四边形学案08-菱形的性质与判定学案01
菱形的性质学案
菱形的性质学案学习目标:1、掌握菱形的概念和性质2、发展合情推理能力和主动探索习惯学习过程:一、自主学习,初步感知1、菱形的定义:2、菱形的性质:边:角:对角线:对称性:二、合作交流,探究新知(看课本)相比于一般的平行四边形,菱形所特有的性质:性质1:性质2:1、验证猜想⑴已知四边形ABCD是菱形。
求证:AB=BC=CD=DA⑵已知AC、BD是菱形ABCD的两条对角线,AC、BD相交于点O。
求证:①AC⊥BD。
②AC平分∠BAD和∠BCD。
AB CDOAB CDOAB CD2、例题.如图,菱形花坛ABCD 的边长为20m , ∠ABC =60o ,沿着菱形的对角线修建了两条小路AC 和BD ,求两条小路的长和花坛的面积(分别精确到0.01m 和0. 1m 2 )3、学以致用(1)如图,四边形ABCD 是菱形。
点O 是两条对角线 的交点,AB=5cm ,AO=3cm ,求AC 与BD 的长。
(2)在菱形ABCD 中,对角线AC=6,BD=8,则菱形的面积是多少?周长是多少?例3如图,AC 是菱形ABCD 的对角线,点E 、F 分别在边AB 、AD 上,且AE=AF 。
求证:△AC E ≌△ACF三、精讲总结,反思提炼。
菱形的定义:菱形的性质:菱形的面积公式: 四、达标检测,收获成功。
1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 . 2.已知菱形ABCD 的周长为20cm ,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.3.已知:如图,菱形ABCD 中,E 、F 分别是CB 、CD 上的点,且BE=DF .求证:∠AEF=∠AFE .ABCDOADFE BC。
1.1菱形的性质与判定》教案
-在讲解菱形的性质时,通过动态演示或实物模型,展示对角线如何垂直平分,以及如何将菱形分为四个全等的直角三角形。
-在讲解判定方法时,提供多个图形示例,让学生识别哪些图形符合菱形的判定条件。
2.教学难点
a.对角线垂直平分性质的证明:学生往往难以理解为何菱形的对角线会互相垂直平分,需要通过详细的证明过程来帮助学生理解。
1.1菱形的性质与判定》教案
一、教学内容
本节课选自人教版八年级数学第二章《四边形》的1.1节“菱形的性质与判定”。教学内容主要包括以下几部分:
1.菱形的定义:四条边相等的四边形称为菱形。
2.菱形的性质:
a.对角线互相垂直平分;
b.对角线将菱形分为四个全等的直角三角形;
c.对角线长度相等;
d.邻角相等,对角互补。
-在判定方法的应用上,设计不同层次的练习题,从简单到复杂,让学生逐步掌握各种判定条件的使用场景。
-针对实际问题的图形分析,提供一些含有菱形的实际情境图,如建筑图形、工艺品设计等,指导学生如何从复杂图形中识别出菱形,并运用其性质解决问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《菱形的性质与判定》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过菱形形状的物体或图案?”比如,我们常见的红绿灯、钻石形状的装饰品等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索菱形的奥秘。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与菱形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如制作一个菱形模型,演示菱形的基本性质。
1.1菱形的性质与判定(一)学案
菱形的性质与判定(1)一.预习课本第2页至第4页,归纳菱形的性质菱形的性质:二.证明菱形性质已知:如图1-1,在菱形ABCD 中,AB=AD,对角线AC 与BD 相交于点O.求证:(1)AB=BC=CD=AD ;(2)AC ⊥BD.三.性质应用与巩固 1、例1 如图1-2,在菱形ABCD 中,对角线AC 与BD 相交于点O, ∠BAD=60°,BD=6,求菱形的边长AB 和对角线AC 的长。
2、随堂练习如图,在菱形ABCD 中,对角线AC 与BD 相交于点O.已知AB=5cm ,AO=4cm 求 BD 的长.课堂检测基础知识应用题1、已知菱形的两条对角线AC ,BC 的长分别为6 cm 和8 cm ,则边长为 cm ,周长为 cm ,面积为 cm 2,高为 cm .2、如图4-44所示,在菱形ABCD 中,正是AB 的中点,且DE ⊥AB ,AB =a .(1)求∠ABC 的度数;(2)求对角线AC 的长;(3)求菱形ABCD 的面积.综合应用题AA C3、如图4-46所示,在菱形ABCD中,∠BAD=2∠B试说明△ABC是等边三角形.4、如图4-47所示,已知菱形ABCD的对角线AC,BD的长分别为16 cm和12cm,DE⊥BC于E,求DE的长.体验中考1、如图4-49所示,将一个长为10 cm、宽为8 cm的长方形纸片对折两次后,沿所得矩形的两邻边中点的连线(虚线)剪下,再打开,得到的菱形(如图4-50所示)的面积为( )A.10 cm2B.20 cm2C.40 cm2D.80 cm22、如图4-51所示,一活动菱形衣架中,菱形的边长均为16 cm,若墙上钉子间距离AB=BC=16 cm,则∠l=度.。
菱形的性质和判定教案
菱形的性质和判定教案第一章:菱形的定义和性质1.1 菱形的定义引导学生回顾四边形的定义,引入菱形的概念。
通过图形展示,让学生理解菱形是由四条边相等的四边形。
1.2 菱形的性质介绍菱形的四条边相等的性质。
引导学生观察菱形的对角线性质,得出对角线互相垂直且平分的性质。
引导学生探索菱形的对角线与边的夹角,得出均为直角的性质。
第二章:菱形的判定2.1 判定一个四边形为菱形的条件引导学生运用菱形的性质,判断一个四边形是否为菱形。
强调四条边相等是判定的关键条件。
2.2 对角线互相垂直且平分的四边形为菱形通过图形展示,让学生理解对角线互相垂直且平分的四边形必定是菱形。
引导学生运用这个判定条件,解决相关问题。
第三章:菱形的面积3.1 菱形的面积计算公式引导学生回顾三角形和矩形的面积计算公式。
引入菱形的面积计算公式,即对角线乘积的一半。
3.2 应用菱形的面积公式解决问题通过例题,让学生运用菱形的面积公式解决问题。
引导学生注意对角线长度和角度的关系,以便准确计算面积。
第四章:菱形的对角线4.1 菱形的对角线长度引导学生观察菱形的对角线长度,得出对角线长度相等的性质。
通过几何证明,引导学生理解对角线长度相等的证明方法。
4.2 菱形的对角线与边的夹角引导学生观察菱形的对角线与边的夹角,得出均为直角的性质。
通过几何证明,引导学生理解对角线与边的夹角为直角的证明方法。
第五章:菱形的对称性5.1 菱形的轴对称性引导学生观察菱形的对称性,得出菱形具有轴对称性的性质。
通过图形展示,让学生理解菱形有两组对称轴。
5.2 菱形的中心对称性引导学生观察菱形的对称性,得出菱形具有中心对称性的性质。
通过图形展示,让学生理解菱形的中心对称性。
第六章:菱形的画法6.1 菱形的画法步骤介绍菱形的画法步骤,包括确定边长、画对角线、分割四边形等。
通过示例,引导学生逐步完成菱形的绘制。
6.2 应用菱形的画法解决问题通过例题,让学生运用菱形的画法解决问题,如绘制特定的菱形图案。
北师大版九年级数学上册《特殊平行四边形》导学案:菱形的性质与判定
北师大版九年级数学上册《特殊平行四边形》导学案菱形的性质与判定(第一课时)【学习目标】1.理解菱形的定义;2.探索并证明菱形的性质定理;3.会利用菱形的性质进行计算和证明.【知识梳理】菱形的定义 1. 叫做菱形.菱形是 的平行四边形.菱形的性质 2.菱形既是中心对称图形,又是轴对称图形,它有 条对称轴. 3.从菱形的定义可以探究菱形具有的性质:(1)菱形具有平行四边形的一切性质.(2)菱形与平行四边形比较又有其特殊的性质.特殊在“边”上的性质是:特殊在“对角线”上的性质:【典型例题】知识点一 菱形的定义1.有一组_______相等的______________是菱形知识点二 菱形的性质2.如图,已知菱形ABCD 的对角线AC=6cm ,BD=8cm,求这个菱形的周长.3.如图,在菱形ABCD 中,过点B 作BE ⊥AD 于点E,BF ⊥CD 于点F.求证:AE=CF.【巩固训练】1.菱形具有而平行四边形不具有的性质是( )A.对角线互相平分B.对角线相等C.对角线互相垂直D.四个角都相等2.如图,在菱形ABCD 中,E ,F 分别是AD 、AC 的中点,若EF =3,则菱形ABCDD A B C (2题图)的周长是( )A .6 B.18 C .24 D .303.已知菱形两邻角的比是1:2,周长为40cm ,则较短对角线的长是 .4.如图,在平面直角坐标系中,菱形ABCD 的顶点D 在x 轴上,边BC 在y 轴上,若点A 的坐标为(12,13),则点C 的坐标是 .5.如图,菱形ABCD 的边长为4,∠BAD=120°,点E 是AB 的中点,点F 是AC 上的一动点,则EF+BF 的最小值是6.如图,在菱形ABCD 中,对角线AC 与BD 交于 O ,∠BAD=60°BD=6,求AB 与AC 的长.7.如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BD相交于点O ,与BC 相交于点N ,连接BM 、DN .(1)求证:四边形BMDN 是菱形;(2)若AB =4,AD =8,求菱形BMDN 的面积和对角线MN 的长.(2题图) (5题图) (4题图) (6题图)O A D C B (7题图)北师大版九年级数学上册《特殊平行四边形》导学案菱形的性质与判定(第二课时)【学习目标】掌握菱形的判定方法,并会解决有关的计算和证明.【知识梳理】一、从“对角线”和“边”两方面得到菱形的判定定理:菱形的判定定理(1):菱形的判定定理(2)_____________________________二、独立证明菱形的判定定理(1),(2).1.对角线互相垂直的平行四边形是菱形.已知:求证:证明:2.四条边都相等的四边形是菱形 .已知:求证:证明:【典型例题】知识点一:对角线互相垂直的平行四边形是菱形1.四边形ABCD的两条对角线AC、BD相交于点O,AB=5,AC=8,DB=6. 求证:四边形ABCD是菱形.知识点二:四条边都相等的四边形是菱形2.如图,在△ABC中,AC=BC,点D,E,F分别是AB,AC,BC的中点,连接DE,DF.求证:四边形DFCE是菱形.【巩固训练】2题图1.下列条件中,能判断四边形是菱形的是( )A对角线相等的平行四边形 B对角线互相垂直且相等的四边形C对角线互相平分且垂直的四边形 D对角线互相垂直的四边形3.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()2题图A 、AB=BCB 、AC=BC C 、∠B=60°D 、∠ACB=60°3.如图,在等腰三角形ABC 中,AB =AC ,AH ⊥BC ,点E 是AH上一点,延长AH 至点F ,使FH =EH .求证:四边形EBFC 是菱形.4.如图,在平行四边形ABCD 中,E ,F 是对角线BD 上的点,且BE =DF ,连接AE ,CF .(1)求证△ADE ≌△CBF ;(2)连接AF ,CE ,若AB =AD ,求证:四边形AFCE 是菱形.5.如图,在△ABC 中,∠ACB =90°,点D ,E 分别是边BC ,AB 上的中点,连接DE 并延长至点F ,使EF =2DE ,连接CE 、AF .(1)证明:AF =CE ;(2)当∠B =30°时,试判断四边形ACEF 的形状并说明理由.3题图 3题图 5题图 4题图北师大版九年级数学上册《特殊平行四边形》导学案菱形的性质与判定(第三课时)【学习目标】1.掌握菱形的面积公式;2.会灵活运用菱形的有关知识进行计算和证明.【知识梳理】1. 菱形的面积公式如图,在菱形ABCD 中,对角线AC 、BD 交于O 点,若把菱形ABCD 看成△ABD 和△BCD ,而AO 和OC 分别是它们的高:S 菱形ABCD =S △ABD +S △BCD = + =21BD × , 即菱形的面积等于 乘积的 。
九年级数学上册第一章特殊平行四边形1菱形的性质与判定教学案1 新版北师大版
菱形的性质与判定(一)
学习目标:
1.通过折、剪纸张的方法,探索菱形独特的性质;
2.通过学生间的交流、讨论、分析、类比、归纳、运用已学过的知识总结菱形的特征.
学习过程:
一、自主学习:
自学课本例题以上的内容,完成下列问题:
1.如何从一个平行四边形中剪出一个菱形来?
?
菱形
平行四边形
的四边形叫做菱形,生活中的菱形有 .
2.按探究步骤剪下一个四边形.
①所得四边形为什么一定是菱形?
②菱形为什么是轴对称图形?
有对称轴.
图中相等的线段有:
图中相等的角有:
③你能从菱形的轴对称性中得到菱形所具有的特有的性质吗?自己完成证明.
性质:
证明:
二、课堂检测:
1.菱形的两条对角线长分别是12cm,16cm,它的周长等于 ,面积等于。
2.菱形的一条边与它的两条对角线所夹的角比是3:2,菱形的四个内角是 .
3.已知:菱形的周长是20cm,两个相邻的角的度数比为1:2,则较短的对角线长是。
4.已知:菱形的周长是52 cm,一条对角线长是24 cm,则它的面积是。
5.菱形的两条对角线把菱形分成全等的直角三角形的个数是().
(A)1个(B)2个(C)3个(D)4个
6.在菱形ABCD中,CE⊥AB,E为垂足,BC=2,BE=1,求菱形的周长和面积.
7.已知:如图,在菱形ABCD中,周长为8cm,∠BAD=1200 对角线AC,BD交于点O,求这个菱形的对角线长和面
积。
A
B
C D
O。
《菱形的性质及判定》名师教学案
第一章特殊平行四边形1.菱形的性质与判定(1)一、学情与教材分析1.学情分析“菱形的性质与判定”是继八年级下册“第三章图形的平移与旋转”和“第六章平行四边形”之后的一个学习内容.学生在学习菱形之前,已经掌握了简单图形的平移旋转及平行四边形的性质和判定,学生完全能够借助图形的旋转平移和轴对称直观的理解菱形的定义和性质.其次,经历了七年级下册“相交线与平行线”、“三角形”和八年级下册“平行四边形”的学习和推理训练,学生们已经具备了一定的推理能力,树立了初步的推理意识,为严格的推理证明打下了基础.再次,本章第4节将学习“正方形的性质与判定”,正方形是菱形的特殊情形,本节课学习将为正方形性质与判定的学习打下良好的基础.2.教材分析教科书在学生学习了“平行四边形”的基础上,提出了本课的学习任务:①掌握菱形的定义;②探索并掌握菱形是轴对称图形;③探索并证明菱形“四条边相等”、“对角线互相垂直”等性质,并能应用这些性质计算线段的长度,会求菱形的周长和面积.本节课通过观察、分析、类比、动手操作,推论论证等活动过程探究菱形的定义和性质,进一步提高了学生的观察分析能力和类比探究能力.二、教学目标:1.经历从现实生活中抽象出图形的过程,理解菱形的概念及其与平行四边形的关系;2. 经历利用折纸等活动探索菱形的轴对称性和菱形的其他性质,发展合情推理能力;3.在证明性质和运用性质解决问题的过程中探究菱形的周长公式和面积公式,进一步发展学生的逻辑推理能力.三、教学重难点:重点:菱形的性质难点:菱形性质的综合运用四、教法建议(探究法)教师可采用“探索——发现——猜想——论证”的教学方法,引导学习探索菱形的定义和性质.五、教学设计(一)课前设计1、预习任务任务1:我们已经学习了平行四边形这个特殊的四边形了,小红想,如果平行四边形再特殊一些,如果一个平行四边形邻边相等,那么这个四边形是什么样子呢?请按照小红的要求,画出一个邻边相等的平行四边形,并观察生活,举出生活中类似的图形的例子?任务2:学习课本第2页想一想上面内容,初步了解菱形的定义.任务3:既然菱形是特殊的平行四边形,那么它肯定具有平行四边形的所有性质了,你能就你目前的认识,写出菱形的性质么?任务4:既然菱形是特殊的平行四边形,那么,菱形肯定还有它特殊的性质,请用菱形纸片探究猜测以下问题:(1)菱形的对称性;(2)菱形的边之间的关系;(3)菱形的对角线的关系;(4)菱形的周长与面积的求法.2、预习自测一、填空题1、如图,四边形ABCD的对角线互相平分,要使它变成菱形,需要添加条件为_____________.B答案:AB=BC或BC=CD或CD=DA或AB=AD.解析:∵四边形ABCD的对角线互相平分,∴四边形为平行四边形.∴当AB=BC时,四边形ABCD是菱形.点拨:根据定义“一组邻边相等的平行四边形是菱形”即可得到答案.2、如图,菱形ABCD中,已知∠A BD=20°,则∠C的度数为__________.答案:140°.解析:∵菱形是轴对称图形,对角线所在直线是对称轴,∴对角线平分对角,∴∠ABC=2∠A BD=40°.又因为菱形邻角互补,可得∠C=180° - ∠A BC=140°.点拨:根据菱形的轴对称性得到菱形对角线平分对角,从而得出∠ABC的度数,进而得到相邻的角的度数.二、解答题3、如图,在菱形ABCD中,对角线AC与BD 相交于点O.已知AB=5cm,AO=4cm,求BD的长和菱形的面积.答案:6cm,24cm2.解析:∵菱形对角线互相垂直,所以∠A OB=90°,∴在Rt△AOB中,3OB cm===,∴BD=2OB=6cm.∵菱形是轴对称图形,BD所在直线是一条对称轴,∴△ABD≌△CBD,∴S菱形ABCD=2S△ABD=1264242⨯⋅⋅=⨯=BD OA cm2.点拨:根据菱形对角线互相垂直和勾股定理,可求得OB的长,从而得BD 的长;根据菱形的轴对称性将菱形分成两个全等三角形,利用三角形面积公式可求菱形得面积.(或点击“课前预习-名师预习”,选择“《菱形的性质与判定(1)》预习自测”)(二)课堂设计1、情境引入内容:在日常生活中,常看到各种各样的几何图形和由它们组成的精美图案,请同学们观察下面的几幅图片,看一看图案是有哪些基本图形组成的?学生:观察衣服、衣帽架和窗户等实物图片.教师:同学们,在观察图片后,你能从中发现你熟悉的图形吗?你认为它们有什么样的共同特征呢?学生1:图片中有八年级学过的平行四边形.教师:请同学们观察,相比较,有什么不同点吗?教师:这种图形就叫做菱形.设计意图:通过这个环节,培养了学生的观察和对比分析能力.上课时让学生观察图形,从直观上初步感受菱形的形状和性质,同时,要让学生体会到数学来源于生活,数学就在我们身边,并不是高不可攀的道理.注意事项及效果:学生在通过观察对比体会菱形的形状和性质的过程中,会给出一些与定义无关的结论,教师需要对正确的结论加以肯定,并从菱形的定义方面加以引导. 2、探究发现探究1:菱形的概念师:上面几幅图片的基本图形都是平行四边形吗?这些基本图形还有什么共同特征?(一眼可以看出来的)生:它们都是平行四边形,而且四条边都相等.师:上面说过这类图形叫做菱形,那同学们能类比平行四边形的概念给出菱形的定义吗?师生总结:有一组邻边相等的平行四边形叫做菱形.让学生再举一些生活中常见的菱形的例子.(登录优教同步学习网,搜索“动画演示:菱形及其性质”,看菱形的概念及实例部分)设计意图:通过这个环节,培养了学生的总结概括能力.学生通过对菱形定义的概括,不但掌握了菱形的特征,也为下一步学习菱形的性质打下良好的基础.注意事项与效果:学生在通过总结概括得到菱形定义的过程中,会有一些不同的想法,如四条边都相等的四边形叫做菱形、四条边都相等的平行四边形叫做菱形等等,教师要对学生的答案进行积极有效的评价分析,激发学生的学习积极性,同时又要从类比学习的角度给出菱形的定义,强调菱形不仅是平行四边形,而且有其自身特点“一组邻边相等”,这样强化了菱形的定义和与平行四边形的关系,又为下面的教学内容做好了铺垫.探究2:菱形的性质想一想:(1)教师:菱形是特殊的平行四边形,它具有一般平行四边形的所有性质.你能列举一些这样的性质吗?学生:菱形的对边平行且相等,对角相等,对角线互相平分.(2)教师:同学们,你认为菱形还具有哪些特殊的性质?请你与同伴交流.学生活动:分小组讨论菱形的性质,组长组织组员讨论,让尽可能多的组员发言,并汇总结果.教师活动:教师巡视,并参与到学生的讨论中,启发同学们类比平行四边形,从图形的边、角和对角线三个方面探讨菱形的性质.对学生的结论,教师要及时评价,积极引导,激励学生.(3)师生总结:①与平行四边形相同的性质:对边平行且相等,对角相等,对角线互相平分.②与平行四边形不同的性质:一组邻边相等(或四条边都相等).做一做:教师:请同学们用菱形纸片折一折,回答下列问题:(1)菱形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?(2)菱形中有哪些相等的线段?(3)菱形的对角线有什么关系?学生活动:分小组折纸探索,并讨论、交流,组长组织汇总结果.教师活动:教师巡视并参与学生活动,引导学生分析怎样折纸才能得到正确的结论.学生研讨完毕,教师要展示汇总学生的折纸方法以及相应的结论,以便于后面的教学.师生总结:①菱形是轴对称图形,有两条对称轴,是菱形对角线所在的直线,两条对角线互相垂直.②菱形的四条边相等.③菱形的对角线互相垂直.注:学生还可能会发现下面一些性质,应鼓励学生多说.菱形的对角线平分一组对角;菱形的对角线互相垂直并平分;(登录优教同步学习网,搜索“动画演示:菱形及其性质”,看菱形的性质部分)证一证:教师:通过折纸活动,同学们已经对菱形的性质有了初步的了解,那么上面得到的结论正确吗?你能证明这些结论吗?教师活动:展示题目已知:如图1-1,在菱形ABCD 中,AB=AD,对角线AC 与BD 相交于点O.AC求证:(1)AB=BC=CD=AD;(2)AC⊥BD.师生共析:①菱形不仅对边相等,而且邻边相等,这样就可以证明菱形的四条边都相等了.②因为菱形是平行四边形,所以点O是对角线AC与BD的中点;又因为在菱形中可以得到等腰三角形,这样就可以利用“三线合一”来证明结论了.学生活动:独立写出证明过程,进行组内交流对比,优化证明方法,掌握相关定理.证明:(1)∵四边形ABCD是菱形,∴AB = CD, AD= BC (菱形的对边相等).又∵AB=AD,∴AB=BC=CD=AD.(2)∵AB=AD,∴△ABD是等腰三角形.又∵四边形ABCD是菱形∴OB=OD(菱形的对角线互相平分)在等腰三角形ABD中,∵OB=OD∴AO⊥BD,即AC⊥BD.教师活动:展示学生的证明过程,进行恰当的点评和鼓励,优化学生的证明方法,提高学生的逻辑证明能力,最后强调“菱形的四条边都相等”“菱形的对角线互相垂直”,让学生形成牢固记忆,留下深刻印象.设计意图:学生通过折纸可以猜想到菱形的相关性质,教师在参与学生的活动过程中,应该关注学生的口述论证过程,并根据学生的认知水平加以引导,尽量减少学生推理论证过程中的困难.学生经过了折纸这一操作活动后,再经过逻辑证明,把操作层面的感知上升到了理性认识,充分理解了菱形的本质特征.本环节让学生进行猜想探究和证明,符合学生的认知规律.同时,操作活动得到的结论与逻辑推理相结合,是对数学知识进行探索活动的自然延续,实现了从感性认识到理性认识的升华.注意事项与效果:在折纸过程中,教师要与学生探讨折纸的方法,明确折叠过程中的对应点及相应的对称轴,对称轴是菱形对角线所在的直线,而不是菱形的对角线,以便于学生正确迅速找出菱形中的对称关系.掌握数学知识,离不开“实践→认识→再实践→认识”这个重要的数学学习过程,通过说理论证可以使学生充分理解菱形的本质并掌握,在这个过程中,教师要充分关注学生使用几何语言的规范性,进一步规范学生的证明步骤的规范性和严谨性.3、知识运用师:通过刚才的严格论证,我们已经认识了菱形的特殊性质,下面我们利用这些性质来解决一些问题.教师活动:展示题目(1)例题 如图1-2,在菱形ABCD 中,对角线AC 与BD 相交于点O, ∠BAD=60°,BD=6,求菱形的边长AB 和对角线AC 的长.师生共析:①因为菱形的邻边相等,一个内角是60°,这样就可以得到等边△ABD ,BD=6,菱形的边长也是6.②菱形的对角线互相垂直,可以得到直角△AOB ;菱形的对角线互相平分,可以得到OB=3,根据勾股定理就可以求出OA 的长度;再一次根据菱形的对角线互相平分,即AC=2OA,求出AC.解:∵ 四边形ABCD 是菱形∴AB=AD(菱形的四条边都相等)AC ⊥BD (菱形的对角线互相垂直)OB=OD= BD = ×6 =3(菱形的对角线互相平分)在等腰三角形ABD 中,∵∠BAD=60°∴△ABD 是等边三角形A 2121∴AB=BD=6在Rt△AOB中,由勾股定理,得OA2+OB2=AB.OA∴====2AC OA∴.(2)练习如图1-3,在菱形ABCD中,∠BAD=120°,已知△ABC的周长是15,则菱形ABCD的周长是()A.25B.20C.15D.10答案:B解析:∵四边形ABCD是菱形,∴AB=BC=CD=DA.又∵AC是对角线,∠BAD=120°,∴∠BAC=∠D AC=60°. ∴A B=BC=CA=5.∴菱形的周长是5×4=20.故选B.思路点拨:由菱形对角线平分对角和菱形一组邻边相等,得等边三角形,进一步得边长,从而得菱形周长.设计意图:通过例题的讲解和练习题的巩固,让学生灵活运用菱形的性质求解,达到学以致用的目标,同时进一步规范解题步骤,注意事项与效果:在此活动中,教师应重点关注以下方面:(1)学生能否提出不同的解题方法,这种方法的优点和缺点分别是什么;(2)学生的几何语言是否准确、规范、严谨;(3)给学生充分的独立思考时间和交流时间,让学生在合作交流的过程中完成题目,理解所学的知识.4、随堂检测一、选择题1、菱形具有而一般平行四边形不具有的性质是()A.对角相等B.对边相等C.对角线互相垂直D.对角线相等答案:CB解析:∵菱形具有的性质:对角相等,四条边都相等,对角线相互垂直且平分;一般平行四边形的性质:对角相等,对边相等,对角线互相平分.∴对角线相互垂直是一般平行四边形不具有的,故选C点拨:菱形具有一般平行四边形的所有性质外,还有自己的特殊性质:四条边都相等,对角线互相垂直.据此即可得出答案二、填空题2、描述有一角度数为60°的菱形特殊性_____________答案:较短的对角线长与菱形的边长相等解析:如图,有AB=BC,∵∠ABC=60°,则△ABC为等边三角形∴AC=AB.点拨:根据菱形和等边三角形的性质可解答该题.3、一般的菱形共有________条对称轴.答案:2解析:菱形是轴对称图形,它的对称轴是对角线所在直线,菱形有两条对角线,故有两条对称轴,点拨:根据菱形的轴对称性和对称轴的概念、性质解题。
菱形的性质与判定导学案
§6、1菱形的性质与判定—学案导学
学案导学一:探究菱形的性质
已知:如图,菱形ABCD 中,AB=AD,对角线AC 与BD 相交于点O
求证: (1)AB=BC=CD=DA
(2)AC ⊥BD
AC 平分∠DAB 和∠DCB
BD 平分∠ADC 和∠ABC
证明:(1) (2)
符号语言:
学案导学二:走进生活
如图,菱形风筝ABCD 的周长为80cm , ∠ABC =60度,求菱形对角线AC 和
BD 的长
学案导学三:当堂检测
1、对于以下图形(1)矩形(2)等边三角形(3)平行四边形(4)菱形(5)圆(6)线段,既是轴对称图形又是中心对称图形的有( )
A 、1个
B 、2个
C 、3个
D 、4个
2、已知菱形的两条对角线长分别是10和24,则菱形的周长为____。
3、如图,在菱形ABCD 中,AB=5cm, AO=4cm ,求这一菱形的周长与两条对角线的长度。
菱形的性质与判定 1导学案
菱形的性质与判定 1导学案 备课日期 月 日主备 刘延金 复备 学生 班级 上课日期 月 日【学习目标】1.掌握菱形概念,知道菱形与平行四边形的关系.2.理解并掌握菱形的定义及性质1和性质2一、导入新课1、 叫做平行四边形2、平行四边形的对边 ,对角 ,邻角 ,对角线3、一组对边 的四边形是平行四边形,两组对边分别 的四边形是平行四边形,两组对边分别相等的四边形是 。
两条对角线 的四边形是平行四边形。
二、新知探索1、自主学习菱形的定义:叫做菱形。
菱形是 的平行四边形。
2、合作探究菱形的性质:例1:已知四边形ABCD 是菱形,求证四边相等。
性质1:例2:已知四边形ABCD 是菱形,求证AC ⊥BD 。
性质2:例3:已知四边形ABCD 是菱形,求证AC 、BD 各平分一组对角。
性质3:例4:在菱形ABCD 中,已知AC=8,BD=6,求菱形ABCD 的面积。
性质4:性质5:菱形具有 的一切性质。
三、小结与思考:菱形具有而平行四边形不一定具有的性质有哪些?菱形是 图形,对称轴有 条,即两条 所在的直线四、知识应用1、已知菱形ABCD 的边长为2 cm,∠BAD =120°对角线AC 、BD 相交于点O ,试求出菱形对角线的长和面积.2.如图,已知菱形ABCD 的对角线交于点O ,AC=16cm ,BD=12cm ,求菱形的高.五 层级训练六 测评练习(B 层)(1)菱形的对角线长为24和10,则菱形的边长为 ,周长为 ,面积为 。
(2)在菱形ABCD 中,已知∠ABC=60°,AC=4,则AB= 。
(3)菱形的两邻角之比为1:2,边长为2,则菱形的面积为__________.O D CB A(4)已知菱形的面积等于80cm2,高等于8cm,则菱形的周长为 .(5)已知菱形ABCD的周长为20cm,∠A:∠ABC=1:2,则BD= cm.(6)在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,(如图)则∠EAF等于()A.75°B.60°C.45°D.30°(7)菱形ABCD,若∠A:∠B=2:1,∠CAD的平分线AE和边CD之间的关系是()A.相等B.互相垂直且不平分C.互相平分且不垂直D.垂直且平分(8)已知菱形的周长为20cm,一条对角线长为5cm,求菱形各个角的度数。
菱形的性质与判定(一)导学案
第一章特殊平行四边形1.菱形的性质与判定(一)一、教学目标:1.经历从现实生活中抽象出图形的过程,了解菱形的概念及其与平行四边形的关系;2.体会菱形的轴对称性,经历利用折纸等活动探索菱形性质的过程,发展合情推理能力;3.在证明性质和运用性质解决问题的过程中进一步发展学生的逻辑推理能力三、教学过程设计本节课设计了六个教学环节:第一环节:课前准备;第二环节:设置情境,提出课题;第三环节:猜想、探究与证明;第四环节:性质应用与巩固;第五环节:课堂小结;第六环节:布置作业。
第一环节课前准备1、教师在课前布置学生复习平行四边形的性质,搜集菱形的相关图片。
2、教师准备菱形纸片,上课前发给学生上课时使用。
第二环节设置情境,提出课题【教学内容】学生:观察衣服、衣帽架和窗户等实物图片。
教师:同学们,在观察图片后,你能从中发现你熟悉的图形吗?你认为它们有什么样的共同特征呢?学生1:图片中有八年级学过的平行四边形。
教师:请同学们观察,彩图中的平行四边形与ABCD相比较,还有不同点吗?学生2:彩图中的平行四边形不仅对边相等,而且任意两条邻边也相等。
教师:同学们观察的很仔细,像这样,“一组邻边相等的平行四边形叫做菱形”。
【注意事项】学生在通过观察对比得到菱形定义的过程中,会提出菱形的许多性质,如四条边相等、对角相等和对边平行等等,教师要对学生的答案进行积极的有鼓励性的评价,激发学生的学习积极性,同时又要强调菱形不仅是平行四边形,而且有其自身特点“一组邻边相等”,这样强化了菱形的定义,又为下面的教学内容做好了铺垫。
第三环节猜想、探究与证明【教学内容】1、想一想①教师:菱形是特殊的平行四边形,它具有一般平行四边形的所有性质。
你能列举一些这样的性质吗?学生:菱形的对边平行且相等,对角相等,对角线互相平分。
②教师:同学们,你认为菱形还具有哪些特殊的性质?请你与同伴交流。
学生活动:分小组讨论菱形的性质,组长组织组员讨论,让尽可能多的组员发言,并汇总结果。
菱形的性质和判定教案
菱形的性质和判定教案一、教学目标知识与技能目标:使学生掌握菱形的定义、性质和判定方法,能够运用菱形的性质解决实际问题。
过程与方法目标:通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。
情感态度与价值观目标:激发学生对几何图形的兴趣,培养学生的审美观念,提高学生解决问题的自信心。
二、教学内容1. 菱形的定义:菱形是四条边相等的四边形。
2. 菱形的性质:(1)菱形的对角线互相垂直,且平分对方。
(2)菱形的对边平行且相等。
(3)菱形的对角相等。
(4)菱形的四条边相等。
3. 菱形的判定方法:(1)四条边相等的四边形是菱形。
(2)对角线互相垂直,且平分对方的四边形是菱形。
三、教学重点与难点重点:掌握菱形的性质和判定方法。
难点:理解菱形性质之间的内在联系,以及如何运用判定方法判断一个四边形是否为菱形。
1. 教学PPT或黑板。
2. 几何画图工具。
3. 相关几何图形示例。
五、教学过程1. 导入:通过展示一些生活中的菱形图形,如蜂巢、骰子等,引导学生观察并思考这些图形的共同特点。
2. 新课导入:介绍菱形的定义,引导学生通过观察、操作、推理等方法,发现菱形的性质。
3. 讲解与演示:利用PPT或黑板,展示菱形的性质,如对角线互相垂直、平分对方,对边平行且相等等。
通过几何画图工具,演示菱形的性质,帮助学生理解。
4. 练习与巩固:给出一些四边形,让学生判断它们是否为菱形,并说明理由。
引导学生运用菱形的性质和判定方法进行判断。
5. 拓展与应用:引导学生运用菱形的性质解决实际问题,如在设计图案、构造模型等方面应用菱形。
7. 布置作业:设计一些有关菱形的练习题,巩固学生对菱形性质和判定方法的理解。
六、教学评价1. 课堂讲解:评价学生在课堂上的参与程度、提问回答的正确性和完整性。
2. 练习与巩固:评价学生在练习中应用菱形性质和判定方法的正确性。
3. 拓展与应用:评价学生在实际问题中运用菱形性质的创造性和解决问题的能力。
菱形的性质与判定 整合提高学案
菱形的性质与判定 整合提高学案一、知识点回顾:(一)定义:在同一平面内, 是菱形(二)菱形的判定方法:1. 有 的平行四边形。
2. 的平行四边形。
3. 的四边形。
(三)基本性质:1. 菱形具有 的一切性质;2. 菱形的 都相等;3. 菱形的对角线 且 ;二、基础练习:1. 菱形的两条对角线长分别为18cm 和24cm ,则这个菱形的周长为 。
2. 若一个菱形的边长为2,则这个菱形两条对角线长的平方和为 。
3. 如图平行四边形ABCD 中,AE 、CF 分别是∠BAD 和∠BCD 的平分线,根据现有的图形,请添加一个条件,使四边形AECF 是菱形,则添加的一个条件是(图中不能添加别的点和线)4. 菱形的一条对角线长与它的边相等,则它的一个锐角为 。
5. 已知平行四边形ABCD 的对角线AC 、BD 相交于点O ,分别添加下列条件:⑴∠ABC=90°;⑵AC ⊥BD; ⑶AB=BC; ⑷AC 平分∠BAD ; ⑸AO=DO,使得四边形是菱形的条件的序号 。
三、经典例题:例1.以△ABC 的三边在BC 同侧分别作三个等边三角形△ABD ,△BCE ,△ACF,试回答下列问题:(1)四边形ADEF 是什么四边形?(2)当△ABC 满足什么条件时,四边形ADEF 是矩形?(3)当△ABC 满足什么条件时,四边形ADEF 是菱形?F E DCB A例2.如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC 于Q.(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D 重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.四、课堂练习:两块完全相同的三角板I(△ABC)和Ⅱ(△A’B’C’)如图(1)所示放置在同一平面上(∠C=∠C’=90o,∠ABC=∠A’B’C’=60o),斜边重合,若三角板Ⅱ不动,三角板I在三角板Ⅱ所在的平面上向右滑动,图(2)是滑动过程中的一个位置。
菱形的性质与判定 导学案(2)
菱形的性质与判定 导学案
第二课时
一、学习准备:
知识梳理1:菱形的定义: 菱形的性质: (边) (角)
(对角线)
(对称性)
菱形的面积等于 .
知识梳理2:平行四边形的判定: 知识梳理3:
二、自主学习:
1、如图,平行四边形ABCD 的对角线相交于点O ,且OC=OD,PD ∥AC ,PC ∥BD ,PD ,PC 相交于点P ,四边形PCOD 是菱形吗?试说明理由.
2、已知:如图,AD 平分∠BAC ,DE ∥AB ,DF ∥AC .
试判断四边形AFED 的形状,并加以证明.
的平行四边形是菱形 的四边形是菱形
2、如图,四边形ABCD 中,AB ∥CD ,AC 平分∠BAD ,CE ∥AD 交AB 于E . 求证:四边形AECD 是菱形;
4.已知:如图,在平行四边形ABCD 中,AE 平分∠BAD,与BC 相交于点E,EF//AB,与AD 相交于点F.
求证:四边形ABEF 是菱形.
5、已知平行四边形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于点E 、F ,求证:四边形AFCE 是菱形.
A B C D
E F。
菱形的性质和判定教案
个性化教学辅导教学内容菱形教学目标1、掌握菱形的定义和性质;2、学会判定菱形;3、平行四边形和菱形的区别和联系;重点难点1、菱形的性质和判定的熟练掌握;2、利用菱形的性质综合解决问题;教学过程知识讲解一、菱形的定义如图,如果一个平行四边形有一组邻边相等,那么这个平行四边形会有怎样的变化?定义:叫做菱形。
二,菱形的性质。
菱形性质:1.两条对角线互相垂直平分;2.四条边都相等;3.每条对角线平分一组对角;4.菱形是一个中心对称图形,也是一个轴对称图形。
以上菱形的性质你能给出证明吗?练习:1、已知菱形的周长是12cm,那么它的边长是______。
2、菱形ABCD中∠ABC=60度,则∠BAC=_______。
3、菱形的两条对角线长分别为6cm和8cm,则菱形的边长是_______。
4、菱形的面积为24cm2,一条对角线的长为6cm,则另一条对角线长为_____cm,边长为_____cm,高为_____cm。
三、菱形的判定根据定义我们知道有一组邻边相等的平行四边形是菱形,还有别的判定方法吗?猜想1:如果一个平行四边形的两条对角线相互垂直,那么这个平行四边形是菱形。
已知:平行四边形ABCD中,对角线AC、BD互相垂直。
求证:四边形ABCD是菱形.例1:如图,已知矩形ABCD的对角线AC的垂直平分线与边AD、BC分别交于点E、F,求证四边形AFCE 是菱形.猜想2四条边都相等的四边形是菱形.已知:如图,四边形ABCD,AB=BC=CD=DA求证:四边形ABCD是菱形猜想3:如果一个四边形的每条对角线平分一组对角,那么这个四边形是菱形。
已知:四边形ABCD,AC平分∠DAB和∠DCB,BD平分∠ABC和∠ADC求证:四边形ABCD是菱形总结:菱形的判定定理:1、有一组邻边相等的平行四边形是菱形(定义)2、对角线互相垂直的平行四边形是菱形.(根据对角线)3、四条边都相等的四边形是菱形.(根据四条边)4、每条对角线平分一组对角的四边形是菱形.(对角线和角的关系)练习:1、用两个边长为a的等边三角形纸片拼成的四边形是()A、等腰梯形B、正方形C、矩形D、菱形2、下列说法中正确的是()A、有两边相等的平行四边形是菱形。
菱形的性质及判定学案
菱形第1课时菱形的性质01 课前预习要点感知1有一组邻边相等的平行四边形叫菱形.要点感知2 菱形的四条边都相等;菱形的两条对角线互相垂直平分,且每条对角线平分一组对角;菱形是轴对称图形,它的对角线所在的直线就是它的对称轴.预习练习2-1 若一个菱形的一条边长为4 cm,则这个菱形的周长为() A.20 cm B.18 cm C.16 cm D.12 cm2-2(黔西南中考)菱形的两条对角线长分别是6和8,则此菱形的边长是() A.10 B.8 C.6 D.5要点感知3 菱形的面积与两对角线的关系是.预习练习3-1已知四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4 cm,BD=8 cm,则这个菱形的面积是cm2.02 当堂训练知识点1 菱形的性质1.菱形具有而一般平行四边形不具有的性质是()A.对角相等B.对边相等C.对角线互相垂直D.对角线相等2.(长沙中考)如图,已知菱形ABCD的边长等于2,∠DAB=60°,则对角线BD的长为() A.1 B. 3 C.2 D.2 33.如图,在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是()A.AB∥DC B.AC=BDC.AC⊥BD D.OA=OC4.(烟台中考)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°5.如图是根据四边形的不稳定性制作的边长为15 cm的可活动菱形衣架.若墙上钉子间的距离AB =BC=15 cm,则∠1= .6.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH=.7.如图,在菱形ABCD中,E,F分别是BC,CD的中点,连接AE,AF.AE和AF有什么样的数量关系?说明理由.知识点2 菱形的面积8.已知一个菱形的周长是20 cm,两条对角线的比是4∶3,则这个菱形的面积是() A.12 cm2B.24 cm2C.48 cm2D.96 cm29.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且∠ACD=30°,BD=4,求菱形ABCD 的面积.03 课后作业10.(黔东南中考)如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD的长为()A.2 B.3 C. 3 D.2 311.(徐州中考)如图,在菱形ABCD中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5 B.4 C.7 D.1412.(昆明中考)如图,在菱形ABCD中,对角线AC、BD相交于点O,下列结论:①AC⊥BD;②OA=OB;③∠ADB=∠CDB;④△ABC是等边三角形.其中一定成立的是( ) A.①② B.③④ C.②③ D.①③13.(白银中考)如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为.14.(锦州中考)如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.15.(安顺中考)如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.挑战自我16.在菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.(1)如图1,若E是BC的中点,∠AEF=60°,求证:BE=DF;(2)如图2,若∠EAF=60°,求证:△AEF是等边三角形.第2课时菱形的判定01 课前预习要点感知菱形的判定方法:①有一组邻边相等的平行四边形是菱形;②对角线互相垂直的平行四边形是菱形;③四条边都相等的四边形是菱形;④对角线互相垂直平分的四边形是菱形.预习练习1-1 下列命题中,正确的是()A.有一个角是60°的平行四边形是菱形B.有一组邻边相等的四边形是菱形C.有两边相等的平行四边形是菱形D.四条边都相等的四边形是菱形1-2 如图,四边形ABCD的对角线AC,BD互相垂直,则下列条件能判定四边形ABCD为菱形的条件是()A.BA=BCB.AC,BD互相平分C.AC=BDD.AB∥CD02 当堂训练知识点1 有一组邻边相等的平行四边形是菱形1.如图,若要使▱ABCD成为菱形,则可添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD2.(海南中考)如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件中能够判定四边形ACED 为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°3.已知:如图,△ABC中,AD是∠BAC的平分线,DE∥AC,DF∥AB.求证:四边形AEDF是菱形.知识点2 对角线互相垂直的平行四边形是菱形4.(潍坊中考)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件,使ABCD成为菱形.(只需添加一个即可)5.如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若AB=AC,求证:四边形BFCE是菱形.知识点3 四条边都相等的四边形是菱形6.如图,△ABC为等腰三角形,如果把它沿底边BC翻折后,得到△DBC,那么四边形ABDC为(B)A.平行四边形B.菱形C.矩形D.以上都不对03 课后作业7.(遵义中考)如图,在▱ABCD 中,对角线AC 与BD 交于点O ,若增加一个条件,使▱ABCD 成为菱形,下列给出的条件不正确的是( )A .AB =AD B .AC ⊥BD C .AC =BD D .∠BAC =∠DAC8.如图,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以点A 和点B 为圆心,大于12AB的长为半径画弧,两弧相交于点C 、D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是( )A .矩形B .菱形C .正方形D .平行四边形9.如图,剪两张对边平行且宽度相等的纸条,随意交叉叠放在一起,转动其中的一张,重合的部分构成了一个四边形,这个四边形是 .10.如图,在矩形ABCD 中,E 是AD 边上一点,连接BE ,作BE 的垂直平分线分别交AD 、BC 于点F ,G ,FG 与BE 的交点为O ,连接BF 和EG.试判断四边形BFEG 的形状,并说明理由.11.如图,已知四边形ABCD 是平行四边形,DE⊥AB,DF ⊥BC ,垂足分别是E 、F ,并且DE =DF.求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.挑战自我12.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADC F的形状,并证明你的结论.。
1.1.1菱形的性质与判定学案
第一课时一、预习展示1、叫菱形2、菱形的性质1)边2)角3)对角线4)对称性二、感悟导入1、通过量一量,折一折,看看菱形的边、角、对角线存在哪些性质?三、合作探究1、如何证明菱形的边、角、对角线的性质?归纳:用几何语言叙述:2、探究菱形的面积计算方法:例1、如图,菱形ABCD的对角线AC、BD交于点O,且AC=16 cm,BD=12 cm,求菱形ABCD的高DH.例2:如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合),连接DP交对角线AC于E,连接EB。
(1)求证:APD EBC∠=∠;(2)若60DAB∠=︒,试问:P点运动到什么位置时,ADP∆的面积等于菱形ABCD面积的14?为什么?例3:如图,在菱形ABCD中,AB=4a,E在BC上,BE=2a,120BAD∠=︒,P 点在BD上,求PE+PC的最小值。
四、巩固训练1、菱形的周长为12 cm,相邻两角之比为5∶1,那么菱形对边间的距离是()A.6 cmB.1.5 cmC.3 cmD.0.75 cm2.在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,则∠EAF等于()A.75° B.60° C.45° D.30°巩固训练第2题测试评价第8题测试评价第9题3、菱形的边长是2 cm,一条对角线的长是23 cm,则另一条对角线的长是()A.4 cm B.3 cm C.2 cm D.23 cm4、菱形ABCD的周长为20 cm,两条对角线的比为3∶4,求菱形的面积.五、测试评价1.菱形具有而一般平行四边形不具有的性质是()A.对角相等B.对边相等C.对角线互相垂直D.对角线相等2.菱形ABCD中,AC、BD相交于O点,若∠OBC=21∠BAC,则菱形的四个内角的度数为_______.3、.若菱形的两条对角线的比为3∶4,且周长为20 cm,则它的一组对边的距离等于__________ cm,它的面积等于________ cm2.4.菱形的周长为100 cm,一条对角线长为14 cm,它的面积是()A.168 cm2B.336 cm2C.672 cm2D.84 cm25.菱形的周长为16,两邻角度数的比为1∶2,此菱形的面积为()A.43B.83C.103D.1236.下列语句中,错误的是()A.菱形是轴对称图形,它有两条对称轴B.菱形的两组对边可以通过平移而相互得到C.菱形的两组对边可以通过旋转而相互得到D.菱形的相邻两边可以通过旋转而相互得到7.菱形的面积为83平方厘米,两条对角线的比为1∶3,那么菱形的边长为_______.8、如图,将两张长为8,宽为2的矩形纸片交叉,使重叠部分是一个菱形,则菱形周长的最小值是,最大值是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四边形学案08-菱形的性质与判定学案01
课前准备
1.判断题(对的打“∨”,错的打“×):
(1)有一组邻边相等的四边形是菱形;()
(2)对角线互相垂直的四边形是菱形;()
(3)对角线互相垂直平分的四边形是菱形.()
2.将如图的等腰三角形ABC绕_______边的中点旋转180°后,能与原来的三角形组合成一个菱形.3.如图,平行四边形ABCD的两条对角线AC,BD相交于点O,OA=3,OB=4,AB=5,
(1)AC,BD互相垂直吗?为什么?
(2)四边形ABCD是菱形吗?为什么?
探索新知
复习:菱形的性质是什么?
___________________________________________________
___________________________________________________
问题1:拿出十根小木条(其中有四根一样长),让学生从中选取四根,能否搭成一个菱形?为什么?
问题2:拿出事先准备好的平行四边形(对角线是木条,四边是橡皮筋),转动木条成直角,观察得到的四边形的形状是菱形吗?为什么?
问题3:你认为,的四边形是菱形?
的平行四边形是菱形?
(注意:一个的基础条件是四边形,一个的基础条件是平行四边形)
F
D
C
归纳菱形的判别方法:
1. ___________________________________________________
2.___________________________________________________
3.___________________________________________________ 归纳 四边形、平行四边形、菱形之间的关系:
知识运用
例1.如图,在四边形ABCD 中,AD ∥BC ,对角线AC 的垂直平分线与边AD 、BC 分别交于点E 、F ,四边形AFCE 是菱形吗?为什么?
例2.如图,在Rt △ABC 中,∠ACB=90°,∠BAC=60°,DE 垂直平分BC ,垂足为D ,交
AB 于点E.又点F 在DE 的延长线上,且AF=CE.猜一猜四边形ACEF 是什么形状的四边形?说明理由。
当堂反馈
1.下列条件中,能判定四边形是菱形的是( )
A 、对角线垂直
B 、两对角线相等
C 、两对角线互相平分
D 、两对角线互相垂直平分 2.不能判定一个四边形是菱形的条件是( )
A 、对角线互相平分且有一组邻边相等
B 、四边相等
C 、两组对角相等,且一条对角线平分一组对角
D 、对角线互相垂直
3.如右图,AD 是△ABC 的高,DE ∥AC ,DF ∥AB ,则△ABC 满足条件 时,四边形AEDF 是菱形
4.菱形的周长为20cm ,两邻角的比为1:2,则较长的对角线长为
( )
A .4.5 cm
B .4 cm
C .53 cm
D .43 cm
5.在⊿ABC 中,CD 是∠BCA 的平分线,DE ∥BC 交AC 于E ,DF ∥AC 交BC 于F ,试说明四边形CFDE 是菱形
6.在矩形ABCD 中,AB=6cm, BC=8cm, 若将矩形对角线BD 对折,使B 点与D 点重合,四边形EBFD 是
菱形吗?请说明理由,并求这个菱形的边长。
第十六题
D
B
C
B
F
拓展延伸
1.____________的平行四边形叫做菱形。
木工做菱形窗棂时总要保持四条边框一样长,道理是_______________
2.对角线互相垂直且相等的四边形一定是()
A.平行四边形 B.矩形 C.菱形 D.以上都不是
3.已知平行四边形ABCD,下列判断正确的是( )
A.若∠A=90°,则平行四边形ABCD为菱形
B. 若AC=BD,则平行四边形ABCD为菱形
C. 若AB=CD,则平行四边形ABCD为菱形
D. 若AC⊥BD,则平行四边形ABCD为菱形
4.下列条件中,能判定一个四边形为菱形的条件是( )
A、对角线互相平分的四边形
B、对角线互相垂直且平分的四边形
C、对角线相等的四边形
D、对角线相等且互相垂直的四边形
5.下列性质中,菱形具有而矩形不一定具有的性质是( )
A、对边平行且相等;
B、对角线互相平分;
C、内角和等于外角和;
D、每一条对角线都是它的对称轴
6.如图,△ABC中,AB=AC,AD是角平分线,E为AD延长线上一点,CF//BE
交AD于F,连接BF、CE,求证:四边形BECF是菱形。
7.两张宽度相等的纸条交叉重叠,重合的部分是什么形状的四边形?说明理由。
A
B C
D
E
F。