【华师大版】2018-2019学年最新八年级上期中考试数学试卷(含答案)

合集下载

2018-2019学年华师大版初二数学下册期中测试题含答案 )

2018-2019学年华师大版初二数学下册期中测试题含答案 )

2018-2019学年八年级(下)期中数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对应题目上.(注意:在试题卷上作答无效).1.下列计算正确的是()A.2﹣2=﹣4B.2﹣2=4C.2﹣2=D.2﹣2=﹣2.下列各式中,属于分式的是()A.B.C.D.﹣3.在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限4.下列约分中,正确的是()A.=x3B.=0C.D.5.王大爷饭后出去散步,从家中走20分钟到离家900米的公园,与朋友聊天10分钟后,用15分钟返回家中.下面图形表示王大爷离时间x(分)与离家距离y(米)之间的关系是()A.B.C.D.6.如果分式的值为零,则a的值为()A.±1B.2C.﹣2D.以上全不对7.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S=1,则S1+S2阴影=()A.3B.4C.5D.68.如图,直线y=x﹣1与x轴交于点B,与双曲线y=(x>0)交于点A,过点B作x轴的垂线,与双曲线y=交于点C,且AB=AC,则k的值为()A.2B.3C.4D.6二、填空题:(每小题3分,共24分)请把答案直接填在答题卡对应题中横线上.9.当x时,分式有意义.10.点P(3,﹣4)关于原点对称的点的坐标是.11.若函数y=(a+3)x+a2﹣9是正比例函数,则a=.12.用科学记数法表示:0.000204=.13.反比例函数y=的图象经过点(﹣2,3),则k的值为.14.若关于x的方程有增根,m.15.符号“”称为二阶行列式,规定它的运算法则为:=ad﹣bc,请你根据上述规定求出下列等式中x的值.若,那么x=.16.如图,过x轴正半轴上的任意一点P作y轴的平行线交反比例函数y=和y=﹣的图象于A,B两点,C是y轴上任意一点,则△ABC的面积为.三、解答题:本大题共8小题,共72分.解答应写出文字说明,证明过程或演算步骤.17.(10分)计算:①﹣4×()﹣2+|﹣5|+(π﹣3)0②﹣.18.(10分)解下列分式方程(1)=1(2)=19.(7分)先化简,再求值:,当a=﹣3时,求代数式的值.20.(7分)蓬溪芝溪玉液酒厂接到生产480件芝溪玉液酒的订单,为了尽快完成任务,该厂实际每天生产的件数比原来每天多50%,提前10天完成任务.原来每天生产多少件?21.(8分)“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)小明在书店停留了多少分钟?(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?(4)我们认为骑单车的速度超过300米/分钟就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?22.(8分)某商场欲购进一种商品,当购进这种商品至少为10kg,但不超过30kg时,成本y(元/kg)与进货量x(kg)的函数关系如图所示.(1)求y关于x的函数解析式,并写出x的取值范围.(2)若该商场购进这种商品的成本为9.6元/kg,则购进此商品多少千克?23.(10分)如图,直线y=x﹣2分别交x轴、y轴于A、B两点,O是原点.(1)求△AOB的面积.(2)过△AOB的顶点B画一条直线把△AOB分成面积相等的两部分,求出直线解析式.24.(12分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)直接写出一次函数的值小于反比例函数值的x的取值范围.参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对应题目上.(注意:在试题卷上作答无效).1.下列计算正确的是()A.2﹣2=﹣4B.2﹣2=4C.2﹣2=D.2﹣2=﹣【分析】2﹣2表示2的平方的倒数,依据表示的意义即可求解.【解答】解:2﹣2==.故选:C.【点评】本题只需熟练掌握:负整数指数幂应把其化为正整数指数幂的倒数,进行计算即可.2.下列各式中,属于分式的是()A.B.C.D.﹣【分析】根据分式的定义,可得答案.【解答】解:A、是整式,故A错误;B、是分式,故B正确;C、是整式,故C错误;D、﹣是整式,故D错误;故选:B.【点评】本题考查了分式的定义,分母中含有字母的式子是分式,否则是整式,注意π是常数不是字母.3.在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】横坐标小于0,纵坐标大于0,则这点在第二象限.【解答】解:∵﹣2<0,3>0,∴(﹣2,3)在第二象限,故选:B.【点评】本题考查了点的坐标,四个象限内坐标的符号:第一象限:+,+;第二象限:﹣,+;第三象限:﹣,﹣;第四象限:+,﹣;是基础知识要熟练掌握.4.下列约分中,正确的是()A.=x3B.=0C.D.【分析】根据分式的基本性质,分别对每一项进行解答,即可得出答案.【解答】解:A、=x4,故本选项错误;B、=1,故本选项错误;C、==,故本选项正确;D、=,故本选项错误;故选:C.【点评】本题考查了约分,约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.5.王大爷饭后出去散步,从家中走20分钟到离家900米的公园,与朋友聊天10分钟后,用15分钟返回家中.下面图形表示王大爷离时间x(分)与离家距离y(米)之间的关系是()A.B.C.D.【分析】对四个图依次进行分析,符合题意者即为所求.【解答】解:A、从家中走20分钟到离家900米的公园,与朋友聊天20分钟后,用20分钟返回家中,故本选项错误;B、从家中走20分钟到离家900米的公园,与朋友聊天0分钟后,用20分钟返回家中,故本选项错误;C、从家中走30分钟到离家900米的公园,与朋友聊天0分钟后,用20分钟返回家中,故本选项错误;D、从家中走20分钟到离家900米的公园,与朋友聊天10分钟后,用15分钟返回家中,故本选项正确.故选:D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.6.如果分式的值为零,则a的值为()A.±1B.2C.﹣2D.以上全不对【分析】根据分式的值为零的条件可得:|a|﹣2=0且a+2≠0,从而可求得a的值.【解答】解:由题意得:|a|﹣2=0且a+2≠0,解得:a=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式的值为零需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.7.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S=1,则S1+S2阴影=()A.3B.4C.5D.6【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故选:D.【点评】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.8.如图,直线y=x﹣1与x轴交于点B,与双曲线y=(x>0)交于点A,过点B作x轴的垂线,与双曲线y=交于点C,且AB=AC,则k的值为()A.2B.3C.4D.6【分析】由题意得:BC垂直于x轴,点A在BC的垂直平分线上,则B(2,0)、C(2,),A(4,),将A点代入直线y=x﹣1求得k值.【解答】解:由于AB=AC,BC垂直于x轴,则点A在BC的垂直平分线上,由直线y=x﹣1,可得B(2,0),A、C均在双曲线y=上,则C(2,),A(4,),将A点代入直线y=x﹣1得:k=4.故选:C.【点评】本题考查了反比例函数系数k的几何意义,这里AB=AC是解决此题的突破口,题目比较好,有一定的难度.二、填空题:(每小题3分,共24分)请把答案直接填在答题卡对应题中横线上.9.当x≠1时,分式有意义.【分析】根据分式有意义的条件:分母≠0可得:x﹣1≠0,解可得答案.【解答】解:分式有意义,则x﹣1≠0,解得:x≠1,故答案为:≠1.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.10.点P(3,﹣4)关于原点对称的点的坐标是(﹣3,4).【分析】根据关于关于原点对称的点,横坐标与纵坐标都互为相反数.填空即可.【解答】解:点P(3,﹣4)关于原点对称的点的坐标是(﹣3,4),故答案为(﹣3,4).【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.若函数y=(a+3)x+a2﹣9是正比例函数,则a=3.【分析】由正比例函数的定义可得a2﹣9=0,a+3≠0,再解可得a的值.【解答】解:∵函数y=(a+3)x+a2﹣9是正比例函数,∴a2﹣9=0,a+3≠0,解得:a=3.故答案为:3.【点评】此题主要考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.12.用科学记数法表示:0.000204= 2.04×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:用科学记数法表示:0.000204=2.04×10﹣4.故答案为:2.04×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.反比例函数y=的图象经过点(﹣2,3),则k的值为﹣6.【分析】将点(﹣2,3)代入解析式可求出k的值.【解答】解:把(﹣2,3)代入函数y=中,得3=,解得k=﹣6.故答案为:﹣6.【点评】主要考查了用待定系数法求反比例函数的解析式.先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式.14.若关于x的方程有增根,m3.【分析】分式方程去分母转化为整式方程,将x=5代入整式方程即可求出m的值.【解答】解:去分母得:2﹣x+m=0,将x=5代入得:2﹣5+m=0,解得:m=3.故答案为:3.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.15.符号“”称为二阶行列式,规定它的运算法则为:=ad﹣bc,请你根据上述规定求出下列等式中x的值.若,那么x=4.【分析】根据已知得出分式方程﹣=1,求出分式方程的解,再代入x﹣1和1﹣x进行检验即可.【解答】解:∵,∴﹣=1,方程两边都乘以x﹣1得:2+1=x﹣1,解得:x=4,检验:当x=4时,x﹣1≠0,1﹣x≠0,即x=4是分式方程的解,故答案为:4.【点评】本题考查了分式方程的应用,解此题的关键是根据材料得出分式方程,题目具有一定的代表性,是一道比较好的题目.16.如图,过x 轴正半轴上的任意一点P 作y 轴的平行线交反比例函数y =和y =﹣的图象于A ,B 两点,C 是y 轴上任意一点,则△ABC 的面积为 3 .【分析】设P (a ,0),由直线APB 与y 轴平行,得到A 和B 的横坐标都为a ,将x =a 代入反比例函数y =和y =﹣中,分别表示出A 和B 的纵坐标,进而由AP +BP 表示出AB ,三角形ABC 的面积=×AB ×OP ,求出即可.【解答】解:设P (a ,0),a >0,则A 和B 的横坐标都为a ,将x =a 代入反比例函数y =中得:y =,故A (a ,);将x =a 代入反比例函数y =﹣中得:y =﹣,故B (a ,﹣),∴AB =AP +BP =+=,则S △ABC =AB •OP =××a =3.故答案为3.【点评】此题考查了反比例函数系数k 的几何意义,以及坐标与图形性质,其中设出P 的坐标,表示出AB 是解本题的关键.三、解答题:本大题共8小题,共72分.解答应写出文字说明,证明过程或演算步骤. 17.(10分)计算:①﹣4×()﹣2+|﹣5|+(π﹣3)0②﹣.【分析】(1)根据负整数指数幂、绝对值、零指数幂可以解答本题;(2)先对原式通分然后再化简即可解答本题.【解答】解:①﹣4×()﹣2+|﹣5|+(π﹣3)0=3﹣4×4+5+1=3﹣16+5+1=﹣7;②﹣=====.【点评】本题考查实数的运算、分式的加减法、负整数指数幂、零指数幂,解题的关键是明确它们各自的计算方法.18.(10分)解下列分式方程(1)=1(2)=【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:4﹣1=x﹣1,解得:x=4,经检验x=4是分式方程的解;(2)去分母得:4+x2+5x+6=x2﹣3x+2,解得:x=﹣1,经检验x=﹣1是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(7分)先化简,再求值:,当a=﹣3时,求代数式的值.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:原式=﹣•=﹣=,当a=﹣3时,原式==﹣.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌分式的混合运算顺序和运算法则.20.(7分)蓬溪芝溪玉液酒厂接到生产480件芝溪玉液酒的订单,为了尽快完成任务,该厂实际每天生产的件数比原来每天多50%,提前10天完成任务.原来每天生产多少件?【分析】直接根据题意表示出原计划和实际生产的件数,进而利用提前10天完成任务得出等式求出答案.【解答】解:设原来每天生产x件,根据题意可得:=+10,解得:x=16,检验得:当x=16是原方程的根,答:原来每天生产16件.【点评】此题主要考查了分式方程的应用,根据题意利用生产的天数得出等式是解题关键.21.(8分)“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)小明在书店停留了多少分钟?(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?(4)我们认为骑单车的速度超过300米/分钟就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?【分析】(1)根据函数图象的纵坐标,可得答案;(2)根据函数图象的横坐标,可得到达书店时间,离开书店时间,根据有理数的减法,克的答案;(3)根据函数图象的纵坐标,可得相应的路程,根据有理数的加法,可得答案;(4)根据函数图象的纵坐标,可得路程,根据函数图象的横坐标,可得时间,根据路程与时间的关系,可得速度.【解答】解:(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,故小明家到学校的路程是1500米;(2)根据题意,小明在书店停留的时间为从(8分)到(12分),故小明在书店停留了4分钟.(3)一共行驶的总路程=1200+(1200﹣600)+(1500﹣600)=1200+600+900=2700米;共用了14分钟.(4)由图象可知:0~6分钟时,平均速度==200米/分,6~8分钟时,平均速度==300米/分,12~14分钟时,平均速度==450米/分,所以,12~14分钟时速度最快,不在安全限度内.【点评】本题考查了函数图象,观察函数图象的纵坐标得出路程,观察函数图象的横坐标得出时间,又利用了路程与时间的关系.22.(8分)某商场欲购进一种商品,当购进这种商品至少为10kg,但不超过30kg时,成本y(元/kg)与进货量x(kg)的函数关系如图所示.(1)求y关于x的函数解析式,并写出x的取值范围.(2)若该商场购进这种商品的成本为9.6元/kg,则购进此商品多少千克?【分析】(1)设出成本y(元/kg)与进货量x(kg)的函数解析式,由图象上的点的坐标利用待定系数法即可求得结论;(2)令成本y=9.6,得出关于x的一元一次方程,解方程即可得出结论.【解答】解:(1)设成本y(元/kg)与进货量x(kg)的函数解析式为y=kx+b,由图形可知:,解得:.故y关于x的函数解析式为y=﹣0.1x+11,其中10≤x≤30.(2)令y=﹣0.1x+11=9.6,即0.1x=1.4,解得:x=14.故该商场购进这种商品的成本为9.6元/kg,则购进此商品14千克.【点评】本题考查了一次函数的图象以及用待定系数法求函数解析式,解题的关键:(1)设出解析式在图象上找出点的坐标利用待定系数法去求系数;(2)令y=9.6,得出关于x的一元一次方程.本题属于基础题,难度不大,解决该类题型的方法是利用图象得出点的坐标,结合待定系数法求出结论.23.(10分)如图,直线y=x﹣2分别交x轴、y轴于A、B两点,O是原点.(1)求△AOB的面积.(2)过△AOB的顶点B画一条直线把△AOB分成面积相等的两部分,求出直线解析式.【分析】(1)分别令直线解析式中x=0、y=0求出相对于的y、x值,由此即可得出点A、B的坐标,再利用三角形的面积公式即可得出结论;(2)找出线段OA的中点C,连接BC,设直线BC的解析式为y=kx+b(k≠0),由点A的坐标可得出点C的坐标,结合点B、C的坐标利用待定系数法即可得出结论.【解答】解:(1)令y=x﹣2中x=0,则y=﹣2,∴点B(0,﹣2);令y=x﹣2中y=0,则x﹣2=0,解得:x=3,∴点A(3,0).S=OA•OB=×2×3=3.△AOB(2)作出线段AO的中点C,连接BC,如图所示.∵点A(3,0),∴点C(,0).设直线BC的解析式为y=kx+b(k≠0),将点B(0,﹣2)、C(,0)代入y=kx+b中,得:,解得:,∴直线BC的解析式为y=x﹣2.【点评】本题考查了一次函数图象上点的坐标特征、三角形的面积公式以及待定系数法求出函数解析式,解题的关键是:(1)求出点A、B的坐标;(2)利用待定系数法求出函数解析式.本题属于基础题,难度不大,解决该题型题目时,找出点的坐标,再利用待定系数法求出函数解析式是关键.24.(12分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)直接写出一次函数的值小于反比例函数值的x的取值范围.【分析】(1)先把B 点坐标代入代入y =,求出m 得到反比例函数解析式,再利用反比例函数解析式确定A 点坐标,然后利用待定系数法求一次函数解析式;(2)根据x 轴上点的坐标特征确定C 点坐标,然后根据三角形面积公式和△AOB 的面积=S △AOC +S △BOC 进行计算;(3)观察函数图象得到当﹣4<x <0或x >2时,一次函数图象都在反比例函数图象下方.【解答】解:∵B (2,﹣4)在反比例函数y =的图象上,∴m =2×(﹣4)=﹣8,∴反比例函数解析式为:y =﹣,把A (﹣4,n )代入y =﹣,得﹣4n =﹣8,解得n =2,则A 点坐标为(﹣4,2).把A (﹣4,2),B (2,﹣4)分别代入y =kx +b ,得,解得,∴一次函数的解析式为y =﹣x ﹣2;(2)∵y =﹣x ﹣2,∴当﹣x ﹣2=0时,x =﹣2,∴点C 的坐标为:(﹣2,0),△AOB 的面积=△AOC 的面积+△COB 的面积=×2×2+×2×4=6;(3)由图象可知,当﹣4<x<0或x>2时,一次函数的值小于反比例函数的值.【点评】本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.。

2018-2019学年上学期武汉市江岸区八年级期中数学试卷附答案详析

2018-2019学年上学期武汉市江岸区八年级期中数学试卷附答案详析

2018-2019学年上学期武汉市江岸区八年级期中数学试卷一、选择题(本大题共6小题,每小题3分,共12分)1.以下轴对称图形中,对称轴条数最少的是()A.B.C.D.2.下列长度的三条线段能组成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.5,6,73.根据下列已知条件,能够画出唯一△ABC的是()A.AB=6,BC=5,∠A=50°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8D.∠A=40°,∠B=50°,∠C=90°4.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.40°B.30°C.50°D.60°5.如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A.5B.4C.10D.86.规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:①AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1;②AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1;③AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;④AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1.其中能判定四边形ABCD和四边形A1B1C1D1全等有()个.A.1B.2C.3D.4二、填空题(本大题共10小题,每空3分,共30分)7.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若AD=13,AC=12,则点D到AB的距离为.8.如图,在△ABC中,∠ABC、∠ACB的角平分线交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.若MN=5cm,CN=2cm,则BM=cm.9.如图,在△ABC中,AB=4,AC=3,BC=5,AD是△ABC的角平分线,DE⊥AB于点E,则DE长是.10.如图,一块形如“Z”字形的铁皮,每个角都是直角,且AB=BC=EF=GF=1,CD=DE=GH=AH=3,现将铁片裁剪并拼接成一个和它等面积的正方形,则正方形的边长是.11.如图,△ABC,△ADE均是等腰直角三角形,BC与DE相交于F点,若AC=AE=1,则四边形AEFC的周长为.12.如图,△ABC 是边长为6的等边三角形,D 是BC 上一点,BD =2,DE ⊥BC 交AB 于点E ,则AE = .13.如图,在△ABC 中,∠C =90°,AB 的垂直平分线分别交AB 、AC 于点D 、E ,AE =5,AD =4,线段CE 的长为 .14.已知△ABC 为等边三角形,BD 为中线,延长BC 至E ,使CE =CD =1,连接DE ,则DE = .15.下面是“经过已知直线外一点作这条直线的垂线“的尺规作图过程. 已知:直线l 和l 外一点P .求作:直线l 的垂线,使它经过点P作法:如图,(1)在直线l 上任意两点A 、B ; (2)分别以点A ,B 为圆心,AP ,BP 长为半径作弧,两弧相交于点Q ; (3)作直线PQ ,所以直线PQ 就是所求作的垂线.该作图的依据是 .16.如图,在△ABC中,∠C=90°,∠A=34°,D,E分别为AB,AC上一点,将△BCD,△ADE沿CD,DE翻折,点A,B恰好重合于点P处,则∠ACP=.三、解答题(共6小题,满分52分)17.(9分)(1)请在图中画出三个以AB为腰的等腰△ABC.(要求:1.锐角三角形,直角三角形,钝角三角形各画一个;2.点C在格点上.)(2)如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证BC=AD.18.(8分)如图,甲、乙两艘轮船同时从港口O出发,甲轮船向南偏东45°方向航行,乙轮船以每小时15海里的速度向南偏西45°方向航行,2小时后两艘轮船之间的距离为50海里,问甲轮船平均每小时航行多少海里?19.(8分)如图,正方形网格中每个小正方形边长都是1.(1)画出△ABC关于直线l对称的图形△A1B1C1;(2)在直线l上找一点P,使PB=PC;(要求在直线l上标出点P的位置)(3)连接PA、PC,计算四边形PABC的面积.20.(7分)如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE沿AE折叠,使点B 落在长方形内点F处,且DF=6,求BE的长.21.(8分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.22.(12分)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.概念应用(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC的等角分割线.(3)在△ABC中,∠A=42°,CD是△ABC的等角分割线,直接写出∠ACB的度数.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共12分)1.以下轴对称图形中,对称轴条数最少的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、有四条对称轴,B、有六条对称轴,C、有四条对称轴,D、有二条对称轴,综上所述,对称轴最少的是D选项.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列长度的三条线段能组成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.5,6,7【分析】根据勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.【解答】解:A、12+22≠32,不能组成直角三角形,故此选项错误;B、22+32≠42,不能组成直角三角形,故此选项错误;C、32+42=52,能组成直角三角形,故此选项正确;D、52+62≠72,不能组成直角三角形,故此选项错误;故选:C.【点评】此题主要考查了勾股定理的逆定理,要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.3.根据下列已知条件,能够画出唯一△ABC的是()A.AB=6,BC=5,∠A=50°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8D.∠A=40°,∠B=50°,∠C=90°【分析】根据全等三角形的判定方法可知只有C能画出唯一三角形.【解答】解:A、已知AB、BC和BC的对角,不能画出唯一三角形,故本选项错误;B、∵AB+BC=5+6=11<AC,∴不能画出△ABC;故本选项错误;C、已知两角和夹边,能画出唯一△ABC,故本选项正确;D、根据∠A=40°,∠B=50°,∠C=90°不能画出唯一三角形,故本选项错误;故选:C.【点评】本题考查了全等三角形的判定方法;一般三角形全等的判定方法有SSS、SAS、ASA、AAS,熟练掌握全等三角形的判定方法是解题的关键.4.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.40°B.30°C.50°D.60°【分析】根据邻补角的定义求出∠AED,再根据全等三角形对应边相等可得AD=AE,然后利用等腰三角形的两底角相等列式计算即可得解.【解答】解:∵∠AEC=110°,∴∠AED=180°﹣∠AEC=180°﹣110°=70°,∵△ABD≌△ACE,∴AD=AE,∴∠AED=∠ADE,∴∠DAE=180°﹣2×70°=180°﹣140°=40°.故选:A.【点评】本题考查了全等三角形的性质,等腰三角形的判定与性质,熟记性质并准确识图是解题的关键.5.如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A.5B.4C.10D.8【分析】根据等腰三角形的性质得到AD⊥BC,BD=CD,根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选:D.【点评】本题考查了等腰三角形的性质以及勾股定理的知识,熟练掌握等腰三角形的性质是解题的关键.6.规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:①AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1;②AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1;③AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;④AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1.其中能判定四边形ABCD和四边形A1B1C1D1全等有()个.A.1B.2C.3D.4【分析】根据条件能证明△ABC≌△A1B1C1,和△AC D≌△A1B1C1,的条件.【解答】解:有一组邻边和三个角对应相等的两个四边形全等,故①②③正确.故选:C.【点评】本题考查了三角形全等的判定与性质,解题的关键是注意:多边形的全等可以通过作辅助线转化为证明三角形全等的问题.二、填空题(本大题共10小题,每空3分,共30分)7.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若AD=13,AC=12,则点D到AB的距离为5.【分析】根据勾股定理求CD,根据角平分线性质得出DE=CD,即可得出答案.【解答】解:在Rt△ACD中,AD=13,AC=12,由勾股定理得:CD=5,过D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=5,即点D到AB的距离为5,故答案为:5.【点评】本题考查了角平分线性质和勾股定理,能熟记角平分线性质的内容是解此题的关键,注意:在角的内部,角平分线上的点到角两边的距离相等.8.如图,在△ABC中,∠ABC、∠ACB的角平分线交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.若MN=5cm,CN=2cm,则BM=3cm.【分析】只要证明MN=BM+CN即可解决问题;【解答】解:∵∠ABC、∠ACB的平分线相交于点O,∴∠MBO=∠OBC,∠OCN=∠OCB,∵MN∥BC,∴∠OBC=∠MOB,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠OCN,∴BM=MO,ON=CN,∴MN=MO+ON,即MN=BM+CN,∵MN=5cm,CN=2cm,∴BM=5﹣2=3cm,故答案为3cm.【点评】此题考查学生对等腰三角形的判定与性质和平行线性质的理解与掌握.此题关键是证明△BMO,△CNO是等腰三角形.9.如图,在△ABC中,AB=4,AC=3,BC=5,AD是△ABC的角平分线,DE⊥AB于点E,则DE长是.【分析】由△ABC的三边长,可证明△ABC为直角三角形,作DH⊥AC于H,利用角平分线的性质得DH=DE,根据三角形的面积公式得×DE•AB+×DH•AC=AB•AC,于是可求出DE的值.【解答】解:作DH⊥AC于H,∵AD是△ABC的角平分线,DE⊥AB于点E,∴DH=DE,∵AB=4,AC=3,BC=5,∴△ABC为直角三角形,∴DE•AB+DH•AC=AB•AC,∴DH=DE=,故答案为:【点评】本题考查了勾股定理的逆定理运用以及角平分线的性质,能够证明ABC为直角三角形,得到DE•AB+ DH•AC=AB•AC是解题的关键.10.如图,一块形如“Z”字形的铁皮,每个角都是直角,且AB=BC=EF=GF=1,CD=DE=GH=AH=3,现将铁片裁剪并拼接成一个和它等面积的正方形,则正方形的边长是.【分析】延长BC交HG于点M,延长HG交DE于点N,先计算出不规则铁皮的面积,再计算面积相等的正方形的面积.【解答】解:如图所示,延长BC交HG于点M,延长HG交DE于点N,则四边形ABMH、CDNM为矩形,四边形GFEN为正方形.所以“Z”字形的铁皮的面积=S矩形ABMH+S矩形CDNM+S正方形GFEN=AH•AB+CD•DN+GF•EF=3×1+3×2+1×1=10.∴正方形的边长=故答案为:.【点评】本题考查了矩形、正方形的判定和面积及算术平方根.解决本题的关键是利用割补的办法计算出不规则铁皮的面积.11.如图,△ABC,△ADE均是等腰直角三角形,BC与DE相交于F点,若AC=AE=1,则四边形AEFC的周长为2.【分析】根据等腰直角三角形的性质和等腰三角形的判定得到BE=EF=CF=CD,于是得到四边形AEFC的周长=AB+AC.【解答】解:∵△ABC,△ADE均是等腰直角三角形,∴∠B=∠D=45°,∠BEF=∠DCF=90°,∴△BEF,△DCF均是等腰直角三角形,∴BE=EF=CF=CD,∴四边形AEFC的周长=AE+EF+AC+CD=AB+AC,∵AC=AE=1,∴AB=AD=,∴四边形AEFC的周长=AE+EF+AC+CD=AB+AC=2,故答案为:2.【点评】本题考查了等腰直角三角形的性质,熟练掌握等腰直角三角形的判定与性质是解题的关键.12.如图,△ABC是边长为6的等边三角形,D是BC上一点,BD=2,DE⊥BC交AB于点E,则AE=2.【分析】在Rt△BED中,求出BE即可解决问题;【解答】解:∵△ABC是等边三角形,∴∠B=60°,∵DE⊥BC,∴∠EDB=90°,∵BD=2,∴EB=2BD=4,∴AE=AB﹣BE=6﹣4=2,故答案为2【点评】本题考查等边三角形的性质、直角三角形的30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.如图,在△ABC中,∠C=90°,AB的垂直平分线分别交AB、AC于点D、E,AE=5,AD=4,线段CE 的长为 1.4.【分析】由AB的垂直平分线DE交AC于点D,垂足为E,根据线段垂直平分线的性质,求得AB,根据相似三角形的性质得到结论.【解答】解:∵DE是AB的垂直平分线,∴AB=2AD=8,∠ADE=∠C=90°,∴△ADE∽△ACB,∴,∴AC=6.4,∴CE=1.4,故答案为:1.4.【点评】此题考查了线段垂直平分线的性质、相似三角形的判定和性质,熟练掌握的线段垂直平分线性质是解决问题的关键.14.已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=.【分析】根据等腰三角形和三角形外角性质求出BD=DE,求出BC,在Rt△BDC中,由勾股定理求出BD即可.【解答】解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,∴∠DBC=∠ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB,∴∠E=30°=∠DBC,∴BD=DE,∵BD是AC中线,CD=1,∴AD=DC=1,∵△ABC是等边三角形,∴BC=AC=1+1=2,BD⊥AC,在Rt△BDC中,由勾股定理得:BD==,即DE=BD=,故答案为:.【点评】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD和求出BD的长.15.下面是“经过已知直线外一点作这条直线的垂线“的尺规作图过程.已知:直线l和l外一点P.求作:直线l的垂线,使它经过点P作法:如图,(1)在直线l上任意两点A、B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ,所以直线PQ就是所求作的垂线.该作图的依据是到线段两端点距离相等的点在线段的垂直平分线上.【分析】由AP=AQ、BP=BQ,依据到线段两端点距离相等的点在线段的垂直平分线上知点A、B在线段PQ 的中垂线上,据此可得PQ⊥l.【解答】解:由作图可知AP=AQ、BP=BQ,所以点A、B在线段PQ的中垂线上(到线段两端点距离相等的点在线段的垂直平分线上),所以PQ⊥l,故答案为:到线段两端点距离相等的点在线段的垂直平分线上.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握线段中垂线的性质及过直线外一点作已知直线的垂线的尺规作图.16.如图,在△ABC中,∠C=90°,∠A=34°,D,E分别为AB,AC上一点,将△BCD,△ADE沿CD,DE翻折,点A,B恰好重合于点P处,则∠ACP=22°.【分析】根据折叠的性质即可得到AD=PD=BD,可得CD=AB=AD=BD,根据∠ACD=∠A=34°,∠BCD=∠B=56°,即可得出∠BCP=2∠BCD=112°,即可得出∠ACP=112°﹣90°=22°.【解答】解:由折叠可得,AD=PD=BD,∴D是AB的中点,∴CD=AB=AD=BD,∴∠ACD=∠A=34°,∠BCD=∠B=56°,∴∠BCP=2∠BCD=112°,∴∠ACP=112°﹣90°=22°,故答案为:22°.【点评】本题主要考查了折叠的性质以及三角形内角和定理的运用,解题时注意:三角形内角和是180°.三、解答题(共6小题,满分52分)17.(9分)(1)请在图中画出三个以AB为腰的等腰△ABC.(要求:1.锐角三角形,直角三角形,钝角三角形各画一个;2.点C在格点上.)(2)如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证BC=AD.【分析】(1)根据等腰三角形、直角三角形、锐角三角形的特点和网格特点,再根据勾股定理画出即可;(2)根据直角三角形的全等判定证明即可.【解答】解:(1)如图所示:(2)证明:∵AC⊥BC,BD⊥AD,在Rt△ADB与Rt△BCA中,,∴Rt△ADB≌Rt△BCA(HL),∴BC=AD.【点评】此题考查了等腰三角形的性质,全等三角形的判定和性质,关键是根据直角三角形的全等判定即可.18.(8分)如图,甲、乙两艘轮船同时从港口O出发,甲轮船向南偏东45°方向航行,乙轮船以每小时15海里的速度向南偏西45°方向航行,2小时后两艘轮船之间的距离为50海里,问甲轮船平均每小时航行多少海里?【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,根据勾股定理解答即可.【解答】解:根据题意知∠AOB=90°,OB=2×15=30海里,AB=50海里,由勾股定理得,OA====40海里,则甲轮船每小时航行=20海里.答:甲轮船每小时航行20海里.【点评】本题考查了勾股定理的应用,熟练运用勾股定理进行计算,基础知识,比较简单.19.(8分)如图,正方形网格中每个小正方形边长都是1.(1)画出△ABC关于直线l对称的图形△A1B1C1;(2)在直线l上找一点P,使PB=PC;(要求在直线l上标出点P的位置)(3)连接PA、PC,计算四边形PABC的面积.【分析】(1)根据网格结构找出点A、B、C对应点A1、B1、C1的位置,然后顺次连接即可;(2)过BC中点D作DP⊥BC交直线l于点P,使得PB=PC;(3)S四边形PABC=S△ABC+S△APC,代入数据求解即可.【解答】解:(1)所作图形如图所示:(2)如图所示,过BC中点D作DP⊥BC交直线l于点P,此时PB=PC;(3)S四边形PABC=S△ABC+S△APC=×5×2+×5×1=.【点评】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出点A、B、C的对应点,然后顺次连接.20.(7分)如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE沿AE折叠,使点B 落在长方形内点F处,且DF=6,求BE的长.【分析】由折叠的性质可知BE=EF,设BE=EF=x,然后再依据勾股定理的逆定理可证明△ADF为直角三角形,则E、D、F在一条直线上,最后,在Rt△CED中,依据勾股定理列方程求解即可.【解答】解:∵将△ABE沿AE折叠,使点B落在长方形内点F处,∴∠AFE=∠B=90°,AB=AF=8,BE=FE.在△ADF中,∵AF2+DF2=62+82=100=102=AD2,∴△ADF是直角三角形,∠AFD=90°.∴D,F,E在一条直线上.设BE=x,则EF=x,DE=6+x,EC=10﹣x,在Rt△DCE中,∠C=90°,∴CE2+CD2=DE2,即(10﹣x)2+82=(6+x)2.∴x=4.∴BE=4.【点评】本题主要考查的是翻折的性质、勾股定理的逆定理、勾股定理的定理,依据勾股定理列出关于x的方程是解题的关键.21.(8分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.【分析】(1)根据线段垂直平分线和等腰三角形性质得出AB=AE=CE,求出∠AEB和∠C=∠EAC,即可得出答案;(2)根据已知能推出2DE+2EC=7cm,即可得出答案.【解答】解:(1)∵AD垂直平分BE,EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C=∠AED=35°;(2)∵△ABC周长13cm,AC=6cm,∴AB+BE+EC=7cm,即2DE+2EC=7cm,∴DE+EC=DC=3.5cm.【点评】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形外角性质的应用,主要考查学生综合运行性质进行推理和计算的能力,题目比较好,难度适中.22.(12分)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.概念应用(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC的等角分割线.(3)在△ABC中,∠A=42°,CD是△ABC的等角分割线,直接写出∠ACB的度数.【分析】(1)根据“等角三角形”的定义解答;(2)根据三角形内角和定理求出∠ACB,根据角平分线的定义得到∠ACD=∠DCB=∠ACB=40°,根据“等角三角形”的定义证明;(3)分△ACD是等腰三角形,DA=DC、DA=AC和△BCD是等腰三角形,DB=BC、DC=BD四种情况,根据等腰三角形的性质、三角形内角和定理计算.【解答】解:(1)△ABC与△ACD,△ABC与△BCD,△ACD与△BCD是“等角三角形”;(2)∵在△ABC中,∠A=40°,∠B=60°∴∠ACB=180°﹣∠A﹣∠B=80°∵CD为角平分线,∴∠ACD=∠DCB=∠ACB=40°,∴∠ACD=∠A,∠DCB=∠A,∴CD=DA,∵在△DBC中,∠DCB=40°,∠B=60°,∴∠BDC=180°﹣∠DCB﹣∠B=80°,∴∠BDC=∠ACB,∵CD=DA,∠BDC=∠ACB,∠DCB=∠A,∠B=∠B,∴CD为△ABC的等角分割线;(3)当△ACD是等腰三角形,DA=DC时,∠ACD=∠A=42°,∴∠ACB=∠BDC=42°+42°=84°,当△ACD是等腰三角形,DA=AC时,∠ACD=∠ADC=69°,∠BCD=∠A=42°,∴∠ACB=69°+42°=111°,当△BCD是等腰三角形,DC=BD时,∠ACD=∠BCD=∠B=46°,∴∠ACB=92°,当△BCD是等腰三角形,DB=BC时,∠BDC=∠BCD,设∠BDC=∠BCD=x,则∠B=180°﹣2x,则∠ACD=∠B=180°﹣2x,由题意得,180°﹣2x+42°=x,解得,x=74°,∴∠ACD=180°﹣2x=32°,∴∠ACB=106°,∴∠ACB的度数为111°或84°或106°或92°.【点评】本题“等角三角形”的定义、等腰三角形的性质、三角形内角和定理,灵活运用分情况讨论思想是解题的关键.- 21 -。

2018-2019学年华东师大版数学八年级上册期中测试题及答案

2018-2019学年华东师大版数学八年级上册期中测试题及答案

2018-20佃 学年八年级数学上册期中检测卷班级: _______一、选择题(每小题3分, 1. 4的算术平方根是 ( A . 2 B . - 2 C . ±2 2. 下列实数中,有理数是 A巫B.%nC.2 D . 0.101001001 3.下列运算正确的是(3 2 62 3A . a a = a B . (a b) 8 2 (4)C . a f = aD . a + a = a 4.下列各命题的逆命题成立的是 (A .全等三角形的对应角相等B .如果两个数相等,那么它们的绝对值相等C .两直线平行,同位角相等D .如果两个角都是 45 °那么这两个角相等 5 .我们知道.5是一个无理数,那么5-1在哪两个整数之间()A . 1 与 2B . 2 与 3C . 3 与 4D . 4 与 5 6 .如图,边长为 a , b 的长方形的周长为A . 140B . 70C . 35D . 247.如图,/ A =Z D , OA = OD ,/ DOC = 50 ° 则/ DBC 的度数为 ( )A . 50 °B . 30 °C . 45 °D . 25 ° 8 .设 a = 73X 1412 , b =9322- 4802, c = 5152- 1912,则数 a , b , c 的大小关系是(A . c v b v aB . a v c v bC . b v c v a 时间:120分钟 — 姓名: 共30分)( )D . 16( )满分:120分 __ 得分:) 6b 314,面积为10,则a 2b + ab 2的值为( D . c v a v bE 在同一条直线上,△ ABC 与厶CDE 都是等边三角形,则下列结 )◎△C .△ DCG ◎△ ECFD . △ ADBCEF'第9题图 第10题图9.如图,点B, C, 论中不一定成立的是(A. △ ACE 也厶BCD10 .如图,AD是厶ABC的角平分线,DE丄AC,垂足为E, BF // AC交ED的延长线于点F,若BC恰好平分/ ABF , AE = 2BF .给出下列四个结论:① DE = DF :②DB = DC;③AD丄BC;④AC = 3BF,其中正确的结论共有()A. 4个B . 3个C . 2个D . 1个二、填空题(每小题3分,共24分)11.计算:(一a)1 2(- a)3= _____ .12•某等腰三角形的一个底角为50 °则它的顶角为___________13.如图,已知AC= AE,/ 1=7 2,要使△ ABC◎△ ADE,还需添加的条件是__________ (只需填一个).(填序号).三、解答题(共66分)19. (每小题3分,共12分)计算:(1) ^125 —彷6 —^121;2 2 2(2) ( —2a b) (6ab)十—3b);(3) [(x+ y)2—(x—y)2] -2xy;14.若a2+ 2a= 1,贝U 3a2+ 6a + 1 = __________ .15•如果X2—Mx + 9是一个完全平方式,则M的值是____________16.如图,已知BD丄AN于B,交AE于点O, 0C丄AM于点C,且0B= 0C,如果7 0AB = 25°,则/ ADB = _____________ .17.如图,在等边厶ABC中,点D为BC边上的点,DE丄BC交AB于E , DF丄AC于F,则7 EDF的度数为18. 如图,C是厶ABE的BE边上一点,F在AE上,D是BC的中点,且AB = AC = CE,对于下列结论:① AD丄BC;②CF丄AE :③/ 1 = 7 2;④AB + BD = DE .其中正确的结论有________________(4) (3x- y) —(3x+ 2y)(3x- 2y).20.(每小题3分,共12分)因式分解与计算:2(1)- 3ma + 12ma- 12m;(2)n2(m- 2) + 4(2 - m);(3)2022+ 202 X 196 + 982;(4)( a + 2b)2+ 2(a + 2b+ 1) - 1.B= a-2b是9的算术平21. (7分)已知A= a b a+ b+ 36是a+ b+ 36的算术平方根, 方根,求A+ B的平方根.222. (7 分)已知2x= 4y+1, 27y= 3x-勺,求x-y 的值.23. (8 分)如图,在四边形 ABCD 中,AB // CD ,/ 1 = 7 2, DB = DC. (1)求证:△ ABD ◎△ EDC ;⑵若/ A = 135 ° 7 BDC = 30 ° 求/ BCE 的度数.24. (10分)如图①所示是一个长为 2m ,宽为2n 的长方形,沿图中虚线用剪刀均分成四个小长方形,图②是边长为 m -n 的正方形.(1) 请用图①中四个小长方形和图②中的正方形拼成一个大正方形, 接处既没有重叠,也没有空隙 );(2) 请用两种不同的方法列代数式表示(1)中拼得的大正方形的面积;(3) 请直接写出(m + n)2, (m — n)2, mn 这三个代数式之间的等量关系;⑷根据⑶中的等量关系,解决如下问题:若a +b = 6, ab = 4,求(a — b)2的值.25. (10 分)如图,在△ ABC 中,AC = BC ,7 ACB = 90° D 是 AB 的中点,点 E 是 AB 边上一点.(1)BF 丄CE 于点F ,交CD 于点G(如图①).求证:AE = CG;画出示意图(要求连 囲① 国②M(如图②),找出图中与BE相等的线段,(2)AH丄CE,垂足为H,交CD的延长线于点并证明.严1//D17图①图②参考答案与解析I. A 2.D 3.B 4.C 5.A 6.B 7.D8. D 解析:a = 73X 1412= 1412 X 343, b= (932 + 480)(932 —480) = 1412X 452, c= (515 + 191)(515 —191) = 706 X 324 = 1412 X 162. v 452>343>162 ,••• 1412 X 452>1412 X 343>1412 X 162,即b>a>c.故选D.9. D10. A 解析:•/ BF // AC, BC 平分/ ABF,•/ ABC = Z CBF = Z C, • AB = AC.v AD/ CDE =Z BDF , 平分/ BAC , • AD 丄BC , CD = BD.在厶CDE 和厶BDF 中, / C =Z CBF ,CD = BD ,•••△CDE ◎△ BDF ,• DE = DF , CE = BF. •/ AE = 2BF , • AC= AE + CE = AE + BF = 3BF , 故①②③④全对.故选 A.II. —a512.80 °13.AB= AD(答案不唯一)14. 4 15. ± 16.40 °17. 60 ° 解析:•••△ABC 是等边三角形,•/ A =Z B = 60 °.v DE 丄BC 交AB 于E ,DF 丄AC 于F,•/ BDE = Z AFD = 90° .v/AED 是厶BDE 的外角,•/ AED = Z B + / BDE = 60° + 90° = 150°,EDF = 360°—/ A— / AED —/ AFD = 360° —60° —150°—90°= 60。

2018-2019学年度八年级上数学期末试卷(解析版)

2018-2019学年度八年级上数学期末试卷(解析版)

2018-2019学年联考八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义;所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解.答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题;【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

华东师大版2018—2019学年度八年级数学上册期中测试题及答案

华东师大版2018—2019学年度八年级数学上册期中测试题及答案

2018—2019学年度第一学期八年级数学科期中检测题班级——姓名——座位——时间:100分钟满分:120分得分:一、选择题(每小题3分,共42分)1.(-4)2的平方根是A.16 B. 4 C.±4D.±22.下列说法中,正确的是A.9=±3 B. 64的立方根是±4C. 6平方根是6D. 0.01的算术平方根是0.13.下列计算正确的是A.a2·a3=a6B.3a2-a2=2 C.a8÷a2=a6D.(-2a)3=-2a3 4. 计算x2-(x-1)2,正确的结果是A.1B.2x-1C.-2x+1D.-2x-15. 下列算式计算结果为x2-4x-12的是A.(x+2)(x-6)B.(x-2)(x+6)C.(x+3)(x-4)D.(x-3)(x+4) 6.比较22,3,7的大小,正确的是A.7<3<22B.22<7<3C.7<22<3D.22<3<77.下列实数中,无理数是A.72B.3.14159C.312D.08.如图1,数轴上点P所表示的数可能是A.6B.-7C.--3D.-109.一个正方形的面积为11,估计该正方形边长应在A. 2到3之间B. 3到4之间C. 4到5之间D. 5到6之间10.若a·23=26,则a等于A.2B.4C.6D.8 11.计算(-2xy)2÷xy2,正确的结果是A. 2xB. 4xC. 2D. 412. 计算53)(x·(-3x2y)的结果是A. 6x3yB. -3x17yC. -6x3yD.-x3y 13.下列因式分解正确的是A.-a2+a3=-a2(1+a) B.2x-4y+2=2(x-2y)C.5x2+5y2=5(x+y)2D.a2-8a+16=(a-4)214. 已知x2-y2=6,x-y=1,则x+y等于A.2 B.3 C.4 D.6二、填空题(每小题4分,共16分)图1P1-1 2-2-3八年级数学(共2页) 1。

华师大版八年级(上)期中数学试卷及答案

华师大版八年级(上)期中数学试卷及答案

华师大版八年级(上)期中数学试卷及答案一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡上。

1.4的平方根是()A.2B.﹣2C.±2D.2.在实数,,π,,,无理数有()A.2个B.3个C.4个D.5个3.下列各式中,计算正确的是()A.=±3B.(a2)3=a5C.a6÷a3=a2D.(2a3)2=4a64.若a x=3,a y=2,则a2x+y等于()A.6B.7C.8D.185.郑州市“旧城改造”中,计划在市内一块长方形空地上种植草皮,以美化环境.已知长方形空地的面积为(3ab+b)平方米,宽为b米,则这块空地的长为()A.3a米B.(3a+1)米C.(3a+2b)米D.(3ab2+b2)米6.多项式12ab3+8a3b的各项公因式是()A.ab B.2ab C.4ab D.4ab27.如图,AB=AC,添加下列一个条件后,仍无法确定△ABE≌△ACD的是()A.∠B=∠C B.BE=CD C.BD=CE D.∠ADC=∠AEB8.在实数范围内定义一种新运算“@”,其运算规则为:a@b=1﹣ab,如:2@5=1﹣2×5=﹣9,则22020@的值为()A.B.﹣C.D.﹣9.如图,将图①中大小相同的四个小正方形按图②所示的方式放置变为一个大正方形,根据两个图形中阴影部分的面积关系,可以验证(A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=(a+b)2﹣4ab D.(a+b)(a﹣b)=a2﹣b210.如图,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D,下面四个结论:①∠ABE=∠BAD;②△CEB≌△ADC;③AB=CE;④AD﹣BE=DE,其中正确的序号是()A.①②④B.①②③C.①③④D.②③④二.填空题(每小题3分,共15分)11.=.12.已知(a+1)(a﹣2)=5,则代数式a﹣a2的值为.13.若二次三项式x2+6x+m2是关于x的完全平方式,则常数m=.14.如图,在△ACD中,∠CAD=90°,AC=6,AD=8,AB∥CD,E是CD上一点,BE交AD于点F,若EF=BF,则图中阴影部分的面积为.15.如图,一个直角三角形纸片,∠B=90°,AB=5cm,BC=12cm,AC=13cm,把纸片按如图所示折叠,使点B 落在边AC上的B'处,AE为折痕,则三角形CEB'的周长为cm.三.解答题(本大题共8个小题,满分75分)16.计算:(1)+|﹣2|﹣﹣()3÷()2;(2)1001×999﹣9992.17.因式分解(1)a3b﹣ab;(2)(x+y)2﹣(2x+2y﹣1).18.计算与化简(1)计算:(36a4b3﹣9a3b2+4a2b2)÷(﹣3ab)2;(2)先化简,再求值.(x﹣y)2+(3x﹣y)(x+y)﹣(x﹣2y)(x+2y),其中x,y满足(x+2)2+|y﹣3|=0.19.阅读下列文字,并解决问题.已知x2y=3,求2xy(x5y2﹣3x3y﹣4x)的值.分析:考虑到满足x2y=3的x,y的可能值较多,不可能逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2﹣3x3y﹣4x)=2x6y3﹣6x4y2﹣8x2y=2(x2y)3﹣6(x2y)2﹣8x2y=2×33﹣6×32﹣8×3=﹣24.请你用上述方法解决问题:(1)已知ab=3,求(2a3b2﹣3a2b+4a)•(﹣2b)的值;(2)已知x﹣=2,求x2+的值.20.如图,幼儿园的滑梯有两个长度相等滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等.(1)△ABC与△DEF全等吗?(2)两个滑梯的倾斜角∠ABC与∠DFE的大小有什么关系.21.【教材呈现】:图①,图②,图③分别是华东师大版八年级上册数学教材第33页、第34页和第52页的图形,结合图形解决下列问题:(1)分别写出能够表示图①、图②中图形的面积关系的乘法公式:,.(2)图③是用四个长和宽分别为a,b的全等长方形拼成的一个正方形(所拼图形无重叠、无缝隙),写出代数式(a+b)2、(a﹣b)2、ab之间的等量关系:.【结论应用】根据上面(2)中探索的结论,回答下列问题:(3)当m+n=5,mn=﹣1时,求m﹣n的值;(4)设A=,B=m﹣3,化简(A+B)2﹣(A﹣B)2.22.如图①,在长方形ABCD中,AB=CD=8cm,BC=12cm,点P从点B出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为ts.(1)PC=cm;(用含t的代数式表示)(2)当t为何值时,△ABP≌△DCP?并说明理由.(3)如图②当点P从点B开始运动时,点Q同时从点C出发,以vcm/s的速度沿CD向点D运动,是否存在这样的v值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.23.(1)观察猜想:如图①:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点且∠EAF=60°,延长FD到点G.使DG=BE,连结AG,则线段AG与AE的数量关系是,∠F AG=度;(2)探索发现:根据(1)及图①,探究线段BE,EF,FD之间的数量关系,其结论是,请说明理由;(3)拓展延伸:如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述(2)中的结论是否仍然成立?(填“是”或“否”);(4)结论应用:如图③,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心O的距离相等,接到行动指令后,舰艇甲向正东方向以50海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以65海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°(∠EOF=70°),试求此时两舰艇之间的距离.(请直接写出结果)参考答案与试题解析一.选择题(共10小题)1.4的平方根是()A.2B.﹣2C.±2D.【分析】根据平方根的定义,求数4的平方根即可.【解答】解:4的平方根是±2.故选:C.2.在实数,,π,,,无理数有()A.2个B.3个C.4个D.5个【分析】根据无理数的定义可直接判定求解.【解答】解:在实数,,π,,,无理数有,π,,共3个,故选:B.3.下列各式中,计算正确的是()A.=±3B.(a2)3=a5C.a6÷a3=a2D.(2a3)2=4a6【分析】分别根据算术平方根的定义,幂的乘方运算法则,同底数幂的除法法则以及积的乘方运算法则逐一判断即可.【解答】解:A、,故本选项不合题意;B、(a2)3=a6,故本选项不合题意;C、a6÷a3=a3,故本选项不合题意;D、(2a3)2=4a6,故本选项符合题意;故选:D.4.若a x=3,a y=2,则a2x+y等于()A.6B.7C.8D.18【分析】直接利用幂的乘方运算法则结合同底数幂的乘法运算法则求出答案.【解答】解:∵a x=3,a y=2,∴a2x+y=(a x)2×a y=32×2=18.故选:D.5.郑州市“旧城改造”中,计划在市内一块长方形空地上种植草皮,以美化环境.已知长方形空地的面积为(3ab+b)平方米,宽为b米,则这块空地的长为()A.3a米B.(3a+1)米C.(3a+2b)米D.(3ab2+b2)米【分析】直接利用整式的除法运算法则计算得出答案.【解答】解:∵长方形空地的面积为(3ab+b)平方米,宽为b米,∴这块空地的长为:(3ab+b)÷b=(3a+1)米.故选:B.6.多项式12ab3+8a3b的各项公因式是()A.ab B.2ab C.4ab D.4ab2【分析】根据公因式定义,对各选项整理然后即可选出有公因式的项.【解答】解:12ab3c+8a3b=4ab(3b2c+2a2),则4ab是公因式,故选:C.7.如图,AB=AC,添加下列一个条件后,仍无法确定△ABE≌△ACD的是()A.∠B=∠C B.BE=CD C.BD=CE D.∠ADC=∠AEB【分析】根据全等三角形的判定方法对各选项进行判断.【解答】解:∵AB=AC,∠BAE=∠CAD,∴当∠B=∠C时,根据“ASA”可判断△ABE≌△ACD;当BD=CE,则AE=AD,根据“SAS”可判断△ABE≌△ACD;当∠AEB=∠ADC时,根据“AAS”可判断△ABE≌△ACD.故选:B.8.在实数范围内定义一种新运算“@”,其运算规则为:a@b=1﹣ab,如:2@5=1﹣2×5=﹣9,则22020@的值为()A.B.﹣C.D.﹣【分析】直接利用运算公式变形,进而计算得出答案.【解答】解:22020@=1﹣22020×=1﹣[2×(﹣)]2020×(﹣)=1+=.故选:C.9.如图,将图①中大小相同的四个小正方形按图②所示的方式放置变为一个大正方形,根据两个图形中阴影部分的面积关系,可以验证(A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=(a+b)2﹣4ab D.(a+b)(a﹣b)=a2﹣b2【分析】根据图形阴影部分的面积的不同求法可得等式.【解答】解:阴影部分的面积是四个阴影小正方形的面积和,由拼图可得四个阴影小正方形可以拼成边长为(a ﹣b)的正方形,因此面积为(a﹣b)2,由图2可知,阴影部分的面积等于边长为a的正方形的面积减去之间十字架的面积,即:a2﹣2ab+b2,因此有(a﹣b)2=a2﹣2ab+b2,故选:A.10.如图,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D,下面四个结论:①∠ABE=∠BAD;②△CEB≌△ADC;③AB=CE;④AD﹣BE=DE,其中正确的序号是()A.①②④B.①②③C.①③④D.②③④【分析】证明BE∥AD,则可对①进行判断;证明∠BCE=∠CAD,则可根据“AAS”证明△CEB≌△ADC,则可对②进行判断;根据全等三角形的性质可对③④进行判断.【解答】解:∵BE⊥CE于点E,AD⊥CE于点D,∴BE∥AD,∴∠ABE=∠BAD,所以①正确;∵∠BCE+∠DCA=90°,∠DCA+∠CAD=90°,∴∠BCE=∠CAD,在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),所以②正确;∴CE=AD,所以③错误;BE=CD,∴AD﹣BE=CE﹣CD=DE,所以④正确.故选:A.二.填空题(共5小题)11.=﹣2.【分析】因为﹣2的立方是﹣8,所以的值为﹣2.【解答】解:=﹣2.故答案为:﹣2.12.已知(a+1)(a﹣2)=5,则代数式a﹣a2的值为﹣7.【分析】先计算多项式乘多项式,再变形方程得结论【解答】解:∵(a+1)(a﹣2)=5,∴a2﹣a﹣2=5.即a2﹣a=7.∴a﹣a2=﹣7.故答案为:﹣7.13.若二次三项式x2+6x+m2是关于x的完全平方式,则常数m=±3.【分析】根据完全平方公式的定义,a2±2ab+b2=(a±b)2,解出即可.【解答】解:∵x2+6x+m2=(x+3)2,故m2=(±3)2=9.故答案为:±3.14.如图,在△ACD中,∠CAD=90°,AC=6,AD=8,AB∥CD,E是CD上一点,BE交AD于点F,若EF=BF,则图中阴影部分的面积为24.【分析】证明△BAF≌△EDF(ASA),则S△BAF=S△DEF,利用割补法可得阴影部分的面积.【解答】解:∵AB∥CD,∴∠BAD=∠D,在△BAF和△EDF中,,∴△BAF≌△EDF(ASA),∴S△BAF=S△DEF,∴图中阴影部分的面积=S四边形ACEF+S△AFB=S△ACD===24.故答案为:24.15.如图,一个直角三角形纸片,∠B=90°,AB=5cm,BC=12cm,AC=13cm,把纸片按如图所示折叠,使点B 落在边AC上的B'处,AE为折痕,则三角形CEB'的周长为20cm.【分析】由折叠的性质可得AB=AB'=5cm,BE=B'E,即可求解.【解答】解:由折叠可知:AB=AB'=5cm,BE=B'E,∴B'C=AC﹣AB'=13﹣5=8(cm),∴△CEB'的周长=EC+B'E+B'C=BE+EC+B'C=12+8=20(cm),故答案为:20.三.解答题16.计算:(1)+|﹣2|﹣﹣()3÷()2;(2)1001×999﹣9992.【分析】(1)根据算术平方根、绝对值、二次根式的性质以及有理数的乘方的法则进行计算即可;(2)利用乘法分配律进行计算即可.【解答】解:(1)+|﹣2|﹣﹣()3÷()2=4+2﹣﹣1﹣×16=4+2﹣﹣1﹣2=3﹣;(2)1001×999﹣9992=(1000+1)(1000﹣1)﹣9992=10002﹣1﹣9992=(1000+999)(1000﹣999)﹣1=1999﹣1=1998.17.因式分解(1)a3b﹣ab;(2)(x+y)2﹣(2x+2y﹣1).【分析】(1)直接提取公因式法ab,再利用公式法分解因式,即可得出答案;(2)直接利用完全平方公式分解因式得出答案.【解答】解:(1)a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1);(2)(x+y)2﹣(2x+2y﹣1)=(x+y)2﹣2(x+y)+1=(x+y﹣1)2.18.计算与化简(1)计算:(36a4b3﹣9a3b2+4a2b2)÷(﹣3ab)2;(2)先化简,再求值.(x﹣y)2+(3x﹣y)(x+y)﹣(x﹣2y)(x+2y),其中x,y满足(x+2)2+|y﹣3|=0.【分析】(1)根据积的乘方、多项式除以单项式可以解答本题;(2)根据完全平方公式、多项式乘多项式、平方差公式可以化简题目中的式子,然后根据(x+2)2+|y﹣3|=0,可以得到x、y的值,然后代入化简后的式子,即可解答本题.【解答】解:(1)(36a4b3﹣9a3b2+4a2b2)÷(﹣3ab)2=(36a4b3﹣9a3b2+4a2b2)÷9a2b2=4a2b﹣a+;(2)(x﹣y)2+(3x﹣y)(x+y)﹣(x﹣2y)(x+2y)=x2﹣2xy+y2+3x2+3xy﹣xy﹣y2﹣(x2﹣4y2)=x2﹣2xy+y2+3x2+3xy﹣xy﹣y2﹣x2+4y2=3x2+4y2,∵(x+2)2+|y﹣3|=0,∴x+2=0,y﹣3=0,解得x=﹣2,y=3,当x=﹣2,y=3时,原式=3×(﹣2)2+4×32=3×4+4×9=12+36=48.19.阅读下列文字,并解决问题.已知x2y=3,求2xy(x5y2﹣3x3y﹣4x)的值.分析:考虑到满足x2y=3的x,y的可能值较多,不可能逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2﹣3x3y﹣4x)=2x6y3﹣6x4y2﹣8x2y=2(x2y)3﹣6(x2y)2﹣8x2y=2×33﹣6×32﹣8×3=﹣24.请你用上述方法解决问题:(1)已知ab=3,求(2a3b2﹣3a2b+4a)•(﹣2b)的值;(2)已知x﹣=2,求x2+的值.【分析】(1)根据单项式乘多项式的运算法矩形计算,根据积的乘方法则变形,把已知数据代入计算即可;(2)根据完全平方公式把原式变形,把已知数据代入计算即可.【解答】解:(1)∵ab=3,∴(2a3b2﹣3a2b+4a)•(﹣2b)=﹣4a3b3+6a2b2﹣8ab=﹣4(ab)3+6(ab)2﹣8ab=﹣4×33+6×32﹣8×3=﹣68;(2)∵x﹣=2,∴x2+=x2﹣2++2=(x﹣)2+2=22+2=6.20.如图,幼儿园的滑梯有两个长度相等滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等.(1)△ABC与△DEF全等吗?(2)两个滑梯的倾斜角∠ABC与∠DFE的大小有什么关系.【分析】(1)由图可得,△ABC与△DEF均是直角三角形,由已知可根据HL判定两三角形全等;(2)利用(1)中全等三角形的对应角相等,不难求解.【解答】解:(1)△ABC与△DEF全等.理由如下:在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL);(2)∠ABC+∠DFE=90°,理由如下:由(1)知,Rt△ABC≌Rt△DEF,则∠ABC=∠DEF,∵∠DEF+∠DFE=90°,∴∠ABC+∠DFE=90°.21.【教材呈现】:图①,图②,图③分别是华东师大版八年级上册数学教材第33页、第34页和第52页的图形,结合图形解决下列问题:(1)分别写出能够表示图①、图②中图形的面积关系的乘法公式:(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2.(2)图③是用四个长和宽分别为a,b的全等长方形拼成的一个正方形(所拼图形无重叠、无缝隙),写出代数式(a+b)2、(a﹣b)2、ab之间的等量关系:(a+b)2=(a﹣b)2+4ab.【结论应用】根据上面(2)中探索的结论,回答下列问题:(3)当m+n=5,mn=﹣1时,求m﹣n的值;(4)设A=,B=m﹣3,化简(A+B)2﹣(A﹣B)2.【分析】(1)根据图①、图②中各个部分面积之间的关系得出乘法公式;(2)根据大正方形的面积等于小正方形面积与4个矩形面积的和可得答案;(3)由(2)的结论,根据关系式可求答案;(4)由完全平方公式可得(A+B)2﹣(A﹣B)2=4AB,再代入求值即可.【解答】解:(1)图①大正方形的边长为a+b,根据各个部分面积之间的关系可得,(a+b)2=a2+2ab+b2,图②中,最大的正方形的边长为a,较小的正方形的边长为a﹣b,最小的正方形的边长为b,根据各个部分面积之间的关系得,(a﹣b)2=a2﹣2ab+b2,故答案为:(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2;(2)根据大正方形的面积等于小正方形面积与4个矩形面积的和可得,(a+b)2=(a﹣b)2+4ab,故答案为:(a+b)2=(a﹣b)2+4ab;(3)由(2)可得,(m+n)2=(m﹣n)2+4mn,∵m+n=5,mn=﹣1,∴25=(m﹣n)2﹣4,即(m﹣n)2=9,∴m﹣n=±3,答:m﹣n的值为±3;(4)由完全平方公式得,(A+B)2﹣(A﹣B)2=A2+2A•B+B2﹣A2+2A•B﹣B2=4A•B,当A=,B=m﹣3时,原式=4××(m﹣3)=m2﹣9.22.如图①,在长方形ABCD中,AB=CD=8cm,BC=12cm,点P从点B出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为ts.(1)PC=(12﹣2t)cm;(用含t的代数式表示)(2)当t为何值时,△ABP≌△DCP?并说明理由.(3)如图②当点P从点B开始运动时,点Q同时从点C出发,以vcm/s的速度沿CD向点D运动,是否存在这样的v值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.【分析】(1)根据P点的运动速度可得PC的长;(2)根据全等三角形的性质即可得出BP=CP即可;(3)可分两种情况:①△ABP≌△PCQ得到BP=CQ,AB=PC,②△ABP≌△QCP得到BA=CQ,PB=PC,然后分别计算出t的值,进而得到v的值.【解答】解:(1)点P从点B出发,以2cm/秒的速度沿BC向点C运动,点P的运动时间为t秒时,BP=2tcm,则PC=(12﹣2t)cm;故答案为:(12﹣2t);(2)当t=3时,△ABP≌△DCP,理由:∵BP=2t,CP=12﹣2t,∵△ABP≌△DCP,∴BP=CP,∴2t=12﹣2t,∴t=3,则当t为3时,△ABP≌△DCP;(3)①当BP=CQ,AB=PC时,△ABP≌△PCQ,∵AB=8cm,∴PC=8cm,∴BP=12﹣8=4(cm),∴2t=4,解得:t=2,∴CQ=BP=4,v×2=4,解得:v=2;②当BA=CQ,PB=PC时,△ABP≌△QCP,∵PB=PC,∴BP=PC=6cm,∴2t=6,解得:t=3,CQ=AB=8,v×3=8,解得:v=,综上所述,当v=2或时,△ABP与△PQC全等.23.(1)观察猜想:如图①:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点且∠EAF=60°,延长FD到点G.使DG=BE,连结AG,则线段AG与AE的数量关系是AG =AE,∠F AG=60度;(2)探索发现:根据(1)及图①,探究线段BE,EF,FD之间的数量关系,其结论是EF=BE+FD,请说明理由;(3)拓展延伸:如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述(2)中的结论是否仍然成立?是(填“是”或“否”);(4)结论应用:如图③,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心O的距离相等,接到行动指令后,舰艇甲向正东方向以50海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以65海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°(∠EOF=70°),试求此时两舰艇之间的距离.(请直接写出结果)【分析】(1)观察猜想:证明△ABE≌△ADG(SAS),AE=AG,∠BAE=∠DAG,则∠EAF=∠F AG=60°,可求出答案;(2)探索发现:延长FD到点G,使DG=BE,连接AG,得到△AEF≌△AGF,证明EF=FG,得到答案;(3)拓展延伸:连接EF,延长AE,BF相交于点C,利用全等三角形的性质证明EF=AE+FB.(4)结论应用:连接EF,延长AE,BF相交于点C,首先证明,∠FOE=∠AOB,利用结论EF=AE+BF求解即可.【解答】解:(1)观察猜想:在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠F AG=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠F AG=60°,故答案为:AE=AG,60;(2)探索发现:由(1)知:△ABE≌△ADG,∴BE=DG,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=GF,∴EF=FG=DF+DG=BE+FD.故答案为:EF=BE+FD.(3)拓展延伸:EF=BE+FD仍然成立.理由:如图②,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG,又∵AB=AD,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,又∵∠EAF=∠BAD,∴∠F AG=∠F AD+∠DAG=∠F AD+∠BAE=∠BAD﹣∠EAF,=∠BAD﹣∠BAD=∠BAD,∴∠EAF=∠GAF.在△AEF和△AGF中,,∴△AEF≌△AGF(SAS),∴EF=FG,又∵FG=DG+DF=BE+DF,∴EF=BE+FD.故答案为:是.(4)结论应用:如图③,连接EF,延长AE,BF相交于点C,在四边形AOBC中,∵∠AOB=30°+90°+20°=140°,∠FOE=70°=∠AOB,又∵OA=OB,∠OAC+∠OBC=60°+120°=180°,符合探索延伸中的条件,∴结论EF=AE+FB成立.即,EF=AE+FB=2×(50+65)=230(海里).答:此时两舰艇之间的距离为230海里.。

华东师大版2018-2019学年八年级上册期中考试数学试卷及答案

华东师大版2018-2019学年八年级上册期中考试数学试卷及答案

第 1 页共 6 页2018-2019学年第一学期八年级期中考试
数学试题
一、选择题:(每题
4分,共40分)1.下列说法正确的是(
). A.1
的立方根是1 B.416 C.416 D.0没有平方根;2.若42x
,则x =( ). A.±2 B.2 C.4
D.16 3.下列计算结果正确的是
( ). A.a a a 933 B.y y y 235 C.a a 52
3 D.b a b a 2
224.若23m ,53n 则n m 3的值是().
A.7
B.90
C.10
D.b a 25.计算结果不可能
8m 的是( ). A.44m m B.24)(m C.42)(m D.
44m m 6.如图所示,长方形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积为().
A.2
B.222
C.222
D.2227.若)6)((x t x 的结果中不含有x 的一次项,则t 的值是( ).
A.6
B.
-6 C.0 D.6或-6 8.如图中的图(1)在边长为a 的正方形中挖掉一个边长为b 的小正方形)(b a ,把剩下的部分剪拼成一个长方
形如图(2),通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是(
). A.
))((22b a b a b a B.
2222)(b ab a b a C.
2222)(b ab a b a D.222))(2(b ab a b a b a 图(1)图(2)。

华师大版数学八年级(上)期中测试试卷(含解析)

华师大版数学八年级(上)期中测试试卷(含解析)

八年级(上)期中数学试卷一、用心选一选(每小题3分,共48分,每个小题给出的四个选项中,只有一个选项符合题意)1.是一个数的算术平方根,则这个数为()A.4B.1C.D.±2.若分式的值为0,则()A.x=±1B.x=1C.x=﹣1D.x=03.下列实数中,属于无理数的是()A.﹣3B.3.14C.D.4.下列命题中,为真命题的是()A.对顶角相等B.同位角相等C.若a2=b2,则a=b D.若a>b,则﹣2a>﹣2b5.近似数39.37亿是精确到()A.百分位B.千万位C.百万位D.亿位6.下列变形中,正确的是()A.=B.=C.=a﹣b D.无7.如图,已知点B、E、C、F在一条直线上,∠A=∠D,∠B=∠DFE,添加以下条件,不能判定△ABC≌△DFE 的是()A.BE=CF B.AB=DF C.∠ACB=∠DEF D.AC=DE8.如图是数学老师给玲玲留的习题,玲玲经过计算得出的正确的结果为()A.1B.2C.3D.49.如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=7,BD=2,则DE的长是()A.7B.5C.3D.210.有一个数值转换器,程序如图所示,当输入的数x为81时,输出的数y的值是()A.9B.3C.D.±11.如图,实数﹣6在数轴上表示的大致位置是()A.点A B.点B C.点C D.点D12.一艘轮船在静水中的最大航速为40km/h,它以最大航速沿河顺流航行100km所用时间,和它以最大航速沿河逆流航行80km所用时间相等,设河水的流速vkm/h,则可列方程为()A.=B.C.D.13.关于x的分式方程有增根,则a的值为()A.2B.3C.4D.514.已知,则的值是()A.B.﹣C.2D.﹣215.若关于x的方程=1的解是正数,则a的取值范围是()A.a>﹣1B.a>﹣1且a≠0C.a<﹣1D.a<﹣1且a≠﹣316.在△ABC中,AB=AC,AB>BC,点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC,若△ABC的面积为18,则△ACF与△BDE的面积之和是()A.6B.8C.9D.12二、仔细填一填(每小题3分,共12分)17.比较实数的大小:3(填“>”、“<”或“=”).18.2÷m×=.19.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.20.如图,已知△ABC中,AB=AC=24厘米,∠ABC=∠ACB,BC=16厘米,点D为AB的中点.如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为厘米/秒时,能够在某一时刻使△BPD与△CQP全等.三、用心答一答,相信你一定能行!(共包括6道大题,60分)21.(8分)解方程:﹣=1.四、(8分)22.(8分)已知实数a、b满足|a﹣5|+=0(1)求a,b的值;(2)求a+b﹣1的立方根.五、(10分)23.(10分)已知在△ABC与△ABD中,AC=BD,∠C=∠D=90°,AD与BC交于点E.(1)求证:AE=BE;(2)若AC=3,BC=4,求△ACE的周长.六、(10分)24.(10分)老师在黑板上书写了一个代数式的正确计算结果,随后用字母A代替了原代数式的一部分,如下:(A﹣)÷=(1)求代数式A,并将其化简;(2)原代数式的值能等于﹣1吗?请说明理由.七、(12分)25.(12分)甲、乙两家园林公司承接了某项园林绿化工程,已知乙公司单独完成此项工程所需要的天数是甲公司单独完成所需要天数的1.5倍,如果甲公司先单独工作10天,再由乙公司单独工作15天,这样恰好完成整个工程的.(1)求甲、乙两公司单独完成这项工程各需多少天?(2)园林部门要求完成该绿化工程的时间不得超过30天,甲、乙公司合作若干天后,甲公司另有项目离开,剩下的过程由乙公司单独完成,求甲、乙两公司至少合作多少天.26.(12分)问题背景:(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC.CD上的点且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG.再证明≌,可得出结论,他的结论应是.请你按照小王同学的思路写出完整的证明过程.实际应用(2)如图2,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的一处,舰艇乙在指挥中心南偏东70°的B处,且两舰艇到指挥中心的距离相等接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里,小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F 处.且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离是海里(直接写出答案).参考答案与试题解析一、用心选一选(每小题3分,共48分,每个小题给出的四个选项中,只有一个选项符合题意)1.是一个数的算术平方根,则这个数为()A.4B.1C.D.±【分析】根据算术平方根的定义即可求出这个数.【解答】解:∵()2=∴该数为故选:C.【点评】本题考查算术平方根的定义,解题的关键是正确理解算术平方根的定义,本题属于基础题型.2.若分式的值为0,则()A.x=±1B.x=1C.x=﹣1D.x=0【分析】直接利用分式的值为零则分子为零,分母不等于零,即可得出答案.【解答】解:∵分式的值为0,∴|x|﹣1=0且x+1≠0,解得:x=1.故选:B.【点评】此题主要考查了分式的值为零的条件,正确把握相关定义是解题关键.3.下列实数中,属于无理数的是()A.﹣3B.3.14C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、﹣3是整数,是有理数,故A选项错误;B、3.14是小数,是有理数,故B选项错误;C、是有限小数,是有理数,故C选项错误.D、是无理数,故D选项正确故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.下列命题中,为真命题的是()A.对顶角相等B.同位角相等C.若a2=b2,则a=b D.若a>b,则﹣2a>﹣2b【分析】分别判断四个选项的正确与否即可确定真命题.【解答】解:A、对顶角相等为真命题;B、两直线平行,同位角相等,故为假命题;C、a2=b2,则a=±b,故为假命题;D、若a>b,则﹣2a<﹣2b,故为假命题;故选:A.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.近似数39.37亿是精确到()A.百分位B.千万位C.百万位D.亿位【分析】根据近似数的精确度求解.【解答】解:近似数39.37亿是精确到百万位.故选:C.【点评】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.6.下列变形中,正确的是()A.=B.=C.=a﹣b D.无【分析】按照分式的基本性质逐个分析验证即可.【解答】解:选项A:等式的坐标已经是最简分式,没法变为右边,故A不正确;选项B:左边已经是最简分式,分子除以了m,分母除以了n,不符合分式的基本性质,故不正确;选项C:分子是分母的平方,故可以约掉分母,变为(a﹣b),故C成立;综上,只有C正确.故选:C.【点评】本题考查了分式的基本性质在分式化简中的应用,熟练掌握分式的基本性质并正确运用,是解题的关键.7.如图,已知点B、E、C、F在一条直线上,∠A=∠D,∠B=∠DFE,添加以下条件,不能判定△ABC≌△DFE 的是()A.BE=CF B.AB=DF C.∠ACB=∠DEF D.AC=DE【分析】根据全等三角形的判定方法对各选项进行判断.【解答】解:∵∠A=∠D,∠B=∠DFE,∴当BE=CF时,即BC=EF,△ABC≌△DFE(AAS);当AB=DF时,即BC=EF,△ABC≌△DFE(ASA);当AC=DE时,即BC=EF,△ABC≌△DFE(AAS).故选:C.【点评】本题考查了全等三角形的判定:灵活运用全等三角形的5种判定方法.若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.8.如图是数学老师给玲玲留的习题,玲玲经过计算得出的正确的结果为()A.1B.2C.3D.4【分析】先根据分式混合运算的法则把原式进行化简,再把a+b=ab=3代入进行计算即可.【解答】解:原式=+2=+2,当a+b=ab=3时,原式=+2=3.故选:C.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.9.如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=7,BD=2,则DE的长是()A.7B.5C.3D.2【分析】根据垂直的定义得到∠AEC=∠D=90°,根据全等三角形的性质即可得到结论.【解答】解:∵AE⊥CE于点E,BD⊥CD于点D,∴∠AEC=∠D=90°,在Rt△AEC与Rt△CDB中,∴Rt△AEC≌Rt△CDB(HL),∴CE=BD=2,CD=AE=7,∴DE=CD﹣CE=7﹣2=5,故选:B.【点评】本题考查了全等三角形的判定与性质,解答本题的关键是根据已知条件判定三角形的全等.10.有一个数值转换器,程序如图所示,当输入的数x为81时,输出的数y的值是()A.9B.3C.D.±【分析】根据开方运算,可得算术平方根.【解答】解:=9,=3,y=.故选:C.【点评】本题考查了算术平方根,求算术平方根,依据程序进行计算是解题的关键.11.如图,实数﹣6在数轴上表示的大致位置是()A.点A B.点B C.点C D.点D【分析】先估算出的取值范围,再由不等式的基本性质即可得出结论.【解答】解:∵16<21<25,∴4<<5,∴﹣2<﹣6<﹣1,∴实数﹣6在数轴上表示的大致位置是B点.故选:B.【点评】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.12.一艘轮船在静水中的最大航速为40km/h,它以最大航速沿河顺流航行100km所用时间,和它以最大航速沿河逆流航行80km所用时间相等,设河水的流速vkm/h,则可列方程为()A.=B.C.D.【分析】根据“以最大航速沿河顺流航行100km所用时间,和它以最大航速沿河逆流航行80km所用时间相等”建立方程即可得出结论.【解答】解:设河水的流速vkm/h,则以最大航速沿江顺流航行的速度为(40+v)km/h,以最大航速逆流航行的速度为(40﹣v)km/h,根据题意得,=,故选:C.【点评】此题是由实际问题抽象出分式方程,主要考查了水流问题,找到相等关系是解本题的关键.13.关于x的分式方程有增根,则a的值为()A.2B.3C.4D.5【分析】先去分母,化成整式方程,再根据增根为使得分母为0的值,将其代入变形后的整式方程即可解出a.【解答】解:在方程两边同时乘以(x﹣4)得x+1=a,∵方程有增根,即x=4满足方程x+1=a,将x=4代入得4+1=a,∴a=5故选:D.【点评】本题考查了分式方程的增根,正确理解增根的含义是解题的关键.14.已知,则的值是()A.B.﹣C.2D.﹣2【分析】观察已知和所求的关系,容易发现把已知通分后,再求倒数即可.【解答】解:∵,∴﹣=,∴,∴=﹣2.故选:D.【点评】解答此题的关键是通分,认真观察式子的特点尤为重要.15.若关于x的方程=1的解是正数,则a的取值范围是()A.a>﹣1B.a>﹣1且a≠0C.a<﹣1D.a<﹣1且a≠﹣3【分析】先求出方程的解,根据解是正数列出不等式,即可解答.【解答】解:在方程两边同乘x﹣1得:3x+a=x﹣1,解得:x=,∵方程的解是正数,∴解得a<﹣1且a≠﹣3.故选:D.【点评】本题考查了分式方程的解、一元一次不等式,解决本题的关键是根据方程的解是正数得出不等式.16.在△ABC中,AB=AC,AB>BC,点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC,若△ABC的面积为18,则△ACF与△BDE的面积之和是()A.6B.8C.9D.12【分析】根据ASA证明△ABE≌△CAF,得出△ACF与△BDE的面积之和等于△ABD的面积,由CD=2BD,△ABC的面积为18,可求出△ABD的面积为6,即可得出答案.【解答】解:∵∠1=∠2=∠BAC,∠1=∠BAE+∠ABE,∠BAC=∠BAE+∠CAF,∠2=∠FCA+∠CAF,∴∠ABE=∠CAF,∠BAE=∠FCA,在△ABE和△CAF中,,∴△ABE≌△CAF(ASA),∴△ACF的面积=△ABE的面积,∴△ACF与△BDE的面积之和=△ABE与△BDE的面积之和,∵△ABC的面积为18,CD=2BD,∴△ABD的面积=×18=6,∴△ACF与△BDE的面积之和=△ABD的面积=6;故选:A.【点评】本题主要考查了全等三角形的判定与性质,三角形的面积计算,三角形的外角性质等知识点;熟练掌握三角形面积关系,证明三角形全等是解题的关键.二、仔细填一填(每小题3分,共12分)17.比较实数的大小:3>(填“>”、“<”或“=”).【分析】根据3=>计算.【解答】解:∵3=,>,∴3>.故答案是:>.【点评】本题考查了实数的大小比较的应用,主要考查了学生的比较能力.18.2÷m×=.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=2××=,故答案为:【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=55°.【分析】求出∠BAD=∠EAC,证△BAD≌△CAE,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD≌△CAE.20.如图,已知△ABC中,AB=AC=24厘米,∠ABC=∠ACB,BC=16厘米,点D为AB的中点.如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为4或6厘米/秒时,能够在某一时刻使△BPD与△CQP全等.【分析】求出BD的长,要使△BPD与△CQP全等,必须BD=CP或BP=CP,得出方程12=16﹣4x或4x=16﹣4x,求出方程的解即可.【解答】解:设经过x秒后,使△BPD与△CQP全等,∵AB=AC=24厘米,点D为AB的中点,∴BD=12厘米,∵∠ABC=∠ACB,∴要使△BPD与△CQP全等,必须BD=CP或BP=CP,即12=16﹣4x或4x=16﹣4x,解得:x=1或x=2,x=1时,BP=CQ=4,4÷1=4;x=2时,BD=CQ=12,12÷2=6;即点Q的运动速度是4或6,故答案为:4或6【点评】本题考查了全等三角形的判定的应用,关键是能根据题意得出方程,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.三、用心答一答,相信你一定能行!(共包括6道大题,60分)21.(8分)解方程:﹣=1.【分析】观察可得最简公分母是(x+1)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x+1)(x﹣1),得:x(x+1)﹣3=(x+1)(x﹣1),解得:x=2.检验:把x=2代入(x+1)(x﹣1)=3≠0,即x=2是原分式方程的解;则原方程的解为:x=2.【点评】此题考查了分式方程的求解方法.注意转化思想的应用,注意解分式方程一定要验根.四、(8分)22.(8分)已知实数a、b满足|a﹣5|+=0(1)求a,b的值;(2)求a+b﹣1的立方根.【分析】(1)根据非负数的性质列出方程求出a、b的值;(2)把ab的值代入所求代数式计算,再求得立方根即可.【解答】解:(1)∵|a﹣5|+=0,a﹣5=0,b2﹣16=0,解得a=5,b=±4;(2)当a=5,b=4时,a+b﹣1=5+4﹣1=8,∴=2;当a=5,b=﹣4时,a+b﹣1=5﹣4﹣1=0,∴=0.【点评】本题考查了非负数的性质以及立方根:几个非负数的和为0时,这几个非负数都为0.五、(10分)23.(10分)已知在△ABC与△ABD中,AC=BD,∠C=∠D=90°,AD与BC交于点E.(1)求证:AE=BE;(2)若AC=3,BC=4,求△ACE的周长.【分析】(1)由AAS证得△ACE≌△BDE(AAS),即可得出结论;(2)由(1)得:AE=BE,则△ACE的周长=AC+AE+CE=AC+BE+CE=AC+BC=3+4=7.【解答】(1)证明:在△ACE和△BDE中,,∴△ACE≌△BDE(AAS),∴AE=BE;(2)解:∵AC=3,BC=4,由(1)得:AE=BE,∴△ACE的周长=AC+AE+CE=AC+BE+CE=AC+BC=3+4=7.【点评】本题考查了全等三角形的判定与性质、三角形周长的计算等知识,熟练掌握全等三角形的判定与性质是解题的关键.六、(10分)24.(10分)老师在黑板上书写了一个代数式的正确计算结果,随后用字母A代替了原代数式的一部分,如下:(A﹣)÷=(1)求代数式A,并将其化简;(2)原代数式的值能等于﹣1吗?请说明理由.【分析】(1)根据题目中的等式可以求得代数式A,并将其化简;(2)先判断,然后根据判断说明理由即可.【解答】解:(1)∵(A﹣)÷=∴[A﹣]=∴(A﹣)=∴A﹣=∴A=∴A=∴A=;(2)原代数式的值不能等于﹣1,理由:若原代数式的值等于﹣1,则=﹣1,得x=0,当x=0时,原代数式中的除式等于0,原代数式无意义,故原代数式的值不能等于﹣1.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.七、(12分)25.(12分)甲、乙两家园林公司承接了某项园林绿化工程,已知乙公司单独完成此项工程所需要的天数是甲公司单独完成所需要天数的1.5倍,如果甲公司先单独工作10天,再由乙公司单独工作15天,这样恰好完成整个工程的.(1)求甲、乙两公司单独完成这项工程各需多少天?(2)园林部门要求完成该绿化工程的时间不得超过30天,甲、乙公司合作若干天后,甲公司另有项目离开,剩下的过程由乙公司单独完成,求甲、乙两公司至少合作多少天.【分析】(1)题中有两个等量关系,“乙公司单独完成所需要的天数是甲公司单独完成所需天数的1.5倍”,这是说明甲乙两队工作天数的关系,因此若设甲公司单独x天完成,则乙公司单独完成此工程的天数为1.5x;另一个等量关系:甲公司单独工作10天,再由乙公司单独工作15天,这样就可完成整个工程的三分之二.可得:甲公司单独工作10天完成的工作量+乙公司单独工作15天完成的工作量=.(2)设甲、乙两公司合作a天可完成整个工程,等量关系为:甲公司工作a天完成的工作量+乙公司工作30天完成的工作量≥1,依此列出不等式求解即可.【解答】解:(1)设甲公司单独x天完成,则乙公司单独完成此工程的天数为1.5x,由题意得+=,解得:x=30.经检验,x=30是原方程的解.则1.5x=45.答:甲、乙两公司单独完成这项工程各需30天、45天;(2)设甲、乙两公司合作a天可完成整个工程,由题意得a+≥1,解得a≥10.答:甲、乙两公司合作至少10天.【点评】本题考查分式方程的应用,一元一次不等式的应用,分析题意,找到合适的等量关系与不等关系是解决问题的关键.26.(12分)问题背景:(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC.CD上的点且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG.再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF.请你按照小王同学的思路写出完整的证明过程.实际应用(2)如图2,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的一处,舰艇乙在指挥中心南偏东70°的B处,且两舰艇到指挥中心的距离相等接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里,小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F 处.且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离是168海里(直接写出答案).【分析】(1)如图1,延长FD到点G.使DG=BE.连结AG,证明△ABE≌△ADG,根据全等三角形的性质得到AE=AG,证明△AEF≌△AGF,得得EF=FG,证明结论;(2)如图2,连接EF,延长AE、BF相交于点C,根据题意得到∠EOF=∠AOB,OA=OB,∠OAC+∠OBC=180°,根据图1的结论计算.【解答】解:(1)△AEF≌△AGF,EF=BE+DF.理由如下:在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为△AEF;△AGF;EF=BE+DF;(2)如图2,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合(1)中的条件,∴结论EF=AE+BF成立,即EF=1.2×(60+80)=168(海里).故答案为:168.【点评】考查了四边形综合题,掌握全等三角形的判定与性质,等腰直角三角形的性质,题目的综合性较强,难度较大,解题的关键是正确的作出辅助线构造全等三角形,解答时,注意类比思想的应用.。

华师大版2018-2019学年 八年级上册期末数学试卷含答案

华师大版2018-2019学年 八年级上册期末数学试卷含答案

2018-2019学年八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.下列定理中,没有逆定理的是()A.同旁内角互补,两直线平行B.直角三角形的两锐角互余C.互为相反数的两个数的绝对值相等D.同位角相等,两直线平行2.如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A.40°B.55°C.65°D.75°3.如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于点D,交AB于点E,已知∠CAD:∠DAB=1:2,则∠B=()A.34°B.36°C.60°D.72°4.已知a+b=6,a﹣b=5,则a2﹣b2的值是()A.11B.15C.30D.605.下列说法正确的是()A.0的平方根是0B.1的平方根是1C.﹣1的平方根是﹣1D.(﹣1)2的平方根是﹣16.已知等腰三角形的一边等于3,一边等于6,则它的周长等于()A.12B.15C.12或15D.15或187.下列各组数据分别为三角形的三边长,不能组成直角三角形的是()A.9,12,15B.7,24,25C.6,8,10D.3,5,78.在一个不透明的布袋中装有红色,白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有()A.4个B.6个C.34个D.36个9.如图是两户居民家庭全年各项支出的统计图,根据统计图,下列对两户教育支出占全年总支出的百分比作出的判断中,正确的是()A.甲户比乙户大B.乙户比甲户大C.甲,乙两户一样大D.无法确定哪一户大10.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm2二、填空题(每小题3分,共15分)11.△ABC中,∠C=90°,a=6,c=10,则b=.12.已知+|y﹣4|+(z﹣3)2=0,则以x,y,z为三边的三角形为三角形.13.已知数据,﹣7,﹣7.5,π,﹣2017,其中出现负数的频率是.14.如图,在△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABD的周长是12cm,AC=5cm,则AB+BD+AD=cm;AB+BD+DC=cm;△ABC的周长是cm.15.如图所示,折叠长方形的一边AD,使点D落在边BC上的点F处,已知AB=5cm,BC=13cm,则EC的长为cm.三、解答题(本大题共8个小题,共75分)16.(8分)先化简,再求值:(a+b)(a﹣b)+(a+b)2﹣2a2,其中a=3,b=﹣.17.(9分)证明:在一个三角形中,至少有一个内角小于或等于60度.18.(9分)已知△ABC,AB=n2﹣1,BC=2n,AC=n2+1(n为大于1的正整数),试问△ABC是直角三角形吗?若是,哪条边所对的角是直角?请说明理由.19.(9分)学习了统计知识后,班主任王老师叫班长就本班同学的上学方式进行了一次调查统计,图1和图2是他通过收集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)在扇形统计图中,计算出“步行”部分所对应的圆心角的度数;(2)求该班共有多少名学生;(3)在图1中,将表示“乘车”的部分补充完整.20.(9分)如图,一个长为10米的梯子AB斜靠在墙上,梯子的顶端A距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么它的底端B也滑动1米吗?试说明理由.21.(10分)若△ABC的三边长a、b、c满足6a+8b+10c﹣50=a2+b2+c2,试判断△ABC的形状.22.(10分)如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C、D.(1)请判断△EDC的形状并说明理由;(2)求证OE是线段CD的垂直平分线.23.(11分)如图,在△ABC中,∠CAB的平分线AD与BC垂直平分线DE交于点D,DM⊥AB于点M,DN⊥AC,交AC的延长线于点N,求证:BM=CN.参考答案与试题解析一、选择题(每小题3分,共30分)1.下列定理中,没有逆定理的是()A.同旁内角互补,两直线平行B.直角三角形的两锐角互余C.互为相反数的两个数的绝对值相等D.同位角相等,两直线平行【分析】根据逆命题的定义写出各命题的逆命题,然后进行判断即可.本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.【解答】解:A、逆定理是两直线平行,同旁内角互补;B、逆定理是两锐角互余的三角形是直角三角形;C、逆命题是绝对值相等的两个数互为相反数,是假命题,故没有逆定理;D、逆定理是两直线平行,同位角相等;故选:C.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A.40°B.55°C.65°D.75°【分析】根据角平分线的作法可得AG是∠CAB的角平分线,然后再根据角平分线的性质可得∠CAD=∠CAB=25°,然后再根据直角三角形的性质可得∠CDA=90°﹣25°=65°.【解答】解:根据作图方法可得AG是∠CAB的角平分线,∵∠CAB=50°,∴∠CAD=∠CAB=25°,∵∠C=90°,∴∠CDA=90°﹣25°=65°,故选:C.【点评】此题主要考查了基本作图,关键是掌握角平分线的作法,以及直角三角形的性质.关键是掌握直角三角形两锐角互余.3.如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于点D,交AB于点E,已知∠CAD:∠DAB=1:2,则∠B=()A.34°B.36°C.60°D.72°【分析】先根据线段垂直平分线及等腰三角形的性质得出∠B=∠DAB,再根据∠DAE与∠DAC的度数比为2:1可设出∠B的度数,再根据直角三角形的性质列出方程,求出∠B的度数即可.【解答】解:∵D是线段AB垂直平分线上的点,∴AD=BD,∴△DAB是等腰三角形,∠B=∠DAB,∵∠CAD:∠DAB=1:2,∴设∠DAC=x,则∠B=∠DAB=2x,∴x+2x+2x=90°,∴x=18°,即∠B=36°,故选:B.【点评】本题考查的是线段垂直平分线的性质,直角三角形的性质,熟练掌握线段垂直平分线的性质是解题的关键.4.已知a+b=6,a﹣b=5,则a2﹣b2的值是()A.11B.15C.30D.60【分析】已知等式利用平方差公式展开,即可求出所求式子的值.【解答】解:∵a+b=6,a﹣b=5,∴a2﹣b2=(a+b)(a﹣b)=30,故选:C.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.5.下列说法正确的是()A.0的平方根是0B.1的平方根是1C.﹣1的平方根是﹣1D.(﹣1)2的平方根是﹣1【分析】A、根据平方根的定义即可判定;B、根据平方根的定义即可判定;C、根据平方根的定义即可判定;D、根据平方根的定义即可判定.【解答】解:A、0的平方根是0,故选项正确;B、1的平方根是±1,故选项错误;C、﹣1没有平方根,故选项错误;D、(﹣1)2的平方根是±1,故选项错误.故选:A.【点评】本题考查了平方根的定义,也利用了平方运算.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.注意:1或0平方等于它的本身.6.已知等腰三角形的一边等于3,一边等于6,则它的周长等于()A.12B.15C.12或15D.15或18【分析】从已知结合等腰三角形的性质进行思考,分腰为3,腰为6两种情况分析,舍去不能构成三角形的情况.【解答】解:分两种情况讨论,当三边为3,3,6时不能构成三角形,舍去;当三边为3,6,6时,周长为15.故选:B.【点评】题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.7.下列各组数据分别为三角形的三边长,不能组成直角三角形的是()A.9,12,15B.7,24,25C.6,8,10D.3,5,7【分析】由已知得其符合勾股定理的逆定理才能构成直角三角形,对选项一一分析,选出正确答案.【解答】解:A、92+122=152,能构成直角三角形,故正确;B、72+242=252,能构成直角三角形,故正确;C、62+82=102,能构成直角三角形,故正确;D、32+52≠72,不能构成直角三角形,故错误.故选:D.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.8.在一个不透明的布袋中装有红色,白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有()A.4个B.6个C.34个D.36个【分析】由频数=数据总数×频率计算即可.【解答】解:∵摸到红色球的频率稳定在15%左右,∴口袋中红色球的频率为15%,故红球的个数为40×15%=6个.故选:B.【点评】大量反复试验下频率稳定值即概率.9.如图是两户居民家庭全年各项支出的统计图,根据统计图,下列对两户教育支出占全年总支出的百分比作出的判断中,正确的是()A.甲户比乙户大B.乙户比甲户大C.甲,乙两户一样大D.无法确定哪一户大【分析】根据条形统计图求出甲户教育支出占全年总支出的百分比,再结合扇形统计图中的乙户教育支出占全年总支出的百分比是25%,进行比较即可.【解答】解:甲户教育支出占全年总支出的百分比1200÷(1200×2+2000+1600)=20%,乙户教育支出占全年总支出的百分比是25%.故选:B.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.注意此题比较的仅仅是百分比的大小.10.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm2【分析】要求Rt△ABC的面积,只需求出两条直角边的乘积.根据勾股定理,得a2+b2=c2=100.根据勾股定理就可以求出ab的值,进而得到三角形的面积.【解答】解:∵a+b=14∴(a+b)2=196∴2ab=196﹣(a2+b2)=96∴ab=24.故选:A.【点评】这里不要去分别求a,b的值,熟练运用完全平方公式的变形和勾股定理.二、填空题(每小题3分,共15分)11.△ABC中,∠C=90°,a=6,c=10,则b=8.【分析】根据直角三角形中的勾股定理进行计算.【解答】解:∵△ABC中,∠C=90°,a=6,c=10,∴b===8.故答案是:8.【点评】此题主要考查了勾股定理的应用,关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.12.已知+|y﹣4|+(z﹣3)2=0,则以x,y,z为三边的三角形为直角三角形.【分析】先根据非负数的性质求出x、y、z的值,再根据勾股定理的逆定理进行解答即可.【解答】解:以x,y,z为三边的三角形是直角三角形.∵+|y﹣4|+(z﹣3)2=0,∴x﹣5=0,z﹣3=0,y﹣4=0,∴x=5,y=4,z=3,∵32+42=52,∴以x,y,z为三边的三角形是直角三角形.故答案为直角.【点评】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.13.已知数据,﹣7,﹣7.5,π,﹣2017,其中出现负数的频率是0.6.【分析】数据总数为5个,负数有3个,再根据频率公式:频率=频数÷总数代入计算即可.【解答】解:∵在,﹣7,﹣7.5,π,﹣2017中,负数有3个,∴负数出现的频率==0.6,故答案为:0.6.【点评】本题考查了频数与频率.频率的计算方法:频率=频数÷总数.14.如图,在△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABD的周长是12cm,AC=5cm,则AB+BD+AD=12cm;AB+BD+DC=12cm;△ABC的周长是17cm.【分析】先由线段垂直平分线的性质得出AD=CD,即AD+BD=CD+BD,再由△ABD的周长是12cm,AC=5cm即可求出答案.【解答】解:∵DE是线段AC的垂直平分线,∴AD=CD,∴AD+BD=CD+BD,∵△ABD的周长是12cm,∴AB+BD+AD=12cm,AB+BD+DC=12cm,∵AC=5cm,∴△ABC的周长=(AB+BD+DC)+AC=12+5=17cm.故答案为:12、12、17.【点评】本题考查的是线段垂直平分线的性质,由线段垂直平分线的性质得出AD+BD=CD+BD是解答此题的关键.15.如图所示,折叠长方形的一边AD,使点D落在边BC上的点F处,已知AB=5cm,BC=13cm,则EC的长为 2.4cm.【分析】首先在Rt△ABF中,求出BF,再在Rt△EFC中,利用勾股定理构建方程求出EC 即可;【解答】解:∵四边形ABCD是矩形,∴AB=CD=5cm,AD=BC=13cm,∠B=∠C=90°,在Rt△ABF中,BF===12(cm),∴CF=BC﹣BF=1(cm),设EC=x,则DE=EF=5﹣x,在Rt△EFC中,∵EF2=EC2+CF2,∴(5﹣x)2=x2+12,∴x=2.4(cm),故答案为2.4.【点评】本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会利用参数,构建方程解决问题,属于中考常考题型.三、解答题(本大题共8个小题,共75分)16.(8分)先化简,再求值:(a+b)(a﹣b)+(a+b)2﹣2a2,其中a=3,b=﹣.【分析】解题关键是化简,然后把给定的值代入求值.【解答】解:(a+b)(a﹣b)+(a+b)2﹣2a2,=a2﹣b2+a2+2ab+b2﹣2a2,=2ab,当a=3,b=﹣时,原式=2×3×(﹣)=﹣2.【点评】考查了平方差公式、完全平方公式、合并同类项的知识点.注意运算顺序以及符号的处理.17.(9分)证明:在一个三角形中,至少有一个内角小于或等于60度.【分析】当条件较少,无法直接证明时,可用反证法证明;先假设结论不成立,然后得到与定理矛盾,从而证得原结论成立.【解答】证明:假设在一个三角形中没有一个角小于或等于60°,即都大于60°;那么,这个三角形的三个内角之和就会大于180°;这与定理“三角形的三个内角之和等于180°”相矛盾,原命题正确.【点评】本题结合三角形内角和定理考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.18.(9分)已知△ABC,AB=n2﹣1,BC=2n,AC=n2+1(n为大于1的正整数),试问△ABC是直角三角形吗?若是,哪条边所对的角是直角?请说明理由.【分析】通过计算,得BC2+AC2=AB2,利用勾股定理的逆定理即可解答.【解答】解:△ABC是直角三角形,理由是:∵△ABC中,AB=n2﹣1,BC=2n,AC=n2+1(n>1),∴AB2+BC2=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2,=(n2+1)2=AC2即BC2+AC2=AB2,∴这个三角形是直角三形,边AC所对的角是直角.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.19.(9分)学习了统计知识后,班主任王老师叫班长就本班同学的上学方式进行了一次调查统计,图1和图2是他通过收集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)在扇形统计图中,计算出“步行”部分所对应的圆心角的度数;(2)求该班共有多少名学生;(3)在图1中,将表示“乘车”的部分补充完整.【分析】(1)根据扇形统计图的定义,各部分占总体的百分比之和为1,先求出“步行”部分所占的百分比,再乘以360°得所对应的圆心角的度数;(2)由扇形统计图得知骑车人数占总人数的50%,又由频率分布直方图得知骑车人数为20,所以该班总人数为20÷50%=40.【解答】解:(1)(1﹣20%﹣50%)×360°=108°,即“步行”部分所对应的圆心角的度数是108度.(2)20÷50%=40(人),即该班共有40名学生.(3)乘车的人数=40﹣20﹣12=8人,如图所示.【点评】考查扇形统计图和频率分布直方图.该题将扇形统计图与频率分布直方图有机地结合在一起,能进一步理解二者之间的区别和联系.21.(10分)若△ABC的三边长a、b、c满足6a+8b+10c﹣50=a2+b2+c2,试判断△ABC的形状.【分析】把已知条件写成三个完全平方式的和的形式,再由非负数的性质求得三边,根据勾股定理的逆定理即可判断△ABC的形状.【解答】解:∵6a+8b+10c﹣50=a2+b2+c2,∴(a2﹣6a+9)+(b2﹣8b+16)+(c2﹣10c+25)=0,∴(a﹣3)2+(b﹣4)2+(c﹣5)2=0,∵(a﹣3)2≥0,(b﹣4)2≥0,(c﹣5)2≥0,∴a﹣3=0,得a=3;b﹣4=0,得b=4;c﹣5=0,得c=5.又∵52=32+42,即a2+b2=c2,∴△ABC是直角三角形.【点评】本题考查勾股定理的逆定理的应用、完全平方公式、非负数的性质.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.22.(10分)如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C、D.(1)请判断△EDC的形状并说明理由;(2)求证OE是线段CD的垂直平分线.【分析】(1)根据角平分线性质得出DE=EC,即可得出答案;(2)证△EDO和△ECO全等,推出OD=OC,根据线段垂直平分线性质得出即可.【解答】(1)解:△EDC是等腰三角形,理由是:∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C,D,∴DE=CE,∴△EDC是等腰三角形;(2)证明:∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C,D,∴DE=CE,∠EDO=∠ECO=90°,在Rt△ODE与Rt△OCE中,∴Rt△ODE≌Rt△OCE,∴OD=OC,∵DE=EC,∴OE是线段CD的垂直平分线.【点评】本题主要考查了角平分线的性质,线段垂直平分线性质,全等三角形的判定与性质的应用,熟知角的平分线上的点到角的两边的距离相等的知识是解答此题的关键,难度适中.23.(11分)如图,在△ABC中,∠CAB的平分线AD与BC垂直平分线DE交于点D,DM⊥AB于点M,DN⊥AC,交AC的延长线于点N,求证:BM=CN.【分析】根据角平分线的性质和线段垂直平分线的性质可得到DM=DN,DB=DC,根据HL证明△DMB≌△DNC,即可得出BM=CN.【解答】证明:连接BD,∵AD是∠CAB的平分线,DM⊥AB,DN⊥AC,∴DM=DN,∵DE垂直平分线BC,∴DB=DC,在Rt△DMB和Rt△DNC中,∴Rt△DMB≌Rt△DNC(HL),∴BM=CN.【点评】本题主要考查了角平分线的性质和线段垂直平分线的性质以及全等三角形的判定与性质,熟悉角平分线的性质和线段垂直平分线的性质是解决问题的关键.20.(9分)如图,一个长为10米的梯子AB斜靠在墙上,梯子的顶端A距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么它的底端B也滑动1米吗?试说明理由.【分析】如果梯子的顶端下滑1米,梯子的底端滑动x米,由于梯子的长度不会改变,那么根据直角三角形三边的关系就可以列出方程.【解答】解:底端B滑动距离不是1米.理由:在RT△ACB中,∠C=90°,AB=10米,AC=8米,由勾股定理得CB=6米,RT△A′CB′中,∠C=90°,A′B′=10米,CA′=7米,由勾股定理得CB′=米,∴BB′=CB′﹣CB=(﹣6)米,答:它的底端B滑动距离为(﹣6)米.【点评】此题考查了勾股定理的应用,本题中梯子与墙构成了一个直角三角形,可根据勾股定理边长的关系来列方程.。

华师附中2018—2019学年第一学期期中考试初二数学试题答案

华师附中2018—2019学年第一学期期中考试初二数学试题答案

华南师大附中2018—2019学年第一学期期中考试初 二 数 学 详 答一、选择题(每题3分,共30分)二、填空题 (每题4分,共32分) 11.1x -1; 12. (1)(1)(1)(1)a a b b -+-+; 13. 4; 14. 1x <-; 15.125; 16. 2; 17. 7 18. 11 +1132或 1+ 32三、解答题(共88分) 19. (6分)解:依题意得:⎩⎨⎧2a +b =0b =4 ,解得:⎩⎨⎧a =-2b =4∴ 一次函数的解析式为 y = -2x + 4.过A (2,0),B (0,4)两点画直线AB ,则直线AB 为该函数的图象.20. (6分)解:原式=2)2(112+--+⋅x xx x =21+-x 解不等式 x -3(x -2)≥2 ,得x ≤2,正整数解为x =1,2, 当x =1时,原式无意义;当x =2时,原式=-14.【法1】:∵244-=+baa b ∴ 22168b a ab +=-,即2(4)0a b +=,即4b a =-∴ 原式=2224248416()[(1)]24244a a a a a a a a a a a a a a -+----++-÷÷ =1(3)[8(144)]3-+-++÷÷=88()39-÷=3- 【法2】:∵244-=+ba ab ∴ 22168b a ab +=-,即2(4)0a b +=,即4b a =-∴ 原式=2282(2)(2)(2)4abb a b a b a b a a ⎡⎤-⎢⎥+-⎣⎦÷÷ =288(2)(2)(2)ab aba b a b a b +--÷ =22a b a b -+=2424a aa a+-=3-22. (每小题6分,共18分) 解:(1)原式=6x 2 (2x 2-x -28) =6x 2 (2x +7)(x -4)(2)原式=a 5(2-3a )+2a 3(2-3a )2+a (2-3a )3=a (2-3a )[ a 4+2a 2(2-3a )+(2-3a )2 ] =a (2-3a )( a 2+2-3a )2 =a (2-3a )(a -1)2(a -2)2(3)原式=a 4bc + a 3(b 3 + c 3) + 2a 2b 2c 2 + abc (b 3+c 3) + b 3c 3 =bc (a 4 + 2a 2bc + b 2c 2) + a (b 3 + c 3)(a 2 + bc ) =bc (a 2 + bc )2 + a (b 3 + c 3)(a 2 + bc ) =(a 2 + bc )[bc (a 2 + bc ) + a (b 3 + c 3)] =(a 2 + bc )[(bca 2 + ab 3) + (b 2c 2 + ac 3)] =(a 2 + bc )[ab (ca + b 2) + c 2(b 2 + ac )] =(a 2 + bc )(b 2 + ac )(c 2 + ab )解:(1)设y 关于x 的一次函数式为:b kx y +=,根据题意得:⎩⎨⎧+=+=b k bk 61984200 解得:⎩⎨⎧=-=2041b k ∴ 所求一次函数关系式是:204+-=x y . 当x = 10时,y =-10 + 204 = 194(元).(2)当1吨水的价格为40元时,所获利润是:y =-40+204=164(元).∴ W 与t 的函数关系式是:164)20(20200⨯-+⨯=x w 即:720164+=t w ∵ 20 ≤ t ≤ 25, ∴ 4000≤W ≤4820.24. (8分)【法1】:过E 作EF ⊥AC ,垂足为F ,连接BF ,CE ∵ AE ⊥AD ,∠ACB = 90︒∴ ∠EAF + ∠CAD = 90︒,∠D + ∠CAD = 90︒ ∴ ∠EAF = ∠D又∵ ∠AFE = ∠ACB = 90︒,AE = AD ∴ △AFE ≌ △DCA (AAS ) ∴ EF = AC = BC ∵ BC ⊥AC ,EF ⊥AC ∴ EF ∥BC∴ EF ∥=BC ∴ 四边形BCEF 为平行四边形 ∴ PB = PE .【法2】:∵AD = AE且AD⊥AE∴可将△ADB绕点A逆时针旋转90︒至△AEH,由旋转性质得AH = AB且AH⊥AB∴△BAH为等腰直角三角形,∠ABH = 45︒又∵△ACB中,∠ACB = 90︒,AC = BC∴∠ABC = 45︒∴∠ABH = ∠ABC,则B、C、H三点共线∴AP垂直平分BH∴PH = PB∴∠PBH =∠PHB又由旋转性质得EH⊥BD,即EH⊥BH∴∠PHE = 90︒-∠PHB,∠PEH = 90︒-∠PBH,∴∠PEH =∠PHB∴PH=PE∴PB=PE25.(8分)解:由(y-x)2 =x2-3x + 2得(2y-3)x = y2-2∴x=y2-22y-3(∵2y-3≠0)∴A=2y2-3y+52y-3=y+52y-3∵A的值为整数,y为整数∴2y-3|5∴2y-3=±,±5∴y=1,2,4,-1当y=-1时,x=y2-22y-3=15,则y <x,不合题意,舍去;当y=1,2,4时,均满足y≥x ∴整数y的值是1,2,4.或者:由y≥x⇒y≥y2-22y-3⇒ (y-1)(y-2)≥0 ⇒y≤1或y≥2 ∴整数y的值是1,2,4.解:(1)由条件知:A (1,0),B (0,3 ) ∴ 在R t △ABO 中,AB =12+(3)2 =2 在R t △ABC 中,∵ ∠ABC =30° ∴ AC =AB 3=233∴ S △ABC =12AC ·AB =233(2)S 四边形POAB =S △OBP +S △AOB ∵ S △OBP =12·(-m )·3 =-32mS △AOB =12·1·3 =32∴ S 四边形POAB =-32m + 32∵ S △AOP =12·1·32=34∴ S △APB =S 四边形POAB -S △AOP =-32m + 34(m <0) 当S △APB =233时,-32m + 34=233∴ m =-56(3)存在.有6个点:(3, 0),(-1, 0),(0, -3 ),(0, 3 +2),(0, 3 -2),(0, 33).解:(1)依题意得:⎩⎨⎧a + b = ax + b ①a + b = 2-cx ②,且abc ≠0,由①得:x =1,代入②得:a + b + c = 2222(1)(1)(1)3a b c bc ac ab---++= ⇒ a 3 + b 3 + c 3-3abc -2(a 2 + b 2 + c 2) + (a + b + c ) = 0⇒ (a + b + c )(a 2 + b 2 + c 2-ab -bc -ca )-2(a 2 + b 2 + c 2) + (a + b + c ) = 0 ⇒ 2(a 2 + b 2 + c 2-ab -bc -ca )-2(a 2 + b 2 + c 2) + 2 = 0 ⇒ ab + bc + ca = 1(2)(a + b + c )2 = 22 = a 2 + b 2 + c 2 + 2(ab + bc + ca ) ⇒ a 2 + b 2 + c 2 = 4-2×1 = 2 当1,1a b ≠≠ 时,要证:22(1)(1)b aa b =--, 只需证:b (1-b )2 = a (1-a )2 ⇔ b (1-b )2-a (1-a )2 = 0 ⇔ b -a -2(b 2-a 2) + (b 3-a 3) = 0⇔ (b -a )[1-2(a + b ) + (b 2 + a 2 + ab )] = 0 (*) i )当a = b 时,(*)式显然成立; ii )当a ≠b 时,∵ a + b + c = 2,a 2 + b 2 + c 2 = 2,ab + bc + ca = 1∴ a + b = 2-c ,a 2 + b 2 = 2-c 2,ab = 1-c (a + b ) = 1-c (2-c ) ∴ 1-2(a + b ) + (b 2 + a 2 + ab ) = 1-2(2-c ) + 2-c 2 + 1-c (2-c ) = 1-4+2c +2-c 2+1-2c +c 2 = 0 ∴ (*)式成立.综上,当1,1a b ≠≠ 时,均有22(1)(1)b aa b =--.。

2018-2019学年度八年级上数学期末试卷(解析版) (2)

2018-2019学年度八年级上数学期末试卷(解析版) (2)

2018-2019学年八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义; 所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解. 答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE . (1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明; (3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题; 【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

2018-2019学年华东师大版数学八年级上册期中测试题及答案

2018-2019学年华东师大版数学八年级上册期中测试题及答案

2018-2019学年八年级数学上册期中检测卷时间:120分钟满分:120分班级:__________姓名:__________得分:__________一、选择题(每小题3分,共30分)()1.4的算术平方根是()A.2 B.-2 C.±2 D.162.下列实数中,有理数是()A.8B.34C.π2D.0.1010010013.下列运算正确的是()A.a3·a2=a6B.(a2b)3=a6b3C.a8÷a2=a4D.a+a=a24.下列各命题的逆命题成立的是()A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等C.两直线平行,同位角相等D.如果两个角都是45°,那么这两个角相等5.我们知道5是一个无理数,那么5-1在哪两个整数之间()A.1与2 B.2与3 C.3与4 D.4与56.如图,边长为a,b的长方形的周长为14,面积为10,则a2b+ab2的值为()A.140 B.70 C.35 D.24第6题图第7题图7.如图,∠A=∠D,OA=OD,∠DOC=50°,则∠DBC的度数为()A.50°B.30°C.45°D.25°8.设a=73×1412,b=9322-4802,c=5152-1912,则数a,b,c的大小关系是()A.c<b<a B.a<c<b C.b<c<a D.c<a<b9.如图,点B,C,E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论中不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFCC.△DCG≌△ECF D.△ADB≌△CEF第9题图第10题图10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线。

2018-2019学年八年级上期末数学试卷(含答案解析)(可编辑修改word版)

2018-2019学年八年级上期末数学试卷(含答案解析)(可编辑修改word版)

2018-2019 学年八年级(上)期末数学试卷一、选择题:(本大题共8 小题,每小题3 分,共24 分,每小题只有一个选项是正确的,请把你认为正确的选项代号填写在括号里,)1.4的平方根是()A.±2 B.2 C.±D.2.下列图形中,不是轴对称图形的是()A.B.C.D.3.下列各组数中,可以构成直角三角形的是()A.2,3,5 B.3,4,5 C.5,6,7 D.6,7,84.点A(﹣3,2)关于x 轴的对称点A′的坐标为()A.(﹣3,﹣2)B.(3,2)C.(3,﹣2)D.(2,﹣3)5.一次函数y=x+1 不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.下列各式中,正确的是()A.=±2 B.=3 C.=﹣3 D.=﹣3 7.如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD,则CE 的长为()A.1cm B.2cm C.3cm D.4cm8.如图,在△ABC 中,OB 和OC 分别平分∠ABC 和∠ACB,过O 作DE∥BC,分别交AB、AC于点D、E,若DE=5,BD=3,则线段CE 的长为()A.3 B.1 C.2 D.4二、填空题:(共8 小题,每题3 分,共24 分。

将结果直接填写在横线上.)9.一个等腰三角形的两边长分别为5 和2,则这个三角形的周长为.10.把无理数,,﹣表示在数轴上,在这三个无理数中,被墨迹(如图所示)覆盖住的无理数是.1.函数y=kx 的图象过点(﹣1,2),那么k= .12.取=1.4142135623731…的近似值,若要求精确到0.01,则= .13.如图,AB 垂直平分CD,AD=4,BC=2,则四边形ACBD 的周长是.14.将函数y=2x 的图象向下平移3 个单位,则得到的图象相应的函数表达式为.15.已知点A(1,y1)、B(2,y2)都在直线y=﹣2x+3 上,则y1与y2的大小关系是.16.如图,在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A、B 分别在x、y轴的正半轴上,OA=3,OB=4,D 为OB 边的中点,E 是OA 边上的一个动点,当△CDE 的周长最小时,E 点坐标为.三、解答题(共10 小题,共102 分。

2018-2019学年北京市十一学校八年级(上)期中数学试卷-含详细解析

2018-2019学年北京市十一学校八年级(上)期中数学试卷-含详细解析

2018-2019学年北京市十一学校八年级(上)期中数学试卷副标题一、选择题(本大题共8小题,共16.0分)1.若分式有意义,则x的取值范围是()A. B. C. D.2.下列图案中,是轴对称的是()A. B. C. D.3.为庆祝首个“中国农民丰收节”,海淀区将在海淀公园举办京西稻收割节活动,京西稻是我市著名农业作物,颗粒圆润,晶莹明亮,稻谷每粒重约0.000028千克.将0.000028用科学记数法表示为()A. B. C. D.4.下列运算中正确的是()A. B. C. D.5.等腰三角形有一个角的度数为50°,那么它的底角的度数为()A. B. 65 C. D. 或6.分式可变形为()A. B. C. D.7.在平面直角坐标系中,点A(-2,a)与点B(b,3)关于x轴对称,则a+b的值是()A. B. C. 1 D. 58.如图,△ABC中,点D在BC边上,过D作DE⊥BC交AB于点E,P为DC上的一个动点,连接PA、PE,若PA+PE最小,则点P应该满足()A. B.C. D.二、填空题(本大题共8小题,共16.0分)9.计算:20180-3-2=______.10.分解因式:mx2-4my2=______.11.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E.连接AE,若△ABC的周长为20,AD=4,则△AEC的周长为______.12.若-=5,则的值为______.13.当分式的值为整数时,整数x的值为______.14.京津城际铁路由北京南站至天津站,全长120公里,据报道,8月8日开始,京津城际铁路实施全新列车运行图,复兴号动车组在京津城际铁路实现提速运行,时速比原来快35公里/小时.运行图调整后,北京南站至天津站列车运行时间将减少5分钟(小时).求京津城际铁路复兴号动车组原来的运行时速.设京津城际铁路复兴号动车组原来的运行时速为x公里/小时.依题意,可列方程为______.15.用“#”定义一种新运算:对于任意有理数a和b,规定a#b=-,若(-2)#(-3)=,则m的值为______.16.如图,把△ABC纸片折叠,点B落在B′处,折痕为DE,则∠B、∠1、∠2满足的等量关系为______.三、计算题(本大题共2小题,共25.0分)17.计算(1)•(-)3÷;(2)-;(3)1-÷;(4)(x+2+)•.18.已知x=y+2,求代数式(-y)•的值.四、解答题(本大题共7小题,共43.0分)19.已知:线段a,b(如图1),等腰三角形底边长为a,底边上的高的长为b.求作这个等腰三角形.下面是小明设计的尺规作图过程.作法:如图2①在射线OA上截取线段OB=a;②分别以点O,点B为圈心,大于OB长为半径画弧,两弧交于C,D两点;③连接CD,交OB于点E;④在直线CE上截取线段EF=b;⑤接OF,BF.△OBF即为所求.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵OC=______,OD=______,∴CD是线段OB的垂直平分线.(______)(填推理的依据)20.如图,△ABC中,AB=AC,AD是BC边上的中线,延长BA到E,过E作EF⊥BC于F交AC于点G.(1)依题意补全图形;(2)求证:AE=AG.21.如图,在△ABC中,∠ACB=90°,AC=BC.D为BC边上任一点,连接AD,过D作DE⊥AD,且DE=AD.连接BE,探究BE与AB的位置关系,并说明理由.22.解方程:(1)(2).23.如图,已知线段AB=CD,求作线段a,使线段a与线段AB成轴对称,与线段CD也成轴对称.(保留作图痕迹)24.如图1,在等边△ABC中,D为AC边上任一点,连接BD,延长BD到E,使BE=AB.设∠ABD=α.(1)则∠CAE的大小为______(用含α的代数式表示);(2)如图2,点F在∠CBE的平分线上,连接EF,CF,若∠ECF=60°,判断△EFC 的形状并加以证明.25.阅读理解在平面直角坐标系xOy中,对于图形M和点P,给出如下定义:若在图形M上存在一点Q,使得P,Q两点间的距离小于或等于1,则称P为图形M的关联点.根据阅读材料,解决下列问题.已知点A(2,0),以OA为边作等边△OAB,点B在第一象限.(1)在点C(0,-1),D(2,2),E(3.5,0)中,△OAB的关联点是______;(2)直线l⊥AB于A,点F在直线l上.若F为△OAB的关联点.①设点F的纵坐标为n,则n的取值范围是______;②设△FAB的面积为S,则S的最大值为______.答案和解析1.【答案】C【解析】解:由题意得,x≠0,故选:C.根据分式有意义的条件是分母不等于0列式计算即可.本题主要考查了分式有意义的条件,掌握分式有意义的条件是分母不等于0是解题的关键.2.【答案】B【解析】解:A、不是轴对称图形,不符合题意,本选项错误;B、是轴对称图形,符合题意,本选项正确;C、不是轴对称图形,不符合题意,本选项错误;D、不是轴对称图形,不符合题意,本选项错误.故选:B.根据轴对称图形的概念求解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【答案】A【解析】解:将0.000028用科学记数法表示为2.8×10-5.故选:A.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.【答案】C【解析】解:A、a2+a3,无法计算,故此选项错误;B、a•a2=a3,故此选项错误;C、(a3)2=a6,正确;D、a2÷a8=a-6,故此选项错误;故选:C.直接利用整式的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别判断得出答案.此题主要考查了整式的乘除运算以及幂的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.5.【答案】D【解析】解:∵等腰三角形有一个角的度数为50°,∴若50°的角为顶角,则可知底角为:=65°,若50°的角为底角,则它的底角的度数为50°,∴它的底角的度数为50°或65°.故选:D.由等腰三角形有一个角的度数为50°,即可分别从50°的角为顶角或底角去分析,根据等边对等角的知识,即可求得答案.此题考查了等腰三角形的性质.此题比较简单,解题的关键是注意分类讨论思想的应用,小心别漏解.6.【答案】B【解析】解:分式可变形为:=-.故选:B.直接利用分式的基本性质变形得出答案.此题主要考查了分式的基本性质,正确将原式变形是解题关键.7.【答案】A【解析】解:∵点A(-2,a)与点B(b,3)关于x轴对称,∴a=-3,b=-2,∴a+b的值是:-3-2=-5.故选:A.直接利用关于x轴对称点的性质得出a,b的值,进而得出答案.此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.8.【答案】D【解析】解:如图,作点E关于直线BC的对称点F,连接AF交BC于P,此时PA+PE 的值最小.由对称性可知:∠EPD=∠FPD,∵∠CPA=∠FPD,∴∠APC=∠DPE,∴DP+PB最小时,点P应该满足∠APC=∠DPE,故选:D.作点E关于直线BC的对称点F,连接AF交BC于P,此时PA+PE的值最小,依据轴对称的性质即可得到∠APC=∠DPE.本题考查轴对称最短问题、对顶角的性质等知识,解题的关键是学会利用轴对称解决最短问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.9.【答案】【解析】解:原式=1-=.故答案为:.直接利用负指数幂的性质以及零指数幂的性质计算得出答案.此题主要考查了负指数幂的性质以及零指数幂的性质,正确把握负指数幂的性质是解题关键.10.【答案】m(x+2y)(x-2y)【解析】解:原式=m(x2-4y2)=m(x+2y)(x-2y).故答案为:m(x+2y)(x-2y)原式提取m,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.【答案】12【解析】【分析】根据线段垂直平分线的性质即可得到结论.本题考查的是线段的垂直平分线的性质,熟练掌握线段垂直平分线的性质是解答此题的关键.【解答】解:∵AB的垂直平分线交BC于点E,∴AE=BE,AD=BD,∴△AEC的周长=AC+BC,AB=2AD=8,∵△ABC周长=AC+BC+AB=20,∴△AEC的周长=△ABC周长-AB=20-8=12,故答案为:12.12.【答案】【解析】解:已知等式整理得:=5,即x-y=5xy,则原式===,故答案为:已知等式左边通分并利用同分母分式的减法法则计算,整理后代入原式计算即可求出值.此题考查了分式的值,熟练掌握运算法则是解本题的关键.13.【答案】0,1【解析】解:根据分式的值为整数,得到3x-1=±1,±2,解得:x=,x=0,x=1,x=-,则整数x的值为0,1,故答案为:0,1根据分式的值为整数,得到分母为2的因式,即为±1,±2,求出整数x的值即可.此题考查了分式的值,熟练掌握运算法则是解本题的关键.14.【答案】-=【解析】解:设京津城际铁路复兴号动车组原来的运行时速为x公里/小时,则提速后的运行时速为(x+35)公里/小时,根据题意得:-=.故答案为:-=.设京津城际铁路复兴号动车组原来的运行时速为x公里/小时,则提速后的运行时速为(x+35)公里/小时,根据时间=路程÷速度结合提速后比提速前少用小时,即可得出关于x的分式方程,此题得解.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.15.【答案】-4【解析】解:∵a#b=-,(-2)#(-3)=,∴,解得,m=-4,故答案为:-4.根据a#b=-,(-2)#(-3)=,可以得到关于m的方程,从而可以得到m的值.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.16.【答案】∠2-∠1=2∠B【解析】解:如图,设AB与B'E的交点为F,∵折叠∴∠B=∠B',∵∠BFE=∠B'+∠1,∠2=∠B+∠BFE,∴∠2=∠B'+∠B+∠1,∴∠2-∠1=2∠B,故答案为:∠2-∠1=2∠B由折叠的性质可得∠B=∠B',根据三角形的外角的性质,可得∠BFE=∠B'+∠1,∠2=∠B+∠BFE,可求∠B、∠1、∠2满足的等量关系.本题考查了翻折变换,折叠的性质,熟练运用三角形外角的性质解决问题是本题的关键.17.【答案】解:(1)•(-)3÷=•(-)•=-=-;(2)-=-==;(3)1-÷=1-×=1-==-;(4)(x+2+)•=[-]•=×=-2(x+3)=-2x-6.【解析】分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.本题主要考查了分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律运算,会简化运算过程.18.【答案】解:原式=•=•=,把x=y+2代入得:原式==1.【解析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.【答案】(1)如图,△OBF即为所求;(2)BC BD到线段两端点的距离相等的点在线段的垂直平分线上【解析】解:(1)见答案(2)完成下面的证明.证明:∵OC=BC,OD=BD,∴CD是线段OB的垂直平分线(到线段两端点的距离相等的点在线段的垂直平分线上).故答案为BC,BD;到线段两端点的距离相等的点在线段的垂直平分线上.(1)根据几何语言画出对应的几何图形;(2)利用作法得到OC=BC,OD=BD,然后根据线段垂直平分线的性质定理的逆定理可得到CD⊥OB.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.【答案】解:(1)如图所示;(2)∵AB=AC,AD是BC边上的中线,∴∠BAD=∠CAD,∵AD⊥BC,EF⊥BC,∴AD∥EF,∴∠BAD=∠E,∠DAG=∠AGE,∴∠E=∠AGE,∴AE=AG.【解析】(1)根据题意作出图形即可;(2)根据等腰三角形的性质和平行线的性质即可得到结论.本题考查了等腰三角形的判定和性质,平行线的判定和性质,正确的识别图形是解题的关键.21.【答案】解:AB⊥BE.理由如下:如图,过点E作EM⊥BD,交DB延长线于点M.∵∠ACB=90°,DE⊥AD,∴∠ADC+∠EDM=90°,∠ADC+∠DAC=90°,∴∠DAC=∠EDM.又DE=AD,∠C=∠M=90°,∴△EMD≌△DCA(AAS),∴EM=CD,MD=CA=BC,∴MD-BD=BC-BD,∴BM=CD=EM,∴∠MEB=∠MBE=45°.∵∠ACB=90°,AC=BC,∴∠ABC=45°,∴∠ABE=180°-∠MBE-∠ABC=90°,∴AB⊥BE.【解析】过点E作EM⊥BD,交DB延长线于点M,由“AAS”可证△EMD≌△DCA,可得EM=CD,MD=CA=BC,可得EM=BM,由等腰直角三角形的性质可得∠ABC=45°=∠MBE,可得∠ABE=90°,即AB⊥BE.本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.22.【答案】解:(1)方程的两边同乘x(x+1),得5x+2=3x,解得x=-1.检验:把x=-1代入x(x+1)=0.所以原分式方程无解;(2)方程的两边同乘(2x+5)(2x-5),得2x(2x+5)-2(2x-5)=(2x+5)(2x-5),解得x=-.检验:把x=-代入(2x+5)(2x-5)≠0.所以原方程的解为:x=-.【解析】(1)观察可得最简公分母是x(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解;(2)观察可得最简公分母是(2x+5)(2x-5),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.本题考查了分式方程的解法,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.23.【答案】解:如图,连接AC;作线段AC的垂直平分线l,作点D关于直线l的对称点E;连接AE,则AE即为线段a;故CD与AE关于l对称;作∠BAE的角平分线AF,则AE与AB关于AF对称.∴线段a与线段AB成轴对称,与线段CD也成轴对称.【解析】连接AC;作线段AC的垂直平分线l,作点D关于直线l的对称点E;连接AE,则AE即为线段a.本题主要考查了利用轴对称变换进行作图,几何图形都可看做是有点组成,在画一个图形的轴对称图形时,是先从确定一些特殊的对称点开始.24.【答案】(1)30°-α(2)△EFC是等边三角形,理由如下:∵∠EBC=60°-α,BF平分∠EBC,∴∠FBC=∠EBC=30°-α.∴∠FBC=∠EAC.∵∠FCB=60°-∠ACF,∠ECA=60°-∠ACF,∴∠FCB=∠ECA,又CA=CB,∴△BFC≌△AEC(ASA).∴CF=CE.又∠ECF=60°,∴△EFC是等边三角形.【解析】解:(1)∵BE=AB,∴∠BAE=(180°-α)=90°-α.∴∠CAE=∠BAE-60°=30°-α.故答案为:30°-α.(2)见答案(1)根据等腰三角形的性质用α表示∠BAE度数,减去60°即可;(2)证明△BFC≌△AEC得到CF=CE,再结合60度角即可说明是等边三角形.本题主要考查全等三角形的判定和性质、等边三角形的判定和性质.25.【答案】(1)C,D;(2)-1≤n≤;(3)2【解析】解:(1)如图1中,观察图象可知△OAB的关联点在图中的虚线(包括虚线上)区域内(虚线上的点到△OAB的顶点或边的距离为1).故△OAB的关联点是点C,D.故答案为C,D.(2)①如图2中,设直线l交图中虚线于C′,F.作C′G⊥OA于G,FN⊥x轴于N.在Rt△AFN中,∵∠FAN=30°,AF=1,∴FN=,AN=,∴N(2+,),在Rt△AC′G中,∵∠C′AG=30°,C′G=1,∴AG=,AC′=2,∴OG=2-,∴C′(2-,-1)∴满足条件的点F的纵坐标:-1≤n≤.故答案为-1≤n≤.②当点F与C′重合时,△FAB的面积最大,面积的最大值S=×2×2=2.故答案为2.【分析】(1)如图1中,观察图象可知△OAB的关联点在图中的虚线区域内(包括虚线上)(虚线上的点到△OAB的顶点或边的距离为1).(2)①如图2中,设直线l交图中虚线于C′,F.解直角三角形求出点C′,F的坐标即可判断;②当点F与C′重合时,△FAB的面积最大;本题属于三角形综合题,考查了等边三角形的性质,解直角三角形,图形M的关联点的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.。

2018-2019学年九年级上学期期中考试数学试题(含答案)

2018-2019学年九年级上学期期中考试数学试题(含答案)

2018~2019学年度第一学期期中质量调研九年级数学一、选择题(每小题3分,共30分)1.一元二次方程x 2-2x -1=0的根的情况为( )A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根2.一个长方形的面积为210 cm 2,宽比长少7 cm.设它的宽为x cm ,则可得方程( )A .2(x +7)+2x =210B .x +(x +7)=210C .x (x -7)=210D .x (x +7)=2103.有两个一元二次方程:①02=++c bx ax ,②02=++a bx cx ,其中a +c =0, 以下四个结论中,错误的是( ) A .如果方程①有两个相等的实数根,那么方程②也有两个相等的实数根; B .如果方程①和方程②有一个相同的实数根,那么这个根必定是x=1;C .如果4是方程①的一个根,那么14是方程②的一个根;D .方程①的两个根的符号相异,方程②的两个根的符号也相异;4.若二次函数c bx ax y ++=2的x 与y 的部分对应值如下表: x-7 -6 -5 -4 -3 -2 y-27-13-3353则当0=x 时,y 的值为( )A .5B .-3C .-13D .-275.二次函数c bx ax y ++=2的图象如图所示,反比例函数x ay =与正比例函数x c b y )(+=在同一坐标系中的大致图象可能是A B C D 6.如果将抛物线2y x =向左平移4个单位,再向下平移2个单位后,那么此时抛物线的表达式是( ). A .2(4)2y x =--B .2(4)2y x =-+C .2(4)2y x =+-D .2(4)2y x =++xxxxxyyyyy2018.107.若1(4,)A y -,1(3,)B y -,1(1,)C y 为二次函数242y x x =+-的图象上的三点,则1y ,2y ,3y 的大小关系是( ).A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<8.如图,Rt OAB △的顶点(2,4)A -在抛物线2y ax =上,将Rt OAB △绕点O 顺时针旋转90︒,得到OCD △,边CD 与该抛物线交于点P ,则点P 的坐标为( ). A .(2,2)B .(2,2)C .(2,2)D .(2,2)(第8题) (第9题) (第10题)9.如图,在Rt ABC △中,90C =︒∠,6cm AC =,2cm BC =,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动,若点P ,Q 均以1cm/s 的速度同时出发,且当一点移动终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( ). A .20cmB .18cmC .25cmD .32cm10.如图,正方形OABC 的边长为2,OA 与x 轴负半轴的夹角为15︒,点B 在抛物线2(0)y ax a =<的图象上,则a 的值为( ). A .12-B .26-C .2-D .23-二、填空题(每小题3分,共24分)11.将一元二次方程(2)(1)3x x -+=化成一般形式,且使得二次项系数为正数,则化成一般形式后的一元二次方程是 .12.已知关于x 的方程x 2+3x +a =0的一个根为-4,则另一个根为 .13.某药品原价每盒64元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒36元,则该药品平均每次降价的百分率是 . 14.若抛物线y =x 2-k x +k -1的顶点在x 轴上,则k = .15.若抛物线2(2)3y x m x =-+-+的顶点在y 轴上,则m =__________.16.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为________.17.二次函数22y x ax a =-+在 03x ≤≤的最小值是-2,则a =__________18.如图,在平面直角坐标系中,抛物线y =x 2+mx 交x 轴的负半轴于点A .点B 是y 轴正半轴上一点,点A 关于点B 的对称点A ′恰好落在抛物线上.过点A ′作x 轴的平行线交抛物线于另一点C .若点A ′的横坐标为1,则A ′C 的长为 .三、解答题(共76分)19.⑴ 2(3)5x -= ⑵ 01422=+-x x⑶ 03322=--x x⑷03)32=+--x x ( 20.(6分)已知关于x 的方程x 2+8x +12-a =0有两个不相等的实数根.⑴ 求a 的取值范围;⑵ 当a 取满足条件的最小整数时,求出方程的解.21.(6分)如图,△ABC 中,∠C =90°,BC =6,AC =4.点P 、Q 分别从点A 、出发,点P 沿A →C 的方向以每秒1个单位长的速度向点C 运动,点Q 沿B →向以每秒2个单位长的速度向点C 运动.当其中一个点先到达点C 时,点P 、运动.当四边形ABQP 的面积是△ABC 面积的一半时,求点P 运动的时间.Q BP22.(8分)某工厂设计了一款工艺品,每件成本40元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是80元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于65元.如果降价后销售这款工艺品每天能盈利3000元,那么此时销售单价为多少元?我市某汽车零部件生产企业的利润逐年提高.据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率.(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?24.(本题满分10分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y (单位:个)与销售单价x (单位:元)有如下关系:60(3060)y x x =-+≤≤.设这种双肩包每天的销售利润为w 元. (1)求w 与x 之间的函数解析式.(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?25.(本题满分10分)如图1,在平面直角坐标系中,二次函数2(0)y ax bx c a =++>的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),OB OC =,13OA OC =. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)如图2,若点(2,)G y 是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,APG △的面积最大?求出此时P 点的坐标和APG △的最大面积.26.已知关于x 的一元二次方程x2﹣(m+1)x+(m2+1)=0有实数根. (1)求m 的值;(2)先作y=x2﹣(m+1)x+(m2+1)的图象关于x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n (n≥m )与变化后的图象有公共点时,求n2﹣4n 的最大值和最小值.27.(本题满分10分)已知二次函数22y ax bx =+-的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 的坐标为(4,0),且当2x =-和5x =时二次函数的函数值y 相等. (1)求实数a 、b 的值.(2)如图1,动点E 、F 同时从A 点出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F 以每秒5个单位长度的速度沿射线AC 方向运动,当点E 停止运动时,点F 随之停止运动.设运动时间为t 秒.连接EF ,将AEF △沿EF 翻折,使点A 落在点D处,得到DEF △.①是否存在某一时刻t ,使得DCF △为直角三角形?若存在,求出t 的值;若不存在,请说明理由.②设DEF △与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式.参考答案及评分意见一、选择题 1-5 BDBCB ;6.【答案】C ;【解析】22242(4)(4)2y x y x y x =−−−−→=+−−−−→=+-向左平移向下平移个单位个单位. 故选C . 7.【答案】B ;【解析】二次函数2242(2)6y x x x =+-=+-,∴对称轴2x =-, ∴当14x =-,23x =-,31x =时,213y y y <<.故选B .8.【答案】C ;【解析】将(2,4)A -代入2y ax =中得:1a =,∴2y x =, 由题意知,2OB =,4BA =,∴2OD =,将2y =代入2y x =得,2x =±, ∴(2,2)P .故选C .9.【答案】C ;【解析】由题意知,AP t =,CQ t =,6CP t =-,222222(6)21236PQ PC CQ t t t t =+=-+=-+22(3)18t =-+,又∵02t ≤≤,故2t =时,220PQ =最小, 此时25PQ =.故选C .10.【答案】B ;【解析】∵正方形OABC 的边长为2,∴22OB =,由题意知,15AOB =︒∠,∴30COB =︒∠,∴2BC =,6OC =,故(6,2)B --, 代入2y ax =中得:26a -=,26a =-.故选B .二、填空题11.012=+-x x ; 12.1; 13.25%; 14.K=2;15.【答案】2;【解析】由题意知:对称轴202m x -==,解得2m =. 16.【答案】2(2)9y x =--+;【解析】∵抛物线在x 轴上截得的线段长为6,且对称轴为2x =, ∴抛物线与x 轴的两交点为(1,0)-,(5,0),设2(2)9y a x =-+,将(5,0)代入得:1a =-, ∴2(2)9y x =--+.分分分分 分20. ⑴ 根据题意得:0)12482>--a (解得:4->a⑵ ∵ 4->a ∴ 最小的整数为﹣3 ------------------------------------------------------------ ∴ x 2+8x +12﹣(﹣3)=0 即:x 2+8x +15=0解得:x 1=-3,x 2=-521.设点P 运动了x 秒,则AP =x ,BQ =2x由AC =4,BC =6得:PC =4-x ,QC =6-2xP根据题意得:ABC ABQP S S △四边形21= ∴ ABC PQC S S △△21= ∵ ∠C =90 ∴642121)26)4(21⨯⨯⨯=⋅-⋅x x -( 解得:11=x ,62=x 经检验,x =6舍去答:点P 运动的时间是1秒.22.解:设降价x 元后销售这款工艺品每天能盈利3000元. 根据题意可得:3000)550)(4080(=+--x x解这个方程得:201021==x x ,(不合题意,舍去) 当x =10时,80-x =70>65;当x =20时,80-x =60<65(不符合题意,舍去)答:此时销售单价应定为75元.23.【解析】(1)设这两年该企业年利润平均增长率为x ,则:22(1) 2.88x +=, 解得10.220%x ==,2 2.2x =-(不合题意,舍去) 故这两年该企业年利润平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业的年利润为 2.88(120%) 3.456+=,3.456 3.4>,故该企业2017年的利润能超过3.4亿元. 24.【解析】(1)(30)w x y =-⋅(60)(30)x x =-+-2901800x x =-+-,w 与x 之间的函数解析式:2901800w x x =-+-.(2)根据题意得:22901800(45)225w x x x =-+-=--+, ∵10-<,当45x =时,w 有最大值,最大值是225.(3)当200w =时,2901800200x x -+-=,解得140x =,250x =, ∵5048<,250x =不符题意,舍去,故销售单价应定为40元. 25.【解析】(1)由已知得:(0,3)C -,(1,0)A -,将A ,B ,C 三点的坐标代入,得09303a b c a b c C -+=⎧⎪++=⎨⎪=-⎩,∴223y x x =--.(2)存在.∵(1,4)D -,∴直线CD 的解析式为:3y x =--,∴E 点的坐标为(3,0)-, 由A 、C 、E 、F 四点的坐标得:2AE CF ==,AE CF ∥,∴以A 、C 、E 、F 为顶点,的四边形为平移四边形,∴存在点F ,坐标为(2,3)-. (3)过点P 作y 轴的平行线与AG 交于点Q ,易得(2,3)G -,直线AG 为1y x =--, 设2(,23)P x x x --,则(,1)Q x x -,22PQ x x =-++,21(22)32APG APQ GPQ S S S x x =+=-++⨯△△△,当12x=时,APGS△最大,此时115,24P⎛⎫-⎪⎝⎭,APGS△最大为278.26.解:(1)对于一元二次方程x2﹣(m+1)x+(m2+1)=0,△=(m+1)2﹣2(m2+1)=﹣m2+2m﹣1=﹣(m﹣1)2,∵方程有实数根,∴﹣(m﹣1)2≥0,∴m=1.(2)由(1)可知y=x2﹣2x+1=(x﹣1)2,图象如图所示:平移后的解析式为y=﹣(x+2)2+2=﹣x2﹣4x﹣2.(3)由消去y得到x2+6x+n+2=0,由题意△≥0,∴36﹣4n﹣8≥0,∴n≤7,∵n ≤m ,m =1, ∴1≤n ≤7,令y ′=n 2﹣4n =(n ﹣2)2﹣4,∴n =2时,y ′的值最小,最小值为﹣4, n =7时,y ′的值最大,最大值为21, ∴n 2﹣4n 的最大值为21,最小值为﹣4.27.【解析】(1)由题意得:164204222552a b a b a b +-=⎧⎨--=+-⎩,解得:12a =,32b =-.(2)①由(1)知213222y x x =--,∵(4,0)A ,∴(1,0)B -,(0,2)C ,∴4OA =,1OB =,2OC =,∴5AB =,25AC =,5BC =, ∴22225AC BC AB +==,∴ABC △为Rt △,且90ACB =︒∠,∵2AE t =,5AF t =,52AF AB AE AC ==,又∵EAF CAB =∠∠,∴AEF ACB △∽△, ∴90AEF ACB ==︒∠∠,∴翻折后,A 落在D 处,∴DE AE =,∴24AD AE t ==,12EF AE t ==, 若DCF △为Rt △,点F 在AC 上时,i )∴若C 为直角顶点,则D 与B 重合,∴1522AE AB ==,55224t =÷=,如图2 ii )若D 为直角顶点,∵90CDF =︒∠,∴90ODC EDF +=︒∠∠,∵EDF EAF =∠∠,∴90OBC EAF +=︒∠∠,∴ODC OBC =∠∠,∴BC DC =, ∵OC BD ⊥,∴1OD OB ==,∴3AD =,∴34AE =,∴34t =,如图3 当点F 在AC 延长线上时,90DFC >︒∠,DCF △为钝角三角形,综上所述,34t =或54.②i )当504t <≤时,重叠部分为DEF △,∴2122S t t t =⨯⨯=.ii )当524t <≤时,设DF 与BC 相交于点G ,则重叠部分为四边形BEFG ,如图4,过点G 作GH BE ⊥于H ,设GH x =,则2x BH =,2DH x =,∴32xDB =,∵45DB AD AB t =-=-,∴3452x t =-,∴2(45)3x t =-,∴1122(45)(45)223DEF DBG S S S t t t t ===⨯⨯--⨯-△△2134025533t t =-+-.iii )当522t <≤时,重叠部分为BEG △,如图5,∵2(45)52BE DE DB t t t =-=--=-,22(52)GE BE t ==-,∴21(52)2(52)420252S t t t t =⨯-⨯-=-+.。

2018-2019学年华师大版八年级数学上册期中试卷(含答案)

2018-2019学年华师大版八年级数学上册期中试卷(含答案)

2018-2019学年第一学期八年级期中调研测试数 学 试 题一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入括号内.1.4的平方根是( )A .±2B .−2C .2D . 2 2.估计110+的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间 3.下列各式计算正确的是( )A .5a +3a =8a 2B . a −b 2=a 2−b 2C .a 3⋅a 7=a 10D .()623a a -=-4.把多项式a 2−4a 分解因式,结果正确的是( )A .a a −4B . a +2 a −2C .a a +2 a −2D . a −2 2−4 5.下列计算正确的是( )A . ab 4 4=ab 8B .()()22y x y x y x -=--+ C .()()22422b a b a b a -=--D . −y 4÷ −y 2=y 26.如图,△ABC ≌△DCB ,若∠A=75°,∠ACB=45°,则∠BCD 等于( ) A .80∘ B .60∘ C .40∘D .20∘ 7.已知 a +2+ b −1 =0,那么()2017b a +的值为 ( ) A .−1B .1C .20173D .20173-8.若把代数式x 2−2x +3化为 x −m 2+k 的形式,其中m ,k 为常数,结果正确的是( )A . x +1 2+4B . x −1 2+2C . x −1 2+4D . x +1 2+2 9.如图,已知∠CAB =∠DAB ,则下列①∠C=∠D ②AC=AD③∠CBA=∠DBA ④BC=BD 条件中能判定△ABC ≌△ABD 的是( )A .①②③④B .②③④C .①③④D .①②③ 10.如图,AB =AD ,∠1=∠2,则不一定能使△ABC ≌△ADE的条件是( )A .∠B =∠DB .∠C=∠EC .BC =DED .AC =AE二、填空题(每小题3分,共15分)11.27的立方根是 . 12.计算:()=-322mn .13.计算:()()=-÷-225226ab c b a .14.分解因式:=-241x .15.如图所示,在△ABC 中,D 是BC 边上的中点,∠BDE =∠CDF ,请你添加一个条件,使DE =DF 成立.你添加的条件是 (不再添加辅助线和字母).三、解答题(8+9+9+9+9+10+10+11=75分)16.(8分)计算:|6|)4(125.041)3(232---+----.17.(9分)计算: 2x −y 2−4 x −y x +2y .18.(9分)分解因式:22344ab b a a +-19.(9分)化简求值: x +2y 2− x +y 3x −y −5y 2 ÷2x ,其中21,2=-=y x .20.(9分)阅读下面材料完成分解因式. x 2+ p +q x +pq 型式子的因式分解x 2+ p +q x +pq =x 2+px +qx +pq = x 2+px + qx +pq =x x +p +q x +p =x +p x +q .这样,我们得到x 2+ p +q x +pq = x +p x +q . 利用上式可以将某些二次项系数为1的二次三项式分解因式. 例把x 2+3x +2分解因式分析:x 2+3x +2中的二次项系数为1,常数项2=1×2,一次项系数3=1+2,这是一个x 2+ p +q x +pq 型式子.解:x 2+3x +2= x +1 x +2请仿照上面的方法将下列多项式分解因式. (1)x 2+7x +10. (2)2y 2−14y +24.21.(10分)如图,在Rt△ABC中,∠ACB=90∘,点D,F分别在AB,AC上,CF=CB.连接CD,将线段CD绕点C按顺时针方向旋转90∘后得CE,连接EF.求证:△BCD≌△FCE;22.(10分)在正方形ABCD中,AB=AD,∠BAD=90∘,P是CD边上一点,连接PA,过点B,D作BE⊥PA,DF⊥PA,垂足分别为E,F,如图1.(1)请探究BE,DF,EF这三条线段有怎样的数量关系?请说明理由;(2)若点P 在DC 的延长线上,如图2,那么这三条线段的数量关系是(直接写结果) (3)若点P 在CD 的延长线上,如图3,那么这三条线段的数量关系是(直接写结果) 23.(11分)已知:如图,在长方形ABCD 中,AB=4cm ,BC=6cm ,点E 为AB 中点,如果点P 在线段BC 上以每秒2cm 的速度由点B 向点C 运动,同时,点Q 在线段CD 上由点C 向点D 运动.设点P 运动时间为t 秒,若某一时刻△BPE 与△CQP 全等,求此时t 的值及点Q 的运动速度.数学试题参考答案及评分标准一、选择题(每小题3分,共30分)1~5 ABCAD 6~10 BABDC 二、填空题(每小题3分,共15分)11、 3; 12、638n m -; 13、bc 23-; 14、()()x x 2121-+; 15、C B ∠=∠(答案不唯一) 三、解答题(8+9+9+9+9+10+10+11=75分)16.解:原式=3−12− −0.5 +4−6=1.17.解:原式= 4x 2+y 2−4xy −4 x 2+xy −2y 2 =4x 2+y 2−4xy −4x 2−4xy +8y 2=9y 2−8xy .18.解:()()22222324444b a a b ab a a ab b a a -=+-=+-19.解:原式= x 2+4xy +4y 2 − 3x 2+2xy −y 2 −5y 2 ÷2x = x 2+4xy +4y 2−3x 2−2xy +y 2−5y 2 ÷2x = −2x 2+2xy ÷2x =−x +y .当x =−2,y =12时,原式=2+12=52.20.解:(1)x 2+7x +10= x +2 x +5 .(2)2y 2−14y +24=2 y 2−7y +12 =2 y −3 y −4 21.解:∵CD 绕点C 顺时针方向旋转90∘得CE , ∴CD =CE ,∠DCE =90∘. ∵∠ACB =90∘,ACD FCE ACD BCD ∠+∠=∠+∠∴ FCE BCD ∠=∠∴在△BCD 和△FCE 中,CB =CF ,∠BCD =∠FCE ,CD =CE ,∴△BCD ≌△FCE . 22.解:(1)BE=DF+EF.理由如下:∵∠BAD=90∘,∴∠1+∠3=90∘.∵BE⊥AP,∴∠2+∠3=90∘.∴∠1=∠2.在△ABE和△DAP中,∵∠AEB=∠DFA=90∘,∠2=∠1,AB=AD,∴△ABE≌△DAP(AAS),∴BE=AF,AE=DF,∴BE=DF+EF.(2)DF=BE+EF.(3)EF=DF+BE.23.解:设点Q的运动速度为v cm/s,则BP=2t,CP=6−2t,BE=2,CQ=vt.由题可分两种情况:(i)△BPE≌△CPQ,则BP=CP,BE=CQ,∴2t=6−2t,2=vt,∴t=32,v=43;(ii)△BPE≌△CPQ,则BP=CQ,BE=CP,∴2t=vt,2=6−2t.∴t=2,v=2.综上所述,t的值为32秒,Q点的速度为cm/s34;或t的值为2秒,Q点的速度为2 cm/s.。

2018-2019学年新人教版八年级数学第二学期期中试卷(含答案)

2018-2019学年新人教版八年级数学第二学期期中试卷(含答案)

2018-2019学年八年级(下)期中数学试卷一、选择题(每小题4分,共40分)1.下列式子为最简二次根式的是()A.B.C.D.2.以下各式不是代数式的是()A.0B.C.D.3.在△ABC中,AC2﹣AB2=BC2,那么()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定4.如果是一个正整数,那么x可取的最小正整数的值是()A.2B.3C.4D.85.如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=64,S3=289,则S2为()A.15B.225C.81D.256.估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间7.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF8.计算的结果是()A.2+B.C.2﹣D.9.实数a在数轴上的位置如图所示,则化简后为()A.7B.﹣7C.2a﹣15D.无法确定10.如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm二、填空题(每小题4分,共20分)11.命题“若a=b,则a2=b2”的逆命题是.12.化简的结果是.13.若长方形相邻两边的长分别是cm和cm,则它的周长是cm.14.下列各组数:①1、2、3;②6、8、10;③0.3、0.4、0.5;④9、40、41;其中是勾股数的有(填序号).15.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.16.若成立,则x满足.17.若a﹣=,则a+=.18.有一个边长为2m的正方形洞口,想用一个圆形盖住这个洞口,圆形盖的半径至少是m.19.对于任意不相等的两个实数a、b,定义运算※如下:a※b=,如3※2=.那么8※12=.20.如图,OP=1,过点P作PP1⊥OP,得PP1=1;连接OP1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,连接OP2,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,连接OP3,得OP3=2;…依此法继续作下去,得OP2013=.三、解答题(本大题共6个小题,共70分)21.(12分)(1)5.(2).22.(12分)将Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C所对的三条边.(1)已知a=,b=3,求c的长.(2)已知c=13,b=12,求a的长.23.(10分)先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.24.(10分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.25.(12分)如图,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求AD的长.26.(14分)阅读下面的问题:﹣1;=;;……(1)求与的值.(2)已知n是正整数,求与的值;(3)计算+.2018-2019学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.下列式子为最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、=,不是最简二次根式,故此选项错误;B、是最简二次根式,故此选项正确;C、=2,不是最简二次根式,故此选项错误;D、=2,不是最简二次根式,故此选项错误;故选:B.【点评】此题主要考查了最简二次根式,正确把握最简二次根式的定义是解题关键.2.以下各式不是代数式的是()A.0B.C.D.【分析】代数式是指把数或表示数的字母用+、﹣、×、÷连接起来的式子,而对于带有=、>、<等数量关系的式子则不是代数式.由此可得答案.【解答】解:A、0是单独数字,是代数式;B、是代数式;C、是不等式,不是代数式;D、是数字,是代数式;故选:C.【点评】此类问题主要考查了代数式的定义,只要根据代数式的定义进行判断,就能熟练解决此类问题.3.在△ABC中,AC2﹣AB2=BC2,那么()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定【分析】先把AC2﹣AB2=BC2转化为AC2=AB2+BC2的形式,再由勾股定理的逆定理可判断出△ABC是直角三角形,再根据大边对大角的性质即可作出判断.【解答】解:∵AC2﹣AB2=BC2,∴AC2=AB2+BC2,∴△ABC是直角三角形,∴∠B=90°.故选:B.【点评】本题考查的是勾股定理的逆定理,即果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.如果是一个正整数,那么x可取的最小正整数的值是()A.2B.3C.4D.8【分析】首先化简,再确定x的最小正整数的值.【解答】解:=3,x可取的最小正整数的值为2,故选:A.【点评】此题主要考查了二次根式有意义的条件,关键是正确进行化简.5.如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=64,S3=289,则S2为()A.15B.225C.81D.25【分析】根据正方形的面积公式求出BC、AB,根据勾股定理计算即可.【解答】解:∵S1=64,S3=289,∴BC=8,AB=17,由勾股定理得,AC==15,∴S2=152=225,故选:B.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.6.估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间【分析】先进行二次根式的运算,然后再进行估算.【解答】解:∵=4+,而4<<5,∴原式运算的结果在8到9之间;故选:C.【点评】本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.7.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF【分析】设出正方形的边长,利用勾股定理,解出AB、CD、EF、GH各自的长度,再由勾股定理的逆定理分别验算,看哪三条边能够成直角三角形.【解答】解:设小正方形的边长为1,则AB2=22+22=8,CD2=22+42=20,EF2=12+22=5,GH2=22+32=13.因为AB2+EF2=GH2,所以能构成一个直角三角形三边的线段是AB、EF、GH.故选:B.【点评】考查了勾股定理逆定理的应用.8.计算的结果是()A.2+B.C.2﹣D.【分析】原式利用积的乘方变形为=[(+2)(﹣2)]2017•(﹣2),再利用平方差公式计算,从而得出答案.【解答】解:原式=(+2)2017•(﹣2)2017•(﹣2)=[(+2)(﹣2)]2017•(﹣2)=(﹣1)2017•(﹣2)=﹣(﹣2)=2﹣,故选:C.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则及积的乘方的运算法则.9.实数a在数轴上的位置如图所示,则化简后为()A.7B.﹣7C.2a﹣15D.无法确定【分析】先从实数a在数轴上的位置,得出a的取值范围,然后求出(a﹣4)和(a﹣11)的取值范围,再开方化简.【解答】解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,则,=a﹣4+11﹣a,=7.故选:A.【点评】本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.10.如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm【分析】根据折叠前后角相等可证AO=CO,在直角三角形ADO中,运用勾股定理求得DO,再根据线段的和差关系求解即可.【解答】解:根据折叠前后角相等可知∠BAC=∠EAC,∵四边形ABCD是矩形,∴AB∥CD,∴∠BAC=∠ACD,∴∠EAC=∠ACD,∴AO=CO=5cm,在直角三角形ADO中,DO==3cm,AB=CD=DO+CO=3+5=8cm.故选:C.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.二、填空题(每小题4分,共20分)11.命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【分析】如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题,如果把其中一个叫做原命题,那么把另一个叫做它的逆命题.故只需将命题“若a=b,则a2=b2”的题设和结论互换,变成新的命题即可.【解答】解:命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【点评】写出一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换.在写逆命题时要用词准确,语句通顺.12.化简的结果是5.【分析】根据二次根式的性质解答.【解答】解:=|﹣5|=5.【点评】解答此题,要弄清二次根式的性质:=|a|的运用.13.若长方形相邻两边的长分别是cm和cm,则它的周长是14cm.【分析】直接化简二次根式进而计算得出答案.【解答】解:∵长方形相邻两边的长分别是cm和cm,∴它的周长是:2(+)=2(2+5)=14(cm).故答案为:14.【点评】此题主要考查了二次根式的应用,正确化简二次根式是解题关键.14.下列各组数:①1、2、3;②6、8、10;③0.3、0.4、0.5;④9、40、41;其中是勾股数的有②④(填序号).【分析】勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数,根据定义即可求解.【解答】解:①1、2、3不属于勾股数;②6、8、10属于勾股数;③0.3、0.4、0.5不属于勾股数;④9、40、41属于勾股数;∴勾股数只有2组.故答案为:②④【点评】本题考查了勾股数的定义,注意:作为勾股数的三个数必须是正整数,一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.15.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了4步路(假设2步为1米),却踩伤了花草.【分析】本题关键是求出路长,即三角形的斜边长.求两直角边的和与斜边的差.【解答】解:根据勾股定理可得斜边长是=5m.则少走的距离是3+4﹣5=2m,∵2步为1米,∴少走了4步,故答案为:4.【点评】本题就是一个简单的勾股定理的应用问题.16.若成立,则x满足2≤x<3.【分析】根据二次根式有意义及分式有意义的条件,即可得出x的取值范围.【解答】解:∵成立,∴,解得:2≤x<3.故答案为:2≤x<3.【点评】本题考查了二次根式的乘除法及二次根式及分式有意义的条件,关键是掌握二次根式有意义:被开方数为非负数,分式有意义:分母不为零.17.若a﹣=,则a+=.【分析】根据完全平方公式即可求出答案.【解答】解:由题意可知:(a﹣)2=2017,∴a2﹣2+=2017∴a2+2+=2021∴(a+)2=2021∴a+=±故答案为:±【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.18.有一个边长为2m的正方形洞口,想用一个圆形盖住这个洞口,圆形盖的半径至少是m.【分析】根据圆形盖的直径最小应等于正方形的对角线的长,才能将洞口盖住,根据勾股定理进行解答.【解答】解:∵正方形的边长为2m,∴正方形的对角线长为=2(m),∴想用一个圆盖去盖住这个洞口,则圆形盖的半径至少是m;故答案为【点评】本题考查的是正多边形和圆、勾股定理的应用,根据正方形和圆的关系确定圆的半径是解题的关键.19.对于任意不相等的两个实数a、b,定义运算※如下:a※b=,如3※2=.那么8※12=﹣.【分析】根据所给的式子求出8※12的值即可.【解答】解:∵a※b=,∴8※12===﹣.故答案为:﹣.【点评】本题考查的是算术平方根,根据题意得出8※12=是解答此题的关键.20.如图,OP=1,过点P作PP1⊥OP,得PP1=1;连接OP1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,连接OP2,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,连接OP3,得OP3=2;…依此法继续作下去,得OP2013=.【分析】根据勾股定理分别求出每个直角三角形斜边长,根据结果得出规律,即可得出答案.【解答】解:∵OP1=,由勾股定理得:OP2==,OP3==,…OP2013=,故答案为:.【点评】本题考查了勾股定理的应用,注意:在直角三角形中,两直角边的平方和等于斜边的平方,解此题的关键是能根据求出的结果得出规律.三、解答题(本大题共6个小题,共70分)21.(12分)(1)5.(2).【分析】(1)先化简各二次根式,再合并同类二次根式即可;(2)根据二次根式的乘除运算法则计算可得.【解答】解:(1)原式=5×+4﹣=5﹣;(2)原式=×()=×==.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.22.(12分)将Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C所对的三条边.(1)已知a=,b=3,求c的长.(2)已知c=13,b=12,求a的长.【分析】(1)利用勾股定理计算c边的长;(2)利用勾股定理计算a边的长;【解答】解:(1)∵∠C=90°,a=,b=3.∴c==4(2))∵∠C=90°,c=13,b=12,∴a==5【点评】本题主要考查了勾股定理的应用,属于基础题.23.(10分)先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.【分析】根据分式的除法可以化简题目中的式子,然后将a、b代入化简后的式子即可解答本题.【解答】解:(a2b+ab)÷=ab(a+1)=ab,当a=+1,b=﹣1时,原式==3﹣1=2.【点评】本题考查分式的化简求值、分母有理化,解答本题的关键是明确分式化简求值的方法.24.(10分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.【分析】过A作CD⊥AB.修建公路CD,则工厂C到公路的距离最短,首先证明△ABC是直角三角形,然后根据三角形的面积公式求得CD的长.【解答】解:过A作CD⊥AB,垂足为D,∵6002+8002=10002,∴AC2+BC2=AB2,∴∠ACB=90°,S=AB•CD=AC•BC,△ACB×600×800=×1000×DB,解得:BD=480,∴新建的路的长为480m.【点评】此题主要考查了勾股定理逆定理以及三角形的面积公式,关键是证明△ABC是直角三角形.25.(12分)如图,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求AD的长.【分析】先设CD=x,则BD=BC+CD=9+x,再运用勾股定理分别在△ACD与△ABD中表示出AD2,列出方程,求解即可.【解答】解:设CD=x,则BD=BC+CD=9+x.在△ACD中,∵∠D=90°,∴AD2=AC2﹣CD2,在△ABD中,∵∠D=90°,∴AD2=AB2﹣BD2,∴AC2﹣CD2=AB2﹣BD2,即102﹣x2=172﹣(9+x)2,解得x=6,∴AD2=102﹣62=64,∴AD=8.故AD的长为8.【点评】本题主要考查了勾股定理的运用,根据AD的长度不变列出方程是解题的关键.26.(14分)阅读下面的问题:﹣1;=;;……(1)求与的值.(2)已知n是正整数,求与的值;(3)计算+.【分析】(1)根据分母有理化可以解答本题;(2)根据分母有理化可以解答本题;(3)根据(2)中的结果可以解答本题.【解答】解:(1)==,==;(2)==,==;(3)+==﹣1+=﹣1+10=9.【点评】本题考查二次根式的化简求值、分母有理化,解答本题的关键是明确二次根式化简求值的方法.。

华师大版-学年度上学期八年级期中考试数学试卷(含解析)

华师大版-学年度上学期八年级期中考试数学试卷(含解析)

2018-2019华师大版八年级中期试卷考试时间:120分钟 考试范围:1-2章姓名:__________班级:__________考号:__________题号 一 二 三 总分 得分△注意事项:1.填写答题卡请使用2B 铅笔填涂2.提前5分钟收答题卡一 、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.下列实数中是无理数的是( )A .B .C .D .02.下列计算正确的是( )A .3a ×2b=5abB .﹣a 2×a=﹣a 2C .(﹣x )9÷(﹣x )3=x 3D .(﹣2a 3)2=4a 63.多项式4a ﹣a 3分解因式的结果是( )A .a (4﹣a 2)B .a (2﹣a )(2+a )C .a (a ﹣2)(a+2)D .a (2﹣a )24.下列运算正确的是( )A .-3(x +y)=-3x -yB .-3(x +y)=-3x +y C.-3(x +y)=-3x -3y D .-3(x +y)=-3x +3y5. (2a-b)3(2a-b)m-4等于( )A .3(2a-b)m-4B .(2a-b)m-1C .(2a-b)m-7D .(2a-b)m6.与单项式-3a 2b 的积是6a 3b 2-2a 2b 2-3a 2b 的多项式是( ).A .-2ab-32b B .-2ab+32b C .-2ab-32b+1 D .-2ab+32b+1 7.已知|b ﹣4|+(a ﹣1)2=0,则的平方根是( )A .B .C .D .8.学校买来钢笔若干枝,可以平均分给(x ﹣1)名同学,也可分给(x ﹣2)名同学(x 为正整数).用代数式表示钢笔的数量不可能的是( ) A .x 2+3x+2B .3(x ﹣1)(x ﹣2)C .x 2﹣3x+2D .x 3﹣3x 2+2x9.有个数值转换器,原理如图所示,当输入x 为27时,输出值是( )A .3B .C .D .10.已知5x =3,5y =2,则52x ﹣3y =( )A .B .1C .D .11.对于实数x ,我们规定[x]表示不大于x 的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作: 82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1( ) A .1 B .2C .3D .412.若+|2a ﹣b+1|=0,则(b ﹣a )2016的值为( ) A .﹣1B .1C .52015D .﹣52015二 、填空题(本大题共6小题,每小题3分,共18分) 13.因式分解:____________.14.简便计算:(-31)100错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

眉山县龙正学区2018-2019学年上学期期中考试八年级数学试卷
(总分120分,120分钟完卷)
一. 选择题(每小题3分,共36分.每小题都有四个选项,其中有且只有一个选项是正确的)
1、下列说法中,错误的是( )
A .9的算术平方根是3 B.216±平方根是
C. 27的平方根是3±
D.立方根等于1-的实数是1-
2、下列运算正确的是 ( )
A .632x x x =⋅ B. 5326)3)(2(x x x =-- C. 2)2(x -=24x - D. 2a+3b=5ab
33-、0 3.1415、π、2.123122312223…… (1和3之间的2逐次加1个)中,无理数的个数为 ( )
A . 2个 B. 3个 C. 4个 D. 5个
4、根据下列条件,能画出唯一ABC ∆的是( )
A. 3AB =,4BC =,8CA =
B. 4AB =,3BC =,30A ∠=
C. 60C ∠=,45B ∠=,4AB =
D. 90C ∠=,6AB =
5、若162++mx x 是一个完全平方式,则m 的取值是( )
A . 8± B. 8- C. 8 D. 4±
6、在△ABC 和△A B C '''中,AB=A B '',∠B=∠B ',补充条件后仍不一定能保证△ABC ≌△A B C ''',则补充的这个条件是( )
A .BC =
B
C '' B. ∠A =∠A ' C. AC =A C '' D. ∠C =∠C '
7、若)3)(8(2
2q x x px x +-++乘积中不含2x 项和3x 项,则p 、q 的值为( )
A .p=0,q=0
B .p=3,q=1 C. p=–3, q=–9 D.p=–3,q=1 8、下列多项式相乘,结果为1662-+a a 的是( )
A . )8)(2(--a a
B. )8)(2(-+a a
C. )8)(2(+-a a
D. )8)(2(++a a
9、若22,12,7n m mn n m +==+则的值是( )
A . 1 B. 25 C. 2 D. -10
10、我们知道10是一个无理数,那么110+在哪两个整数之间? ( )
A .1与2 B. 2与3 C. 3与4 D. 4与5
11、下列命题是真命题的有 ( )
①若22b a =,则a=b ;②内错角相等,两直线平行。

③若a ,b 是有理数,则b a b a +=+;
④如果∠A=∠B ,那么∠A 与∠B 是对顶角.
A .1个 B.2个 C. 3个 D.4个。

相关文档
最新文档