射线OA、OB上,连接PC、PD.(1)如图①,当PC⊥OA,PD⊥OB时,则PC与PD的数量关系是___________;(2)如图②,点C、D在射线OA、OB上滑动,且∠AOB=90∘,当PC⊥PD时,PC与PD在(1)中的数量关系还成立吗?请说明理由.(3)在问题(2)中,若OC+OD=6,则四边形ODPC的面积S是否为定值?若是,请求出该定值,若不是,请说明理由.知识点训练1.(2022秋·河南商丘·八年级统考期中)如图,在△ABC中,∠ABC=90°,D,E分别为边AC,BC上一点,连接BD,DE.已知AB=BE,AD=DE.(1)求证:BD平分∠ABC;(2)若∠A=55°,求证:∠CDE=14∠ADB.2.(2023秋·湖北荆州·八年级统考期末)如图,在△ABC中,BC=2AB,D是AC上一点,∠ABD=20°,E 是BD上一点,EA⊥AB,EB=EC.(1)求证:BD平分∠ABC;(2)求∠DEC的度数.3.(2023秋·重庆长寿·九年级统考期末)在图(1)至图(2)中,直线MN与线段AB相交于点O,∠1=∠2=45°.(1)如图(1),若AO=OB,请写出AO与BD的数量关系和位置关系;(2)将图(1)中的MN绕点O顺时针旋转得到图(2),其中AO=OB.求证:AC=BD,AC⊥BD.4.(2023秋·重庆万州·八年级统考期末)小明在物理课上学习了发声物体的振动实验后,对其作了进一步的探究:在一个支架的横杆点O处用一根细绳悬挂一个小球A,小球A可以自由摆动,如图,OA表示小球静止时的位置.当小明用发声物体靠进小球时,小球从OA摆到OB位置,此时过点B作BD⊥OA于点D,当小球摆到OC位置时,OB与OC恰好垂直(图中的A、B、O、C在同一平面上),过点C作CE⊥OA于点E,测得CE=15cm,AD=2cm.(1)试说明OE=BD;(2)求DE的长.5.(2022秋·海南海口·八年级校联考期末)如图1,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D,∠MDN=90°,将∠MDN绕点D顺时针旋转,它的两边分别交AB、AC于点E、F.(1)求证:△BDE≌△ADF;(2)如图2,若DM=DN,连接BM、NA,求证:BM=AN.6.(2023秋·江苏宿迁·八年级统考期末)如图,已知AC平分∠BAF,CE⊥AB于点E,CF⊥AF于点F,且BC= DC.(1)求证:BE=DF;(2)若AB=21,AD=9,求DF的长.7.(2023秋·广西南宁·九年级统考期末)如图,将矩形ABCD绕点B旋转得到矩形BEFG,点E在AD上,延长DA交GF于点H.(1)求证:△ABE≅△FEH;(2)连接BH,若∠EBC=30°,求∠ABH的度数.8.(2023秋·山东威海·七年级统考期末)在四边形ABDE中,点C是BD边的中点.(1)如图①,AC平分∠BAE,∠ACE=90°,写出线段AE,AB,DE间的数量关系及理由;(2)如图②,AC平分∠BAE,EC平分∠AED,∠ACE=120°,写出线段AB,BD,DE,AE间的数量关系及理由.9.(2022秋·广西柳州·八年级统考期末)在平面直角坐标系中,点O为坐标原点,A(a,0),B(0,b),且a,b满足(a−3)2+|b−3|=0,连接AB.(1)求点A,B点的坐标;(2)如图1,动点C从点O出发,以1个单位/秒的速度沿y轴正半轴运动,运动时间为t秒(0<t<3),连接AC,过点C作CD⊥AC,且CD=CA,点D在第一象限,请用含有t的式子表示点D的坐标;(3)在(2)的条件下,如图2,连接并延长DB交x轴于点E,连接AD和AB,过点B作线段BF交x轴于点F,使得∠OBF=∠DCB,已知此时点F的坐标为(−1,0),求△ADE的面积.10.(2023秋·福建福州·八年级统考期末)在平面直角坐标系xOy中,点A(0,a),B(b,0),C(c,0),点D在第四象限,其中a>0,b<0,c>0,∠BAC+∠BDC=180°,AC⊥CD.(1)如图1,求证:∠BAO=∠CBD;(2)若|a−c|+b2+6b+9=0,且AB=BD.①如图1,求四边形ACDB的面积;(用含a的式子表示)②如图2,BD交y轴于点E,连接AD,当E关于AD的对称点K落在x轴上时,求CK的长.。
专题复习:三角形全等
专题复习:三角形全等一、教材要求 (2)1、学习目标: (2)2、重点、难点: (2)3、考点分析: (2)4、知识点睛: (2)二、找相等边的方法 (3)1、利用等角对等边 (3)2、利用公共边相等 (3)3、利用等量代换 (4)4、利用三角形中线定理,或者等边三角形 (4)5、利用三角形角平分线定理 (5)6、旋转平移性质,角度不变,边长不变 (5)三、找相等角的方法 (6)1、利用平行直线性质 (6)2、巧用公共角 (6)3、利用等边对等角 (7)4、利用对顶角相等 (7)5、利用等量代换关系找出角相等 (7)6、结合旋转性质,即旋转图形角度不变,边长不变 (8)四、常见辅助线的做法 (9)1、找全等三角形的方法: (9)2、三角形中常见辅助线的作法: (9)3、常见辅助线的作法有以下几种: (9)一、教材要求1、学习目标:三角形全等找边相等的方法总结;三角形全等找角相等的方法技巧;归纳、掌握三角形中的常见辅助线;2、重点、难点:全等三角形相等边和相等角寻找思路;全等三角形的常见辅助线的添加方法。
掌握全等三角形的辅助线的添加方法并提高解决实际问题的能力。
3、考点分析:全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。
判断三角形全等的公理有SAS、ASA、AAS、SSS和HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。
一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。
4、知识点睛:全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.全等三角形的判定方法:(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3) 边边边定理(SSS):三边对应相等的两个三角形全等.(4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.二、找相等边的方法1、利用等角对等边(注意:必须在同一个三角形中才能考虑)例1、如图,已知∠1=∠2,∠3=∠4,求证:AB=CD2、利用公共边相等(若果要证明的两个全等三角形有两个相同的对应点,那么可么马上得出它们具有公共边)例1、AB=AC ,DB=DC ,F 是AD 的延长线上的一点。
中考数学复习:专题4-10 全等三角形创新题
专题10 全等三角形创新题【专题综述】随着课程改革的不断深入,一大批格调清新、设计独特的开放型、探究型、操作型等创新题纷纷在各地中考试卷上闪亮登场。
近年来,有关全等三角形的创新题更令人耳目一新、目不暇接;试题以它的新颖性、思辨性摒弃模式、推陈出新,创造性地描绘了一个绚丽多姿的图形世界。
【方法解读】一、实际应用型例1 如图1,一块三角形模具的阴影部分已破损.只要从残留的模具片中度量出哪些边、角,就可以不带'''?请简要说明理残留的模具片到店铺加工一块与原来的模具ABC的形状和大小完全相同的模具A B C由.【举一反三】如图所示,太阳光线AC与A′C′是平行的,AB表示一棵塔松,A′B′表示一棵小杨树,同一时刻两棵树的影长相等,已知塔松高6米,则小杨树高______.【来源】北师大版七年级数学下册第四章三角形单元检验题二、操作探索型例2 复习“全等三角形”的知识时,老师布置了一道作业题:“如图2,已知在△ABC中,AB=AC,P是△ABC 内部任意一点,将AP绕A顺时针旋转至AQ,使∠QAP=∠BAC,连接BQ、CP,则BQ=CP.”小亮是个爱动脑筋的同学,他通过对图2的分析,证明了△ABQ≌△ACP,从而证得BQ=CP之后,将点P移到三角形ABC之外,原题中的条件不变,发现“BQ=CP”仍然成立,请你就图3给出证明.【举一反三】在△ABC中,AB=AC,点D是射线CB上的一动点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE= 度;(2)设∠BAC= α,∠DCE= β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;α与β之②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接..写出此时间的数量关系(不需证明).【来源】北京市第四十四中学2017—2018学年度上期期中测试八年级数学试题三、开放探究型例3 如图4,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF.(1)图中有几对全等的三角形?请一一列出;A. ②③B. ①②C. ①③D. ①②③【来源】浙江杭州余杭区2016-2017学年八年级上学期期末数学试题4.已知:∠MON=α,点P是∠MON角平分线上一点,点A在射线OM上,作∠APB=180°-α,交直线ON 于点B,PC⊥ON于C.(1)如图1,若∠MON=90°时,求证:PA=PB;(2)如图2,若∠MON=60°时,写出线段OB,OA及BC之间的数量关系,并说明理由;(3)如图3,若∠MON=60°时,点B在射线ON的反向延长线上时,(2)中结论还成立吗?若不成立,直接写出线段OB,OA及BC之间的数量关系(不需要证明).【来源】北京师大附中2017-2018学年上学期初中八年级期末考试数学试卷5.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图一,若△ABC是等边三角形,且AB=AC=2,点D在线段BC上,①求证:∠BCE+∠BAC=180°;②当四边形ADCE的周长取最小值时,求BD的长.(2)若∠BAC 60°,当点D在射线..上移动,则∠BCE和∠BAC 之间有怎样的数量关系?并说明理..BC由.【来源】浙江省吴兴区2017-2018学年八年级上学期期终模拟数学试题6.如图,点B、D、E、C在一条直线上,△ABD≌△ACE,AB和AC,AD和AE是对应边,除△ABD≌△ACE外,图中还有其他全等三角形吗?若有,请写出来,并证明你的结论。
(完整版)八年级上册数学几何专题期末复习讲义
三角形、全等三角形、轴对称期末复习学生/课程年级学科授课教师日期时段核心内容三角形三边关系,全等三角形的判定与性质,角平分线,等腰三角形,等边三角形课型教学目标1.掌握三角形的三边关系,多边形的内角和外角和的应用;2.掌握全等三角形的判定和性质的内容,灵活应用知识点进行解题,掌握角平分线的内容,学会作图以及应用;3.掌握轴对称的基本概念,熟练应用线段垂直平分线的内容,掌握分类讨论的思想,灵活解答等腰三角形以及等边三角形的内容。
重、难点熟练掌握全等三角形的性质和判定,能够解答等腰三角形,等边三角形的相关题型知识导图导学一三角形知识点讲解 1:例 1. [单选题] 长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A.4 B.5 C.6 D.9例 2. [单选题] 下列四个图形中,线段BE是△ABC的高的是()D.A. B. C.例 3. 如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是例 4. [单选题] 小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180°B.210°C.360°D.270°例 5. [单选题] 已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8 B.9 C.10 D.11例 6. [单选题] 如图,小明在操场上从A点出发,沿直线前进10米后向左转40°,再沿直线前进10米后,又向左转40°,照这样走下去,他第一次回到出发地A点时,一共走了()米.A.70 B.80 C.90 D.100例 7. 如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.求:(1)∠BAE的度数;(2)∠DAE的度数;(3)探究:小明认为如果条件∠B=70°,∠C=30°改成∠B﹣∠C=40°,也能得出∠DAE的度数?若能,请你写出求解过程;若不能,请说明理由.例8. 如图,∠AOB=90°,点C、D分别在射线OA、OB上,CE是∠ACD的平分线,CE的反向延长线与∠CDO的平分线交于点F.(1)当∠OCD=50°(图1),试求∠F.(2)当C、D在射线OA、OB上任意移动时(不与点O重合)(图2),∠F的大小是否变化?若变化,请说明理由;若不变化,求出∠F.我爱展示1.[单选题] 已知a,b,c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.02.如图,BD是△ABC的中线,AB=6cm,BC=4cm,则△ABD和△BCD的周长差为cm3.[单选题] 如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)4.[单选题] 如图,在△ABC中,点D、E分别在边AB、AC上,如果∠A=50°,那么∠1+∠2的大小为()A.130°B.180°C.230°D.260°5.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=6.[单选题] 一个多边形剪去一个角后(剪痕不过任何一个其它顶点),内角和为1980°,则原多边形的边数为()A.11 B.12 C.13 D.11或127.如图所示,△ABC中,AD⊥BC,AE平分∠BAC.(1)若∠B=30°,∠C=70°,求∠DAE的度数;(2)△ABC中,若∠B=α,∠C=β(α<β),请你根据(1)问的结果大胆猜想∠DAE与α,β间的等量关系,并说明理由。
专题04 有关全等三角形的常见压轴题(原卷版)-【聚焦压轴】2022届中考数学压轴大题专项训练
专题4 有关全等三角形的常见压轴题1.(2021·杏花岭·山西实验中学九年级月考)如图,平面直角坐标系中()2,0A ,()0,1D ,过O 作OB AD ⊥于点E ,B 为第一象限的点,过点B 作BC y ⊥轴于点C ,连接BC 、BA .(1)求直线AD 的解析式;(2)若CD BC =,求证:OBC ADO ≌△△; (3)在第(2)问条件下,若点M 是直线AD 上的一个动点,在x 轴上存在另一个点N ,且以O 、B 、M 、N 为顶点的四边形是平行四边形,请直接写出点N 的坐标. 2.(2021·甘肃兰州十一中九年级月考)如图1,在△ABC 中,AB =AC ,AD 是△ABC 的一条角平分线,AN 为△ABC 的外角∠BAM 的平分线,BE ⊥AN ,垂足为E .已知AD =4,BD =3.(1)求证:四边形ADBE 是矩形;(2)如图2,延长AD 至点F ,使AF =AB ,连接BF ,G 为BF 的中点,连接EG ,DG .求EG 的长.(3)如图3,在(2)问的条件下,P 为BE 边上的一个动点,连接PG 并延长交AD 延长线于点Q ,连接CQ ,H 为CQ 的中点,求点P 从E 点运动到B 点时,点H 所经过的路径长.3.(2021·合肥市第四十八中学九年级开学考试)如图1,A ,B 分别在射线OM ,ON 上,且MON ∠为钝角,现以线段OA ,OB 为斜边向MON ∠的外侧作等腰直角三角形,分别是OAP △,OBQ △,点C ,D ,E 分别是OA ,OB ,AB 的中点.(1)求证:PCE EDQ ≌△△.(2)延长PC ,QD 交于点R .①如图2,若150MON ∠=︒,求证:ABR △为等边三角形.②如图3,若ARB PEQ ∽△△,求MON ∠大小和AB PQ的值.4.(2021·辽宁建昌·九年级期末)已知在矩形ABCD 中,∠ADC 的平分线DE 与BC 交于点E ,点P 是线段DE 上一定点(其中EP <PD )(1)如图1,若点F 在CD 边上(不与C ,D 重合),将∠DPF 绕点P 逆时针旋转90°后,角的两边PD ,PF 分别交射线DA 于点H ,G .①直接写出PG 与PF 之间的数量关系;②猜想DF ,DG ,DP 的数量关系,并证明你的结论.(2)如图2,若点F 在CD 的延长线上(不与D 重合),将PF 绕点P 逆时针旋转90°,交射线DA 于点G ,判断(1)②中DF ,DG ,DP 之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请直接写出它们所满足的数量关系式.5.(2021·佛山市华英学校九年级期末)已知正方形ABCD ,45MAN ∠=︒,MAN ∠绕点A 顺时针旋转,它的两边分别交CB 、DC 于点M 、N ,AH MN ⊥于点H .(1)如图①,当BM DN =时,可以通过证明≌ADN ABM ,得到AH 与AB 的数量关系,这个数量关系是___________;(2)如图②,当BM DN ≠时,(1)中发现的AH 与AB 的数量关系还成立吗?说明理由; (3)如图③,已知AMN 中,45MAN ∠=︒,AH MN ⊥于点H ,3MH =,7=NH ,求AH 的长.6.(2021·沭阳县怀文中学九年级月考)已知:AOB ∆和COD △均为等腰直角三角形,90AOB COD ∠=∠=︒,连接AD ,BC ,点H 为BC 中点,连接OH .(1)如图1所示,点C 、D 分别在边OA 、OB 上,求证:12OH AD =且OH AD ⊥; (2)将COD △绕点O 旋转到图2所示位置时,线段OH 与AD 又有怎样的关系,证明你的结论.(3)如图3所示,当8AB =,2CD =时,求OH 长的取值范围.7.(2021·青海西宁·中考真题)如图,在平面直角坐标系xOy 中,一次函数132y x =-+的图象与x 轴交于点A ,与y 轴交于点B ,点C 的坐标为()2,0-,抛物线经过A ,B ,C 三点.(1)求抛物线的解析式;(2)直线AD 与y 轴负半轴交于点D ,且BAO DAO ∠=∠,求证:OB OD =;(3)在(2)的条件下,若直线AD 与抛物线的对称轴l 交于点E ,连接BE ,在第一象限内的抛物线上是否存在一点P ,使四边形BEAP 的面积最大?若存在,请求出点P 的坐标及四边形BEAP 面积的最大值;若不存在,请说明理由.8.(2021·广州市黄埔华南师范大学附属初级中学九年级期中)在正方形ABCD 中,M 是BC 边上一点,且点M 不与B 、C 重合,点P 在射线AM 上,将线段AP 绕点A 顺时针旋转90°得到线段AQ ,连接BP ,DQ .(1)依题意补全图1,并求证:ABP ADQ ≌△△.(2)连接DP ,若点P ,Q ,D 恰好在同一条直线上,求证:2222DP DQ AB +=. 9.(2021·哈尔滨市第十七中学校九年级二模)已知AB 、AC 是⊙O 的两条弦,OA 为半径,∠OAB =∠OAC .(1)如图(1),求证:AB =AC ;(2)如图(2),延长AO 交⊙O 于点D ,点E 是BC 延长线上的一点,EF 切⊙O 于点F ,连DF 交BC 于点G ,求证:EF =EG ;(3)如图(3),在(2)的条件下,设DF 交AC 于点H ,若DF ∥AB ,tan E =43,CH 352求DG 长.10.(2021·河南平顶山·九年级期中)(1)阅读理解如图1,在正方形ABCD中,若E,F分别是CD,BC边上的点,∠EAF=45°,则我们常常会想到:把∆ADE绕点A顺时针旋转90°,得到∆ABG.易证∆AEF≌,得出线段BF,DE,EF之间的关系为;(2)类比探究如图2,在等边∆ABC中,D,E为BC边上的点,∠DAE=30°,BD=1,EC=2.求线段DE的长;(3)拓展应用如图3,在∆ABC中,AB=AC=62+,∠BAC=150°,点D,E在BC边上,∠DAE=75°,若DE是等腰ADE的腰,请直接写出线段BD的长.11.(2021·辽宁立山·九年级期中)已知:∠AOB=∠COD=90°,OA=OB,OC=OD.(OC22>OA)(1)如图1:连AC、BD,判断:AC与BD之间的关系;并说明理由.(2)若将△COD绕点O逆时针旋转,①如图2,当点C恰好在AB边上时,请写出AC、BC、OC之间数量关系;并说明理由.②当点B 、D 、C 在同一条直线上时,若OB =6,OC =5,求AC 的长.12.(2021·广西河池·中考真题)如图,在Rt ABC △中,90A ∠=︒,4AB =,3AC =,D ,E 分别是AB ,BC 边上的动点,以BD 为直径的圆O 交BC 于点F .(1)当AD DF =时,求证:CFD CAD ∆≅∆;(2)当CED ∆是等腰三角形且DEB ∆是直角三角形时,求AD 的长.13.(2021·辽宁锦州·中考真题)在△ABC 中,AC =AB ,∠BAC =α,D 为线段AB 上的动点,连接DC ,将DC 绕点D 顺时针旋转α得到DE ,连接CE ,BE .(1)如图1,当α=60°时,求证:△CAD ≌△CBE ;(2)如图2,当tan α=34时, ①探究AD 和BE 之间的数量关系,并说明理由;②若AC =5,H 是BC 上一点,在点D 移动过程中,CE +EH 是否存在最小值?若存在,请直接写出CE +EH 的最小值;若不存在,请说明理由.14.(2021·辽宁丹东·中考真题)已知,在正方形ABCD 中,点M 、N 为对角线AC 上的两个动点,且45MBN ∠=︒,过点M 、N 分别作AB 、BC 的垂线相交于点E ,垂足分别为F 、G ,设AFM △的面积为1S ,NGC ∆的面积为2S ,MEN ∆的面积为3S .(1)如图(1),当四边形EFBG 为正方形时,①求证:CGN AFM ∆≅∆;②求证:312S S S =+;(2)如图(2),当四边形EFBG 为矩形时,写出1S ,2S ,3S 三者之间的数量关系,并说明理由; (3)在(2)的条件下,若()::BG GC m n m n =>,请直接写出:AF FB 的值.15.(2021·山东潍坊·中考真题)如图1,在△ABC 中,∠C =90°,∠ABC =30°,AC =1,D 为△ABC 内部的一动点(不在边上),连接BD ,将线段BD 绕点D 逆时针旋转60°,使点B 到达点F 的位置;将线段AB 绕点B 顺时针旋转60°,使点A 到达点E 的位置,连接AD ,CD ,AE ,AF ,BF ,EF .(1)求证:△BDA ≌△BFE ;(2)①CD +DF +FE 的最小值为 ;②当CD +DF +FE 取得最小值时,求证:AD ∥BF .(3)如图2,M ,N ,P 分别是DF ,AF ,AE 的中点,连接MP ,NP ,在点D 运动的过程中,请判断∠MPN 的大小是否为定值.若是,求出其度数;若不是,请说明理由.。
全等三角形的判定方法50道经典题
全等三角形的判定方法50道经典题全等三角形的判定方法是初中数学中重要的一部分,主要包括以下50道经典题目。
1. 如何通过边长判断两个三角形是否全等?答:如果两个三角形的三条边对应相等,则它们全等。
2. 如果通过角度判断两个三角形是否全等?答:如果两个三角形的三个角度对应相等,则它们全等。
3. 如何通过边角判断两个三角形是否全等?答:如果两个三角形中有一个角相等,并且两边对应相等,则它们全等。
4. 如果两个三角形的底边相等,底边上的高相等,判断它们是否全等。
答:根据边角对应的原理,如果底边和高都相等,则这两个三角形全等。
5. 给定两个相等的边和它们之间的夹角,判断它们所在的两个三角形是否全等。
答:根据边角对应的原理,如果两个相等的边和它们之间的夹角都相等,则这两个三角形全等。
6. 如果两个三角形的一个角相等,并且这个角的两边分别等于另一个三角形的两个角的两边,判断它们是否全等。
答:根据边角边的原理,如果两个三角形的一个角相等,并且这个角的两边分别等于另一个三角形的两个角的两边,则这两个三角形全等。
7. 如何通过勾股定理判断两个三角形是否全等?答:如果两个三角形的两条边的平方和相等,则它们全等。
8. 如果两个三角形的一个角相等,并且两边的比例相等,判断它们是否全等。
答:根据角边角的原理,如果两个三角形的一个角相等,并且两边的比例相等,则这两个三角形全等。
9. 如果两个三角形的两个角相等,并且两边的比例相等,判断它们是否全等。
答:根据角角边的原理,如果两个三角形的两个角相等,并且两边的比例相等,则这两个三角形全等。
10. 给定两个相等的边和它们夹角的正弦值,判断它们所在的两个三角形是否全等。
答:根据正弦定理,如果两个相等的边和它们夹角的正弦值都相等,则这两个三角形全等。
11. 给定两个相等的边和它们夹角的余弦值,判断它们所在的两个三角形是否全等。
答:根据余弦定理,如果两个相等的边和它们夹角的余弦值都相等,则这两个三角形全等。
有复习资料-直角三角形全等判定(基础)知识讲解
直角三角形全等判定要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS”,“ASA”或“SAS”判定定理.要点二、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt”.【典型例题】类型一、直角三角形全等的判定——“HL”1、已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=CD:(2)AD∥BC.【思路点拨】先由“HL”证Rt△ABD≌Rt△CDB,再由内错角相等证两直线平行.【答案及解析】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°在Rt△ABD 和Rt△CDB中,∴Rt△ABD≌Rt△CDB(HL)∴AB=CD(全等三角形对应边相等)(2)由∠ADB=∠CBD∴AD∥BC .【总结升华】证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.【变式】已知:如图,AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.【答案】证明:∵AE⊥AB,BC⊥AB,∴∠DAE=∠CBA=90°在Rt△DAE 及Rt△CBA中,∴Rt△DAE≌Rt△CBA (HL)∴∠E=∠CAB∵∠CAB+∠EAF=90°,∴∠E+∠EAF=90°,即∠AFE=90°即ED⊥AC.2、判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和斜边对应相等;()(3)两直角边对应相等;()(4)一条直角边和斜边对应相等.()【答案】(1)全等,“AAS”;(2)全等,“AAS”;(3)全等,“SAS”;(4)全等,“HL”.【解析】理解题意,画出图形,根据全等三角形的判定来判断.【变式】下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.()(2)有两边和其中一边上的高对应相等的两个三角形全等.()(3)有两边和第三边上的高对应相等的两个三角形全等.()【答案】(1)√;(2)×;在△ABC和△DBC中,AB=DB,AE和DF是其中一边上的高,AE=DF(3)×. 在△ABC和△ABD中,AB=AB,AD=AC,AE为第三边上的高,3、已知:如图,AC =BD ,AD ⊥AC ,BC ⊥BD .求证:AD =BC ;【答案及解析】证明:连接DC∵AD ⊥AC ,BC ⊥BD∴∠DAC =∠CBD =90°在Rt △ADC 及Rt △BCD 中,∴Rt △ADC ≌Rt △BCD (HL )∴AD =BC .(全等三角形对应边相等)【变式】已知,如图,AC 、BD 相交于O ,AC =BD ,∠C =∠D =90° .求证:OC =OD.【答案】∵∠C =∠D =90°∴△ABD 、△ACB 为直角三角形 在Rt △ABD 和Rt △BAC 中AB BABD AC=⎧⎨=⎩∴Rt △ABD ≌Rt △BAC(HL)∴AD =BC在△AOD 和△BOC 中∴△AOD ≌△BOC(AAS)∴OD =OC .4、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线l 的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.【答案及解析】解:全等三角形为:△ACD ≌△CBE.证明:由题意知∠CAD+∠ACD=90°,∠ACD+∠BCE=90°,∴∠CAD=∠BCE在△ACD 及△CBE 中,∴△ACD ≌△CBE (AAS ).【总结升华】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参及,若有两边一角对应相等时,角必须是两边的夹角.【巩固练习】一、选择题1.下列说法正确的是()A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两等腰直角三角形全等2.如图,AB=AC,AD⊥ BC于D,E、F为AD上的点,则图中共有()对全等三角形.A.3 B.4 C.5 D.63. 能使两个直角三角形全等的条件是( )A.斜边相等B.一锐角对应相等C.两锐角对应相等D.两直角边对应相等4. 在Rt△ABC及Rt△'''A B C中, ∠C =∠'C= 90, A=∠'B, AB =''A B, 那么下列结论中正确的是( )A. AC =''B C D. ∠A C B.BC =''B C C. AC =''A =∠'A5. 直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是()A.形状相同B.周长相等C.面积相等D.全等6. 在两个直角三角形中,若有一对角对应相等,一对边对应相等,则两个直角三角形()A.一定全等B.一定不全等C.可能全等D.以上都不是二、填空题7.如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE 的依据是“______”.8. 已知,如图,∠A=∠D=90°,BE=CF,AC=DE,则△ABC ≌_______.9. 如图,BA∥DC,∠A=90°,AB=CE,BC=ED,则AC=_________.10. 如图,已知AB⊥BD于B,ED⊥BD于D,EC⊥AC,AC=EC,若DE=2,AB=4,则DB=______.11.有两个长度相同的滑梯,即BC=EF,左边滑梯的高度AC及右边滑梯的水平方向的长度DF 相等,则∠ABC +∠DFE =________.12. 如图,已知AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且BF =AC ,FD =CD.则∠BAD =_______.三、解答题13. 如图,工人师傅要在墙壁的O 处用钻打孔,要使孔口从墙壁对面的B 点处打开,墙壁厚是35cm ,B 点及O 点的铅直距离AB 长是20cm ,工人师傅在旁边墙上及AO 水平的线上截取OC =35cm ,画CD ⊥OC ,使CD =20cm ,连接OD ,然后沿着DO 的方向打孔,结果钻头正好从B 点处打出,这是什么道理呢?请你说出理由.13.【解析】解:在Rt △AOB 及Rt △COD 中,(3590AOB COD AO CO A C ∠=∠⎧⎪==⎨⎪∠=∠=︒⎩对顶角相等)∴Rt △AOB ≌Rt △COD (ASA ) ∴AB =CD =20cm14. 如图,已知AB ⊥BC 于B ,EF ⊥AC 于G ,DF ⊥BC 于D ,BC =DF. 求证:AC =EF.证明:由EF ⊥AC 于G ,DF ⊥BC 于D ,AC 和DF 相交,可得: ∠F +∠FED =∠C +∠FED =90°即 ∠C =∠F (同角或等角的余角相等),在Rt △ABC 及Rt △EDF 中 B EDF BC DFC F ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△EDF (ASA ),∴AC =EF (全等三角形的对应边相等).15. 如图,已知AB =AC ,AE =AF ,AE ⊥EC ,AF ⊥BF ,垂足分别是点E 、F.求证:∠1=∠2.证明:∵AE⊥EC,AF⊥BF,∴△AEC、△AFB为直角三角形在Rt△AEC及Rt△AFB中∴Rt△AEC≌Rt△AFB(HL)∴∠EAC=∠FAB∴∠EAC-∠BAC=∠FAB-∠BAC,即∠1=∠2.【答案及解析】一、选择题1. 【答案】C;【解析】等腰直角三角形确定了两个锐角是45°,可由AAS定理证明全等.2. 【答案】D;【解析】△ABD≌△ACD;△ABF≌△ACF;△ABE≌△ACE;△EBF ≌△ECF;△EBD≌△ECD;△FBD≌△FCD.3. 【答案】D;4. 【答案】C;【解析】注意看清对应顶点,A对应'B,B对应'A.5. 【答案】C;【解析】等底等高的两个三角形面积相等.6. 【答案】C;【解析】如果这对角不是直角,那么全等,如果这对角是直角,那么不全等.二、填空题7. 【答案】HL;8. 【答案】△DFE9. 【答案】CD;【解析】通过HL证Rt△ABC≌Rt△CDE.10.【答案】6;【解析】DB=DC+CB=AB+ED=4+2=6;11.【答案】90°;【解析】通过HL证Rt△ABC≌Rt△DEF,∠BCA=∠DFE. 12.【答案】45°;【解析】证△ADC及△BDF全等,AD=BD,△ABD为等腰直角三角形.。
全等三角形有关的真命题
全等三角形有关的真命题一、引言全等三角形是初中数学中的重要概念,研究全等三角形之间的关系以及其性质对于理解几何学的基本原理具有重要意义。
本文将探讨与全等三角形相关的真命题,通过逐个命题的讨论,帮助读者更好地理解全等三角形的特性。
二、命题一:全等三角形的定义命题一:两个具有相同形状且对应边边长相等的三角形是全等三角形。
证明:设两个三角形为∆AB C和∆D EF,已知∆A BC≌∆DE F。
我们需要证明∆AB C和∆D EF的对应边边长相等。
由全等三角形的定义可知∆A BC和∆DE F的各个对应角度相等,即∠A=∠D,∠B=∠E,∠C=∠F。
又∆A BC≌∆D EF,根据全等三角形的性质,∠A=∠D,∠B=∠E,∠C=∠F,得出对应边边长相等。
因此,∆AB C和∆DE F是全等三角形。
三、命题二:全等三角形的性质命题二.1:全等三角形的对应边角相等命题二.1:若∆AB C≌∆DE F,则∠B=∠E,∠C=∠F,∠A=∠D。
证明:已知∆AB C≌∆D EF,根据全等三角形的性质,∠A=∠D,∠B=∠E,∠C=∠F。
因此,对应边角相等。
命题二.2:全等三角形的对应边长相等命题二.2:若∆AB C≌∆DE F,则A B=DE,B C=EF,A C=DF。
证明:设已知∆A BC≌∆DE F,根据全等三角形的定义可得∆A B C和∆D EF的对应边边长相等。
因此,对应边长相等。
命题二.3:全等三角形的对应线段中点相等命题二.3:若∆AB C≌∆DE F,则∆AB C和∆DE F的对应边上任意线段中点相等。
证明:设已知∆A BC≌∆DE F,根据全等三角形的性质,可得∆A BC和∆D EF的对应边边长相等。
由数学性质可知,在等量关系下,线段取中点的操作可保持等长。
因此,∆A B C和∆DE F的对应边上任意线段中点相等。
四、命题三:全等三角形的判定命题三.1:S S S判定命题三.1:若∆AB C的三条边分别与∆DE F的三条边对应相等,则∆A BC≌∆DE F。
【全等三角形】常考题型+解题思路整理!
【高整理】【全等三角形】常考题型+解题思路整理!全等三角形的性质对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等。
寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边。
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
(3)有公共边的,公共边常是对应边。
(4)有公共角的,公共角常是对应角。
(5)有对顶角的,对顶角常是对应角。
(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角)。
【解题关键】要想正确地表示两个三角形全等,找出对应的元素是关键。
全等三角形的判定方法(1)边角边定理(SA S):两边和它们的夹角对应相等的两个三角形全等。
(2)角边角定理(A S A):两角和它们的夹边对应相等的两个三角形全等。
(3)边边边定理(SS S):三边对应相等的两个三角形全等。
(4)角角边定理(A A S):两个角和其中一个角的对边对应相等的两个三角形全等。
(5)斜边、直角边定理(H L):斜边和一条直角边对应相等的两个直角三角形全等。
全等三形的应用运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线。
【拓展】通过判定两个三角形全等,可证明两条线段间的位置关系和大小关系。
而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础。
找全等三角形的方法(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。
三角形中常见辅助线的作法①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。
专题04 三角形全等中“手拉手”模型 (原卷版)-2020-2021学年八年级数学上册期末综合复习
2020-2021学年八年级数学上册期末综合复习专题提优训练(人教版)专题04三角形全等中“手拉手”模型【典型例题】1.(2020·江西宁都·初二期末)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)猜想:AD和CE是否垂直?若垂直,请说明理由;若不垂直,则只要写出结论,不用写理由.【专题训练】一、选择题1.(2019·江苏海安·初二月考)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O,若∠1=38°,则∠BDE的度数为()A.71°B.76°C.78°D.80°2.(2019·山东禹城·期中)如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1个B.2个C.3个D.4个3.(2019·广东潮南·)如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=( )A.60°B.55°C.50°D.无法计算4.(2019·全国初二课时练习)如图,在:①AB=AC;②AD=AE;③∠B=∠C;④BD=CE四个条件中,能证明△ABD与△ACE全等的是( )A.①②③B.②③④C.①②④D.①④5.(2020·眉山市东坡区东坡中学初二期中)如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论有()A.0个B.1个C.2个D.3个二、填空题6.(2020·山东省陵城区江山实验学校初二月考)如图,Rt△ABC中,∠ACB=90°,∠A=20°,△ABC≌△A'B'C',若A'B'恰好经过点B,A'C交AB于D,则∠BDC的度数为______ .7.(2020·山东月考)如图,D在BC边上,△ABC≌△ADE,∠EAC=ɑ°,则∠ADE的度数为______.8.(2020·江苏秦淮·南京一中初二月考)如图,△ABC≌△ADE,BC的延长线交DE于点G.若∠B=24°,∠CAB=54°,∠DAC=16°,则∠DGB=________.9.(2020·浙江台州·月考)如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于点D、F,下列结论:①∠CDF=α,②A1E=CF,③DF=FC,④AD=CE,⑤A1F=CE.其中正确的是 (写出正确结论的序号).10.(2020·唐山市丰南区大新庄镇大新庄初级中学月考)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE、AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ、OC,以下五个结论:①AD=BE;②AP=BQ;③DE=DP;④∠AOB=60 .恒成立的结论有__________(把你认为正确的序号都填上).三、解答题11.(2017·浙江建德·初二期末)如图,△ABC中,E是AC边上一点,BE=BC,D为三角形外一点,且∠DEA=∠EBC,AC=DE.(1)求证:△ABC≌△DBE.(2)若∠ABD=50°,求∠C的度数.12.(2018·全国初二单元测试)已知AB=AC,D,E是BC边上的点,将△ABD绕点A旋转,得到△ACD',连接D'E.(1)如图①,当∠BAC=120°,∠DAE=60°时,求证DE=D'E.(2)如图②,当DE=D'E时,∠DAE与∠BAC有怎样的数量关系?请写出,并说明理由.13.(2020·江苏江都·初二月考)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE(正三角形也叫等边三角形,它的三条边都相等,三个内角都等于60°),AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.试说明:(1)AD=BE;(2)填空∠AOE= °;(3)CP=CQ;14.(2020·山东嘉祥·一模)如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作等腰直角三角形ADE,AD=AE,∠DAE=90º.解答下列问题:(1) 如果AB=AC,∠BAC=90º.①当点D在线段BC上时(与点B不重合),如图乙,线段CE、BD之间的位置关系为,数量关系为.(不用证明)②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2) 如果AB≠AC,∠BAC≠90º,点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CE⊥BD(点C、E重合除外)?画出相应的图形,并说明理由.15.(2019·安徽合肥38中初二期中)已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图1,若∠ACD=60゜,则∠AFB= ;(2)如图2,若∠ACD=α,则∠AFB= (用含α的式子表示);(3)将图2中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),如图3.试探究∠AFB与α的数量关系,并予以证明.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、解答题 19.已知命题“如果两条平行线被第三条直线所截,那么一对内错角的平分 线互相平行”. (1)写出命题的题设和结论; (2)画出符合命题的几何图形; (3)用几何符号表述这个命题; (4)试证明这个命题. 解:(1)题设:两条平行线被第三条直线所截,结论:一对内错角的平分线互 相平行
(2)
22.已知,如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB=∠ECD =90°,D 为 AB 边上一点. (1)求证:△ACE≌△BCD; (2)求证:2CD2=AD2+DB2.
证明:(1)∵△ABC 和△ECD 都是等腰直角三角形,∴AC=BC,CD=CE, ∵∠ACB=∠DCE=90°,∴∠ACE+∠ACD=∠BCD+∠ACD,∴∠ACE
17.如图,在△ABD 和△ACE 中,有以下 4 个条件:①AB=AC;②AD=
AE;③∠B=∠C;④BD=CE.请选择其中的 3 个条件,推出△ABD≌△ACE. 你选择的 3 个条件是 ①②④或①③④ (填序号).
18.如图,是一个三角形测平架,已知 AB=AC,在 BC 的中点 D 挂一个重 锤,自然下垂.调整架身,使点 A 恰好在重锤线上,AD 和 BC 的关系为 AD⊥BC .
期末专题复习
专题四 命题,全等三角形
பைடு நூலகம்
一、选择题 1.下列语句中,不是命题的是( C ) A.对顶角相等 B.同位角相等 C.过一点作已知直线的垂线 D.两直线平行,内错角相等
2.如图,将△ABC 绕一个点 O 旋转 180°得到另一个相应△FED,下列结论 中错误的是( C ) A.△ABC≌△EFD B.∠ACB=∠EDF C.DF=AC D.AB=EF
(3)如图,已知 AB∥CD,GH、MN 分别平分∠BGF 和∠EMC,则 GH∥MN (4)因为 GH、MN 分别平分∠BGF 和∠EMC,所以∠HGF=12∠BGF,∠NME =12∠EMC,又因为 AB∥CD,所以∠BGF=∠CME,所以∠HGF=∠NME, 所以 GH∥MN.
20.如图,C 是线段 AB 的中点,CD=BE,CD∥BE.
A.① C.①②③
B.①② D.①②③④
12.如图,△BDC′是将长方形纸片 ABCD 沿 BD 折叠得到的,图中(包含实 线和虚线)共有全等三角形( C )
A.2 对 C.4 对
B.3 对 D.5 对
二、填空题
13.已知三条不同的直线 a、b、c 在同一平面内,下列命题:①如果 a∥b,
a⊥c,那么 b⊥c;②如果 b∥a,c∥a,那么 b∥c;③如果 b⊥a,c⊥a,那 么 b⊥c;④如果 b⊥a,c⊥a,那么 b∥c.其中真命题是①②④ (填写所有真命
10.如图,已知 AB=AC,AD=AE,∠BAC=∠DAE,则下列结论不正确的 是( C )
A.∠BAD=∠CAE B.△ABD≌△ACE C.AB=BC D.BD=CE
11.如图,Rt△ABE≌Rt△ECD,其中 AB 的对应边为 EC,则以下结论:① AE=DE;②AE⊥DE;③BC=AB+CD;④AB∥CD.其中一定成立的是( D )
A.甲和乙 C.只有乙
B.乙和丙 D.只有丙
6.根据下列条件,能唯一画出△ABC 的是( C ) A.AB=3cm,BC=4cm,AC=8cm B.AB=4cm,BC=3cm,∠A=30° C.AB=5cm,AC=6cm,∠A=45° D.∠A=30°,∠B=60°,∠C=90°
7.如图,DE⊥BC 于点 E,且 BE=CE,AB+AC=15,则△ABD 的周长为 ( A)
求证:∠D=∠E. 证明:∵C 是线段 AB 的中点,∴AC=CB,∵CD∥BE,∴∠ACD=∠B,
在△ACD 和△CBE 中,A∠CA=CCDB=∠B CD=BE
,∴△ACD≌△CBE(SAS),∴∠D
=∠E.
21.如图,已知△ABF≌△DCE,F 与 E,B 和 C 是对应顶点. (1)△ABF 经过怎样的变换(旋转、平移、翻折)可与△DCE 重合? (2)求证:CF=BE; (3)求证:AF∥DE. 解:(1)将△ABF 沿 BC 向下平移 FE 个单位,再将△ABF 绕 F 点旋转 180° 得到△DCE (2)∵△ABF≌△DCE,∴CE=BF,∴CF=BE (3)∵△ABF≌△DCE,∴∠AFB=∠CED,∴∠AFE=∠FED,∴AF∥DE
3.如图,AD=AE,BE=CD,∠ADB=110°,∠AED=70°,∠BAD=20°, 则∠CAE=( A )
A.20° C.40°
B.30° D.50°
4.如图 AB、CD 交于 O 点,且互相平分,则图中全等三角形共有( C )
A.2 对 C.4 对
B.3 对 D.5 对
5.如图①,已知△ABC 的六个元素,则图②中甲、乙、丙三个三角形中和 △ABC 全等的图形有( B )
(1) ∠CAB=∠DBA ,理由 AAS ;
(2) ∠CBA=∠DAB ,理由 AAS ;
(3) AC=DB
,理由 HL ;
(4) BC=DA ,理由 HL .
16.如图,已知∠B=∠C,添加一个条件使△ABD≌△ACE(不标注新的字 母,不添加新的线段),你添加的条件是 AB=AC或AD=AE等 .
题的序号). 14.如图,把△ABC 沿 AC 翻折,使点 B 落在点 D 处,则△ABC≌ △ADC ,
其对应边是 AD=AB,CD=CB,AC=AC ∠D=∠B,∠DAC=∠BAC,∠DCA=∠BCA
;对应角是 .
15.如图,已知∠ACB=∠BDA=90°,若要使△ACB≌△BDA,还需要一个 什么条件把它们写出来:
A.15 C.25
B.20 D.30
8.如图,在△ABC 中,AB=4,AC=3,AD 是 BC 边上的中线,则 AD 的 取值范围是( D )
A.3<AD<4 B.1<AD<7 C.AD>3 D.12<AD<72
9.下列说法错误的是( B ) A.两条直角边对应相等的两个直角三角形全等 B.有两条边和一个角分别对应相等的两个三角形全等 C.顶角和底边对应相等的两个等腰三角形全等 D.一腰和一个底角对应相等的两个等腰三角形全等