最新北大附中初一数学期末试卷优秀名师资料

合集下载

北京大附中2025届数学七上期末调研试题含解析

北京大附中2025届数学七上期末调研试题含解析

北京大附中2025届数学七上期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每小题3分,共30分)1.已知:点P 的坐标为(﹣2,1),则点P 所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限2.已知3x m =,5x n =,用含有m ,n 的代数式表示14x 结果正确的是A .3mnB .23m nC .3m nD .32m n3.一张试卷有25道选择题,做对一题得4分,做错一题得-1分,某同学做完了25道题,共得70分,那么他做对的题数是( )A .17道B .18道C .19道D .20道4.有理数a 、b 在数轴上的位置如图所示,则化简a b a b -++的结果为( )A .2a -B .2bC .2aD .2b -5.如下表,从左到右在每个小格子中填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,若前m 个格子中所填整数之和是2020,则m 的值为( )A .202B .303C .606D .9096.截止到2017年底,某市人口约为2 720 000人,将2 720 000用科学计数法表示为( )A .2.72×105B .2.72×106C .2.72×107D .2.72×108 7.如图,,点为的中点,点在线段上,且,则的长度为( )A .12B .18C .16D .20 8.如果-2a m b 2与12a 5b n+1的和仍然是单项式,那么m +n 的值为( ). A .5 B .6 C .7 D .89.2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg ,将数58000用科学记数法表示为( )A .35810⨯B .35.810⨯C .50.5810⨯D .45.810⨯10.若方程2x+1=﹣1的解是关于x 的方程1﹣2(x ﹣a )=2的解,则a 的值为( )A .﹣1B .1C .﹣32D .﹣12二、填空题(本大题共有6小题,每小题3分,共18分)11.将一副三角板按图所示的方式叠放在一起,使直角的顶点重合于点O ,并能使O 点自由旋转,设AOC α∠=,BOD β∠=,则α与β之间的数量关系是__________.12.如图,将一副三角板按如图所示的位置摆放,若O ,C 两点分别放置在直线AB 上,则∠AOE =____度.13.用科学计数法表示:0.09102-=_________.14.如图所示,数轴上点A ,B 对应的有理数都是整数,若点A 对应有理数a ,点B 对应有理数b ,(1)b 比a 大_______;(2)若b -2a =10,AB 中点表示的数是 _________.15.若132m x y 与333x y 同类项,则m 的值为_________.16.计算:601238︒-︒,=____________三、解下列各题(本大题共8小题,共72分)17.(8分)(1)计算:24÷[(﹣2)3+4]﹣3×(﹣11)(2)化简:2(x 2-x+1)-(-2x+3x 2)+(1-x )18.(8分)如图,线段8cm AC ,线段15cm BC =,点M 是AC 的中点,在CB 上取一点N ,使得:1:2CN NB =,求MN 的长.19.(8分)如图,数轴上点A ,B 表示的有理数分别为6-,3,点P 是射线AB 上的一个动点(不与点A ,B 重合),M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.(1)若点P 表示的有理数是0,那么MN 的长为________;若点P 表示的有理数是6,那么MN 的长为________; (2)点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长是否发生改变?若不改变,请写出求MN 的长的过程;若改变,请说明理由.20.(8分)数学课上,同学们遇到这样一个问题:如图1,已知()90180AOB a a ∠=︒<︒,(045)COD n β∠=︒︒<< ,OE 、OF 分别是AOD ∠与 BOC ∠的角平分线,请同学们根据题中的条件提出问题,大家一起来解决(本题出现的角均小于平角)同学们经过思考后,交流了自己的想法:小强说:“如图2,若OC 与OA 重合,且=120α︒,=30β︒时,可求EOF ∠的度数.”小伟说:“在小强提出问题的前提条件下,将COD ∠的OC 边从OA 边开始绕点O 逆时针转动()030m m ︒<<,可求出BOE DOF EOF∠-∠∠的值.” 老师说:“在原题的条件下,借助射线OC OD 、的不同位置可得出的数量关系.”(1)请解决小强提出的问题;(2)在备用图1中,补充完整的图形,并解决小伟提出的问题(3)在备用图2中,补充完整的图形,并解决老师提出的问题,即求,,EOF αβ∠三者之间的的数量关系.21.(8分)已知90AOB ∠=︒,射线OC 在AOB ∠内部,作AOC ∠的平分线OD 和BOC ∠的平分线OE .(1)如图①,当70BOC ∠=︒时,则DOE ∠=_______.(2)如图②,若射线OC 在AOB ∠内部绕O 点旋转,当BOC α∠=时,求DOE ∠的度数.(3)当射线OC 在AOB ∠外绕O 点旋转且AOC ∠为钝角时,请在备用图中画出AOC ∠的平分线OD 和BOC ∠的平分线OE ,判断DOE ∠的大小是否发生变化?求DOE ∠的度数.22.(10分)如图,线段 AD =8 cm ,线段 AC=BD =6 cm ,点 E 、F 分别是线段 AB 、CD 的中点,求线段 EF 的长.23.(10分)(1)解方程:12134x x +-=+ (2)化简求值:223(1)(23)x x x ---,其中1x =24.(12分)一个花坛的形状如图所示,它的两端是半径相等的半圆,求:(1)花坛的周长l ;(2)花坛的面积S ;(3)若a =8m ,r =5m ,求此时花坛的周长及面积(π取3.14).参考答案一、选择题(每小题3分,共30分)1、B【分析】根据点在第二象限的坐标特点即可解答.【详解】∵点的横坐标﹣2<0,纵坐标1>0,∴这个点在第二象限.故选:B .【点睛】本题考查了点的坐标,解决本题的关键是记住平面直角坐标系中各个象限内点的符号:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、C【解析】根据同底数幂的乘法法则可得:14333533 x x x x x m m m n m n m n =⨯⨯⨯=⨯⨯⨯=⨯=,故选C.3、C【解析】设作对了x 道,则错了(25-x )道,根据题意列出方程进行求解.【详解】设作对了x 道,则错了(25-x )道,依题意得4x-(25-x)=70,解得x=19故选C.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系.4、B【解析】根据数轴上点的位置判断绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:根据数轴上点的位置得:a 0b <<,且a b <,a b 0∴-<,a b 0+>,则原式b a a b 2b =-++=.故选B .【点睛】此题考查了利用数轴比较式子的大小,绝对值的化简,整式的加减,熟练掌握运算法则是解本题的关键.5、C【分析】根据相邻三个数的和都相等列方程组即可求解.【详解】设第2,3,4个格子的数是a,b,c根据题意,得1123112123a b c a b b c a b c c +-⎧⎪+⎨⎪+-⎩++=++=+++=解得1231a b c ⎧⎪-⎨⎪⎩===∵相邻三个格子的数是1,12和-3,三个数的和是10,前m个格子的和是10,10÷10=1.说明有1个相邻三个格子,∴m=1×3=2.故选C.【点睛】本题考查了列三元一次方程组解决实际问题,解决本题的关键是列出相邻三个数的和都相等的三个方程.6、B【分析】根据科学记数法的表示形式(a×10n其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:2 720 000=2.72×1.故选B7、D【解析】根据中点的定义求出AC、BC的长,根据求出AD,结合图形计算即可得答案.【详解】∵AB=24cm,C为AB的中点,∴AC=BC=AB=12cm,∵AD:CB=1:3,∴AD=4cm,∴BD=AB-AD=24-4=20cm.故选:D.【点睛】本题考查的是两点间的距离的计算,掌握线段中点的性质、灵活运用数形结合思想是解题的关键.8、B【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵-2a m b2与12a5b n+1是同类项,∴m=5,n+1=2,解得:m=1,∴m+n=1.故选B.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.9、D【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将数58000用科学记数法表示为45.810⨯.故选D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10、D【解析】分析:解第一个方程,可得x 的值,把x 的值代入第二个方程,解之可得答案.详解:解2x +1=﹣1,得:x =﹣1.把x =﹣1代入1﹣2(x ﹣a )=2,得:1﹣2(﹣1﹣a )=2.解得:a =﹣12. 故选D .点睛:本题考查了同解方程,利用同解方程得出关于a 的方程是解题的关键.二、填空题(本大题共有6小题,每小题3分,共18分)11、180αβ+=︒【分析】分重叠和不重叠两种情况讨论,由旋转的性质,即可求解.【详解】如图,由题意得:90AOB COD ∠=∠=︒,AOC α=,BOD β∠=,AOC BOD αβ∴+=∠+∠AOC BOC COD =∠+∠+∠9090180AOB COD ︒︒︒=∠+∠=+=9090=︒+︒180=︒.如图,由题意得:90AOB COD ∠=∠=︒,AOC α∠=,BOD β∠=,360AOC COD BOD AOB ︒∠+∠+∠+∠=,AOC BOD αβ∴+=∠+∠360AOB COD -∠+∠︒=3609090=︒-︒-︒180=︒.综上所述,180αβ+=︒,故答案为:180αβ+=︒.【点睛】本题考查了旋转的性质,灵活运用旋转的性质是本题的关键.12、1【解析】根据题意结合图形可得:∠DOC =45°,∠DOE =30°,继而可求得∠COE 和∠AOE 的度数.【详解】解:由图可得:∠DOC =45°,∠DOE =30°,则∠COE =∠DOC ﹣∠DOE =15°,∴∠AOE =180°﹣∠COE =1°.故答案为1.点睛:本题考查了余角和补角的知识,解答本题的关键是掌握互余两角之和为90°,互补两角之和为180°. 13、29.10210--⨯【分析】根据科学记数法的定义进行解答即可.【详解】20.091029.10210--=-⨯故答案为:29.10210--⨯.【点睛】本题考查了科学记数法的问题,掌握科学记数法的定义以及应用是解题的关键.14、8 2【分析】根据数轴上两点之间的距离公式即可求得b 比a 大8,再将8b a -=、210b a -=等式联立,即可求得a 、b 的值,最后结合数轴上即可确定答案.【详解】∵在数轴上A 、B 两点相距8个单位长度,且点B 在点A 的右侧∴8b a -=∵210b a -=∴8210b a b a -=⎧⎨-=⎩∴26a b =-⎧⎨=⎩ ∴结合数轴可知AB 中点表示的数是2故答案是:(1)8;(2)2【点睛】此题重点考查了数轴,根据题意得出8b a -=是解本题的关键.15、2.【分析】由同类项的概念可得:13m +=,从而可得答案. 【详解】解: 132m x y 与333x y 同类项,13,m ∴+=2,m ∴=故答案为:2.【点睛】本题考查的是同类项的概念,一元一次方程的解法,掌握以上知识是解题的关键.16、47°22′【分析】将60°转化为59°60′,再解角度的差即可.【详解】6012385960-12384722''''︒-︒=︒︒=︒,故答案为:4722'︒.【点睛】本题考查角度的和差,是基础考点,难度较易,掌握相关知识是解题关键.三、解下列各题(本大题共8小题,共72分)17、(1)1;(2)2x x 3--+【分析】(1)根据有理数混合运算的顺序计算即可;(2)去括号合并同类项即可.【详解】(1)解:24÷[(﹣2)3+4]﹣3×(﹣11) =24÷(﹣8+4)+33 =24÷(﹣4)+33 =﹣6+33=1.(2)解:()()222x x 12x 3x (1x)-+--++-222x 2x 22x 3x 1x =-++-+-2x x 3=--+.【点睛】本题考查了有理数的混合运算,以及整式的加减运算,熟练掌握运算法则是解答本题的关键.18、9cm ;【分析】因为点M 是AC 的中点,则有MC=AM=12AC ,又因为CN :NB=1:2,则有CN=13BC ,故MN=MC+NC 可求.【详解】解: ∵M 是AC 的中点,∴MC=AM=12AC=12×8=4cm , 又∵:1:2CN NB =,∴CN=13BC=13×15=5cm , ∴MN=MC+NC=4cm+5cm=9cm ;故MN 的长为9cm ;【点睛】本题主要考查了比较线段的长短,掌握如何比较线段的长短是解题的关键.19、(1)2;2;(2)不发生改变,MN 为定值2,过程见解析【分析】(1)由点P 表示的有理数可得出AP 、BP 的长度,根据三等分点的定义可得出MP 、NP 的长度,再由MN=MP+NP(或MN=MP-NP),即可求出MN的长度;(2)分-2<a<1及a>1两种情况考虑,由点P表示的有理数可得出AP、BP的长度(用含字母a的代数式表示),根据三等分点的定义可得出MP、NP的长度(用含字母a的代数式表示),再由MN=MP+NP(或MN=MP-NP),即可求出MN=2为固定值.【详解】解:(1)若点P表示的有理数是0(如图1),则AP=2,BP=1.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=4,NP=23BP=2,∴MN=MP+NP=2;若点P表示的有理数是2(如图2),则AP=12,BP=1.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=8,NP=23BP=2,∴MN=MP-NP=2.故答案为:2;2.(2)MN的长不会发生改变,理由如下:设点P表示的有理数是a(a>-2且a≠1).当-2<a<1时(如图1),AP=a+2,BP=1-a.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=23(a+2),NP=23BP=23(1-a),∴MN=MP+NP=2;当a>1时(如图2),AP=a+2,BP=a-1.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=23(a+2),NP=23BP=23(a-1),∴MN=MP-NP=2.综上所述:点P在射线AB上运动(不与点A,B重合)的过程中,MN的长为定值2.【点睛】本题考查了两点间的距离,解题的关键是:(1)根据三点分点的定义找出MP、NP的长度;(2)分-2<a<1及a>1两种情况找出MP、NP的长度(用含字母a的代数式表示).20、(1)45︒;(2)53;(3)12()αβ-、12()αβ-、180︒−12()αβ-、180︒−12()αβ-.【分析】(1)根据角平分线定义即可解决小强提出的问题;(2)在备用图1中,补充完整的图形,根据角平分线定义及角的和差计算即可解决小伟提出的问题;(3)在备用图2中,补充完整的图形,分四种情况讨论即可解决老师提出的问题,进而求出,,EOFαβ∠三者之间的数量关系.【详解】(1)如图2,∵∠AOB=120︒,OF是∠BOC的角平分线∴∠FOC=12∠AOB=60︒∵∠COD=30︒,OE是∠AOD的角平分线∴∠EOC=12∠COD=15︒∴∠EOF=∠FOC−∠EOC=45︒答:∠EOF的度数为45︒;(2)如图3,∵OE、OF分别是∠AOD与∠BOC的角平分线,∴设∠AOE=∠DOE=12∠AOD=γ∠BOF=∠COF=12∠BOC=θ∴∠BOE=∠AOB−∠AOE=120︒−γ∵∠BOC=∠AOB+∠COD−∠AOD=150︒−2γ∴∠COF=75︒−γ∴∠DOF=∠COF−∠COD=75︒−γ−30︒=45°−γ∴∠BOE−∠DOF=(120︒−γ)−((45︒−γ)=75︒∵∠COE=∠COD−∠DOE=30︒−γ∴∠EOF=∠FOC−∠COE=(75−γ)−(30︒−γ)=45︒∴BOE DOFEOF∠-∠∠=755453︒=︒答:BOE DOFEOF∠-∠∠的值为53;(3)∵OE、OF分别是∠AOD与∠BOC的角平分线,∴设∠AOE=∠DOE=12∠AOD=γ∠BOF=∠COF=12∠BOC∴①如图4,∠AOC=∠AOD−∠COD=2γ−β∵∠BOC=∠AOB−∠AOC=α−(2γ−β)=α−2γ+β∴∠FOC=12∠BOC=12α−γ+12β∵∠COE=∠DOE−∠COD=γ−β∴∠EOF=∠FOC+∠COE=12α−γ+12β+γ−β=12(α−β).②如图5,∠AOC=∠AOD+∠COD=2γ+β∵∠BOC=∠AOB−∠AOC=α−(2γ+β)=α−2γ−β∴∠FOC=12∠BOC=12α−γ−12β∵∠COE=∠DOE+∠COD=γ+β∴∠EOF=∠FOC+∠COE=12α−γ−12β+γ+β=12(α+β).③如图6,∠AOC=∠AOD+∠COD=2γ+β∵∠BOC=360︒−∠AOB−∠AOC =360︒−α−(2γ+β)=360︒−α−2γ−β∴∠FOC=12∠BOC=180︒−12α−γ−12β∵∠COE=∠DOE+∠COD=γ+β∴∠EOF=∠FOC+∠COE=180︒−12α−γ−12β+γ+β=180︒−12(α−β).④如图7,∠AOC =∠AOD−∠COD =2γ−β∵∠BOC =360︒−∠AOB−∠AOC=360︒−α−(2γ−β)=360︒−α−2γ+β∴∠FOC =12∠BOC =180︒−12α−γ+12β∵∠COE =∠DOE−∠COD =γ−β∴∠EOF =∠FOC +∠COE=180︒−12 α−γ+12β+γ−β =180︒−12(α+β). 答:α、β、∠EOF 三者之间的数量关系为:12(α−β)、12(α+β)、180︒−12(α−β)、180︒−12(α+β).【点睛】本题考查了角的计算,解决本题的关键是分情况讨论.21、(1)45︒;(2)DOE ∠45=︒;(3)DOE ∠的大小发生变化,45DOE ∠=︒或135︒.【分析】(1)根据角平分线的定义,OD 、OE 分别平分∠AOC 和∠BOC ,则可求得∠COE 、∠COD 的值,∠DOE =∠COE +∠COD ;(2)结合角的特点,根据∠DOE =∠DOC +∠COE ,求得结果进行判断和计算;(3)正确作出图形,根据∠DOE 的大小作出判断即可.【详解】(1)解:(1)∵OD 、OE 分别平分∠AOC 和∠BOC ,∴∠COE =12∠COB =35°,∠COD =12∠AOC=12(90°-70°)=10°, ∴∠DOE =∠COE +∠COD =45°故答案为:45︒;(2)∵OD 、OE 分别平分AOC ∠和BOC ∠,∴12COD AOC ∠=∠,12COE COB ∠=∠, ∵90AOB ∠=︒,BOC α∠=∴DOE DOC COE ∠=∠+∠1122AOC COB =∠+∠ ()12AOC COB =∠+∠ 12AOB =∠ 1902=⨯︒ 45=︒;(3)DOE ∠的大小发生变化.①如备用图1所示:∵OD 、OE 分别平分AOC ∠和BOC ∠,∴12COD AOC ∠=∠,12COE BOC ∠=∠, ∴DOE COD COE ∠=∠-∠11()22AOC BOC AOB =∠-∠=∠ 190452=⨯︒=︒; ②如备用图2所示:∵OD 、OE 分别平分AOC ∠和BOC ∠,∴12COD AOC ∠=∠,12COE BOC ∠=∠, ∴DOE COD COE ∠=∠+∠()12AOC BOC =∠+∠()()113603609022AOB ︒=⨯︒-∠=⨯-︒ 12701352=⨯︒=︒. 综上,得:DOE ∠的大小发生变化,45DOE ∠=︒或135︒.【点睛】本题考查了角的计算,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.22、6cm【分析】根据题意、结合图形分别求出AB 、CD 的长,根据线段中点的性质求出EA 、DF ,计算即可.【详解】∵8AD =,6AC BD ==∴862AB AD BD =-=-=,862CD AD AC =-=-=∵点E 、F 分别是线段AB 、CD 的中点 ∴112122AE AB ==⨯=,112122DF CD ==⨯= ∴8116EF AD AE DF =--=--=cm答:线段EF 的长是6cm .【点睛】本题考查的是两点间的距离的计算,掌握线段中点的概念和性质、灵活运用数形结合思想是解题的关键.23、(1)2x =;(2)3-2x ,1【分析】(1)按照解方程的一般步骤进行,先去分母,去括号,移项,合并同类项即可;(2)先去括号化简这个式子,再代入x 的值求出式子的值.【详解】(1)解方程:12134x x +-=+, 去分母得:()()413212x x +=-+,去括号得:443612x x +=-+,移项得:436124x x -=-+-,合并同类项得:2x =;(2)223(1)(23)x x x ---223323x x x =--+32x =-,x=代入得:将1=-⨯=.原式3211【点睛】本题考查了解一元一次方程以及整式的化简求值,熟练掌握运算法则是解本题的关键.24、(1)l=2πr+2a;(2)S=πr2+2ar;(3) l≈47.4(m),S≈158.5(m2).【解析】试题分析:(1)利用花坛的周长=圆的周长+长方形的两条边即可求解;(2)利用花坛的面积=圆的面积+长方形的面积即可求解;(3)把a=8m,r=5m,分别代入(1)、(2)中所得的式子即可求解.试题解析:(1)l=2πr+2a;(2)S=πr2+2ar;(3)当a=8m,r=5m时,l=2π×5+2×8=10π+16≈47.4(m),S=π×52+2×8×5=25π+80≈158.5(m2).。

北大附中七年级(下)期末数学试卷(详细解答过程)

北大附中七年级(下)期末数学试卷(详细解答过程)

北大附中七年级(下)期末数学试卷一、选择题(本大题共8个小题,每小题3分,共24分).1.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,则图中∠1与∠2的关系是()A.相等B.互余C.互补D.没有关系2.(3分)下列坐标中表示的点位于第二象限的是()A.(0,﹣1)B.(﹣3,﹣2)C.(﹣2,1)D.(2,﹣3)3.(3分)已知二元一次方程组,则x+y等于()A.2B.3C.﹣1 D.54.(3分)已知下列各组数据,可以构成等腰三角形的是()A.1,2,1 B.2,2,1 C.1,3,1 D.2,2,55.(3分)不等式2x﹣5≤0的正整数解有()个.A.0B.1C.2D.36.(3分)全等三角形是()A.面积相等的三角形B.角相等的三角形C.周长相等的三角形D.能够完全重合的三角形7.(3分)若3x n﹣1﹣ax n+1=12x n,则a与n的值()A.a=3,n=5 B.a=4,n=5 C.a=2,n=3 D.a=4,n=48.(3分)如图,四边形ABCD中,AB=BD=DA=AC,则四边形ABCD中,最大的内角的度数是()A.90°B.120°C.135°D.150°二、填空题9.(3分)如图,已知直线l1∥l2,∠1=40°,那么∠2=_________度.10.(3分)方程3x+4y=7的非负整数解为_________.11.(3分)若A(m,n)在第三象限,则B(1﹣m,3n﹣5)在第_________象限.12.(3分)自钝角的顶点引角的一边的垂线,把这个钝角分成两个角的度数之比是3:1,则这个钝角的度数是_________.13.(3分)甲数的2倍比乙数大30,乙数的3倍比甲数的4倍少20,求甲、乙两数,若设甲、乙两数分别为x、y,则可得方程组_________.14.(3分)如图,已知AB∥DE,AB=DE,AF=DC,在图中有_________对全等三角形.15.(3分)若等腰三角形的周长为12,则腰长a的取值范围是_________.16.(3分)等腰三角形一个角为45°,则此等腰三角形顶角为_________.三、解答题17.解不等式及不等式组(1)2x+1>3 (2).18.解不等式﹣1>,并把解集在数轴上表示出来.19.如图,在△ABC的AB、AC边的外侧作等边△ACE和等边△ABF,连接BE、CF相交于点O,(1)求证:CF=BE;(2)连AO,则:①AO平分∠BAC;②OA平分∠EOF,你认为正确的是_________(填①或②).并证明你的结论.20.如图,在△ABC中,DE∥BC,FB、FC分别平分∠ACB,AB=18,AC=16,则△ADE的周长为______.21.(2011•眉山)关于x的不等式3x﹣a≤0,只有两个正整数解,则a的取值范围是_________.22.三角形中已知两边的长分别为5a和3a(a>0),则第三边上中线长度x取值范围是()A.2a<x<8a B.x>4a C.a<x<4a D.8a<x<2a23.(2007•呼和浩特)某车间有3个小组计划在10天内生产500件产品(每天每个小组生产量相同),按原先的生产速度,不能完成任务,如果每个小组每天比原先多生产1件产品,就能提前完成任务,每个小组原先每天生产多少件产品?(结果取整数)24.如图,已知AB=AD,AC=AE,∠BAD=∠CAE.求证:∠E=∠C.25.(2008•济宁)如图,四边形ABCD中,AB=AC=AD,若∠CAD=76°,则∠CBD=_________度.26.已知方程组和方程组有相同的解,求a、b的值.27.如图,已知△ABC和△ADE都是等腰直角三角形,点M为EC的中点.求证:△BMD为等腰直角三角形.28.解方程组.29.如果是方程组的解,则m+n=_________.30.如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?北大附中七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共24分).1.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,则图中∠1与∠2的关系是()A.相等B.互余C.互补D.没有关系考点:余角和补角;垂线.分析:根据余角、补角的定义计算.解答:解:因为EO⊥AB,∠COA+∠AOE+∠EOD=180°,所以∠1+∠2=90°.故选B.点评:主要考查了余角的概念.互为余角的两角的和为90°.解此题的关键是能准确的从图中找出这两个角之间的数量关系,从而做出判断.2.(3分)下列坐标中表示的点位于第二象限的是()A.(0,﹣1) B.(﹣3,﹣2)C.(﹣2,1)D.(2,﹣3)考点:点的坐标.分析:根据坐标系中各个象限内点的坐标的符号即可判断.解答:解:第二象限内的点横坐标小于0,纵坐标大于0.满足条件的只有(﹣2,1).故选C.点评:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.(3分)已知二元一次方程组,则x+y等于()A.2B.3C.﹣1 D.5考点:解二元一次方程组。

北大附属实验学校七年级期末三模试题

北大附属实验学校七年级期末三模试题

北大附属实验学校第二学期期末摸拟考试(三)初一数学试卷A 卷(满分100分)一、选择题 (每小题3分,共30分)1.下列计算正确的是 ( ) A .2a 2+3a 2=5a 4B .(2a 2)3=8a5C .2a 2(-a 3)=-2a 5D .6a 2m ÷2a m=3a2.下列图形中,不是轴对称图形的是( )A .B .C .D .3.如图所示,要得到DE ∥BC ,则需要的条件是( ) A .CD ⊥AB ,GF ⊥ABB .∠DCE +∠DEC =180°C .∠EDC =∠DCBD .∠BGF =∠DCB4.一个不透明的盒子中装有4个红球和2个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是( ) A .摸到红球是必然事件 B .摸到白球是不可能事件 C .摸到红球与摸到白球的可能性相同 D .摸到红球比摸到白球的可能性大5.如图,AC ⊥BC ,CD ⊥AB ,DE ⊥BC ,垂足分别为C ,D ,E ,则下列不正确的是( ) A .AC 是△ABC 的高 B .DE 是△BCD 的高 C .DE 是△ABE 的高 D .AD 是△ACD 的高 6. 要从小强、小红和小华三人随机选两人作为升旗手, 则小强和小红同时入选的概率是( ) A .23 B .13C .12D .16 7. 用直尺和圆规作一个角的平分线示意图如图所示,则能说明∠AOC =∠BOC 的依据是( )A .AASB .ASAC .SSSD .角平分线上的点到角的两边距离相等 8.已知两个变量x 和y ,它们之间的5组对应值如下表所示.则变量y 与x 之间的关系式可能是( )A .y =x+1B .y =2x +1C .y =x +2D .y =x+3 9. 如图,△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,若BM +CN =10,则线段MN 的长为( ) A .10 B .9 C .8 D .710. 某电视台“走基层”栏目的一位记者乘汽车赴360km 外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y (单位:km )与时间x (单位:h )之间的关系如图所示,则下列结论正确是( )A. 汽车在高速公路上的行驶速度为100km/hB. 乡村公路总长为90kmC. 汽车在乡村公路上的行驶速度为60km/hD. 该记者在出发后4.5h 到达采访地 二、填空题(每小题3分,共15分)11.计算:()()302241321---÷--+⎪⎭⎫ ⎝⎛-π= .12.一个DNA 分子的直径约为0.0000002cm ,用科学记数法表示为 cm .13.如图,△ABC 中,∠C=90°,DB 是∠ABC 的平分线,点E (第13题图) 是AB 的中点,且DE ⊥AB ,若BC=6 cm ,则AB=__________. 14.如图,在△ABC 中,AB =AC ,∠A =36°,AB 的垂直平分线 交AC 于点E ,垂足为点D ,连接BE ,则∠EBC 的度数为 .15.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l 甲、l 乙分别表示甲、乙两人前往目的地所行驶路程S (千米)随时间t (分)的变化情况,则每分钟乙比甲多行驶 千米.三、解答题(共55分)16.(每小题6分,共18分)(1)计算:()()()23222y x y x y x --+- (2)()232322221243⎪⎭⎫⎝⎛-÷-⋅⎪⎭⎫ ⎝⎛c b a c ab c ab(第14题图)(3)先化简,再求值: []x y y x y x y x 25)3)(()2(22÷--+-+,其中41,2=-=y x17.(8分)(1)如图:已知∠AOB 和C 、D 两点,求作一点P ,使PC=PD ,且P 到∠AOB 两边的距离相等.18.(9分)如图已知CD 是∠ACB 的平分线,∠ACB =50°,∠B =70°, DE ∥BC .求∠EDC 和∠BDC 的度数.(写出每步的理由)19.(10分) 如图是大众汽车的标志图案,其中蕴涵着许多几何知识.已知:BC//EF ,∠B=∠E , 那么AB 与DE 平行吗?为什么?(写出每步的理由)OB20.(10分)如图,在四边形ABCD 中,AD ∥BC ,E 是AB 的中点,连接DE 并延长交CB 的延长线于点F ,点G 在BC 边上,且∠GDF =∠ADF 。

北京大学附属中学七年级下学期期末压轴难题数学试题

北京大学附属中学七年级下学期期末压轴难题数学试题

北京大学附属中学七年级下学期期末压轴难题数学试题一、选择题1.116的平方根是() A .-14B .14C .14±D .12±2.下列运动属于平移的是( ) A .汽车在平直的马路上行驶 B .吹肥皂泡时小气泡变成大气泡 C .铅球被抛出D .红旗随风飘扬3.平面直角坐标系中有一点()2021,2022P -,则点P 在( ) A .第一象限B .第二象限C .第三象限D .第四象限4.下列四个命题其中正确的个数是( )①对顶角相等;②在同一平面内,若//a b ,c 与a 相交,则b 与c 也相交;③邻补角的平分线互相垂直;④在同一平面内,垂直于同一条直线的两条直线互相垂直 A .1个 B .2个C .3个D .4个5.如图所示,//CD AB ,OE 平分∠AOD ,80EOF ∠=︒,60D ∠=︒,则∠BOF 为( )A .35︒B .40︒C .25︒D .20︒ 6.若a 2=16,3b =2,则a +b 的值为( )A .12B .4C .12或﹣4D .12或47.如图,AB ∥CD ,将一块三角板(∠E =30°)按如图所示方式摆放,若∠EFH =25°,求∠HGD 的度数( )A .25°B .30°C .55°D .60°8.如图,一个蒲公英种子从平面直角坐标系的原点O 出发,向正东走3米到达点1A ,再向正北方向走6米到达点2A ,再向正西方向走9米到达点3A ,再向正南方向走12米到达点4A ,再向正东方向走15米到达点5A ,以此规律走下去,当蒲公英种子到达点10A 时,它在坐标系中坐标为( )A .(12,12)--B .(15,18)C .(15,12)-D .(15,18)-二、填空题9.已知 6.213=2.493, 62.13=7.882,则621.3=______________. 10.已知点()36,415A x y -+,点()5,B y x 关于x 轴对称,则x y +的值是____. 11.如图,在△ABC 中,∠A=50°,∠C=72°,BD 是△ABC 的一条角平分线,求∠ADB=__度.12.如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,则∠2的度数为_____.13.如图,将长方形ABCD 沿DE 折叠,使点C 落在边AB 上的点F 处,若44EFB ∠=︒,则EDC ∠=___º.14.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.15.若点P (3,1)m m +-在x 轴上,则点P 的坐标为____.16.如图,在平面直角坐标系中,点P 由原点O 出发,第一次跳动至点()11,1P ,第二次向左跳动3个单位至点()22,1P -,第三次跳动至点()32,2P ,第四次向左跳动5个单位至点()43,2P -,第五次跳动至点()53,3P ,…,依此规律跳动下去,点P 的第2020次跳动至点2020P 的坐标是_______.三、解答题17.计算:(1)239(6)27----. (2)﹣12+(﹣2)3×31127()89--⨯- .18.求下列各式中的x 值: (1)169x 2=144; (2)(x -2)2-36=0.19.请把以下证明过程补充完整,并在下面的括号内填上推理理由: 已知:如图,∠1=∠2,∠A =∠D . 求证:∠B =∠C .证明:∵∠1=∠2,(已知) 又:∵∠1=∠3,( ) ∴∠2=____________(等量代换)AE FD ∴∥(同位角相等,两直线平行)∴∠A =∠BFD ( ) ∵∠A =∠D (已知)∴∠D =_____________(等量代换) ∴____________∥CD ( ) ∴∠B =∠C ( )20.已知:如图,ΔABC 的位置如图所示:(每个方格都是边长为1个单位长度的正方形,ΔABC 的顶点都在格点上),点A ,B ,C 的坐标分别为(−1,0),(5,0),(1,5).(1)请在图中画出坐标轴,建立直角坐标系;(2)点P (m ,n )是ΔABC 内部一点,平移ΔABC ,点P 随ΔABC 一起平移,点A 落在A ′(0,4),点P 落在P ′(n ,6),求点P 的坐标并直接写出平移过程中线段PC 扫过的面积. 21.大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,122<<,于是可用21-来表示2的小数部分.请解答下列问题: (1)17的整数部分是________,小数部分是________.(2)如果5的小数部分为a ,13的整数部分为b ,求5a b +-的值. (3)已知:103x y +=+,其中x 是整数,且01y <<,求x y -的相反数.二十二、解答题22.(1)如图1,分别把两个边长为1cm 的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为______cm ;(2)若一个圆的面积与一个正方形的面积都是22πcm ,设圆的周长为C 圆.正方形的周长为C 正,则C 圆______C 正(填“=”,或“<”,或“>”)(3)如图2,若正方形的面积为2900cm ,李明同学想沿这块正方形边的方向裁出一块面积为2740cm 的长方形纸片,使它的长和宽之比为5:4,他能裁出吗?请说明理由?二十三、解答题23.(1)(问题)如图1,若//AB CD ,40AEP ∠=︒,130PFD ∠=︒.求EPF ∠的度数; (2)(问题迁移)如图2,//AB CD ,点P 在AB 的上方,问PEA ∠,PFC ∠,EPF ∠之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知EPF α∠=,PEA ∠的平分线和PFC ∠的平分线交于点G ,用含有α的式子表示G ∠的度数.24.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况,如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视,若灯A 转动的速度是a °/秒,灯B 转动的速度是b °/秒,且a 、b 满足()2450a b a b -++-=.假定这一带长江两岸河堤是平行的,即//PQ MN ,且60BAN ∠=︒(1)求a 、b 的值;(2)若灯B 射线先转动45秒,灯A 射线才开始转动,当灯B 射线第一次到达BQ 时运动停止,问A 灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,则在转动过程中,BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.25.如图,已知直线a ∥b ,∠ABC =100°,BD 平分∠ABC 交直线a 于点D ,线段EF 在线段AB 的左侧,线段EF 沿射线AD 的方向平移,在平移的过程中BD 所在的直线与EF 所在的直线交于点P .问∠1的度数与∠EPB 的度数又怎样的关系?(特殊化)(1)当∠1=40°,交点P 在直线a 、直线b 之间,求∠EPB 的度数;(2)当∠1=70°,求∠EPB 的度数;(一般化)(3)当∠1=n°,求∠EPB 的度数(直接用含n 的代数式表示).26.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠=n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.【参考答案】一、选择题 1.C 解析:C 【分析】根据平方根的定义(如果一个数的平方等于a ,那么这个数叫做a 的平方根)即可得. 【详解】解:因为211416⎛⎫±= ⎪⎝⎭,所以116的平方根是14±,故选:C . 【点睛】本题考查了平方根,熟练掌握平方根的定义是解题关键.2.A 【分析】根据平移的定义,对选项进行一一分析,排除错误答案.【详解】解:A、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A 选项符合;B、吹肥皂泡时小气泡变成大气泡,不属于平移解析:A【分析】根据平移的定义,对选项进行一一分析,排除错误答案.【详解】解:A、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A选项符合;B、吹肥皂泡时小气泡变成大气泡,不属于平移,故B选项不符合;C、铅球被抛出是旋转与平移组合,故C选项不符合;D、随风摆动的红旗,不属于平移,故D选项不符合.故选:A.【点睛】此题主要考查了平移定义,平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.3.D【分析】根据平面直角坐标系内各象限内点的坐标符号特征判定即可.【详解】解:根据平面直角坐标系内各象限内点的坐标符号特征可知:()2021,2022P-在第四象限故选D.【点睛】本题考查了各象限内点的坐标的符号特征,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).记住各象限内点的坐标的符号是解决的关键.4.D【分析】分别根据对顶角、邻补角、平行线的判定方法即可解答.【详解】①对顶角相等,正确;②在同一平面内,若//a b,c与a相交,则b与c也相交,正确;③邻补角之和为180°,所以它们平分线的夹角为180=902︒︒,即邻补角的平分线互相垂直,正确;④在同一平面内,垂直于同一条直线的两条直线互相垂直,正确.故选:D.【点睛】本题考查了平行线定理,两直线位置关系和对顶角、邻补角等知识,熟练掌握定理并灵活运用是解题关键. 5.B 【分析】由平行线的性质和角平分线的定义,求出60BOD D ∠=∠=︒,20DOF ∠=︒,然后即可求出∠BOF 的度数. 【详解】解:∵//CD AB ,60D ∠=︒∴60BOD D ∠=∠=︒,18060120AOD ∠=︒-︒=︒, ∵OE 平分∠AOD , ∴1120602DOE ∠=⨯︒=︒,∴806020DOF EOF DOE ∠=∠-∠=︒-︒=︒; ∴602040BOF BOD DOF ∠=∠-∠=︒-︒=︒; 故选:B . 【点睛】本题考查了平行线的性质,角平分线的定义,以及角的和差关系,解题的关键是熟练掌握所学的知识,正确的求出角的度数. 6.D 【分析】根据平方根和立方根的意义求出a 、b 即可. 【详解】 解:∵a 2=16, ∴a =±4, ∵2,∴b =8,∴a +b =4+8或﹣4+8, 即a +b =12或4. 故选:D . 【点睛】本题考查了平方根和立方根以及有理数加法,解题关键是明确平方根和立方根的意义,准确求出a 、b 的值,注意:一个正数的平方根有两个. 7.C 【分析】先根据三角形外角可求∠EHB =∠EFH +∠E =55°,根据平行线性质可得∠HGD =∠EHB =55°即可. 【详解】解:∵∠EHB 为△EFH 的外角,∠EFH =25°,∠E =30°, ∴∠EHB =∠EFH +∠E =25°+30°=55°, ∵AB ∥CD ,∴∠HGD=∠EHB=55°.故选C.【点睛】本题考查三角形外角性质,平行线性质,掌握三角形外角性质,平行线性质是解题关键.8.B【分析】由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:An﹣1An=3n,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标.【详解】解:根据题意可解析:B【分析】由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:A n﹣1A n=3n,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标.【详解】解:根据题意可知:OA1=3,A1A2=6,A2A3=9,A3A4=12,A4A5=15,A5A6=18•••,A9A10=30,∴A1点坐标为(3,0),A2点坐标为(3,6),A3点坐标为(﹣6,6),A4点坐标为(﹣6,﹣6),A5点坐标为(9,﹣6),A6点坐标为(9,12),以此类推,A9点坐标为(15,﹣12),所以A10点横坐标为15,纵坐标为﹣12+30=18,∴A10点坐标为(15,18),故选:B.【点睛】本题主要考查了坐标确定位置的运用,解题的关键是发现规律,利用规律解决问题,解题时注意:各象限内点P(a,b)的坐标特征为:①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.二、填空题9.93【解析】试题分析:当被开方数扩大100倍,则算术平方根就扩大10倍,则点睛:本题主要考查的就是算术平方根的性质.对于算术平方根,当被开方数每扩大100倍,则算术平方根就扩大10倍,当被开解析:93【解析】试题分析:当被开方数扩大100倍,则算术平方根就扩大10倍,则24.93点睛:本题主要考查的就是算术平方根的性质.对于算术平方根,当被开方数每扩大100倍,则算术平方根就扩大10倍,当被开方数每缩小100倍,则算术平方根就缩小10倍;对于立方根,当被开方数每扩大1000倍,则算术平方根就扩大10倍,当被开方数每缩小1000倍,则算术平方根就缩小10倍.10.-6 【分析】让两点的横坐标相等,纵坐标相加得0,即可得关于x ,y 的二元一次方程组,解值即可. 【详解】解:∵点,点关于x 轴对称, ∴; 解得:, ∴, 故答案为-6. 【点睛】 本题考查平面直解析:-6 【分析】让两点的横坐标相等,纵坐标相加得0,即可得关于x ,y 的二元一次方程组,解值即可. 【详解】解:∵点()36,415A x y -+,点()5,B y x 关于x 轴对称,∴3654150x y y x -=⎧⎨++=⎩; 解得:33x y =-⎧⎨=-⎩,∴=-6+x y , 故答案为-6. 【点睛】本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系:关于横轴的对称点,横坐标不变,纵坐标变成相反数.11.101 【分析】直接利用三角形内角和定理得出∠ABC 的度数,再利用角平分线的性质结合三角形内角和定理得出答案. 【详解】∵在△ABC中,∠A=50°,∠C=72°,∴∠ABC=180°−50°解析:101【分析】直接利用三角形内角和定理得出∠ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案.【详解】∵在△ABC中,∠A=50°,∠C=72°,∴∠ABC=180°−50°−72°=58°,∵BD是△ABC的一条角平分线,∴∠ABD=29°,∴∠ADB=180°−50°−29°=101°.故答案为:101.【点睛】此题考查三角形内角和定理,解题关键在于掌握其定理.12.40°【分析】利用平行线的性质求出∠3即可解决问题.【详解】解:∵直尺的两边互相平行,∴∠1=∠3=50°,∵∠2+∠3=90°,∴∠2=90°﹣∠3=40°,故答案为:40°.解析:40°【分析】利用平行线的性质求出∠3即可解决问题.【详解】解:∵直尺的两边互相平行,∴∠1=∠3=50°,∵∠2+∠3=90°,∴∠2=90°﹣∠3=40°,故答案为:40°.【点睛】本题考查了平行线的性质,直角三角形两锐角互余等知识,解题的关键是灵活运用所学知识解决问题.13.23【分析】根据∠EFB求出∠BEF,根据翻折的性质,可得到∠DEC=∠DEF,从而求出∠DEC 的度数,即可得到∠EDC.【详解】解:∵△DFE是由△DCE折叠得到的,∴∠DEC=∠FED解析:23【分析】根据∠EFB求出∠BEF,根据翻折的性质,可得到∠DEC=∠DEF,从而求出∠DEC的度数,即可得到∠ED C.【详解】解:∵△DFE是由△DCE折叠得到的,∴∠DEC=∠FED,又∵∠EFB=44°,∠B=90°,∴∠BEF=46°,∴∠DEC=1(180°-46°)=67°,2∴∠EDC=90°-∠DEC=23°,故答案为:23.【点睛】本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键.14.-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,∴a 0=1,a 1=5,a 2=10,a 3=10,a 4=5,a 5=1,把a 0=1,a 1=5,a 2=10,a 3=10,a 4=5,a 5=1代入﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5中, 可得:﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5=﹣32+80﹣80+40﹣10+1=﹣1,故答案为:﹣1【点睛】本题考查了代数式求值,解题的关键是根据题意求得a 0,a 1,a 2,a 3,a 4,a 5的值. 15.(4,0).【分析】根据x 轴上点的纵坐标为0列方程求出m 的值,再求解即可.【详解】∵点P (m+3,m-1)在x 轴上,∴m-1=0,解得m=1,所以,m+3=1+3=4,所以,点P 的坐解析:(4,0).【分析】根据x 轴上点的纵坐标为0列方程求出m 的值,再求解即可.【详解】∵点P (m+3,m-1)在x 轴上,∴m-1=0,解得m=1,所以,m+3=1+3=4,所以,点P 的坐标为(4,0).故答案为:(4,0).【点睛】本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关键.16.【分析】根据点的坐标、坐标的平移寻找规律即可求解.【详解】解:因为P1(1,1),P2(-2,1),P3(2,2),P4(-3,2),P5(3,3),P6(-4,3),P7(4,解析:()1011,1010-【分析】根据点的坐标、坐标的平移寻找规律即可求解.【详解】解:因为P1(1,1),P2(-2,1),P3(2,2),P4(-3,2),P5(3,3),P6(-4,3),P7(4,4),P8(-5,4),…P2n-1(n,n),P2n(-n-1,n)(n为正整数),所以2n=2020,∴n=1010,所以P2020(-1011,1010),故答案为(-1011,1010).【点睛】本题考查了点的坐标、坐标的平移,解决本题的关键是寻找点的变化规律.三、解答题17.(1)0;(2)-3.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果.【详解】解:(1)原式=3-6-解析:(1)0;(2)-3.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果.【详解】解:(1)原式=3-6-(-3)=3-6+3=0;(2)原式= -1+(-8)×18-(-3)×(-13)=-1-1-1=-3.故答案为(1)0;(2)-3.【点睛】本题考查实数的运算,涉及立方根、平方根、乘方运算,掌握实数的运算顺序是关键.18.(1)x=±;(2)x=8或x=-4.【分析】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解.【详解】解:(1)169x2=144,移项得:x2=,解得:x=±.解析:(1)x=±1213;(2)x=8或x=-4.【分析】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解.【详解】解:(1)169x2=144,移项得:x2=144 169,解得:x=±12 13.(2)(x-2)2-36=0,移项得:(x-2)2=36,开方得:x-2=6或x-2=-6解得:x=8或x=-4.故答案为(1)x=±1213;(2)x=8或x=-4.【点睛】本题考查利用平方根解方程,解答此题的关键是掌握平方根的概念.19.对顶角相等;∠3;两直线平行,同位角相等;∠BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据对顶角相等,平行线的性质与判定定理填空即可.【详解】证明:∵∠1=∠2,(解析:对顶角相等;∠3;两直线平行,同位角相等;∠BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据对顶角相等,平行线的性质与判定定理填空即可.【详解】证明:∵∠1=∠2,(已知)又:∵∠1=∠3,(对顶角相等)∴∠2=∠3(等量代换)AE FD∥(同位角相等,两直线平行)∴∠A=∠BFD(两直线平行,同位角相等)∵∠A=∠D(已知)∴∠D=∠BFD(等量代换)∴AB∥CD(内错角相等,两直线平行)∴∠B=∠C(两直线平行,内错角相等).【点睛】本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键.20.(1)见解析;(2)点P 的坐标为(1,2);线段PC 扫过的面积为.【分析】(1)根据点的坐标确定平面直角坐标系即可;(2)根据平移的规律求得m 、n 的值,可求得点P 的坐标,再利用平行四边形的性质解析:(1)见解析;(2)点P 的坐标为(1,2);线段PC 扫过的面积为3.【分析】(1)根据点的坐标确定平面直角坐标系即可;(2)根据平移的规律求得m 、n 的值,可求得点P 的坐标,再利用平行四边形的性质可求得线段PC 扫过的面积.【详解】解:(1)平面直角坐标系如图所示:(2)因为点A (−1,0)落在A ′(0,4),同时点P (m ,n )落在P ′(n ,6),∴146m n n +=⎧⎨+=⎩,解得12m n =⎧⎨=⎩, ∴点P 的坐标为(1,2);如图,线段PC 扫过的面积即为平行四边形PCC ′P ′的面积,⨯=.∴线段PC扫过的面积为313【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1)4, −4;(2)1;(3)−12+;【解析】【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、的范围,求出a、b的值,再代入求解即可;(3)先估算出的范围,求出x、y的解析:(1)174;(2)1;(3)−3【解析】【分析】(117的范围,即可得出答案;(2513的范围,求出a、b的值,再代入求解即可;(33x、y的值,再代入求解即可.【详解】(1)∵17,∴174,小数部分是174,故答案为:17−4;(2)∵5,∴52,∵13,∴b=3,∴2+3;(3)∵1<3<4,∴,∴,∵,其中x 是整数,且0<y<1,∴1,∴∴x−y 的相反数是−【点睛】此题考查估算无理数的大小,解题关键在于掌握估算方法.二十二、解答题22.(1);(2)<;(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的解析:(12)<;(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm ,∴小正方形的面积为1cm 2,∴两个小正方形的面积之和为2cm 2,即所拼成的大正方形的面积为2 cm 2,设大正方形的边长为x cm ,∴22x = , ∴x∴;(2)设圆的半径为r ,∴由题意得22r ππ=, ∴r = ∴=22C r π=圆设正方形的边长为a∴a∴=4C a =正∴1C C ===<圆正 故答案为:<;(3)解:不能裁剪出,理由如下:∵正方形的面积为900cm 2,∴正方形的边长为30cm∵长方形纸片的长和宽之比为5:4,∴设长方形纸片的长为5x ,宽为4x ,则54740x x ⋅=,整理得:237x =,∴22(5)252537925900x x ==⨯=>,∴22(5)30x >,∴530x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.二十三、解答题23.(1)90°;(2)∠PFC=∠PEA+∠P ;(3)∠G=α【分析】(1)根据平行线的性质与判定可求解;(2)过P 点作PN ∥AB ,则PN ∥CD ,可得∠FPN=∠PEA+∠FPE ,进而可得∠PF 解析:(1)90°;(2)∠PFC =∠PEA +∠P ;(3)∠G =12α【分析】(1)根据平行线的性质与判定可求解;(2)过P 点作PN ∥AB ,则PN ∥CD ,可得∠FPN =∠PEA +∠FPE ,进而可得∠PFC =∠PEA +∠FPE ,即可求解;(3)令AB 与PF 交点为O ,连接EF ,根据三角形的内角和定理可得∠GEF +∠GFE =12∠PEA +12∠PFC +∠OEF +∠OFE ,由(2)得∠PEA =∠PFC -α,由∠OFE +∠OEF =180°-∠FOE =180°-∠PFC 可求解.【详解】解:(1)如图1,过点P 作PM ∥AB ,∴∠1=∠AEP .∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:过P点作PN∥AB,则PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令AB与PF交点为O,连接EF,如图3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=12∠PEA+∠OEF,∠GFE=12∠PFC+∠OFE,∴∠GEF+∠GFE=12∠PEA+12∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=12(∠PFC−α)+12∠PFC+180°−∠PFC=180°−12α,∴∠G=180°−(∠GEF+∠GFE)=180°−180°+12α=12α.本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键. 24.(1),;(2)15秒或63秒;(3)不发生变化,【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数表示,即可判断.【详解】解析:(1)4a =,1b =;(2)15秒或63秒;(3)不发生变化,34BAC BCD ∠=∠【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数t 表示BAC ∠,BCD ∠即可判断.【详解】解:(1)∵()2450a b a b -++-=, ∴4050a b a b -=⎧⎨+-=⎩, 4a ∴=,1b =;(2)设A 灯转动t 秒,两灯的光束互相平行,①当045t <<时,4(45)1t t =+⨯,解得15t =;②当4590t <<时,()418018045t t -=-+,解得63t =;③当90135t <<时,436045t t -=+,解得135t =,(不合题意)综上所述,当t =15秒或63秒时,两灯的光束互相平行;(3)设A 灯转动时间为t 秒,1804CAN t ∠=︒-,60(1804)4120BAC t t ∴∠=︒-︒-=-︒,又//PQ MN ,18041803BCA CBD CAN t t t ∴∠=∠+∠=+︒-=︒-,而90ACD ∠=︒,9090(1803)390BCD BCA t t ∴∠=︒-∠=︒-︒-=-︒,:4:3BAC BCD ∴∠∠=,即34BAC BCD ∠=∠.本题考查平行线的性质和判定,非负数的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.25.(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当解析:(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|.【分析】(1)利用外角和角平分线的性质直接可求解;(2)分三种情况讨论:①当交点P在直线b的下方时;②当交点P在直线a,b之间时;③当交点P在直线a的上方时;分别画出图形求解;(3)结合(2)的探究,分两种情况得到结论:①当交点P在直线a,b之间时;②当交点P在直线a上方或直线b下方时;【详解】解:(1)∵BD平分∠ABC,∴∠ABD=∠DBC=1∠ABC=50°,2∵∠EPB是△PFB的外角,∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°;(2)①当交点P在直线b的下方时:∠EPB=∠1﹣50°=20°;②当交点P在直线a,b之间时:∠EPB=50°+(180°﹣∠1)=160°;③当交点P在直线a的上方时:∠EPB =∠1﹣50°=20°;(3)①当交点P 在直线a ,b 之间时:∠EPB =180°﹣|n°﹣50°|;②当交点P 在直线a 上方或直线b 下方时:∠EPB =|n°﹣50°|;【点睛】考查知识点:平行线的性质;三角形外角性质.根据动点P 的位置,分类画图,结合图形求解是解决本题的关键.数形结合思想的运用是解题的突破口.26.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O 作OP//MN ,由MN//OP//GH 得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n =3.【分析】(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ;(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641n n ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n n n n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN ,∵MN //GHl∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180°∴∠NAO +∠AOB +∠OBH =360°∵∠NAO =116°,∠OBH =144°∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒, ∴58NAC ∠=︒,又∵MN //GH ,∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒ ∵BD 平分OBG ∠,∴18DBF ∠=︒,又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒; ∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒; (3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641n MAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601n BKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.。

北京师范大学附属中学七年级上册数学期末试卷(带答案)-百度文库

北京师范大学附属中学七年级上册数学期末试卷(带答案)-百度文库

北京师范大学附属中学七年级上册数学期末试卷(带答案)-百度文库一、选择题1.如果一个角的补角是130°,那么这个角的余角的度数是( ) A .30°B .40°C .50°D .90°2.下列方程中,以32x =-为解的是( ) A .33x x =+B .33x x =+C .23x =D .3-3x x =3.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .4.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =15.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘 45 人,则还有 5 人不能上车.有下列四个等式:① 40m +25=45m +5 ;②2554045n n +-=;③2554045n n ++=;④ 40m +25 = 45m - 5 .其中正确的是( ) A .①③ B .①②C .②④D .③④6.如图,OA ⊥OC ,OB ⊥OD ,①∠AOB=∠COD ;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个( )A .1个B .2个C .3个D .4个7.方程3x +2=8的解是( ) A .3B .103C .2D .128.计算:2.5°=( )A .15′B .25′C .150′D .250′ 9.下列各数中,绝对值最大的是( )A .2B .﹣1C .0D .﹣310.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠211.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元 B .200元C .225元D .259.2元12.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为( )A .8B .12C .18D .20二、填空题13.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__.14.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………15.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____. 16.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.17.|-3|=_________; 18.若523m xy +与2n x y 的和仍为单项式,则n m =__________.19.如图甲所示,格边长为cm a 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm 的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.20.单项式﹣22πa b的系数是_____,次数是_____.21.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.22.化简:2x+1﹣(x+1)=_____.23.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .24.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.三、解答题25.某垃圾处理厂,对不可回收垃圾的处理费用为90元/吨,可回收垃圾的分拣处理费用也为90元/吨,分拣后再被相关企业回收,回收价格如下表: 垃圾种类 纸类 塑料类 金属类 玻璃类 回收单价(元/吨)500800500200据了解,可回收垃圾占垃圾总量的60%,现有,,A B C 三个小区12月份产生的垃圾总量分别为100吨,100吨和m 吨.(1)已知A小区金属类垃圾质量是塑料类的5倍,纸类垃圾质量是塑料类的2倍.设塑料类的质量为x吨,则A小区可回收垃圾有______吨,其中玻璃类垃圾有_____吨(用含x的代数式表示)(2)B小区纸类与金属类垃圾总量为35吨,当月可回收垃圾回收总金额扣除所有垃圾处理费后,收益16500元.求12月份该小区可回收垃圾中塑料类垃圾的质量.(3)C小区发现塑料类与玻璃类垃圾的回收总额恰好相等,所有可回收垃圾的回收总金额为12000元.设该小区塑料类垃圾质量为a吨,求a与m的数量关系.26.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?27.(阅读理解)若A,B,C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是(A,B)的优点.例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.(知识运用)如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数所表示的点是(M,N)的优点;(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?-.28.知图①,在数轴上有一条线段AB,点,A B表示的数分别是2-和11(1)线段AB=____________;(2)若M是线段AB的中点,则点M在数轴上对应的数为________;(3)若C为线段AB上一点.如图②,以点C为折点,将此数轴向右对折;如图③,点B落在点A的右边点B'处,若15AB B C''=,求点C在数轴上对应的数是多少?29.如图,已知数轴上点A表示的数为﹣1,点B表示的数为3,点P为数轴上一动点.(1)点A到原点O的距离为个单位长度;点B到原点O的距离为个单位长度;线段AB的长度为个单位长度;(2)若点P到点A、点B的距离相等,则点P表示的数为;(3)数轴上是否存在点P,使得PA+PB的和为6个单位长度?若存在,请求出PA的长;若不存在,请说明理由?(4)点P从点A出发,以每分钟1个单位长度的速度向左运动,同时点Q从点B出发,以每分钟2个单位长度的速度向左运动,请直接回答:几分钟后点P与点Q重合?30.解方程:()2(-2)-3419(1)x x x-=-四、压轴题31.已知长方形纸片ABCD,点E在边AB上,点F、G在边CD上,连接EF、EG.将∠BEG 对折,点B落在直线EG上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN.(1)如图1,若点F与点G重合,求∠MEN的度数;(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.32.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,B的距离相等,求点P对应的数x的值.(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?33.如图,在数轴上点A表示数a,点B表示数b,AB表示A点和B点之间的距离,且a,b满足|a+2|+(b+3a)2=0.(1)求A,B两点之间的距离;(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)②求甲乙两小球到原点距离相等时经历的时间.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】直接利用互补的定义得出这个角的度数,进而利用互余的定义得出答案.【详解】解:∵一个角的补角是130︒,∴这个角为:50︒,∴这个角的余角的度数是:40︒.故选:B.【点睛】此题主要考查了余角和补角,正确把握相关定义是解题关键.2.A解析:A【解析】【分析】把32x=-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是.【详解】解:A中、把32x=-代入方程得左边等于右边,故A对;B中、把32x=-代入方程得左边不等于右边,故B错;C中、把32x=-代入方程得左边不等于右边,故C错;D中、把32x=-代入方程得左边不等于右边,故D错.故答案为:A.【点睛】本题考查方程的解的知识,解题关键在于把x值分别代入方程进行验证即可.3.A解析:A【解析】【分析】从正面看:共分3列,从左往右分别有1,1,2个小正方形,据此可画出图形.【详解】∵从正面看:共分3列,从左往右分别有1,1,2个小正方形,∴从正面看到的平面图形是,故选:A.【点睛】本题考查简单组合体的三视图,解题时注意:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.4.A解析:A【解析】【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).据此可得出正确答案.【详解】解:A、213+x=5x符合一元一次方程的定义;B、x2+1=3x未知数x的最高次数为2,不是一元一次方程;C、32y=y+2中等号左边不是整式,不是一元一次方程;D、2x﹣3y=1含有2个未知数,不是一元一次方程;故选:A.【点睛】解题的关键是根据一元一次方程的定义,未知数x的次数是1这个条件.此类题目可严格按照定义解题.5.A解析:A【解析】【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【详解】根据总人数列方程,应是40m+25=45m+5,①正确,④错误;根据客车数列方程,应该为2554045n n++=,③正确,②错误;所以正确的是①③.故选A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,把握总的客车数量及总的人数不变.6.C解析:C【解析】【分析】根据垂直的定义和同角的余角相等分别计算后对各小题进行判断,由此即可求解.【详解】∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°,∴∠AOB=∠COD,故①正确;∠BOC+∠AOD=90°﹣∠AOB+90°+∠AOB=180°,故②正确;∠AOB+∠COD不一定等于90°,故③错误;图中小于平角的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD一共6个,故④正确;综上所述,说法正确的是①②④.故选C.【点睛】本题考查了余角和补角,垂直的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.7.C解析:C【解析】【分析】移项、合并后,化系数为1,即可解方程.【详解】x=,解:移项、合并得,36x=,化系数为1得:2故选:C.【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解法是解题的关键.8.C解析:C【解析】【分析】根据“1度=60分,即1°=60′”解答.【详解】解:2.5°=2.5×60′=150′.故选:C.【点睛】考查了度分秒的换算,度、分、秒之间是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.9.D解析:D【解析】试题分析:∵|2|=2,|﹣1|=1,|0|=0,|﹣3|=3,∴|﹣3|最大,故选D.考点:D.10.B解析:B【解析】【分析】延长EP交CD于点M,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP,继而根据平角定义以及∠BEP=∠GEP即可求得答案.【详解】延长EP交CD于点M,∵∠EPF是△FPM的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD,∴∠BEP=∠FMP,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.11.A解析:A【解析】【分析】设这种商品每件进价为x元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.12.A解析:A【解析】【分析】根据观察、计算可得长方体的长、宽、高,根据长方体的体积公式,可得答案.【详解】解:由图可知长方体的高是1,宽是3-1=2,长是6-2=4,长方体的容积是4×2×1=8,故选:A.【点睛】本题考查了几何体的展开图.能判断出该几何体为长方体的展开图,并能根据展开图求得长方体的长、宽、高是解题关键.二、填空题13.2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类解析:2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x的取值无关,即含字母x的系数为0.14.【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,n解析:83【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,∴第n个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.15.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和解析:09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.16.﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣,m=2或﹣2,当m=2时,原式=2(a+b)解析:﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣13,m=2或﹣2,当m=2时,原式=2(a+b)﹣3c+2m=1+4=5;当m=﹣2时,原式=2(a+b)﹣3c+2m=1﹣4=﹣3,综上,代数式的值为﹣3或5,故答案为:﹣3或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.17.3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.解析:3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.18.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.19.【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:,桌面被这些方框盖住部分的面积则为:故填:.【点睛】本题结合求解析:60200a -【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:22(10)a a --,桌面被这些方框盖住部分的面积则为:2223(10)4560200.a a a ⎡⎤--+⨯=-⎣⎦ 故填:60200a -.【点睛】本题结合求阴影部分面积列代数式,理解题意并会表示阴影部分面积是解题关键.20.﹣; 3.【解析】【分析】根据单项式的次数、系数的定义解答.【详解】解:单项式﹣的系数是﹣,次数是2+1=3,故答案是:﹣;3.【点睛】本题考查了单项式系数、次数的定义解析:﹣2π; 3. 【解析】【分析】 根据单项式的次数、系数的定义解答.【详解】 解:单项式﹣22πa b 的系数是﹣2π,次数是2+1=3, 故答案是:﹣2π;3. 【点睛】本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键. 21.(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=解析:(4n +1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=1+4×3,……∴摆第n 个图案需要火柴棒(4n+1)根,故答案为(4n+1).【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4根火柴棒.22.x【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.23.5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.解析:5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.24.【解析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第个单项式.【详解】单项式系数分别是1、3、5、7、9……,第个单项式的系数是;单解析:()21nn x - 【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第n 个单项式.【详解】单项式系数分别是1、3、5、7、9……,第n 个单项式的系数是21n -;单项式的次数分别是1、2、3、4、5……,第n 个单项式的次数是n ;第n 个单项式是()21nn x -; 故答案为()21nn x -. 【点睛】此题主要考查根据单项式的系数和次数探索规律,熟练掌握,即可解题.三、解答题25.(1)60,608x -;(2)B 小区12月份可回收垃圾中塑料垃圾质量是5吨;(3)340m a -=.【解析】【分析】(1)用A 小区的垃圾总量乘以可回收垃圾所占百分比即可求出可回收垃圾的数量,用x 表示出金属类垃圾和纸类垃圾的质量,即可求出玻璃类垃圾数量;(2)设12月份B 小区塑料类垃圾质量为x 吨,可用x 表示出玻璃类垃圾的质量,根据当月可回收垃圾回收总金额扣除所有垃圾处理费后,收益16500元列方程求出x 的值即可; (3)根据塑料类与玻璃类垃圾的回收总额恰好相等可用a 表示出玻璃类垃圾的质量,即可求出纸类与金属类垃圾总质量,根据所有可回收垃圾的回收总金额为12000元即可得出a 与m 的数量关系.【详解】(1)∵可回收垃圾占垃圾总量的60%,A 小区产生的垃圾总量100吨,∴可回收垃圾占垃圾总量为:100×60%=60(吨),∵金属类垃圾质量是塑料类的5倍,纸类垃圾质量是塑料类的2倍.塑料类的质量为x 吨, ∴金属类垃圾质量是5x ,纸类垃圾质量是2x ,∴玻璃类垃圾有:60-5x-2x-x=(60-8x)吨,故答案为:60,608x -(2)设12月份B 小区塑料类垃圾质量为x 吨,∴玻璃类垃圾质量为(6035)x --吨,即(25)x -吨,∴50035800200(25)1650010090x x ⨯++-=+⨯解得:5x =答:B 小区12月份可回收垃圾中塑料垃圾质量是5吨.(3)设玻璃类垃圾质量为y 吨,∵塑料类垃圾质量为a 吨,塑料类与玻璃类垃圾的回收总额相等,∴200y=800a ,解得:y=4a ,∴玻璃类垃圾质量为4a 吨,∴纸类与金属类垃圾总质量为(0.65)m a -吨,∵所有可回收垃圾的回收总金额为12000元,∴500(0.65)280012000m a a -+⨯=,化简得:340m a -=.【点睛】本题考查一元一次方程的应用,正确得出题中的等量关系是解题关键.26.(1)甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件;(2)售完这批T 恤衫商店共获利5960元.【解析】【分析】(1)可设乙种款型的T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,根据题意列出方程求解即可;(2)先求出甲款型的利润,乙款型前面销售一半的利润,后面销售一半的亏损,再相加即可求解.【详解】(1)设乙种款型的T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,依题意有:78006400301.5x x+=,解得x=40,经检验,x=40是原方程组的解,且符合题意,1.5x=60. 答:甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件;(2)6400x=160,160﹣30=130(元), 130×60%×60+160×60%×(40÷2)﹣160×[1﹣(1+60%)×0.5]×(40÷2)=4680+1920﹣640=5960(元).答:售完这批T 恤衫商店共获利5960元.【点睛】本题考查分式方程的应用,根据等量关系建立方程是关键,注意分式方程需要验根.27.(1)2或10;(2)当t 为5秒、10秒或7.5秒时,P 、A 和B 中恰有一个点为其余两点的优点.【解析】【分析】(1)设所求数为x,根据优点的定义分优点在M、N之间和优点在点N右边,列出方程解方程即可;(2)根据优点的定义可知分三种情况:①P为(A,B)的优点;②P为(B,A)的优点;③B为(A,P)的优点.设点P表示的数为x,根据优点的定义列出方程,进而得出t的值.【详解】解:(1)设所求数为x,当优点在M、N之间时,由题意得x﹣(﹣2)=2(4﹣x),解得x=2;当优点在点N右边时,由题意得x﹣(﹣2)=2(x﹣4),解得:x=10;故答案为:2或10;(2)设点P表示的数为x,则PA=x+20,PB=40﹣x,AB=40﹣(﹣20)=60,分三种情况:①P为(A,B)的优点.由题意,得PA=2PB,即x﹣(﹣20)=2(40﹣x),解得x=20,∴t=(40﹣20)÷4=5(秒);②P为(B,A)的优点.由题意,得PB=2PA,即40﹣x=2(x+20),解得x=0,∴t=(40﹣0)÷4=10(秒);③B为(A,P)的优点.由题意,得AB=2PA,即60=2(x+20)解得x=10,此时,点P为AB的中点,即A也为(B,P)的优点,∴t=30÷4=7.5(秒);综上可知,当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【点睛】本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解优点的定义,找出合适的等量关系列出方程,再求解.28.(1)9;(2)-6.5;(3)-6.【解析】【分析】(1)根据数轴上两点间的距离公式解决即可;(2)根据中点的性质,计算即可;(3)设AB'为x,根据题AB'与B'C的关系,将B'C用x表示出来,然后根据AC、AB、BC的关系,将AB用x表示出来,计算出x的值,即可求出AC的值,然后根据点A的坐标求出点C在数轴上的对应的数即可.【详解】(1)AB 的长度为2(11)9---=.(2)M 是线段AB 的中点,所以M 点在数轴上对应的点为2(11) 6.52-+-=-. (3)设AB '=x , ∵AB '=15B 'C ,则B 'C =5x . ∴由题意BC =B 'C =5x , ∴AC =B 'C -AB '=4x ,∴AB =AC +BC =AC +B 'C =9x ,即99x =,∴1x=,∴AC =4,又∵点A 表示的数为-2,∴-2-4=-6,∴点C 表示的数为-6.【点睛】本题考查了数轴上两点间的距离,中点的性质,线段折叠问题,解决本题的关键是正确理解题意,熟练掌握中点的性质,能够根据线段折叠找到线段之间的内在关系.29.(1)1,3,4;(2)1;(3)存在,PA=1;(4)经过4分钟后点P 与点Q 重合.【解析】【分析】(1)根据数轴上两点间的距离公式进行计算即可;(2)设点P 表示的数为x ,根据题意列出方程可求解;(3)设点P 表示的数为y ,分1y <-,13y -≤≤和3y >三种情况讨论,即可求解; (4)设经过t 分钟后点P 与点Q 重合,由点Q 的路程﹣点P 的路程=4,列出方程可求解.【详解】解:(1)∵点A 表示的数为﹣1,点B 表示的数为3,∴()OA=011--=,OB=303-=,()AB=314--=故答案为:1,3,4;(2)设点P 表示的数为x ,∵点P 到点A 、点B 的距离相等,∴3(1)-=--x x∴x =1,∴点P 表示的数为1,故答案为1;(3)存在,设点P 表示的数为y ,当1y <-时,∵PA +PB =136--+-=y y ,∴y =﹣2,∴PA =1(2)1---=,当13y -≤≤时,∵PA +PB =(1)36--+-=y y ,∴无解,当y >3时,∵PA +PB =(1)36--+-=y y ,∴y =4,∴PA =5;综上所述:PA =1或5.(4)设经过t 分钟后点P 与点Q 重合,2t ﹣t =4,∴t =4答:经过4分钟后点P 与点Q 重合.【点睛】本题考查数轴上两点间的距离,以及数轴上的动点问题,熟练掌握数轴上两点间的距离公式,并运用方程思想是解题的关键.30.−10【解析】【分析】分别按照一元一次方程的解法进行即可,即有去分母,去括号,移项,合并同类项,系数化成1.【详解】去括号得:2x−4−12x+3=9−9x ,移项得:2x−12x+9x=9+4−3,合并同类项得:−x=10,解得:x=−10;【点睛】此题考查解一元一次方程,解题关键在于掌握运算法则.四、压轴题31.(1)∠MEN =90°;(2)∠MEN =105°;(3)∠FEG =2α﹣180°,∠FEG =180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.32.(1)x=1;(2) x=-3或x=5;(3) 30.【解析】【分析】(1)根据题意可得4-x=x-(-2),解出x的值;(2)此题分为两种情况,当点P在B的右边时,当点P在B的左边时,分别列出方程求解即可;(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x进而求出即可.【详解】(1)4-x=x-(-2),解得:x=1,(2)①当点P在B的右边时得:x-(-2)+x-4=8,解得:x=5,②当点P在B的左边时得:-2-x+4-x=8,解得:x=-3,则x=-3或x=5.(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x,解得:x=6,则5x=30,故答案为30个单位长度.【点睛】本题主要考查了一元二次方程的应用,解此题的要点在于根据数轴得出点的位置.33.2+t6-2t或2t-6【解析】分析:(1)、先根据非负数的性质求出a、b的值,再根据两点间的距离公式即可求得A、B 两点之间的距离;(2)、设BC的长为x,则AC=2x,根据AB的长度得出x的值,从而得出点C所表示的数;(3)①甲球到原点的距离=甲球运动的路程+OA的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B处开始向左运动,一直到原点O,此时OB的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t>3时,乙球从原点O处开始向右运动,此时乙球运动的路程-OB的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0<t≤3,(Ⅱ)t>3,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.详解:(1)、由题意知a=-2,b=6,故AB=8.(2)、设BC的长为x,则AC=2x, ∵BC+AC=AB,∴x+2x=8,解得x=83,∴C点表示的数为6-8 3=103.(3)①2+t;6-2t或2t-6.②当2+t=6-2t时,解得t=43,当2+t=2t-6时,解得t=8.∴t=43或8.点睛:本题考查了非负数的性质,方程的解法,数轴,两点间的距离,有一定难度,运用分类讨论思想、方程思想及数形结合思想是解题的关键.。

北京大学附属中学初中数学七年级下期末经典测试卷(培优)

北京大学附属中学初中数学七年级下期末经典测试卷(培优)

一、选择题1.如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=( )A .100°B .130°C .150°D .80°2.点M (2,-3)关于原点对称的点N 的坐标是: ( ) A .(-2,-3) B .(-2, 3) C .(2, 3) D .(-3, 2) 3.计算2535-+-的值是( ) A .-1B .1C .525-D .255-4.已知实数x ,y 满足254()0x y x y +-+-=,则实数x ,y 的值是( ) A .22x y =-⎧⎨=-⎩B .0x y =⎧⎨=⎩C .22x y =⎧⎨=⎩D .33x y =⎧⎨=⎩ 5.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,则k 的值是( )A .k=-5B .k=5C .k=-10D .k=106.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( ) A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩7.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( ) A .210x +90(15﹣x )≥1.8 B .90x +210(15﹣x )≤1800 C .210x +90(15﹣x )≥1800 D .90x +210(15﹣x )≤1.88.点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,PA =4cm ,PB =5cm ,PC =2cm ,则点P 到直线m 的距离为( ) A .4cm B .2cm ;C .小于2cmD .不大于2cm9.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50°10.不等式4-2x >0的解集在数轴上表示为( )A .B .C .D .11.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( )A .3B .5C .7D .912.已知m=4+3,则以下对m 的估算正确的( ) A .2<m <3B .3<m <4C .4<m <5D .5<m <613.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4 D .()8,414.已知a ,b 为两个连续整数,且a<191-<b,则这两个整数是( ) A .1和2B .2和3C .3和4D .4和515.如图,直线l 1∥l 2,被直线l 3、l 4所截,并且l 3⊥l 4,∠1=44°,则∠2等于( )A .56°B .36°C .44°D .46°二、填空题16.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为______________.17.不等式71x ->的正整数解为:______________. 18.a 的平方根是3±,则a =_________19.已知不等式231x a -<<-的整数解有四个,则a 的范围是___________. 20.已知13x y =⎧⎨=⎩是二元一次方程组71mx ny nx my +=⎧⎨-=⎩的解,则2m +n 的值为_____.21.若3的整数部分是a ,小数部分是b ,则3a b -=______.22.如图,已知直线,AB CD 相交于点O ,如果40BOD ∠=︒,OA 平分COE ∠,那么DOE ∠=________度.23.已知点P (3﹣m ,m )在第二象限,则m 的取值范围是____________________.24.已知方程x m ﹣3+y 2﹣n =6是二元一次方程,则m ﹣n =_____.25.在平面直角坐标系中,若x 轴上的点P 到y 轴的距离为3,则点P 的坐标是________.三、解答题26.诗词是我国古代文化中的瑰宝,某市教育主管部门为了解本市初中生对诗词的学习情况,举办了一次“中华诗词”背诵大赛,随机抽取了部分同学的成绩(x 为整数,总分100分),绘制了如下尚不完整的统计图表. 组别 成绩分组(单位:分) 频数 A 50≤x <60 40 B 60≤x <70 a C 70≤x <80 90 D 80≤x <90 b E 90≤x <100100 合计c根据以上信息解答下列问题:(1)统计表中a = ,b = ,c = ;(2)扇形统计图中,m 的值为 ,“E ”所对应的圆心角的度数是 (度); (3)若参加本次大赛的同学共有4000人,请你估计成绩在80分及以上的学生大约有多少人?27.如图,将三角形ABC向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:(1)平移后的三个顶点坐标分别为:A1,B1,C1;(2)画出平移后三角形A1B1C1;(3)求三角形ABC的面积.28.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.(1)求点C的坐标.(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO 的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.29.一个工程队原定在10天内至少要挖土600m3,在前两天一共完成了120m3,由于整个工程调整工期,要求提前两天完成挖土任务.问以后几天内,平均每天至少要挖土多少m3?30.已知,点、、A B C 不在同一条直线上,//AD BE(1)如图①,当,58118A B ︒︒∠=∠=时,求C ∠的度数;(2)如图②,,AQ BQ 分别为,DAC EBC ∠∠的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下且//AC QB ,QP PB ⊥,直接写11,,DAC ACB CBE ∠∠∠的值【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.A 2.B 3.B 4.C 5.A 6.A 7.C 8.D 9.C10.D11.B12.B13.C14.C15.D二、填空题16.(13)或(51)【解析】【分析】平移中点的变化规律是:横坐标右移加左移减;纵坐标上移加下移减【详解】解:①如图1当A平移到点C时∵C(32)A的坐标为(20)点B的坐标为(01)∴点A的横坐标增大17.12345【解析】【分析】【详解】解:由7-x>1-x>-6x<6∴x的正整数解为123456故答案为1234518.81【解析】【分析】根据平方根的定义即可求解【详解】∵9的平方根为∴=9所以a=81【点睛】此题主要考查平方根的性质解题的关键是熟知平方根的定义19.【解析】【分析】根据不等式2<x<3a-1的整数解有四个得出关于a的不等式组求解即可得出a的取值范围【详解】∵不等式2<x<3a-1的整数解有四个∴整数解为3456∴6<3a-1≤7∴故答案为:【点20.3【解析】解:由题意可得:①-②得:4m+2n=6故2m+n=3故答案为321.【解析】【详解】若的整数部分为a小数部分为b∴a=1b=∴a-b==1故答案为122.100【解析】【分析】根据对顶角相等求出∠AOC再根据角平分线和邻补角的定义解答【详解】解:∵∠BOD=40°∴∠AOC=∠BOD=40°∵OA平分∠COE∴∠AOE=∠AOC=40°∴∠COE=823.m>3【解析】试题分析:因为点P在第二象限所以解得:考点:(1)平面直角坐标;(2)解不等式组24.3【解析】试题分析:先根据二元一次方程的定义得出关于mn的方程求出mn的值再代入m-n进行计算即可∵方程xm-3+y2-n=6是二元一次方程∴m-3=1解得m=4;2-n=1解得n=1∴m-n=4-25.(±30)【解析】解:若x轴上的点P到y轴的距离为3则∴x=±3故P的坐标为(±30)故答案为:(±30)26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】∠︒∴∠︒∴∠∠︒ .故选A.1=1303=502=23=1002.B解析:B【解析】试题解析:已知点M(2,-3),则点M关于原点对称的点的坐标是(-2,3),故选B.3.B解析:B【分析】根据正数的绝对值是它本身和负数的绝对值是它的相反数,化简合并即可得到答案. 【详解】解:23+-(23231-+=-+=, 故选B . 【点睛】本题主要考查了去绝对值的知识点,掌握正数的绝对值是它本身和负数的绝对值是它的相反数是解题的关键.4.C解析:C 【解析】 【分析】根据绝对值和平方的非负性,得到二元一次方程粗,求解即可得到答案. 【详解】解:∵实数x ,y 满足254()0x y x y +-+-=,∴40x y +-=且2()0x y -=,即40x y x y +-=⎧⎨-=⎩,解得:22x y =⎧⎨=⎩, 故选C . 【点睛】本题只要考查了绝对值和平方的非负性,知道一个数的绝对值不可能为负数和平方后所得的数非负数是解题的关键.5.A解析:A 【解析】 【分析】根据方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,可得方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值,再代入4x-3y+k=0即可求得k 的值. 【详解】∵方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,∴5320x yx y-=⎧⎨-=⎩,解得,1015xy=-⎧⎨=-⎩;把1015xy=-⎧⎨=-⎩代入4x-3y+k=0得,-40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值是解决问题的关键. 6.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.7.C解析:C【解析】【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x)≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.8.D解析:D【解析】【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥l时,PC是点P到直线l的距离,即点P到直线l的距离2cm,当PC不垂直直线l时,点P到直线l的距离小于PC的长,即点P到直线l的距离小于2cm,综上所述:点P到直线l的距离不大于2cm,故选:D.【点睛】考查了点到直线的距离,利用了垂线段最短的性质.9.C解析:C【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.10.D解析:D【解析】【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【详解】移项,得:-2x>-4,系数化为1,得:x<2,故选D.【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.解析:B【解析】【分析】把两个方程相加可得3x+3y=15,进而可得答案.【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.12.B解析:B【解析】【分析】【详解】∵12,∴3<m<4,故选B.【点睛】的取值范围是解题关键.13.C解析:C【解析】【分析】根据A和C的坐标可得点A向右平移4个单位,向上平移1个单位,点B的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D的坐标.【详解】解:∵点A(0,1)的对应点C的坐标为(4,2),即(0+4,1+1),∴点B(3,3)的对应点D的坐标为(3+4,3+1),即D(7,4);故选:C.【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.解析:C【解析】试题解析:∵4<19<5,∴3<19-1<4,∴这两个连续整数是3和4,故选C.15.D解析:D【解析】解:∵直线l1∥l2,∴∠3=∠1=44°.∵l3⊥l4,∠2=90°-∠3=90°-44°=46°.故选D.二、填空题16.(13)或(51)【解析】【分析】平移中点的变化规律是:横坐标右移加左移减;纵坐标上移加下移减【详解】解:①如图1当A平移到点C时∵C(32)A的坐标为(20)点B的坐标为(01)∴点A的横坐标增大解析:(1,3)或(5,1)【解析】【分析】平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:①如图1,当A平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点A的横坐标增大了1,纵坐标增大了2,平移后的B坐标为(1,3),②如图2,当B平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点B的横坐标增大了3,纵坐标增大2,∴平移后的A坐标为(5,1),故答案为:(1,3)或(5,1)【点睛】本题考查坐标系中点、线段的平移规律,关键要理解在平面直角坐标系中,图形的平移与图形上某点的平移相同,从而通过某点的变化情况来解决问题.17.12345【解析】【分析】【详解】解:由7-x>1-x>-6x<6∴x的正整数解为123456故答案为12345解析:1,2,3,4,5.【解析】【分析】【详解】解:由7-x>1-x>-6,x<6,∴x 的正整数解为1,2,3,4,5,6故答案为1,2,3,4,5.18.81【解析】【分析】根据平方根的定义即可求解【详解】∵9的平方根为∴=9所以a=81【点睛】此题主要考查平方根的性质解题的关键是熟知平方根的定义解析:81【解析】【分析】根据平方根的定义即可求解.【详解】,∵9的平方根为3a,所以a=81【点睛】此题主要考查平方根的性质,解题的关键是熟知平方根的定义.19.【解析】【分析】根据不等式2<x<3a-1的整数解有四个得出关于a的不等式组求解即可得出a的取值范围【详解】∵不等式2<x<3a-1的整数解有四个∴整数解为3456∴6<3a-1≤7∴故答案为:【点解析:78 33a≤<.【解析】【分析】根据不等式2<x<3a-1的整数解有四个,得出关于a的不等式组,求解即可得出a的取值范围.【详解】∵不等式2<x<3a-1的整数解有四个,∴整数解为3,4,5,6,∴6<3a-1≤7,∴78 33a≤<.故答案为:78 33a≤<.【点睛】本题考查了一元一次不等式组的整数解.关键是根据整数解的个数,确定含a的代数式的取值范围.20.3【解析】解:由题意可得:①-②得:4m+2n=6故2m+n=3故答案为3 解析:3【解析】解:由题意可得:3731m nn m+=⎧⎨-=⎩①②,①-②得:4m+2n=6,故2m+n =3.故答案为3.21.【解析】【详解】若的整数部分为a小数部分为b∴a=1b=∴a-b==1故答案为1解析:【解析】【详解】a,小数部分为b,∴a=1,b1,-b1)=1.故答案为1.22.100【解析】【分析】根据对顶角相等求出∠AOC再根据角平分线和邻补角的定义解答【详解】解:∵∠BOD=40°∴∠AOC=∠BOD=40°∵OA平分∠COE∴∠AOE=∠AOC=40°∴∠COE=8解析:100【解析】【分析】根据对顶角相等求出∠AOC,再根据角平分线和邻补角的定义解答.【详解】解:∵∠BOD=40°,∴∠AOC=∠BOD=40°,∵OA平分∠COE,∴∠AOE=∠AOC=40°,∴∠COE=80°.∴∠DOE=180°-80°=100°故答案为:100.【点睛】本题考查了对顶角相等的性质,角平分线、邻补角的定义,是基础题,熟记性质并准确识图是解题的关键.23.m>3【解析】试题分析:因为点P在第二象限所以解得:考点:(1)平面直角坐标;(2)解不等式组解析:m>3.【解析】试题分析:因为点P在第二象限,所以,30{mm-<>,解得:考点:(1)平面直角坐标;(2)解不等式组24.3【解析】试题分析:先根据二元一次方程的定义得出关于mn的方程求出mn的值再代入m-n进行计算即可∵方程xm-3+y2-n=6是二元一次方程∴m-3=1解得m=4;2-n=1解得n=1∴m-n=4-解析:3【解析】试题分析:先根据二元一次方程的定义得出关于m、n的方程,求出m、n的值,再代入m-n进行计算即可.∵方程x m-3+y2-n=6是二元一次方程,∴m-3=1,解得m=4;2-n=1,解得n=1,∴m-n=4-1=3.考点:二元一次方程的定义.25.(±30)【解析】解:若x轴上的点P到y轴的距离为3则∴x=±3故P的坐标为(±30)故答案为:(±30)解析:(±3,0)【解析】解:若x轴上的点P到y轴的距离为3,则3x=,∴x=±3.故P的坐标为(±3,0).故答案为:(±3,0).三、解答题26.(1)70,200,500;(2)14,72;(3)成绩在80分及以上的学生大约有2400人.【解析】【分析】(1)根据统计图中的数据可以分别求得a 、b 、c 的值;(2)根据统计图中的数据可以求得m 和“E”所对应的圆心角的度数;(3)根据题意可以求得成绩在80分及以上的学生大约有多少人.【详解】解:(1)()()408%18%18%40%20%70a =÷⨯----=,()408%40%200b =÷⨯=,408%500c =÷=,故答案为70,200,500; (2)%18%18%40%20%14%m =----=,“E ”所对应的圆心角的度数是:36020%72︒⨯=︒,故答案为14,72;(3)()400040%20%2400⨯+= (人),答:成绩在80分及以上的学生大约有2400人.【点睛】本题考查了扇形统计图、用样本估计总体、频数分布表,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.27.(1)A 1(4,7),B 1(1,2),C 1(6,4);(2)见解析;(3)192【解析】【分析】(1)根据平移的规律变化结合平面直角坐标系写出各点的坐标即可;(2)根据网格结构找出点A 、B 、C 平移后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;(3)利用△ABC 所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【详解】(1) 观察图形可知点A (-2,2),点B (-5,-3),点C (0,-1),所以将三角形ABC 向右平移5个单位长度,再向上平移3个单位长度后所得对应点的坐标为:A 1(3,5),B 1(0,0),C 1(5,2);(2)△A 1B 1C 1如图所示;(3)△ABC的面积=5×5-12×5×2-12×2×3-12×3×5=25-5-3-7.5=25-15.5=9.5.【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.28.(1)C(5,﹣4);(2)90°;(3)见解析.【解析】分析:(1)利用非负数的和为零,各项分别为零,求出a,b即可;(2)用同角的余角相等和角平分线的意义即可;(3)利用角平分线的意义和互余两角的关系简单计算证明即可.详解:(1)∵(a﹣3)2+|b+4|=0,∴a﹣3=0,b+4=0,∴a=3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4,∵S四边形AOBC=16.∴0.5(OA+BC)×OB=16,∴0.5(3+BC)×4=16,∴BC=5,∵C是第四象限一点,CB⊥y轴,∴C(5,﹣4);(2)如图,延长CA,∵AF是∠CAE的角平分线,∴∠CAF=0.5∠CAE,∵∠CAE=∠OAG,∴∠CAF=0.5∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=0.5∠ADO,∵DP是∠ODA的角平分线,∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90°(3)不变,∠ANM=45°理由:如图,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分线,∴∠DAN=0.5∠DAO=0.5∠BDM,∵CB⊥y轴,∴∠BDM+∠BMD=90°,∴∠DAN=0.5(90°﹣∠BMD),∵MN是∠BMD的角平分线,∴∠DMN=0.5∠BMD,∴∠DAN+∠DMN=0.5(90°﹣∠BMD)+0.5∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)] =180°﹣(45°+90°)=45°,∴D点在运动过程中,∠N的大小不变,求出其值为45°点睛:此题是四边形综合题,主要考查了非负数的性质,四边形面积的计算方法,角平分线的意义,解本题的关键是用整体的思想解决问题,也是本题的难点.29.80m3【解析】试题分析:设以后几天内,平均每天要挖掘xm3土方,根据题意可知原定在10天,已经干了两天,还要求提前2天,即为要6天至少挖掘(600-120)m3的土方,根据题意可得不等式,解不等式即可.试题解析:设平均每天挖土x m3,由题意得:(10﹣2﹣2)x≥600﹣120,解得:x≥80.答:平均每天至少挖土80m3.点睛:本题考查了一元一次不等式的应用,关键是弄清题意,清楚600m3的土方到底要用几天干完.30.(1)120°;(2)2∠AQB+∠C=180°;(3)∠DAC=60°,∠ACB=120°,∠CBE=120°.【解析】【分析】(1)过点C作CF∥AD,则CF∥BE,根据平行线的性质可得出∠ACF=∠A、∠BCF=180°-∠B,将其代入∠ACB=∠ACF+∠BCF即可求出∠ACB的度数;(2)过点Q作QM∥AD,则QM∥BE,根据平行线的性质、角平分线的定义可得出∠AQB=12(∠CBE-∠CAD),结合(1)的结论可得出2∠AQB+∠C=180°;(3)由(2)的结论可得出∠CAD=12∠CBE①,由QP⊥PB可得出∠CAD+∠CBE=180°②,联立①②可求出∠CAD、∠CBE的度数,再结合(1)的结论可得出∠ACB的度数.【详解】解:(1)在图①中,过点C作CF∥AD,则CF∥BE.∵CF∥AD∥BE,∴∠ACF=∠A,∠BCF=180°-∠B,∴∠ACB=∠ACF+∠BCF=180°-(∠B-∠A)=180°-(118°-58°)=120°.(2)在图2中,过点Q作QM∥AD,则QM∥BE.∵QM∥AD,QM∥BE,∴∠AQM=∠NAD,∠BQM=∠EBQ.∵AQ平分∠CAD,BQ平分∠CBE,∴∠NAD=12∠CAD,∠EBQ=12∠CBE,∴∠AQB=∠BQM-∠AQM=12(∠CBE-∠CAD).∵∠C=180°-(∠CBE-∠CAD)=180°-2∠AQB,∴2∠AQB+∠C=180°.(3)∵AC∥QB,∴∠AQB=∠CAP=12∠CAD,∠ACP=∠PBQ=12∠CBE,∴∠ACB=180°-∠ACP=180°-12∠CBE.∵2∠AQB+∠ACB=180°,∴∠CAD=12∠CBE.又∵QP⊥PB,∴∠CAP+∠ACP=90°,即∠CAD+∠CBE=180°,∴∠CAD=60°,∠CBE=120°,∴∠ACB=180°-(∠CBE-∠CAD)=120°,故∠DAC=60°,∠ACB=120°,∠CBE=120°.【点睛】本题考查了平行线的性质、邻补角、角平分线以及垂线,解题的关键是:(1)根据平行线的性质结合角的计算找出∠ACB=180°-(∠B-∠A);(2)根据平行线的性质、角平分线的定义找出∠AQB=12(∠CBE-∠CAD);(3)由AC∥QB、QP⊥PB结合(1)(2)的结论分别求出∠DAC、∠ACB、∠CBE的度数.。

北京师范大学附属中学七年级上册数学期末试卷(带答案)-百度文库

北京师范大学附属中学七年级上册数学期末试卷(带答案)-百度文库

北京师范大学附属中学七年级上册数学期末试卷(带答案)-百度文库一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线 2.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103B .3.84×104C .3.84×105D .3.84×1063.根据等式的性质,下列变形正确的是( ) A .若2a =3b ,则a =23b B .若a =b ,则a +1=b ﹣1 C .若a =b ,则2﹣3a =2﹣3bD .若23a b=,则2a =3b 4.下列四个式子:9,327-,3-,(3)--,化简后结果为3-的是( ) A .9B .327-C .3-D .(3)--5.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上6.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a 、b 之间把绳子再剪(n ﹣2)次(剪刀的方向与a 平行),这样一共剪n 次时绳子的段数是( )A .4n+1B .4n+2C .4n+3D .4n+57.若21(2)0x y -++=,则2015()x y +等于( ) A .-1 B .1 C .20143 D .20143- 8.下列四个数中最小的数是( ) A .﹣1B .0C .2D .﹣(﹣1)9.方程3x ﹣1=0的解是( ) A .x =﹣3B .x =3C .x =﹣13D .x =1310.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( ) A .2 B .4 C .﹣2 D .﹣4 11.已知105A ∠=︒,则A ∠的补角等于( )A .105︒B .75︒C .115︒D .95︒12.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为( )cm .A .2B .3C .4D .6二、填空题13.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____. 14.化简:2xy xy +=__________. 15.当a=_____时,分式13a a --的值为0. 16.若方程11222m x x --=++有增根,则m 的值为____. 17.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋. 18.若∠1=35°21′,则∠1的余角是__. 19.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________. 20.数字9 600 000用科学记数法表示为 .21.如图,点O 在直线AB 上,射线OD 平分∠AOC ,若∠AOD=20°,则∠COB 的度数为_____度.22.-2的相反数是__.23.一个水库的水位变化情况记录:如果把水位上升5cm记作+5cm,那么水位下降3cm 时水位变化记作_____.24.a※b是新规定的这样一种运算法则:a※b=a﹣b+2ab,若(﹣2)※3=_____.三、压轴题25.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=,AC =,BE=;(2)当线段CE运动到点A在C、E之间时,①设AF长为x,用含x的代数式表示BE=(结果需化简.....);②求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.26.已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF=14°时,t=秒.27.已知多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b .(1)设a 与b 分别对应数轴上的点A 、点B ,请直接写出a = ,b = ,并在数轴上确定点A 、点B 的位置;(2)在(1)的条件下,点P 以每秒2个单位长度的速度从点A 向B 运动,运动时间为t 秒:①若PA ﹣PB =6,求t 的值,并写出此时点P 所表示的数;②若点P 从点A 出发,到达点B 后再以相同的速度返回点A ,在返回过程中,求当OP =3时,t 为何值?28.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒. ①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数29.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.30.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.31.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空) ()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.32.已知数轴上三点A ,O ,B 表示的数分别为6,0,-4,动点P 从A 出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P 到点A 的距离与点P 到点B 的距离相等时,点P 在数轴上表示的数是______; (2)另一动点R 从B 出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P 、R 同时出发,问点P 运动多少时间追上点R ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【详解】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选C.【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.2.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】试题分析:384 000=3.84×105.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.C解析:C【解析】【分析】利用等式的性质对每个式子进行变形即可找出答案.【详解】解:A、根据等式性质2,2a=3b两边同时除以2得a=32b,原变形错误,故此选项不符合题意;B、根据等式性质1,等式两边都加上1,即可得到a+=b+1,原变形错误,故此选项不符合题意;C 、根据等式性质1和2,等式两边同时除以﹣3且加上2应得2﹣3a =2﹣3b,原变形正确,故此选项符合题意;D 、根据等式性质2,等式两边同时乘以6,3a =2b ,原变形错误,故此选项不符合题意. 故选:C . 【点睛】本题主要考查等式的性质.解题的关键是掌握等式的性质.运用等式性质1必须注意等式两边所加上的(或减去的)必须是同一个数或整式;运用等式性质2必须注意等式两边所乘的(或除的)数或式子不为0,才能保证所得的结果仍是等式.4.B解析:B 【解析】 【分析】由题意直接利用求平方根和立方根以及绝对值的性质和去括号分别化简得出答案. 【详解】解:,故排除A;=3-,选项B 正确; C. 3-=3,故排除C; D. (3)--=3,故排除D. 故选B. 【点睛】本题主要考查求平方根和立方根以及绝对值的性质和去括号原则,正确掌握相关运算法则是解题关键.5.A解析:A 【解析】 【分析】根据图形可以发现点的变化规律,从而可以得到点2014P 落在哪条射线上. 【详解】 解:由图可得,1P 到5P 顺时针,5P 到9P 逆时针,()2014182515-÷=⋯,∴点2014P 落在OA 上,故选A . 【点睛】本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.6.A【解析】试题分析:设段数为x,根据题意得:当n=0时,x=1,当 n=1时,x=1+4=5,当 n=2时,x=1+4+4=9,当 n=3时,x=1+4+4+4=13,所以当n=n时,x=4n+1.故选A.考点:探寻规律.7.A解析:A【解析】(y+2)2=0,列出方程x-1=0,y+2=0,求出x=1、y=-2,代入所求代数式(x+y)2015=(1﹣2)2015=﹣1.故选A8.A解析:A【解析】【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可.【详解】解:﹣(﹣1)=1,∴﹣1<0<﹣(﹣1)<2,故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.9.D解析:D【解析】【分析】方程移项,把x系数化为1,即可求出解.【详解】解:方程3x﹣1=0,移项得:3x=1,解得:x=13,故选:D.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.10.B解析:B【分析】利用相反数的性质列出方程,求出方程的解即可得到x的值.【详解】解:根据题意得:3x﹣9﹣3=0,解得:x=4,故选:B.【点睛】此题考查了相反数的性质及解一元一次方程,熟练掌握运算法则是解本题的关键.11.B解析:B【解析】【分析】由题意直接根据互补两角之和为180°求解即可.【详解】解:∵∠A=105°,∴∠A的补角=180°-105°=75°.故选:B.【点睛】本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.12.C解析:C【解析】【分析】根据MN=CM+CN=12AC+12CB=12(AC+BC)=12AB即可求解.【详解】解:∵M、N分别是AC、BC的中点,∴CM=12AC,CN=12BC,∴MN=CM+CN=12AC+12BC=12(AC+BC)=12AB=4.故选:C.【点睛】本题考查了线段中点的性质,找到MC与AC,CN与CB关系,是本题的关键二、填空题13.09.【分析】把千分位上的数字4进行四舍五入即可. 【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09. 故答案为0.09. 【点睛】本题考查了近似数和解析:09. 【解析】 【分析】把千分位上的数字4进行四舍五入即可. 【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09. 故答案为0.09. 【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.14.. 【解析】 【分析】由题意根据合并同类项法则对题干整式进行化简即可. 【详解】 解: 故填. 【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.解析:3xy . 【解析】 【分析】由题意根据合并同类项法则对题干整式进行化简即可. 【详解】解:23.xy xy xy += 故填3xy . 【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式解析:1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.16.2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x的值代入整式方程即可求出m的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4解析:2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x的值代入整式方程即可求出m的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4+4故答案为:2【点睛】此题考查分式方程的增根,掌握运算法则是解题关键17.5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴解析:5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴子原来所托货物的袋数加上1,根据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得:2(x﹣1)﹣1﹣1=x+1解得:x=5.故驴子原来所托货物的袋数是5.故答案为5.【点睛】解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.18.54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.解析:54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.19.42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求解析:42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求出x的之即可.【详解】解:当4x-2=166时,解得x=42当4x-2小于149时,将4x-2作为一个整体重新输入即4(4x-2)-2=166,解得x=11故答案为42或11【点睛】本题考查了程序运算题,解决本题的关键是正确理解题意,熟练掌握一元一次方程的解法,考虑问题需全面,即当输出结果小于149时,将4x-2作为一个整体重新输入程序.20.6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是解析:6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).9 600 000一共7位,从而9 600 000=9.6×106.21.140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:140解析:140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:14022.2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.解析:2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.23.﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3c m.故答案为:﹣3解析:﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.故答案为:﹣3cm . 【点睛】此题主要考查有理数的应用,解题的关键是熟知有理数的意义.24.-17 【解析】 【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果. 【详解】∵a ※b =a ﹣b+2ab , ∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3 =﹣解析:-17 【解析】 【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果. 【详解】∵a ※b =a ﹣b+2ab , ∴(﹣2)※3 =﹣2﹣3+2×(﹣2)×3 =﹣2﹣3﹣12 =﹣17. 故答案为:﹣17. 【点睛】此题考查了有理数的混合运算,属于新定义题型,弄清题中的新定义是解本题的关键.三、压轴题25.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】 【分析】(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案 (3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解 【详解】(1)数轴上A 、B 两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7, ∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2, 故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF , 设AF=EF=x,∴CF=8﹣x , ∴BE=16﹣2x=2(8﹣x ), ∴BE=2CF.故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t ,=4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21,解得:48t=7或527; 故答案为t=1或3或487或527. 【点睛】本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健26.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4. 【解析】 【分析】(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可; (3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+,解方程即可求出t 的值. 【详解】解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°; (2)∠AOE ﹣∠BOF 的值是定值由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°, ∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°; (3)根据题意得∠BOF =(3t+14)°, ∴3314202t t +=+, 解得4t =. 故答案为4. 【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键. 27.(1)﹣4,6;(2)①4;②1319,22或 【解析】 【分析】(1)根据多项式的常数项与次数的定义分别求出a ,b 的值,然后在数轴上表示即可; (2)①根据PA ﹣PB =6列出关于t 的方程,解方程求出t 的值,进而得到点P 所表示的数;②在返回过程中,当OP =3时,分两种情况:(Ⅰ)P 在原点右边;(Ⅱ)P 在原点左边.分别求出点P 运动的路程,再除以速度即可. 【详解】(1)∵多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b , ∴a =﹣4,b =6. 如图所示:故答案为﹣4,6;(2)①∵PA =2t ,AB =6﹣(﹣4)=10, ∴PB =AB ﹣PA =10﹣2t . ∵PA ﹣PB =6,∴2t ﹣(10﹣2t )=6,解得t =4,此时点P 所表示的数为﹣4+2t =﹣4+2×4=4; ②在返回过程中,当OP =3时,分两种情况:(Ⅰ)如果P在原点右边,那么AB+BP=10+(6﹣3)=13,t=132;(Ⅱ)如果P在原点左边,那么AB+BP=10+(6+3)=19,t=192.【点睛】本题考查了一元一次方程的应用,路程、速度与时间关系的应用,数轴以及多项式的有关定义,理解题意利用数形结合是解题的关键.28.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣483 4【解析】【分析】(1)根据A点对应的数为60,B点在A点的左侧,AB=30求出B点对应的数;根据AC=4AB求出AC的距离;(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP 求解;②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.【详解】(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,∴B点对应的数为60﹣30=30;∵C点到A点距离是B点到A点距离的4倍,∴AC=4AB=4×30=120;(2)①当P点在AB之间运动时,∵AP=3t,∴BP=AB﹣AP=30﹣3t.故答案为30﹣3t;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x =15,此时P 点在数轴上对应的数是:60﹣5×15=﹣15; 第二次相遇是点Q 到达C 点后返回到A 点的途中. ∵CQ+BP=BC , ∴5(x ﹣24)+3x =90, 解得x =1054, 此时P 点在数轴上对应的数是:30﹣3×1054=﹣4834. 综上,相遇时P 点在数轴上对应的数为﹣15或﹣4834. 【点睛】本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.29.(1)AC=4cm, BC=8cm ;(2)当45t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)35191cm.224t PQ =当为,,时, 【解析】 【分析】(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可; (3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可. 【详解】(1)AC=4cm, BC=8cm.(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+, 即3t 43t t =-+,解得4t 5=. 所以当4t 5=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,35t t 22解得或==,P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,193t 4t 1122,t 4+++=⨯=则解得, 3519t PQ 1cm.224所以当为,,时,=【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.30.(1) AB =15,BC =20;(2) 点N 移动15秒时,点N 追上点M;(3) BC -AB 的值不会随着时间的变化而改变,理由见解析 【解析】 【分析】(1)根据数轴上点的位置求出AB 与BC 的长即可,(2)不变,理由为:经过t 秒后,A 、B 、C 三点所对应的数分别是-24-t ,-10+3t ,10+7t ,表示出BC ,AB ,求出BC-AB 即可做出判断,(3)经过t 秒后,表示P 、Q 两点所对应的数,根据题意列出关于t 的方程,求出方程的解得到t 的值,分三种情况考虑,分别求出满足题意t 的值即可. 【详解】解:(1)AB =15,BC =20,(2)设点N 移动x 秒时,点N 追上点M ,由题意得:15322x x ⎛⎫=+ ⎪⎝⎭,解得15x =,答:点N 移动15秒时,点N 追上点M .(3)设运动时间是y 秒,那么运动后A 、B 、C 三点表示的数分别是25y --、103y -+、107y +,∴BC ()()107103204y y y =+--+=+,AB ()()10325154y y y =-+---=+, ∴BC -AB ()()2041545y y =+-+=, ∴BC -AB 的值不会随着时间的变化而改变. 【点睛】本题主要考查了整式的加减,数轴,以及两点间的距离,解决本题的关键是要熟练掌握行程问题中等量关系和数轴上点,31.(1)2AC cm =,4DM cm =;(2)6AC MD cm +=;(3)4AM =;(4)13MN AB =或1. 【解析】【详解】(1)根据题意知,CM=2cm,BD=4cm.∵AB=12cm,AM=4cm,∴BM=8cm,∴AC=AM﹣CM=2cm,DM=BM﹣BD=4cm.故答案为2,4;(2)当点C、D运动了2 s时,CM=2 cm,BD=4 cm.∵AB=12 cm,CM=2 cm,BD=4 cm,∴AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD=12﹣2﹣4=6 cm;(3)根据C、D的运动速度知:BD=2MC.∵MD=2AC,∴BD+MD=2(MC+AC),即MB=2AM.∵AM+BM=AB,∴AM+2AM=AB,∴AM=13AB=4.故答案为4;(4)①当点N在线段AB上时,如图1.∵AN﹣BN=MN.又∵AN﹣AM=MN,∴BN=AM=4,∴MN=AB﹣AM﹣BN=12﹣4﹣4=4,∴MNAB=412=13;②当点N在线段AB的延长线上时,如图2.∵AN﹣BN=MN.又∵AN﹣BN=AB,∴MN=AB=12,∴MNAB=1212=1.综上所述:MNAB=13或1.【点睛】本题考查了两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.32.(1)1;(2)点P运动5秒时,追上点R;(3)线段MN的长度不发生变化,其长度为5.【解析】试题分析:(1)由已知条件得到AB=10,由PA=PB,于是得到结论;(2)设点P运动x秒时,在点C处追上点R,于是得到AC=6x BC=4x,AB=10,根据AC-BC=AB,列方程即可得到结论;(3)线段MN的长度不发生变化,理由如下分两种情况:①当点P在A、B之间运动时②当点P运动到点B左侧时,求得线段MN的长度不发生变化.试题解析:解:(1)(1)∵A,B表示的数分别为6,-4,∴AB=10,∵PA=PB,∴点P表示的数是1,(2)设点P运动x秒时,在点C处追上点R(如图)则:AC=6x BC=4x AB=10∵AC-BC=AB∴ 6x-4x=10解得,x=5∴点P运动5秒时,追上点R.(3)线段MN的长度不发生变化,理由如下:分两种情况:点P在A、B之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5点P运动到点B左侧时:MN=MP-NP=AP-BP=(AP-BP)=AB=5综上所述,线段MN的长度不发生变化,其长度为5.点睛:此题主要考查了一元一次方程的应用、数轴,以及线段的计算,解决问题的关键是根据题意正确画出图形,要考虑全面各种情况,不要漏解.。

北京师范大学附属中学七年级上册数学期末试卷(带答案)-百度文库

北京师范大学附属中学七年级上册数学期末试卷(带答案)-百度文库

北京师范大学附属中学七年级上册数学期末试卷(带答案)-百度文库一、选择题1.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数, 若将T字框上下左右移动,则框住的四个数的和不可能得到的数是()A.22 B.70 C.182 D.2062.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为()A.0.1289×1011B.1.289×1010C.1.289×109D.1289×1073.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A.208B.480C.496D.5924.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x天,由题意得方程()A.410+415x-=1 B.410+415x+=1 C.410x++415=1 D.410x++15x=15.如图所示,数轴上A,B两点表示的数分别是2﹣1和2,则A,B两点之间的距离是()A.22B.22﹣1 C.22+1 D.1 6.计算32a a⋅的结果是()A.5a;B.4a;C.6a;D.8a.7.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°8.若x=﹣13,y=4,则代数式3x+y﹣3xy的值为()A.﹣7 B.﹣1 C.9 D.79.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm,根据题意,可得方程为()A.2(x+10)=10×4+6×2 B.2(x+10)=10×3+6×2C.2x+10=10×4+6×2 D.2(x+10)=10×2+6×210.化简(2x-3y)-3(4x-2y)的结果为( )A.-10x-3y B.-10x+3y C.10x-9y D.10x+9y11.若a<b,则下列式子一定成立的是( )A.a+c>b+c B.a-c<b-c C.ac<bc D.a b c c <12.用代数式表示“a的3倍与b的差的平方”,正确的是()A.3(a﹣b)2B.(3a﹣b)2C.3a﹣b2D.(a﹣3b)2 13.图中是几何体的主视图与左视图, 其中正确的是( )A.B.C.D.14.如图,4张如图1的长为a,宽为b(a>b)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S2=2S1,则a,b满足()A.a=32b B.a=2b C.a=52b D.a=3b15.正方形ABCD的轨道上有两个点甲与乙,开始时甲在A处,乙在C处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm,乙的速度为每秒5 cm,已知正方形轨道ABCD的边长为2 cm,则乙在第2 020次追上甲时的位置在()A.AB上B.BC上C.CD上D.AD上二、填空题16.单项式2x m y3与﹣5y n x是同类项,则m﹣n的值是_____.17.如果实数a,b满足(a-3)2+|b+1|=0,那么a b=__________.18.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________.19.如图,将一张长方形纸片分別沿着EP,FP对折,使点B落在点B,点C落在点C′.若点P,B′,C′不在一条直线上,且两条折痕的夹角∠EPF=85°,则∠B′PC′=_____.20.写出一个比4大的无理数:____________.21.在数轴上,点A,B表示的数分别是8,10.点P以每秒2个单位长度从A出发沿数轴向右运动,同时点Q以每秒3个单位长度从点B出发沿数轴在B,A之间往返运动,设运动时间为t秒.当点P,Q之间的距离为6个单位长度时,t的值为__________.22.如图,点B在线段AC上,且AB=5,BC=3,点D,E分别是AC,AB的中点,则线段ED的长度为_____.23.计算:()222a -=____;()2323x x ⋅-=_____.24.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____.25.﹣225ab π是_____次单项式,系数是_____. 26.计算7a 2b ﹣5ba 2=_____.27.材料:一般地,n 个相同因数a 相乘n a a a a ⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.28.若2a ﹣b=4,则整式4a ﹣2b+3的值是______.29.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n 个图案有2019个黑棋子,则n=______.30.设一列数中相邻的三个数依次为m ,n ,p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,b ,128…,则b=________.三、压轴题31.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数;(3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.32.如图,在数轴上的A 1,A 2,A 3,A 4,……A 20,这20个点所表示的数分别是a 1,a 2,a 3,a 4,……a 20.若A 1A 2=A 2A 3=……=A 19A 20,且a 3=20,|a 1﹣a 4|=12.(1)线段A3A4的长度=;a2=;(2)若|a1﹣x|=a2+a4,求x的值;(3)线段MN从O点出发向右运动,当线段MN与线段A1A20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN=5,求线段MN的运动速度.33.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)出数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.34.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.请根据上述规定回答下列问题:(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为-4,求n的值;(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;(3)若点E在数轴上(不与A、B重合),满足BE=12AE,且此时点E为点A、B的“n节点”,求n的值.35.如图1,线段AB的长为a.(1)尺规作图:延长线段AB到C,使BC=2AB;延长线段BA到D,使AD=AC.(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB所在的直线画数轴,以点A为原点,若点B对应的数恰好为10,请在数轴上标出点C,D两点,并直接写出C,D两点表示的有理数,若点M 是BC的中点,点N是AD的中点,请求线段MN的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D处开始,在点C ,D 之间进行往返运动;乙从点N 开始,在N ,M 之间进行往返运动,甲、乙同时开始运动,当乙从M 点第一次回到点N 时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.36.在数轴上,图中点A 表示-36,点B 表示44,动点P 、Q 分别从A 、B 两点同时出发,相向而行,动点P 、Q 的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P 到达原点O ,动点Q 到达点C ,设运动的时间为t (t >0)秒.(1)求OC 的长;(2)经过t 秒钟,P 、Q 两点之间相距5个单位长度,求t 的值;(3)若动点P 到达B 点后,以原速度立即返回,当P 点运动至原点时,动点Q 是否到达A 点,若到达,求提前到达了多少时间,若未能到达,说明理由.37.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空)()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB 的值.38.问题一:如图1,已知A ,C 两点之间的距离为16 cm ,甲,乙两点分别从相距3cm 的A ,B 两点同时出发到C 点,若甲的速度为8 cm/s ,乙的速度为6 cm/s ,设乙运动时间为x (s ), 甲乙两点之间距离为y (cm ).(1)当甲追上乙时,x = .(2)请用含x 的代数式表示y .当甲追上乙前,y = ;当甲追上乙后,甲到达C 之前,y = ;当甲到达C 之后,乙到达C 之前,y = .问题二:如图2,若将上述线段AC 弯曲后视作钟表外围的一部分,线段AB 正好对应钟表上的弧AB (1小时的间隔),易知∠AOB=30°.(1)分针OD 指向圆周上的点的速度为每分钟转动 cm ;时针OE 指向圆周上的点的速度为每分钟转动 cm .(2)若从4:00起计时,求几分钟后分针与时针第一次重合.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +,根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案.【详解】设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +2x -,x ,2x +这三个数在同一行∴x 的个位数只能是3或5或7∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+A .令41022x += 解得3x =,符合要求;B .令41070x += 解得15x =,符合要求;C .令410182x +=解得43x =,符合要求;D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D.【点睛】本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.2.C解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.C解析:C【解析】【分析】由题意设第一列第一行的数为x ,依次表示每个数,并相加进行分析得出选项.【详解】解:设第一列第一行的数为x ,第一行四个数分别为,1,2,3x x x x +++,第二行四个数分别为7,8,9,10x x x x ++++,第三行四个数分别为14,15,16,17x x x x ++++,第四行四个数分别为21,22,23,24x x x x ++++,16个数相加得到16192x +,当相加数为208时x 为1,当相加数为480时x 为18,相加数为496时x 为19,相加数为592时x 为25,由数字卡片可知,x 为19时,不满足条件. 故选C.【点睛】本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.4.B解析:B【解析】【分析】直接利用总工作量为1,分别表示出两人完成的工作量进而得出方程即可.【详解】设乙独做x 天,由题意得方程:410+415x +=1. 故选B .【点睛】本题主要考查了由实际问题抽象出一元一次方程,正确表示出两人完成的工作量是解题的5.D解析:D【解析】【分析】根据题意列出算式,计算即可得到结果.【详解】解:∵A ,B 两点表示的数分别是2﹣1和2,∴A ,B 两点之间的距离是:2﹣(2﹣1)=1;故选:D .【点睛】此题考查了实数与数轴,掌握数轴上点的特点,利用数轴,数形结合求出答案.6.A解析:A【解析】此题考查同底数幂的乘法运算,即(0)m n m n a a aa +⋅=>,所以此题结果等于325a a +=,选A ; 7.B解析:B【解析】过E 作EF ∥AB ,求出AB ∥CD ∥EF ,根据平行线的性质得出∠C=∠FEC ,∠BAE=∠FEA ,求出∠BAE ,即可求出答案.解:过E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF ,∴∠C=∠FEC ,∠BAE=∠FEA ,∵∠C=44°,∠AEC 为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B .“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.8.D【解析】【分析】将x与y的值代入原式即可求出答案.【详解】当x=﹣13,y=4,∴原式=﹣1+4+4=7故选D.【点睛】本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.9.A解析:A【解析】【分析】首先根据题目中图形,求得梯形的长.由图知,长方形的一边为10厘米,再设另一边为x 厘米.根据长方形的周长=梯形的周长,列出一元一次方程.【详解】解:长方形的一边为10厘米,故设另一边为x厘米.根据题意得:2×(10+x)=10×4+6×2.故选:A.【点睛】本题考查一元一次方程的应用.解决本题的关键是理清题目中梯形变化为矩形,其周长不变.10.B解析:B【解析】分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.详解:原式=2x﹣3y﹣12x+6y=﹣10x+3y.故选B.点睛:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.11.B解析:B【解析】【分析】根据不等式的基本性质逐一进行分析判断即可.【详解】A.由a<b ,两边同时加上c ,可得 a+c<b+c ,故A 选项错误,不符合题意;B. 由a<b ,两边同时减去c ,得a-c<b-c ,故B 选项正确,符合题意;C. 由a<b ,当c>0时,ac<bc ,当c<0时,ac<bc ,当c=0时,ac=bc ,故C 选项错误,不符合题意;D.由 a<b ,当a>0,c ≠0时,a b c c <,当a<0时,a b c c>,故D 选项错误, 故选B.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键. 12.B解析:B【解析】用代数式表示“a 的3倍与b 的差的平方”结果是:2(3)a b -.故选B.13.D解析:D【解析】【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D .【点睛】本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.14.B解析:B【解析】【分析】从图形可知空白部分的面积为S 2是中间边长为(a ﹣b )的正方形面积与上下两个直角边为(a +b )和b 的直角三角形的面积,再与左右两个直角边为a 和b 的直角三角形面积的总和,阴影部分的面积为S 1是大正方形面积与空白部分面积之差,再由S 2=2S 1,便可得解.【详解】由图形可知,S 2=(a-b )2+b (a+b )+ab=a 2+2b 2,S 1=(a+b )2-S 2=2ab-b 2,∵S 2=2S 1,∴a 2+2b 2=2(2ab ﹣b 2),∴a 2﹣4ab +4b 2=0,即(a ﹣2b )2=0,∴a=2b,故选B.【点睛】本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.15.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.二、填空题16.-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2xmy3与﹣5ynx是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案解析:-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2x m y 3与﹣5y n x 是同类项,∴m =1,n =3,∴m ﹣n =1﹣3=﹣2.故答案为:﹣2.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.17.-1;【解析】解:由题意得:a-3=0,b+1=0,解得:a=3,b=-1,∴=-1. 故答案为-1. 点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0. 解析:-1;【解析】解:由题意得:a -3=0,b +1=0,解得:a =3,b =-1,∴3(1)a b =-=-1. 故答案为-1.点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0.18.684×1011【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.解析:684×1011【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将 2684 亿用科学记数法表示为:2.684×1011.故答案为:2.684×1011【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.19.10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′P解析:10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′PC′=180°计算即可.【详解】解:由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,∴2∠B′PE+2∠C′PF﹣∠B′PC′=180°,即2(∠B′PE+∠C′PF)﹣∠B′PC′=180°,又∵∠EPF=∠B′PE+∠C′PF﹣∠B′PC′=85°,∴∠B′PE+∠C′PF=∠B′PC′+85°,∴2(∠B′PC′+85°)﹣∠B′PC′=180°,解得∠B′PC′=10°.故答案为:10°.【点睛】此题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键.20.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.21.【解析】【分析】根据题意分别表示P,Q 的数为-8+2t 和10-3t ,并分到A 前和到A 后进行分析求值.【详解】解:由题意表示P,Q 的数为-8+2t ()和10-3t (),-8+3(t-6)() 解析:125【解析】【分析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =. 故填125. 【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.22.5【解析】【分析】首先求出AC 的长度是多少,根据点D 是AC 的中点,求出AD 的长度是多少;然后求出AE 的长度,即可求出线段ED 的长度为多少.【详解】解:∵AB =5,BC =3,∴AC =5+3解析:5【解析】【分析】首先求出AC 的长度是多少,根据点D 是AC 的中点,求出AD 的长度是多少;然后求出AE 的长度,即可求出线段ED 的长度为多少.【详解】解:∵AB =5,BC =3,∴AC =5+3=8;∵点D 是AC 的中点,∴AD =8÷2=4;∵点E 是AB 的中点,∴AE =5÷2=2.5,∴ED =AD ﹣AE =4﹣2.5=1.5.故答案为:1.5.【点睛】此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.23.【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键 解析:44a 56x -【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】()222a -=44a()2323x x ⋅-=56x - 【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键24.-20.【解析】【分析】把所求代数式化成的形式,再整体代入的值进行计算便可.【详解】解:,,故答案为:.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式 解析:-20.【解析】【分析】把所求代数式化成3()5m n ---的形式,再整体代入m n -的值进行计算便可.【详解】解:5m n -=,335m n ∴-+-3()5m n =---355=-⨯-155=--20=-,故答案为:20-.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式化成()m n -的代数式形式.25.三 ﹣【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】是三次单项式,系数是 .故答案为:三, .解析:三 ﹣25π 【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.225ab π-是三次单项式,系数是25π- . 故答案为:三,25π-. 【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键. 26.2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】故答案为:【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.解析:2a 2b【解析】【分析】根据合并同类项法则化简即可.【详解】()22227a b 5ba =75a b=2a b ﹣﹣.故答案为:22a b【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型. 27.2【解析】根据定义可得:因为,所以,故答案为:2.解析:2【解析】根据定义可得:因为239=,所以3log 92=,故答案为:2.28.11【解析】【分析】对整式变形得,再将2a ﹣b=4整体代入即可.解:∵2a ﹣b=4,∴=,故答案为:11.【点睛】本题考查代数式求值——已知式子的值,求代数式的值.能根据已解析:11【解析】【分析】对整式423a b -+变形得2(2)3a b -+,再将2a ﹣b=4整体代入即可.【详解】解:∵2a ﹣b=4,∴423a b -+=2(2)324311a b -+=⨯+=,故答案为:11.【点睛】本题考查代数式求值——已知式子的值,求代数式的值.能根据已知条件对代数式进行适当变形是解决此题的关键.29.404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有解析:404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有5×3-1=14个黑棋子;图4有5×4-1=19个黑棋子;…图n 有5n-1个黑棋子,当5n-1=2019,解得:n=404,故答案:404.【点睛】本题考查探索与表达规律——图形类规律探究.能根据题中已给图形找出黑棋子的数量与序数之间的规律是解决此题的关键.30.-7【解析】【分析】先根据题意求出a的值,再依此求出b的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表解析:-7【解析】【分析】先根据题意求出a的值,再依此求出b的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表达规律——数字类规律探究. 熟练掌握变化规律,根据题意求出a和b是解决问题的关键.三、压轴题31.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.32.(1)4,16;(2)x=﹣28或x=52;(3)线段MN的运动速度为9单位长度/秒.【解析】【分析】(1)由A1A2=A2A3=……=A19A20结合|a1﹣a4|=12可求出A3A4的值,再由a3=20可求出a2=16;(2)由(1)可得出a1=12,a2=16,a4=24,结合|a1﹣x|=a2+a4可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(3)由(1)可得出A1A20=19A3A4=76,设线段MN的运动速度为v单位/秒,根据路程=速度×时间(类似火车过桥问题),即可得出关于v的一元一次方程,解之即可得出结论.【详解】解:(1)∵A1A2=A2A3=……=A19A20,|a1﹣a4|=12,∴3A3A4=12,∴A3A4=4.又∵a3=20,∴a2=a3﹣4=16.故答案为:4;16.(2)由(1)可得:a1=12,a2=16,a4=24,∴a2+a4=40.又∵|a1﹣x|=a2+a4,∴|12﹣x|=40,∴12﹣x=40或12﹣x=﹣40,解得:x=﹣28或x=52.(3)根据题意可得:A1A20=19A3A4=76.设线段MN的运动速度为v单位/秒,依题意,得:9v=76+5,解得:v=9.答:线段MN的运动速度为9单位长度/秒.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离以及规律性:图形的变化类,解题的关键是:(1)由相邻线段长度相等求出线段A3A4的长度及a2的值;(2)由(1)的结论,找出关于x的含绝对值符号的一元一次方程;(3)找准等量关系,正确列出一元一次方程.33.(1)﹣14,8﹣5t;(2)2.5或3秒时P、Q之间的距离恰好等于2;(3)点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B点表示的数为8﹣22;点P表示的数为8﹣5t;(2)设t秒时P、Q 之间的距离恰好等于2.分①点P、Q相遇之前和②点P、Q相遇之后两种情况求t值即可;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC﹣BC=AB,列出方程求解即可;(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8﹣22=﹣14,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8﹣5t.故答案为:﹣14,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=22,解得t=2.5;②点P、Q相遇之后,由题意得3t﹣2+5t=22,解得t=3.答:若点P、Q同时出发,2.5或3秒时P、Q之间的距离恰好等于2;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=22,解得:x=11,∴点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11;②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=11,∴线段MN的长度不发生变化,其值为11.【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.34.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.【解析】【分析】(1)根据“n节点”的概念解答;(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在AB延长线上时,根据BE=12AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.【详解】(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,。

北京市北大附中石景山学校2023-2024学年七年级上学期期末数学试题(含解析)

北京市北大附中石景山学校2023-2024学年七年级上学期期末数学试题(含解析)


三、解答题:(17 题共 22 分,(1)、(2)每小题 3 分,(3)-(6)每小题 4 分)
17.计算:
(1) (20) (3) (5) (7)
(2) 14
(2)
1 3
9
(3)
1 2
(8)
(6)2
(4)
5 12
2 3
3 4
(12)
(5)
1 4
3
1 3
(2)3
1
1 4
(6)
(2)化简:|2a﹣b|﹣|2b﹣a|+|a+b|
六、综合题(25-26 题共 10 分,每空 1 分)
1 n为奇数 25.由于(﹣1)n= 1n为偶数 ,所以我们通常把(﹣1)n 称为符号系数.
(1)观察下列单项式:﹣ 1 x, 2 x2, 3 x3, 4 x4 ,…按此规律,第 5 个单项式是 ,第 3 15 35 63
【详解】解:A、 23 8, 23 8 ,相等,不符合题意; B、 32 9,32 9 ,相等,不符合题意; C、 32 9, 32 9 ,不相等,符合题意;
D、 2 3 23 8, 23 8 8 ,相等,不符合题意; 故选:C. 5.A 【分析】根据数轴与有理数的意义解答. 【详解】由图可知:-2<m<-1<2<n<3. A.m<﹣1,故本选项错误,符合题意;
D. 2 3 和 23
5.有理数 m,n 在数轴上的对应点的位置如图所示,则不正确的结论是( )
A. m 1
B. m n
C. mn 0
D. m n 0
6.设 a 是有理数,若 a a ,则( )
A. a 为正数
B. a 为负数
7.下列结论正确的是( )

2025届北京师范大附中数学七年级第一学期期末调研试题含解析

2025届北京师范大附中数学七年级第一学期期末调研试题含解析

2025届北京师范大附中数学七年级第一学期期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.将长方形纸片按如图所示的方式折叠,BC、BD为折痕,若∠ABC=35°,则∠DBE的度数为A.55°B.50°C.45°D.60°2.下面四个几何体的视图中,从上面看是三角形的是()A.B.C.D.3.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩()A.不赔不赚B.赚9元C.赔18元D.赚18元4.如图,数轴上点P表示的数可能是()A.﹣3.57 B.﹣2.66 C.﹣1.89 D.05.多项式x|m|y﹣(m﹣3)xy+7是关于x、y的四次三项式,则m的值是()A.3或﹣3B.﹣3C.4或﹣4D.36.点M在线段AB上,给出下列四个条件,其中不能判定点M是线段AB中点的是()A.AM=BM B.AB=2AM C.BM=12AB D.AM+BM=AB7.一个长方形的周长为,若它的宽为,则它的长为( ) A.B.C.D.8.某商场在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是( )A .盈利8元B .亏损8元C .不盈不亏D .亏损15元9.如图,直线//AB CD ,点E ,F 分别在直线AB ,CD 上,连接EF ,若'14930∠=︒,则AEF ∠的度数为( )A .130︒B .'13030︒C .131︒D .'13130︒10.3-的绝对值是( )A .3B .3-C .3±D .13 二、填空题(本大题共有6小题,每小题3分,共18分)11.现在的时间是9时20分,此时钟面上时针与分针夹角的度数是_____度.12.分解因式:()()32a m n b m n -+-=______.13.如图是一个小正方体的展开图,把展开图折叠成正方体后,“诚”字的一面相对面上的字是________14.已知关于x 的方程2x a +=23x a ++1的解与方程4x ﹣5=3(x ﹣1)的解相同,则a 的值_____. 15.大客车从A 城到B 城需要5小时,小轿车从B 城到A 城需4小时.两车同时出发,(_________)小时后相遇.16.我们定义一种新运算22x y x xy =-※,则()21-※的结果为___________. 三、解下列各题(本大题共8小题,共72分)17.(8分)用所学知识解释生活中的现象情景一:从教学楼到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题. .少数同学的做法对不对? .情景二:A ,B 是河流l 两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P 的位置,并说明你的理由.理由: .18.(8分)同一条直线上有A 、B 、C 、D 、E 五个点,且C 是AB 的中点,A 是BD 的中点,B 是AE 的中点,1AC =,请画出图形并求DE 的长.19.(8分)已知线段AB =12cm ,C 是AB 上一点,且AC =8cm ,O 为AB 中点,求线段OC 的长度.20.(8分)如图是一个用硬纸板制作的长方体包装盒展开图,已知它的底面形状是正方形,高为12cm .(1)制作这样的包装盒需要多少平方厘米的硬纸板?(2)若1平方米硬纸板价格为5元,则制作10个这的包装盒需花费多少钱?(不考虑边角损耗)21.(8分) 如图,数轴上点A 对应的有理数为10,点P 以每秒1个单位长度的速度从点A 出发,点Q 以每秒3个单位长度的速度从原点O 出发,且P 、Q 两点同时向数轴正方向运动,设运动时间为t 秒.(1)当t =2时,P ,Q 两点对应的有理数分别是 , ,PQ = ;(2)当PQ =8时,求t 的值.22.(10分)已知多项式22221,1A a ab a B a ab =+--=+-.(1)若多项式C 满足:C =A -2B ,试用含a ,b 的代数式表示C ;(2)当a =12-,b =4时,求2A -B 的值. 23.(10分)如图,在ABC ∆中,90A ∠=︒,将ABC ∆绕点C 顺时针旋转,使点A 落在线段BC 延长线上的点D 处,点B 落在点E 处.(1)在图中画出旋转后得到的三角形;(2)若旋转角的度数是115︒,那么ACE ∠= ︒.(3)连接AD BE 、,①若25BC =,7AC =,24AB =,则EBC S ∆= . ②若ABC S p ∆=,ACD S q ∆=,则EBC S ∆= .(用含p q 、的代数式表示)24.(12分)如图,直线AB 、CD 相交于点O ,过点O 作两条射线OM 、ON ,且∠AOM =∠CON =90°(1)若OC 平分∠AOM ,求∠AOD 的度数.(2)若∠1=14∠BOC ,求∠AOC 和∠MOD .参考答案一、选择题(每小题3分,共30分)1、A【分析】根据折叠的性质可知∠ABC=∠A’BC ,∠DBE=∠DBE’,然后根据平角等于180°代入计算即可得出答案.【详解】解:由折叠的性质可知∠ABC=∠A’BC=35°,∠DBE=∠DBE’,∴∠EBE’=180°-∠ABC-∠A’BC=180°-35°-35°=110°,∴∠DBE=∠DBE’=12∠EBE’=12×110°=55°. 故选A .【点睛】本题考查了折叠的性质和角的计算,熟知折叠后重合的角相等是解决此题的关键.2、C【分析】俯视图是从物体上面看,所得到的图形.【详解】解:圆锥的俯视图是有圆心的圆,故A 不符合题意;长方体的俯视图是长方形,故B不符合题意;三棱柱的俯视图是三角形,故C符合题意;四棱锥的俯视图是四边形,故D不符合题意;故选:C.【点睛】本题考查了几何体的三种视图,俯视图是从物体上面看到的视图.3、C【分析】设盈利上衣成本x元,亏本上衣成本y元,由题意得:135-x=25%x;y-135=25%y;求出成本可得.【详解】设盈利上衣成本x元,亏本上衣成本y元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C【点睛】考核知识点:一元一次方程的运用.理解题意,列出方程是关键.4、B【分析】根据数轴可直接进行排除选项.【详解】解:由数轴可知:点P在-3和-2之间,所以只有B选项符合题意;故选B.【点睛】本题主要考查数轴,熟练掌握数轴的相关概念是解题的关键.5、B【解析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是1,所以可确定m的值.【详解】∵多项式x|m|y-(m-1)x+7是关于x的四次三项式,∴|m|=1,且-(m-1)≠0,∴m=-1.故选:B.【点睛】本题考查了与多项式有关的概念,解题的关键是理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.6、D【分析】根据线段中点的定义进行判断.【详解】A、由AM=BM可以判定点M是线段AB中点,所以此结论正确;B、由AB=2AM可以判定点M是线段AB中点,所以此结论正确;C、由BM=12AB可以判定点M是线段AB中点,所以此结论正确;D、由AM+BM=AB不可以判定点M是线段AB中点,所以此结论不正确;因为本题选择不能判定点M是线段AB中点的说法,故选D.【点睛】本题考查了线段中点的定义,明确若C为AB中点,则AC=BC或AC=12AB或AB=2AC=2BC;反之,若C在线段AB上,有AC=BC=12AB或AB=2AC=2BC之一就可以判断C是AB的中点.7、A【解析】根据长方形的周长公式列出其边长的式子,再去括号,合并同类项即可.【详解】∵一个长方形的周长为6a-4b,一边长为a-b,∴它的另一边长为=(6a-4b)-(a-b)=3a-2b-a+b=2a-b.故选A.【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.8、B【分析】已知售价,需算出这两件衣服的进价,让总售价减去总进价就算出了总的盈亏.【详解】设盈利25%的那件衣服的进价是x元,根据进价与得润的和等于售价列得方程:x+0.25x=60,解得:x=48,类似地,设另一件亏损衣服的进价为y元,它的商品利润是﹣25%y元,列方程y+(﹣25%y)=60,解得:y=1.那么这两件衣服的进价是x+y=128元,而两件衣服的售价为120元.∴120﹣128=﹣8元,所以,这两件衣服亏损8元.故选:B .【点睛】本题考查了有理数的混合运算,需注意利润率是相对于进价说的,进价+利润=售价.9、B【分析】根据平行线的性质得∠1+∠AEF=180°,然后由已知'14930∠=︒即可得到∠AEF 的度数.【详解】解: //AB CD ,∴∠1+∠AEF=180°,∵'14930∠=︒,∴∠AEF=180°-∠1=180°-49°30′='13030︒. 故选:B .【点睛】本题考查平行线的性质:两直线平行,同旁内角互补.也考查了角的计算.10、A【分析】根据绝对值的定义,即可解决本题. 【详解】33-=,故选:A .【点睛】本题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是1.二、填空题(本大题共有6小题,每小题3分,共18分)11、160【解析】∵“4”至“9”的夹角为30°×5=150°,时针偏离“9”的度数为30°×13=10°, ∴时针与分针的夹角应为150°+ 10°=160°. 故答案为160°. 12、()(32)m n a b -+【分析】直接利用提取公因式法即可求解.【详解】解:()()()32(32)a m n b m n m n a b -+-=-+,故答案为:()(32)m n a b -+.【点睛】本题考查利用提公因式法因式分解.注意要将m n -看成一个整体提公因式.13、信【分析】根据正方体的展开图中相邻的面不存在公共点判定即可.【详解】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“诚”字一面的相对面上的字是信.故答案为:信.【点睛】本题主要考查的是正方体相对两个面上的文字,明确正方体的展开图中相邻的面不存在公共点是解题的关键. 14、1【分析】先求出第二个方程的解,把x =2代入第一个方程,求出方程的解即可.【详解】解方程4x ﹣5=3(x ﹣1)得:x =2,把x =2代入方程2x a +=23x a ++1中,可得:22a +=43a ++1, 解得:a =1.故答案为1【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的方程是解此题的关键.15、209【分析】把两地的路程看作单位“1”,则甲的速度是1÷5=15,乙的速度是1÷4=14,然后依据“路程÷速度和=相遇时间”即可求解.【详解】解:设A 城到B 城的路程看作单位“1”,则甲的速度是1÷5=15,乙的速度是1÷4=14, 1÷(15+14) =1÷920=209(小时) 故答案为:209. 【点睛】本题考查了有理数混合运算的应用,解答此题的关键是:先表示出各自的速度,然后依据路程、速度和时间之间的关系进行解答即可.16、1【分析】将1-和2代入题目中给出的运算法则进行计算.【详解】解:根据题目定义的运算,()()()()2212112145-=---⨯=--=※.故答案是:1.【点睛】本题考查有理数的混合运算,解题的关键是理解题目新定义的运算,然后通过有理数的运算法则进行计算.三、解下列各题(本大题共8小题,共72分)17、情景一:原因是两点之间线段最短,不对;情景二:图见解析,理由是两点之间线段最短【分析】本题两个情景均可用“两点之间线段最短”这一定理解答.【详解】情景一:原因是因为两点之间线段最短;少数同学的做法不对,因为数学知识的应用应该建立在不破坏生态环境的基础之上.情景二:连接线段AB 与l 的交点为P ,如下图所示,理由是两点之间线段最短.【点睛】本题考查数学定理的实际应用,难度较低,解题关键在于从题目背景中抽象出数学定理即可.18、图详见解析,6【分析】根据题意作图,再根据中点的性质及线段的和差关系即可求解.【详解】如图因为C 是AB 的中点,1AC =,所以22AB AC ==;因为A 是BD 的中点,B 是AE 的中点,2AB =,所以2DA AB ==;2BE AB ==;因此2226DE DA AB BE =++=++=.【点睛】本题考查基本作图和线段的中点性质.根据文字叙述,画出图形,再由中点定义进行简单推理即可.19、2cm.【分析】首先根据AB=12cm,O为AB中点,求出AO的长度是多少;然后用AC的长度减去AO的长度,求出线段OC的长度是多少即可.【详解】解:∵AB=12cm,O为AB中点,∴AO=12AB=12×12=6(cm),∵AC=8cm,∴OC=AC﹣AO=8﹣6=2(cm).【点睛】本题主要考查了两点间的距离,熟知各线段之间的和、差及倍数关系是解题的关键.20、(1)310;(2)1.8元【分析】(1)根据图形得到底面正方形边长,然后根据表面积=2个底面面积+4个侧面面积计算即可;(2)先算出10个包装盒的面积,再乘以单价即可.注意单位要统一.【详解】(1)由图形可知:底面正方形的边长=18-12=1.包装盒的表面积=1×1×2+4×1×12=72+288=310(平方厘米).答:制作一个这样的包装盒需要310平方厘米的硬纸板.(2)10×310÷10000×5=1.8(元)制作10个这的包装盒需花1.8元.【点睛】本题考查了几何体的展开图,从实物出发,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.21、(1)12;1;1;(2)t的值为1秒或2秒.【分析】(1)结合数轴,根据P、Q运动的速度和时间计算出即可;(2)当PQ=8时,分两种情况:当点P在点Q左侧时,当点P在点Q左侧时.【详解】解:(1)∵10+2×1=12,3×2=1,∴当t=2时,P,Q两点对应的有理数分别是12,1,∴PQ=12﹣1=1.故答案为12;1;1;(2)运动t秒时,P,Q两点对应的有理数分别是10+t,3t.①当点P 在点Q 右侧时,∵PQ =8,∴(10+t )﹣3t =8,解得:t =1;②当点P 在点Q 左侧时,∵PQ =8,∴3t ﹣(10+t )=8,解得:t =2.综上所述,t 的值为1秒或2秒.【点睛】数轴上表示点及结合数轴求两点之间的距离是本题的考点,利用数形结合的思想是解题的关键.22、 (1) 21C ab a =--+; (2) 2A B -=14-. 【分析】(1)根据整式的加减运算法则化简即可;(2)先化简2A-B ,再将a =12-,b =4代入计算即可. 【详解】(1)∵2221A a ab a =+--,21B a ab =+-,2C A B =-()2222121a ab a a ab =+----+-22221222a ab a a ab =+----+21ab a =--+.(2)∵2221A a ab a =+--,21B a ab =+-∴222242421341A B a ab a a ab a ab a -=+-----+=+--, 当1,42a b =-=时,原式= 2111313()()44()122122244⨯-+-⨯-⨯--=-+-=-. 【点睛】本题考查了整式加减的化简求值问题,解题的关键是熟练掌握整式加减的运算法则.23、(1)图形见解析;(2)50;(3)①2;②2p q. 【分析】(1)根据旋转的性质作图即可;(2)根据平角的定义求出∠ACB ,由旋转的性质得到∠ECD =∠ACB ,再由角的和差即可得出结论; (3)①由旋转的性质得到DE =AB ,根据三角形的面积公式即可得到结论;②过A 作AF ⊥BC 于F .设BC =a ,AC =b ,AB =c ,AF =h .用含h 的式子表示出a 、b 、c ,由111222EBC S BC ED BC AB ac ∆=•=•=,代入即可得到结论. 【详解】(1)如图所示:(2)∵∠ACD =115°,∴∠ACB =180°-∠ACD =180°-115°=65°,由旋转的性质可知,∠ECD =∠ACB =65°,∴∠ACE =∠ACD -∠ECD =115°-65°=50°.(3)①∵BC =25,AC =7,AB =1,∴DE =AB =1.∵∠A =90°,将△ABC 绕点C 顺时针旋转,使点A 落在线段BC 延长线上的点D 处,点B 落在点E 处, ∴DE ⊥BC ,∴11252422BCE S BC ED ∆=•=⨯⨯=2.②过A 作AF ⊥BC 于F .设BC =a ,AC =b ,AB =c ,AF =h .∵∠A =90°,将△ABC 绕点C 顺时针旋转,使点A 落在线段BC 延长线上的点D 处,点B 落在点E 处, ∴DE ⊥BC ,AB =DE ,AC =CD .∵ABC S p ∆=,ACD S q ∆=,∴1122bc ah p==,12bh q=,∴2pah=,2qbh=,222p h phc pb q q==⨯=,∴111222EBCS BC ED BC AB ac∆=•=•==2122p ph ph q q⨯⨯=.【点睛】本题考查了旋转的性质、三角形的面积公式.掌握旋转的性质是解答本题的关键,24、(1) 135°;(2)∠AOC=60°;∠MOD=150°.【分析】(1)根据OC平分∠AOM,易得∠1=∠AOC=45°,再由平角可求出∠AOD的度数(2)由题目中给出的∠1=14∠BOC和∠AOM=90°,可求出∠1的度数,进而再求出∠AOC和∠MOD的度数.【详解】(1)∠AOM=∠CON=90°,OC平分∠AOM ∴∠1=∠AOC=45°∴∠AOD=180°-∠AOC=180°-45°=135°;(2)∵∠AOM=90°∴∠BOM=180°-90°=90°∵∠1=14∠BOC∴∠1=13∠BOM=30°∴∠AOC=90°-30°=60°,∠MOD=180°-30°=150°.故答案是:(1)∠AOD=135°;(2)∠AOC=60°;∠MOD=150°. 【点睛】本题主要考察角度的计算,合理分析角度之间的关系是解题的关键.。

2025届北京市师范大附属中学七年级数学第一学期期末统考试题含解析

2025届北京市师范大附属中学七年级数学第一学期期末统考试题含解析

2025届北京市师范大附属中学七年级数学第一学期期末统考试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,如果AB ∥CD ,那么1∠,2∠,3∠之间的关系为( )A .123360∠+∠+∠=B .123180∠+∠-∠=C .123180∠-∠-∠=D .123180∠-∠+∠=2.观察下列各式:1234567833,39,327,381,3243,3729,32187,36561========根据上述算式中的规律,猜想20203的末位数字是( )A .1B .3C .7D .9 3.下列说法正确的是( )A .若12AOC AOB ∠=∠,则射线OC 为AOB ∠平分线 B .若AC BC =,则点C 为线段AB 的中点C .若123180∠+∠+∠=︒,则这三个角互补D .若α∠与β∠互余,则α∠的补角比β∠大90︒4.下列变形一定正确的是( )A .若x =y ,则x ﹣6=y +6B .若x =y ,则3x ﹣2=3y ﹣2C .若2x =2y +1,则x =y +1D .若x 2=y 2,则x =y5.下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A 地到B 地架设电线,总是尽可能沿若直线AB 架设;④把弯曲的公路改直,就能缩知路程.其中可用“两点确定一条直线”来解释的现象有( )A .①②B .①③C .②④D .③④6.在下列单项式中,与是同类项的是( ) A . B . C . D .7.木星是太阳系中八大行星之一,且是太阳系中体积最大、自传最快的行星,它的赤道直径约为14.3万千米,其中14.3万用科学记数法可表示为 ( )A .1.43×105B .1.43×104C .1.43×103D .14.3×1048.下列说法中正确的是( )A .一个锐角的余角比这个锐角的补角小90°B .如果一个角有补角,那么这个角必是钝角C .如果12390︒∠+∠+∠=,则1∠,2∠,3∠互为余角D .如果A ∠与B 互为余角,B 与C ∠互为余角,那么A ∠与C ∠也互为余角9.如图,点A 到线段BC 的距离指的是下列哪条线段的长度A .AB B .AC C .AD D .AE10.下列运算中,正确的是( )A .325x y xy +=B .325347x x x +=C .22550x y yx -=D .22671x x -=-11.如图是一个小正方形体的展开图,把展开图折叠成小正方体后“建”字对面的字是( )A .和B .谐C .社D .会12.如图所示,直线AB 与CD 相交于O 点,12∠=∠,若138AOE ∠=︒,则AOC ∠的度数为( )A .45︒B .90︒C .84︒D .100︒二、填空题(每题4分,满分20分,将答案填在答题纸上)13.单项式12-xy 2的系数是_________. 14.如图点O 在直线AB 上,射线OC 平分∠DOB,若∠COB=35°,则∠AOD=____.15.某书店把一本新书按标价的八折出售,仍获利30%,若该书的进价为40元,则标价为_____元.16.2019年9月,科学家将“42”写成了“33(80538738812075974)80435758145817515-++312602123297335631”的形式.至此,100以内的正整数(9ni4)型的数除外)都写成了三个整数的立方和的形式.试将下列整数写成三个非零且互不相等的整数的立方和的形式:2=________;45=________.17.如图,AOB ∠是直角,AOC 40∠=,OD 平分BOC ∠,则AOD ∠的度数为______.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)已知线段m 、n .(1)尺规作图:作线段AB ,满足AB =m+n (保留作图痕迹,不用写作法);(2)在(1)的条件下,点O 是AB 的中点,点C 在线段AB 上,且满足AC =m ,当m =5,n =3时,求线段OC 的长.19.(5分)先化简,再求值222212[32()6]2x y x y ----+,其中1,2x y =-=-.20.(8分)如图,点C 在线段AB 上,点,M N 分别是AC BC 、的中点.(1)若9,6AC cm CB cm ==,求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC CB acm +=,其它条件不变,你能求出MN 的长度吗?请说明理由. (3)若C 在线段AB 的延长线上,且满足,,AC BC bcm M N -=分别为 AC 、BC 的中点,你能求出MN 的长度吗?请画出图形,写出你的结论,并说明理由.21.(10分)重庆市某商场通过互联网销售某品牌新型台灯,第一周的总销售额为4000元,第二周的总销售额为4520元,第二周比第一周多售出13盏台灯.(1)求每盏台灯的售价;(2)该公司在第三周将每盏台灯的售价降低了10%,并预计第三周能售出140盏灯恰逢期末考试,极大的提高了中学生使用台灯的数量,该款台灯在第三周的销量比预计的140盏还多了4%a .已知每盏台灯的成本为16元,该公司第三周销售台灯的总利润为5040元,求a 的值.22.(10分)如图,已知线段a 和射线OA ,射线OA 上有点B .(1)用圆规和直尺在射线OA 上作线段CD ,使点B 为CD 的中点,点C 在点B 的左边,且BC =a .(不用写作法,保留作图痕迹)(2)在(1)的基础上,若OB =12cm ,OC =5cm ,求线段OD 的长.23.(12分)宁远县教育局要求各学校加强对学生的安全教育,全县各中小学校引起高度重视,小刚就本班同学对安全知识的了解程度进行了一次调查统计.他将统计结果分为三类,A :熟悉,B :了解较多,C :一般了解.图①和图②是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)求小刚所在的班级共有多少名学生;(2)在条形图中,将表示“一般了解”的部分补充完整;(3)在扇形统计图中,计算“了解较多”部分所对应的扇形圆心角的度数;参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、B【分析】如图,过点E作EF∥AB,利用平行线的性质即可得出结论.【详解】如图,过点E作EF∥AB.∴∠1+∠AEF=180°(两直线平行,同旁内角互补)∵AB∥CD(已知)∴EF∥CD.∴∠FEC=∠ECD(两直线平行,内错角相等)∵∠2=∠AEF+∠FEC∵AB∥CD∴EF∥CD∴∠FEC=∠3∴∠1+∠2-∠3=180°.故选B.考点:平行线的性质.2、A【分析】根据已知的等式找到末位数字的规律,再求出20203的末位数字即可.【详解】∵133=,末位数字为3,239=,末位数字为9,3327=,末位数字为7,4381=,末位数字为1,53243=,末位数字为3,63729=,末位数字为9,732187=,末位数字为7,836561=,末位数字为1,故每4次一循环,∵2020÷4=505∴20203的末位数字为:1故选:A【点睛】此题主要考查规律探索,解题的关键是根据已知条件找到规律进行求解.3、D【分析】逐一进行分析即可得出答案.【详解】A. 若12AOC AOB ∠=∠,则射线OC 不一定为AOB ∠平分线,点C 可能在AOB ∠外部,故该选项错误; B. 若AC BC =,则点C 不一定为线段AB 的中点,因为C 与A,B 不一定共线,故该选项错误;C. 若123180∠+∠+∠=︒,则这三个角互补,互补是相对于两个角来说的,故该选项错误;D. 若α∠与β∠互余,则α∠的补角为180α︒-∠ ,而90βα∠=︒-∠ ,所以α∠的补角比β∠大90︒,故该选项正确;故选:D .【点睛】本题主要考查线段与角的一些概念,掌握角平分线的定义,互补,互余的定义是解题的关键.4、B【分析】根据等式是性质进行计算.【详解】解:A、若x=y,则x+6=y+6,原变形错误,故本选项不符合题意;B、若x=y,则3x﹣2=3y﹣2,原变形正确,故本选项符合题意;C、若2x=2y+1,则x=y+12,原变形错误,故本选项不符合题意;D、若x2=y2,则x=y或x=﹣y,原变形错误,故本选项不符合题意;故选:B.【点睛】此题主要考查等式的性质,解题的关键是熟知等式的变形方法.5、A【分析】根据“两点确定一条直线”可直接进行排除选项.【详解】①用两个钉子就可以把木条固定在墙上,符合题意;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线,符合题意;③从A地到B地架设电线,总是尽可能沿若直线AB架设,符合“两点之间,线段最短”,故不符合题意;④把弯曲的公路改直,就能缩知路程,符合“两点之间,线段最短”,故不符合题意;故选A.【点睛】本题主要考查直线的概念,熟练掌握直线的相关定义是解题的关键.6、C【解析】试题分析:与是同类项的是.故选C.考点:同类项.7、A【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值 10时,n是正数;当原数的绝对值<1时,n是负数.【详解】14.3万用科学记数法表示为1.43×1.故选:A.【点睛】考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8、A【分析】根据余角和补角的定义以及性质进行判断即可,【详解】A.一个锐角α的余角()90α︒-比这个角的补角()180α︒-小90︒,故选项正确;B .90︒的补角为90︒,故选项错误;C.当两个角的和为90︒,则这两个角互为余角,故选项错误;D.如果A ∠与B 互为余角,B 与C ∠互为余角,那么A ∠与C ∠相等,故选项错误.故选:A【点睛】本题考查了余角、补角的概念及其性质.余角和补角指的是两个角之间的关系:两角和为90︒为互余,和为180︒为互补;同角(或等角)的余角(或补角)相等;另外,证明一个命题的错误性还可以用举反例的方法.熟记定义和性质进行判断即可.9、C【分析】直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.【详解】由图可得,AD ⊥BC 于D ,点A 到线段BC 的距离指线段AD 的长,故选:C .【点睛】此题主要考查了点到直线的距离的概念.点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.10、C【分析】首先判断是否为同类项,然后根据合并同类项法则,进行运算即可得到答案.【详解】A.3x 、2y +不是同类项,不能合并,故选项不正确;B.33x 、24x +不是同类项,不能合并,故选项不正确;C.25x y 、25yx -是同类项且合并正确,故选项正确;D.26x 、27x -是同类项,但合并错误,应为2x -,故选项不正确.故选:C【点睛】整式的加减运算,就是去括号以及合并同类项.本题主要考查的是合并同类项,只有是同类项的才能合并,若不是同类项则不能合并,这是各地中考常考考点.11、D【分析】利用正方体及其表面展开图的特点进一步分析判断即可.【详解】这是一个正方体的表面展开图,共有六个面,其中“设”与“谐”相对,“会”与“建”相对,“社”与“和”相对,故选:D.【点睛】本题主要考查了正方体展开图的特点,熟练掌握相关方法是解题关键.12、C【分析】根据邻补角的定义可得到∠2,再根据12∠=∠求解∠BOD,根据对顶角相等可得AOC ∠的度数.【详解】解:∵138AOE ∠=︒,∴∠2=180°−∠AOE=180°−138°=42°,∵12∠=∠,∴∠DOB=2∠2=84°, ∴∠AOC=∠BOD=84°,故选C .【点睛】本题考查了对顶角相等的性质,邻补角的定义,角平分线的定义,是基础题,熟记概念与性质是解题的关键.二、填空题(每题4分,满分20分,将答案填在答题纸上)13、12- 【解析】试题解析: 单项式212xy -的系数是1.2- 故答案为1.2- 点睛:单项式中的数字因数就是单项式的系数.14、110°【分析】先根据角平分线的定义求出∠BOD 的度数,再用180°-∠BOD 即得到∠AOD 的度数.【详解】解:∵OC 平分∠DOB,且∠COB=35°∴∠BOD=2∠COB=70°∴∠AOD=180°-∠BOD=180°-70°=110° 故答案为:110°. 【点睛】本题考查角平分线的定义,注意题中的一个隐含的条件,就是∠AOB 是一个平角,其大小为 180°. 15、65【分析】根据题意,实际售价=进价+利润,八折即标价的80%;可得一元一次的等量关系式,求解可得答案.【详解】设标价是x 元,根据题意有:0.8x =40(1+30%),解得:x =65.故标价为65元.故答案为65.【点睛】考查一元一次方程的应用,掌握利润=售价-进价是解题的关键.16、()()333756+-+- ()333234+-+【分析】根据题目的要求,进行大胆的猜想和验证.【详解】2=()()333756+-+-45=()333234+-+【点睛】本题考查了探索与表达规律-数字类型,1992年,当时数学家罗杰希思 - 布朗推测,所有自然数都可以被写成3个数立方之和.但时间不断推移,规律不断被演绎推导:“除了9n±4型自然数外,所有100以内的自然数都能写成三个整数的立方和”. 2019年9月,“42”的结果,就已经让一众数学家和爱好者激动了,或许是发现的乐趣,也是一种意义吧.同学们可以尽情发挥,享受数学的乐趣.17、65【分析】先求得∠BOC 的度数,然后由角平分线的定义可求得∠BOD 的度数,最后根据∠AOD=∠AOB-∠BOD 求解即可.【详解】∵∠AOB=90°,∠AOC=40°,∴∠BOC=∠AOB-∠AOC=90°-40°=50°,∵OD 平分∠BOC ,∴∠BOD=12∠BOC=25°, ∴∠AOD=∠AOB-∠BOD=90°-25°=65°,故答案为65°.【点睛】本题主要考查的是角平分线的定义,掌握角平分线的定义是解题的关键.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18、(1)见解析;(2)12m ﹣12n 【分析】(1)依据AB =m+n 进行作图,即可得到线段AB ;(2)依据中点的定义以及线段的和差关系,即可得到线段OC 的长.【详解】解:(1)如图所示,线段AB 即为所求;(2)如图,∵点O 是AB 的中点,∴AO =12AB =12(m+n ), 又∵AC =m , ∴OC =AC ﹣AO =m ﹣12(m+n )=12m ﹣12n . 【点睛】本题主要考查了基本作图,解决问题的关键是掌握作一条线段等于已知线段的方法.19、22532x y ---,14- 【分析】先去小括号,再去中括号得到化简后的结果,再将未知数的值代入计算. 【详解】解:原式=222232()32x y x y --+-- =22532x y ---, 当1,2x y =-=- 时,原式=()()2251232---⨯--=14-. 【点睛】此题考查了整式的化简求值,正确掌握整式去括号的计算法则,是解题的关键.20、(1)7.5;(2)12a ,理由见解析;(3)能,MN=12b ,画图和理由见解析 【分析】(1)据“点M 、N 分别是AC 、BC 的中点”,先求出MC 、CN 的长度,再利用MN=CM+CN 即可求出MN 的长度即可.(2)据题意画出图形,利用MN=MC+CN 即可得出答案.(3)据题意画出图形,利用MN=MC-NC 即可得出答案.【详解】解:(1)点M 、N 分别是AC 、BC 的中点,∴CM=12AC=4.5cm , CN=12BC=3cm , ∴MN=CM+CN=4.5+3=7.5cm .所以线段MN 的长为7.5cm .(2)MN 的长度等于12a , 根据图形和题意可得:MN=MC+CN=12AC+12BC=12(AC+BC )=12a ;(3)MN 的长度等于12b , 根据图形和题意可得:MN=MC-NC=12AC-12BC=12(AC-BC )=12b .【点睛】本题主要考查了两点间的距离,关键是掌握线段的中点把线段分成两条相等的线段,注意根据题意画出图形也是关键.21、(1)每盏台灯的售价为40元;(2)a 的值为1【分析】(1)设每盏台灯的售价为x 元,根据“第一周的总销售额为4000元,第二周的总销售额为451元,第二周比第一周多售出13盏台灯”列出方程,求解即可;(2)根据每盏台灯的利润⨯销售量=利润,列出关于a 的方程,解方程即可.【详解】解:(1)设每盏台灯的售价为x 元,由题意得4000134520x +=解得:40x =答:每盏台灯的售价为40元.(2)由题意,得[40(110%)16]140(14%)5040a --⨯+=,整理,得20(14%)36a +=,∴14% 1.8a +=,解得:20a =;答:a 的值为1.【点睛】本题考查了一元一次方程与一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22、(1)详见解析;(2)19cm【分析】(1)根据线段中点的画法解答即可;(2)根据线段之间的关系解答即可.【详解】解:(1)如图所示:以B为圆心,a的长为半径画弧,交OA于C、D两点(2)∵OB=12cm,OC=5cm,∴BC=OB-OC=12-5=7cm,∵B为CD的中点,∴BC=BD=7cm,∴OD=OB+BD=12+7=19cm.【点睛】本题主要考查了直线、射线、线段的作图,关键是根据线段中点的画法解答.23、(1)该班共有40名学生;(2)补图见解析;(3)108°【分析】(1)利用A所占的百分比和相应的频数即可求出;(2)利用C所占的百分比和总人数求出C的频数即可;(3)求出“了解较多”部分所占的比例,即可求出“了解较多”部分所对应的圆心角的度数;【详解】(1)20÷50%=40(名).答:该班共有40名学生.(2)“C:一般了解”的人数为:40×20%=8(名),补图如图所示.(3)360°×(1-50%-20%)=108°,所以在扇形统计图中,“了解较多”部分所对应的扇形圆心角的度数为108°.【点睛】本题主要考查了扇形统计图,用样本估计总体,条形统计图,掌握扇形统计图,用样本估计总体,条形统计图是解题的关键.。

北京市北京师范大附属实验中学2025届数学七年级第一学期期末统考模拟试题含解析

北京市北京师范大附属实验中学2025届数学七年级第一学期期末统考模拟试题含解析

北京市北京师范大附属实验中学2025届数学七年级第一学期期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分) 1.下列说法正确的有( )个①一个数前面加上“-”号,这个数就是负数 ②单项式232x y π的系数是32③若a 是正数,则a -不一定是负数 ④零既不是正数也不是负数⑤多项式33242x y xy y ---是四次四项式,常数项是-6 ⑥零是最小的整数 A .1B .2C .3D .42.一批上衣的进价为每件a 元,在进价的基础上提高50%后作为零售价,由于季节原因,打6折促销,则打折后每件上衣的价格为( ) A .a 元B .0.9a 元C .0.92a 元D .1.04a 元3.7-的绝对值为( ) A .7B .17C .17-D .7-4.给出下列式子:0,3a ,π,2x y -,1,3a 2+1,-11xy ,1x+y.其中单项式的个数是( ) A .5个B .1个C .2个D .3个5.下列解方程去分母正确的是( )A .由1132x x--=,得2x-1=3(1-x) B .由232124x x ---=-,得2(x-2)-3x-2=-4 C .由131236y y y +-=-,得3(y+1)=2y-(3y-1) D .由44153x x +-=,得12x-5=5x+20 6.一件工程甲单独做50天可完成,乙单独做75天可完成,现在两个人合作但是中途乙因事离开几天,从开工后40天把这件工程做完则乙中途离片了多少天( ) A .10B .25C .30D .357.在711,0,,423--这四个数中,绝对值最大的数是( ) A .-1B .0C .72D .143- 8.点M 在数轴上距离原点4个单位长度,若将点M 向右移动2个单位长度至N 点,则N 表示的数是( ) A .6B .2-C .6-D .6或2-9.在长方形ABCD 中,放入6个形状大小完全相同的小长方形,所标尺寸如图所示,则小长方形的宽AE 的长度为( ) cm .A .1B .1.6C .2D .2.510.下列各数能整除的是( ) A .62B .63C .64D .66二、填空题(本大题共有6小题,每小题3分,共18分) 11.单项式4πx 2y 的系数是__.12.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.13.定义一种新运算“⊕”,规定有理数4a b ab b ⊕=-,如:23423321⊕=⨯⨯-=.根据该运算计算()34⊕-=__________.14.如图,在灯塔O 处观测到轮船A 位于北偏西5424‘的方向,同时轮船B 在南偏东1517‘’的方向,那么∠AOB =_________.15.下面的框图表示了解这个方程的流程:在上述五个步骤中,依据等式的性质2的步骤有_____.(只填序号)16.有一条长方形纸带,按如图所示沿AB 折叠,若140︒∠=,则纸带重叠部分中____CAB ︒∠=三、解下列各题(本大题共8小题,共72分)17.(8分)(1)计算:(﹣16)﹣5+(﹣14)﹣(﹣26); (2)计算:﹣42÷(﹣4)2+5×(﹣6)+33+|﹣8|.18.(8分)根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2017年4月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围 电费价格(单位:元/度) 不超过150度 a 超过150度的部分b2017年5月份,该市居民甲用电100度,交电费80元;居民乙用电200度,交电费170元. (1)上表中,a=_____,b=_____;(2)试行“阶梯电价”收费以后,该市一户居民2017年8月份平均电价每度为0.9元,求该用户8月用电多少度? 19.(8分)已知线段MN =3cm ,在线段MN 上取一点P ,使PM =PN ;延长线段MN 到点A ,使AN =12MN ;延长线段NM 到点B ,使BN =3BM .(1)根据题意,画出图形; (2)求线段AB 的长;(3)试说明点P 是哪些线段的中点.20.(8分)一条高铁线A ,B ,C 三个车站的位置如图所示.已知B ,C 两站之间相距530千米.高铁列车从B 站出发,向C 站方向匀速行驶,经过13分钟距A 站165千米;经过80分钟距A 站500千米.(1)求高铁列车的速度和AB 两站之间的距离.(2)如果高铁列车从A 站出发,开出多久可以到达C 站? 21.(8分)在阿斯塔纳进行的2019国际象棋世界团体锦标赛当地时间14日落幕,中国女队以全胜战绩(八连胜)完美夺冠,中国队与俄罗斯队的对决尤为激烈,双方苦战15轮,最终中国队净胜俄罗斯队3分,比赛的积分规则是胜得1分,负得0分,和棋各得0.5分,问中国队与俄国斯队的积分各是多少?22.(10分)如图所示,△ABC 中,∠ACB=90°,AC=6cm ,BC =8cm.点P 从A 点出发,沿A C B --路径向终点B 运动,点Q 从B 点出发,沿B C A --路径向终点A 运动.点P 和Q 分别1/cm s 和3/cm s 的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过点P 和Q 作PE ⊥l 于E ,QF ⊥l 于F.则点P 运动多少秒时,△PEC 和△CFQ 全等?请说明理由.23.(10分)解方程:(1)3x ﹣7(x ﹣1)=3﹣2(x +3); (2)131148x x ---=.24.(12分)自2016年1月1日起,某市居民生活用水实施年度阶梯水价,具体水价标准见下表:例如,某户家庭年用水124立方米,应缴纳水费:120x 5+(124﹣120)x 6.75=627(元). (1)小华家2017年共用水150立方米,则应缴纳水费多少元?(2)小红家2017年共用水m 立方米(m >200),请用含m 的代数式表示应缴纳的水费.(3)小刚家2017年,2018年两年共用水360立方米,已知2018年的年用水量少于2017年的年用水量,两年共缴纳水费2115元,求小刚家这两年的年用水量分别是多少?参考答案一、选择题(每小题3分,共30分) 1、A【分析】根据有理数及单项式与多项式的系数、次数的相关知识进行解答.【详解】解:负数是小于0的数,在负数和0的前面加上“-”号,所得的数是非负数,故①错误;单项式232x y π的系数是32π,故②错误; 若a 是正数,则a >0,-a <0,所以-a 一定是负数,故③错误;零既不是正数也不是负数, ④正确;多项式33242x y xy y ---是四次四项式,常数项是-8,故⑤错误;零是绝对值最小的整数,故⑥错误;∴正确的共1个 故选:A. 【点睛】此题考查有理数及单项式与多项式的概念问题,解答此题的关键是弄清正数、负数和0的区别;正数是大于0的数,次数;多项式中次数最高项的次数是多项式的次数. 2、B【分析】根据题意先表示出提高50%后的价格为(150%)a +元,然后在此基础上根据“打六折”进一步计算即可. 【详解】由题意得:提高50%后的价格为:(150%)a +元, ∴打折后的价格为:6(150%)=0.910a a +⨯, 故选:B . 【点睛】本题主要考查了一元一次方程的实际应用,熟练掌握相关方法是解题关键. 3、A【解析】试题分析:7-的绝对值等于7,故选A . 考点:绝对值. 4、A【分析】根据单项式的定义求解即可. 【详解】单项式有:0,3a ,π, 1,-11xy,共5个. 故选A. 【点睛】 本题考查单项式. 5、C【分析】根据方程两边都乘以分母的最小公倍数,整理后即可选择答案.【详解】A 、由1132x x --=,得2x−6=3(1−x ),故错误; B 、由232124x x ---=-,得2(x−2)−3x +2=−4,故错误; C 、由131236y y y +-=-,得3y +3=2y−3y +1,故正确; D 、由44153x x +-=,得2x−15=5(y +4),故错误, 故选:C 【点睛】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.【分析】由题意设乙中途离开了x 天,根据题意列出方程,求出方程的解即可得到结果. 【详解】解:设乙中途离开了x 天, 根据题意得:()11507540401x ⨯+⨯-=, 解得:x=25,则乙中途离开了25天. 故选:B . 【点睛】本题考查一元一次方程的应用,弄清题意并根据题意列出方程是解本题的关键. 7、D【分析】先分别求出几个数的绝对值,再进行大小比较即可. 【详解】∵11-=, 00=,7722= , 114433-=, 1741032>>>, ∴绝对值最大的数是143-, 故选:D. 【点睛】此题考查绝对值的定义,有理数的大小比较. 8、D【分析】首先根据绝对值的意义求得点M 对应的数;再根据平移和数的大小变化规律,进行分析:左减右加. 【详解】因为点M 在数轴上距原点1个单位长度,点M 的坐标为±1. (1)点M 坐标为1时,N 点坐标为426+=; (2)点M 坐标为4-时,N 点坐标为422-+=-. 所以点N 表示的数是6或2-. 故选:D . 【点睛】本题考查了数轴上两点之间的距离以及平移、数的大小变化规律,体现了数形结合思想. 9、C【分析】设AE=xcm ,观察图形结合小长方形的长不变,即可得出关于x 的一元一次方程,此题得解. 【详解】解:设AE=xcm , 依题意,得:8+2x=x+(16−3x), 解得:x=2故选C . 【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键. 10、B 【解析】把用平方差公式分解因数可求解.【详解】解:224-1=(212+1)(212-1)=(212+1)(26+1)(26-1)=(212+1)×65×1, ∴所给的各数中能整除224-1的是1. 故选:B . 【点睛】此题主要考查了因式分解的应用,要熟练掌握,注意灵活应用平方差公式.二、填空题(本大题共有6小题,每小题3分,共18分) 11、4π【分析】根据单项式的系数的概念即可得出. 【详解】解:根据单项式的系数是字母前的数字因数, ∴单项4πx 2y 的系数是4π 故答案为:4π 【点睛】本题考查了单项式的系数,掌握单项式的系数是字母前的数字因数是解题的关键,注意这里π是数字而非字母. 12、-5【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1>-,此时就需要将结果返回重新计算,直到结果1<-,才能输出结果. 【详解】解:根据如图所示:当输入的是1-的时候,1(3)21-⨯--=, 此时结果1>-需要将结果返回, 即:1(3)25⨯--=-, 此时结果1<-,直接输出即可, 故答案为:5-. 【点睛】本题考查程序设计题,解题关键在于数的比较大小和读懂题意.【分析】根据新运算法则解答即可.【详解】解:()()()34434448444⊕-=⨯⨯---=-+=-. 故答案为:﹣1. 【点睛】本题以新运算为载体,主要考查了有理数的运算,正确理解新运算法则、熟练掌握有理数的乘法法则是解题的关键. 14、14053’【分析】根据题意得到∠AOC=90°-5424‘=3536',∠BOD=1517‘,再根据∠AOB=∠AOC+∠COD+∠BOD 求出答案.【详解】由题意得∠AOC=90°-5424‘=3536',∠BOD=1517‘, ∴∠AOB=∠AOC+∠COD+∠BOD=3536'+90°+1517‘=14053’, 故答案为:14053’.【点睛】此题考查角度的计算,掌握方位角的表示方法,角度的进率是解题的关键. 15、①⑤【分析】根据等式的性质2直接可以找出.【详解】等式的性质2:等式两边同时乘(或除)相等的数或式子,两边依然相等 若a=b 那么有a·c=b·c 或a÷c=b÷c 所以依据等式的性质2的步骤是①⑤ 故答案为①⑤ 【点睛】此题重点考察学生对等式性质2的理解,熟练掌握等式的性质是解题的关键. 16、70【分析】根据两直线平行同位角相等得到240∠=︒,再由折叠的性质得到34∠=∠,则问题得解. 【详解】由下图可知BE //AF1240∴∠=∠=︒又由折叠的性质得到34∠=∠, 且234180∠+∠+∠=︒180234702︒-∠∴∠=∠==︒ 故答案为:70. 【点睛】本题考查平行线的性质、折叠问题与角的计算,需要计算能力和逻辑推理能力,属中档题.三、解下列各题(本大题共8小题,共72分) 17、(1)-9;(2)1.【分析】(1)根据有理数的加减法法则可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法法则可以解答本题.【详解】解:(1)()()()1651426+﹣﹣﹣﹣﹣1651426+=﹣﹣﹣ 9=﹣(2)()()22344563|8|÷+⨯++﹣﹣﹣﹣161630278÷++=﹣﹣ 130278++=﹣﹣4=【点睛】本题考查的是有理数的加减运算以及加减乘除乘方绝对值混合运算,熟练掌握各种运算的法则是顺利解决此题的关键.18、0.81【解析】试题分析:(1)当用电100度时,根据总价=单价×数量列方程即可得出a的值,当用电为200度时,根据150度内电费+150度外电费=170列方程即可得出b的值;(2)设该用户8月用电x度,根据150×0.8+超过150度的部分×1=均价×用电量,即可得出x的一元一次方程,解之即可得出结论.试题分析:解:(1)根据题意得:100a=80,150a+(200−150)b=170 ,解得:a=0.8,b=1.故答案为:0.8;1.(2)设该用户8月用电x度,根据题意得:150×0.8+1×(x-150)=0.9x,解得:x=2.答:该用户8月用电2度.点睛:本题考查了一元一次方程的应用,解题的关键是:(1)根据收费标准,列出关于a、b的方程;(2)找准等量关系,正确列出一元一次方程.19、(1)作图见解析;(2)1.5cm;(3)理由见解析.【解析】整体分析:根据题意,判断出BM=MP=PN=NA,即可求解.(1)如图所示.(2)因为MN=3cm,AN=MN,所以AN=1.5cm.因为PM=PN,BN=3BM,所以BM=PM=PN,所以BM=MN=×3=1.5(cm)所以AB=BM+MN+AN=1.5+3+1.5=6(cm)(3)由(2)可知BM=MP=PN=NA所以PB=PA,PM=PN所以点P 既是线段MN 的中点,也是线段AB 的中点.20、(1)高铁列车的速度为300千米/小时,AB 两站之间的距离为100千米;(2)高铁列车从A 站出发,开出2.1小时可以到达C 站.【解析】(1) 设高铁列车的速度为x 千米/小时,AB 两站之间的距离为y 千米,根据题意等量关系式列出方程组,解之即可得出答案.(2)根据路程÷速度=时间,计算即可得出答案.【详解】(1)设高铁列车的速度为x 千米/小时,AB 两站之间的距离为y 千米.由题意得 13165608050060y x y x ⎧+=⎪⎪⎨⎪+=⎪⎩解得 300100x y =⎧⎨=⎩答:高铁列车的速度为300千米/小时,AB 两站之间的距离为100千米.(2)530100300+=2.1小时 答: 高铁列车从A 站出发,开出2.1小时可以到达C 站.【点睛】本题考查的是列二元一次方程组解应用题,准确把握题中的数量关系是关键.21、中国队与俄国斯队的积分分别是9分和6分.【解析】设中国队与俄罗斯队的积分各是x 分、y 分,根据题意列出方程组,解方程组即可.【详解】解:设中国队与俄罗斯队的积分各是x 分、y 分,根据题意得:∴153x y x y +=⎧⎨=+⎩, 解得:96x y =⎧⎨=⎩, 答:中国队与俄罗斯队的积分各是9分、6分.【点睛】本题考查了二元一次方程组的应用;根据题意列出方程组是解题的关键.22、1秒或3.5秒或12秒【分析】因为Rt PEC ∆和Rt CFQ ∆全等,所以PC CQ =,有三种情况:P ①在AC 上,Q 在BC 上②P ,Q 都在AC 上,此时P ,Q 重合③当Q 到达A 点(和A 点重合),P 在BC 上时,此时Q 点停止运动.根据这三种情况讨论.【详解】设运动时间为t 秒时,PEC ∆和CFQ ∆全等,∵Rt PEC ∆和Rt CFQ ∆全等,∴PC CQ =,有三种情况:如图1所示,P 在AC 上,Q 在BC 上,6PC t =-,83CQ t =-,∴683t t -=-,∴1t =.(2)如图2所示,P ,Q 都在AC 上,此时P ,Q 重合,6PC t =-,38CQ t =-,∴638t t -=-,∴ 3.5t =.(3)如图3所示,当Q 到达A 点(和A 点重合),P 在BC 上时,此时Q 点停止运动,∵PC CQ =,6CQ AC ==,6PC t =-,∴66t -=,∴12t =.∵14t ≤,∴12t =符合题意.答:点P 运动1秒或3.5秒或12秒时,PEC ∆和CFQ ∆全等.【点睛】本题考查的是全等三角形,熟练掌握全等三角形的性质是解题的关键.23、(1):x =5;(2)x =﹣1.【解析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】(1)去括号得:3x ﹣7x+7=3﹣2x ﹣6,移项得:3x ﹣7x+2x =3﹣6﹣7,合并同类项得:﹣2x=﹣10,系数化为1得:x=5,(2)去分母得:2(x﹣1)﹣(3x﹣1)=8,去括号得:2x﹣2﹣3x+1=8,移项得:2x﹣3x=8+2﹣1,合并同类项得:﹣x=1,系数化为1得:x=﹣1.【点睛】本题考查了解一元一次方程,解方程去分母时注意各项都要乘以各分母的最小公倍数.24、(1)小华家2017年应缴纳水费802.5元;(2)小红家2017年应缴纳的水费是(12m﹣1155)元;(3)小刚家2017年用水2立方米,2018年用水160立方米.【分析】(1)根据表格中规定的分段计算方法列式计算可得;(2)由题意利用总价=单价×数量,结合阶梯水价,即可得出结论;(3)根据题意设2017年用水x立方米,则2018年用水(360﹣x)立方米,再根据两年共缴纳水费1元即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:(1)小华家2017年应缴纳水费为120×5+(150﹣120)×6.75=802.5(元).答:小华家2017年应缴纳水费802.5元;(2)小红家2017年共用水m立方米(m>2),则应缴纳的水费为:120×5+(180﹣120)×6.75+12(m﹣180)=(12m﹣1155)元.答:小红家2017年应缴纳的水费是(12m﹣1155)元.(3)设2017年用水x立方米,则2018年用水(360﹣x)立方米.根据两年共缴纳水费1元可得:120×5+(180﹣120)×6.75+12(x﹣180)+120×5+(360﹣x﹣120)×6.75=1.解得:x=2.2018年用水量:360﹣2=160(立方米).答:小刚家2017年用水2立方米,2018年用水160立方米.【点睛】本题考查一元一次方程的实际应用,理解题意并根据题意例出一元一次方程求解是解题的关键.。

北京市北大附中人教版七年级上册数学期末测试题

北京市北大附中人教版七年级上册数学期末测试题

北京市北大附中人教版七年级上册数学期末测试题一、选择题1.下列方程中,以32x =-为解的是( ) A .33x x =+ B .33x x =+C .23x =D .3-3x x = 2.下列每对数中,相等的一对是( )A .(﹣1)3和﹣13B .﹣(﹣1)2和12C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)33.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( ) A .2B .22C .2D .324.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A .171B .190C .210D .3805.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘 45 人,则还有 5 人不能上车.有下列四个等式:① 40m +25=45m +5 ;②2554045n n +-=;③2554045n n ++=;④ 40m +25 = 45m - 5 .其中正确的是( ) A .①③B .①②C .②④D .③④6.下列方程变形正确的是( ) A .方程110.20.5x x --=化成1010101025x x--= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1 C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2 D .方程23t=32,未知数系数化为 1,得t=1 7.互不相等的三个有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C 。

若:||||||a b b c a c-+-=-,则点B()A.在点 A, C 右边B.在点 A, C 左边C.在点 A, C 之间D.以上都有可能8.已知单项式2x3y1+2m与3x n+1y3的和是单项式,则m﹣n的值是()A.3 B.﹣3 C.1 D.﹣19.观察下列算式,用你所发现的规律得出22015的末位数字是()21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….A.2 B.4 C.6 D.810.已知一个多项式是三次二项式,则这个多项式可以是()A.221x x-+B.321x+C.22x x-D.3221x x-+ 11.不等式x﹣2>0在数轴上表示正确的是()A.B.C.D.12.估算15在下列哪两个整数之间( )A.1,2 B.2,3 C.3,4 D.4,513.如果方程组223x yx y+=⎧⎨-=⎩的解为5xy=⎧⎨=⎩,那么“口”和“△”所表示的数分别是( )A.14,4 B.11,1 C.9,-1 D.6,-414.下列计算正确的是()A.-1+2=1 B.-1-1=0 C.(-1)2=-1 D.-12=115.如图,在数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D两点表示的数分别为-5和6,点E为BD的中点,在数轴上的整数点中,离点E最近的点表示的数是()A.2 B.1C.0 D.-1二、填空题16.单项式2x m y3与﹣5y n x是同类项,则m﹣n的值是_____.17.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________.18.如图,点A在点B的北偏西30方向,点C在点B的南偏东60︒方向.则ABC∠的度数是__________.19.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.20.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____. 21.已知单项式245225n m xy x y ++与是同类项,则m n =______.22.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元. 23.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.24.若12x y =⎧⎨=⎩是方程组72ax by bx ay +=⎧⎨+=⎩的解,则+a b =_________.25.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____. 26.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______.27.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.28.五边形从某一个顶点出发可以引_____条对角线. 29.方程x +5=12(x +3)的解是________. 30.若2a ﹣b=4,则整式4a ﹣2b+3的值是______.三、压轴题31.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北大附中初一数学期末试卷
北大附中初一数学期末试卷
一、认真些,你一定能把这些空儿填出来(每空3分,共24分)
1. 请用科学记数法表示6295008,并保留两位有效数字,结果是。

0’’’2. 1023446的补角是 ;若两个等角互余,则这个角等于度 3. 一件大衣打八折为a元,用代数式表示这件大衣的原件元 4. 已知一个两位数的个位数字为x,十位数字比个位数字大3,
用代数式表示这个两位数。

5. 在桌面上摆有一些大小一样的正方体木块,正视图(1),左视图(2),要摆出这样的图形至多需用__________块正方体木块,至少需用_________块正方体木块.。

6. 一个布袋子中有3个红球,2个白球,从这袋子中任意摸出一个球,摸到红球的可能性是。

二、请选择一个最合适的答案,填在空格中,祝你成功~(每小题2分,共10分) 7. 某种细菌在培养过程中,每半小时分裂一次(由一个分裂为两个)(若这种细菌由1个分裂为16个,那么这个过程要经过( )
(A)1小时
(B)2小时
(C)3小时
(D)4小时
8. 下列各式中,错误的个数是 ( )
(1) 若两个角互为补角,则这两个角中至少有一个钝角
(2) 两条不平行的直线被第三条直线所截,同旁内角相等
(3) 两个锐角的和还是锐角
(4) 绝对值等于本身的数是正数
(A) 1 (B) 2 (C) 3 (D) 4
9. 下面的说法正确的是 ( )
(A)–2不是单项式
(B)–a表示负数
3ab(C) 的系数是3 5
a(D)x+ +1不是多项式 x
10. 一个立体图形的正视图与左视图都是等腰三角形,俯视图是圆,则这个图形可能是
( )
(A)圆台 (B)圆柱
(C)圆锥 (D)三棱锥
11(如图,?AOC与?BOD都是直角,且射线OB平分?AOC,?DOA的度数等于( ) 00(A) 10 (B) 20
00 (C) 40 (D)45
三、解答题
3y,ax,bx,c12.(4分) 等式中,当x=0时,y=3;当x= -1时,y=5; 求当x=1
时,y的值.
13. 计算 (每小题4分,共8分)
122,2,(,2),,,(,9)(1) 3
73191 (2) (,1,,),(,)841224
214.(4分) 一个多项式A减去多项式 2x+5x-3 ,马虎同学将减号抄成了加号, 2运算结果得–2(x+3x-7), 求多项式A.
215. (5分)已知化简并求3(a,1),2b,3,0
2123(3a,2b),2(3a,2b),(3a,2b),(3a,2b) 的值. 33
12216((5分)已知A= a,a,5 , B= , 且3A-B+C=0,求代数式C, a,3a,13
当时,求C的值.. a,2
17((5分)如图,?BAD= ?BCD,?DAC= ?CAB,CA平分?DCB
0AB//CD吗? 为什么? 若?D=150 ,能求?B吗? 若能,请求出来;若不能,请说明
理由.
18((5分) 学期结束前,学校对某年级100同学对数学兴趣小组的满意程度作了调查,结
果如下:
反馈意见非常满意比较满意一般不满意
45 30 13 12 人数
(1)作出反映此调查结果的条形统计图
(2)计算每一种反馈意见的频率.
(3) 能据以上数据得出全校同学对数学兴趣小组的满意程度的反馈意见吗?
第二部分
m2nnm,1n,5.1,10xy3xy19( (8分)已知与是同类项,求当合并同类项后,单项式的系
数是正数时,n的最小值是几?当n取最小值时,合并同类项后的单项式的系数和次数是几?
20. (7分)
(1) 比较下列各式的大小:|,2|+|3 |________ |,2+3|;
1111|,|+|,| ________ |,|;|0|+|,5| __________ |0—5|;…… ,2323
(2) 通过(1)的比较,请你分析,归纳出当a,b为有理数时,|a|+|b|与|a+b|
的大小关系。

(3) 根据(2)中你得出的结论,求当|x|+5=|x—5|时,求x的取值范围。

21. (7分) 已知一个角的补角比该角的余角的2倍多15度,求这个角的余角.
22. (8分)将连续的偶数2、4、6、8、10……排成如下的数表,十字框框出5
个数,请回答:
(1) 十字框框出的5个数的和与框子中间的数有什么关系?
(2) 若将十字框上下左右平移,可框住另外5个数,这5个数还有这种规律吗?
(3) 十字框框住的5个数之和能等于2000吗 ? 能等于2040吗?若能,请写出
这5 个数;若不能,请说明理由.
2 4 6 8 10 12
14 16 18 20 22 24
26 28 30 32 34 36
38 40 42 44 46 48
……
第三部分
23. (10分) 现有1 克2克3克重的天平砝码,要用10个砝码称出重20克的物体. (1)在取出的砝码中,设有3 个1克的,那么,3克重的砝码应有多少个? (2)除(1)的情况外,取出的砝码还有哪几种情况呢?(设任一种砝码至少取一个)
24. (10分) 用四块形状和大小完全一样的三角形纸板,拼拼搭搭,(不能重叠),能搭出多
少个边长不同的正方形?画出这些示意图来.
参考答案
56一(1( 2(77?25′14″,45 3( a6.3,104
34(10(x+3)+x或11x+30 5(20,6 6( 5
二(7(B 8(D 9(D 10(C 11(D
三(
12(当x=0时,y=3,即c=3
当x=-1时,y=5即-a-b+c=5,得a+b=-2
当x=1时,y=a+b+c=-2+3=1
答:当x=1时,y的值是1。

13(
1(1)解:原式,,4,4,,9,3 3
15319(2)原式,,24,,24,,24 8412
=45-18+38
=65
22A,,2(x,3x,7),(2x,5x,3)14(
22 ,,2x,6x,14,2x,5x,3
2 ,,4x,11x,17
2多项式A为 ,4x,11x,17
21215(原式 ,(3,2,)(3a,2b),(3a,2b)33
12 ,[(3x,2b),(3a,2b)]3
23(a,1),2|b,3|,0由得a=-1,b=-3,3a+2b=-3-6=-9 1原式 ,(,9,81),,303
122C,B,3A,a,3a,1,3(a,a,5)16(解:
3
22 ,a,3a,1,a,3a,15
=6a-16
当a=2时
c=12-16=-4
117(解:由CA平分?DCB,得,DCB,,ACB,,DCB2
1由?DAC=?CAB,得,DAC,,CAB,,DAB2由?BAD=?BCD,得?DCA=?CAB,?DAC=?ACB 则AB?CD,且AD?BC
由AB?CD得?B+?BCD=180?;
由AD?BC得?D+?DCB=180?
由同角的补角相等,得?B=?D,
由?D=150?知?B=150?
18(
(1)
(2)
45非常满意 ,45%100
30比较满意 ,30%100
13一般 ,13%100
12不满意 ,12%100
(3)不能,某年级100人不能代表全校各年级同学对数学兴趣小组的满意程度。

第二部分
m2nnm,1n5.1,10xy3xy19(解:由-与是同类项,得m=1。

2nn2nn2n,5.1,10xy,3xy,(,51,3)xy
42424n(,51,3)xy,30xy由得n最小是4。

即 ,51,3,0
合并同类项后,单项式的系数是4,次数是6 20(
(1)>,=,=
(2)a,b同号时,|a|+|b|=|a+b| a,b中至少有一个为0时,|a|+|b|=|a+b| a,b异号时,|a|+|b|>|a+b| (3)由|x|+5=|x-5|
知x与-5应同号
即x<0
21(解:设这个角的度数为x?,
依题意得180-x-15=2(90-x)
x=15
90-15=75
则这个角的余角是75?
22(解:
(1)十字框框出的5个数的和恰好是中间数的5倍。

(2)任意框住5个数,设中间的数为a,则仍然有这个规律。

(3)若5a=2000,则a=400,框住的5个数是
若5a=2040,则a=408,由于408在最后一列,故不能框出5个数。

第三部分
23(解:
(1)由于20=3×1+17,故设2克的砝码用x个,则3克的应该用(10-3-x)个故17=2x+3x(10-3-x),则x=4,10-3-x=3
答:3克重的砝码应有3个
(2)设1克的砝码有a个,2克的砝码有b个,则3克的砝码有(10-a-b)个
20=a+2b+3(10-a-b)=a+2b+30-3a-3b
即b+2a=10
a,1a,2a,4,,,则 ,,,b,8b,6b,4,,,
数量
1 2 4 1克砝码
8 6 2 2克砝码
1 2 4 3克砝码
24(只要把(d)中的4块三角形各向里移动相同距离后,又可出现若干个正方形故有
无穷多种。

相关文档
最新文档