化工原理多组分精馏讲解
化工原理蒸馏精馏知识要点
三、操作线方程
1. 精馏段操作线方程
对如图划定范围作物料衡算 V=L+D 对易挥发组分衡算 Vyn+1=Lxn + DxD V, yn+1
D,xD
第n板
L, xn
Dx D L y n 1 x V V 令回流比 R=L/D xD R y n1 xn R1 R1
2. 恒摩尔溢流
精馏段内,每层塔板下降的溢流摩尔流量相等。 提馏段内,每层塔板下降的溢流摩尔流量相等
L1=L2=…=Ln=定值 (精馏段) L 1=L2=…=Ln=另一定值 (提馏段) 一定注意: 精馏段和提馏段下降的溢流分别不相等。 精馏段和提馏段上升的蒸汽分别不相等。 因为加料板加入原料液后使两段汽液两相流量发 生变化。 当各组分摩尔汽化焓相等,汽液接触良好且可忽 略显热(与汽化热比较),保温良好且塔的热损失 可忽略时,恒摩尔流假定基本上成立。
露点
泡点
x或 y
0 P p A pB p 0 x p A A B (1 x A )
xA
0 P pB 0 p0 p A B
y A p0 A xA / P
对某一温度和总压,由这几式可求出xA,yA。 得出一系列的值后便可作出如前图所示的图来。 对于非理想溶液,计算很复杂。一般由实验得 出平衡数据。实验得出的平衡数据也是计算的 基础。
2. 相对挥发度(relative volatility)
溶液中两组分挥发度之比称相对挥发度,。通 常用易挥发组分挥发度作分子。
vA pA / x A vB pB / x B
化工原理 ---精馏
6.3 双组分连续精馏塔的计 算6.3.1 全塔物料衡算
V
总物料:
F=D+W
易挥发组分:
F xF=D xD+W xw
原料液
F , xF , IF
应用见P263例7-1
L’
精品课件
15
馏出液 L D , xD , ID
V’ 釜残液 W , xW , IW
16
6.3 双组分连续精馏塔的计 算
33
6.3 双组分连续精馏塔的计 说算明:
1 ) NT是指精馏塔所需的理论塔板数,其数值 必须指明是否包括塔釜在内(塔釜也相当于一块理论 塔板)。
2)由教材P270 例 7-7可知,进料热状况不同,
所需 NT及进料板位置均不同。
3)随着进料的 q值逐渐减小,精馏塔所需的 NT是逐渐增加的。
4)直接蒸气加热与间接蒸气加热的区别主要体
yn
13
6.2 精馏原理
有回流的多次部分汽化、冷凝
xD xF
✓具有不同挥发度的组分
所组成的混合液,经多次 进行部分气化和部分冷凝, 使其分离成几乎纯态组分 的过程。
✓实现的 条件:
回流; 塔釜产生的蒸汽
xw
精品课件
14
6.3 双组分连续精馏塔的计 算
涉及的主要问题:
全塔物料衡算、恒摩尔流假设、操作线 方程 、q线方程、(最小)回流比 、适宜回流 比 、(最少)理论塔板数、全塔效率、实际塔板 数
凝
t
y1>xF>x1
y1——加热原料液时产 生的第一个 气泡的组
成。
x1——经过一次气化后 原料剩下的液体的组成。
P=定值
D C B
A
化工原理精馏知识点总结
化工原理精馏知识点总结一、精馏原理概述精馏是一种通过升华和凝华的方法来分离液体混合物组分的技术,通过升华和凝华的过程可以使组分分离,最终获得纯净的组分产品。
精馏是一种重要的分离技术,在化工生产中得到广泛应用。
精馏的基本原理是依靠物质的汽化、冷凝和重新汽化等过程来实现组分的分离。
混合物在加热后,其中的易挥发成分首先汽化,形成蒸汽,然后在冷凝器中冷凝成液体,从而获得纯净的组分。
通过将蒸汽重新加热、汽化和冷凝,可以进行多次分离,提高分离效果。
二、精馏塔结构和工作原理1. 精馏塔结构精馏塔是进行精馏操作的设备,其结构一般由一种或多种填料、提升子、冷凝器和再沸器等组成。
填料是用来增大塔内表面积和混合物与液体之间的接触面积,提升子是用来提高温度场,从而使混合物更容易汽化。
冷凝器则是用来将蒸汽冷凝成液体,再沸器是用来将再次汽化的液体加热成蒸汽。
2. 精馏塔工作原理精馏塔是通过在填料层内和填料层与液体流动层之间的传质作用实现气液两相的接触混合。
填料层利用填料表面积大、气液接触面积大和液膜传质效果高的特点,以实现气液两相的有效滞留和有效接触,从而提高气相和液相之间的传递速率。
从而实现混合物组分的分离。
三、精馏操作过程及控制方法1. 精馏操作过程(1)进料进料是指将需要分离的混合物输入到精馏塔中。
进料的温度、压力和流量等参数对分馏操作的影响很大,需要注意调节。
(2)加热加热是将混合物中易挥发成分加热至其汽化温度的过程。
通常使用蒸汽加热或电加热等方式来进行加热。
(3)蒸馏蒸馏是指将加热后的混合物通过精馏塔,在填料层内和填料层与液体流动层之间进行传质过程,以实现组分的蒸发和再凝结的过程。
(4)冷凝冷凝是指将产生的蒸汽通过冷凝器使之冷却成液体,从而得到纯净的组分。
冷凝器通常采用水冷或风冷等方式来进行冷却。
2. 精馏操作控制方法(1)温度控制保持适当的加热温度是进行精馏操作的关键,通过合理控制加热温度,可以使易挥发组分蒸发,而留下不易挥发组分。
化工原理实验—精馏
化工原理实验—精馏1. 概述精馏是一种常用的分离技术,广泛应用于化工工艺中。
它通过将混合液加热至蒸发,然后在冷凝器中冷却并凝结回液体,从而实现混合物中组分的分离。
本实验旨在通过精馏实验,掌握精馏原理、操作步骤和相关设备的使用方法。
2. 实验原理2.1 精馏原理精馏是基于液体混合物中各组分的不同沸点而进行的分离过程。
在加热的作用下,沸点较低的组分会先蒸发,经过冷凝器冷却后变为液体回流,而沸点较高的组分则会滞留在容器中。
通过收集冷凝后的液体,我们可以分离出混合物中的不同组分。
2.2 实验设备在精馏实验中,主要使用以下设备:•加热设备:电热板、油浴等;•冷凝器:通常采用水冷型冷凝器,通过循环冷却水实现液体冷凝;•分馏柱:用于增加接触面积,提高分离效果;•采样装置:用于采集样品,检测组分浓度等。
2.3 操作步骤精馏实验的基本步骤如下:1.准备实验设备:包括加热设备、冷凝器、分馏柱等;2.准备混合液:按照实验要求,将需要分离的混合液制备好;3.装配设备:将冷凝器安装在分馏柱上方,连接好相应的管道和热源;4.开始加热:逐渐加热混合液,将其中的沸点较低组分蒸发出来;5.冷却和回流:通过冷凝器使蒸发的组分冷却并凝结成液体,回流到容器中;6.收集液体:将回流液体收集,并记录途中温度和时间等相关数据;7.结束实验:实验完成后,及时关闭加热设备和冷凝器,整理实验装置。
3. 实验操作及数据记录3.1 实验设备准备首先,确保实验室环境安全,检查仪器设备是否齐全,并找到精馏实验所需的各种设备:•电热板:用来提供加热源;•分馏柱:用来增加接触面积,提高分离效果;•冷凝器:通常为水冷型冷凝器,确保冷却效果良好。
3.2 实验样品准备按照实验要求,取出需要分离的混合液样品。
注意记录样品的成分和浓度等信息。
3.3 装配设备将冷凝器安装在分馏柱上方,并连接好相应的管道和热源。
确保连接紧密,无泄漏。
3.4 开始实验1.打开电热板,设置适当的加热温度;2.将混合液置于分馏烧瓶中,放入加热设备中;3.监测温度变化:通过温度计等工具,记录样品温度的变化。
化工原理多组分精馏
2021年7月13日星期二
知识要求
1 多组分精馏过程分析 2 最小回流比 3 最少理论塔板数和组分分配 4 实际回流比和理论板数 5 多组分精馏的简捷计算方法
1 多组分精馏的特点和精馏方案的选择
一 多组分精馏原理
R
多组分 混合物 采用
ESA
相际传 质传热
液体多次 部分汽化
蒸汽多次 部分冷凝
dh wh
结合 f i d i wi
di wi
Nm 1 ih
dh wh
解得 di、wi
di
Nm 1 ih
(
dh wh
)
f
i
1
N ih
m
1
( dh ) wh
wi
fi
1
N ih
m
1
( dh ) wh
II、图解法 计算步骤
➢对关键组分
dl wl
Nm 1 lh
dh wh
此式的几何意义是:
lg( d l ) lg d h
)D
/(
xl xh
lg lh
)W
xl xh
D
Nm 1 lh
xl xh
W
Dx D,l Dx D,h
Nm lh
1
WxW ,l WxW ,h
dl dh
Nm 1 lh
wl wh
或
dl wl
Nm 1 lh
dh wh
2)以HK为基准组分,任意组分i的分配规律。
对照:d l wl
Nm 1 lh
W ih1 1 xD,l xw,h
l 1
zi zh xW ,h
D F i1 1 x D,l xW ,h
化工原理精馏实验
化工原理精馏实验化工原理精馏实验是化工工程中的一项重要实验内容,它主要用于分离和提纯混合物中的组分。
本文将介绍化工原理精馏实验的基本原理、实验步骤以及实验中需要注意的事项。
1. 实验目的化工原理精馏实验的主要目的是通过温度差异,利用液体蒸汽和凝结的原理,将混合物中的组分分离并得到纯净的产品。
通过这个实验,我们可以了解精馏作为一种分离技术的原理和应用。
2. 实验原理化工原理精馏实验的基本原理是利用混合物中各组分的不同沸点,通过升温使其中具有较低沸点的组分先蒸发,然后通过冷凝使其变为液体,从而实现分离。
在实验过程中,我们需要使用精馏塔,该塔内部设置有填料,用于增加混合物和蒸汽之间的交流面积,并实现更充分的分离。
3. 实验步骤(1) 准备实验所需设备和药品,包括精馏装置、混合物、填料等。
(2) 将混合物加入精馏瓶中,并将瓶塞密封。
(3) 将冷凝管和进料管连接到精馏瓶上,确保连接牢固。
(4) 将精馏瓶放入加热设备中,逐渐升温。
(5) 观察精馏瓶内的液体是否开始蒸发,当温度上升到某一点时,开始收集冷凝液。
(6) 根据实验需要,调整加热温度和收集冷凝液的时间,以实现所需组分的分离和提纯。
4. 实验注意事项(1) 在进行化工原理精馏实验前,需先对所需设备进行检查和清洁,确保实验过程的安全性。
(2) 在实验操作中,热量的传递速度会影响分馏过程的效果,因此需要掌握合适的加热速率。
(3) 为了避免精馏烧坏填料或其他设备,需要控制温度,确保温度在安全范围内。
(4) 实验结束后,应将设备进行清洗和消毒,防止残留物对下次实验的影响。
5. 实验结果分析通过化工原理精馏实验,可以得到分离出的纯净组分,并进行定量分析。
根据实验结果,可以进一步探讨精馏的分离效果、提纯效率等指标,并对所得纯净组分进行性质分析。
总结:化工原理精馏实验是一项重要的实验内容,通过实验可以了解精馏作为一种分离技术的原理和应用。
在实验过程中,需要注意设备的清洁和安全操作,合理控制加热温度和加热速率,以达到较好的分馏效果。
(化工原理)精馏原理
精馏的原理和过程
原理
基于物质的沸点不同,通过加热和冷凝的方法,将不同沸点的物 质分离出来。
过程
将液体混合物加热至沸腾,产生的蒸汽在冷凝器中冷凝,再通过 回流装置将冷凝液返回精馏塔中,重复进行加热和冷凝的过程, 直至达到分离目的。
操作温度应根据进料组成 和产品要求进行选择,以
实现最佳分离效果。
操作压力应根据进料组成 和产品要求进行选择,以
实现最佳分离效果。
操作条件的优化
实验法
通过实验方法测定不同操作条件下的分离效果,找 出最优的操作条件。
模拟法
利用计算机模拟软件对精馏过程进行模拟,通过优 化算法找出最优的操作条件。
经济分析法
石油化工原料的制备
通过精馏技术可以制备石油化 工原料,如乙烯、丙烯等,这 些原料是生产塑料、合成橡胶 等材料的重要基础。
精馏在其他领域的应用
01
02
03
食品工业
精馏技术可用于食品工业 中,如分离果汁中的果糖 和乙醇饮料中的酒精等。
制药工业
精馏技术可用于药品的生 产和提纯,如分离抗生素、 维生素等。
精馏的分类
02
01
03
根据操作方式的不同,精馏可以分为连续精馏和间歇 精馏。
根据进料位置的不同,精馏可以分为侧线精馏、塔顶 精馏和塔底精馏。
根据操作压力的不同,精馏可以分为常压精馏、加压 精馏和减压精馏。
02
精馏塔的构造和工作原理
精馏塔的结构
塔体
进料板
塔板
溢流管
冷凝器
精馏塔的主要部分,用于 容纳待分离的液体混合物 和进行传热传质过程。
化工原理精馏PPT课件
D,xD
•
(xD,xD)
3
(二) 提馏段操作线方程
总物料衡算:L=V+W
m Lxm V ym+1
m+1
易挥发组分衡算 :Lxm= Vym+1+ WxW
yN
ym 1LL Wxm LW WxW 或 ym 1V Lxm V WxW
N xN
V
LxN
W,xw
提馏段操作 线方程
•(xW,xW)
4
【例1】在连续精馏塔中分离某理想二元混合物。已知原料液流量 为100kmol/h,组成为0.5(易挥发组分的摩尔分率,下同),提馏 段下降液体量与精馏段相等,馏出液组成为0.98,回流比为2.6。若 要求易挥发组分回收率为96%,试计算: (1) 釜残液的摩尔流量; (2) 提馏段操作线方程。
IV IL
(1)饱和液体进料——泡点进料
LV F
此时,IF=IL
q=1
原料液全部与精馏段下降液体汇合进入 提馏段。
L V
饱和液体
L =L+F
V =V
11
(2)饱和蒸汽进料
IF=IV
q=0
q IV IF IV IL
原料全部与提馏段上升气体汇合进入 精馏段。
L =L V=V +F
(3)冷液进料
内容回顾
一、精馏原理
(1)无中间加热及冷凝器的多次部分气化和多次部分冷凝 (2)顶部回流及底部气化是保证精馏过程稳定操作的必不可 缺少的条件。 (3)精馏操作流程 (4)相邻塔板温度及浓度的关系
tn1tntn1 xn1xnxn1 yn1ynyn1
1
二、理论塔板
三、恒摩尔流假定 四、全塔物料衡算
化工原理蒸馏
第六章蒸馏蒸馏定义:蒸馏分类:易挥发组分难挥发组分有回流蒸馏(精馏)无回流蒸馏:简单蒸馏(间歇操作)平衡蒸馏(连续操作)特殊蒸馏:萃取蒸馏、恒沸蒸馏按操作压力可分为加压、常压和减压蒸馏两组分精馏和多组分精馏第一节双组分溶液的气液相平衡一、溶液的蒸汽压与拉乌尔定律纯组分的蒸汽压与温度的关系:拉乌尔定律:在一定温度下,理想溶液上方气相中任意组分的分压等于纯组分在该温度下的饱和蒸气压与它在溶液中的摩尔分数的乘积。
p=p A0x AA(6-2)p=p B0x B=p B0(1-Bx) (6-3)A式中p A、p B——溶液上方A,B组分的平衡分压,Pa;p0——在溶液温度下纯组成的饱和蒸汽压,随温度而变,其值可用安托尼(Antoine)公式计算或由相关手册查得,Pa;x、x B——溶液中A,B组分的摩尔分数。
A二、理想溶液气液平衡(一)t-y-x图1.沸点-组成图(t- x- y图)(1)结构以常压下苯-甲苯混合液t- x- y图为例,纵坐标为温度t,横坐标为液相组成x A和汽相组成y A(x,y均指易挥发组分的摩尔分数)。
下曲线表示平衡时液相组成与温度的关系,称为液相线,上曲线表示平衡时汽相组成与温度的关系,称为汽相线。
两条曲线将整个t- x- y图分成三个区域,液相线以下称为液相区。
汽相线以上代表过热蒸汽区。
被两曲线包围的部分为汽液共存区。
t- x- y图数据通常由实验测得。
对于理想溶液,可用露点、泡点方程计算。
(2)应用在恒定总压下,组成为x,温度为t1(图中的点A)的混合液升温至t2(点J)时,溶液开始沸腾,产生第一个汽泡,相应的温度t2称为泡点,产生的第一个气泡组成为y1(点C)。
同样,组成为y、温度为t4(点B)的过热蒸汽冷却至温度t3(点H)时,混合气体开始冷凝产生第一滴液滴,相应的温度t3称为露点,凝结出第一个液滴的组成为x1(点Q)。
F、E两点为纯苯和纯甲苯的沸点。
图苯-甲苯物系的t- x- y图图苯-甲苯物系的y- x图应用t- x- y图,可以求取任一沸点的气液相平衡组成。
化工原理精馏-PPT
提馏段 V1 ' V2 ' V3 ' ... V ' constant 2.恒摩尔液流
精馏段 L1 L2 L3 ... L constant 提馏段 L1 ' L2 ' L3 ' ... L ' constant
某组分在气相中的平衡分压与该组分在液相中
的摩尔分率之比
挥发度意义
vi
pi xi
某组分由液相挥发到气相中的趋势,是该组分 挥发性大小的标志
双组分理想溶液
vA
pA xA
pAo xA xA
pAo
vB
pB xB
pBo xB xB
pBo
☆相对挥发度定义
溶液中易挥发组分挥发度与难挥发组分挥发度之比
vA pA / xA
气液平衡关系的表示法 1)用饱和蒸气压表示
拉乌尔定律:理想溶液气相中组分的分压等于纯组分 在该温度下的饱和蒸气压与其在溶液中摩尔分数乘积
pA pAo xA pB pBo xB pBo (1 xA )
A:易挥发组分,沸点低组分 B:难挥发组分,沸点高组分
x: 液相中易挥发组分的摩尔分数; 1-x:难挥发组分的摩尔分数
在精馏塔的塔板上气液两相接触时,若有n kmol/h的蒸气冷凝,相应有n kmol/h液体气 化。
1.5.2 物料衡算与操作线方程 1.全塔物料衡算 总物料:
F D W
F , D , W--- 原 料 液 、 馏 出 液 、 釜残液摩尔流量,kmol/s
易挥发组分:
FxF DxD WxW
xF,xD,xW---易挥发组分的 摩尔分数
L qF L qF W
化工原理精馏的应用
化工原理精馏的应用一、精馏的基本原理精馏是一种常见的分馏技术,广泛应用于化工工业中。
它基于物质的不同挥发性,在恒定的温度和压力条件下,将混合物中的组分分离出来。
精馏的基本原理是利用不同物质的沸点差异,通过加热混合物使之煮沸,然后利用冷凝装置将蒸汽转化为液体,从而实现分离。
二、精馏的应用领域精馏广泛应用于化工工业中的物质分离和纯化过程中。
以下列举了一些常见的应用领域:1. 石油炼制工业在石油炼制过程中,原油经过初步处理后,通常会进行精馏过程,以将其分离成不同沸点范围内的馏分。
通过多级精馏塔,可以得到石油气、汽油、柴油、煤油等不同的产品。
2. 酒精生产工业酒精生产工业中的精馏过程主要用于酒精的纯化。
发酵产生的液体经过精馏,可以去除其中的杂质,提高酒精的纯度。
这在制造白酒、伏特加等高纯度酒精产品时尤为重要。
3. 化学品生产工业在化学品生产过程中,精馏常被用于分离混合物中的各种组分。
例如,用于制造酸、碱、有机溶剂和涂料等化学品的原材料通常需要进行精馏来获得高纯度的产品。
4. 精细化工工业在精细化工工业领域,精馏技术被广泛应用于制药、医药等行业中。
通过精馏过程,可以提取药物中的有效成分,纯化药物和去除其中的杂质,以满足药品的安全和纯度要求。
5. 生物燃料工业精馏技术在生物燃料工业中可以用于提取生物质燃料中的乙醇或生物柴油等有机物。
这不仅可以提高生物燃料的能量效率,还可以减少环境污染。
三、精馏过程的关键因素精馏过程的效果受到许多因素的影响,下面列举了其中几个关键因素:1.温度:温度的控制是精馏过程中非常重要的因素。
合适的温度可以促使混合物中的组分充分汽化,并实现高效的分离。
2.压力:压力对精馏过程的影响也非常显著。
较低的压力有助于降低沸点,提高挥发性较高的组分的分离效率。
3.塔板数量和间距:在多级精馏塔中,塔板的数量和间距对分离效果起着重要作用。
适当的塔板数量和间距可以增加混合物的接触面积和停留时间,提高分离效果。
化工原理精馏
化工原理精馏
精馏是化工过程中常用的分离方法,用于将混合物中的组分按照其挥发性分离为不同纯度的产品。
精馏过程中,混合物首先加热至沸腾点,然后将生成的蒸气输送到冷凝器中进行冷凝。
冷凝后,液体收集器中会得到不同纯度的产品。
精馏过程基于混合物中不同组分的挥发性差异。
挥发性大的组分在加热后较早转化为蒸气,而挥发性小的组分则在较高温度下才蒸发。
经过冷凝后,收集器中会得到高挥发性组分的纯产品。
余下的低挥发性组分则在塔底收集。
精馏过程中,塔是一个重要的设备。
塔内通常包括填料或板片,用于增大接触面积,促进挥发和冷凝。
高挥发性组分在塔上部可迅速逸出,而低挥发性组分则被慢慢分离。
精馏还可用于提纯液体产品。
通过多级精馏,可以获得更高纯度的产品。
多级精馏是基于挥发性差异的温度差异实现的,每一级都以前一级的塔顶产品作为进料。
总之,精馏是一种重要的化工分离方法,通过控制温度和塔内工艺参数,可以将混合物分离为不同纯度的产品。
(化工原理)精馏原理
精馏原理是一种将混合物按照沸点差异进行分离的方法。它在化工工业中有 广泛的应用。
什么是精馏原理
1 背景
精馏原理是一种将混合物中的组分根据其沸点进行分离的技术。
2 原理
利用物质因沸点差异而产生的气液相变,实现混合物的蒸馏分离。
3 应用
精馏原理在石化、化工、制药等行业中广泛用于纯化和分离各种物质。
精馏原理的应用范围
石油精制
用于对原油进行分馏,将原油中的不同级别燃 料分离。
制药工艺
用于制备纯净的药品原料和中间体。
化学制品生产
用于生产பைடு நூலகம்净的化学品,如有机溶剂、醇类、 酸类等。
食品加工
用于提取和分离食品中的成分,如酒精、香料、 酸等。
前置装置的作用
1 过滤器
去除前处理物料中的杂质和固体颗粒。
2 加热器
提供能量,使混合物中的液体达到沸点从而蒸发。
3 冷凝器
降低蒸发气体温度,使其凝结成液体。
精馏塔的种类
板式塔
通过不同的板式结构实现组 分的分离作用。
填料塔
使用填料提供更大的表面积 用于气液接触。
萃取塔
通过液相浸泡实现组分的分 离。
精馏塔的组成结构
下部
包括加热器、冷凝器和分离器 等。
中部
包括塔板或填料层,用于增加 接触面积。
上部
包括塔顶冷凝器和回流器等。
传热方式和传质方式
传热方式
主要通过对流和辐射传热进行。
传质方式
主要通过物质的扩散进行。
精馏过程中的热力学原理
精馏过程中,利用混合物中各组分的沸点差异,实现高沸点组分的分离。
化工原理课程知识模块(6)(精馏)
Rmin =
x D始 − y f yf − xf
R = (1.2 ~ 2) Rmin
操作初态塔内的操作方程
y=
x R x+ D R+1 R+1
逐板计算法或图解法得到所需要的理论塔板数。
x D始 的验算:与简单蒸馏相似, F , x f , W , x w 这 4 个量之间的关系为
F ln = W
xf
xAq 是精馏段操作线方程式、提馏段操作线方程式的交点坐标值。掌握了芬斯克公式,再
3
应用吉利兰关联式,是求理论板数的简捷计算法。 3、单板效率及总板效率 以汽相组成变化来表示的单板效率
E mv ,i =
y i − y i +1 y i∗ − y i +1 x i −1 − x i x i −1 − x i∗
Dx D 。主要求解: (1)操作回流比 R ; (2)所需要的理论塔板数。 Fx f
1、回流比的确定 首先确定操作线与平衡线的夹紧点坐标( x e , y e ) 。若夹紧点出现在精馏段上或进料板 上,则
Rmin =
x D − ye ye − xe
若夹紧点出现在提馏段上,则根据此时精馏段的斜率求出最小回流比 Rmin
以液相组成变化来表示的单板效率
E mL , i =
E0 =
塔的总板效率
NT Np
4、塔径的确定 根据塔内汽相的实际体积流量及流速计算塔径
D=
π
Vs 4 u
汽相流速根据 Smith 曲线确定的汽相负荷因子进行确定。 精馏操作型问题 精馏操作型问题的命题方式:已知塔内所具有的理论板数和进料位置、进料流量、组 成和热状态、操作回流比、产品分配比,求解:塔顶产品组成 x D 、塔底产品组成 xW 以 及各塔板上汽相组成及液相组成。 求解方法: ,根据物料衡算式 Fx f = Dx D + WxW 计算 x D (或者 xW ) ; 1)先设 xW (或者 x D ) 2)从塔顶开始逐板计算,计算所得到的 xW 值与假设值进行比较,若相吻合,则结束计 算;若相差较大,则以所得到的 xW 值作为假设值,重复以上的计算,直至计算所得到的
多组分精馏简述
第三章 多组分精馏在化工原理课程中,对双组分精馏和单组分吸收等简单传质过程进行过较详尽的讨论。
然而,在化工生产实际中,遇到更多的是含有较多组分或复杂物系的分离与提纯问题。
在设计多组分多级分离问题时,必须用联立或迭代法严格地解数目较多的方程,这就是说必须规定足够多的设计变量,使得未知变量的数目正好等于独立方程数,因此在各种设计的分离过程中,首先就涉及过程条件或独立变量的规定问题。
多组分多级分离问题,由于组分数增多而增加了过程的复杂性。
解这类问题,严格的该用精确的计算机算法,但简捷计算常用于过程设计的初始阶段,是对操作进行粗略分析的常用算法。
§3-1分离系统的变量分析设计分离装置就是要求确定各个物理量的数值,但设计的第一步还不是选择变量的具体数值,而是要知道在设计时所需要指定的独立变量的数目,即设计变量。
一、设计变量1.设计变量⎩⎨⎧-=:可调设计变量固定设计变量a x c v i N N N N N :v N :描述系统所需的独立变量总数。
c N :各独立变量之间可以列出的方程式数和给定的条件,为约束关系数。
要确定i N ,需正确确定v N 和c N ,一般采用郭慕孙发表在AIchE J (美国化学工程师学会),1956(2):240-248的方法,该法的特点是简单、方便,不易出错,因而一直沿用至今。
郭氏法的基本原则是将一个装置分解为若干进行简单过程的单元,由每一单元的独立变量数e v N 和约束数e c N 求出每一单元的设计变量数e i N ,然后再由单元的设计变量数计算出装置的设计变量数E i N 。
在设计变量i N 中,又被分为固定设计变量x N 和可调设计变量a N ,x N 是指确定进料物流的那些变量(进料组成和流量)以及系统的压力,这些变量常常是由单元在整个装置中的地位,或装置在整个流程中的地位所决定,也就是说,实际上不要由设计者来指定,而a N 才是真正要由设计者来确定的,因此郭氏法的目的是确定正确的a N 值。
第三章 多组分精馏
层理论塔板才能满足分离要求所需的回流比,
称为最小回流比。多组分精馏计算中,必须用
解析法求最小回流比。
23
常用的是恩德伍德法,推导该式的基本假设是:
1) 体系中各组分的相对挥发度为常数;
2) 塔内气相和液相均为恒摩尔流。
根据物料平衡及相平衡表示,利用恒浓区的 概念,恩德伍德推导出最小回流比的两个联 立公式:
清晰分割时非关键组分在塔顶和塔底产品
中的分配用物料衡算求得。
11
12
总物料衡算 苯的衡算 乙苯的衡算
甲苯的衡算
13
(2) 非清晰分割
如果轻重关键组分不是相邻组分,则塔顶和塔 底产品中必有中间组分。 如果进料液中非关键组分的相对挥发度与关键 组分相差不大,则塔顶产品中就含有比重关键 组分还重组分,塔底产品中含有比轻关键组分
37
应用:实验制备的小批量物质分离、石油产 品评价、高效填料的性能测定、精细化工产
品的提纯、同位素产品的精制等。
计算:难以采用图解方法求解理论板数,通常
采用解析方法或简捷法确定理论板数、进料位
置等。计算中,精密精馏通常按二元混合物处
理。
38
3.5.3
盐溶精馏(加盐精馏)
一种采用特殊萃取剂的萃取精馏,用于难分 离混合物的分离。 例:乙醇-水 、丙醇-水、水-醋酸等的分离
5
对于双组分精馏;
塔顶:xDA 已确定 xDB =1- xDA ;
塔釜:xWB已确定 xWB =1- xWA ;
也就是塔顶、塔釜组成全部确定。
对于多组分精馏:Na=5 ,与组分数无关。
除规定全凝器饱和液体出料:2) R; 3)D/F外只
多组分精馏
I区:提馏段分离区。将塔釜产品提浓到分离要求,使轻关键组分B的浓度打到xWL。
精馏段——
IV区:上加料区。由于重非分配组分D不在塔顶出现,进料板上必须紧接着有若干板使DA组分降到零,由IV区完成。因此恒浓区向上推移。
V区:上恒浓区。组分A、B、C的浓度恒定,没有分离效果。
可见,直接顺序在塔釜需要的外加热量和塔顶需要的外加冷量都比间接顺序的要少。
2.设备进行精馏操作的主要设备有塔、再沸器和冷凝器。从上面的讨论已知,直接顺序与间接顺序相比,在塔釜要汽化的组分和在塔顶要冷凝的组分都要少,因此:
①直接顺序塔内气体量少,故塔径要小;
②直接顺序塔釜再沸器和冷凝器传热面积要小。
综合上述从能量和设备两方面考虑,直接顺序比间接顺序优。
求 根据清晰分割,比T还重的组分在塔顶不出现,所以 ,
求 述三式可解出:
三、芬斯克(Fenske)公式求最小理论塔板数Nm
(一)操作线方程(回顾——由物料衡算求)
1、精馏段操作线方程
如图,以红框为物衡范围。
总物衡:
i组分物衡:
联立解得精馏段操作线方程:
令
(A)
5.产品质量要求高的组分从塔顶采出
因为塔顶为汽相,杂质少;塔釜为液相,杂质较多。
6.侧线采出可节省设备
对纯度要求高的组分在塔顶采出的同时,对于纯度要求不是很高的组分,可以采用侧线采出,减少设备。
以上概述了讨论了多组分精馏的特点及其分离先后顺序的选取原则。下面将学习多组分精馏的计算。
3.2.2多组分精馏简捷算法
在《化工原理》课程中对双组分液态混合物的精馏进行了讨论,但是在实际出产中所遇到的待进行精馏分离的液态混合物往往为多组分。
化工原理多组分精馏
化工原理多组分精馏简介多组分精馏是一种常见的化工分离技术,广泛应用于石油、化工、药品等行业中。
本文将介绍多组分精馏的基本原理、设备和操作、影响因素,以及应用案例等内容。
基本原理多组分精馏是通过不同组分的挥发性差异实现分离的一种方法。
在一个精馏塔中,原料液体进入塔顶,经过加热后蒸发,蒸汽上升并与冷却剂进行接触,冷却后变为液体,得到精馏液。
根据不同的沸点,各组分在塔内得到部分蒸发和凝结,最后在塔顶和塔底得到不同组分的纯化产品。
设备和操作多组分精馏通常由以下设备组成:1.精馏塔:用于将混合物分离成多个组分的关键设备。
塔内通常有填料或板式反应器,以增加传质效果。
2.热交换器:用于加热和冷却原料和冷却剂。
3.冷凝器:用于将蒸汽冷却成液体,以获取精馏液。
4.回流器:用于控制精馏液的回流或提供塔顶的回流液。
在操作多组分精馏塔时,需要注意以下几点:1.控制塔顶温度:通过调节加热和冷却剂的流量,控制塔顶温度,确保所需组分能够得到纯化。
2.控制回流比:回流比是回流液与塔顶出口流量的比值。
通过调节回流比,可以改变塔内的传质效果,影响分离效果。
3.利用塔内温度梯度:塔内温度从塔底到塔顶逐渐增加,利用温度差异来实现组分的分离。
影响因素多组分精馏的效果受到多个因素的影响,以下是几个重要的影响因素:1.组分挥发性差异:组分之间的沸点差异越大,精馏效果越好。
2.塔设计:塔的高度、填料或板式的选择,对传质效果和分离效果有直接影响。
3.温度梯度:塔内温度梯度越大,分离效果越好。
4.回流比:适当的回流比可以改善传质效果,提高精馏效果。
5.操作参数:加热剂和冷却剂的流量、操作压力等参数的调节,会直接影响精馏过程的效果。
应用案例多组分精馏在化工领域有着广泛的应用。
以下是几个常见的应用案例:1.石油炼油:通过多组分精馏,将原油中的各种烃类分离出来,得到汽油、柴油、煤油等产品。
2.药品制造:制药工业中,多组分精馏被用于纯化药物原料,去除杂质,提高药品的纯度和品质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精馏塔的能量用 户有:塔顶冷凝 器(主要消耗冷 量)、塔釜再沸 器(主要消耗热 量)、泵(主要 消耗电能)
在不同的精馏方案 下其能量消耗是不 同的,
Lanzhou Petro-chemical Vocation College of Technology
案例1 深冷分离-顺序分离流程
C10 H2
C1 0 C2 = 10 10 5 C1 0 6
二 多组分精馏方案 1、多组分精馏设备数 对于n组分系统:所需设备数
塔数 (n-1) 换热器数 泵数 3 (n-1) 其他
≥2 (n-1)
2、多组分精馏方案数 精 馏 方 案 按挥发度递减 按挥发度递增 按挥发度交错 顺序分馏 顺序分凝
方案数共
[2( n 1)]! z n! (n 1)!
Lanzhou Petro-chemical Vocation College of Technology
知识要求 1 多组分精馏过程分析
2 最小回流比
3 最少理论塔板数和组分分配
4 实际回流比和理论板数 5 多组分精馏的简捷计算方法
Lanzhou Petro-chemical Vocation College of Technology
1 多组分精馏的特点和精馏方案的选择
一 多组分精馏原理
R
相际传 质传热 液体多次 部分汽化
富集于塔顶
多组分 混合物
ESA
塔釜蒸汽 加热
采用
轻组分
重组分
实现组 分分离
蒸汽多次 部分冷凝
各组分相对 挥发度不同 精馏过程
富集于塔釜
Lanzhou Petro-chemical Vocation College of Technology
Lanzhou Petro-chemical Vocation College of Technology
简捷法计算流程
开始 规定进料 规定两个关键组分的分配 估计非关键组分的分配
确定塔压和冷凝器的类型
在塔的操作压力下对进料作闪蒸计算
计算最少理论塔板数 计算非关键组分的分配
N
非关键组分的估计值和计算值接近
D1=10 D2(lk)=x
3、清晰分割法的应用范围:
1)各组分间αi,j 较大; 2)LK和HK相邻的物系。
计算最少理论塔板数
Lanzhou Petro-chemical Vocation College of Technology
3 多组分精馏物料衡算
一 清晰分割法物料衡算
1、关键组分选择:
多组分精馏不能对所有组分都提出分离要求,而只能对其中一种或两种 组分规定分离要求。 规定了分离要求的组分称为关键组分,关键组分的分离要求一旦被确定, 其它组分的分离程度随之被规定。 固定条件下各组 分的相对挥发度 是一定的。
关 键 组 分
轻关键组分LK
重关键组分HK
关键组分中αi,j较大的组分。
关键组分中αi,j较小的组分。
LK和HK可以 使相邻的,也 可以使不相邻 的。
Lanzhou Petro-chemical Vocation College of Technology
2、清晰分割法规定:
比LK更轻的组分,其塔釜采出量为0,即x w,LNK=0。比HK更重的 组分,在塔顶的馏出量为0,即xD,HNK=0。
C4
C3 =
1 裂解气
2 9
3
4
7
8
11
Ⅰ~Ⅲ Ⅳ,Ⅴ C2 0
11 C5 + C3 0
图4-11裂解气深冷分离顺序分离流程 1-碱洗塔 2-干燥塔 3-脱甲烷塔 4-脱乙烷塔 5-乙烯塔 6-脱丙烷塔7-
Lanzhou Petro-chemical Vocation College of Technology
概述
能量消耗少 设备投资少
设备投资包括设 备的购置和维修 费、操作费用等 。保证设备投资 少。
需要遵循如下原则: 1)腐蚀性介质应先分离 2)量大的组分应先分离 3)相对挥发度接近者或 分离要求高者最后分离。
满足工艺要求
1产品的质量和纯 度要求 2保证安全生产
如易燃、易爆、 腐蚀性介质一般 都要先行分离!
Lanzhou Petro-chemical Vocation College of Technology
举例:四组分系统分离方案:
A B C A.B.C
A.B
A
A.B
A
C
A.B.C.D
A.B.C.D
A.B.C.D
B B.C.D (a) C.D D D C (b) B C.D (c) D
A
B.C
B
A.B.C
A
B
A.B.C.D
A.B.C.D
B.C.D
D (d)
C
D (e)
B.C
C
图4-2 四组分精馏的五种精馏方案
Lanzhou Petro-chemical Vocation College of Technology
4.1 2 多组分精馏方案的选择原则
如使用并联 流程,易分 解、聚合的 物质减少加 热次数或降 低操作温度!
Y
计算最小回流比 计算实际回流比 计算进料板位置 计算冷凝器和再沸器热负荷 结束
Lanzhou Petro-chemical Vocation College of Technology
4.3 多组分精馏过程典型案例分析
简捷法计算具体步骤
1
物料衡算
塔顶温度和塔釜温度的确定
2
3 4
最小回流比和和回流比的计算
案例2 深冷分离-前脱乙烷流程 6 4
C10 C2=
C3=
C4
1 裂解气
2
3
5
7
8
9
10
Ⅰ~Ⅲ
Ⅳ,Ⅴ
C20 图4-12裂解气前脱乙烷分离顺序分离流程
C30
C5+
1-碱洗塔 2-干燥塔 3-脱乙烷塔4-加氢脱炔 5-脱甲烷塔6-冷箱7-乙烯塔 8-脱丙烷塔9-丙 烯塔 10-脱丁烷塔器
Lanzhou Petro-chemical Vocation College of Technology
4.2 多组分精馏过程典型案例 案例3 乙苯脱氢生产苯乙烯
燃料气 苯 过热水蒸汽 乙苯 3 7 11 补充过 热水蒸汽 4 6 9 5 水相 10 乙苯 甲苯 焦油 12 13 14 15 8 苯乙烯
1
2
图4-13 乙苯脱氢生产苯乙烯流程 1-乙苯蒸发器 2-乙苯加热器 3-混合器 4-脱氢反应器 5-废热锅炉 6-水冷器 7-盐水冷凝器8-气液分离器 9-油水分离器 10-阻聚剂添加槽 11-乙苯蒸出塔 12-苯-甲苯回收塔 13-苯-甲苯分离塔 14-苯乙烯粗馏塔 15-苯乙烯精馏塔