材料力学第9章-压杆稳定3+第8章-能量法1
材料力学第9章-压杆稳定3第8章-能量法1
l
iz
1.3 7 m 55.2103 m
165
9.5 压杆的合理设计 由图9.11查得,Q235钢压杆相应的稳定因数为
=0.262。
显然,前面假设的=0.5这个值过大,需重新假设 值再来 试算;重新假设的 值大致上取以前面假设的=0.5和所得 的=0.262的平均值为基础稍偏于所得 的值。
重新假设=0.35,于是有
例 用能量法求两端球铰的压杆的临界压力。
设压杆微弯曲时的挠曲线方程为:
y
y
a
x
l
2
l
2
解:
2 2
C
该挠曲线满足位移边界条件: A
y
y0 yl 0
则任一截面上的弯矩为:
x l
B Fx
M
x
Fcr
y
Fcr
a
x
l 2
2
l 2
2
M 2 EI dx
由:
Fcr
l
y '2 dx
1、分析法/解析法
平衡方程——静力平衡关系 几何方程——变形几何关系 物理方程——应力应变关系
2、能量法
利用应变能的概念,解决与弹性体系变形有关的问题的 方法。
在求解组合变形、曲杆或杆系以及超静定问题时,能量 法是一种非常有效的方法,是结构分析的基础。
能量法/基本概念
能量法有关的几个基本概念 1、外力功:线弹性体系在外力的作用下产生变形,每个外力
在与它相对应的位移上所作的功 W。
2、应变能:弹性体受外力作用下产生变形而储存了能量,这个
被储存的能量即为应变能或变形能 U。
2l
代入上式有,
yq
x
x
M
材料力学第九章压杆稳定
明显的弯曲变形,丧失了承载能力.
(Buckling of Columns)
构件的承载能力
① 强度 ② 刚度 ③ 稳定性
工程中有些构件 具有足够的强度、刚 度,却不一定能安全可 靠地工作.
(Buckling of Columns) 二、工程实例(Example problem)
(Buckling of Columns)
w
x
sin kl 0 y
B
讨论: 若
A 0, w 0
则必须 sin kl 0 kl nπ(n 0,1,2,)
(Buckling of Columns)
k2 F kl nπ(n 0,1,2,) EI
F
n2π l
2 2
EI
(n 0,1,2,)
令 n = 1, 得
Fcr
2 EI l2
E π σp
206109 100 200 106
当 <1 但大于某一数值 2的压杆不能应用欧拉公式,此
时需用经验公式.
(Buckling of Columns) 三. 常用的经验公式 ( The experimental formula)
直线公式 或 令
σcr a b s
a s
b
σmax
FN max A
[σ]
例如:一长为300mm的钢板尺,横截面尺寸为 20mm 1
mm.钢的许用应力为[]=196MPa.按强度条件计算得钢板尺所
能承受的轴向压力为 [F] = A[] = 3.92 kN
实际上,其承载能力并不取决于轴向压缩的抗压强度,而是
与受压时变弯有关.当加的轴向压力达到40N时,钢板尺就突然发
支承情况 两端铰支 一端固定,另一端铰支 两端固定 一端固定,另一端自由
材料力学简明教程(景荣春)课后答案第九章
解 设各杆与铅垂线夹角为 θ ,则由平衡的各杆的受力
130
3FN cosθ = F , FN =
设钢管材料为 Q235,则
F F 2 .5 5 F = ⋅ = = 0.417 F 3 cos θ 3 2 12
= 269 > λp D2 + d 2 30 2 + 22 2 × 10 −3 π 2 EI π 3 E (D 4 − d 4 ) π 3 × 210 × 10 9 × (30 2 − 22 2 )× 10 −12 Fcr = = = = 9.37 kN 2 64 × 2.5 2 (μl )2 64(μl ) Fcr F 1 1 9.37 × 10 3 [F ] = = × = × = 7.49 kN 0.417 0.417 [n]st 0.417 3 i = =
2
127
比值差不多时较有利。 9-8 从稳定性的角度考虑,一般压杆截面的周边取圆形较为合理,但可以是空心或实 心的。如规定压杆横截面面积相同,则: (1) 从强度方面看,它们有无区别?为什么? (2) 从稳定性方面看,哪一种截面形式较为合理?为什么? (3) 如果空心圆形截面较合理的话,是否其内、外半径越大越好? 答 (1) 从强度方面看,它们无区别。因为 σ = F / A 。 (2) 从稳定性方面看,空心截面形式较为合理,因空心截面惯性矩较大。 (3) 如果空心圆形截面较合理的话,其内、外半径不是越大越好,因为在面积一定的情 况下,内、外半径太大了会造成薄壁失稳。 9-9 如何进行压杆的合理设计? 答 (1) 选择合理的截面形状; (2) 改变压杆的约束条件; (3)合理选择材料。 9-10 满足强度条件的等截面压杆是否满足稳定性条件?满足稳定性条件的压杆是否 满足强度条件?为什么? 答 (1) 因为强度条件是 σ < [σ ] =
材料力学第9章 压杆稳定
第9章 压杆稳定 图9-6
第9章 压杆稳定
9.2.3 两端非铰支细长压杆的临界载荷 1.一端固定一端自由的细长压杆的临界载荷 图9-7所示为一端固定、一端自由的长为l的细长压杆。
当轴向压力F=Fcr时,该杆的挠曲轴与长为2l的两端铰支细 长压杆的挠曲轴的一半完全相同。因此,如果二杆各截面的 弯曲刚度相同,则临界载荷也相同。所以,一端固定一端自 由、长为l的细长压杆的临界载荷为
第9章 压杆稳定
9.2.2 大挠度理论与实际压杆 式(9-1)与式(9-2)是对于理想压杆根据小挠度挠
曲轴近似微分方程得到的。如果采用大挠度挠曲轴的微分方
程 ddx1xM ExI进行理论分析,则轴向压力F与压杆最
大挠度wmax之间存在着如图9-6中的曲线AB所示的确定关 系,其中A点为曲线的极值点,相应之载荷Fcr即为上述欧拉 临界载荷。
Fcr
2 EI
2l 2
(9-3)
第9章 压杆稳定
图9-7
第9章 压杆稳定
2.两端固定的细长压杆的临界载荷 图9-8所示为两端固定的长为l的细长压杆,当轴向压 力F=Fcr时,该杆的挠曲轴如图9-8(a)所示,在离两固定端 各l/4处的截面A、B存在拐点,A、B截面的弯矩均为零。因 此,长为l/2的AB段的两端仅承受轴向压力Fcr(见图9-8 (b)),受力情况与长为l/2的两端铰支压杆相同。所以,两 端固定的压杆的临界载荷为
Fcr
2EI
0.5l 2
(9-4)
第9章 压杆稳定
图9-8
第9章 压杆稳定
3.一端固定一端铰支的细长压杆的临界载荷 图9-9所示为一端固定一端铰支的长为l的细长压杆, 在微弯临界状态,其拐点与铰支端之间的正弦半波曲线长为
材料力学 第九章 压杆稳定
cr s cr a b
cr
小柔度杆 中柔度杆
O
π2 E
2
大柔度杆
2
1
l
i
大柔度杆—发生弹性失稳 中柔度杆—发生非弹性失稳 小柔度杆—不发生失稳,而发生强度失效
Fuzhou University
杆类型
大柔度杆
定义
1
临界力
π EI Fcr ( l ) 2
n 0,1, 2
取
n 1
π 2 EI Fcr 2 l
细长压杆的临界载荷的欧 拉公式 (两端铰支)
Fuzhou University
材料力学课件
w A sin kx B co s kx
kl n , n 0,1, 2
F x l w F x
取 n 1
π 2 EI Fcr 2 l
2
临界应力
cr π2E性质Fra bibliotek2
稳定 稳定 强度
中柔度杆 2 1 Fcr A(a b ) 小柔度杆
cr a b
2
Fcr A s
cr s
l
i
1 π
i
E
I A
1.0, 0.5, 0.7, 2.0
a s 2 b
Fcr
Fcr
π 2 EI
2l
2
π 2 EI
0.7l
2
π 2 EI Fcr 2 (l )
欧拉公式的普遍形式
Fuzhou University
材料力学课件 讨论:
π 2 EI Fcr ( l )2
材料力学第九章 压杆稳定
02
创新研究方法与手段
积极探索新的实验技术和数值模拟方法,提高压杆稳定研究的精度和可
靠性。
03
拓展应用领域
将压杆稳定研究成果应用于更多领域,解决实际工程问题,推动科学技
术进步。
THANKS
感谢观看
稳定性取决于压杆的初始弯曲程度、压力的大小 和杆件的材料特性。
当压杆受到微小扰动时,如果能够恢复到原来的 平衡状态,则称其为稳定;反之,则为不稳定。
压杆的临界载荷
临界载荷是指使压杆由稳定平衡 状态转变为不稳定平衡状态的载
荷。
当压杆所受压力小于临界载荷时, 压杆保持稳定平衡状态;当压力 大于临界载荷时,压杆将失去稳
相应措施进行解决。
建筑结构中的压杆问题
02
高层建筑、大跨度结构等建筑中的梁、柱等部件可能发生失稳,
需要加强设计和施工控制。
压力容器中的压杆问题
03
压力容器中的管道、支撑部件等可能发生失稳,需要采取相应
的预防和应对措施。
05
压杆稳定的未来发展与展望
压杆稳定研究的新趋势
跨学科交叉研究
压杆稳定与材料科学、计算科学、工程结构等领域相互渗透,形 成多学科交叉的研究趋势。
工程中常见的压杆问题
1 2
细长杆失稳
细长杆在压力作用下容易发生弯曲,导致失稳。
短粗杆失稳
短粗杆在压力作用下可能发生局部屈曲,导致失 稳。
3
弹性失稳
材料在压力作用下发生弹性变形,当压力超过某 一临界值时,杆件发生失稳。
解决压杆失稳的方法与措施
加强材料质量
选择优质材料,提高材料的弹 性模量和抗拉强度,以增强压
材料力学第九章 压杆稳 定
• 引言 • 压杆稳定的基本理论 • 压杆稳定的实验研究 • 压杆稳定的工程应用 • 压杆稳定的未来发展与展望
材料力学各章重点内容总结
材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。
二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。
三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。
第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。
二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。
注意此规定只适用于轴力,轴力是内力,不适用于外力。
三、轴向拉压时横截面上正应力的计算公式:N FAσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。
四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。
五、轴向拉压时横截面上正应力的强度条件[],maxmax N F Aσσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F Aσσ=≤一定要有结论 2.设计截面[],maxN F A σ≥3.确定许可荷载[],maxN F A σ≤七、线应变ll ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F ll EA∆=注意当杆件伸长时l ∆为正,缩短时l ∆为负。
八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。
会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。
九、衡量材料塑性的两个指标:伸长率1100l llδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。
十、卸载定律及冷作硬化:课本第23页。
2020年材料力学习题册答案-第9章 压杆稳定
作者:非成败作品编号:92032155GZ5702241547853215475102时间:2020.12.13第九章压杆稳定一、选择题1、一理想均匀直杆受轴向压力P=P Q时处于直线平衡状态。
在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。
A、弯曲变形消失,恢复直线形状;B、弯曲变形减少,不能恢复直线形状;C、微弯状态不变;D、弯曲变形继续增大。
2、一细长压杆当轴向力P=P Q时发生失稳而处于微弯平衡状态,此时若解除压力P,则压杆的微弯变形( C )A、完全消失B、有所缓和C、保持不变D、继续增大3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。
A、长度B、横截面尺寸C、临界应力D、柔度4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。
A、长度,约束条件,截面尺寸和形状;B、材料,长度和约束条件;C、材料,约束条件,截面尺寸和形状;D、材料,长度,截面尺寸和形状;5、图示四根压杆的材料与横截面均相同,试判断哪一根最容易失稳。
答案:( a )6、两端铰支的圆截面压杆,长1m,直径50mm。
其柔度为 ( C )A.60;B.66.7;C.80;D.507、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。
8、细长压杆的( A ),则其临界应力σ越大。
A 、弹性模量E 越大或柔度λ越小;B 、弹性模量E 越大或柔度λ越大;C 、弹性模量E 越小或柔度λ越大;D 、弹性模量E 越小或柔度λ越小; 9、欧拉公式适用的条件是,压杆的柔度( C )A 、λ≤、λ≤C 、λ≥π D、λ≥10、在材料相同的条件下,随着柔度的增大( C )A 、细长杆的临界应力是减小的,中长杆不是;B 、中长杆的临界应力是减小的,细长杆不是;C 、细长杆和中长杆的临界应力均是减小的;D 、细长杆和中长杆的临界应力均不是减小的; 11、两根材料和柔度都相同的压杆( A )A. 临界应力一定相等,临界压力不一定相等;B. 临界应力不一定相等,临界压力一定相等;C. 临界应力和临界压力一定相等;D. 临界应力和临界压力不一定相等;12、在下列有关压杆临界应力σe 的结论中,( D )是正确的。
材料力学 第九章 压杆稳定分析
我国建筑业常用:
cr
s
1
c
2
对于A3钢、A5钢和16锰钢: 0.43,c
2E 0.56 S
c 时,由此式求临界应力 。
②s< 时:
cr s
几点重要说明:
1. 所有稳定问题(包括后续内容)均需首先计算λ以界定压 杆的属性。
2. 对一般金属材料,作如下约定:
A. λp≈100;λs≈60。故:
i
二、压杆的分类
1、大柔度杆:
cr
2E 2
P
2E P
P
100
满足 P 的杆称为大柔度杆(或 细长杆),其临界力用 欧拉公式求。
P 的杆为中小柔度杆,其 临界力不能用欧拉公式 求。
2、中柔度杆─λP>λ≥λS,即: P<≤S
直线型经验公式: cr ab
crab s
a s
b
s
60
支承情况
两端铰支
一端固定 另端铰支
两端固定
一端固定 另端自由
两端固定但可沿 横向相对移动
Pcr
Pcr
Pcr
Pcr
Pcr
失
l l 0.7l l 0.5l
l 2l l 0.5l
稳 时
B
B
B
挠
D
曲
线 形
C
C
状
A
A
A
C— 挠曲 C、D— 挠
线拐点 曲线拐点
C— 挠曲线拐点
临界力Pcr 欧拉公式
Pc
r
2
l
EI
工程实例
目录
一、稳定平衡与不稳定平衡 : 1. 不稳定平衡
2. 稳定平衡
3. 稳定平衡和不稳定平衡
材料力学 第九章 压杆稳定
点名
二、 欧拉公式的应用范围
(Applicable range for Euler’s formula)
只有在 cr P 的范围内,才可以用欧拉公式计算压杆的 临界压力 Fcr(临界应力 cr )。
cr
2E 2
P
或
2E
P
令1
E
P
点名
即 ≥ 1(大柔度压杆或细长压杆),为欧拉公式的适用范围。 1 的大小取决于压杆材料的力学性能。例如,对于Q235钢, 可取 E=206GPa,P=200MPa,得
构件的承载能力
①强度 ②刚度 ③稳定性
点名
工程中有些构 件具有足够的强度、 刚度,却不一定能 安全可靠地工作。
点名
二、工程实例(Example problem)
点名
点名
内燃机、空气压缩机的连杆
点名
点名
点名
点名
三、失稳破坏案例 (bucking examples)
案例1、上世纪初,享有盛誉的美国桥梁学家库柏(Theodore Cooper)在圣劳伦斯河上建造魁比克大桥(Quebec Bridge) 1907年8月29日,发生稳定性破坏,85位工人死亡,成为上世纪 十大工程惨剧之一.
A杆先失稳
点名
例题2 压杆截面如图所示。两端为柱形铰链约束,若绕 y 轴失
稳可视为两端固定,若绕 z 轴失稳可视为两端铰支。已知,杆长
l=1m ,材料的弹性模量E=200GPa,p=200MPa。
求压杆的临界应力。
z
解: 1
E 99
P
y
30mm
iy
Iy A
1 (0.03 0.023 )
Mechanics of Materials
材料力学:第九章 压杆稳定问题
实际临界力
若杆端在不同方向的约束情况不同, I 应取挠 曲时横截面对其中性轴的惯性矩。即,此时要 综合分析杆在各个方向发生失稳时的临界压力, 得到直杆的实际临界力(最小值)。
求解临界压力的方法:
1. 假设直梁在外载荷作用下有一个初始的弯曲变形
2. 通过受力分析得到梁截面处的弯矩,并带入挠曲线 的微分方程
P
采用挠曲线近似微分方程得
B
到的d —P曲线。
Pcr A
B'
可见,采用挠曲线近
似微分方程得到的d —P曲
线在压杆微弯的平衡形态
d
下,呈现随遇平衡的假象。
大挠度理论、小挠度理论、实际压杆
欧拉公式
在两端绞支等截面细长中心受压直杆
的临界压力公式中
2EI
Pcr l 2
形心主惯矩I的选取准则为
若杆端在各个方向的约束情况相同(如球形
P
压杆稳定性的概念
当P较小时,P
Q
P
当P较大时,
P Q
稳定的平衡态
P
撤去横向力Q 稳定的
小
稳
P定
的
P P
临界压力
Pcr
不
稳
撤去横向力Q 不稳定的
定 的
P
大
不稳定的平衡态
压杆稳定性的概念
压杆稳定性的工程实例
细长中心受压直杆临界 力的欧拉公式
细长中心受压直杆临界力的欧拉公式
压杆的线(性)弹性稳定性问题
利用边界条件
得 w D,
xl
Dcos kl 0
若解1
D0
表明压杆未发生失稳
w(x) Asin kx B cos kx D
第九章_压杆稳定
第 1 页/共 2 页9-5 未失稳失,轴向压缩 T F L L ∆=∆TEA F TL L EAFL L l l T F αα=⇒=∆=∆, 临界状态 kN 3.109)5.0(22cr ==L EIF π由cr F F =得,温升C EALEI T l ︒==2.29422απ 9-8 由铰B 平衡,22BC AB F F F +=,ABBC F F =θtan F 最大时,AB F 与BC F 均达到临界值2222)sin ()cos (βπβπAC EI F AC EI F BC AB ==, )arctan(cot cot tan 22βθβθ==⇒, 9-10 柔度临界值 p2p σπλE = (1)5.72p =λ,(2)8.65p =λ,(3)6.73p =λ 9-12 AB 与BC 均为两力杆,由铰B 平衡可得 F F BC 75=(压) 柔度 m m 320m 5.215.216=====i l i l,,,其中μμλ 稳定因素 06.028002==λϕ稳定许用应力 MPa 6.0][][st ==σϕσ st ][MPa 58.0σσ<==AF BC ,满意稳定性条件。
9-15 组合压杆的临界力cr F 为杆BC 与AB 临界力的最小值柔度临界值 1002==PP E σπλ P ACAC P BC BC i AC i BC λλλλ>=====1047.0100,大柔度杆,由欧拉公式N 1094.0)7.0(N 1004.1622622⨯==⨯==AC EIF BC EIF AC BC ππ,N 1094.06cr ⨯==⇒AC F F许用压力 kN 376][stcr ==n F F ⎪⎪⎭⎫ ⎝⎛======kN 416MPa 8.82][MPa 1.207BC kN 376MPa 6.76][MPa 4.191AC st cr st cr F F ,,:,,:σσσσ 9-17 杆AC ,强度许用应力 MPa 118][st ==n σσ 最大弯矩 26132bh W F M B ==, 最大应力 kN 6.95][41][2max =≤⇒≤=bh F W M B σσσ 杆CD ,柔度P iCD λλ>==200,大柔度杆 由欧拉公式 MPa 3.4922cr ==λπσE 稳定许用应力 MPa 4.16][st cr st ==n σσ 压力 F F CD 31=应力 kN 5.15][3][st st =≤⇒≤=A F AF CD σσσ 结构的许可荷载 kN 5.15][=F。
材料力学 第9章 压杆稳定
第9章 压杆稳定
第9章 压杆稳定
材料力学
第9章 压杆稳定
第9章 压杆稳定
9.1 概述 9.2 细长压杆的临界力 9.3 压杆的临界应力 9.4 压杆的稳定计算 9.5 提高压杆稳定性的措施
小结
材料力学
9.1 概述
第9章 压杆稳定
在绪论中曾经指出,当作用在细长杆上的轴向压力达到或超过一定 限度时,杆件可能突然变弯,即产生失稳现象。杆件失稳往往产生很 大的变形甚至导致系统破坏。因此,对于轴向受压杆件,除应考虑其 强度与刚度问题外,还应考虑其稳定性问题。
(4)临界状态的压力恰好等于临界力,而所处的微弯状态称为屈曲模态, 临界力的大小与屈曲模态有关。
(5)n=2、3所对应的屈曲模态事实上是不能存在的,除非在拐点处增加 支座。这些结论对后面讨论的不同约束情况一样成立。
材料力学
第9章 压杆稳定
9.2 细长压杆的临界力
9.2.2 一端固定、一端自由细长压杆的临界力
w xl
coskl 0
材料力学
9.2 细长压杆的临界力
9.2.2 一端固定、一端自由细长压杆的临界力
coskl 0
kl nπ k nπ
2
2l
Fcr
n 2 π 2EI (2l ) 2
n 1,3,5,
取最小值,可得该压杆临界力Fcr的欧拉公式为:
Fcr
π2EI (2l ) 2
第9章 压杆稳定
材料力学
第9章 压杆稳定
9.2 细长压杆的临界力
计算临界力归结为计算压杆处于微弯状态临界平衡时的平衡方程 及荷载值。 用静力法计算临界力时应按以下的思路来考虑: (1)细长压杆失稳模态是弯曲,所以弯曲变形必须考虑; (2)假设压杆处在线弹性状态; (3)临界平衡时压杆处于微弯状态,即挠度远小于杆长,于是, 梁近似挠曲线的微分方程仍然适用。 (4)压杆存在纵向对称面,且在纵向对称面内弯曲变形。
《材料力学》孙训方 刘鸿文 讲义(笔记)-第九章 压杆稳定
第九章 压杆稳定§9-1 压杆稳定性的概念一、引言工程中有许多细长的轴向压缩杆件,例如,气缸或油缸中的活塞杆、内燃机连件、建筑结构中的立柱、火箭的级间连接支杆等。
材料力学中统称为压杆或柱。
前面研究直杆轴向压缩时,认为杆是在直线形态下维持平衡,杆的失效是由于强度不足而引起的。
事实上,这样考虑,只对短粗的压杆才有意义,而对细长的压杆,当它们所受到的轴向外力远未达到其发生强度失效时的数值,可能会突然变弯而丧失了原有直线形态下的平衡而引起失效。
它是不同于强度失效的又一种失效形式。
受压变弯的原因:(1)压秆在制造时其轴线存在初曲率。
(2)合外力作用线与杆轴线没有重合。
(3)材料的不均匀性。
二、“中心受压理想直杆”力学模型及稳定的概念力学模型:材料绝对理想;轴线绝对直;压力绝对沿轴线作用 试验:取如图所示两端铰支均质等直细长杆,加轴向压力F ,压杆呈直线形态平衡。
现在,若此压杆受到一很小的横向干扰力。
(例如,轻轻地推一下),则压杆弯曲,如图 a 中虚线所示。
当横向干扰力解除后,会出现下述两种情况:1) 当轴向压力F 小于某一数值时,压杆又恢复到原来的直线平衡形态,如图 b 所示。
(稳定平衡) 2) 当轴向压力F 增加到这一数值时,虽然干扰力已解除,但压杆不再恢复到原来的直线平衡形态,而在微弯曲的形态下平衡,如图 c 所示。
(不稳定平衡)可见,压杆的原来直线形态平衡是否稳定,与所受轴向压力F 的大小有关;当轴向压力F 由小逐渐增加到某一个数值时,压杆的直线形态平衡由稳定过渡到不稳定。
压杆的直线形态平衡由稳定过渡到不稳定所受的轴向压力的界限值,称为压杆的临界力,用F cr 表示。
当压杆所受的轴向压力F 达到临界力F cr 时,其直线形态的平衡开始丧失,我们称压杆丧失了稳定性,简称失稳。
研究压杆稳定性的关键是寻求其临界力的值。
§9-2细长中心受压直杆临界力的欧拉公式假设两端球形铰支的等直细长压杆所受的轴向压力刚好等于其临界力,并且已经失稳而在微弯曲状态下保持平衡,如图所示。
材料力学第9章压杆稳定
F B l C
1
2 l
i
200
A
2l
D
E F A 3 . 875 kN Ncr 2
2
2 E 99 .3 1 p
安全 n = F / F = 3.73 > n F 1 . 04 kN Ncr N st N
3 3 F l F l F l l F 2 l Fl N N N N l 3 EI 3 EI 3 EI GI EA p 3
dw 2 12 21 2 1 3 k ( lx x Cx D ) k( lx x C ) w 2 6 dx 2 12 x 0 , l w 0 D 0 , C l 3 1Fa 2 3 EI x 0 ,w 3 EIll Fcr al
1 4 1 cm I 1130 cm W 梁 梁 π 2 2 2 A D d 1178 mm 柱 4
4
3
4 3 5 ql F l F l N N 384 EI 48 EI EA
F 9 7 . 2 kN N
M/kNm
12.3
17.2
3 M 1 7 . 2 10 max s 1 22 MPa max n 1 . 9 梁 W 141
选择合理截面(I、i大) 改变约束条件(小) 各平面稳定性基本相同 合理选择材料(大柔度杆无效)
Fa M Fa 令: k 0 EIl F M / l Fa / l R 0
2
F
M Fa Fa x / l
a
l EI EI
M0 l
2 d w M Fa 2 ( l x ) k( lx ) 2 dx EIEIl
《材料力学》第九章 压杆稳定
第九章 压杆稳定§9—1 概述短粗压杆——[]σσ≤=AF Nmax (保证具有足够的强度) 细长压杆——需考虑稳定性。
一、压杆稳定性的概念:在外力作用下,压杆保持原有直线平衡状态的能力。
二、压杆的稳定平衡与不稳定平衡:三、临界的平衡状态:给干扰力时,在干扰力给定的位置上平衡;无干扰力时,在原有的直线状态上平衡。
(它是稳定与不稳定的转折点)。
压杆的临界压力:Fcr ( 稳定平衡的极限荷载)四、判断压杆稳定的标志——F cr稳定的平衡状态——cr F F 临界的平衡状态——cr F F =不稳定的平衡状态(失稳)——cr F F§9—2 两端铰支细长压杆的临界力假定压力以达到临界值,杆已经处于微弯状态且服从虎克定律,如图,从挠曲线入手,求临界力。
①、弯矩:w F x M cr -=)(②、挠曲线近似微分方程:w F x M w EI cr -=='')( 即,0=+''w EIF w cr令 EIF k cr =202=+''w k w ③、微分方程的解:kx B kx A w cos sin += ④、确定微分方程常数:0)()0(==L w w )sin (.0sin 0,B kx w kL ===→πn Kl =(n=0、1、2、3……)EIF L n k cr==∴π222L EI n F cr π=→临界力 F c r 是微弯下的最小压力,故,只能取n=1 ;且杆将绕惯性矩最小的轴弯曲。
2min2cr F L EI π=∴§9—3 其它支承下细长压杆的临界力2min2)(l EI F cr μπ=——临界力的欧拉公式(μ——长度系数,L ——实际长度,μL ——相当长度) 公式的应用条件:1、理想压杆;2、线弹性范围内;【例】:试由挠曲线近似微分方程,导出下述细长压杆的临界力公式。
解:变形如图,其挠曲线近似微分方程为:0)(m w F x M w EI cr -==''EI F k cr =2:令 crF m k w k w EI 022=+'' kx d kx c w sin cos += 边界条件为:.0,;0,0='==='==w w L x w w x, 2,,00πn kL F m d c cr=-== 为求最小临界力, “ n ”应取除零以外的最小值,即取:π2=kL所以,临界力为:2222)2/(4L EIL EI F cr ππ== (μ=0.5)【例】:求下列细长压杆的临界力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dx
Fcr
2 EIy '' dx 2 y ' dx l
所以挠曲线确定后,就可以知道临界压力的大小。
挠曲线一般可以采用满足位移边界条件的近似曲线代替。
9.6 用能量法求压杆的临界载荷 例 用能量法求两端球铰的压杆的临界压力。 设压杆微弯曲时的挠曲线方程为: y 解: 该挠曲线满足位移边界条件: A
基于式:
Fcr
M
l l
2
EI dx
的结果比基于式
2 y ' dx
Fcr
2 EIy '' dx l 2 y ' dx l
的结果更精确。
2 2 l l M x Fcr y Fcr a x 2 2
9.4 压杆的稳定条件
二、折减系数法
st 其中: 为许用压应力。 为折减系数,位于0和1之间。
折减系数同时取决于材料性质和压杆的柔度(参考图9.11)。 根据折减系数法,压杆的稳定条件可写为:
1.稳定校核
稳定计算的三类问题
2.选择截面 3.确定许用载荷
q l
M x y qcr d
x
l
x
f x y x q x
又
截面上的挠度为,
f 1 cos 2l
x
代入上式有, x 2l x M x fqcr l x cos 1 sin 则有: qcr 2l 2l
式中 T ——圆杆横截面上的扭矩; Ip ——圆杆横截面对圆心的极惯性矩。
能量法/杆件的应变能
•受力复杂的圆截面杆(扭矩沿杆的轴线为变量) 可取微段分析:
整个杆件的拉压应变能
FN ( x)dx U dU L L 2 EA
2
能量法/杆件的应变能
2、圆截面杆的扭转
Mx
Mx
TL M x L GI p GI p
A
Mx L
O B
圆截面杆的应变能
2 2 M L T L GI p 2 1 x U W M x 2 2GI p 2GI p 2L
能量法/基本概念
能量法有关的几个基本概念
1、外力功:线弹性体系在外力的作用下产生变形,每个外力
在与它相对应的位移上所作的功 W。
2、应变能:弹性体受外力作用下产生变形而储存了能量,这个
被储存的能量即为应变能或变形能 U。
3、能量守恒:忽略缓慢加载过程中动能和其它形式的能量损
失,杆件能量守恒,即杆内所储存的应变能U
E cr 2
一、合理选择材料
细长压杆
l
i
临界力只与弹性模量有关。由于各种钢材的E值大致相等,所以 选用高强度钢或低碳钢并无差别。 中柔度杆 临界应力与材料的强度有关,选用高强度钢在一定程度上可以 提高压杆的稳定性。
9.5 压杆的合理设计
二、合理选择截面
柔度越小,临界应力越大。
E cr 2
2
Fcr F Fst nst
或
st
Fcr n nst F
能量法
第八章
一、杆件的应变能
能量法
二、应变能普遍表达式(克拉贝隆原理) 三、卡氏定理 四、互等定理 五、虚功原理 六、超静定问题 七、冲击应力
单位力法 力法
图乘法
9.6 用能量法求压杆的临界载荷 又
4 2 1 l EI f 2 U EIy '' dx 2 0 64l 3
由:
W U
有:
8.30 EI qcr l3
精确解:
与精确解相差6%
7.83EI qcr l3
9.6 用能量法求压杆的临界载荷
解法二: 取如图两套坐标系,
则有x截面上的弯矩为:
W U
B点的轴向位移:
ds A x
ds dx
l
B
dx l B´ Fcr x
其中:
ds
dx dy
2
2
1 2 1 y ' dx 1 y ' dx 2
2
所以:
1 y '2dx 2l
Fcr 2 W Fcr y ' dx 2 l
l
2 3 M 2 x f 2 qcr l 1 9 32 U dx 2 3 跟精确值相差 0.77% 0 2 EI 2 EI 6
7.89 EI l2
材料力学
第九章 压杆稳定
欧拉临界载荷
EI Fcr 2 l
2
欧拉临界应力 稳定条件 折减系数法
x
q l
x
f x
1 x 2 2 f 2 l x x y ' dx x sin 2 0 2 16l l
2 2 q f 均布载荷所做的功: W x q dx cr 1 cr 0 8 4 l
能量法的基本思路: 1、在临界载荷作用下,压杆可在微弯状态平衡。 2、压力沿轴线方向所做的功转化为压杆微弯状态下的应变能。
3、假设出符合位移边界条件的挠曲线方程,则根据第2条,可 以求出临界载荷的大小。
9.6 用能量法求压杆的临界载荷 如图所示压杆,假设在临界载荷作用下达到微弯平衡状态, 临界压力在轴向位移上所做的功等于压杆微弯状态下的应变能 y 即:
因为挠曲线只是近似曲线,如果对它求两次导数,会引起数值上 更大的偏差。
9.6 用能量法求压杆的临界载荷 例 如图细长杆,一端固定,另一端自由,承受集度为q的轴向 均布载荷作用。试用能量法确定载荷q的临界值qcr。 假设压杆微弯时的挠曲线方程为: 解: x y f 1 cos 2l 其中 f 为压杆自由端的挠度。 解法一: 压杆微弯时,横截面x的轴向位移为:
材料力学
第九章 压杆稳定
9.1 引言
9.2 细长压杆的欧拉(Euler)临界载荷 9.3 中、小柔度压杆的临界应力
9.4 压杆的稳定条件
9.5 压杆的合理设计 9.6 用能量法求压杆的临界载荷
9.6 用能量公式,是用求解压杆微弯时 的挠曲线平衡方程的方法求压杆的临界载荷。但对于比较复杂的 载荷,支承方式或截面变化,采用能量法比较简洁。
材料力学
第九章 压杆稳定
9.1 引言
9.2 细长压杆的欧拉(Euler)临界载荷 9.3 中、小柔度压杆的临界应力
9.4 压杆的稳定条件
9.5 压杆的合理设计 9.6 用能量法求压杆的临界载荷
9.2 细长压杆的欧拉(Euler)临界载荷 各种支承约束条件下等截面细长压杆临界载荷的欧拉公式
支承情况 失 稳 时 挠 曲 线 形 状 两端铰支 一端固定 另端铰支 两端固定 一端固定 另端自由
l l z y i z i y
9.5 压杆的合理设计
•增大截面惯性矩 I(合理选择截面形状)
9.5 压杆的合理设计
三、改变压杆的约束条件
细长压杆的临界压力与相当长度的二次方成反比,所以 增强对压杆的约束可极大的提高其临界压力。 如采用稳定性比较好的约束方式,或者在压杆中间增添支座, 都可以有效的提高压杆的稳定性。
2
所以有:
10 EI Fcr 2 l
l
如果根据式 Fcr
l
2 EIy '' dx
y'
l
2
dx
则有:
l EI EI 2 2 U y '' dx 2 a dx 2 EIa 2l 0 2 0 2
12 EI Fcr 2 l
精确解:
Fcr
EI
2
l2
9.6 用能量法求压杆的临界载荷
在数值上与外力所作的功 W 相等。功能原理
U=W
能量法/杆件的应变能
一、杆件产生基本变形时的应变能 1、轴向拉伸或压缩
F A L L F L O B 式中
1 U W F L 2 2 2 F L FN L 2 EA 2 EA EA 2 L 2L
——轴力, FN
FN L FL L EA EA
E cr 2
2
l i l A I
在面积不变的情况下,应该选择惯性矩比较大的截面。 如空心杆等。 同时要考虑失稳的方向性,尽量做到各个可能失稳方向的柔度 大致相等。 如压杆两端为销铰支承,由于两个方向的 不同,则应该选 择 I y I z 的截面,使得两个方向上的柔度大致相等,即:
9.6 用能量法求压杆的临界载荷
Fcr 2 W Fcr y ' dx 2 l 又:
M 2 x EI 2 U dx y '' dx 2 EI 2 l l
y ds A x dx l
l
B
B´
Fcr x
由以上两式有:
Fcr
M
l l
2
EI dx
2
y'
Li——结构中第i杆的长度, Ai ——第i杆的截面面积
能量法/杆件的应变能
•受力复杂杆(轴力沿杆的轴线变化)的应变能
x dx q L 取微段研究:
FN ( x)dx d(L) EA
FN ( x)
dx
FN ( x) dFN
(dx)
微段的应变能:
FN 2 ( x)dx 1 dU FN ( x)d(L) 2 2 EA
9.4 压杆的稳定条件
压杆稳定性计算步骤
a、计算 、 与 :