2019—2020年最新人教版九年级数学上册同步练习:24.1.2垂直于弦的直径.docx

合集下载

人教版九年级上24.1.2-垂直于弦的直径精选练习题及答案

人教版九年级上24.1.2-垂直于弦的直径精选练习题及答案

24.1.2 垂直于弦的直径一、课前预习(5分钟训练)1.如图24-1-2-1,AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,则可推出的相等关系是___________.图24-1-2-1 图24-1-2-2 图24-1-2-32.圆中一条弦把和它垂直的直径分成3 cm和4 cm两部分,则这条弦弦长为__________.3.判断正误.(1)直径是圆的对称轴; (2)平分弦的直径垂直于弦.4.圆O的半径OA=6,OA的垂直平分线交圆O于B、C,那么弦BC的长等于___________.二、课中强化(10分钟训练)1.圆是轴对称图形,它的对称轴是______________.2.如图24-1-2-2,在⊙O中,直径MN垂直于弦AB,垂足为C,图中相等的线段有__________,相等的劣弧有______________.3.在图24-1-2-3中,弦AB的长为24 cm,弦心距OC=5 cm,则⊙O的半径R=__________ cm.4.如图24-1-2-4所示,直径为10 cm的圆中,圆心到弦AB的距离为4 cm.求弦AB的长.图24-1-2-4三、课后巩固(30分钟训练)1.如图24-1-2-5,⊙O的半径OA=3,以点A为圆心,OA的长为半径画弧交⊙O于B、C,则BC等于( )A.32B.33C.223D.233图24-1-2-5 图24-1-2-62.如图24-1-2-6,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8 cm,OC=5 cm,则OD的长是( )A.3 cmB.2.5 cmC.2 cmD.1 cm3.⊙O半径为10,弦AB=12,CD=16,且AB∥CD.求AB与CD之间的距离.4.如图24-1-2-7所示,秋千链子的长度为3 m,静止时的秋千踏板(大小忽略不计)距地面0.5 m.秋千向两边摆动时,若最大摆角(摆角指秋千链子与铅垂线的夹角)约为60°,则秋千踏板与地面的最大距离约为多少?图24-1-2-75. “五段彩虹展翅飞”,我省利用国债资金修建的,横跨南渡江的琼州大桥如图24-1-2-8(1)已于今年5月12日正式通车,该桥的两边均有五个红色的圆拱,如图24-1-2-8(1).最高的圆拱的跨度为110米,拱高为22米,如图(2),那么这个圆拱所在圆的直径为___________米.图24-1-2-86.如图24-1-2-9,要把破残的圆片复制完整,已知弧上三点A、B、C.(1)用尺规作图法,找出弧BAC所在圆的圆心O;(保留作图痕迹,不写作法)(2)设△ABC为等腰三角形,底边BC=10 cm,腰AB=6 cm,求圆片的半径R;(结果保留根号)(3)若在(2)题中的R满足n<R<m(m、n为正整数),试估算m和n的值.图24-1-2-97.⊙O的直径为10,弦AB的长为8,P是弦AB上的一个动点,求OP长的取值范围.4.(开放题)AB是⊙O的直径,AC、AD是⊙O的两弦,已知AB=16,AC=8,AD=8,求∠DAC的度数.4.如图,圆O与矩形ABCD交于E、F、G、H,EF=10,HG=6,AH=4.求BE的长.参考答案一、课前预习(5分钟训练)1.如图24-1-2-1,AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,则可推出的相等关系是___________.图24-1-2-1思路解析:根据垂径定理可得.答案:OC=OD、AE=BE、弧AC=弧BC、弧AD=弧BD2.圆中一条弦把和它垂直的直径分成3 cm和4 cm两部分,则这条弦弦长为__________.思路解析:根据垂径定理和勾股定理计算.答案:43cm3.判断正误.(1)直径是圆的对称轴; (2)平分弦的直径垂直于弦.思路解析:(1)圆的对称轴是直线,而不是线段;(2)这里的弦是直径,结论就不成立.由于对概念或定理理解不透,造成判断错误.答案:两个命题都错误.4.圆O的半径OA=6,OA的垂直平分线交圆O于B、C,那么弦BC的长等于___________.思路解析:由垂径定理及勾股定理可得或可证△BCO是等边三角形.答案:6二、课中强化(10分钟训练)1.圆是轴对称图形,它的对称轴是______________.思路解析:根据圆的轴对称性回答.答案:直径所在的直线2.如图24-1-2-2,在⊙O中,直径MN垂直于弦AB,垂足为C,图中相等的线段有__________,相等的劣弧有______________.图24-1-2-2 图24-1-2-3思路解析:由垂径定理回答.答案:OM=ON ,AC=BC 弧AM=弧BM3.在图24-1-2-3中,弦AB 的长为24 cm ,弦心距OC=5 cm ,则⊙O 的半径R=__________ cm.思路解析:连结AO ,得Rt △AOC ,然后由勾股定理得出. 答案:134.如图24-1-2-4所示,直径为10 cm 的圆中,圆心到弦AB 的距离为4 cm.求弦AB 的长.图24-1-2-4思路分析:利用“圆的对称性”:垂直于弦的直径平分这条弦. 由OM ⊥AB 可得OM 平分AB ,即AM=21AB.连结半径OA 后可构造Rt △,利用勾股定理求解. 解:连结OA. ∵OM ⊥AB ,∴AM=21AB. ∵OA=21×10=5,OM =4,∴AM=22OM OA =3.∴AB=2AM=6(cm). 三、课后巩固(30分钟训练)1.如图24-1-2-5,⊙O 的半径OA=3,以点A 为圆心,OA 的长为半径画弧交⊙O 于B 、C,则BC 等于( )A.32B.33C.223 D.233图24-1-2-5 图24-1-2-6思路解析:连结AB 、BO ,由题意知:AB=AO=OB ,所以△AOB 为等边三角形.AO 垂直平分BC, 所以BC=2×233=33.答案:B2.如图24-1-2-6,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB=8 cm ,OC=5 cm ,则OD 的长是( )A.3 cmB.2.5 cmC.2 cmD.1 cm思路解析:因为AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB=8 cm ,OC=5 cm ,连结OA ,在Rt △ODA 中,由勾股定理得OD=3 cm. 答案:A3.⊙O 半径为10,弦AB=12,CD=16,且AB ∥CD.求AB 与CD 之间的距离.思路分析:本题目属于“图形不明确型”题目,应分类求解.解:(1)当弦AB 与CD 在圆心O 的两侧时,如图(1)所示. 作OG ⊥AB ,垂足为G ,延长GO 交CD 于H ,连结OA 、OC. ∵AB ∥CD ,GH ⊥AB , ∴GH ⊥CD.∵OG ⊥AB ,AB=12,∴AG=21AB=6. 同理,CH=21CD=8.∴Rt △AOG 中,OG=22AG OA -=8. Rt △COH 中,OH=22CH OC -=6. ∴GH=OG +OH=14.(2)当弦AB 与CD 位于圆心O 的同侧时,如图(2)所示. GH=OG -OH=8-6=2.4.如图24-1-2-7所示,秋千链子的长度为3 m ,静止时的秋千踏板(大小忽略不计)距地面0.5 m.秋千向两边摆动时,若最大摆角(摆角指秋千链子与铅垂线的夹角)约为60°,则秋千踏板与地面的最大距离约为多少?图24-1-2-7思路分析:设秋千链子的上端固定于A 处,秋千踏板摆动到最高位置时踏板位于B 处.过点A 、B 的铅垂线分别为AD 、BE ,点D 、E 在地面上,过B 作B C ⊥AD 于点C.解直角三角形即可.解:设秋千链子的上端固定于A 处,秋千踏板摆动到最高位置时踏板位于B 处.过点A 、B 的铅垂线分别为AD 、BE ,点D 、E 在地面上,过B 作BC ⊥AD 于点C.如图.在Rt △ABC 中,∵AB=3,∠CAB=60°, ∴AC=3×21=1.5(m ). ∴CD=3+0.5-1.5=2(m ). ∴BE=CD=2(m ).答:秋千摆动时踏板与地面的最大距离约为2 m.5. “五段彩虹展翅飞”,我省利用国债资金修建的,横跨南渡江的琼州大桥如图24-1-2-8(1)已于今年5月12日正式通车,该桥的两边均有五个红色的圆拱,如图24-1-2-8(1).最高的圆拱的跨度为110米,拱高为22米,如图(2),那么这个圆拱所在圆的直径为___________米.图24-1-2-8思路解析:本题考查垂径定理的应用,用列方程的方法解决几何问题,会带来许多方便. 连结OC.设圆拱的半径为R 米,则OF=(R -22)(米).∵OE ⊥CD ,∴CF=21CD=21×110=55(米). 根据勾股定理,得OC 2=CF 2+OF 2,即R 2=552+(R -22)2.解这个方程,得R=79.75(米).所以这个圆拱所在圆的直径是79.75×2=159.5(米). 答案:159.56.如图24-1-2-9,要把破残的圆片复制完整,已知弧上三点A 、B 、C.图24-1-2-9(1)用尺规作图法,找出弧BAC 所在圆的圆心O ;(保留作图痕迹,不写作法)(2)设△ABC 为等腰三角形,底边BC=10 cm ,腰AB=6 cm ,求圆片的半径R ;(结果保留根号) (3)若在(2)题中的R 满足n <R <m(m 、n 为正整数),试估算m 和n 的值.思路分析:(1)作AB 、AC 的中垂线即得圆片圆心O ;(2)已知BC 和AB 的长度,所以可以构造直角三角形利用勾股定理可求得半径R ;(3)根据半径的值确定m 、n 的值. (1)作法:作AB 、AC 的垂直平分线,标出圆心O.(2)解:连结AO 交BC 于E ,再连结BO.∵AB=AC ,∴AB=AC.∴AE ⊥BC.∴BE=21BC=5. 在Rt △ABE 中,AE=22BE AB -=2536-=11.在Rt △OBE 中,R 2=52+(R-11)2,解得R=1118(cm ).(3)解:∵5<39=1218<1118<918=6,∴5<R <6.∵n <R <m ,∴m=6,n=5.7.⊙O 的直径为10,弦AB 的长为8,P 是弦AB 上的一个动点,求OP 长的取值范围.思路分析:求出OP 长的最小值和最大值即得范围,本题考查垂径定理及勾股定理.该题创新点在于把线段OP 看作是一个变量,在动态中确定OP 的最大值和最小值.事实上只需作OM ⊥AB ,求得OM 即可.解:如图,作OM ⊥AB 于M ,连结OB ,则BM=21AB=21×8=4. 在Rt △OMB 中,OM 22BM OB -=2245-=3.当P 与M 重合时,OP 为最短;当P 与A (或B )重合时,OP 为最长.所以OP 的取值范围是3≤OP≤5.。

人教版九年级数学上册同步练习:24.1.2 垂直于弦的直径【精品】

人教版九年级数学上册同步练习:24.1.2 垂直于弦的直径【精品】

24.1.2 垂直于弦的直径一、课前预习(5分钟训练)1.如图24-1-2-1,AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,则可推出的相等关系是___________.图24-1-2-1 图24-1-2-2 图24-1-2-32.圆中一条弦把和它垂直的直径分成3 cm和4 cm两部分,则这条弦弦长为__________.3.判断正误.(1)直径是圆的对称轴; (2)平分弦的直径垂直于弦.4.圆O的半径OA=6,OA的垂直平分线交圆O于B、C,那么弦BC的长等于___________.二、课中强化(10分钟训练)1.圆是轴对称图形,它的对称轴是______________.2.如图24-1-2-2,在⊙O中,直径MN垂直于弦AB,垂足为C,图中相等的线段有__________,相等的劣弧有______________.3.在图24-1-2-3中,弦AB的长为24 cm,弦心距OC=5 cm,则⊙O的半径R=__________ cm.4.如图24-1-2-4所示,直径为10 cm的圆中,圆心到弦AB的距离为4 cm.求弦AB的长.图24-1-2-4 三、课后巩固(30分钟训练)1.如图24-1-2-5,⊙O的半径OA=3,以点A为圆心,OA的长为半径画弧交⊙O于B、C,则BC 等于( )A.32B.33C.223D.233图24-1-2-5 图24-1-2-62.如图24-1-2-6,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8 cm,OC=5 cm,则OD 的长是( )A.3 cmB.2.5 cmC.2 cmD.1 cm3.⊙O半径为10,弦AB=12,CD=16,且AB∥CD.求AB与CD之间的距离.4.如图24-1-2-7所示,秋千链子的长度为3 m,静止时的秋千踏板(大小忽略不计)距地面0.5 m.秋千向两边摆动时,若最大摆角(摆角指秋千链子与铅垂线的夹角)约为60°,则秋千踏板与地面的最大距离约为多少?图24-1-2-75. “五段彩虹展翅飞”,我省利用国债资金修建的,横跨南渡江的琼州大桥如图24-1-2-8(1)已于今年5月12日正式通车,该桥的两边均有五个红色的圆拱,如图24-1-2-8(1).最高的圆拱的跨度为110米,拱高为22米,如图(2),那么这个圆拱所在圆的直径为___________米.图24-1-2-86.如图24-1-2-9,要把破残的圆片复制完整,已知弧上三点A、B、C.(1)用尺规作图法,找出弧BAC所在圆的圆心O;(保留作图痕迹,不写作法)(2)设△ABC为等腰三角形,底边BC=10 cm,腰AB=6 cm,求圆片的半径R;(结果保留根号)(3)若在(2)题中的R满足n<R<m(m、n为正整数),试估算m和n的值.图24-1-2-97.⊙O的直径为10,弦AB的长为8,P是弦AB上的一个动点,求OP长的取值范围.思路分析:求出OP长的最小值和最大值即得范围,本题考查垂径定理及勾股定理.该题创新点在于把线段OP看作是一个变量,在动态中确定OP的最大值和最小值.事实上只需作OM⊥AB,求得OM即可.。

人教版九年级数学上册 24.1.2垂直于弦的直径 同步练习题(含答案)

人教版九年级数学上册  24.1.2垂直于弦的直径 同步练习题(含答案)

人教版九年级数学上册第24章 24.1.2垂直于弦的直径 同步练习题一、选择题1.下列说法中,不正确的是(D)A .圆既是轴对称图形,又是中心对称图形B .圆绕着它的圆心旋转任意角度,都能与它自身重合C .圆的对称轴有无数条,对称中心只有一个D .圆的每一条直径都是它的对称轴2.下列说法正确的是(D)A .过弦的中点的直径平分弦所对的两条弧B .弦的垂直平分线平分它所对的两条弧,但不一定过圆心C .过弦的中点的直径垂直于弦D .平分弦所对的两条弧的直径平分弦3.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不一定成立的是(D)A .CM =DM B.CB ︵=DB ︵C .∠ACD =∠ADC D .OM =MB4.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC =5 cm ,CD =8 cm ,则OE =(C)A .4 cmB .5 cmC .3 cmD .2 cm5.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是(B)A.7 B.27 C.6 D.86.如图,⊙O的半径为10,M是AB的中点,且OM=6,则⊙O的弦AB等于(D)A.8 B.10 C.12 D.167.一块圆形宣传标志牌如图所示,点A,B,C在⊙O上,CD垂直平分AB于点D.现测得AB=8 dm,DC=2 dm,则圆形标志牌的半径为(B)A.6 dm B.5 dm C.4 dm D.3 dm8.已知AB,CD是⊙O的两条平行弦,AB=8,CD=6,⊙O的半径为5,则弦AB 与CD的距离为(D)A.1 B.7 C.4或3 D.7或1二、填空题9.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为5.10.如图,在⊙O中,AB,AC是互相垂直的两条弦,OD⊥AB于点D,OE⊥AC于点E,且AB=8 cm,AC=6 cm,那四边形OEAD的周长为14cm.11.如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与其摆至最低位置时的高度之差(即CD)为0.5米.12.如图,AB是⊙O的直径,弦CD⊥AB于点H,∠A=30°,CD=23,则⊙O 的半径是2.13.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为26寸.14.如图,在⊙O中,弦AB=1,点C在AB上移动,连接OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为1 2.15.如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C,D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为(2,6).三、解答题16.如图是某风景区的一个圆拱形门,路面AB宽为2米,净高5米,则圆拱形门所在圆的半径是多少米?解:连接OA.∵CD⊥AB,且CD过圆心O,∴AD=12AB=1米,∠CDA=90°.设⊙O的半径为R,则OA=OC=R,OD=5-R.在Rt△OAD中,由勾股定理,得OA2=OD2+AD2,即R2=(5-R)2+12,解得R=2.6.故圆拱形门所在圆的半径为2.6米.17.已知⊙O的直径是50 cm,⊙O的两条平行弦AB=40 cm,CD=48 cm,求弦AB与CD之间的距离.解:过点O作直线OE⊥AB于点E,直线OE与CD交于点F.又∵AB∥CD,∴OF⊥CD.①当AB,CD在点O两侧时,如图1.连接AO,CO,则AO=CO=25 cm,AE=20 cm,CF=24 cm.由勾股定理知OE=AO2-AE2=15 cm,OF=CO2-CF2=7 cm.∴EF=OE+OF=22 cm,即AB与CD之间的距离为22 cm;图1 图2②当AB,CD在点O同侧时,如图2.连接AO,CO.则AO=CO=25 cm,AE=20 cm,CF=24 cm.由勾股定理知OE=AO2-AE2=15 cm,OF=CO2-CF2=7 cm.∴EF=OE-OF=8 cm,即AB与CD之间的距离为8 cm.综上所述,AB与CD之间的距离为22 cm或8 cm.。

24.1.2垂直于弦的直径-人教版九年级数学上册练习

24.1.2垂直于弦的直径-人教版九年级数学上册练习

人教版九年级数学上册24.1.2垂直于弦的直径一.选择题(共6小题)1.如图,⊙O的半径等于4,如果弦AB所对的圆心角等于90°,那么圆心O到弦AB的距离为()A.B.2C.2D.32.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(0,3),则该圆弧所在圆的圆心坐标是()A.(0,0)B.(1,1)C.(0,1)D.(1、0)3.如图,⊙O中,OD⊥AB于点C,OB=13,AB=24,则OC的长为()A.3B.4C.5D.64.在半径为50mm的⊙O中,弦AB的长为50mm,则点O到AB的距离为()A.50mm B.25mm C.25mm D.25mm5.AB和CD是⊙O的两条平行弦,AB=6,CD=8,⊙O的半径为5,则AB与CD间的距离为()A.1B.7C.1或7D.3或46.一辆装满货物,宽为2.4米的卡车,欲通过如图的隧道,则卡车的外形高必须低于()A.4.1米B.4.0米C.3.9米D.3.8米二.填空题(共6小题)7.已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O到AB的距离为cm.8.半径等于16的圆中,垂直平分半径的弦长为.9.如图,⊙O的直径CD垂直弦AB于点E,且CE=3cm,DE=7cm,则弦AB=cm.10.如图,已知AB是半圆O的直径,弦CD∥AB,CD=8,AB=10,则CD与AB之间的距离是.11.如图,⊙O与抛物线y=x2交于A,B两点,且AB=2,则⊙O的半径等于.12.如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(5,0),直线y=kx﹣2k+3(k≠0)与⊙O交于B、C两点,则弦BC的长的最小值为.三.解答题(共3小题)13.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,求BE的长.14.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点P表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O为圆心,5m为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB长为8m,求筒车工作时,盛水桶在水面以下的最大深度.15.如图,半圆拱桥的圆心为O,圆的半径为5m,一只8m宽的船装载一集装箱,箱顶宽6m,离水面AB高3.8m,这条船能过桥洞吗?请说明理由.人教版九年级数学上册24.1.2垂直于弦的直径参考答案一.选择题(共6小题)1.如图,⊙O的半径等于4,如果弦AB所对的圆心角等于90°,那么圆心O到弦AB的距离为()A.B.2C.2D.3【解答】解:过O作OC⊥AB于C,∵OA=OB=4,∠AOB=90°,∴AB=OA=4,∴OC=AB=2,故选:C.2.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(0,3),则该圆弧所在圆的圆心坐标是()A.(0,0)B.(1,1)C.(0,1)D.(1、0)【解答】解:该圆弧所在圆的圆心坐标是:(1,0).故选:D.3.如图,⊙O中,OD⊥AB于点C,OB=13,AB=24,则OC的长为()A.3B.4C.5D.6【解答】解:∵OD⊥AB,∴AC=BC=AB=×24=12,在Rt△OBC中,OC==5.故选:C.4.在半径为50mm的⊙O中,弦AB的长为50mm,则点O到AB的距离为()A.50mm B.25mm C.25mm D.25mm【解答】解:作OC⊥AB于C,根据题意:OA=OB=AB=50mm,∴△AOB是等边三角形,∴∠AOC=30°,∴OC=OA•cos30°=25cm.故选:B.5.AB和CD是⊙O的两条平行弦,AB=6,CD=8,⊙O的半径为5,则AB与CD间的距离为()A.1B.7C.1或7D.3或4【解答】解:①当AB、CD在圆心两侧时;过O作OE⊥CD交CD于E点,过O作OF⊥AB交AB于F点,连接OA、OC,如图所示:∵半径r=5,弦AB∥CD,且AB=6,CD=8,∴OA=OC=5,CE=DE=4,AF=FB=3,E、F、O在一条直线上,∴EF为AB、CD之间的距离在Rt△OEC中,由勾股定理可得:OE2=OC2﹣CE2∴OE==3,在Rt△OF A中,由勾股定理可得:OF2=OA2﹣AF2∴OF==4,∴EF=OE+OF=3+4=7,AB与CD的距离为7;②当AB、CD在圆心同侧时;同①可得:OE=3,OF=4;则AB与CD的距离为:OF﹣OE=1;综上所述:AB与CD间的距离为1或7.故选:C.6.一辆装满货物,宽为2.4米的卡车,欲通过如图的隧道,则卡车的外形高必须低于()A.4.1米B.4.0米C.3.9米D.3.8米【解答】解:∵车宽2.4米,∴欲通过如图的隧道,只要比较距隧道中线1.2米处的高度与车高.在Rt△OCD中,由勾股定理可得:CD===1.6(m),CH=CD+DH=1.6+2.5=4.1米,∴卡车的外形高必须低于4.1米.故选:A.二.填空题(共6小题)7.已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O到AB的距离为12cm.【解答】解:如图,作OC⊥AB于C,连接OA,则AC=BC=AB=5,在Rt△OAC中,OC==12,所以圆心O到AB的距离为12cm.故答案为12.8.半径等于16的圆中,垂直平分半径的弦长为16.【解答】解:如图,OA=16,则OC=8,根据勾股定理得,AC==8,∴弦AB=16.故答案为:16.9.如图,⊙O的直径CD垂直弦AB于点E,且CE=3cm,DE=7cm,则弦AB=2cm.【解答】解:连接OA,如图,∵CE=3,DE=7,∴CD=10,∴OC=OA=5,OE=2,∵AB⊥CD,∴AE=BE,在Rt△AOE中,AE==,∴AB=2AE=2(cm).故答案为2.10.如图,已知AB是半圆O的直径,弦CD∥AB,CD=8,AB=10,则CD与AB之间的距离是3.【解答】解:过点O作OH⊥CD于H,连接OC,如图,则CH=DH=CD=4,在Rt△OCH中,OH==3,所以CD与AB之间的距离是3.故答案为3.11.如图,⊙O与抛物线y=x2交于A,B两点,且AB=2,则⊙O的半径等于.【解答】解:连接OA,设AB与y轴交于点C,∵AB=2,∴点A,B的横坐标分别为﹣1,1.∵⊙O与抛物线y=x2交于A,B两点,点A,B的坐标分别为(﹣1,),(1,),在Rt△OAC中,由勾股定理得OA===,∴⊙O的半径为.12.如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(5,0),直线y=kx﹣2k+3(k≠0)与⊙O交于B、C两点,则弦BC的长的最小值为4.【解答】解:对于直线y=kx﹣2k+3=k(x﹣2)+3,当x=2时,y=3,故直线y=kx﹣2k+3恒经过点(2,3),记为点D.过点D作DH⊥x轴于点H,则有OH=2,DH=3,OD==.∵点A(5,0),∴OA=5,∴OB=OA=5.由于过圆内定点D的所有弦中,与OD垂直的弦最短,如图所示,因此运用垂径定理及勾股定理可得:BC的最小值为2BD=2=2×=4.故答案为4.三.解答题(共3小题)13.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,求BE的长.【解答】解:如图,连接OC.∵弦CD⊥AB于点E,CD=6,∴CE=ED=CD=3.∵在Rt△OEC中,∠OEC=90°,CE=3,OC=4,∴OE==,∴BE=OB﹣OE=4﹣.14.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点P表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O为圆心,5m为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB长为8m,求筒车工作时,盛水桶在水面以下的最大深度.【解答】解:过O点作半径OD⊥AB于E,如图,∴AE=BE=AB=×8=4,在Rt△AEO中,OE===3,∴ED=OD﹣OE=5﹣3=2,答:筒车工作时,盛水桶在水面以下的最大深度为2m.15.如图,半圆拱桥的圆心为O,圆的半径为5m,一只8m宽的船装载一集装箱,箱顶宽6m,离水面AB高3.8m,这条船能过桥洞吗?请说明理由.【解答】解:如图,过点O作OF⊥DE于点F,则EF=DF=DE,假设DE=6m,则DF=3m,∵圆的半径为5m,∴OD=5m,∴OF===4>3.8,∴这条船能过桥洞.。

2019—2020年最新人教版九年级数学上册第24章《圆的基本性质》同步练习及答案(1).docx

2019—2020年最新人教版九年级数学上册第24章《圆的基本性质》同步练习及答案(1).docx

24.1 圆(第二课时)------ 垂径定理知识点1、垂径定理:垂直于弦的直径,并且平分弦所对的。

2、推论:平分弦(不是直径)的直径,并且平分弦所对的。

【特别注意:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用;2、圆中常作的辅助线是过圆心作弦的垂线;3、垂径定理常用作计算,在半径r、弦a、弦心d、和拱高h中已知两个可求另外两个】一、选择题1.如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()A.B.C.D.2.如图,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为().A.2B.3C.4D.53.在半径为5cm 的圆中,弦AB ∥CD,AB=6cm ,CD=8cm ,则AB 和CD 的距离是( ). A.7cm B.1cm C.7cm 或4cm D.7cm 或1cm4.如图,AB 是⊙O 的弦,半径OA =2,∠AOB =120°,则弦AB 的长是( ).B (A )22 (B )32 (C )5 (D )53BOA5.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不成立的是( ) A .CM=DM B . CB DB C .∠ACD=∠ADCD .OM=MD6.如图,在半径为5的⊙O 中,AB 、CD 是互相垂直的两条弦,垂足为P ,且AB=CD=8,则OP 的长为( ) A .3B .4C .32D .42·AO MB7.如图,AB 为⊙O 的直径,弦CD ⊥AB 于E ,已知CD=12,BE=2,则⊙O 的直径为( ) A .8 B .10 C .16 D .208、如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB 宽为8cm ,水面最深地方的高度为2cm ,则该输水管的半径为( )A .3cmB .4cmC .5cmD .6cm二、填空题1.如图,AB 是⊙O 的直径,BC 是弦,OD ⊥BC ,垂足为D ,已知OD=5,则弦AC= .2、如图AB 是⊙O 的直径,∠BAC=42°,点D 是弦AC 的中点,则∠DOC 的度数是 度.3、如图,M 是CD 的中点,EM ⊥CD ,若CD=4,EM=8,则所在圆的半径为 .A·B C OD4、如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为.Θ与x轴交于O,A 5、如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,PΘ的半径为13,则点P的坐标为____________.两点,点A的坐标为(6,0),P6.如图,AB为⊙O的直径,CD为⊙O的一条弦,CD⊥AB,垂足为E,已知CD=6,AE=1,则⊙0的半径为.7.如图,AB是⊙O的弦,OC⊥AB于C.若AB=23,0C=1,则半径OB的长为.BA CEDOF 8.如图,⊙O 的半径为5,P 为圆内一点,P 到圆心O 的距离为4,则过P 点的弦长的最小值是 .OP9.如图,一条公路的转弯处是一段圆弧(图中的AB ︵),点O 是这段弧的圆心,C 是AB ︵上一点,OC ⊥AB ,垂足为D ,AB =300m ,CD =50m ,则这段弯路的半径是 m.D10.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为cm .三、解答题1.如图,AB 和CD 是⊙O 的弦,且AB=CD , E 、F 分别为弦AB 、CD 的中点, 证明:OE=OF 。

201x版九年级数学上册第24章圆24.1.2垂直于弦的直径同步检测题含解析 新人教版

201x版九年级数学上册第24章圆24.1.2垂直于弦的直径同步检测题含解析 新人教版

2019版九年级数学上册第24章圆24.1.2垂直于弦的直径同步检测题含解析新人教版一、夯实基础1.如图,AB是⊙O的直径,BC是弦,OD⊥BC,垂足为D,已知OD=5,则弦AC=______.2.如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是______度.3.如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为______.4.如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为______.5.如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()A.B.C.D.6.如图,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为()A.2 B.3 C.4 D.57.在半径为5cm的圆中,弦AB∥CD,AB=6cm,CD=8cm,则AB和CD的距离是()A.7cm B.1cm C.7cm或4cm D.7cm或1cm8.如图,AB是⊙O的弦,半径OA=2,∠AOB=120°,则弦AB的长是()A. B. C.D.二、能力提升9.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为______.10.如图,AB为⊙O的直径,CD为⊙O的一条弦,CD⊥AB,垂足为E,已知CD=6,AE=1,则⊙0的半径为______.11.如图,AB是⊙O的弦,OC⊥AB于C.若AB=4,0C=2,则半径OB的长为______.12.如图,⊙O的半径为5,P为圆内一点,P点到圆心O的距离为4,则过P点的弦长的最小值是______.13.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B.=C.∠ACD=∠ADC D.OM=MD14.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3 B.4 C.3D.415.如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()A.8 B.10 C.16 D.2016.如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm三、课外拓展17.如图,AB和CD是⊙O的弦,且AB=CD,E、F分别为弦AB、CD的中点,证明:OE=OF.18.如图,在⊙O中,AB,AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证:四边形ADOE是正方形.19.如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD的上方,求AB和CD的距离.四、中考链接1.(xx·湖北黄石·3分)如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A.5 B.7 C.9 D.112.(xx·贵州安顺·4分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE= .答案1答案为:10.2.答案为:48.3.答案为:.4.答案为:2.5.答案为:(3,2).6.答案为:5.7.答案为:4.8.解:连接OP并延长与圆相交于C.过点P作AB⊥CQ,AB即为最短弦.因为AO=5,OP=4,根据勾股定理AP==3,则根据垂径定理,AB=3×2=6.9.解:∵OC⊥弦AB于点C,∴AC=BC=AB,在Rt△OBC中,OB==.故选B.10.解:①M与A或B重合时OM最长,等于半径5;②∵半径为5,弦AB=8∴∠OMA=90°,OA=5,AM=4∴OM最短为=3,∴3≤OM≤5,因此OM不可能为2.故选A.11.解:作OE⊥AB于E,交CD于F,连结OA、OC,如图,∵AB∥CD,∴OF⊥CD,∴AE=BE=AB=3,CF=DF=CD=4,在Rt△AOE中,∵OA=5,AE=3,∴OE==4,在Rt△COF中,∵OC=5,CF=4,∴OF==3,当点O在AB与CD之间时,AB和CD的距离EF=OE+OF=4+3=7(cm);当点O不在AB与CD之间时,AB和CD的距离EF=OE﹣OF=4﹣3=1(cm),即AB和CD的距离为1cm或7cm.故选D.12.解:过O作OC⊥AB于C.在Rt△OAC中,OA=2,∠AOC=∠AOB=60°,∴AC=OA•sin60°=,因此AB=2AC=2.故选B.13.解:∵AB是⊙O的直径,弦CD⊥AB,垂足为M,∴M为CD的中点,即CM=DM,选项A成立;B为的中点,即=,选项B成立;在△ACM和△ADM中,∵,∴△ACM≌△ADM(SAS),∴∠ACD=∠ADC,选项C成立;而OM与MD不一定相等,选项D不成立.故选:D14.解:作OM⊥AB于M,ON⊥CD于N,连接OB,OD,由垂径定理、勾股定理得:OM=ON==3,∵弦AB、CD互相垂直,∴∠DPB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°∴四边形MONP是矩形,∵OM=ON,∴四边形MONP是正方形,∴OP=3故选:C.15.解:连接OC,根据题意,CE=CD=6,BE=2.在Rt△OEC中,设OC=x,则OE=x﹣2,故:(x﹣2)2+62=x2解得:x=10即直径AB=20.故选D.16.解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=AB=×8=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.故选C.17.证明:连结OA、OC,如图,∵E、F分别为弦AB、CD的中点,∴OE⊥AB,AE=BE,OF⊥CD,CF=DF,∵AB=CD,∴AE=CF,在Rt△AEO和Rt△COF中,,∴Rt△AEO≌Rt△COF(HL),∴OE=OF.18.证明:∵OD⊥AB于D,OE⊥AC于E,∵AD=AB,AE=AC,∠ADO=∠AEO=90°,∵AB⊥AC,∴∠DAE=90°,∴四边形ADOE是矩形,∵AB=AC,∴AD=AE,∴四边形ADOE是正方形.19.解:过点O作弦AB的垂线,垂足为E,延长OE交CD于点F,连接OA,OC,∵AB∥CD,∴OF⊥CD,∵AB=30cm,CD=16cm,∴AE=AB=×30=15cm,CF=CD=×16=8cm,在Rt△AOE中,OE===8cm,在Rt△OCF中,OF===15cm,∴EF=OF﹣OE=15﹣8=7cm.答:AB和CD的距离为7cm.中考链接:1.解:由题意可得,OA=13,∠ONA=90°,AB=24,∴AN=12,∴ON=,.精品 故选A .2.解:如图,连接OC .∵弦CD ⊥AB 于点E ,CD=6,∴CE=ED=CD=3.∵在Rt△OEC 中,∠OEC=90°,CE=3,OC=4, ∴OE=∴BE=OB ﹣OE=4﹣7.故答案为4﹣7.如有侵权请联系告知删除,感谢你们的配合!。

人教版九年级数学上册24.1.2垂直于弦的直径同步练习题

人教版九年级数学上册24.1.2垂直于弦的直径同步练习题

24.1.2垂直于弦的直径姓名:__________ 班级:__________考号:__________一、单选题(共15题;共45分)1.如图,⊙O 的直径CD =20,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,OM :OD =3:5,则AB 的长为( )A. 8B. 12C. 16D. 2√912.如图,AB是⊙O 的直径,O 是圆心,弦CD ⊥AB 于E ,AB=10,CD=8,则OE 的长为()A. 2B. 3C. 4D. 53.如图,AB 为⊙O 的弦,半径OC 交AB 于点D ,AD =DB ,OC =5,OD =3,则AB 的长为( )A. 8B. 6C. 4D. 3 4.如图,在⊙O 中,弦AB 长6cm ,圆心O 到AB 的距离是3cm ,⊙O 的半径是( )A. 3cmB. 3 √2 cmC. 4cmD. 3 √3 cm 5.已知⊙O 的直径为10,圆心O 到弦AB 的距离OM 为3,则弦AB 的长是( ) A. 4 B. 6 C. 7 D. 8 6.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P.若CD =AP =8,则⊙O 的直径为( )A. 10B. 8C. 5D. 37.“圆材埋壁”是我国著名的数学著作《九章算术》中的一个问题,“今有圆材,埋于壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?” 用现代的数学语言表达是:“如图,CD 是⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE = 1寸,AB = 1尺,求直径的长”. 依题意,CD 长为( )A. 252 寸 B. 13寸 C. 25寸 D. 26寸8.如图,AB 是⊙O 的直径,AB ⊥CD 于点E ,若CD =6,则DE =( )A. 3B. 4C. 5D. 6 9.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC=5cm ,CD=8cm ,则AE=( )A. 8cmB. 5cmC. 3cmD. 2cm10.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD ,垂足为E ,连接CO ,AD ,∠BAD=20°,则下列说法中正确的是( )A. AD=2OBB. CE=EOC. ∠OCE=40°D. ∠BOC=2∠BAD11.一条排水管的截面如图所示.已知排水管的截面圆半径OB=10,截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是( )A. 16B. 10C. 8D. 612.如图所示,在半径为10cm的⊙O中,弦AB=16cm,OC⊥AB于点C,则OC等于()A. 3cmB. 4cmC. 5cmD. 6cm13.如图,一条公路的转弯处是一段圆弧,点O是这段弧所在圆的圆心,AB=40m,点C是AB的中点,点D是AB的中点,且CD=10m,则这段弯路所在圆的半径为()A. 25mB. 24mC. 30mD. 60m14.为了测量一个铁球的直径,将该铁球放入工件槽内,测得的有关数据如图所示(单位:cm),则该铁球的直径为()A. 12cmB. 10cmC. 8cmD. 6cm15.如图,点A、B、C是圆O上的三点,且四边形OABC是平行四边形,OD⊥AB交圆O于点D,则∠OAD等于( )A. 72.5°B. 75°C. 80°D. 60°二、填空题(共15题;共45分)16.已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O到AB的距离为________cm.17.如图,已知AB是半圆O的直径,弦CD∥AB,CD=8,AB=10,则CD与AB之间的距离是________.18.如图是一圆形水管的截面图,已知⊙O的半径OA=13,水面宽AB=24,则水的深度CD是________.19.⊙O的半径OA与弦BC交于点D,若OD = 3,AD = 2,BD = CD,则BC的长为________.20.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=8,OE=3,则⊙O的半径为________.21.工程上常用钢珠来测量零件口宽,假设钢珠的直径是10mm,测得钢珠的顶端离零件表面的距离为8mm,如图所示,则这个零件的口宽AB的长度是________22.如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,AB=BF,CE=1,AB=6,则弦AF的长度为________.23.如图,在⊙O中,直径EF⊥CD,垂足为M,若CD=2,EM=5,则⊙O的半径为________.24.如图,圆弧形拱桥的跨径AB=12米,拱高CD=4米,则拱桥的半径为________米.25.如图,⊙O的半径为5,AB为弦,OC⊥AB,垂足为E,如果CE=2,那么AB的长是________26.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是________.27.⊙O的直径为20,弦AB长为12,点P是弦AB上一点,则OP的取值范围是________.28.如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为________.29.半径分别为3cm与√17cm的⊙O1与⊙O2相交于A、B两点,如果公共弦AB= 4√2cm,那么圆心距O1O2的长为________cm.30.如图,圆拱桥的拱顶到水面的距离CD为9m,水面宽AB为6m,则桥拱半径OC为________m. 三、解答题(共5题;共60分)31.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,求线段AE的长。

2020年人教版九年级数学上册24.1.2《垂径定理》同步练习 学生版

2020年人教版九年级数学上册24.1.2《垂径定理》同步练习 学生版

则球的半径长是( )
A.2 cm
B.2.5 cm
C.3 cm
D.4 cm
13.如图,圆弧形桥拱的跨度 AB=16m,拱高 CD=4m,则圆弧形桥拱所在圆的半径为
( )
A.6 m
B.8 m
C.10 m
D.12 m
14.如图,在半径为 10cm 的圆形铁片上切下一块高为 4cm 的弓形铁片,则弓形弦 AB 的长
31.如图,有一座拱桥是圆弧形,它的跨度 AB=60 米,拱高 PD=18 米. (1)求圆弧所在的圆的半径 r 的长; (2)当洪水泛滥到跨度只有 30 米时,要采取紧急措施,若拱顶离水面只有 4 米,即 PE=4 米时,是否要采取紧急措施?
A.6
B.6
C.3
D.9
3.如图,在⊙O 中,直径 AB⊥弦 CD,垂足为 M,则下列结论一定正确的是( )
A.AC=CD
B.OM=BM
C.∠A= ∠ACD D.∠A= ∠BOD
4.如图,AB 是⊙O 的直径,AB⊥CD 于 E,AB=10,CD=8,则 BE 为( )
A.2
B.3
C.4
D.3.5
三、解答题 26.如图,已知 AB 是圆 O 的直径,弦 CD 交 AB 于点 E,∠CEA=30°,OE=4,DE=5 ,求
弦 CD 及圆 O 的半径长.
27.如图,⊙O 的半径 OD⊥弦 AB 于点 C,连结 AO 并延长交⊙O 于点 E,连结 EC.若 AB=8,CD=பைடு நூலகம்,求 EC 的长.
28.已知:如图,⊙O 的直径 AB 与弦 CD(不是直径)交于点 F,若 FB=2,CF=FD=4,求 AC 的长.
29.一条排水管的截面如图所示,已知排水管的半径 OA=10m,水面宽 AB=12m,某天下雨 后,水管水面上升了 2m,求此时排水管水面的宽 CD.

24.1.2 垂直于弦的直径(2)

24.1.2 垂直于弦的直径(2)
O · E D B
平分弦(不是直径)的直径垂直于
弦,并且平分弦所对的两条弧。 (2)“不是直径”这个条件能去掉吗?如 果不能,请举出反例。
C A O · B D
① CD是直径, ② CD⊥AB, ③ AE=BE ⌒ ⌒ ⌒ ⌒ ⑤AD=BD. ④AC=BC,
C A E└

B
O
① ②
③ ④ ⑤
D
CD是直径 CD⊥AB
① CD是直径, ② CD⊥AB, ③ AE=BE ⌒ ⌒ ⌒ ⌒ ⑤AD=BD. ④AC=BC,
C
A E

B
O
④ ⑤
① ② ③
D
AC=BC AD=BD
CD是直径 CD⊥AB AE=BE
C
① CD是直径, ② CD⊥AB, ③ AM=BM ⌒ ⌒ ⌒ ⌒ ⑤AD=BD. ④AC=BC,
A
└ M

点C是AB的中点,则OC的长为

A
C · O
B
2、 下列命题错误的是(

A、平分弧的直径平分这条弧所对的弦
B、平分弦的弦垂直于这条弦 C、垂直于弦的直径平分这条弦 D、弦的中垂线过圆心
3、如图,⊙O中CD是弦,AB是直径, AE⊥CD于E,BF⊥CD于F,求证:CE=DF。
A O C F E M D
C
A E

B
O
① ④
② ③ E AD= BD
D
AC=BC
① ⑤
② ③ ④
① CD是直径, ② CD⊥AB, ③ AE=BE ⌒ ⌒ ⌒ ⌒ ⑤AD=BD. ④AC=BC,
C
A E

B
O
② ③
① ④ ⑤

人教版九年级数学上24.1.2垂直于弦的直径同步练习卷含答案

人教版九年级数学上24.1.2垂直于弦的直径同步练习卷含答案

()
A. B.2
C. D.3
9.如图,半径为 3 的⊙O 内有一点 A,OA= ,点 P 在⊙O 上,当∠OPA最大时,PA的长等于
()
A. B. C.3 D.2 10.已知⊙O 的直径 CD=10cm,ABA. cm B. cm C. cm或 cm D. cm或 cm 11.已知⊙O 的面积为 2π,则其内接正三角形的面积为( )
A.AC=AB B.∠C= ∠BOD C.∠C=∠B D.∠A=∠BOD 7.如图,AB为圆 O 的直径,BC为圆 O 的一弦,自 O 点作 BC的垂线,且交 BC于 D 点.若 AB=16, BC=12,则△OBD的面积为何?( )
A.6 B.12
C.15 D.30
8.⊙O 过点 B,C,圆心 O 在等腰直角△ABC内部,∠BAC=90°,OA=1,BC=6,则⊙O 的半径为
A.4 B.6
C.2 D.8
4.如图,已知⊙O 的直径 AB⊥CD于点 E,则下列结论一定错误的是( )
A.CE=DE B.AE=OE C. = D.△OCE≌△ODE 5.在⊙O 中,圆心 O 到弦 AB的距离为 AB长度的一半,则弦 AB所对圆心角的大小为( ) A.30° B.45° C.60° D.90° 6.如图,在⊙O 中,直径 CD⊥弦 AB,则下列结论中正确的是( )
A.3 B.3
C.
D.
12.如图,⊙O 是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦 BC的长为( )
A. B.3 C.2 D.4 13.如图,⊙O 的直径 AB垂直于弦 CD,垂足为 E,∠A=22.5°,OC=4,CD的长为( )
A.2 B.4 C.4 D.8 二、填空题(共 16小题) 14.如图,AB是⊙O 的直径,CD为⊙O 的一条弦,CD⊥AB于点 E,已知 CD=4,AE=1,则⊙O 的半径 为______.

人教版九年级上册数学 24.1.2垂直于弦的直径 同步练习(含答案)

人教版九年级上册数学 24.1.2垂直于弦的直径 同步练习(含答案)

24.1.2垂直于弦的直径同步练习一.选择题1.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则BE的长为()A.2 B.4 C.6 D.82.如图,△ABC中,AB=5,AC=4,BC=2,以A为圆心AB为半径作圆A,延长BC交圆A于点D,则CD长为()A.5 B.4 C.D.23.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm4.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为()A.13 B.24 C.26 D.285.如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,∠AOB=60°,点C是的中点,且CD=5m,则这段弯路所在圆的半径为()A.(20﹣10)m B.20m C.30m D.(20+10)m 6.如图,已知⊙O的半径为6,弦AB,CD所对的圆心角分别是∠AOB,∠COD,若∠AOB 与∠COD互补,弦CD=6,则弦AB的长为()A.6 B.8 C.3D.67.小名同学响应学习号召,在实际生活中发现问题,并利用所学的数学知识解决问题,他将汽车轮胎如图放置在地面台阶直角处,他测量了台阶高a为160mm,直角顶点到轮胎与底面接触点AB长为320mm,请帮小名计算轮胎的直径为()mm.A.350 B.700 C.800 D.4008.如图,⊙O中,弦AB⊥CD于E,若已知AD=9,BC=12,则⊙O的半径为()A.5.5 B.6 C.7.5 D.89.如图,AB是⊙O的弦,半径OD⊥AB于点C,AE为直径,AB=8,CD=2,则线段CE 的长为()A.B.8 C.D.10.如图,⊙O的直径AB与弦CD相交于点P,且∠APC=45°,若PC2+PD2=8,则⊙O 的半径为()A.B.2 C.2D.4二.填空题11.已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O到AB的距离为cm.12.在半径为的⊙O中,弦AB垂直于弦CD,垂足为P,AB=CD=4,则S△ACP=.13.如图,射线PB,PD分别交圆O于点A,B和点C,D,且AB=CD=8.已知圆O半径等于5,OA∥PC,则OP的长度为.14.如图,BC为半圆O的直径,EF⊥BC于点F,且BF:FC=5:1,若AB=8,AE=2,则AD的长为.15.如图,一条公路的转弯处是一段圆弧AB,点O是这段弧所在圆的圆心,AB=40m,点C是的中点,且CD=10m,则这段弯路所在圆的半径为m.三.解答题16.如图,点A,D,B,C在⊙O上,AB⊥BC,DE⊥AB于点E.若BC=3,AE=DE=1,求⊙O半径的长.17.如图,在一座圆弧形拱桥,它的跨度AB为60m,拱高PM为18m,当洪水泛滥到跨度只有30m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有4m,即PN=4m时,试通过计算说明是否需要采取紧急措施.18.如图,A,B,C,D在⊙O上,AB∥CD经过圆心O的线段EF⊥AB于点F,与CD交于点E.(1)如图1,当⊙O半径为5,CD=4,若EF=BF,求弦AB的长;(2)如图2,当⊙O半径为,CD=2,若OB⊥OC,求弦AC的长.参考答案1.解:∵CE=2,DE=8,∴CD=10,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,BE===4,故选:B.2.解:如图,过点A作AE⊥BD于点E,连接AD,∴AD=AB=5,根据垂径定理,得DE=BE,∴CE=BE﹣BC=DE﹣2,根据勾股定理,得AD2﹣DE2=AC2﹣CE2,∴52﹣DE2=42﹣(DE﹣2)2,解得DE=,∴CD=DE+CE=2DE﹣2=.故选:C.3.解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48cm,∴BD=AB=×48=24(cm),∵⊙O的直径为52cm,∴OB=OC=26cm,在Rt△OBD中,OD===10(cm),∴CD=OC﹣OD=26﹣10=16(cm),故选:C.4.解:设圆心为O,过O作OC⊥AB于C,交⊙O于D,连接OA,如图所示:∴AC=AB=×10=5,设⊙O的半径为r寸,在Rt△ACO中,OC=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故选:C.5.解:∵点O是这段弧所在圆的圆心,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=OB,设AB=OB=OA=rm,∵点C是的中点,∴OC⊥AB,∴C,D,O三点共线,∴AD=DB=rm,在Rt△AOD中,∴OD=r,∵OD+CD=OC,∴r+5=r,解得:r=(20+10)m,∴这段弯路的半径为(20+10)m故选:D.6.解:作OE⊥AB于点E,∵⊙O的半径为6,弦CD=6,∴OC=OD=CD,∴△DOC是等边三角形,∴∠DOC=60°,∵∠AOB与∠COD互补,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,∵OA=6,OE⊥AB,∴AE=OA•cos30°=6×=3,∴AB=2AE=6,故选:D.7.解:如图,连接OB,OC,作CD⊥OB于D.设⊙O半径为xmm,在Rt△OCD中,由勾股定理得方程,(x﹣160)2+3202=x2,解得,x=400,∴2x=800,答:车轱辘的直径为800mm.故选:C.8.解:连接DO并延长DO交圆O于点F,连接BD,AF,BF,∵∠DAE=∠DFB,∠AED=∠FBD=90°,∴∠ADC=∠FDB,∴∠ADF=∠CDB,∴,∴AF=BC=12,∵∠DAF=90°,∴DF=,∴⊙O的半径为7.5.故选:C.9.解:连结BE,如图,∵OD⊥弦AB,AB=8,∴AC=AB=4,设⊙O的半径OA=r,∴OC=OD﹣CD=r﹣2,在Rt△OAC中,r2=(r﹣2)2+42,解得:r=5,∴AE=2r=10;∵OD=5,CD=2,∴OC=3,∵AE是直径,∴∠ABE=90°,∵OC是△ABE的中位线,∴BE=2OC=6,在Rt△CBE中,CE===2.故选:D.10.解:作CM⊥AB于M,DN⊥AB于N,连接OC,OD,∴∠NDP=∠MCP=∠APC=45°又∵OC=OD,∴∠ODP=∠OCP,∵∠COM=45°+∠OCD,∠ODB=45°+∠ODC,∴∠NDO=∠COM,在Rt△ODN与Rt△COM中,,∴Rt△ODN≌Rt△COM,∴ON=CM=PM,OM=ND=PN又∵OC2=CM2+OM2,OD2=DN2+ON2∴OC2=CM2+PN2,OD2=DN2+PM2∴OC2+OD2=CM2+PN2+DN2+PM2=PC2+PD2=8∴OC2=4,∴OC=2,故选:B.11.解:如图,作OC⊥AB于C,连接OA,则AC=BC=AB=5,在Rt△OAC中,OC==12,所以圆心O到AB的距离为12cm.故答案为12.12.解:作OE⊥AB于E,OF⊥CD于F,连结OD、OB,则AE=BE=AB=2,DF=CF=CD=2,如图1,在Rt△OBE中,∵OB=,BE=2,∴OE==1,同理可得OF=1,∵AB⊥CD,∴四边形OEPF为矩形,∴PE=PF=1,∴P A=PC=1,∴S△APC==;如图2,同理:S△APC==;如图3,同理:S△APC==;故答案为:或或.13.解:作OE⊥AB于E,OF⊥CD于F,连接OP,如图,∵AB=CD,∴OE=OF,而OE⊥AB,OF⊥CD,∴PO平分∠BPD,∴∠APO=∠OPC,∵OA∥PC,∴∠AOP=∠OPC,∴∠APO=∠AOP,∴P A=AO=5,∵OE⊥AB,∴AE=BE=AB=4,在Rt△AOE中,OE==3,在Rt△POE中,PO==3.故答案为3.14.解:连接BE.∵BC是直径.∴∠AEB=∠BEC=90°在直角△ABE中,根据勾股定理可得:BE2=AB2﹣AE2=82﹣22=60.∵=5∴设FC=x,则BF=5x,BC=6x.又∵BE2=BF•BC即:30x2=60解得:x=,∴EC2=FC•BC=6x2=12∴EC=2,∴AC=AE+EC=2+2,∵AD•AB=AE•AC∴AD===.故答案为.15.解:∵OC⊥AB,∴AD=DB=20m,在Rt△AOD中,OA2=OD2+AD2,设半径为r得:r2=(r﹣10)2+202,解得:r=25m,∴这段弯路的半径为25m.故答案为:25.16.解:如图,连接AD,AC,连接CD与AB交于点F,∵AB⊥BC,∴∠ABC=90°.∴AC为直径.∴∠ADC=90°.∵AE=DE,DE⊥AB,∴∠DAB=∠ADE=45°.∴∠BCF=∠DAB=45°.∴BC=BF=3.在△ADF中,∠DAB=∠AFD=45°,∴EF=ED=1.∴AB=5.∴AC==.∴⊙O半径的长.17.解:设圆弧所在圆的圆心为O,连接OA、OA′,设半径为x米,则OA=OA′=OP,由垂径定理可知AM=BM,A′N=B′N,∵AB=60米,∴AM=30米,且OM=OP﹣PM=(x﹣18)米,在Rt△AOM中,由勾股定理可得AO2=OM2+AM2,即x2=(x﹣18)2+302,解得x=34,∴ON=OP﹣PN=34﹣4=30(米),在Rt△A′ON中,由勾股定理可得A′N===16(米),∴A′B′=32米>30米,∴不需要采取紧急措施.18.解:(1)如图1中,连接OB,OC.设BF=EF=x,OF=y.∵AB∥CD,EF⊥AB,∴EF⊥CD,∴∠CEF=∠BFO=90°∴AF=BF=x,DE=EC=2,根据勾股定理可得:,解得(舍弃)或,∴BF=4,AB=2BF=8.(2)如图2中,作CH⊥AB于H.∵OB⊥OC,∴∠A=∠BOC=45°,∵AH⊥CH,∴△ACH是等腰直角三角形,∵AC=CH,∵AB∥CD,EF⊥AB,∴EF⊥CD,∠CEF=∠EFH=∠CHF=90°,∴四边形EFHC是矩形,∴CH=EF,在Rt△OEC中,∵EC=,OC=,OE===2,∵∠EOC+∠OCE=90°,∠EOC+∠FOB=90°,∴∠FOB=∠ECO,∵OB=OC,∴△OFB≌△CEO(AAS),∴OF=EC=,∴CH=EF=3,∴AC=EF=6.。

24.1.2 垂直于弦的直径(3)

24.1.2 垂直于弦的直径(3)
B




E D
1、如图,点P是半径为5cm的⊙O内一点,且 OP=3cm, 则过P点的弦中, (1)最长的弦= cm (2)最短的弦= cm (3)长度为整数的弦共有( ) A、 2条 b、 3条 C、 4条 D、 5条 C
5 3 OO 4 P P D
A
B
2、如图,⊙O的直径为10,弦AB=8,P为AB 上的一个动点,那么OP长的取值范围 是 3cm≤OP≤5cm 。
半径、圆心到弦的垂线段
A
O · C B
2、一个Rt△:
半径、圆心到弦的垂线段、半弦 3、两个定理: 垂径定理、勾股定理
E
O
D
A B
O A
E
D
B
6、已知A、B、C是⊙O上三点,且AB=AC, 圆心O到BC的距离为3厘米,圆的半径为5
厘米,求AB长。
A
O B
D
A
B C
D
O
C
7、在直径为650毫米的圆柱形油槽内装入 一些油后,截面如图所示。若油面宽AB=
600毫米,求油的最大深度。
A B
A
C D
O
B
1、两条辅助线:
5
AБайду номын сангаас
O
4
3
C
P
B
3、如图,点A、B是⊙O上两点,AB=8,点P 是⊙O上的动点(P与A、B不重合),连接AP、 BP,过点O分别作OE⊥AP于E,OF⊥BP于 F,EF= 4 。
O
A
E
F
B
P
4、如图,AB为⊙O的一条直径,它把⊙O分成上、 下两个半圆,从上半圆上一点C作弦CD⊥AB, ∠OCD的平分线交⊙O于P,当点C在半圆上(不 包括A、B两点)移动时,点P的位置会发生怎样 的变化?试说明理由?

2019年人教版九年级上《24.1.2垂直于弦的直径》同步练习(含答案解析)

2019年人教版九年级上《24.1.2垂直于弦的直径》同步练习(含答案解析)

2018-2019学年度人教版数学九年级上册同步练习24.1.2 垂直于弦的直径一.选择题(共15小题)1.下列说法中正确的是()A.平分弦的直径一定垂直于弦B.长度相等的弧是等弧C.平行弦所夹的两条弧相等D.相等的圆心角所对的弦相等2.如图,⊙O的半径为6,直径CD过弦EF的中点G,若∠EOD=60°,则弦CF的长等于()A.6B.6C.3D.93.如图,在⊙O中,直径AB⊥弦CD,垂足为M,则下列结论一定正确的是()A.AC=CD B.OM=BM C.∠A=∠ACD D.∠A=∠BOD4.如图,AB是⊙O的直径,AB⊥CD于E,AB=10,CD=8,则BE为()A.2B.3C.4D.3.55.如图,在⊙O中,弦AB的长为16cm,圆心O到AB的距离为6cm,则⊙O的半径是()A.6cm B.10cm C.8cm D.20cm6.在半径为25cm的⊙O中,弦AB=40cm,则弦AB所对的弧的中点到AB的距离是()A.10cm B.15cm C.40cm D.10cm或40cm7.下列说法中正确的个数有()①相等的圆心角所对的弧相等;②平分弦的直径一定垂直于弦;③圆是轴对称图形,每一条直径都是对称轴;④直径是弦;⑤长度相等的弧是等弧.A.1个B.2个C.3个D.4个8.如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,∠BAC=90°,OA=2,BC=8.则⊙O的半径为()A.B.5C.D.69.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()A.4B.5C.6D.610.《九章算术》是我国古代著名数学经典,其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺.如图,已知弦AB=1尺,弓形高CD=1寸,(注:1尺=10寸)问这块圆柱形木材的直径是()A.13寸B.6.5寸C.26寸D.20寸11.如图,半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10 cm B.16 cm C.24 cm D.26 cm12.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2 cm B.2.5 cm C.3 cm D.4 cm13.如图,圆弧形桥拱的跨度AB=16m,拱高CD=4m,则圆弧形桥拱所在圆的半径为()A.6 m B.8 m C.10 m D.12 m14.如图,在半径为10cm的圆形铁片上切下一块高为4cm的弓形铁片,则弓形弦AB的长为()A.8cm B.12cm C.16cm D.20cm15.“圆材埋壁”是我国古代《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代的数学语言表示是:“如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=10寸,求直径CD的长”.依题意,CD长为()A.寸B.13寸C.25寸D.26寸二.填空题(共10小题)16.如图,在⊙O中,半径OC⊥弦AB,垂足为点D,AB=12,CD=2.则⊙O半径的长为.17.如图,AB是⊙O的弦,OC⊥AB于点C,且AB>OC,若OC和AB是方程x2﹣11x+24=0的两个根,则⊙O的半径OA=.18.半径等于16的圆中,垂直平分半径的弦长为.19.在平面直角坐标系中,过三点A(0,0),B(2,2),C(4,0)的圆的圆心坐标为.20.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,AE=1,则弦CD的长是.21.如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升cm.22.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径为cm.23.如图,小强为了帮助爸爸确定残破轮子的直径,先在轮子上画出一个弓形(如图中阴影部分),然后量得弦AB的长为4cm,这个弓形的高为1cm,则这个轮子的直径长为cm.24.“圆材埋壁”是我国古代数一学著作《九章算术》中的一个问题.“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表达是:如图所示,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=1尺,则直径CD长为寸.25.如图,花园边墙上有一宽为1m的矩形门ABCD,量得门框对角线AC的长为2m,现准备打掉部分墙体,使其变成以AC为直径的圆弧形门,则打掉墙体后,弧形门洞的周长(含线段BC)为.三.解答题(共6小题)26.如图,已知AB是圆O的直径,弦CD交AB于点E,∠CEA=30°,OE=4,DE=5,求弦CD及圆O 的半径长.27.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,求EC的长.28.已知:如图,⊙O的直径AB与弦CD(不是直径)交于点F,若FB=2,CF=FD=4,求AC的长.29.一条排水管的截面如图所示,已知排水管的半径OA=10m,水面宽AB=12m,某天下雨后,水管水面上升了2m,求此时排水管水面的宽CD.30.某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径.如图,若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.31.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?参考答案与试题解析一.选择题(共15小题)1.【解答】解:A、当两条弦都是直径时不成立,故本选项错误;B、在同圆或等圆中,两个长度相等的弧是等弧,故本选项错误;C、如图所示,两弦平行,则圆周角相等,圆周角相等,则弧相等;故本选项正确;D、在同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误.故选:C.2.【解答】解:连接DF,∵直径CD过弦EF的中点G,∴=,∴∠DCF=∠EOD=30°,∵CD是⊙O的直径,∴∠CFD=90°,∴CF=CD•cos∠DCF=12×=6,故选:B.3.【解答】解:连接DA,∵直径AB⊥弦CD,垂足为M,∴CM=MD,∠CAB=∠DAB,∵2∠DAB=∠BOD,∴∠CAD=∠BOD,故选:D.4.【解答】解:连接OC.∵AB是⊙O的直径,AB=10,∴OC=OB=AB=5;又∵AB⊥CD于E,CD=8,∴CE=CD=4(垂径定理);在Rt△COE中,OE=3(勾股定理),∴BE=OB﹣OE=5﹣3=2,即BE=2;故选:A.5.【解答】解:过点O作OE⊥AB于点E,连接OC,∵弦AB的长为16cm,圆心O到AB的距离为6cm∴OE=6cm,AE=AB=8cm,在Rt△AOE中,根据勾股定理得,OA==10cm 故选:B.6.【解答】解:点C和D为弦AB所对弧的中点,连结CD交AB于E,连结OA,如图,∵点C和D为弦AB所对弧的中点,∴CD为直径,CD⊥AB,∴AE=BE=AB=20,在Rt△OAE中,∵OA=25,AE=20,∴OE==15,∴DE=OD+OE=40,CE=OC﹣OE=10,即弦AB和弦AB所对的劣弧的中点的距离为10cm,弦AB和弦AB所对的优弧的中点的距离为40cm.故选:D.7.【解答】解:①相等的圆心角所对的弧相等;错误.必须在同圆或等圆中;②平分弦的直径一定垂直于弦;错误,此弦不是直径;③圆是轴对称图形,每一条直径都是对称轴;错误,应该是每一条直径所在的直线都是对称轴;④直径是弦;正确;⑤长度相等的弧是等弧.错误.能够完全重合的两条弧是等弧;故选:A.8.【解答】解:延长AO交BC于点D,连接OB,由对称性及等腰Rt△ABC,得到AD⊥BC,∴D为BC的中点,即BD=CD=BC=4,AD=BC=4,∵OA=2,∴OD=AD﹣OA=4﹣2=2,在Rt△BOD中,根据勾股定理得:OB==2,则圆的半径为2.故选:C.9.【解答】解:∵OC⊥AB,OC过圆心O点,∴BC=AC=AB=×16=8,在Rt△OCB中,由勾股定理得:OC===6,故选:D.10.【解答】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故选:C.11.【解答】解:如图,过O作OD⊥AB于C,交⊙O于D,∵CD=8,OD=13,∴OC=5,又∵OB=13,∴Rt△BCO中,BC==12,∴AB=2BC=24.故选:C.12.【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN﹣ON=4﹣x,MF=2,在直角三角形OMF中,OM2+MF2=OF2即:(4﹣x)2+22=x2解得:x=2.5故选:B.13.【解答】解:如图,设OA=r,则OD=r﹣4,∵AB=16m,∴AD=8m.在Rt△AOD中,∵OD2+AD2=OA2,即(r﹣4)2+82=r2,解得r=10(m).故选:C.14.【解答】解:如图,过O作OD⊥AB于C,交⊙O于D,∵CD=4,OD=10,∴OC=6,又∵OB=10,∴Rt△BCO中,BC=,∴AB=2BC=16.故选:C.15.【解答】解:连接OA.设圆的半径是x尺,在直角△OAE中,OA=x,OE=x﹣1,∵OA2=OE2+AE2,则x2=(x﹣1)2+25,解得:x=13.则CD=2×13=26(cm).故选:D.二.填空题(共10小题)16.【解答】解:连接AO,∵半径OC⊥弦AB,∴AD=BD,∵AB=12,∴AD=BD=6,设⊙O的半径为R,∵CD=2,∴OD=R﹣2,在Rt△AOD中,OA2=OD2+AD2,即:R2=(R﹣2)2+62,∴R=10,答:⊙O的半径长为10.17.【解答】解:x2﹣11x+24=0(x﹣3)(x﹣8)=0x﹣3=0,x﹣8=0,x1=3,x2=8,∵AB>OC,∴AB=8,OC=3,∵OC⊥AB,∴AC=AB=4,由勾股定理得,OA==5,故答案为:5.18.【解答】解:如图,OA=16,则OC=8,根据勾股定理得,AC==8,∴弦AB=16.故答案为:16.19.【解答】解:已知A(0,0),B(2,2),C(4,0),如图:可设:AB的垂直平分线解析式为:y=kx+b,把(0,2),(2,0)代入解析式可得:,解得:,所以AB的垂直平分线解析式是y=﹣x+2,设AC的垂直平分线解析式为x=m,把(2,2)代入解析式,可得:x=2,所以AC的垂直平分线解析式是x=2,∴过A、B、C三点的圆的圆心坐标为(2,0).故答案为:(2,0).20.【解答】解:连接OC,由题意,得OE=OA﹣AE=4﹣1=3,CE=ED==,CD=2CE=2,故答案为2.21.【解答】解:作半径OD⊥AB于C,连接OB由垂径定理得:BC=AB=30cm,在Rt△OBC中,OC==40cm,当水位上升到圆心以下时水面宽80cm时,则OC′==30cm,水面上升的高度为:40﹣30=10cm;当水位上升到圆心以上时,水面上升的高度为:40+30=70cm,综上可得,水面上升的高度为10cm或70cm.故答案为10或70.22.【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN﹣ON=4﹣x,MF=2,在直角三角形OMF中,OM2+MF2=OF2即:(4﹣x)2+22=x2解得:x=2.5故答案为:2.523.【解答】解:连接OB;Rt△OBD中,BD=AB=2cm,根据勾股定理得:OD2+BD2=OB2,即:(OB﹣1)2+22=OB2,解得:OB=2.5;所以轮子的直径为5cm.故答案为:5.24.【解答】解:连接OA,设OA=r,则OE=r﹣CE=r﹣1,∵AB⊥CD,AB=1尺,∴AE=AB=5寸,在Rt△OAE中,OA2=AE2+OE2,即r2=52+(r﹣1)2,解得r=13(寸).∴CD=2r=26寸.故答案为:26.25.【解答】解:设矩形外接圆的圆心为O,连接OB,∵矩形ABCD的AC=2m,BC=1m,∴OB=OC=BC=1m,∴△OBC是等边三角形,∴∠BOC=60°.∴弧形门洞的周长(含线段BC)为: +1=+1,故答案为:(+1)m.三.解答题(共6小题)26.【解答】解:过点O作OM⊥CD于点M,联结OD,∵∠CEA=30°,∴∠OEM=∠CEA=30°,在Rt△OEM中,∵OE=4,∴,,∵,∴,∵OM过圆心,OM⊥CD,∴CD=2DM,∴,∵,∴在Rt△DOM中,,∴弦CD的长为,⊙O的半径长为.27.【解答】解:连结BE,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,设AO=x,则OC=OD﹣CD=x﹣2,在Rt△ACO中,∵AO2=AC2+OC2,∴x2=42+(x﹣2)2,解得x=5,∴AE=10,OC=3,∵AE是直径,∴∠ABE=90°,∵OC是△ABE的中位线,∴BE=2OC=6,在Rt△CBE中,CE===2.28.【解答】解:连接BC,∵AB是直径,CF=FD=4,∴AB⊥CD,∵∠ACB=90°∴∠A=∠BCF,∴△BCF∽△CAF,∴=,∴CF2=AF•BF,设AF=x,∴16=2x,∴x=8,∴由勾股定理可知:AC=429.【解答】解:如图:作OE⊥AB于E,交CD于F,∵AB=12m,OE⊥AB,OA=1m,∴OE=8m.∵水管水面上升了2m,∴OF=8﹣2=6m,∴CF==8m,∴CD=16m.30.【解答】解:过点O作OC⊥AB于D,交⊙O于C,连接OB,∵OC⊥AB∴BD=AB=×16=8cm由题意可知,CD=4cm∴设半径为xcm,则OD=(x﹣4)cm在Rt△BOD中,由勾股定理得:OD2+BD2=OB2(x﹣4)2+82=x2解得:x=10.答:这个圆形截面的半径为10cm.31.【解答】解:(1)连结OA,由题意得:AD=AB=30,OD=(r﹣18)在Rt△ADO中,由勾股定理得:r2=302+(r﹣18)2,解得,r=34;(2)连结OA′,∵OE=OP﹣PE=30,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2﹣OE2,即:A′E2=342﹣302,解得:A′E=16.∴A′B′=32.∵A′B′=32>30,∴不需要采取紧急措施.。

精品2019九年级数学上册 第二十四章24.1.2 垂直于弦的直径同步检测

精品2019九年级数学上册 第二十四章24.1.2 垂直于弦的直径同步检测

24.1.2 垂直于弦的直径测试时间:30分钟一、选择题1.一圆形玻璃被打碎后,其中四块碎片如图所示,若选择其中一块碎片带到商店,配制与原来大小一样的圆形玻璃,选择的是( )A.①B.②C.③D.④2.(2017贵州黔西南州中考)如图,在☉O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是( )A.3B.2.5C.2D.13.在某岛A的正东方向有台风,且台风中心B距离该岛40 km,台风中心正以30 km/h的速度向西北方向移动,距离台风中心50 km以内(包括边界)都受影响,则该岛受到台风影响的时间为( )A.不受影响B.1 hC.2 hD.3 h二、填空题4.(2017湖南长沙中考)如图,AB为☉O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则☉O的半径为.5.(2017四川雅安中考)☉O的直径为10,弦AB=6,P是弦AB上一动点,则OP的取值范围是.三、解答题6.如图,AB为☉O的弦,☉O的半径为5,OC⊥AB于点D,交☉O于点C,且CD=1.(1)求线段OD的长;(2)求弦AB的长.7.(2018福建龙岩新罗期末)“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题的实质就是解决下面的问题:“如果CD为☉O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,那么直径CD的长为多少寸?”请你求出CD的长.24.1.2 垂直于弦的直径一、选择题1.答案 B 第②块有一段完整的弧,可在这段弧上任作两条弦,作出这两条弦的垂直平分线,它们的交点即为圆心,进而可得半径.故选B.2.答案 C 连接OA,设CD=x,∵OA=OC=5,∴OD=5-x,∵OC⊥AB,AB=8,∴由垂径定理可知AD=AB=4,由勾股定理可知52=42+(5-x)2,∴x=2(x=8舍去),∴CD=2.故选C.3.答案 C 如图,假设D、E为刚好受影响的点,过A作AC⊥BE于点C,连接AE、AD,可得出AE=AD=50 km,∵∠ABE=45°,∠ACB=90°,AB=40km,∴AC=BC=40 km,在Rt△ADC中,AD=50 km,AC=40 km,∴根据勾股定理得DC==30 km,∴ED=2DC=60 km,又台风速度为30 km/h,∴该岛受到台风影响的时间为60÷30=2(h).故选C.4.答案 5解析连接OC,∵AB为☉O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设☉O的半径为x,则OC=x,OE=OB-BE=x-1.在Rt△OCE中,OC2=OE2+CE2,∴x2=(x-1)2+32,解得x=5,∴☉O的半径为5.5.答案4≤OP≤5解析如图:连接OA,过O作OM⊥AB于M,∵☉O的直径为10,∴半径为5,∴OP的最大值为5.∵OM⊥AB,∴AM=BM,∵AB=6,∴AM=3.在Rt△AOM中,OM==4,OM的长即为OP的最小值,∴4≤OP≤5.三、解答题6.解析(1)∵☉O的半径是5,∴OC=5,∵CD=1,∴OD=OC-CD=5-1=4.(2)如图,连接AO,∵OC⊥AB,∴AB=2AD,在Rt△OAD中,根据勾股定理得AD===3,∴AB=6,因此弦AB的长是6.7.解析设直径CD的长为2x寸,则半径OC=x寸,∵CD为☉O的直径,弦AB⊥CD于E,AB=10寸,∴A E=BE=AB=×10=5(寸),连接OB,则OB=x寸,根据勾股定理得x2=52+(x-1)2,∴CD=2x=2×13=26(寸). 答:CD的长为26寸.。

人教版九年级数学上册24.1.2+垂直于弦的直径同步测试+新人教版

人教版九年级数学上册24.1.2+垂直于弦的直径同步测试+新人教版

24.1.2 垂直于弦的直径1.下列命题错误的是( B )A .平分弧的直径平分这条弧所对的弦B .平分弦的弦垂直于这条弦C .垂直于弦的直径平分这条弦D .弦的中垂线经过圆心 2.如图24-1-13,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P ,若CD =8,OP =3,则⊙O 的半径为( C )图24-1-13A .10B .8C .5D .33.如图24-1-14,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不成立的是( D )图24-1-14A .CM =DM B.CB ︵=DB ︵C .∠ACD =∠ADC D .OM =MD【解析】∵AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,∴M 为CD 的中点,即CM =DM ,选项A 成立;B 为CD ︵的中点,即CB ︵=DB ︵,选项B 成立;在△ACM 和△ADM 中,∵⎩⎪⎨⎪⎧AM =AM ,∠AMC =∠AMD =90°,CM =DM ,∴△ACM ≌△ADM (SAS),∴∠ACD =∠ADC ,选项C 成立;而OM 与MD 不一定相等,选项D 不成立.4.如图24-1-15,AB 是⊙O 的弦,OC ⊥AB 于C .若AB =23,OC =1,则半径OB 的长为__2__.图24-1-15【解析】 ∵AB 是⊙O 的弦,OC ⊥AB 于C ,AB =23,∴BC =12AB = 3.∵OC =1,∴在Rt △OBC 中,OB =OC 2+BC 2=12+(3)2=2.5.如图24-1-16,在⊙O 中,直径AB ⊥弦CD 于点M ,AM =18,BM =8,则CD 的长为__24__.【解析】 如图,连接OD ,∵AM =18,BM =8,∴O D =AM +BM 2=18+82=13,∴OM =13-8=5. 在Rt △ODM 中,DM =OD 2-OM 2=132-52=12,∵直径AB 丄弦CD ,∴CD =2DM =2×12=24.图24-1-16第5题答图6.如图24-1-17,在半径为13的⊙O 中,OC 垂直弦AB 于点D ,交⊙O 于点C ,AB =24,则CD 的长是__8__.图24-1-17第6题答图【解析】 如图,连接OA ,∵OC ⊥AB ,AB =24,∴AD =12AB =12. 在Rt △AOD 中,∵OA =13,AD =12,∴OD =OA 2-AD 2=132-122=5,∴CD =OC -OD =13-5=8.7.如图24-1-18,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A ,B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为__4__. 图24-1-18 【解析】 ∵OC ⊥AP ,OD ⊥P B ,∴由垂径定理得AC =PC ,PD =BD ,∴CD 是△APB 的中位线,∴CD =12AB =12×8=4. 8.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10 mm ,测得钢珠顶端离零件表面的距离为8 mm ,如图24-1-19所示,则这个小圆孔的宽口AB 的长度为__8__mm.图24-1-19第8题答图【解析】 如图,连接OA ,过点O 作OD ⊥AB 于点D ,则AB =2AD .∵钢珠的直径是10 mm ,∴钢珠的半径是5 mm.∵钢珠顶端离零件表面的距离为8 mm ,∴OD =3 mm.在Rt △AOD 中,∵AD =OA 2-OD 2=52-32=4(mm),∴A B =2AD =2×4=8(mm).9.如图24-1-20所示,AB 是⊙O 的弦(非直径),C ,D 是AB 上的两点,并且AC =BD .求证:OC =OD .图24-1-20第9题答图证明:如图,过O 作OE ⊥AB 于E ,则AE =BE ,又∵AC =BD ,∴CE =DE ,∴OE 是CD 的中垂线,∴OC =OD .10.绍兴是著名的桥乡,如图24-1-21,圆拱桥的拱顶到水面的距离CD 为8 m ,桥拱半径OC 为5 m ,则水面宽AB 为( D )图24-1-21A .4 mB .5 mC .6 mD .8 m11.如图24-1-22,弦CD 垂直于⊙O 的直径AB ,垂足为H ,且CD =22,BD =3,则AB 的长为( B )图24-1-22A .2B .3C .4D .5【解析】 连接OD .∵直径AB ⊥CD 于H ,∴DH =12CD =12×22= 2.在Rt △BDH 中,BH =BD 2-DH 2=(3)2-(2)2=1.设⊙O 的半径为R ,则在Rt △ODH 中,OH 2+DH 2=OD 2,∴(R -1)2+(2)2=R 2,∴2R =3,故选B.12.[2013·吉林]如图24-1-23,AB 是⊙O 的弦,OC ⊥AB 于点C ,连接OA ,OB .点P 是半径OB 上任意一点,连接AP .若OA =5 cm ,OC =3 cm ,则AP 的长度可能是__答案不唯一,5≤AP ≤8__cm(写出一个符合条件的数值即可).图24-1-2313.如图24-1-24,两个圆都以点O 为圆心.求证:AC =BD .图24-1-24第13题答图证明:过点O作OE⊥AB于E,在小⊙O中,∵OE⊥AB,∴EC=ED,在大⊙O中,∵OE⊥AB,∴EA=EB,∴AC=BD.14.某居民小区一处圆柱形的输水管道破裂,维修人员为了更换管道,需要确定管道圆形截面的半径,图24-1-25是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16 cm,水面最深地方的高度为4 cm,求这个圆形截面的半径.图24-1-25第14题答图解:(1)作出图形,如图所示;(2)如图,过O作OC⊥AB于D,交弧AB于C,连接OB,∵OC⊥AB,∴BD=12AB=12×16=8(cm).由题意可知CD=4 cm.设这个圆形截面的半径为x cm,则OD=(x-4)cm. 在Rt△BOD中,由勾股定理得OD2+BD2=OB2,即(x-4)2+82=x2,解得x=10,∴这个圆形截面的半径为10 cm.15.如图24-1-26,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径作⊙O,分别与∠EPF两边相交于A,B和C,D,连接OA,此时有OA∥PE.(1)求证:AP=AO;(2)若弦AB=102,求点O到直线PF的距离;(3)若以图中已标明的点(即P,A,B,C,D,O)构造四边形,则能构成菱形的四个点为__________________.图24-1-26第15题答图解:(1)∵PG平分∠EPF,∴∠DPO=∠BPO.∵OA∥PE,∴∠DPO=∠PO A,∴∠BPO=∠POA,∴AP=AO.(2)如图,过点O作OH⊥AB于点H,则AH=HB,∵AB=102,∴AH=52∵OA=10,∴OH=OA2-AH2=102-(52)2=5 2.(3)P,A,O,C A,B,D,C或P,A,O,D或P,C,O,B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24.1.2 垂直于弦的直径
知能演练提升
能力提升
1.如图,AB是☉O的弦,半径OA=2,∠AOB=120°,则弦AB的长为( )
A.2
B.2
C.
D.3
2.下图是一个单心圆隧道的截面,若路面AB的宽为10 m,拱高CD为7 m,则此隧道单心圆的半径OA为( )
A.5 m
B. m
C. m
D.7 m
3.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
A. B. C. D.
(第1题图)
(第2题图)
(第3题图)
4.如图,以点P为圆心的圆弧与x轴交于A,B两点,点P的坐标为(4,2),点A的坐标为(2,0),则点B的坐标为.
★5.如图,在圆O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC= .
(第4题图)
(第5题图)
6.
如图,在☉O中,OD平分弦AB,OE平分弦AC,求证:AM=AN.
7.如图,将一个两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D,E,量出半径OC=5 cm,弦DE=8 cm.求直尺的宽.
创新应用
★8.如图,铁路MN和公路PQ在点O处交会,∠QON=30°.在点A处有一栋居民
楼,AO=200 m,如果火车行驶时,周围200 m以内会受噪音影响,那么火车在铁路MN上沿ON方向行驶时,居民楼会受到影响.如果火车行驶的速度是72 km/h,那么居民楼受噪音影响的时间约为多少秒?(精确到0.1 s)
答案:能力提升
1.B
2.B 根据题意,得AD=DB,所以AD=5 m,OD=CD-OC=7-OA.在Rt△ADO
中,OA2=AD2+OD2,即OA2=52+(7-OA)2,
解得OA= m.
3.C 过点C作CF⊥AD,垂足为F,因为∠ACB=90°,AC=3,BC=4,所以AB=5.因为AC·BC=AB·CF,所以CF=.因为AC=3,在Rt△ACF中,利用勾股定理可求得AF=,由垂径定理,得AF=FD,所以AD=.
4.(6,0)
5.20 延长AO交BC于点D,作OE⊥BC于点E,则△ABD是等边三角形,∠ADB=60°,∴∠DOE=30°.
∴DE=OD=(12-8)=2.
∴BE=12-2=10,即BC=20.
6.证明:∵OD平分弦AB,OE平分弦AC,∴OD⊥AB,OE⊥AC.
∴∠D+∠DMB=90°,∠E+∠ENC=90°.
∵OD=OE,∴∠D=∠E.
∴∠DMB=∠ENC,
即∠AMN=∠ANM.
∴AM=AN.
7.解:如图,过点O作OM⊥DE,垂足为M,连接OD.
则DM=DE.
∵DE=8 cm,∴DM=4 cm.
在Rt△ODM中,
∵OD=OC=5 cm,
∴OM=
==3(cm).
∴直尺的宽度为3 cm.
创新应用
8.分析:要求居民楼受噪音影响的时间,首先要求出受噪音影响的路段.以A为圆心,200 m为半径的圆形区域内受噪音的影响,☉A与MN的交点之间的线段即为受影响的路段,利用垂径定理与勾股定理即可求出此线段的长度.
解:如图,过点A作AD⊥MN,垂足为D,∠AOD=30°,
则AD=OA=100 m.
以A为圆心,200 m为半径的☉A与MN交于点O,B,于是线段OB为居民楼受噪音影响的路段.
在Rt△ODA中,
OD=
==100(m).
因为AD⊥MN,
所以OB=200 m.
由于火车行驶的速度为72 km/h,
即为20 m/s,200÷20≈17.3(s).
因此,居民楼受噪音影响的时间约为17.3 s.。

相关文档
最新文档