安徽专用2018年中考数学复习同步高效集训篇同步高效集训十九第4单元第19课时
合集下载
中考数学基础复习第19课相似三角形及其性质课件
【考点剖析】 【考点1】比例线段 例1.如图,l1∥l2∥l3,AB=3,BC=5,DF=12,求DE和EF的长.
【解析】∵l1∥l2∥l3, ∴ AB DE (平行线分线段成比例),
AC DF
∵AB=3,BC=5,∴AC=AB+BC=8,
∵DF=12,∴ 3 DE .∴DE=4.5,
8 12
第19课 类似三角形及其性质
【知识清单】 一、平行线分线段成比例 两条直线被一组平行线所截,所得的对应线段____成__比__例___. 二、类似三角形的性质 性质1:类似三角形的对应角____相__等___,对应边的比____相__等___. 性质2:类似三角形周长的比等于____类__似__比___. 性质3:类似三角形对应高的比、对应中线的比、对应角平分线的比等于 ____类__似__比___. 性质4:类似三角形的面积的比等于类似比的____平__方___.
b b+2x
b(b+2x)
b(b+2x)
∵a>b>0,x>0,∴m-n= 2x(a-b)>0,
b(b+2x)
∴m>n.
若图中的两个矩形类似,则需m=n.
∴图中的两个矩形不类似.
反思:利用类似多边形的性质转化为比例式求解.
【学后检测】
1.如图l1∥l2∥l3,若
AB=3 BC 2
,DF=10,则DE=
3
则点C坐标为 ( B )
A.(-1,-1) C. (1, 4)
3
B.( 4 , 1)
3
D.(-2,-1)
3.(202X·吉林)如图,在△ABC中,D,E分别是边AB,AC的中点.若△ADE的面积
为1
2
3
中考数学复习 第四单元 三角形 第19课时 等腰三角形数学课件1
(2)请选择(1)中的一种情形,写出证明过程.
(2)选①②证明如下:
在△BOE和△COD中,
∵∠EBO=∠DCO,∠EOB=∠DOC,BE=CD,
∴△BOE≌△COD,∴BO=CO,∴∠OBC=∠OCB,
∴∠EBO+∠OBC=∠DCO+∠OCB,
即∠ABC=∠ACB,∴AB=AC,
即△ABC是等腰三角形.
2
角形 ABC 的底角的度数为
.
[答案] 15°或45°或75°
[解析]分情况讨论:
(1)当∠ABC为顶角时,△ABC为等腰直角三角形,如图①,此时∠C=45°;
1
(2)当∠ABC 为底角,∠BAC 为锐角时,如图②,BD= AC,∴∠BAC=30°,则∠ABC=75°;
2
1
(3)当∠ABC 为底角,∠BAC 为钝角时,如图③,BD= AC,∴∠BAD=30°,∠BAC=150°,
又∵∠ADB=∠C+∠DAC,
∴2∠C=∠ADB,
70°
∴∠C=
2
=35°.
图19-2
| 考向精练 |
1.[2018·湖州]如图19-3,AD,CE分别是
[答案]B
△ABC的中线和角平分线.若AB=AC,
[解析] ∵AB=AC,AD是△ABC的中线,
∠CAD=20°,则∠ACE的度数是 (
∴AD⊥BC.∵∠CAD=20°,
-∠ECD=180°-50°-50°=80°,故选D.
3.[2019·黔三州]如图19-5,以△ABC的顶
[答案] 34°
点B为圆心,BA长为半径画弧,交BC边于
[解析]根据题意可得
点D,连接AD.若∠B=40°,∠C=36°,则
(2)选①②证明如下:
在△BOE和△COD中,
∵∠EBO=∠DCO,∠EOB=∠DOC,BE=CD,
∴△BOE≌△COD,∴BO=CO,∴∠OBC=∠OCB,
∴∠EBO+∠OBC=∠DCO+∠OCB,
即∠ABC=∠ACB,∴AB=AC,
即△ABC是等腰三角形.
2
角形 ABC 的底角的度数为
.
[答案] 15°或45°或75°
[解析]分情况讨论:
(1)当∠ABC为顶角时,△ABC为等腰直角三角形,如图①,此时∠C=45°;
1
(2)当∠ABC 为底角,∠BAC 为锐角时,如图②,BD= AC,∴∠BAC=30°,则∠ABC=75°;
2
1
(3)当∠ABC 为底角,∠BAC 为钝角时,如图③,BD= AC,∴∠BAD=30°,∠BAC=150°,
又∵∠ADB=∠C+∠DAC,
∴2∠C=∠ADB,
70°
∴∠C=
2
=35°.
图19-2
| 考向精练 |
1.[2018·湖州]如图19-3,AD,CE分别是
[答案]B
△ABC的中线和角平分线.若AB=AC,
[解析] ∵AB=AC,AD是△ABC的中线,
∠CAD=20°,则∠ACE的度数是 (
∴AD⊥BC.∵∠CAD=20°,
-∠ECD=180°-50°-50°=80°,故选D.
3.[2019·黔三州]如图19-5,以△ABC的顶
[答案] 34°
点B为圆心,BA长为半径画弧,交BC边于
[解析]根据题意可得
点D,连接AD.若∠B=40°,∠C=36°,则
相关主题