期中达标测试题--沪科版九年级数学上册(共31张PPT)

合集下载

初中数学九年级数学上学期期中测考试题考试卷及答案(新版)沪科版.docx

初中数学九年级数学上学期期中测考试题考试卷及答案(新版)沪科版.docx

XX 学校XX 学年XX 学期XX 试卷试题函数'一〒的图象经过点(1, 一 1),则函数y = kx ~2的图象不经过第()象限.AB.二C.三D.四试题2:γ = X 2 +(2-Q X + t对于任意实数抛物线总经过一个固定的点,这个点是()A. (1, 0)B. (-1,0) C. (^1,3) D. (1, 3)试题3:把抛物线∙y = ^2j2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A i y = —2 仗 + 1尸 + 2B.》=一2 仗 +1)2 — 2c. ^ = -2⅛-l)2+2Dy = -2(^-I)2-2试题4:当α>0, "VO’ C=O 0寸,下列图象有可能是抛物^y=ClX 2 + bjc+c 的是()—V XX 题(每空XX 分,共XX 分)试题5:已知二次函数y=a√+Z>x+c (a≠0)的图象如图所示,且关于X的一元二次方程/+bx+cF0没有实数根,有下列结论:①∂z~4^>0;②abc<Q i③〃>2.其中,正确结论的个数是()A. 0B. 1C. 2D. 3试题6:2二次函数尸似+bx + C (a≠0)的图象如图所示,其对称轴为厂1・下列结论中错误的是()A. abc<QB. 2a+*0C. F-4ac>0D. a-6+c>0试题7:反比例函数与二次函数在同一平面直角坐标系中的大致图象如图所示,它们的关系式可能分别是()_ k _ kA y =B∕-I5= ⅛x2+x试题8:k在同一坐标系中,函数’ X 和的图象大致是()试题9:丄正比例函数y=为与反比例函数y=χ的图象相交于儿C 两点,ABrX 轴于点$ 〃丄X 轴于点。

(如图),则四边形朋〃 的面积为()5D. 2试题10:A. 1C. 2第9题丄=丄已知Ra rIJl ),府(冷丿2)是同一个反比例函数图象上的两点•若r2 = rI ÷ 2,且儿 儿 数的表达式为 ___________________ . 试题12:已知二次函数y = CIX中,函数F 与自变量X 的部分对应值如下表:-11 2 3 .・・...105212・・・则当y <5时,X 的取值范围是 __________试题13:有一个二次函数的图象,三位同学分别说出了它的一些特点:甲:对称轴为直线% = 4乙:与咒轴相交的两个交点的横坐标都是整数;已知反比例函数r的图象如图所示,则二次函数》=Ikx2~4r+ 2的图象大致为(1亍,则这个反比例函丙:与y轴交点的纵坐标也是整数,且以这三个点为顶点的三角形面积为3.请你写岀满足上述全部特点的一个二次函数的表达式 ________________________________ .试题14:设抛物线P = " +肚HO)过«0,2), E(4,3), U三点,其中点C在直线H二2上,且点U到抛物线对称轴的距离等于1,则抛物线的函数表达式为 _______________________________ .试题15:已知二次函数y =妒-滋+α,下列说法中错误的是__________________ .(把所有你认为错误的序号都写上)①当兀灯时,A随X的増大而减小:②若图象与X轴有交点,则«<4;③当« = 3时,不等式X2-4X+Λ> 0的解集是④若将图象向上平移1个单位长度,再向左平移3个单位长度后过点(1,一2),则« = -3.试题16:=JC一?若反比例函数'^ 的图象位于第一、三象限内,正比例函数y = ^k~9>的图象过第二、四象限,则上的整数值是_________ .试题17:2已知反比例函数y = X,图象上到%轴的距离等于1的点的坐标为 _______________ .试题2若一次函数y=kx +1■的图象与反比例函数卩=X的图象没有公共点,则实数女的取值范围是 __________________________________ .试题19:已知二次函数y=—2於+4^ + 6(1)求函数图象的顶点坐标及对称轴.(2)求此抛物线与尤轴的交点坐标.试题20: 炮弹的运行轨道若不计空气阻力是一条抛物线.现测得我军炮位/1与射击目标B的水平距离为600 m,炮弹运行的最大高度为1 200 m.(1)求此抛物线的关系式.(2)若在儿B之间距离>1点500 m处有一高350 m的障碍物,计算炮弹能否越过障碍物.试题21:如图所示是某一蓄水池的排水速度U (m'/"与排完水池中的水所用的时间t(h)之间的函数关系图象•(1)请你根据图象提供的信息求岀此蓄水池的蓄水虽•(2)写出U关于£的函数的表达式.(3)如果要6 h排完水池中的水,那么每小时的排水虽应该是多少?(4)如果每小时排水虽是5 m:那么水池中的水要多少小时排完?试题22:JC如图,已知函数y=兀(X 0)的图象经过点S, &点/1的坐标为(1, 2).过点力作ACHy轴,AC=↑ (点C位于点A 的下方),过点C作CD//X轴,与函数的图象交于点0,过点B作BE丄CD,垂足F在线段CD匕连接0C, OD.(1)求ZiOCQ的面积;试题23:若反比例函数兀与一次函数P=2χ∙4的图象都经过点力(a, 2)・k y = -(1)求反比例函数 兀的函数表达式;兀的值大于一次函数P=2χ-4的值时,求自变虽*的取值范围.试题24:如图,一位运动员在距篮筐4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2. 5米时,达到最大高度3. 5米,然后准确落入篮筐•已知篮筐中心到地面的距离为3. 05米. (1) 建立如图所示的直角坐标系,求抛物线的表达式;(2) 已知该运动员身高1・8米,在这次投篮中,球在头顶上方0・25米处出手,问:球出手时,他跳离地面的高度是多少.第24题图试题25: 九(1)班数学兴趣小组经过市场调查,整理岀某种商品在第X (1≤x≤90)天的售价与销虽的相关信息如下表:时间X (天) 1≤x<50 50≤x≤90(2)当反比例函数V£⑵当BE=PAC 时,求CF 的长.已知该商品的进价为每件30元,设销售该商品每天的利润为y元.(1)求出F与X的函数关系式.(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4 800元?请直接写出结果.试题1答案:A 解析:因为函数'~〒的图象经过点(1, 一P,所以-1,所以PT,根据一次函数的图象可知不经过第一象限.试题2答案:D解析:当X=1时,y= i + (2-O+i = 3t故抛物线经过固定点(1, 3).试题3答案:C 解析:抛物线尸—2F向右平移1个单位长度后,所得函数的表达式为P=Y(X-I)2,抛物线y = -2^-l)1向上平移2个单位长度后,所得函数的表达式为^ = ^2∙^-I)2 +2.试题4答案:A 解析:因为α>°,所以抛物线开口向上•因为c>°,所以抛物线与y轴的交点在尤轴上方,排除B, D.又bv°,所以-±>0a ,所以抛物线的对称轴在卩轴右侧,故选A.试题5答案:D 解析:T抛物线与X轴有两个交点,.∙.方程朋 +滋+C二°有两个不相等的实数根,.∙. Zl = b2-4^>0tb bX = ——_——> 0 r ①正确・•・•抛物线的开口向下,・•・a又・・・抛物线的对称轴是直线2J ,2α , : b > 0.・・・抛物线与丿2轴交于正半轴,.∙.c>°, /.<O ,②正确.方程ax 2-^-bx + c-m = °的根是抛物线P =仮十$兀十C 与直2线y = rn 交点的横坐标,当^>2时,抛物线y = ax 十bχ+c 与直线y = m 没有交点,此时方程 (τr 2+bx+c-ra=O 没有实数根,③正确,.∙.正确的结论有3个.试题6答案:D 解析:T=次函数的图象开口向下,.∙. a 0.T 二次函数的图象与F 轴的交点在F 轴的正半轴上,∙∙∙ C 0.•••二次函数图象的对称轴是直线W1, ∙∙. 2° , .∙. b 0,.∙.β⅛C<O ιA正确.∙.∙ 2卫 ,.∙.⅛ = -2α,即2Λ+⅛ = 0J ΛB 正确.T 二次函数的图象与X 轴有2个交点,.∙.方程血?+肚+c==0有两个不相等的实数根,.∙. b l -4ac>Q, /. C 正确.∙.∙当忑=_1时, ∕=S -Z H -C <O, .,. D 错误.试题7答案:B 解析:双曲线的两分支分别位于第二、四象限,即比°°C 中,当-kv°,即*>0时,抛物线开口向上,不符合题意,错误;A 中,当*6时,抛物线开口向下,对称轴,不符合题意,错误;B 中,当kG⅛t,抛物线开口向下,对称轴乂 = — — > 02k,符合题意,正确;试题12答案:错误・故选B. 试题8答案:A 解析:由于不知道W 的符号,此题可以分类讨论,当fc>0时,反比例函数y=^的图象在第一' 三象限,一次函 数y = kχ-^-3的图象经过第一、二、三象限,可知A 项符合;同理可讨论当fc<0时的情况.试题9答案:y = _C 解析:联立方程组”得A (1, D , Cr L 一 [)・=4× — =22试题10答案:D 解析:由反比例函数的图象可知,当兀=一1时,y >X ,即k<-1,所以在二次函数^ = 2^2-4χ+^2中,-4 1 I 1 nX = — — = —-1≤ — K 02力<0,则抛物线开口向下,对称轴为4上Ic ,贝IJk ,故选D.试题门答案:丄—丄丄 1—=—+ τ χ2 = χ1+,兀儿2,所以 2D 中,当7 C 时,抛物线开口向下,但对称轴≡2l" "2^<0,不符合题意,因为x2 =rι÷2j所以2 ,解得住4,所以反比例函数的表达式为兀试题12答案:OVxV4 解析:根据二次函数图象的对称性确定出该二次函数图象的对称轴,然后解答即可.∙.∙和记3时的函数值都是2, .∙.二次函数图象的对称轴为直线22•由表可知,当WO时,尸5, 当右4时,y=5.由表格中数据可知,当22时,函数有最小值1. .∙. a>0,・•・当yV5时,X的取值范围是OVXV4.试题13答案:本题答案不唯一,只要符合题意即可,如1 2 8 . 1→ 1 2丄8 1→ 1 2 名.Q→ 1 2丄8 Qy= — XΛ+15∖y = -- X+—Λ- ls∖y = -Λ --Λ +3S∖X =--Λ +- X-3试题14答案:解析:由题意知抛物线的对称轴为怎二1或λ = 3(1)当对称轴为直线怎二1时,B二一2(2,抛物线经过/∙(°>2), 5(4^3),(2)当对称轴为直线= 3时,b = -6a 9抛物线经过且(02), 3(4,3)3 = 16a 一8。

2024-2025学年沪科版初中九年级数学上学期期中模拟考试卷(一)

2024-2025学年沪科版初中九年级数学上学期期中模拟考试卷(一)

2024-2025学年九年级数学上学期期中模拟卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:沪科版九上第21~22.3章(二次函数与反倒函数+比例线段+相似三角形判定与性质)。

5.难度系数:0.65。

第一部分(选择题共40分)一、选择题(本大题共10个小题,每小题4分,满分40分.在每个小题给出的四个选项中,只有一项符合题目要求的)A .B ADE ∠=∠B .C ∠5.二次函数()220y ax ax c a =-+≠的图象过点()3,0,方程220ax ax c -+=的解为()A .123,1x x =-=-B .121,3x x =-=C .121,3x x ==D .123,1x x =-=A .16B .24.点P ,点Q 是线段AB 的黄金分割点,若A .2B .6-8.如图,是二次函数2y ax bx c =++(,,a b c 是常数,且0a ≠)的图象,虚线是抛物线的对称轴.则一次函数y acx b =+的图象经过()A .第二三四象限.如图1,点A 、B 在反比例函数延长线段AB 交x 轴于点函数()220k y k x=≠的图象上,过点A .2B .2-C .10.二次函数2y ax bx c =++()0a ≠与一次函数y x c =-+(都在坐标轴上,两图象与x 轴交于点M ,二次函数y =若12ON OM =,求b 的值()二、填空题(本大题共4小题,每小题5分,满分20分).如图,ABC 是等边三角形,点交于点F ,连接DE ,则下列结论:正确的结论有三、解答题(本大题共9个小题,共90分,其中15~18题每题8分,19~20题每题10分,21~22题每题12分,第23题14分.解答应写出文字说明,证明过程或演算步骤)(1)求该曲线对应的函数解析式;C℃的取值范围.(2)若6t≥,求温度(),是反比例函数y(8分)如图,A B线段AB的延长线交x轴于点C.(1)求a的值和该反比例函数的函数关系式;(2)求直线AB的函数关系式.19.(10分)九(1)班数学课外活动小组利用阳光下的影子来测量教学楼顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该教学楼OB的影长OC为12米,OA的影长OD为15米,测量者的⊥,影长FG为1.2米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且AO OD ⊥.已知测量者的身高EF为1.8米,求旗杆的高AB.EF FG.(10分)我省某风景区统计了近三年国庆节的游客人数.据统计,2023年国庆节游客人数约为(1)求2021年到2023年该风景区国庆节游客人数的年平均增长率;(2)已知该风景区有A,B(1)求抛物线的解析式;(2)如图,点C 为第四象限抛物线上的一个动点,直线AC 与y 轴交于点D ,连接BC .当90ACB ∠=︒时,求点C 的坐标.22.(12分)如图,在ABC 中,90B ∠=︒,8cm AB =,12cm BC =,点P 从点A 开始沿AB 向点B 以2cm /s 的速度运动,点Q 从点B 开始沿BC 向点C 以4cm /s 的速度运动,如果P ,Q 分别从A ,B 同时出发,4秒后停止运动,设运动时间为t 秒.(1)求BP ,BQ 的长度;(2)当t 为何值时,PBQ 的面积为212cm(3)是否存在某一时间t ,使得PBQ 和ABC 相似?若存在,请求出此时t 的值,若不存在,请说明理由.23.(14分)在平面直角坐标系xOy 中(如图),已知抛物线2y ax x c =++经过()2,0A -和()0,4B ,与x 轴的另一个交点为C .(1)求该抛物线的表达式及顶点M 的坐标;(2)将抛物线2y ax x c =++先向右平移2个单位,再向下平移m (0m >)个单位后得到的新抛物线与y 轴交于点()0,1P -,新抛物线的顶点为M ';①求新抛物线的表达式及顶点M '的坐标;②点N 是新抛物线对称轴上的一点,且'M MN ACB ∠=∠,当ABC 与MM N '△相似时,求点N 的坐标.2024-2025学年九年级数学上学期期中模拟卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

【沪科版】九年级数学上期中试题含答案

【沪科版】九年级数学上期中试题含答案

一、选择题1.下面四个图案是常用的交通标志,其中为中心对称图形的是( )A .B .C .D . 2.直线26y x =-+与x 轴交于A 点,与y 轴交于B 点,将AOB 绕点A 顺时针旋转90°得到AO B ''△,则点B '的坐标是( )A .()9,9B .()3,9-C .()9,3D .()3,9 3.下列关于防范“新冠肺炎”的标志中既是轴对称图形,又是中心对称图形的是( ) A .戴口罩讲卫生 B .勤洗手勤通风C .有症状早就医D .少出门少聚集4.如图,等边△OAB 的边OB 在x 轴上,点B 坐标为(2,0),以点O 为旋转中心,把△OAB 逆时针转90︒,则旋转后点A 的对应点A '的坐标是( )A .(-1,3)B .(3,-1)C .(31-,)D .(-2,1) 5.如图所示的图形中,是中心对称图形的是( )A .B .C .D .6.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .7.二次函数()20y ax bx c a =++≠的图象如图所示,对称轴是直线1x =-.下列结论:①240b ac ->,②0abc <,③420a b c -+>.其中正确的是( )A .①②B .①③C .②③D .①②③ 8.函数221y x x =--的自变量x 的取值范围为全体实数,其中0x ≥部分的图象如图所示,对于此函数有下列结论:①函数图象关于y 轴对称;②函数既有最大值,也有最小值;③当1x <-时,y 随x 的增大而减小;④当21a -<<-时,关于x 的方程221x x a --=有4个实数根.其中正确的结论个数是( )A .3B .2C .1D .09.二次函数y =ax 2+bx+c (a >0)的图象与x 轴的两个交点A (x 1,0),B (x 2,0),且x 1<x 2,点P (m ,n )是图象上一点,那么下列判断正确的是( )A .当n <0时,m <0B .当n >0时,m >x 2C .当n <0时,x 1<m <x 2D .当n >0时,m <x 1 10.对于二次函数2(2)7y x =---,下列说法正确的是( )A .图象开口向上B .对称轴是直线2x =-C .当2x >时,y 随x 的增大而减小D .当2x <时,y 随x 的增大而减小 11.一个大正方形内放入两个同样大小的小正方形纸片,按如图1放置,两个小正方形纸片的重叠部分面积为4;按如图2放置(其中一小张正方形居大正方形的正中),大正方形中没有被小正方形覆盖的部分(阴影部分)的面积为44,则把两张小正方形按如图3放置时,两个小正方形重叠部分的面积为( )A .10B .12C .14D .16 12.若m 是方程220x x c --=的一个根,设2(1)p m =-,2q c =+,则p 与q 的大小关系为( )A .p <qB .p =qC .p >qD .与c 的取值有关 13.《代数学》中记载,形如2833x x +=的方程,求正数解的几何方法是:“如图1,先构造一个面积为2x 的正方形,再以正方形的边长为一边向外构造四个面积为2x 的矩形,得到大正方形的面积为331649+=,则该方程的正数解为743-=.”小聪按此方法解关于x 的方程2100x x m ++=时,构造出如图2所示的图形,已知阴影部分的面积为50,则该方程的正数解为( ).A .6B .3532C .532D .535 14.如果2是方程x²−3x+k=0的一个根,则此方程的另一根为( )A .2B .1C .−1D .−2二、填空题15.已知抛物线243y x x =-+与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M 平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,则平移后的抛物线解析式为______.16.将抛物线2(3)2y x =--向左平移3个单位后的解析式为______.17.抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为________18.已知实数a ,b 是方程210x x --=的两根,则11a b+的值为______. 19.已知函数2y mx m m =++为正比例函数,则常数m 的值为______.20.已知2x =是关于x 的方程220x x m ++=的一个根,则m =_________.三、解答题21.(1)(操作发现)如图1,将△ABC 绕点A 顺时针旋转60°,得°到△ADE ,连接BD ,则∠ABD=_______度. (2)(类比探究)如图2,在边长为7的等边三角形ABC 内有一点P ,∠APC=90°°,∠BPC=120°,求△APC 的面积.22.综合与实践问题情境从“特殊到一般”是数学探究的常用方法之,类比特殊图形中的数量关系和探究方法可以发现一般图形具有的普遍规律.如图1,在ABC 中,90ACB ∠=︒,AC BC =,AD 为BC 边上的中线,E 为AD 上一点,将AEC 以点C 为旋转中心,逆时针旋转90°得到BFC △,AD 的延长线交线段BF 于点P .探究线段EP ,FP ,BP 之间的数量关系.数学思考(1)请你在图1中证明AP BF ⊥;特例探究(2)如图2,当CE 垂直于AD 时,求证:2EP FP BP +=;类比再探(3)请判断(2)的结论在图1中是否仍然成立?若成立,请证明;若不成立,请说明理由.23.如图,□ABCD 中,AB=c ,AC=b ,BC=a .(1)若四边形ABCD 是正方形,求抛物线2y ax bx c =+-的对称轴;(2)若抛物线2y ax bx c =+-的对称轴为直线34x =-,抛物线2y ax bx c =+-与x 轴的一个交点为(),0c -.且1b c =+,求四边形ABCD 的面积.24.如图1,抛物线y =x 2+bx +c 与x 轴交于A ,B 两点,与y 轴交于点C (0,2),连接AC ,若OC =2OA .(1)求抛物线的解析式;(2)抛物线对称轴l 上有一动点P ,当PC +PA 最小时,求出点P 的坐标;(3)如图2所示,连接BC ,M 是线段BC 上(不与B 、C 重合)的一个动点.过点M 作直线l '∥l ,交抛物线于点N ,连接CN ,BN ,设点M 的横坐标为t .当t 为何值时,△BCN 的面积最大?最大面积为多少?25.用适当的方法解下列方程:(1)22580x x --=;(2)23(5)2(5)x x -=-.26.解方程:(1)2340x x --=;(2)()()2151140x x -+--=.【参考答案】***试卷处理标记,请不要删除一、选择题解析:C【分析】根据中心对称图形的概念进行判断即可;【详解】A、图形旋转180度之后不能与原图形重合,故不是中心对称图形;B、图形旋转180度之后不能与原图形重合,故不是中心对称图形;C、图形旋转180度之后能与原图形重合,故是中心对称图形;D、图形旋转180度之后不能与原图形重合,故不是中心对称图形;故选:C.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合;2.C解析:C【分析】由题意可求点A(3,0),点B(0,6),根据旋转的性质可得OA=O'A=3,BO=B'O'=6,B'O'∥OA,即可求点B'坐标.【详解】解:如图:∵直线y=-2x+6与x轴交于A点,与y轴交于B点,∴当x=0时,y=6;当y=0时,x=3.∴点A(3,0),点B(0,6)∴OA=3,OB=6∵将△AOB绕点A顺时针旋转90°得到△AO′B′,∴OA=O'A=3,BO=B'O'=6,∠OAO'=∠B'O'A=90°∴B'O'∥OA∴点B'(9,3)故选:C.【点睛】本题考查了一次函数图象上点的坐标特征,旋转的性质,熟练运用旋转的性质是本题的关3.C解析:C【分析】直接利用轴对称图形和中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、不是轴对称图形,也不是中心对称图形,故此选项不合题意;C、既是中心对称图形也是轴对称图形,故此选项符合题意;D、不是轴对称图形,也不是中心对称图形,故此选项不合题意;故选:C.【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.4.C解析:C【分析】如图,过点A作AE⊥OB于E,过点A′作A′H⊥x轴于H.利用全等三角形的性质解决问题即可.【详解】解:如图,过点A作AE⊥OB于E,过点A′作A′H⊥x轴于H.∵B(2,0),△AOB是等边三角形,∴OA=OB=AB=2,∵AE⊥OB,∴OE=EB=1,∴2222AO OE--213==∵A′H⊥OH,∴∠A′HO=∠AEO=∠AOA′=90°,∴∠A′OH+∠AOE=90°,∠AOE+∠OAE=90°,∴∠A′OH=∠OAE,∴△A′OH≌△OAE(AAS),∴A′H=OE=1,3∴A′(31),故选:C .【点睛】本题考查坐标与图形变化-旋转,等边三角形的性质,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.D解析:D【分析】根据中心对称图形的概念求解.【详解】解:A 、不是中心对称图形,不符合题意;B 、不是中心对称图形,不符合题意;C 、不是中心对称图形,不符合题意;D 、是中心对称图形,符合题意.故选D .【点睛】本题考查中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.C解析:C【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、不是轴对称图形,是中心对称图形,故本选项不符合题意;B 、不是轴对称图形,是中心对称图形,故本选项不符合题意;C 、既是轴对称图形,也是中心对称图形,故本选项符合题意;D 、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C .【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 7.B解析:B【分析】先由抛物线与x 轴的交点个数判断出结论①,再根据二次函数图像的开口方向,及与y 轴的交点位置,对称轴的位置分别判断出,,a b c 的符号可判断结论②,最后用2x =-时,抛物线再x 轴上方判断结论③.【详解】由图象知,抛物线与x 轴有两个交点,方程ax 2+bx+c=0有两个不相等的实数根,∴b 2-4ac>0,故①正确,由图象知抛物线的开口向下0a <,抛物线与y 轴交于正半轴0c >,对称轴直线为1x =-, ∴102b a-=-<,可推出0b <, ∴0abc >,故②错误,由图象知,当x=-2与x=0对应的y 值相同,0y >,∴420a b c -+>,故③正确.故选:B .【点睛】本题主要考查了二次函数图形与系数的关系,抛物线的开口方向,与y 轴的交点,抛物线的对称轴,掌握抛物线的性质是解题的关键8.A解析:A【分析】根据函数解析式画出函数图象,结合函数图象进行判断.【详解】解:如图:①如图所示,函数图象关于y 轴对称,故①符合题意.②如图所示,函数没有最大值,有最小值,故②不符合题意.③如图所示,当x <-1时,y 随x 的增大而减小,故③符合题意.④如图所示,当-2<a <-1时,关于x 的方程x 2-2|x|-1=a 有4个实数根,故④符合题意. 综上所述,正确的结论有3个.故选:A .【点睛】本题为函数图象探究题,考查了根据函数图象判断函数的对称性、增减性以及从函数的角度解决方程问题.9.C解析:C【分析】首先根据a 判断二次函数图象的开口方向,再确定对称轴,根据图象和二次函数的性质分析得出结论.【详解】解:∵a >0,∴开口向上,以对称轴在y 轴左侧为例可以画图二次函数y =ax 2+bx+c 的图象与x 轴的两个交点A (x 1,0),B (x 2,0),且x 1<x 2, 无法确定x 1与x 2的正负情况,∴当n <0时,x 1<m <x 2,但m 的正负无法确定,故A 错误,C 正确;当n >0时,m <x 1 或m >x 2,故B ,D 错误,均不完整故选:C .【点睛】本题主要考查二次函数图象与x 轴交点的问题,熟练掌握二次函数图象及图像上的坐标特征是解题的关键.10.C解析:C【分析】由抛物线解析式可求得开口方向、对称轴、顶点坐标,可求得答案.【详解】解:∵2(2)7y x =---,∵a <0,∴抛物线开口向下,对称轴为x=2,顶点坐标为(2,-7),当2x >时,y 随x 的增大而减小,当2x <时,y 随x 的增大而增大,∴A 、B 、D 都不正确,C 正确,故选:C .【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ).11.B解析:B【分析】设大正方形的边长为 a ,小正方形的边长为 b ,利用图1得到一个 a 与 b 关系式,再利用图2得到一个 a 与 b 关系式,即可求出 a 和 b ,然后再求图3阴影面积即可.【详解】图1中重叠部分的为正方形且其面积为4,∴重叠部分的边长为2,设大正方形边长为a ,小正方形的边长为b ,∴a -b +2=b ,如图2,阴影部分面积=a 2-2b 2+(b -2a b -)2=44,解得:b =6,∴a =10, 如图3,两个小正方形重叠部分的面积=()2b b a ⨯-=12.故答案为:B .【点睛】此题考查的是代数式的运算,正方形的性质,解一元二次方程,找到每个图中的等量关系式是解决此题的关键.12.A解析:A【分析】结合m 是方程220x x c --=的一个根,计算p-q 的值即可解决问题.【详解】解:∵m 是方程220x x c --=的一个根,∴220m m c --=∵2(1)p m =-,2q c =+,∴222(1)(2)212211p q m c m m c m m c -=--+=-+--=---=-,∴p <q故选:A .【点睛】此题主要考查了一元二次方程的解以及整式的运算,熟练掌握一元二次方程的解的应用是解答此题的关键.13.D解析:D【分析】 仿照题目中的做法可得空白部分小正方形的边长为52,先计算出大正方形的面积=阴影部分的面积+4个小正方形的面积,从而可得大正方形的边长,再用其减去两个空白正方形的边长即可.【详解】解:如图2,先构造一个面积为2x 的正方形,再以正方形的边长为一边向外构造四个面积为52x 的矩形,得到大正方形的面积为255045025752⎛⎫+⨯=+= ⎪⎝⎭, ∴5252⨯=.【点睛】本题考查了一元二次方程的几何解法,读懂题意并数形结合是解题的关键.14.B解析:B【分析】设方程的另一个根为x 1,根据根与系数的关系可得出关于x 1的一元一次方程,解之即可得出结论.【详解】设方程的另一个根为x 1,根据题意得:2+x 1=3,∴x 1=1.故选:B .【点睛】本题考查了根与系数的关系,牢记两根之和与系数的关系是解题的关键.二、填空题15.;【分析】先令y=0求得点AB 的坐标再求得顶点M 的坐标根据题意即可得出平移的方向和距离进而可求得平移后的解析式【详解】解:令y=0则有解得:x1=1x2=3∴A(10)B(30)∵=(x ﹣2)2﹣1解析:221y x x =++; 【分析】先令y=0求得点A 、B 的坐标,再求得顶点M 的坐标,根据题意即可得出平移的方向和距离,进而可求得平移后的解析式.【详解】解:令y=0,则有2043x x =-+,解得:x 1=1,x 2=3,∴A(1,0),B(3,0),∵243y x x =-+=(x ﹣2)2﹣1,∴顶点M 的坐标为(2,﹣1),∵平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,∴将原抛物线向上平移1个单位长度,再向左平移3个单位长度,即可得到平移后的抛物线,∴平移后的顶点坐标为(﹣1,0),即平移后的解析式为y=(x+1)2=x 2+2x+1,故答案为:221y x x =++.本题考查了二次函数的图像与几何变换,会求抛物线与坐标轴的交点和顶点坐标,熟练掌握抛物线平移的变换规律是解答的关键.16.【分析】根据得到该抛物线的顶点坐标为(3-2)将该点向左平移3个单位后得到的点的坐标为(0-2)即可得到解析式;【详解】∵抛物线∴顶点坐标为(3-2)∴向左平移3个单位后得到新的坐标为(0-2)∴平解析:22y x =-【分析】根据2(3)2y x =--得到该抛物线的顶点坐标为(3,-2),将该点向左平移3个单位后得到的点的坐标为(0,-2),即可得到解析式;【详解】∵抛物线2(3)2y x =--∴顶点坐标为(3,-2),∴向左平移3个单位后得到新的坐标为(0,-2),∴平移后的解析式22(33)22y x x =-+-=-.【点睛】本题考查了二次函数图象的平移变换,正确掌握二次函数平移的方法是解题的关键; 17.【分析】根据二次函数的平移规律上加下减左加右减即可求解【详解】解:抛物线先向上平移1个单位再向左平移1个单位所得的抛物线为故答案为:【点睛】本题考查抛物线的平移掌握二次函数的平移规律上加下减左加右减解析:()2311y x =++【分析】根据二次函数的平移规律“上加下减,左加右减”即可求解.【详解】解:抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为()2311y x =++,故答案为:()2311y x =++.【点睛】本题考查抛物线的平移,掌握二次函数的平移规律“上加下减,左加右减”是解题的关键. 18.-1【分析】利用根与系数的关系得到a+b=1ab=-1再根据异分母分式加减法法则进行计算代入求值【详解】∵是方程的两根∴a+b=1ab=-1∴===-1故答案为:-1【点睛】此题考查一元二次方程根与解析:-1【分析】利用根与系数的关系得到a+b=1,ab=-1,再根据异分母分式加减法法则进行计算代入求值.【详解】∵a ,b 是方程210x x --=的两根,∴a+b=1,ab=-1, ∴11a b+ =a b ab+ =11- =-1, 故答案为:-1.【点睛】此题考查一元二次方程根与系数的关系式,异分母分式的加减法计算法则.19.-1【分析】根据正比例函数的概念可直接进行列式求解【详解】解:∵函数为正比例函数∴且解得:;故答案为-1【点睛】本题主要考查正比例函数的概念及一元二次方程的解法熟练掌握正比例函数的概念及一元二次方程 解析:-1【分析】根据正比例函数的概念可直接进行列式求解.【详解】解:∵函数2y mx m m =++为正比例函数,∴20m m +=,且0m ≠,解得:1m =-;故答案为-1.【点睛】本题主要考查正比例函数的概念及一元二次方程的解法,熟练掌握正比例函数的概念及一元二次方程的解法是解题的关键.20.-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程解这个方程即可【详解】已知是关于x 的方程的一个根故答案为:-8【点睛】本题考查一元二次方程的根问题掌握方程的根的性质会用方程的解代入构造 解析:-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程,解这个方程即可【详解】已知2x =是关于x 的方程220x x m ++=的一个根,22220m +⨯+=8m =-故答案为:-8【点睛】本题考查一元二次方程的根问题,掌握方程的根的性质,会用方程的解代入构造参数方程是解题关键三、解答题21.(1)60;(2)3【分析】(1)【操作发现】:如图1中,只要证明△DAB 是等边三角形即可;(2)【类比探究】:如图2中,将△CBP 绕点C 逆时针旋转60°得△CAP ',连接PP ',证明∠APP '=30°,∠PAP '=90°,设AP '=t ,表示出AP 和PC ,利用勾股定理求出t ,进而可求出△APC 的面积.【详解】解:(1)解:∵△ABC 绕点A 顺时针旋转60°,得到△ADE ,∴AD=AB ,∠DAB=60°,∴△DAB 是等边三角形,∴∠ABD=60°,故答案为60. (2)将△CBP 绕点C 逆时针旋转60°得△CAP ',连接PP ',则△PCP '为等边三角形,∴∠CPP '=∠CP 'P=60°.∵∠BPC=120°,∠CPP '=60°,又∵∠APC=90°,∴∠APP '=30°,由旋转得∠AP 'C=∠BPC=120°,∴∠APP '=120°-60°=60°,∴∠PAP '=90°,可设AP '=t ,则PC=PP '=2t ,()222t t -3t , 在Rt △APC 中,)()222327t t +=,∴t=1,∴3PC=2,∴S△APC=12332⨯⨯=.【点睛】本题属于几何变换综合题,考查了旋转变换,等边三角形的性质,勾股定理等知识,解题的关键是添加常用辅助线,构造全等三角形解决问题,用转化的思想思考问题,属于中考常考题.22.(1)见解析;(2)见解析;(3)成立.证明见解析.【分析】(1)根据旋转图形的性质,可得△AEC≌△BFC,得到∠FBC=∠EAC,再由三角形内角和证明AP⊥BE即可.(2)先证明四边形CEPF是正方形,得到CE=FP,再证明△CED≌△BPD,可得CE=BP,则问题可证.(3)过点C作CG⊥AD,垂足为G,CH⊥BP,垂足为H,则按照(1)中方法问题证.【详解】(1)证明:根据旋转图形的性质,可得△AEC≌△BFC,∴∠FBC=∠EAC.又∵∠ADC=∠BDP,∠EAC+∠ADC=180°-∠ACD=90°,∴∠BDP+∠FBC=90°,∴∠BPD=180°-(∠BDP+∠FBC)=90°,∴AP⊥BE.(2)证明:∵∠CEP=∠EPF=∠ECF=90°,∴四边形CEPF是矩形.∵CE=CF∴四边形CEPF是正方形.∴CE=EP=FP.又∵∠CDE=∠BDP,CD=BD,∠CED=∠BPD=90°∴△CED≌△BPD,∴CE=BP.∴EP+FP=2CE=2BP.(3)成立.理由如下:过点C作CG⊥AD,垂足为G,CH⊥BP,垂足为H.∵△BFC由△AEC逆时针90°旋转得到,∴∠AEC=∠BFC,CE=CF,∠ECF=90°.∵∠CEG+∠AEC=180°,∠CFH+∠BFC=180°,∴∠CEG=∠CFH .∵∠CGE=∠CHF=90°,∴△CEG ≌△CFH ,∴CH=CG ,EG=FH .∴EP+FP=GP+HP∵∠CGP=∠GPH=∠H=90°,∴四边形CGPH 是正方形.又(2)可知,GP+PH=2BP ,∴EP+PF=2BP .【点睛】本题考查了利用图形旋转证明三角形全等以及正方形的性质和判定,解答关键是应用由特殊到一般思想,通过类比方法证明问题.23.(1)x=;(2) ABCD S =四边形 【分析】(1)由正方形推出a ,利用对称轴公式求对称轴(2)对称轴为直线34x =-利用公式得b=32a ,抛物线与x 轴交点为(),0c -代入得20ac bc c --=,1bc =+求出a b c 、、的值,由=a c 推出四边形ABCD 为菱形,利用菱形面积公式求出即可【详解】(1)∵四边形ABCD 是正方形,∴AB=BC ,,a2y ax bx c =+-=a (x 2对称轴为x=2b a -==(2) 对称轴为直线34x =-, ∴利用对称轴公式得b=32a 抛物线2y ax bx c =+-与x 轴的一个交点为(),0c -代入抛物线20ac bc c --=由c>0、b>0、a>0,10ac b --=∴10132ac bb cb a⎧⎪--=⎪=+⎨⎪⎪=⎩,解得232abc=⎧⎪=⎨⎪=⎩(负值已舍去),∵ABCD,=2a c=∴四边形ABCD为菱形连BD交AC于O,BO⊥AO,AO=OC=1.5在RtΔABO中,由勾股定理2272OB AB AO=-=,AD=2OB=7∴ABCD137732S=⨯⨯=四边形【点睛】本题考查正方形的性质与菱形的性质,掌握正方形的性质与菱形性质和菱形面积求法,会用正方形的性质推出a b c、、之间关系,进而求对称轴,会利用对称轴推出a b、关系,利用点C在抛物线上,确定a b c、、之间关系会解方程组解决问题24.(1)y=x2-3x+2;(2)点P的坐标为(32,12);(3)当t=1时,S△BCN的最大值为1.【分析】(1)先确定c,然后再根据OC=2OA确定A点的坐标,再将A点的坐标代入解析式求得b 即可解答;(2)如图:作点A关于直线l对称的对称点,即点B,连接BC,与直线l交于点P',此时PA+PB最小;然后求得直线BC的解析式,最后确定P'的坐标即可;(3)先求出M点坐标,然后再根据S△BCN=S△MNC+S△MNB确定二次函数关系式,最后运用二次函数求最值即可.【详解】解:(1)∵抛物线y=x2+bx+c过点C(0,2),∴c=2又∵OC =2OA ,∴OA =1,即A (1,0);又∵点A 在抛物线y =x 2+bx +2上,∴0=12+b ×1+2,b =-3;∴抛物线对应的二次函数的解析式为y =x 2-3x +2;(2)如图:作点A 关于直线l 对称的对称点,即点B ,连接BC ,与直线l 交于点P ', 则PA +PC 的最小值为P 'B +P 'C =BC ,设BC 的解析式为y =mx +n ,令x 2-3x +2=0,解得:x =1或2,∴B (2,0),又∵C (0,2),∴202m n n +=⎧⎨=⎩,解得:12m n =-⎧⎨=⎩, ∴直线BC 的解析式为:y =-x +2, 令x =32,代入,得:y =12,∴当PC +PA 最小时,点P 的坐标为(32,12); (3)如图:∵点M 是直线l '和线段BC 的交点,∴M 点的坐标为(t ,-t +2)(0<t <2),∴MN =-t +2-(t 2-3t +2)=-t 2+2t ,,∴S △BCN =S △MNC +S △MNB =12MN ▪t +12MN ▪(2-t )=12MN ▪(t +2-t )=MN =-t 2+2t (0<t <2), ∴S △BCN =-t 2+2t =-(t -1)2+1,∴当t =1时,S △BCN 的最大值为1.【点睛】本题考查了二次函数的综合应用,正确求出函数解析式并掌握数形结合思想是解答本题的关键.25.(1)12589589x x +-==2)12175,3x x ==【分析】(1)用公式法求解即可;(2)用因式分解法求解即可.【详解】解:(1)2,5,8a b c ==-=-,2(5)42(8)890∴∆=--⨯⨯-=>,x ∴==,12x x ∴== (2)23(5)2(5)0x x ---=, 移项得,23(5)2(5)0x x ---=,因式分解得,(5)(317)0x x --=,50x ∴-=或3170x -=,12175,3x x ∴== 【点睛】本题主要考查解一元二次方程的解法,熟练掌握解一元二次方程的几种常用方法:直接开平方法、配方法、公式法、因式分解法,结合方程的特点选择合适、简便的方法是解题的关键.26.(1)14x =,21x =-;(2)16x =-,23x =.【分析】(1)用十字相乘法分解因式求解即可;(2)把x-1看作一个整体,用十字相乘法分解因式求解即可;【详解】解:(1)2340x x --=,()()410x x -+=,40x ∴-=或10x +=,14x ∴=,21x =-;(2)()()2151140x x -+--=, ()()17120x x -+-⎡⎤⎡⎤⎣⎦⎣⎦-=,60x ∴+=或30x -=,16x ∴=-,23x =.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握各种方法是解答本题的关键.。

沪科版九年级上册数学期中考试试题及答案

沪科版九年级上册数学期中考试试题及答案

沪科版九年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案)1. 将抛物线y=x 2-2x+1向下平移2个单位,再向左平移1个单位,所得抛物线的解析式是 A .y=x 2-2x-1B .y=x 2+2x-1C .y=x 2-2D .y=x 2+2 2.若x y =23,则下列各式不成立的是( ) A .x y y +=53 B .y x y -=13 C .2x y =13 D .11x y ++=343.如图,已知一次函数y =ax+b 与反比例函数y =k x 图象交于M 、N 两点,则不等式ax+b >k x解集为( )A .x >2或﹣1<x <0B .﹣1<x <0C .﹣1<x <0或0<x <2D .x >24.如图,已知D 、E 分别是ABC 的AB 、AC 边上的点,DE BC ∥,且:ADE S S △四边形DBCE =1:8,那么:AE AC 等于( )A .1:9B .1:3C .1:D .1:85.如图,A 为反比例函数k y x=图象上一点,AB 垂直于x 轴于点B ,若3AOB S =△,则k 的值为( )A .6-B .3-C .32-D .不能确定6.已知()1A 1,y ,()2B y ,()3C 2,y -在函数21y 2(x 1)2=+-的图象上,则1y ,2y ,3y 的大小关系是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 1>y 2D .y 2>y 1>y 3 7.在三角形纸片ABC 中,AB=8,BC=4,AC=6,按下列方法沿虚线剪下,能使阴影部分的三角形与△ABC 相似的是( )A .B .C .D . 8.一次函数y =ax +b 和反比例函数y a b x-=在同一直角坐标系中的大致图象是( ) A . B .C .D .9.已知二次函数2y ax bx c =++的y 与x 的部分对应值如下表:下列结论:①抛物线的开口向下;②其图象的对称轴为1x =;③当1x <时,函数值y 随x的增大而增大;④方程20ax bx c ++=有一个根大于4;⑤若221122ax bx ax bx +=+,且12x x ≠,则123x x +=.其中正确的结论有( )A .①②③B .①②③④⑤C .①③⑤D .①③④⑤ 10.如图,在矩形ABCD 中,AB 4=,BC 6=,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边MP 始终经过点A ,设直角三角板的另一直角边PN 与CD 相交于点Q.BP x =,CQ y =,那么y 与x 之间的函数图象大致是( )A .B .B .C .D .二、填空题11.已知函数()2113m y m x x +=-+,当m =__________时,它是二次函数.12.如图,小明在A 时测得某树的影长为3米,B 时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.13.如图,一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++.则他将铅球推出的距离是__________m .14.如图,在Rt ABC 中,90ACB ∠=︒,5AB =,4AC =,E ,F 分别为AB 、BC 上的点,沿直线EF 将B 折叠,使点B 恰好落在AC 上的D 处,当ADE 恰好为直角三角形时,BE 的长为__________.三、解答题15.已知二次函数y =﹣2x 2﹣4x+6.(1)用配方法求出函数的顶点坐标;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.16.“今有井径五尺,不知其深,立五尺于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,求井深BD.17.有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为10m,如图所示,把它的图形放在直角坐标系中.(1)求这条抛物线所对应的函数关系式;(2)一辆宽为2米,高为3米的货船能否从桥下通过?18.如图,一次函数y1=﹣x+5与反比例函数y2=kx的图象交于A(1,m)、B(4,n)两点.(1)求A、B两点的坐标和反比例函数的解析式;(2)求△AOB的面积.19.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE 上一点,且∠AFE =∠B ,(1)求证:△ADF ∽△DEC(2)若AB =4,AD ==3,求AF 的长.20.我们定义两个不相交的函数图象在竖直方向上的最短距离为这两个函数的“和谐值”.(1)求抛物线y =x 2﹣2x+2与x 轴的“和谐值”;(2)求抛物线y =x 2﹣2x+2与直线y =x ﹣1的“和谐值”.21.如图在锐角ABC 中,6BC =,高4=AD ,两动点M 、N 分别在AB 、AC 上滑动(不包含端点),且MN BC ,以MN 为边长向下作正方形MPQN ,设MN x =,正方形MPQN 与ABC 公共部分的面积为y .(1)如图(1),当正方形MPQN 的边P 恰好落在BC 边上时,求x 的值.(2)如图(2),当PQ 落ABC 外部时,求出y 与x 的函数关系式(写出x 的取值范围)并求出x 为何值时y 最大,最大是多少?22.某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?BC=,点M在BC上,连接AM点N在直线AD 23.如图,矩形ABCD中,3AB=,2∠=∠,MN交CD于点E.上,且AMN AMB(1)求证:AMN是等腰三角形;(2)求证:22=⋅;AM BM AN(3)当M为BC中点时,求ME的长.参考答案1.C【分析】抛物线y=x2-2x+1化为顶点坐标式再按照“左加右减,上加下减”的规律平移则可.【详解】解:根据题意y=x2-2x+1=(x-1)2向下平移2个单位,再向左平移1个单位,得y=(x-1+1)2-2,y=x2-2.故选:C.【点睛】此题不仅考查了对平移的理解,同时考查了学生将一般式转化顶点式的能力.2.D【分析】根据比例设x=2k,y=3k,然后代入比例式对各选项分析判断利用排除法求解.【详解】:∵23xy=,∴设x=2k,y=3k,A.23533x y k ky k++==,正确,故本选项错误;B.32133y x k ky k--==,正确,故本选项错误;C.212233x ky k==⋅,正确,故本选项错误;D.12131314x ky k++=≠++,故本选项正确.故选D.【点睛】本题考查了比例的性质,利用“设k法”表示出x、y求解更加简便.3.A【分析】根据函数图象写出一次函数图象在反比例函数图象上方部分的x的取值范围即可.【详解】解:由图可知,x >2或﹣1<x <0时,ax+b >xk . 故选A .【点睛】 本题考查了反比例函数与一次函数的交点,利用数形结合,准确识图是解题的关键. 4.B【分析】根据DE ∥BC ,可以得到△ADE ∽△ABC ,通过S △ADE :S 四边形DBCE =1:8,可以得到△ADE 与△ABC 的面积的比,根据相似三角形面积的比等于相似比的平方,即可求解.【详解】解:∵DE ∥BC ,∴∠ADE=∠B ,∠AED=∠C ,∴△ADE ∽△ABC ,又∵S △ADE :S 四边形DBCE =1:8,∴S △ADE :S △ABC =1:9,∴AE :AC=1:3.故选B.【点睛】本题考查相似三角形的判定和性质,相似三角形面积的比等于相似比的平方.根据已知条件求出两个三角形的相似比是解决问题的关键.5.A【分析】先设出A 点的坐标,由△AOB 的面积可求出xy 的值,即xy=-6,即可写出反比例函数的解析式.【详解】解:设A 点坐标为A (x ,y ),由图可知A 点在第二象限,∴x <0,y >0,又∵AB ⊥x 轴,∴|AB|=y ,|OB|=|x|,∴S△AOB=12×|AB|×|OB|=12×y×|x|=3,∴-xy=6,∴k=-6故选A.【点睛】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.6.B【分析】利用函数的对称性将A、B、C三个点放在对称轴同侧,利用函数增减性进行比较.【详解】解:由题可知抛物线对称轴为x=-1,则A点关于对称轴的对称点为(-3,1y),由于抛物线开口向上,则当x<-1时,函数值y随x的增大而减小,故y1>y3>y2.故选择B.【点睛】本题考察了运用二次函数对称性比较函数值大小.7.D【解析】解:三角形纸片ABC中,AB=8,BC=4,AC=6.A.44182AB==,对应边631842ACAB==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;B.338AB=,对应边633848ACAB==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;C.22163AC==,对应边631843ACAB==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;D.22142BC==,对应边411822BCAB===,则沿虚线剪下的涂色部分的三角形与△ABC相似,故此选项正确;故选D.点睛:此题主要考查了相似三角形的判定,正确利用相似三角形两边比值相等且夹角相等的两三角形相似是解题关键.8.A【分析】先由一次函数的图象确定a、b的正负,再根据a-b判断双曲线所在的象限.能统一的是正确的,矛盾的是错误的.【详解】图A、B直线y=ax+b经过第一、二、三象限,∴a>0、b>0,∵y=0时,x=-ba,即直线y=ax+b与x轴的交点为(-ba,0)由图A、B的直线和x轴的交点知:-ba>-1,即b<a,所以b-a<0,∴a-b>0,此时双曲线在第一、三象限,故选项B不成立,选项A正确;图C、D直线y=ax+b经过第二、一、四象限,∴a<0,b>0,此时a-b<0,双曲线位于第二、四象限,故选项C、D均不成立;故选A.【点睛】本题考查了一次函数、反比例函数的性质.解决本题用排除法比较方便.9.C【分析】根据二次函数的图象具有对称性和表格中的数据,可以得到对称轴为x=32,再由图象中的数据可以得到当x=32取得最大值,从而可以得到函数的开口向下以及得到函数当x<32时,y随x的增大而增大,当x>32时,y随x的增大而减小,然后根据x=0时,y=1,x=-1时,y=-3,可以得到方程ax2+bx+c=0的两个根所在的大体位置,若ax12+bx1=ax22+bx2,且x1≠x2,得到123=22x x +,从而可以解答本题. 【详解】解:由表格可知,由表格可知,x=0和x=3时,函数值y 都是1,∴抛物线的对称轴为直线x=033=22+, 当x=32时,二次函数y=ax 2+bx+c 取得最大值, ∴抛物线的开口向下,故①正确,②错误; 当x <32时,y 随x 的增大而增大,故③正确, 方程ax 2+bx+c=0的一个根大于-1,小于0,则方程的另一个根大于3,小于4,故④错误, 若ax 12+bx 1=ax 22+bx 2,且x 1≠x 2,则123=22x x +, ∴x 1+x 2=3,故⑤正确,故选:C .【点睛】本题考查抛物线与x 轴的交点、二次函数的性质,解答本题的关键是明确题意,利用表格中数据和二次函数的性质判断题目中各个结论是否正确.10.D【详解】试题解析:设BP =x ,CQ =y ,则AP 2=42+x 2,PQ 2=(6-x )2+y 2,AQ 2=(4-y )2+62; ∵△APQ 为直角三角形,∴AP 2+PQ 2=AQ 2,即42+x 2+(6-x )2+y 2=(4-y )2+62,化简得:y =−14x 2+32x 整理得:y=−14(x −3)2+94 根据函数关系式可看出D 中的函数图象与之对应.故选D .【点睛】本题考查的是动点变化时,两线段对应的变化关系,重点是找出等量关系,即直角三角形中的勾股定理.11.1-【分析】根据二次函数的定义列出关于m 的方程,求出m 的值即可.【详解】解:∵y=(m-1)x m2+1是二次函数,∴m 2+1=2,∴m=-1或m=1(舍去).故答案为:-1.【点睛】本题考查了二次函数的定义,关键是根据定义列出方程,在解题时要注意m-1≠0. 12.6【分析】根据题意,画出示意图,易得:Rt △EDC ∽Rt △FDC ,进而可得ED DC DC FD=;即DC 2=ED?FD ,代入数据可得答案.【详解】根据题意,作△EFC ,树高为CD ,且∠ECF=90°,ED=3,FD=12,易得:Rt △EDC ∽Rt △DCF , 有ED DC DC FD=,即DC 2=ED×FD , 代入数据可得DC 2=36,DC=6,故答案为6.13.10【分析】令y =0解方程,保留正值,即为该男生将铅球推出的距离.【详解】解:当y =0时,212501233x x -++= 解得,x 1=10,x 2=-2(负值舍去),∴该男生把铅球推出的水平距离是10m .【点睛】本题考查了二次函数在实际问题中的应用,明确二次函数与一元二次方程的关系是解题的关键.14.158或157 【分析】先在Rt △ABC 中利用勾股定理求出AC=6cm ,再根据折叠的性质得到BE=DE ,直线EF 将∠B 折叠,使点B 恰好落在BC 上的D 处,△ADE 恰好为直角三角形,有两种可能:①∠ADE=90°,②∠AED=90°,设BE=x ,运用三角形相似列比例式解方程即可得解.【详解】解:在Rt △ABC 中,∵∠C=90°,AB=5,AC=4,∴BC=3.直线EF 将∠B 折叠,使点B 恰好落在BC 上的D 处,当△ADE 恰好为直角三角形时, 根据折叠的性质:BE=DE设BE=x ,则DE=x ,AE=10-x①当∠ADE=90°时,则DE ∥BC , ∴=DE AE CB AB, ∴5=35x x -, 解得:15=8x , ②当∠AED=90°时,则△AED ∽△ACB , ∴=DE AE BC AC, ∴5=34x x -, 解得:x=157, 故所求BE 的长度为:158或157.故答案为:158或157.【点睛】本题考查了折叠的性质,勾股定理以及相似三角形的判定与性质,能够全面的思考问题进行分类讨论是本题的关键.15.(1)(﹣1,8);(2)将抛物线y =﹣2x 2﹣4x+6向右平移3个单位,可使平移后所得图象经过坐标原点,平移后所得图象与x 轴的另一个交点的坐标为(4,0).【分析】(1)利用配方法将二次函数一般式化为顶点式,从而求出顶点坐标;(2)根据二次函数的与x 轴的交点坐标确定如何平移后经过原点;【详解】解:(1)∵y =﹣2x 2﹣4x+6∴222(211)62(1)8y x x x =-++-+=-++∴抛物线的顶点坐标为(﹣1,8);(2)当y =0时,﹣2(x+1)2+8=0,解得x 1=1,x 2=﹣3,抛物线y =﹣2x 2﹣4x+6与x 轴的交点坐标为(1,0),(﹣3,0),所以将抛物线y =﹣2x 2﹣4x+6向右平移3个单位,可使平移后所得图象经过坐标原点, 平移后所得图象与x 轴的另一个交点的坐标为(4,0).【点睛】 本题考查二次函数一般式化为顶点式及二次函数的平移,掌握配方法的方法2222224()()()2224b b b b ac b y ax bx c a x x c a x a a a a a -⎡⎤=++=++-+=++⎢⎥⎣⎦ 是解题关键. 16.BD =57.5尺.【分析】根据相似三角形的性质求得AD 的长度,进而求解.【详解】解:依题意可得:CB∥ED ∴△ABF∽△ADE,∴AB BF AD DE=,即50.45 AD=,解得:AD=62.5,BD=AD﹣AB=62.5﹣5=57.5尺.【点睛】掌握相似三角形对应边成比例是本题的解题关键.17.(1)抛物线解析式为y=﹣425x2+85x;(2)货船能从桥下通过.【分析】(1)根据题意确定抛物线顶点坐标,利用待定系数法求函数解析式;(2)由抛物线对称轴直线x=5分析,船宽2米时,计算x=6是函数值是否大于3即可求解.【详解】(1)根据题意,得抛物线的顶点坐标为(5,4),经过(0,0),∴设:抛物线解析式为y=a(x﹣5)2+4,把(0,0)代入,得25a+4=0,解得a=4 25 -,所以抛物线解析式为:y=425-(x﹣5)2+4=425-x2+85x.(2)货船能从桥下通过.理由如下:由(1)可知,抛物线对称轴为直线x=5,又∵货船宽为2米,高为3米,∴当x=6时,y=425(6﹣5)2+4=3.84,∵3.84>3,∴货船能从桥下通过.答:货船能从桥下通过.【点睛】此题考查待定系数法求函数解析式,及二次函数的实际应用,根据二次函数对称轴及船宽,求当x=6时的函数值是解题关键.18.(1)A点坐标为(1,4),B点坐标为(4,1),反比例函数解析式为y2=4x;(2)7.5.【分析】(1)将A,B两点坐标代入一次函数解析式求解,然后用待定系数法求得反比例函数的解析式;(2)设一次函数图象与x轴交于点C,利用S△AOB=S△AOC﹣S△BOC求解.【详解】(1)分别把A(1,m)、B(4,n)代入y1=﹣x+5,得m=﹣1+5=4,n=﹣4+5=1,所以A点坐标为(1,4),B点坐标为(4,1),把A(1,4)代入y2=kx,得k=1×4=4,所以反比例函数解析式为y2=4x;(2)如图,设一次函数图象与x轴交于点C,当y=0时,﹣x+5=0,解得x=5,则C点坐标为(5,0),所以S△AOB=S△AOC﹣S△BOC=12×5×4﹣12×5×1=7.5.【点睛】掌握待定系数法求函数解析式及三角形面积公式,数形结合的思想解题是本题的解题关键.19.(1)见解析(2)【详解】(1)证明:∵四边形ABCD 是平行四边形∴AD ∥BC AB ∥CD∴∠ADF=∠CED ∠B+∠C=180°∵∠AFE+∠AFD=180︒,∠AFE=∠B∴∠AFD=∠C∴△ADF ∽△DEC(2)解:∵四边形ABCD 是平行四边形∴AD ∥BC CD=AB=4又∵AE ⊥BC ∴ AE ⊥AD在Rt △ADE 中,6== ∵△ADF ∽△DEC∴AD AF DE CD =∴64AF =∴AF=20.(1)抛物线y =x 2﹣2x+2与x 轴的“和谐值”为1;(2)抛物线y =x 2﹣2x+3与直线y =x ﹣1的“和谐值”为34. 【分析】(1)根据题意将抛物线化成顶点式,找到函数最值即可求解;(2)取P 点为抛物线y =x 2﹣2x+2任意一点,作PQ ∥y 轴交直线y =x ﹣1于Q ,分析PQ 的长度,得到二次函数解析式,求其顶点坐标即可.【详解】(1)∵y =(x ﹣1)2+1,∴抛物线上的点到x 轴的最短距离为1,∴抛物线y =x 2﹣2x+2与x 轴的“和谐值”为1;(2)如图,P 点为抛物线y =x 2﹣2x+2任意一点,作PQ ∥y 轴交直线y =x ﹣1于Q , 设P(t ,t 2﹣2t+2),则Q(t ,t ﹣1),∴PQ =t 2﹣2t+2﹣(t ﹣1)=t 2﹣3t+3=(t ﹣32)2+34, 当t =32时,PQ 有最小值,最小值为34, ∴抛物线y =x 2﹣2x+3与直线y =x ﹣1的“和谐值”为34.【点睛】充分理解题意“和谐值”的含义即函数最值的绝对值是本题的解题关键.21.(1)当125x =时正方形MPQN 的边P 恰好落在BC 边上;(2)()224 2.463y x x x =-+<<,当3x =时,y 最大6= 【分析】(1)因为正方形的位置在变化,但是△AMN ∽△ABC 没有改变,利用相似三角形对应边上高的比等于相似比,得出等量关系,代入解析式即可.(2)用含x 的式子表示矩形MEFN 边长,从而求出面积的表达式.【详解】解:(1)设AD 与MN 相交于点H ,∵MN BC ,∴AMN ABC △∽△, ∴AHMN AD BC =,即446xx-=, 解得,125x =, 当125x =时正方形MPQN 的边P 恰好落在BC 边上;(2)设MP 、NQ 分别与BC 相交于点E 、F , 设D a =,则4A a =-,由∴AH MN AD BC =,即46a xx -=, 解得,243a x =-+,∵矩形MEFN 的面积MN HD =⨯, ∴()22244 2.4633y x x x x x =-+=⎛⎫ ⎪⎭+<⎝-<()22363y x =--+∴当3x =时,y 最大6=.本题结合相似三角形的性质及矩形面积计算方法,考查二次函数的综合应用,解题时,要始终抓住相似三角形对应边上高的比等于相似比,表示相关边的长度.22.(1)、y=2100(010x ){3130(1030,x )x x x x ≤≤-+≤,且为整数且为整数;(2)、22件.【详解】试题分析:(1)根据题意可得出销量乘以每台利润进而得出总利润,进而得出答案; (2)根据销量乘以每台利润进而得出总利润,即可求出即可. 试题解析:(1)2300200100(010,){[3003(10)200]3130(1030,)x x x x x y x x x x x -=≤≤=---=-+≤且为整数<且为整数, (2)在0≤x≤10时,y=100x ,当x=10时,y 有最大值1000;在10<x≤30时,y=-3x 2+130x ,当x=2123时,y 取得最大值, ∵x 为整数,根据抛物线的对称性得x=22时,y 有最大值1408.∵1408>1000,∴顾客一次购买22件时,该网站从中获利最多.考点:二次函数的应用.23.(1)详见解析;(2)详见解析;(3)54ME =【分析】(1)由矩形的性质得出AD ∥BC ,由平行线的性质得出∠NAM=∠BMA ,由已知∠AMN=∠AMB ,得出∠AMN=∠NAM ,即可得出结论;(2)由矩形的性质得出AD ∥BC ,AD=BC=2,AB=CD=3,由平行线的性质得出∠NAM=∠BMA ,作NH ⊥AM 于H ,由等腰三角形的性质得出AH=12AM ,证明△NAH ∽△AMB ,得出=AN AH AM BM ,即可得出结论; (3)求出BM=CM=12BC=12×2=1,由(2)得AM 2=2BM•AN ,得出AM 2=2AN ,由勾股定理得出AM 2=AB 2+BM 2=10,求出AN=5,得出DN=AN-AD=3,设DE=x ,则CE=3-x ,证明△DNE ∽△CME ,得出=DN DE CM CE ,求出DE=94,得出CE=DC-DE=34,再由勾股定理即可得出答案.解:(1)证明:∵四边形ABCD 是矩形,∴AD BC ∥,∴NAM BMA ∠=∠,又AMN AMB ∠=∠,∴AMN NAM ∠=∠,∴AN MN =,即AMN 是等腰三角形;(2)解:作NH AM ⊥于H ,∵AN MN =,NH AM ⊥, ∴12AH AM =,∵90NHA ABM ∠=∠=︒,AMN AMB ∠=∠,∴NAH AMB △∽△, ∴ANAHAM BM =, ∴212AN BM AH AM AM ⋅=⋅=∴22AM BM AN =⋅(3)解:∵M 为BC 中点, ∴112BM CM BC ===,由(2)得,22AM BM AN =⋅,∵2223110AM =+=,∴5AN =,∴523DN =-=,设DE x =,则3CE x =-,∵AN BC , ∴DNDECM CE =,即313xx =-, 解得,94x =,即94DE =, ∴34CE =,∴54ME =.【点睛】本题是相似形综合题目,考查的是相似三角形的判定和性质、勾股定理的应用、等腰三角形的性质和矩形的性质等知识;熟练掌握矩形的性质和等腰三角形的判定,证明三角形相似是解题的关键.。

沪科版九年级数学上册期中测试题(含答案)

沪科版九年级数学上册期中测试题(含答案)

沪科版九年级数学上册期中测试题(含答案)(考试时间:120分钟满分:150分)姓名:______班级:______分数:______一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.二次函数y=-2(x+1)2+5的顶点坐标是(D) A.-1 B.5C.(1,5) D.(-1,5)2.为方便市民进行垃圾分类投放,某环保公司第一个月投放a个垃圾桶,计划第三个月投放垃圾桶y个,设该公司第二、三两个月投放垃圾桶数量的月平均增长率为x,那么y 与x的函数关系是(A) A.y=a(1+x)2B.y=a(1-x)2C.y=(1-x)2+a D.y=x2+a3.若△ABC∽△DEF,相似比为9 ∶4,则△ABC与△DEF 对应中线的比为(A) A.9 ∶4 B.4 ∶9 C.81 ∶16 D.3 ∶24.在同一时刻,身高1.6 m的小强,在太阳光线下影长是1.2 m,旗杆的影长是6 m,则旗杆高为(C) A.4.5 m B.6 m C.8 m D.9 m5.已知点A(-3,y1),B(-2,y2),C(3,y3)都在反比例函数y =4x的图象上,则 ( D ) A .y 1<y 2<y 3 B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 36.下面四组图形中,必是相似三角形的为 ( D )A .两个直角三角形B .两条边对应成比例,一个对应角相等的两个三角形C .有一个角为40°的两个等腰三角形D .有一个角为100°的两个等腰三角形7.在平面直角坐标系中,点P (1,-2)是线段AB 上一点,以原点O 为位似中心把△AOB 放大到原来的两倍,则点P 对应点的坐标为 ( B )A .(2,-4)B .(2,-4)或(-2,4)C.⎝ ⎛⎭⎪⎫12,-1D.⎝ ⎛⎭⎪⎫12,-1或⎝ ⎛⎭⎪⎫-12,1 8.抛物线y =ax 2+bx +c 与直线y =ax +c (a ≠0)在同一直角坐标系中的图象可能是 ( D )9.已知:正比例函数y =k 1x 的图象与反比例函数y =k 2x(x >0)的图象交于点M (a ,1),MN ⊥x 轴于点N (如图),若△OMN 的面积等于2,则 ( A )A.k1=14,k2=4 B.k1=4,k2=14C.k1=14,k2=-4 D.k1=-14,k2=4第9题图第10题图第13题图10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①a b c>0;②2a+b=0;③m为任意实数,则a+b>am2+b m;④a-b+c>0;⑤若ax21+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中正确的有(C)A.①②③B.②④C.②⑤D.②③⑤二、填空题(本大题共4小题,每小题5分,满分20分) 11.若y=(m-1)xm2+2m-1是二次函数,则m的值是-3 .12.反比例函数y=kx图象上的一点到x轴距离为2,到y轴距离为3,且当x<0时,y随x的增大而增大,则k的值是-6 .13.★如图,抛物线y=ax2+c与直线y=3相交于点A,B,与y轴交于点C(0,-1),若∠ACB为直角,则当ax2+c<0时,自变量x的取值范围是-2<x<2 .14.在△ABC 中,AB =9,AC =12,BC =18,D 为AC 上一点,其中DC =23AC ,在AB 上取一点E 得△ADE ,若△ABC 与△ADE 相似,则DE = 6或8 .三、(本大题共2小题,每小题8分,满分16分)15.已知:a ∶b ∶c =2 ∶3 ∶5,求代数式3a -b +c 2a +3b -c的值. 解:∵a ∶b ∶c =2 ∶3 ∶5,∴设a =2k ,b =3k ,c =5k (k ≠0),则3a -b +c 2a +3b -c =6k -3k +5k 4k +9k -5k=1. 16.已知二次函数y =ax 2+bx +c 的图象经过点A(1,5),B(-1,9),C(0,8).求这个二次函数的表达式,开口方向,对称轴和顶点坐标.解:由题意得,⎩⎨⎧a +b +c =5,a -b +c =9,c =8,解得⎩⎨⎧a =-1,b =-2,c =8,∴二次函数表达式为y =-x 2-2x +8,∵y =-x 2-2x +8=-(x +1)2+9,∴这个二次函数的抛物线开口向下,对称轴为x =-1,顶点坐标为(-1,9).四、(本大题共2小题,每小题8分,满分16分)17.在如图所示的网格中,已知△ABC 和点M(1,2).(1)以点M 为位似中心把三角形放大,位似比为2,画出△ABC的位似图形△A′B′C′;(2)写出△A′B′C′的各顶点坐标.解:(1)如图,△A′B′C′即为所求.(2)△A′B′C′的各顶点坐标分别为A′(3,6),B′(5,2),C′(11,4).18.某校举行田径运动会,学校准备了某种气球,这些气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(k Pa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这个函数的表达式;(2)当气球内的气压大于150 k Pa时,气球将会爆炸,为了安全起见,气体的体积应至少是多少?解:(1)设p=kV,将A(0.5,120)代入求出k=60,∴p=60V.(2)当p>150 kPa时,气球将爆炸,∴p ≤150,即p =60V≤150, 解得V ≥60150=0.4. 故为了安全起见,气体的体积应不小于0.4 m 3.五、(本大题共2小题,每小题10分,满分20分)19.某数学兴趣小组想用所学的知识测量小河的宽.测量时,他们选择了河对岸的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D ,竖起标杆DE ,使得点E ,C ,A 共线.已知:CB ⊥AD ,ED ⊥AD ,测得BC =1 m ,DE =1.5 m ,BD =7 m (测量示意图如图所示).请根据相关测量信息,求河宽AB 的长.解:∵CB ⊥AD ,ED ⊥AD ,∴∠ABC =∠ADE.又∵∠BAC =∠DAE ,∴△ABC ∽△ADE ,∴BC DE =AB AD ,∴11.5=AB AB +7, 解得AB =14 m ,经检验:AB =14是分式方程的解.答:河宽AB 的长为14米.20.如图,一次函数y 1=k x +b 的图象与反比例函数y 2=6x的图象交于A(m ,3),B(-3,n)两点.(1)求一次函数的表达式;(2)观察函数图象,直接写出关于x 的不等式6x>k x +b 的解集.解:(1)∵A (m ,3),B (-3,n )两点在反比例函数y 2=6x的图象上,∴m =2,n =-2.∴A (2,3),B (-3,-2).根据题意得⎩⎪⎨⎪⎧2k +b =3,-3k +b =-2,解得⎩⎪⎨⎪⎧k =1,b =1,∴一次函数的表达式是y 1=x +1.(2)根据图象得0<x <2或x <-3.六、(本题满分12分)21.已知:如图,在△ABC 中,BD 平分∠ABC 交AC 于点D ,点E 在AB 上,且BD 2=BE·BC.(1)求证:∠BDE =∠C ;(2)求证:AD 2=AE·AB.证明:(1)∵BD 平分∠ABC ,∴∠ABD =∠CBD ,∵BD 2=BE·BC ,∴BD BE =BC BD,∴△EBD ∽△DBC , ∴∠BDE =∠C.(2)∵∠BDE =∠C , ∠DBC +∠C =∠BDE +∠ADE ,∴∠DBC =∠ADE ,∵∠ABD =∠CBD ,∴∠ABD =∠ADE ,∴△ADE ∽△ABD , ∴AD AB =AE AD,即AD 2=AE·AB. 七、(本题满分12分)22.某网络经销商销售一款夏季时装,进价每件60元,售价每件130元,每天销售30件,每销售一件需缴纳网络平台管理费4元.未来30天,这款时装将开展“每天降价1元”的促销活动,即从第一天起每天的单价均比前一天降1元,通过市场调查发现,该时装单价每降1元,每天销售量增加5件,设第x天(1≤x≤30且x为整数)的销量为y件.(1)直接写出y与x的函数关系式;(2)在这30天内,哪一天的利润是6 300元?(3)设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大,最大利润是多少.解:(1)由题意可知y=5x+30.(2)根据题意可得(130-x-60-4)(5x+30)=6 300,即x2-60x+864=0,解得x=24或36(舍),∴在这30天内,第24天的利润是6 300元.(3)根据题意可得w=(130-x-60-4)(5x+30)=-5x2+300x+1 980=-5(x-30)2+6 480,∵a=-5<0,∴函数有最大值,∴当x=30时,w有最大值为6 480元,∴第30天的利润最大,最大利润是6 480元.八、(本题满分14分)23.如图甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分别为B,D,P,且三个垂足在同一直线上,我们把这样的图形叫“三垂图”.(1)求证:AB·CD=PB·PD;(2)如图乙也是一个“三垂图”,上述结论还成立吗?请说明理由;(3)已知抛物线交x轴于A(-1,0),B(3,0)两点,交y轴于点(0,-3),顶点为P,如图丙所示,若Q是抛物线上异于A,B,P的点,设AQ与y轴相交于D,且∠QAP=90°,利用上述结论求Q点坐标.(1)证明:∵AB⊥BD,CD⊥BD,∴∠B=∠D=90°,∴∠A+∠APB=90°,∵AP⊥PC,∴∠APB+∠CPD=90°,∴∠A=∠CPD,∴△ABP∽△PDC,∴ABPD=PBCD,∴AB·CD=PB·PD.(2)解:AB·CD=PB·PD仍然成立.理由如下:∵AB⊥BD,CD⊥BD,∴∠B=∠CDP=90°,∴∠A+∠APB=90°,∵AP⊥PC,∴∠APB+∠CPD=90°,∴∠A=∠CPD,∴△ABP∽△PDC,∴ABPD=PBCD,11 ∴AB·CD =PB·PD.(3)解:设抛物线表达式为y =ax 2+bx +c (a ≠0),∵抛物线与x 轴交于点A (-1,0),B (3,0),与y 轴交于点(0,-3),∴⎩⎨⎧a -b +c =0,9a +3b +c =0,c =-3,解得⎩⎨⎧a =1,b =-2,c =-3,∴y =x 2-2x -3, ∵y =x 2-2x -3=(x -1)2-4,∴顶点P 的坐标为(1,-4), 过点P 作PC ⊥x 轴于C ,∵AQ 与y 轴相交于D ,∴AO =1,AC =1+1=2,PC =4,由(2)得,AO ·AC =OD·PC ,∴1×2=OD·4,解得OD =12,∴点D 的坐标为⎝ ⎛⎭⎪⎫0,12, 设直线AD 的表达式为y =kx +b (k ≠0),则⎩⎪⎨⎪⎧-k +b =0,b =12,解得⎩⎪⎨⎪⎧k =12,b =12,∴y =12x +12, 联立⎩⎪⎨⎪⎧y =12x +12,y =x 2-2x -3,解得⎩⎪⎨⎪⎧x 1=72,y 1=94,⎩⎪⎨⎪⎧x 2=-1,y 2=0.(与A 重合,舍去)∴点Q 的坐标为⎝ ⎛⎭⎪⎫72,94.。

沪科版九年级数学上册期中测试题(含答案)

沪科版九年级数学上册期中测试题(含答案)

沪科版九年级数学上册期中测试题(含答案)(考试时间:120分钟满分:150分)姓名:______班级:______分数:______一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.二次函数y=-2(x+1)2+5的顶点坐标是(D) A.-1 B.5C.(1,5) D.(-1,5)2.为方便市民进行垃圾分类投放,某环保公司第一个月投放a个垃圾桶,计划第三个月投放垃圾桶y个,设该公司第二、三两个月投放垃圾桶数量的月平均增长率为x,那么y 与x的函数关系是(A) A.y=a(1+x)2B.y=a(1-x)2C.y=(1-x)2+a D.y=x2+a3.若△ABC∽△DEF,相似比为9 ∶4,则△ABC与△DEF 对应中线的比为(A) A.9 ∶4 B.4 ∶9 C.81 ∶16 D.3 ∶24.在同一时刻,身高1.6 m的小强,在太阳光线下影长是1.2 m,旗杆的影长是6 m,则旗杆高为(C) A.4.5 m B.6 m C.8 m D.9 m5.已知点A(-3,y1),B(-2,y2),C(3,y3)都在反比例函数y =4x的图象上,则 ( D ) A .y 1<y 2<y 3 B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 36.下面四组图形中,必是相似三角形的为 ( D )A .两个直角三角形B .两条边对应成比例,一个对应角相等的两个三角形C .有一个角为40°的两个等腰三角形D .有一个角为100°的两个等腰三角形7.在平面直角坐标系中,点P (1,-2)是线段AB 上一点,以原点O 为位似中心把△AOB 放大到原来的两倍,则点P 对应点的坐标为 ( B )A .(2,-4)B .(2,-4)或(-2,4)C.⎝ ⎛⎭⎪⎫12,-1D.⎝ ⎛⎭⎪⎫12,-1或⎝ ⎛⎭⎪⎫-12,1 8.抛物线y =ax 2+bx +c 与直线y =ax +c (a ≠0)在同一直角坐标系中的图象可能是 ( D )9.已知:正比例函数y =k 1x 的图象与反比例函数y =k 2x(x >0)的图象交于点M (a ,1),MN ⊥x 轴于点N (如图),若△OMN 的面积等于2,则 ( A )A.k1=14,k2=4 B.k1=4,k2=14C.k1=14,k2=-4 D.k1=-14,k2=4第9题图第10题图第13题图10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①a b c>0;②2a+b=0;③m为任意实数,则a+b>am2+b m;④a-b+c>0;⑤若ax21+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中正确的有(C)A.①②③B.②④C.②⑤D.②③⑤二、填空题(本大题共4小题,每小题5分,满分20分) 11.若y=(m-1)xm2+2m-1是二次函数,则m的值是-3 .12.反比例函数y=kx图象上的一点到x轴距离为2,到y轴距离为3,且当x<0时,y随x的增大而增大,则k的值是-6 .13.★如图,抛物线y=ax2+c与直线y=3相交于点A,B,与y轴交于点C(0,-1),若∠ACB为直角,则当ax2+c<0时,自变量x的取值范围是-2<x<2 .14.在△ABC 中,AB =9,AC =12,BC =18,D 为AC 上一点,其中DC =23AC ,在AB 上取一点E 得△ADE ,若△ABC 与△ADE 相似,则DE = 6或8 .三、(本大题共2小题,每小题8分,满分16分)15.已知:a ∶b ∶c =2 ∶3 ∶5,求代数式3a -b +c 2a +3b -c的值. 解:∵a ∶b ∶c =2 ∶3 ∶5,∴设a =2k ,b =3k ,c =5k (k ≠0),则3a -b +c 2a +3b -c =6k -3k +5k 4k +9k -5k=1. 16.已知二次函数y =ax 2+bx +c 的图象经过点A(1,5),B(-1,9),C(0,8).求这个二次函数的表达式,开口方向,对称轴和顶点坐标.解:由题意得,⎩⎨⎧a +b +c =5,a -b +c =9,c =8,解得⎩⎨⎧a =-1,b =-2,c =8,∴二次函数表达式为y =-x 2-2x +8,∵y =-x 2-2x +8=-(x +1)2+9,∴这个二次函数的抛物线开口向下,对称轴为x =-1,顶点坐标为(-1,9).四、(本大题共2小题,每小题8分,满分16分)17.在如图所示的网格中,已知△ABC 和点M(1,2).(1)以点M 为位似中心把三角形放大,位似比为2,画出△ABC的位似图形△A′B′C′;(2)写出△A′B′C′的各顶点坐标.解:(1)如图,△A′B′C′即为所求.(2)△A′B′C′的各顶点坐标分别为A′(3,6),B′(5,2),C′(11,4).18.某校举行田径运动会,学校准备了某种气球,这些气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(k Pa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这个函数的表达式;(2)当气球内的气压大于150 k Pa时,气球将会爆炸,为了安全起见,气体的体积应至少是多少?解:(1)设p=kV,将A(0.5,120)代入求出k=60,∴p=60V.(2)当p>150 kPa时,气球将爆炸,∴p ≤150,即p =60V≤150, 解得V ≥60150=0.4. 故为了安全起见,气体的体积应不小于0.4 m 3.五、(本大题共2小题,每小题10分,满分20分)19.某数学兴趣小组想用所学的知识测量小河的宽.测量时,他们选择了河对岸的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D ,竖起标杆DE ,使得点E ,C ,A 共线.已知:CB ⊥AD ,ED ⊥AD ,测得BC =1 m ,DE =1.5 m ,BD =7 m (测量示意图如图所示).请根据相关测量信息,求河宽AB 的长.解:∵CB ⊥AD ,ED ⊥AD ,∴∠ABC =∠ADE.又∵∠BAC =∠DAE ,∴△ABC ∽△ADE ,∴BC DE =AB AD ,∴11.5=AB AB +7, 解得AB =14 m ,经检验:AB =14是分式方程的解.答:河宽AB 的长为14米.20.如图,一次函数y 1=k x +b 的图象与反比例函数y 2=6x的图象交于A(m ,3),B(-3,n)两点.(1)求一次函数的表达式;(2)观察函数图象,直接写出关于x 的不等式6x>k x +b 的解集.解:(1)∵A (m ,3),B (-3,n )两点在反比例函数y 2=6x的图象上,∴m =2,n =-2.∴A (2,3),B (-3,-2).根据题意得⎩⎪⎨⎪⎧2k +b =3,-3k +b =-2,解得⎩⎪⎨⎪⎧k =1,b =1,∴一次函数的表达式是y 1=x +1.(2)根据图象得0<x <2或x <-3.六、(本题满分12分)21.已知:如图,在△ABC 中,BD 平分∠ABC 交AC 于点D ,点E 在AB 上,且BD 2=BE·BC.(1)求证:∠BDE =∠C ;(2)求证:AD 2=AE·AB.证明:(1)∵BD 平分∠ABC ,∴∠ABD =∠CBD ,∵BD 2=BE·BC ,∴BD BE =BC BD,∴△EBD ∽△DBC , ∴∠BDE =∠C.(2)∵∠BDE =∠C , ∠DBC +∠C =∠BDE +∠ADE ,∴∠DBC =∠ADE ,∵∠ABD =∠CBD ,∴∠ABD =∠ADE ,∴△ADE ∽△ABD , ∴AD AB =AE AD,即AD 2=AE·AB. 七、(本题满分12分)22.某网络经销商销售一款夏季时装,进价每件60元,售价每件130元,每天销售30件,每销售一件需缴纳网络平台管理费4元.未来30天,这款时装将开展“每天降价1元”的促销活动,即从第一天起每天的单价均比前一天降1元,通过市场调查发现,该时装单价每降1元,每天销售量增加5件,设第x天(1≤x≤30且x为整数)的销量为y件.(1)直接写出y与x的函数关系式;(2)在这30天内,哪一天的利润是6 300元?(3)设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大,最大利润是多少.解:(1)由题意可知y=5x+30.(2)根据题意可得(130-x-60-4)(5x+30)=6 300,即x2-60x+864=0,解得x=24或36(舍),∴在这30天内,第24天的利润是6 300元.(3)根据题意可得w=(130-x-60-4)(5x+30)=-5x2+300x+1 980=-5(x-30)2+6 480,∵a=-5<0,∴函数有最大值,∴当x=30时,w有最大值为6 480元,∴第30天的利润最大,最大利润是6 480元.八、(本题满分14分)23.如图甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分别为B,D,P,且三个垂足在同一直线上,我们把这样的图形叫“三垂图”.(1)求证:AB·CD=PB·PD;(2)如图乙也是一个“三垂图”,上述结论还成立吗?请说明理由;(3)已知抛物线交x轴于A(-1,0),B(3,0)两点,交y轴于点(0,-3),顶点为P,如图丙所示,若Q是抛物线上异于A,B,P的点,设AQ与y轴相交于D,且∠QAP=90°,利用上述结论求Q点坐标.(1)证明:∵AB⊥BD,CD⊥BD,∴∠B=∠D=90°,∴∠A+∠APB=90°,∵AP⊥PC,∴∠APB+∠CPD=90°,∴∠A=∠CPD,∴△ABP∽△PDC,∴ABPD=PBCD,∴AB·CD=PB·PD.(2)解:AB·CD=PB·PD仍然成立.理由如下:∵AB⊥BD,CD⊥BD,∴∠B=∠CDP=90°,∴∠A+∠APB=90°,∵AP⊥PC,∴∠APB+∠CPD=90°,∴∠A=∠CPD,∴△ABP∽△PDC,∴ABPD=PBCD,11 ∴AB·CD =PB·PD.(3)解:设抛物线表达式为y =ax 2+bx +c (a ≠0),∵抛物线与x 轴交于点A (-1,0),B (3,0),与y 轴交于点(0,-3),∴⎩⎨⎧a -b +c =0,9a +3b +c =0,c =-3,解得⎩⎨⎧a =1,b =-2,c =-3,∴y =x 2-2x -3, ∵y =x 2-2x -3=(x -1)2-4,∴顶点P 的坐标为(1,-4), 过点P 作PC ⊥x 轴于C ,∵AQ 与y 轴相交于D ,∴AO =1,AC =1+1=2,PC =4,由(2)得,AO ·AC =OD·PC ,∴1×2=OD·4,解得OD =12,∴点D 的坐标为⎝ ⎛⎭⎪⎫0,12, 设直线AD 的表达式为y =kx +b (k ≠0),则⎩⎪⎨⎪⎧-k +b =0,b =12,解得⎩⎪⎨⎪⎧k =12,b =12,∴y =12x +12, 联立⎩⎪⎨⎪⎧y =12x +12,y =x 2-2x -3,解得⎩⎪⎨⎪⎧x 1=72,y 1=94,⎩⎪⎨⎪⎧x 2=-1,y 2=0.(与A 重合,舍去)∴点Q 的坐标为⎝ ⎛⎭⎪⎫72,94.。

秋沪科版九年级数学上册习题课件:期中综合检测题(共27张PPT)

秋沪科版九年级数学上册习题课件:期中综合检测题(共27张PPT)
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/122021/9/122021/9/122021/9/129/12/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月12日星期日2021/9/122021/9/122021/9/12 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/122021/9/122021/9/129/12/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/122021/9/12September 12, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/122021/9/122021/9/122021/9/12
解:(1)∵直线 y=2x+6 经过点 A(1,m),∴m=2×1+6=8,∴A(1,8).∵
反比例函数 y=kx的图象经过点 A(1,8),∴8=k1,∴k=8,∴反比例函数的解
析式为 y=8x;
(2)由题意,点 M、N 的坐标为 M(n8,n)、N(n-2 6,n),∵0<n<6,∴
n-6 2
14.如图,在△ABC 中∠A=60°,BM⊥AC 于点 M,CN⊥AB 于点 N,P 为 BC 边的中点,连接 PM、PN,则下列结论:①PM=PN;②AAMB =AANC; ③△PMN 为等边三角形;④当∠ABC=45°时,BN= 2PC.其中正确的结论 是 ①②③④ .
三、解答题(本题 2 题,每小题 8 分,共 16 分) 15.已知近视眼镜的度数 y(度)与镜片焦距 x(m)成反比例,当近视眼镜的度 数为 200 度时,镜片焦距为 0.5m. (1)求 y 与 x 之间的函数表达式; (2)求 400 度的近视眼镜的焦距. 解:(1)由题意设 y=kx,则得 k=0.5×200=100,∴y 与 x 之间的函数表达式 为 y=10x0; (2)当 y=400 时,有 400=1x00,得 x=0.25.∴400 度的近视眼镜的焦距是 0.25m.

【沪科版】初三数学上期中试卷带答案

【沪科版】初三数学上期中试卷带答案

一、选择题1.如图,在ABC 中,15B ∠=︒,将ABC 绕点A 逆时针旋转得到ADE ,当点B ,C ,D 恰好在同一直线上时,50CAD ∠=︒,则E ∠的度数为( )A .50°B .75°C .65°D .60°2.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 3.若点P(-m ,m -3)关于原点对称的点是第二象限内的点,则m 满足( )A .m >3B .0<m≤3C .m <0D .m <0或m >3 4.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB 绕点B 逆时针旋转45°得到△D′E′B ,则点A 在△D′E′B 的( )A .内部B .外部C .边上D .以上都有可能 5.如图,点E ,F ,G ,H 分别为四边形ABCD 四条边AB 、BC 、CD 、DA 的中点,则关于四边形EFGH ,下列说法正确的是( )A .不是平行四边形B .不是中心对称图形C .一定是中心对称图形D .当AC =BD 时,它为矩形6.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .7.如图为二次函数2y ax bx c =++的图象,此图象与x 轴的交点坐标分别为(-1,0)、(3,0).下列说法:0abc >;方程20ax bx c ++=的根为11x =-,23x =;当1x >时,y 随着x 的增大而增大;420a b c ++<.正确的个数是( )A .1B .2C .4D .3 8.对于二次函数()2532y x =-+的图象,下列说法中不正确的是( )A .顶点是()3,2B .开口向上C .与x 轴有两个交点D .对称轴是3x =9.已知点1(1,)y -,(,)23y ,31(,)2y 在函数22y x x m =++的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >> 10.若二次的数2y ax bx c =++的x 与y 的部分对应值如下表:x7- 6- 5- 4- 3- 2- y 27- 13-3- 3 5 3 A .5 B .3- C .13- D .27-11.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AMAF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM 12.一面足够长的墙,用总长为30米的木栅栏(图中的虚线)围一个矩形场地ABCD ,中间用栅栏隔成同样三块,若要围成的矩形面积为54平方米,设垂直于墙的边长为x 米,则x 的值为( )A .3B .4C .3或5D .3或4.5 13.下列方程中,没有实数根的是( ) A .2670x x ++=B .25260x x --=C .22270x x -=D .2220x x -+-= 14.下列关于一元二次方程23210x x ++=的根的情况判断正确的是( ) A .有一个实数根B .有两个相等的实数根C .没有实数根D .有两个不相等的实数根二、填空题15.如图,抛物线2y ax c =+与直线y mx n =+交于()1,A p -,()3,B q 两点,则不等式2ax mx c n -+<的解集是_____________.16.如图,在平面直角坐标系中,点A ,B 是一次函数y x =图像上两点,它们的横坐标分别为1,4,点E 是抛物线248y x x =-+图像上的一点,则ABE △的面积最小值是______.17.已知一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2,则x 1•x 2=_____.18.将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则b =_____.19.若m 是方程210x x +-=的根,则2222018m m ++的值为__________20.如图,在平面直角坐标系xOy 中,抛物线y =-2x 2+bx +c 与x 轴交于A ,B 两点.若顶点C 到x 轴的距离为6,则线段AB 的长为______.三、解答题21.如图,已知正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF=45°,将△DAE 绕点D 逆时针旋转90°,得到△DCM .若AE=1,求FM 的长.22.如图,已知△ABC 的顶点均在格点上,A (1,-4),B (5,-4),C (4,-1) 以原点O 为对称中心,画出△ABC 关于原点O 对称的△111A B C ,并写出点1A ,1B ,1C 的坐标.23.某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能卖出500件;若销售单价每涨1元,每周销量就减少10件.设每件涨价(0)x x ≥元.(1)写出一周销售量y (件)与x (元)的函数关系式.(2)设一周销售获得毛利润w 元,写出w 与x 的函数关系式,并确定当x 在什么取值范围内变化时,毛利润w 随x 的增大而增大.(3)超市扣除销售额的20%作为该商品的经营费用,为使得纯利润(纯利润=毛利润-经营费用)最大,超市对该商品售价为______元,最大纯利润为______元.24.小强根据学习函数的经验,对函数24(1)1y x =-+;图象与性质进行了探究,下面是小强的探究过程,请补充完整,并解决相关问题:(1)函数24(1)1y x =-+;的自变量x 的取值范围是______; (2)如表是y 与x 的几组对应值.x ...2- m 12- 0 12 1 32 2 52 3 4 ... y ... 25 45 163 2 165 4 165 2 1613 45 n... (3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出函数24(1)1y x =-+的大致图象;(4)结合函数图象,请写出函数24(1)1y x =-+的一条性质:______. (5)解决问题:如果方程2421(1)1a x =--+的实数根有2个,那么a 的取值范围是______. 25.某校园有一块正方形的空地,若从这块空地上划出部分区域栽种鲜花(如图阴影部分为花带),横向花带宽为2m ,纵向花带宽为1m ,栽种鲜花后剩余空地面积为42m 2,求原正方形空地的边长.26.已知关于x 的一元二次方程x 2-2x+k=0.(1)若方程有实数根,求k 的取值范围;(2)在(1)的条件下,如果k 是满足条件的最大的整数,且方程x 2-2x+k=0一根的相反数是一元二次方程(m-1)x 2-3mx-7=0的一个根,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由旋转的性质得出AD=AB ,∠E=∠ACB ,由点B ,C ,D 恰好在同一直线上,则△BAD 是底角为15°的等腰三角形,求出∠BAD=150°,可得100BAC ∠=︒,由三角形内角和定理即可得出结果.【详解】解:∵将ABC 绕点A 逆时针旋转得到ADE ,∴AD=AB ,∠E=∠ACB ,∵点B ,C ,D 恰好在同一直线上,∴△BAD 是底角为15°的等腰三角形,∴∠BDA=15B ∠=︒,∴∠BAD=150°,∵50CAD ∠=︒,∴100BAC ∠=︒∴1801001565BCA -∠=︒-=,∴65E ∠=.故选:C【点睛】此题主要考查了旋转的性质、等腰三角形的判定和性质、三角形的内角和定理等知识;判断出三角形ABD 是等腰三角形是解本题的关键.2.D解析:D【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【解答】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.C解析:C【分析】两个点关于原点对称时,它们的坐标符号相反,即点P(-m,m-3)关于原点O的对称点是P′(m,3-m),再由第二象限内的点横坐标为负数,纵坐标为正数,可得m的取值范围.【详解】解:点P(-m,m-3)关于原点O的对称点是P′(m,3-m),∵P′(m,3-m),在第二象限,∴30 mm<⎧⎨->⎩,∴m<0.故选:C.【点睛】本题考查了关于原点对称的点的坐标,注意掌握:两个点关于原点对称时,它们的坐标符号相反.4.C解析:C【分析】先根据勾股定理求出两直角三角形的各边长,再由旋转的性质得:∠EBE′=45°,∠E′=∠DEB=90°,求出E′D′与直线AB的交点到B的距离也是52,与AB的值相等,从而可以得出点A在△D′E′B的边上.【详解】∵AC=BD=10,又∵∠ABC=∠DEB=90°,∠A=45°,∠D=30°,∴BE=5,AB=BC=52,由三角板DEB绕点B逆时针旋转45°得到△D′E′B,设△D′E′B与直线AB交于G,可知:∠EBE′=45°,∠E′=∠DEB=90°,∴△GE′B是等腰直角三角形,且BE′=BE=5,∴BG=52,∴BG=AB,∴点A在△D′E′B的边上,故选C.5.C解析:C【分析】先连接AC,BD,根据EF=HG=12AC,EH=FG=12BD,可得四边形EFGH是平行四边形,当AC⊥BD时,∠EFG=90°,此时四边形EFGH是矩形;当AC=BD时,EF=FG=GH=HE,此时四边形EFGH是菱形,据此进行判断即可.【详解】连接AC,BD,如图:∵点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,∴EF=HG=12AC,EH=FG=12BD,∴四边形EFGH是平行四边形,故选项A错误;∴四边形EFGH一定是中心对称图形,故选项B错误;当AC⊥BD时,∠EFG=90°,此时四边形EFGH是矩形,当AC=BD时,EF=FG=GH=HE,此时四边形EFGH是菱形,故选项D错误;∴四边形EFGH可能是轴对称图形,∴四边形EFGH是平行四边形,四边形EFGH一定是中心对称图形.故选:C.【点睛】本题主要考查了中点四边形的运用,解题时注意:平行四边形是中心对称图形.解决问题的关键是掌握三角形中位线定理.6.C解析:C【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、既是轴对称图形,也是中心对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.C解析:C【分析】①由抛物线的开口方向、与y轴的交点判定a、c的符号,根据对称轴确定b的符号;②根据二次函数图象与x轴的交点解答;③利用对称轴和二次函数的图象的性质作出判断;④将x=2代入函数关系式,结合图象判定y的符号.【详解】解:①∵抛物线的开口向上,对称轴在y轴的右边,与y轴的交点在y的负半轴上,∴a>0,-b>0,c<0,2a即b<0,∴abc>0,正确;②二次函数y=ax2+bx+c的图象与x轴的交点是(-1,0)、(3,0),∴方程ax2+bx+c=0的根为x1=-1,x2=3故本选项正确;③函数对称轴是直线x=1,根据图象当x>1时,y随x的增大而增大;④根据图象可知抛物线与x轴的交点坐标是(-1,0),(3,0),∴当x=2时,y <0∴当x=1时4a+2b+c <0,正确.共有四个正确的,故选:C .【点睛】本题考查了二次函数与系数的关系的应用,主要考查学生对二次函数的图象与系数的关系的理解和运用,同时也考查了学生观察图象的能力,本题是一道比较典型的题目,具有一定的代表性,还是一道比较容易出错的题目.8.C解析:C【分析】根据函数图象和性质逐个求解即可.【详解】解:对于y =5(x ﹣3)2+2,则该函数的对称轴为直线x =3,顶点坐标为(3,2), A .二次函数y =5(x ﹣3)2+2的图象的顶点坐标为(3,2),故本选项不符合题意; B .由于a =5>0,所以抛物线开口向上,故本选项不符合题意;C .由于y =5(x ﹣3)2+2=5x 2﹣30x+47,则△=b 2﹣4ac =900﹣4×5×47=﹣40<0,所以该抛物线与x 轴没有交点,故本选项符合题意;D .对于y =5(x ﹣3)2+2,则该函数的对称轴为直线x =3,故本选项不符合题意. 故选:C .【点睛】本题考查的是抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点,顶点等点坐标的求法,及这些点代表的意义及函数特征. 9.C解析:C【分析】由抛物线222(1)1y x x m x m =++=++-,可知抛物线对称轴为x =-1,开口向上,然后根据各点到对称轴的结论可判断y 1,y 2,y 3的大小.【详解】∵222(1)1y x x m x m =++=++-,∴抛物线对称轴为x =-1,开口向上,又∵点((,)23y 离对称轴最远,点1(1,)y -在对称轴上,∴231y y y >>.故选:C .【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键. 10.D解析:D【分析】首先观察表格可得二次函数2y ax bx c =++过点(4,3)-与(2,3)-,则可求得此抛物线的对称轴,然后由对称性求得答案.【详解】 解:二次函数2y ax bx c =++过点(4,3)-与(2,3)-,∴此抛物线的对称轴为:直线4(2)32x -+-==-, ∴横坐标为1x =的点的对称点的横坐标为7x =-,∴当1x =时,27y =-.故选:D .【点睛】此题考查了二次函数的对称性,根据表格中的数据找到对称轴是解题的关键.11.B解析:B【分析】设正方形的边长为1,AF =AM =x ,根据勾股定理即可求出答案.【详解】解:设正方形的边长为1,AF =AM =x ,则BE =EF =12,AE =x+12, 在Rt △ABE 中,∴AE 2=AB 2+BE 2,∴(x +12)2=1+(12)2, ∴x 2+x -1=0,∴AM 的长为x 2+x -1=0的一个正根,故选:B .【点睛】本题考查一元二次方程,解题的关键是根据勾股定理列出方程,本题属于中等题型. 12.D解析:D【分析】设AD 长为x 米,四边形ABCD 是矩形,根据矩形的性质,即可求得AB 的长;根据题意可得方程x (30−4x )=54,解此方程即可求得x 的值.【详解】解:设与墙头垂直的边AD 长为x 米,四边形ABCD 是矩形,∴BC =MN =PQ =x 米,∴AB =30−AD−MN−PQ−BC =30−4x (米),根据题意得:x (30−4x )=54,解得:x =3或x =4.5,∴AD 的长为3或4.5米.故选:D .【点睛】考查了一元二次方程的应用中的围墙问题,正确列出一元二次方程,并注意解要符合实际意义.13.D解析:D【分析】根据判别式的意义对各选项进行判断.【详解】A 、224641780b ac =-=-⨯⨯=>,则方程有两个不相等的实数根,所以A 选项不符合题意;B 、()()224541261290b ac =-=--⨯⨯-=>,则方程有两个不相等的实数根,所以B 选项不符合题意;C 、()224274207290b ac =-=--⨯⨯=>,则方程有两个不相等的实数根,所以C 选项不符合题意;D 、()()224241240b ac =-=-⨯-⨯-=-<,则方程没有实数根,所以D 选项符合题意.故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.14.C解析:C【分析】根据方程的系数结合根的判别式,可得出△=-8<0,进而可得出方程23210x x ++=没有实数根.【详解】解:∵△=22-4×1×3=-8<0,∴方程23210x x++=没有实数根.故选:C.【点睛】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.二、填空题15.【分析】根据AB两点的横坐标可得−1<x<3时ax2+c<mx+n即可得出ax2−mx+c<n的解集【详解】∵抛物线与直线交于A(−1p)B(3q)抛物线开口向上∴−1<x<3时ax2+c<mx+n解析:13x【分析】根据A、B两点的横坐标可得−1<x<3 时, ax2+c<mx+n ,即可得出 ax2−mx+c<n 的解集.【详解】∵抛物线与直线交于A(−1,p) , B(3,q) ,抛物线开口向上,∴ −1<x<3 时, ax2+c<mx+n ,∴ ax2−mx+c<n 的解集为−1<x<3 .故答案为:−1<x<3【点睛】本题考查二次函数与不等式,根据两函数图象的上下关系找出不等式的解集是解题关键.16.【分析】设点E(mm2﹣4m+8)过E作EM垂直于x轴交AB于点M作BF⊥EMAG⊥EM垂足分别为FG由题意可得M(mm)从而可用含m的式子表示出EM的长根据二次函数的性质及三角形的面积公式可得答案解析:21 8【分析】设点E(m,m2﹣4m+8),过E作EM垂直于x轴交AB于点M,作BF⊥EM,AG⊥EM,垂足分别为F,G,由题意可得M(m,m),从而可用含m的式子表示出EM的长,根据二次函数的性质及三角形的面积公式可得答案.【详解】解:设点E(m,m2﹣4m+8),过E作EM垂直于x轴交AB于点M,作BF⊥EM,AG⊥EM,垂足分别为F,G,由题意得:M (m ,m ),∴EM =m 2﹣4m +8﹣m=m 2﹣5m +8 =257()24m -+, ∴S △ABE =S △AEM +S △EMB =1122EM AG EM BF ⋅+⋅ 1()2EM AG BF =+ 12=(m 2﹣5m +8)×(4-1) 32=(m 2﹣5m +8) =23521()228m -+, 由302>,得S △ABE 有最小值. ∴当m =52时,S △ABE 的最小值为218. 故答案为:218. 【点睛】本题考查了二次函数的最值、一次函数与二次函数图象上的点与坐标的关系及三角形的面积计算等知识点,熟练掌握相关性质及定理并数形结合是解题的关键.17.﹣【分析】由根与系数的关系即可求出答案【详解】解:∵一元二次方程2x2+3x ﹣1=0的两个根是x1x2∴x1x2=﹣故答案为:﹣【点睛】本题考查了根与系数的关系解题的关键是掌握根与系数的关系进行解题解析:﹣12 【分析】由根与系数的关系,即可求出答案.【详解】解:∵一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2,∴x 1x 2=﹣12, 故答案为:﹣12. 【点睛】本题考查了根与系数的关系,解题的关键是掌握根与系数的关系进行解题.18.21【分析】先把常数项移到等号的右边再等号两边同时加上16即可【详解】解:∵x2﹣8x =5∴x2﹣8x+16=5+16即(x ﹣4)2=21故答案为:21【点睛】本题主要考查一元二次方程的配方掌握完全解析:21【分析】先把常数项移到等号的右边,再等号两边同时加上16,即可.【详解】解:∵x 2﹣8x =5,∴x 2﹣8x +16=5+16,即(x ﹣4)2=21,故答案为:21.【点睛】本题主要考查一元二次方程的配方,掌握完全平方公式,是解题的关键.19.2020【分析】根据m 是方程的根得代入求值【详解】解:∵m 是方程的根∴即原式故答案是:2020【点睛】本题考查一元二次方程的根解题的关键是掌握一元二次方程根的定义解析:2020【分析】根据m 是方程210x x +-=的根,得21m m +=,代入求值.【详解】解:∵m 是方程210x x +-=的根,∴210m m +-=,即21m m +=,原式()222018220182020m m =++=+=.故答案是:2020.【点睛】本题考查一元二次方程的根,解题的关键是掌握一元二次方程根的定义.20.2【分析】先确定抛物线的解析式令得到AB 两点的坐标即可得到结果;【详解】∵抛物线y =-2x2+bx +c 顶点C 到x 轴的距离为6∴化二次函数解析式为顶点式为:∴令得解得:∵抛物线y =-2x2+bx +c 与解析:【分析】先确定抛物线的解析式,令0y =,得到A ,B 两点的坐标,即可得到结果;【详解】∵抛物线y =-2x 2+bx +c 顶点C 到x 轴的距离为6,∴化二次函数解析式为顶点式为:()226y x h =--+, ∴令0y =,得()2260x h --+=,解得:1x h =+2x h =-,∵抛物线y =-2x 2+bx +c 与x 轴交于A ,B 两点,∴()A h +,()B h -,∴(AB h h =+--=故答案是【点睛】本题主要考查了二次函数的性质,抛物线与坐标轴的交点,准确分析计算是解题的关键.三、解答题21.52【分析】由旋转可得DE=DM ,∠EDM 为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF 为45°,可得出∠EDF=∠MDF ,再由DF=DF ,利用SAS 可得出三角形DEF 与三角形MDF 全等,由全等三角形的对应边相等可得出EF=MF ;则可得到AE=CM=1,正方形的边长为3,用AB-AE 求出EB 的长,再由BC+CM 求出BM 的长,设EF=MF=x ,可得出BF=BM-FM=BM-EF=4-x ,在直角三角形BEF 中,利用勾股定理列出关于x 的方程,求出方程的解得到x 的值,即为FM 的长.【详解】解:∵∆DAE 逆时针旋转90°得到∆DCE ,∴∠FCM=∠FCD+∠DCM=180°,∴F 、C 、M 三点共线,∴DE=DM ,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,在∆DEF 和∆DMF 中,DE DM EDF FDM DF DF =⎧⎪∠=∠⎨⎪=⎩∴∆DEF ≌∆DMF(SAS),∴EF=MF ,设EF=MF=x ,∵AE=CM=1,且BC=3,∴BM=BC+CM=4,∴BF=BM-MF=BM-EF=4-x ,∵EB=AB-AE=3-1=2,在Rt∆EBF 中222EB BF EF +=即2222(4)x x +-=解得x=52, ∴FM=52【点睛】此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理.此题难度适中,注意掌握旋转前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.22.画图见详解;A 1(-1,4),B 1(-5,4),C 1(-4,1).【分析】根据网格结构找出点A 、B 、C 关于坐标原点O 的对称点A 1、B 1、C 1的位置,然后顺次连接即可,再根据平面直角坐标系写出各点的坐标即可.【详解】解:△A 1B 1C 1如图所示;A 1(-1,4),B 1(-5,4),C 1(-4,1).本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键. 23.(1)50010y x =-;(2)2104005000w x x =-++,当020x ≤≤时,毛利润w 随x 的增大而增大;(3)75,5000.【分析】(1)根据每件涨价x 元,每周销量就减少10x 件即可得;(2)根据“毛利润=(每件的售价-每件的成本)⨯销售量”可得w 与x 的函数关系式,再根据二次函数的性质即可得;(3)设一周销售获得的纯利润为Q 元,先根据纯利润的计算公式求出Q 与x 的函数关系式,再利用二次函数的性质求解即可得.【详解】(1)由题意,每件涨价x 元,每周销量就减少10x 件,则50010y x =-;(2)由题意得:(5040)(10)(50010)w x y x x =+-=+-,整理得:2104005000w x x =-++,将此二次函数的解析式化成顶点式为210(20)9000w x =--+,由二次函数的性质可知,当020x ≤≤时,毛利润w 随x 的增大而增大;(3)设一周销售获得的纯利润为Q 元,则220%(50)1040050000.2(50)(50010)Q w x y x x x x =-+=-++-+-,整理得:28400Q x x =-+,即28(25)5000Q x =--+,由二次函数的性质可知,当25x =时,Q 取得最大值,最大值为5000,则此时该商品售价为50502575x +=+=(元),故答案为:75,5000.【点睛】本题考查了一次函数与二次函数的应用、二次函数的性质,熟练掌握二次函数的性质是解题关键.24.(1)全体实数;(2)1-,25;(3)答案见解析;(4)当1x =时,函数有最大值4等;(5)1522a <<. 【分析】(1)根据分式有意义的条件即可解决;(2)根据表格中的数据可知,此函数图象关于直线x =1对称,据此判定即可; (3)用平滑的曲线连接各点即可;(4)观察函数图象,即可得到函数的一条性质;(5)观察图象可得:当0<y <4时,方程有两个实数根,即可求出a 的取值范围.(1)∵(x−1)2+1≥1,∴自变量x 的取值范围是全体实数;故答案为:全体实数;(2)由表格中可以看出,函数关于x =1对称,∴m =−1,n =25; 故答案为:m =−1,n =25; (3)如图所示:(4)由函数图象可知:当x =1时,该函数由最大值,故答案为:当x =1时,该函数由最大值;(5)根据图象可得:0<y≤4.∵方程2421(1)1a x =--+的实数根有2个 即0<21a -<4,解得:1522a <<. 【点睛】 本题考查了函数的性质、分式方程的解的综合应用,解决此题的关键是能根据列表法、图象法观察图象,从而得到结论.25.原正方形空地的边长为8m .【分析】观察图形得到阴影面积=正方形的面积-空白图形的面积,列方程解决问题.【详解】解:设正方形空地的边长为xm ,由题意得()()2142x x --=, 化简得23400x x --=,解得1285x x ==-,,因为0x >,故8x =,答:原正方形空地的边长为8m .【点睛】此题考查一元二次方程的实际应用—图形面积类问题,观察图形得到阴影面积=正方形的面积-空白图形的面积,由此列方程解决问题的思路是解题的关键.26.(1)k≤1;(2)2【分析】(1)结合题意,根据判别式的性质计算,即可得到答案;(2)结合(1)的结论,可得k 的值,从而计算得方程x 2-2x+k=0的根,并代入到()21370m x mx ---=,通过求解一元一次方程方程,即可得到答案.【详解】(1)由题意知:44k ∆=-且0∆≥即:4-4k≥0∴k≤1(2)k≤1时,k 取最大整数1当k=1时,221x x -+的解为:121x x ==根据题意,1x =是方程()21370m x mx ---=的一个根 ∴()()()2113170m m -⨯--⨯--= ∴m=2.【点睛】本题考查了一元二次方程、一元一次方程的知识;解题的关键是熟练掌握一元二次方程判别式、一元一次方程的性质,从而完成求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档