平行线经典编辑四大模型典型例题及练习进步

合集下载

平行线四种常见模型解题技巧(解析版)--2024年新八年级数学

平行线四种常见模型解题技巧(解析版)--2024年新八年级数学

平行线四种常见模型解题技巧题型聚焦题型一:“猪蹄”模型题型二:“铅笔”模型题型三:“鸡翅”模型题型四:“骨折”模型难题突破模型一:“猪蹄”模型如图,若AB⎳CD,你能确定∠B、∠D与∠BED的大小关系吗?解:∠B+∠D=∠DEB.理由如下:过点E 作 EF⎳AB又 ∵AB⎳CD.∴EF⎳CD.∴∠D=∠DEF.∠B=∠BEF.∴∠B+∠D=∠BEF+∠DEF=∠DEB即∠B+∠D=∠DEB.猪蹄模型的基本特征:一组平行线,中间有一个点,分别与平行线上的点构成“猪蹄”。

如图,已知AB∥CD,求∠E、∠B、∠D之间的数量关系.思路1:过拐点作平行线过点E作EF∥AB,∴∠B=∠BEF,又∵AB∥CD,∴EF∥CD,∴∠D=∠DEF,∴∠E=∠BEF+∠DEF=∠B+∠D.∴∠E=∠B+∠D.思路2:延长BE交CD于点F∵AB∥CD,∴∠B=∠BFD,∴∠D+∠BFD=∠BED,∴∠B+∠D=∠E.小结证明的方法还有很多,同学们可以多多尝试。

重点在于构造平行线的三线八角,就可以得到经典结论:猪蹄模型顶点在同一侧的角之和等于顶点在另一侧的角之和。

猪蹄模型(又名燕尾模型、M字模型)结论:∠B+∠D=∠E步骤总结步骤一:过猪蹄(拐点)作平行线步骤二:借助平行线的性质找相等或互补的角步骤三:推导出角的数量关系模型二、“铅笔”模型如图,AB⎳CD,探索∠B、∠D与∠DEB的大小关系?解:∠B+∠D+∠DEB=360°.理由如下:过点E 作 EF⎳AB.又 ∵AB⎳CD.∴EF⎳CD.∴∠B+∠BEF=180°.∠D+∠DEF=180°.∴∠B+∠D+∠DEB=∠B+∠D+∠BEF+∠DEF=360°.即∠B+∠D+∠DEB=360°.从猪蹄模型可以看出,点E是凹进去了,如果点E是凸出来,如下图:那么,像这样的模型,我们就称为铅笔头模型。

模型结论:∠B+∠E+∠D=360°二、模型证明如图,若AB⎳CD,求证:∠B+∠E+∠D=360°证明一:如图,过点E作FG⎳AB∵ AB⎳FG,AB⎳CD∴ FG⎳CD∵ AB⎳FG∴∠BEF+∠B=180°(两直线平行,同旁内角互补)∵FG⎳CD∴ ∠D+∠DEF=180°(两直线平行,同旁内角互补)∴ ∠BEF+∠B+∠D+∠DEF=360°∴∠B+∠D+∠BED=360°证明二:如图,连接BD,∵AB⎳CD∴∠ABD+∠BDC=180°在△BDE中,∠DBE+∠E+∠EDB=180°∴ ∠DBE+∠E+∠EDB+∠ABD+∠BDC=360°∴ ∠ABD+∠DBE+∠E+∠EDB+∠BDC=360°∴∠ABE+∠E+∠CDE=360°证明该模型结论的还有其他方法,这里就没有全部写出来,可以自行证明。

专题01 平行线的四大模型(原卷版)

专题01 平行线的四大模型(原卷版)

专题01 平行线的四大模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.【典例1】(2023秋•南岗区校级期中)已知,射线FG分别交射线AB、DC于点F、G,点E为射线FG上一点.(1)如图1,若∠A+∠D=∠AED,求证:AB∥CD.(2)如图2,若AB∥CD,求证:∠A﹣∠D=∠AED.(3)如图3,在(2)的条件下,DI交AI于点Ⅰ,交AE于点K,∠EDI=∠CDE,∠BAI=∠EAI,∠I=∠AED=25°,求∠EKD的度数.【变式1-1】(2022秋•古县期末)如图:按虚线剪去长方形纸片的相邻两个角,并使∠1=1 50°,AB⊥BC,则∠2的度数为()A.100°B.110°C.120°D.130°【变式1-2】(2023•金安区一模)如图,已知a∥b,∠1=45°,∠2=125°,则∠ABC的度数为()A.100°B.105°C.115°D.125°【变式1-3】(2023秋•北碚区期末)如图,AB∥CD,点E是直线AB,CD之间一点.(1)如图1,求证:∠B+∠D+∠E=360°;(2)如图2,若∠B=120°,∠BED,∠CDE的平分线相交于点F.求∠DFE的度数;(3)如图3,若∠D=α,∠EBF=4∠ABF,∠BEF=4∠DEF.请直接写出∠BFE的度数(用含α的代数式表示).【变式1-4】(2023秋•重庆期末)已知,MN∥PQ,直线AB交MN于点A,交PQ于点B,点C在线段AB上,过C作射线CE、CF分别交直线MN、PQ于点E、F.(1)如图1,当CE⊥CF时,求∠AEC+∠BFC的度数;(2)如图2,若∠MEC和∠PFT的角平分线交于点G,求∠ECF和∠G的数量关系;(3)如图3,在(2)的基础上,当CE⊥CF,且∠ABP=60°,∠ACE=20°时,射线FT绕点F以5°每秒的速度顺时针旋转,设运动时间为t秒,当射线FG与△AEC的一边互相平行时,请直接写出t的值.模型二“猪蹄”模型(模型)点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.【典例2】(2023春•邵阳县期末)如图,直线AB∥CD,连接EF,直线AB,CD及线段EF把平面分成①②③④四个部分,规定:线上各点不属于任何部分.当动点G落在某个部分时,连接GE,GF,构成∠EGF,∠GEB,∠GFD三个角.(1)当动点G落在第③部分时,如图一,试说明:∠EGF,∠GEB,∠GFD三者的关系;(2)当动点G落在第②部分时,如图二,思考(1)中三者关系是否仍然成立若不成立,说明理由.【变式2-1】(2023•盘锦)如图,直线AB∥CD,将一个含60°角的直角三角尺EGF按图中方式放置,点E在AB上,边GF,EF分别交CD于点H,K,若∠BEF=64°,则∠GHC等于()A.44°B.34°C.24°D.14°【变式2-2】(2023•大石桥市校级三模)如图,直线a∥b,等边△ABC的顶点C在直线b 上,∠1=28°,则∠2的度数为()A.36°B.24°C.28°D.32°【变式2-3】(2023春•浏阳市期末)(1)感知与探究:如图①,直线AB∥CD,过点E作E F∥AB.请直接写出∠B,∠D,∠BED之间的数量关系:;(2)应用与拓展:如图②,直线AB∥CD.若∠B=23°,∠G=35°,∠D=25°,借助第(1)问中的结论,求∠BEG+∠GFD的度数;(3)方法与实践:如图③,直线AB∥CD.若∠E=∠B=60°,∠F=85°,则∠D=度.【变式2-4】(2023春•霸州市期中)如图1,AB∥CD,∠P AB=135°,∠PCD=125°,求∠APC度数.小明的思路是:过P作PE∥AB,如图2,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为;请说明理由;(2)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠A DP=∠α,∠BCP=∠β,则∠CPD、∠α、∠β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.【变式2-5】(2023春•南漳县期中)如图1,点A是直线HD上一点,C是直线GE上一点,B是直线HD、GE之间的一点.∠HAB+∠BCG=∠ABC.(1)求证:AD∥CE;(2)如图2,作∠BCF=∠BCG,CF与∠BAH的角平分线交于点F,若α+β=50°,求∠B+∠F的度数;(3)如图3,CR平分∠BCG,BN平分∠ABC,BM∥CR,已知∠BAH=40°,试探究∠NBM的值,若不变求其值,若变化说明理由.结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.【典例3】(2023春•中山区期末)如图,∠ABE+∠BED=∠CDE.(1)如图1,求证AB∥CD;(2)如图2,点P在AB上,∠CDP=∠EDP,BF平分∠ABE,交PD于点F,探究∠BFP,∠BED的数量关系,并证明你的结论;(3)在(2)的条件下,如图3,PQ交ED延长线于点Q,∠DPQ=2∠APQ,∠PQD =80°,求∠CDE的度数.【变式3-1】(2023春•伊通县期末)如图1,线段CD是由线段AB平移得到的.分别连接B D,AC.直线BE⊥AC于点E,延长DC与BE相交于点F.点P是射线FD上的一个动点,点P不与点F、点C、点D重合.连接BP,EP.(1)线段AC,BD的关系是;(2)如图1,当点P在线段FC上运动时,∠DBP,∠CEP,∠BPE之间的数量关系是;(3)如图2,当点P在线段CD上运动时,∠DBP,∠CEP,∠BPE之间的数量关系是否发生变化?若发生变化请写出它们的关系,并证明;若没有发生变化,请说明理由;(4)如图3,当点P在点D上方运动时,请直接写出∠DBP,∠CEP,∠BPE之间的数量关系:.【变式3-2】(2023春•大足区期末)已知直线AB∥CD,E为平面内一点,连接EB、EC.(1)如图1,已知∠B=32°,∠C=120°,求∠BEC的度数;(2)如图2,判断∠ABE、∠BEC、∠DCE之间的数量关系为;(3)如图3,BE⊥CE,BF平分∠ABE,若,求∠BFC的度数.【变式3-3】(2023春•吴兴区期中)已知:AB∥CD,E、G是AB上的点,F、H是CD上的点,∠1=∠2.(1)如图1,求证:EF∥GH;(2)如图2,过F点作FM⊥GH交GH延长线于点M,作∠BEF、∠DFM的角平分线交于点N,EN交GH于点P,求证:∠N=45°;(3)如图3,在(2)的条件下,作∠AGH的角平分线交CD于点Q,若3∠FEN=4∠HFM,直接写出的值.1.(2023•五华区校级模拟)如图,点B在△CDE的边EC的延长线上,AB∥CD,若∠B =50°,∠E=30°,则∠D的度数为()A.15°B.20°C.30°D.50°2.(2023•西峡县三模)如图是一款手推车的平面示意图,其中AB∥CD,∠1=30°,∠2=70°,则∠3的度数为()A.120°B.130°C.140°D.150°3.(2023春•西塞山区期中)如图,AB与HN交于点E,点G在直线CD上,GF交AB于点M,∠FMA=∠FGC,∠FEN=2∠NEB,∠FGH=2∠HGC,下列四个结论:①AB∥CD;②∠EHG=2∠EFM;③∠EHG+∠EFM=90°;④3∠EHG﹣∠EFM=180°.其中正确的结论是()A.①②③B.②④C.①②④D.①④4.(2023春•德城区期末)已知M,N分别是长方形纸条ABCD边AB,CD上两点(AM>DN),如图1所示,沿M,N所在直线进行第一次折叠,点A,D的对应点分别为点E,F,EM交CD于点P;如图2所示,继续沿PM进行第二次折叠,点B,C的对应点分别为点G,H,若∠1=∠2,则∠CPM的度数为()A.74°B.72°C.70°D.68°5.(2023•西城区二模)如图,直线AB∥CD,直线EF分别交AB,CD于点E,F,∠BEF 的平分线交CD点G,若∠BEF=116°,则∠EGC的大小是()A.116°B.74°C.64°D.58°6.(2023•佛山二模)如图,把正方形ABCD沿EF折叠,点A的对应点为点A′,点B的对应点为点B′,若∠1=40°,则∠AEF的度数是()A.100°B.110°C.115°D.120°7.(2023秋•长春期末)如图,AB∥CD,点E、F分别在直线AB、CD上,点P是AB、C D之间的一个动点.【感知】如图①,当点P在线段EF左侧时,若∠AEP=50°,∠PFC=70°,求∠EPF 的度数.分析:从图形上看,由于没有一条直线截AB与CD,所以无法直接运用平行线的性质,这时需要构造出“两条直线被第三条直线所截”的基本图形,过点P作PG∥AB,根据两条直线都和第三条直线平行,那么这两条直线也互相平行,可知PG∥CD,进而求出∠EPF的度数.【探究】如图②,当点P在线段EF右侧时,∠AEP、∠EPF、∠PFC之间的数量关系为.8.(2023春•天元区校级期末)如图,AQ∥BP,AB⊥BP,E、C、D分别是线段AQ、AB、BP上的点,且满足EC⊥CD.EF是∠GEC的角平分线与BP交于点F,在EQ上截一点G,连接GF,令GF=FE.(1)如图1,若∠AEC=40°,求∠CDB的度数.(2)如图1,连接GP,若GP∥EF,H是线段FP上的一点(FH<HP),连接GH,使得2∠GHP=3∠AEC,求∠FGH和∠CDB的数量关系.(3)如图2,在(2)的条件下,过点Q作QM⊥GP,垂足为M.N是线段GP上的一点,且满足∠QNM=∠GEF.求∠GQN和∠CEF的数量关系.9.(2023春•安化县期末)在课后学习中,小红探究平行线中的线段与角的数量关系,如图,直线AB∥CD,点N在直线CD上,点P在直线AB上,点M为平面上任意一点,连接MP,MN,PN.(1)如图1,点M在直线CD上,PM平分∠APN,试说明∠PMN=∠MPN;(2)如图2,点M在直线AB,CD之间,∠PMN=70°,∠MNC=30°,求∠APM的度数;(3)如图3,∠APM和∠MNC的平分线交于点Q,∠PQN与∠PMN有何数量关系?并说明理由.10.(2023春•海阳市期末)如图,AM∥BN,∠A=40°,点P是射线AM上一动点(不与点A重合),BC,BD分别平分∠ABP和∠PBN,交射线AM于C,D两点.(1)求∠CBD的度数;(2)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数;(3)当点P运动时,∠APB与∠ADB的度数之比是否随之发生变化?若不变,求出∠A PB与∠ADB的度数之比;若变化,请说明变化规律.11.(2023春•大同期末)综合与探究已知直线AB∥CD,直线EF分别与AB,CD交于点G,H(0°<∠EHD<90°).将一把含30°角的直角三角尺PMN按如图1所示的方式放置,使点N,M分别在直线AB,CD上,且在直线EF的右侧.(1)填空:∠PNB+∠PMD=∠MPN.(填“>”“<”或“=”)(2)若∠MNG的平分线NO交直线CD于点O.①如图2,当NO∥PM∥EF时,求∠EHD的度数;②如图3,若将三角尺PMN沿直线BA向左移动,保持PM∥EF(点N不与点G重合),点N,M分别在直线AB、CD上,请直接写出∠MON和∠EHD之间的数量关系.12.(2023春•安阳期末)【学习新知】射到平面镜上的光线(入射光线)和反射后的光线(反射光线)与平面镜所夹的角相等.如图1,AB是平面镜,若入射光线与水平镜面的夹角为∠1,反射光线与水平镜面的夹角为∠2,则∠1=∠2.(1)【初步应用】生活中我们可以运用“激光”和两块相交的平面镜进行测距.如图2当一束“激光”DO 1射到平面镜AB上,被平面镜AB反射到平面镜BC上,又被平面镜BC反射后得到反射光线O2E,回答下列问题:①当DO1∥EO2∠AO1D=30°(即∠1=30°)时,求∠O1O2E的度数;②当∠B=90°时,任何射到平面镜AB上的光线DO1经过平面镜AB和BC的两次反射后,入射光线与反射光线总是平行的.请你根据所学知识及新知说明理由.(提示:三角形的内角和等于180°)(2)【拓展探究】如图3,有三块平面镜AB,BC,CD,入射光线EO1经过三次反射,得到反射光线O3F 已知∠1=∠6=35°,若要使EO1∥O3F,请直接写出∠B的度数;13.(2023春•宜都市期中)已知,直线AB∥CD,点E、F分别在直线AB、CD上,点P 是直线AB与CD外一点,连接PE、PF.(1)如图1,若∠AEP=45°,∠DFP=105°,求∠EPF的度数;(2)如图2,过点E作∠AEP的角平分线EM交FP的延长线于点M,∠DFP的角平分线FN交EM的反向延长线交于点N,若∠M与3∠N互补,试探索直线EP与直线FN 的位置关系,并说明理由;(3)若点P在直线AB的上方且不在直线EF上,作∠DFP的角平分线FN交∠AEP的角平分线EM所在直线于点N,请直接写出∠EPF与∠ENF的数量关系.14.(2022秋•香坊区期末)已知:直线AB、CR被直线UV所截,直线UV交直线AB于点B,交直线CR于点D,∠ABU+∠CDV=180°.(1)如图1,求证:AB∥CD;(2)如图2,BE∥DF,∠MEB=∠ABE+5°,∠FDR=35°,求∠MEB的度数;(3)如图3,在(2)的条件下,点N在直线AB上,分别连接EN、ED,MG∥EN,连接ME,∠GME=∠GEM,∠EBD=2∠NEG,EB平分∠DEN,MH⊥UV于点H,若∠E DC=∠CDB,求∠GMH的度数.。

平行线四大模型

平行线四大模型

平行线四大模型1、平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+∠4=180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.2、平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补平移3.平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做图形的平移(translation),简称平移。

4.平移的性质经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。

(1)图形平移前后的形状和大小没有变化,只是位置发生变化;(2)图形平移后,对应点连成的线段平行且相等(或在同一直线上)(3)多次平移相当于一次平移。

人教版七年级数学下册《相交线与平行线中的四种几何模型》专项练习题-附含答案

人教版七年级数学下册《相交线与平行线中的四种几何模型》专项练习题-附含答案

人教版七年级数学下册《相交线与平行线中的四种几何模型》专项练习题-附含答案类型一、猪脚模型例.问题情境:如图① 直线AB CD ∥ 点E F 分别在直线AB CD 上.(1)猜想:若1130∠=︒ 2150∠=︒ 试猜想P ∠=______°;(2)探究:在图①中探究1∠ 2∠ P ∠之间的数量关系 并证明你的结论;(3)拓展:将图①变为图② 若12325∠+∠=︒ 75EPG ∠=︒ 求PGF ∠的度数. 【答案】(1)80︒(2)36012P ∠=︒-∠-∠;证明见详解(3)140︒【详解】(1)解:如图过点P 作MN AB ∥∵AB CD ∥∵AB MN CD ∥∥.∵1180EPN ∠+∠=︒2180FPN ∠+∠=︒.∵1130∠=︒ 2150∠=︒∵12360EPN FPN ∠+∠+∠+∠=︒∵36013015080EPN FPN ∠+=︒-︒-︒=︒.∵P EPN FPN ∠=∠+∠∵∵P =80°.故答案为:80︒;(2)解:36012P ∠=︒-∠-∠ 理由如下:如图过点P 作MN AB ∥∵AB CD ∥∵AB MN CD ∥∥.∵1180EPN ∠+∠=︒2180FPN ∠+∠=︒.∵12360EPN FPN ∠+∠+∠+∠=︒∵EPN FPN P ∠+∠=∠36012P ∠=︒-∠-∠.(3)如图分别过点P 、点G 作MN AB ∥、KR AB ∥∵AB CD ∥∵AB MN KR CD ∥∥∥.∵1180EPN ∠+∠=︒180NPG PGR ∠+∠=︒2180RGF ∠+∠=︒.∵12540EPN NPG PGR RGF ∠+∠+∠+∠++∠=︒∵75EPG EPN NPG ∠=∠+∠=︒PGR RGF PGF ∠+∠=∠12325∠+∠=︒∵12540PGF EPG ∠+∠+∠+∠=︒∵54032575140PGF ∠=︒-︒-︒=︒故答案为:140︒.【变式训练1】已知直线a b ∥ 直线EF 分别与直线a b 相交于点E F 点A B 分别在直线a b 上 且在直线EF 的左侧 点P 是直线EF 上一动点(不与点E F 重合)设∵P AE =∵1 ∵APB =∵2 ∵PBF =∵3.(1)如图1 当点P 在线段EF 上运动时 试说明∵1+∵3=∵2;(2)当点P 在线段EF 外运动时有两种情况.①如图2写出∵1 ∵2 ∵3之间的关系并给出证明;②如图3所示 猜想∵1 ∵2 ∵3之间的关系(不要求证明).【答案】(1)证明见详解(2)①312∠=∠+∠;证明见详解;②123∠=∠+∠;证明见详解【详解】(1)解:如图4所示:过点P 作PC a ∥∵a b ∥∵PC a b ∥∥∵1APC ∠=∠ 3BPC ∠=∠∵2APC BPC ∠=∠+∠∵213∠=∠+∠;(2)解:①如图5过点P 作PC a ∥∵a b ∥∵PC a b ∥∥∵3BPC ∠=∠ 1APC ∠=∠∵2BPC APC ∠=∠+∠∵312;②如图6过点P 作PC a ∥∵a b ∥∵PC a b ∥∥∵1APC ∠=∠ 3BPC ∠=∠∵2APC BPC ∠=∠+∠∵123∠=∠+∠.【变式训练2】阅读下面内容 并解答问题.已知:如图1 AB CD 直线EF 分别交AB CD 于点E F .BEF ∠的平分线与DFE ∠的平分线交于点G .(1)求证:EG FG ⊥;(2)填空 并从下列①、②两题中任选一题说明理由.我选择 题.①在图1的基础上 分别作BEG ∠的平分线与DFG ∠的平分线交于点M 得到图2 则EMF ∠的度数为 .②如图3 AB CD 直线EF 分别交AB CD 于点E F .点O 在直线AB CD 之间 且在直线EF 右侧 BEO ∠的平分线与DFO ∠的平分线交于点P 则EOF ∠与EPF ∠满足的数量关系为 . GH ABAB CD AB GH CD ∴BEG EGH DFG FGH ∠∠∠∠∴==,180BEF DFE ∴∠+∠=︒EG 平分GEB ∴∠=GEB ∴∠+在EFG ∆中EGF ∴∠=EM 平分BEM ∴∠45EMF BEM MFD ∴∠=∠+∠=︒故答案为:45︒;②结论:2EOF EPF ∠=∠.理由:如图3中 由题意 EOF BEO DFO ∠=∠+∠ EPF BEP DFP ∠=∠+∠PE 平分BEO ∠ PF 平分DFO ∠2BEO BEP ∴∠=∠ 2DFO DFP ∠=∠2EOF EPF ∴∠=∠故答案为:2EOF EPF ∠=∠.【变式训练3】如图:(1)如图1 AB CD ∥ =45ABE ∠︒ 21CDE ∠=︒ 直接写出BED ∠的度数.(2)如图2 AB CD ∥ 点E 为直线AB CD 间的一点 BF 平分ABE ∠ DF 平分CDE ∠ 写出BED ∠与F ∠之间的关系并说明理由.(3)如图3 AB 与CD 相交于点G 点E 为BGD ∠内一点 BF 平分ABE ∠ DF 平分CDE ∠ 若60BGD ∠=︒ 95BFD ∠=︒ 直接写出BED ∠的度数. 【答案】(1)∵BED =66°;(2)∵BED =2∵F 见解析;(3)∵BED 的度数为130°.【详解】(1)解:(1)如图 作EF ∵AB∵直线AB ∵CD∵EF ∵CD∵∵ABE =∵1=45° ∵CDE =∵2=21°∵∵BED =∵1+∵2=66°;(2)解:∵BED =2∵F理由是:过点E作EG∥AB延长DE交BF于点H∵AB∥CD∵AB∥CD∥EG∵∵5=∵1+∵2∵6=∵3+∵4又∵BF平分∵ABE DF平分∵CDE∵∵2=∵1∵3=∵4则∵5=2∵2∵6=2∵3∵∵BED=2(∵2+∵3)又∵F+∵3=∵BHD∵BHD+∵2=∵BED∵∵3+∵2+∵F=∵BED综上∵BED=∵F+12∵BED即∵BED=2∵F;(3)解:延长DF交AB于点H延长GE到I∵∵BGD=60°∵∵3=∵1+∵BGD=∵1+60° ∵BFD=∵2+∵3=∵2+∵1+60°=95°∵∵2+∵1=35° 即2(∵2+∵1) =70°∵BF平分∵ABE DF平分∵CDE∵∵ABE=2∵2∵CDE=2∵1∵∵BEI=∵ABE +∵BGE=2∵2+∵BGE∵DEI=∵CDE+∵DGE=2∵1+∵DGE ∵∵BED=∵BEI+∵DEI=2(∵2+∵1)+( ∵BGE+∵DGE)=70°+60°=130°∵∵BED的度数为130°.类型二、铅笔模型例.问题情景:如图1 AB ∵CD ∵P AB =140° ∵PCD =135° 求∵APC 的度数.(1)丽丽同学看过图形后立即口答出:∵APC =85° 请补全她的推理依据.如图2 过点P 作PE ∵AB因为AB ∵CD 所以PE ∵CD .( )所以∵A +∵APE =180° ∵C +∵CPE =180°.( )因为∵P AB =140° ∵PCD =135° 所以∵APE =40° ∵CPE =45°∵APC =∵APE +∵CPE =85°.问题迁移:(2)如图3 AD ∵BC 当点P 在A 、B 两点之间运动时 ∵ADP =∵α ∵BCP =∵β 求∵CPD 与∵α、∵β之间有什么数量关系?请说明理由.(3)在(2)的条件下 如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合) 请直接写出∵CPD 与∵α、∵β之间的数量关系.【答案】(1)平行于同一条直线的两条直线平行(或平行公理推论) 两直线平行 同旁内角互补;(2)CPD αβ∠=∠+∠ 理由见解析;(3)CPD βα∠=∠-∠或CPD αβ∠=∠-∠【详解】解:(1)如图2 过点P 作PE ∵AB因为AB ∵CD 所以PE ∵CD .(平行于同一条直线的两条直线平行)所以∵A +∵APE =180° ∵C +∵CPE =180°.(两直线平行同旁内角互补)因为∵P AB=140° ∵PCD=135°所以∵APE=40° ∵CPE=45°∵APC=∵APE+∵CPE=85°.故答案为:平行于同一条直线的两条直线平行;两直线平行同旁内角互补;(2)∵CPD=∵α+∵β理由如下:如图3所示过P作PE∵AD交CD于E∵AD∵BC∵AD∵PE∵BC∵∵α=∵DPE∵β=∵CPE∵∵CPD=∵DPE+∵CPE=∵α+∵β;(3)当P在BA延长线时如图4所示:过P作PE∵AD交CD于E同(2)可知:∵α=∵DPE∵β=∵CPE∵∵CPD=∵β-∵α;当P在AB延长线时如图5所示:同(2)可知:∵α=∵DPE∵β=∵CPE∵∵CPD=∵α-∵β.综上所述∵CPD与∵α、∵β之间的数量关系为:∵CPD=∵β-∵α或∵CPD=∵α-∵β.【变式训练1】已知直线AB∥CD(1)如图(1)点G为AB、CD间的一点联结AG、CG.若∵A=140° ∵C=150° 则∵AGC 的度数是多少?(2)如图(2)点G为AB、CD间的一点联结AG、CG.∵A=x° ∵C=y° 则∵AGC的度数是多少?(3)如图(3)写出∵BAE、∵AEF、∵EFG、∵FGC、∵GCD之间有何关系?直接写出结论.【答案】(1)70°;(2)∵AGC=(x+y)°;(3)∵BAE+∵EFG+∵GCD=∵AEF+∵FGC.【详解】解:(1)如图过点G作GE∥AB∵AB∥GE∵∵A+∵AGE=180°(两直线平行同旁内角互补).∵∵A=140°∵∵AGE=40°.∵AB∥GE AB∥CD∵GE∥CD.∵∵C+∵CGE=180°(两直线平行同旁内角互补).∵∵C=150°∵∵CGE=30°.∵∵AGC=∵AGE+∵CGE=40°+30°=70°.(2)如图过点G作GF∥AB∵AB∥GF∵∵A=AGF(两直线平行内错角相等).∵AB∥GF AB∥CD∵GF∥CD.∵∵C=∵CGF.∵∵AGC=∵AGF+∵CGF=∵A+∵C.∵∵A=x° ∵C=y°∵∵AGC=(x+y)°.(3)如图所示过点E作EM∥AB过点F作FN∥AB过点G作GQ∥CD∵AB∥CD∵AB∥EM∥FN∥GQ∥CD.∵∵BAE=∵AEM∵MEF=∵EFN∵NFG=∵FGQ∵QGC=∵GCD(两直线平行内错角相等).∵∵AEF=∵BAE+∵EFN∵FGC=∵NFG+GCD.∵∵EFN+∵NFG=∵EFG∵∵BAE+∵EFG+∵GCD=∵AEF+∵FGC.【变式训练2】问题情境:如图1 AB∵CD∵P AB=130° ∵PCD=120° 求∵APC度数.思路点拨:小明的思路是:如图2 过P作PE∵AB通过平行线性质可分别求出∵APE、∵CPE的度数从而可求出∵APC的度数;小丽的思路是:如图3 连接AC通过平行线性质以及三角形内角和的知识可求出∵APC的度数;小芳的思路是:如图4 延长AP交DC的延长线于E通过平行线性质以及三角形外角的相关知识可求出∵APC的度数.问题解决:请从小明、小丽、小芳的思路中任选一种思路进行推理计算你求得的∵APC的度数为°;问题迁移:(1)如图5 AD∵BC点P在射线OM上运动当点P在A、B两点之间运动时∵ADP=∵α ∵BCP=∵β.∵CPD、∵α、∵β之间有何数量关系?请说明理由;(2)在(1)的条件下如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合)请你直接写出∵CPD、∵α、∵β间的数量关系.【答案】问题解决:110°;问题迁移:(1)∵CPD=∵α+∵β 理由见解析;(2)∵CPD=∵β﹣∵α 理由见解析【详解】解:小明的思路:如图2 过P作PE∵AB∵AB∵CD∵PE∵AB∵CD∵∵APE=180°﹣∵A=50° ∵CPE=180°﹣∵C=60°∵∵APC=50°+60°=110°故答案为:110;(1)∵CPD=∵α+∵β 理由如下:如图5 过P作PE∵AD交CD于E∵AD∵BC∵AD∵PE∵BC∵∵α=∵DPE∵β=∵CPE∵∵CPD=∵DPE+∵CPE=∵α+∵β;(2)当P在BA延长线时∵CPD=∵β﹣∵α;理由:如图6 过P作PE∵AD交CD于E∵AD∵BC∵AD∵PE∵BC∵∵α=∵DPE∵β=∵CPE∵∵CPD=∵CPE﹣∵DPE=∵β﹣∵α;当P在BO 之间时 ∵CPD =∵α﹣∵β.理由:如图7 过P 作PE ∵AD 交CD 于E∵AD ∵BC∵AD ∵PE ∵BC∵∵α=∵DPE ∵β=∵CPE∵∵CPD =∵DPE ﹣∵CPE =∵α﹣∵β.类型三、锄头模型例.已知 AB ∵CD .点M 在AB 上 点N 在CD 上.(1)如图1中 ∵BME 、∵E 、∵END 的数量关系为: ;(不需要证明) 如图2中 ∵BMF 、∵F 、∵FND 的数量关系为: ;(不需要证明)(2)如图3中 NE 平分∵FND MB 平分∵FME 且2∵E +∵F =180° 求∵FME 的度数;(3)如图4中 ∵BME =60° EF 平分∵MEN NP 平分∵END 且EQ ∵NP 则∵FEQ 的大小A BC D P123是否发生变化若变化请说明理由若不变化求出∵FEQ的度数.【答案】(1)∵BME=∵MEN﹣∵END;∵BMF=∵MFN+∵FND;(2)120°;(3)不变30°【详解】解:(1)过E作EH∵AB如图1∵∵BME=∵MEH∵AB∵CD∵HE∵CD∵∵END=∵HEN∵∵MEN=∵MEH+∵HEN=∵BME+∵END即∵BME=∵MEN﹣∵END.如图2 过F作FH∵AB∵∵BMF=∵MFK∵AB∵CD∵FH∵CD∵∵FND=∵KFN∵∵MFN=∵MFK﹣∵KFN=∵BMF﹣∵FND即:∵BMF=∵MFN+∵FND.故答案为∵BME=∵MEN﹣∵END;∵BMF=∵MFN+∵FND.(2)由(1)得∵BME=∵MEN﹣∵END;∵BMF=∵MFN+∵FND.(2)观察图(2)已知AB∵CD猜想图中的∵BPD与∵B、∵D的关系并说明理由.(3)观察图(3)和(4)已知AB∵CD猜想图中的∵BPD与∵B、∵D的关系不需要说明理由.【答案】(1)∵B+∵BPD+∵D=360° 理由见解析;(2)∵BPD=∵B+∵D理由见解析;(3)∵BPD=∵D-∵B或∵BPD=∵B-∵D理由见解析【详解】解:(1)如图(1)过点P作EF∵AB∵∵B+∵BPE=180°∵AB∵CD EF∵AB∵EF∵CD∵∵EPD+∵D=180°∵∵B+∵BPE+∵EPD+∵D=360°∵∵B+∵BPD+∵D=360°.(2)∵BPD=∵B+∵D.理由:如图2 过点P作PE∵AB∵AB∵CD∵PE∵AB∵CD∵∵1=∵B∵2=∵D∵∵BPD=∵1+∵2=∵B+∵D.(3)如图(3)∵BPD=∵D-∵B.理由:∵AB∵CD∵∵1=∵D∵∵1=∵B+∵BPD∵∵D=∵B+∵BPD即∵BPD=∵D-∵B;如图(4)∵BPD=∵B-∵D.理由:∵AB ∵CD∵∵1=∵B∵∵1=∵D +∵BPD∵∵B =∵D +∵BPD即∵BPD =∵B -∵D .【变式训练2】已知//AM CN 点B 为平面内一点 AB BC ⊥于B .(1)如图1 点B 在两条平行线外 则A ∠与C ∠之间的数量关系为______; (2)点B 在两条平行线之间 过点B 作BD AM ⊥于点D . ①如图2 说明ABD C ∠=∠成立的理由;②如图3 BF 平分DBC ∠交DM 于点,F BE 平分ABD ∠交DM 于点E .若180,3FCB NCF BFC DBE ∠∠∠∠+=︒= 求EBC ∠的度数.【答案】(1)∵A +∵C =90°;(2)①见解析;②105°【详解】解:(1)如图1 AM 与BC 的交点记作点O∵AM ∵CN∵∵C =∵AOB∵AB ∵BC∵∵A +∵AOB =90°∵∵A +∵C =90°;(2)①如图2 过点B作BG∵DM∵BD∵AM∵DB∵BG∵∵DBG=90°∵∵ABD+∵ABG=90°∵AB∵BC∵∵CBG+∵ABG=90°∵∵ABD=∵CBG∵AM∵CN BG∵DMBG CN//,∵∵C=∵CBG∵ABD=∵C;②如图3 过点B作BG∵DM∵BF平分∵DBC BE平分∵ABD∵∵DBF=∵CBF∵DBE=∵ABE由(2)知∵ABD=∵CBG∵∵ABF=∵GBF设∵DBE=α∵ABF=β则∵ABE=α∵ABD=2α=∵CBG∵GBF=∵AFB=β∵BFC=3∵DBE=3α∵∵AFC=3α+β∵∵AFC+∵NCF=180° ∵FCB+∵NCF=180° ∵∵FCB=∵AFC=3α+β∵BCF中由∵CBF+∵BFC+∵BCF=180°得:2α+β+3α+3α+β=180°∵AB∵BC∵β+β+2α=90°∵α=15° ∵∵ABE=15°∵∵EBC=∵ABE+∵ABC=15°+90°=105°.类型四、齿距模型例.如图AB∵EF设∵C=90° 那么x y z的关系式为______.【答案】y=90°-x+z.【详解】解:作CG//AB DH//EF∵AB//EF∵AB//CG//HD//EF∵∵x=∵1 ∵CDH=∵2 ∵HDE=∵z∵∵BCD=90°∵∵1+∵2=90°∵y=∵CDH+∵HDE=∵z+∵2∵∵2=90°-∵1=90°-∵x∵∵y=∵z+90°-∵x.即y=90°-x+z.【变式训练1】如图1 已知AB ∵CD ∵B =30° ∵D =120°;(1)若∵E =60° 则∵F = ;(2)请探索∵E 与∵F 之间满足的数量关系?说明理由;(3)如图2 已知EP 平分∵BEF FG 平分∵EFD 反向延长FG 交EP 于点P 求∵P 的度数.【答案】(1)90︒;(2)30F E ∠=∠+︒ 理由见解析;(3)15︒【详解】(1)解:如图1 分别过点E F 作//EM AB //FN AB////EM AB FN ∴30B BEM ∴∠=∠=︒ MEF EFN ∠=∠又//AB CD //AB FN//CD FN ∴180D DFN ∴∠+∠=︒又120D ∠=︒60DFN ∴∠=︒30BEF MEF ∴∠=∠+︒ 60EFD EFN ∠=∠+︒60EFD MEF ∴∠=∠+︒3090EFD BEF ∴∠=∠+︒=︒;故答案为:90︒;(2)解:如图1 分别过点E F 作//EM AB //FN AB////EM AB FN ∴30B BEM ∴∠=∠=︒ MEF EFN ∠=∠又//AB CD //AB FN//CD FN ∴又120D ∠=60DFN ∴∠=BEF MEF ∴∠=∠EFD MEF ∴∠=∠(3)解:如图设2BEF ∠=EP 平分PEF ∴∠=//FH EP HFG ∠=【变式训练2】如图1 点A 、B 分别在直线GH 、MN 上 GAC NBD ∠=∠ C D ∠=∠.(1)求证://GH MN ;(提示:可延长AC 交MN 于点P 进行证明) (2)如图2 AE 平分GAC ∠ DE 平分BDC ∠ 若AED GAC ∠=∠ 求GAC ∠与ACD ∠之间的数量关系;(3)在(2)的条件下 如图3 BF 平分DBM ∠ 点K 在射线BF 上 13KAG GAC ∠=∠ 若AKB ACD ∠=∠ 直接写出GAC ∠的度数.∵ACD C ∠=∠∵//AP BD∵NBD NPA ∠=∠∵GAC NBD ∠=∠∵GAC NPA ∠=∠∵//GH MN ;(2)延长AC 交MN 于点P 交DE 于点Q∵180E EAQ AQE ∠+∠+∠=° 180AQE AQD ∠+∠=° ∵AQD E EAQ ∠=∠+∠∵//AP BD∵AQD BDQ ∠=∠∵BDQ E EAQ ∠=∠+∠∵AE 平分GAC ∠ DE 平分BDC ∠∵2GAC EAQ ∠=∠ 2CDB BDQ ∠=∠∵2CDB E GAC ∠=∠+∠∵AED GAC ∠=∠ ACD CDB ∠=∠∵23ACD GAC GAC GAC ∠=∠+∠=∠;(3)当K 在直线GH 下方时 如图 设射线BF 交GH 于I⎫.⎪⎭上方时如图-∠(180GAC⎫.⎪⎭°︒。

3提高-常用辅助线及模型

3提高-常用辅助线及模型

B D
【习题 5】已知:如图, AE BC , FG BC , 1 2 , D 3 60°, CBD 70°. ⑴ 求证: AB ∥CD ;⑵ 求 C 的度数.
C
EF D 2
Aቤተ መጻሕፍቲ ባይዱ
13 G
B
【习题 6】已知如图, 1 2 , 3 4 , 5 6 ,求证: CE ∥ BF .
Page 8 of 9
模块一 平行线四大模型
知识点睛
(1)燕尾型 如图,已知:AB∥CD,求证:∠B+∠D=∠BED。
(2)铅笔型 如图,已知:AB∥CD,求证:∠B+∠D+∠BED=360°。
(3)犀牛角型 已知:如图,AB∥CD,求证:∠BED=∠B-∠D。
(4)锄头型 已知:如图,AB∥CD,求证:∠BED=∠B-∠D。
【习题 7】下列各图中的 MA1 与 NAn 平行 (1) 图①中的∠A1+∠A2=________度,图②中的∠A1+∠A2+∠A3=________度 图③中的∠A1+∠A2+∠A3+∠A4=________度,图④中的∠A1+∠A2+∠A3+∠A4+∠A5 =________度,…, 第⑩个图中的∠A1+∠A2+∠A3+…+∠A10=________度 (2) 第 n 个图中的∠A1+∠A2+∠A3+…+∠An=________
n
n
∠M
课后作业
【习题 1】填空并在后面的括号中填理由
如图,AB∥DE,试问∠B、∠E、∠BCE 有什么关系.
解:∠B+∠E=∠BCE
理由:过点 C 作 CF∥AB,(

则 B ____(

又∵AB∥DE,AB∥CF,
∴____________(

专题 平行线四大模型(能力提升)(解析版)

专题  平行线四大模型(能力提升)(解析版)

专题03 平行线四大模型(能力提升)1.将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE =40°,那么∠BAF的大小为()A.25°B.20°C.15°D.10°【答案】D【解答】解:由题意知:∠CAB=60°,∠C=90°.∵∠CDE=40°,∴∠CED=50°.∵DE∥AF,∴∠F AE=∠CED=50°.∴∠BAF=∠CAB﹣F AE=60°﹣50°=10°.故选:D.2.如图,l1∥l2,将一副直角三角板作如下摆放,图中点A、B、C在同一直线上,∠1=80°,则∠2的度数为()A.100°B.120°C.130°D.150°【答案】C【解答】解:如图,过点A作AD∥l1,∵l1∥l2,∴AD∥l2,∴∠FNA+∠NAD=180°,∵AD∥l1,∴∠EMA+∠MAD=180°,∴∠EMA+∠MAD+∠DAN+∠ANF=180°+180°=360°,∵∠EMA=∠EMC+∠CMA=80°+60°=140°,∠MAD+∠DAN=90°,∴∠FNA=360°﹣140°﹣90°=130°,即∠2=130°,故选:C.3.如图,AB与HN交于点E,点G在直线CD上,GF交AB于点M,∠FMA=∠FGC,∠FEN=2∠NEB,∠FGH=2∠HGC,下列四个结论:①AB∥CD;②∠EHG=2∠EFM;③∠EHG+∠EFM=90°;④3∠EHG﹣∠EFM=180°.其中正确的结论是()A.①②③B.②④C.①②④D.①④【答案】D【解答】解:∵∠FMA=∠FGC∴AB∥CD∴①正确;过点F作FP∥AB,HQ∥AB,∵AB∥CD,∴FP∥AB∥HQ∥CD,设∠NEB=x,∠HGC=y,则∠FEN=2x,∠FGH=2y∴∠EHG=∠EHQ+∠GHQ=∠AEH+∠HGC=∠NEB+∠HGC=x+y,∠EFM=∠BEF﹣∠FME=∠BEF﹣∠AMG=∠BEF﹣(180°﹣∠FGC)=x+2x﹣(180°﹣y﹣y)=3x+3y﹣180°,∴2∠EFM=6x+6y﹣360°,∴∠EHG≠2∠EFM∴②错误;∴∠EHG+∠EFM=x+y+3x+3y﹣180°=4x+4y﹣180°≠90°,∴③错误;∴3∠EHG﹣∠EFM=3(x+y)﹣(3x+3y﹣180°)=180°,∴④正确.综上所述,正确答案为①④.故选:D.4.如图,AB∥EF,∠C=90°,则α、β、γ的关系为()A.β=α+γB.α+β﹣γ=90°C.α+β+γ=180°D.β+γ﹣α=90°【答案】B【解答】解:延长DC交AB于G,延长CD交EF于H.直角△BGC中,∠1=90°﹣α;△EHD中,∠2=β﹣γ,∵AB∥EF,∴∠1=∠2,∴90°﹣α=β﹣γ,即α+β﹣γ=90°.故选:B.5.如图,AB∥EF,∠C=90°,则α、β、y的关系是()A.β+γ﹣α=90°B.α+β+γ=180°C.α+β﹣γ=90°D.β=α+γ【答案】C【解答】解:如图,过点C、D分别作AB的平行线CG、DH,∵AB∥EF,∴AB∥CG∥DH∥EF,∴∠1=∠α,∠2=∠3,∠4=∠γ,∵∠2=90°﹣∠1=90°﹣∠α,∠3=∠β﹣∠4=∠β﹣∠γ,∴90°﹣∠α=∠β﹣∠γ,∴α+β﹣γ=90°.故选:C.6.如图,AB∥CD,EMNF是直线AB、CD间的一条折线.若∠1=40°,∠2=60°,∠3=70°,则∠4的度数为()A.55°B.50°C.40°D.30°【答案】B【解答】解:如图2,过M作OM∥AB,PN∥AB,∵AB∥CD,∴AB∥OM∥PN∥CD,∴∠1=∠EMO,∠4=∠PNF,∠OMN=∠PNM,∴∠EMN﹣∠MNF=(∠1+∠MNP)﹣(∠MNP+∠4)=∠1﹣∠4,∴60°﹣70°=40°﹣∠4,∴∠4=50°.故选:B.7.为了落实“双减”政策,促进学生健康成长,各学校积极推行“5+2”模式,立足学生的认知成长规律,满足学生多样化的需求,打造特色突出、切实可行的体育锻炼内容.晋中市的某学校将“抖空竹”引入阳光体育一小时活动,如图1是一位同学抖空竹时的一个瞬间,小丽把它抽象成图2的数学问题:已知AB∥CD,∠EAB=80°,∠ECD=110°,则∠E的度数是30°.【答案】30°【解答】解:延长DC交AE于点F,∵AB∥CD,∴∠EFC=∠A=80°,由外角的性质得,∠DCE=∠E+∠EFC,∴∠E=110°﹣80°=30°.故答案为:30°.8.如图,直线PQ∥MN,直角三角尺ABC的∠BAC=30°,∠ACB=90°.(1)若把三角尺按图甲方式放置,则∠MAC+∠PBC=90°;(2)若把三角尺按图乙方式放置,点D,E,F是三角尺的边与平行线的交点,若∠AEN =∠A,求∠BDF的值;(3)如图丙,三角尺的直角顶点C始终在两条平行线之间,点G在线段CD上,连接EG,适当转动三角尺,使得CE恰好平分∠MEG,求的值.【解答】解:(1)延长BC交MN于点D,∵PQ∥MN,∴∠PBC=∠ADC,∵∠ACB是△ACD的一个外角,∴∠ACB=∠ADC+∠MAC,∴∠ACB=∠PBC+∠MAC=90°,故答案为:90;(2)∵∠AEN=∠A,∠BAC=30°,∴∠AEN=∠A=30°,∴∠CEM=∠AEN=30°,利用(1)的结论可得:∠ACB=∠PDC+∠MEC,∴∠PDC=∠ACB﹣∠MEC=60°,∴∠BDF=∠PDC=60°,∴∠BDF的度数为60°;(3)∵CE平分∠MEG,∴∠CEM=∠CEG,设∠CEM=∠CEG=x,∴∠GEN=180°﹣∠CEM﹣∠CEG=180°﹣2x,利用(1)的结论可得:∠ACB=∠PDC+∠MEC,∴∠PDC=∠ACB﹣∠MEC=90°﹣x,∴∠BDF=∠PDC=90°﹣x,∴==2,∴的值为2.9.如图,AB∥CD,点E为两直线之间的一点.(1)如图1,若∠BAE=35°,∠DCE=20°,则∠AEC=;(2)如图2,试说明,∠BAE+∠AEC+∠ECD=360°;(3)①如图3,若∠BAE的平分线与∠DCE的平分线相交于点F,判断∠AEC与∠AFC 的数量关系,并说明理由;②如图4,若设∠E=m,∠BAF=∠F AE,∠DCF=∠FCE,请直接用含m、n的代数式表示∠F的度数.【解答】解:(1)55°如图所示,过点E作EF∥AB,∵AB∥CD∴AB∥CD∥EF,∴∠BAE=∠1,∠ECD=∠2,∴∠AEC=∠1+∠2=∠BAE+∠ECD=35°+20°=55°,故答案为55°.(2)如图所示,过点E作EG∥AB,∵AB∥CD∴AB∥CD∥EG,∴∠A+∠1=180°,∠C+∠2=180°,∴∠A+∠1+∠2+∠C=360°,即∠BAE+∠AEC+∠ECD=360°.(3)①2∠AFC+∠AEC=360°,理由如下:由(1)可得,∠AFC=∠BAF+∠DCF,∵AF平分∠BAE,CF平分∠DCE,∴∠BAE=2∠BAF,∠DCE=2∠DCF,∴∠BAE+∠DCE=2∠AFC,由(2)可知,∠BAE+∠AEC+∠DCE=360°,∴2∠AFC+∠AEC=360°.②由①知∠F+∠F AE+∠E+∠FCE=360°,∵∠BAF=∠F AE,∠DCF=∠FCE,∠BAF+∠DCF=∠F,∴∠F=(∠F AE+∠FCE),∴∠F AE+∠FCE=n∠F,∴∠F+∠E+n∠F=360°,∴(n+1)∠F=360°﹣∠E=360°﹣m,∴∠F=.10.已知AM∥CN,点B在直线AM、CN之间,AB⊥BC于点B.(1)如图1,请直接写出∠A和∠C之间的数量关系:.(2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.(3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为45°.【解答】解:(1))过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE.∵BE∥AM,AM∥CN,∴BE∥CN.∴∠C=∠CBE.∵AB⊥BC,∴∠ABC=90°.∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.故答案为:∠A+∠C=90°;(2)∠A和∠C满足:∠C﹣∠A=90°.理由:过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE.∵BE∥AM,AM∥CN,∴BE∥CN.∴∠C+∠CBE=180°.∴∠CBE=180°﹣∠C.∵AB⊥BC,∴∠ABC=90°.∴∠ABE+∠CBE=90°.∴∠A+180°﹣∠C=90°.∴∠C﹣∠A=90°.(3)设CH与AB交于点F,如图,∵AE平分∠MAB,∴∠GAF=∠MAB.∵CH平分∠NCB,∴∠BCF=∠BCN.∵∠B=90°,∴∠BFC=90°﹣∠BCF.∵∠AFG=∠BFC,∴∠AFG=90°﹣∠BCF.∵∠AGH=∠GAF+∠AFG,∴∠AGH=∠MAB+90°﹣∠BCN=90°﹣(∠BCN﹣∠MAB).由(2)知:∠BCN﹣∠MAB=90°,∴∠AGH=90°﹣45°=45°.故答案为:45°.11.已知直线EF分别与直线AB,CD相交于点G,M,并且∠AGE+∠CHF=180°.(1)如图1,求证:AB∥CD;(2)如图2,点M在直线AB,CD之间,连接GM,HM,求证:∠M=∠AGM+∠CHM;(3)如图3,在(2)的条件下,若射线GH恰好是∠BGM的平分线,在MH的延长线上取点N,连接GN,若∠N=∠AGM,则∠M、∠N、∠FGN的数量关系是(直接写答案).【解答】(1)证明:∵∠AGE=∠BGF,∠CHF=∠EHD,又∠AGE+∠CHF=180°,∴∠BGF+∠EHD=180°,∴AB∥CD;(2)证明:过点M作MK∥CD,则∠KMH=∠CHM,又AB∥CD;∴AB∥MK;∴∠AGM=∠GMK,∵∠GMH=∠AGM+∠KMH∴∠GMH=∠AGM+∠CHM.(3)解:如图3,令∠AGM=2α,∠CHM=β,则∠N=2α,∠M=2α+β,∵射线GF是∠BGM的平分线,∴∠FGM=∠BGM=(180°−∠AGM)=90°−α,∴∠AGH=∠AGM+∠FGM=2α+90°﹣α=90°+α,∵∠GMH=∠N+∠FGN,∴2α+β=2α+∠FGN,∴∠FGN=2β,∴∠M=2α+β=∠N+∠FGN,即:∠M=∠N+∠FGN.12.问题情境我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.已知三角板ABC中,∠BAC=60°,∠B=30°,∠C=90°,长方形DEFG中,DE∥GF.问题初探(1)如图(1),若将三角板ABC的顶点A放在长方形的边GF上,BC与DE相交于点M,AB⊥DE于点N,求∠EMC的度数.分析:过点C作CH∥GF.则有CH∥DE,从而得∠CAF=∠HCA,∠EMC=∠MCH,从而可以求得∠EMC的度数.由分析得,请你直接写出:∠CAF的度数为,∠EMC的度数为.类比再探(2)若将三角板ABC按图(2)所示方式摆放(AB与DE不垂直),请你猜想写∠CAF 与∠EMC的数量关系,并说明理由.(3)请你总结(1),(2)解决问题的思路,在图(3)中探究∠BAG与∠BMD的数量关系?并说明理由.【解答】解:(1)由题可得,∠CAF=∠BAF﹣∠BAC=90°﹣60°=30°,∠EMC=∠BCH=90°﹣30°=60°;故答案为:30°,60°;(2)∠EMC+∠CAF=90°,理由:证明:如图,过C作CH∥GF,则∠CAF=∠ACH,∵DE∥GF,CH∥GF,∴CH∥DE,∴∠EMC=∠HCM,∴∠EMC+∠CAF=∠MCH+∠ACH=∠ACB=90°;(3)∠BAG﹣∠BMD=30°,理由:证明:如图,过B作BK∥GF,则∠BAG=∠KBA,∵BK∥GF,DE∥GF,∴BK∥DE,∴∠BMD=∠KBM,∴∠BAG﹣∠BMD=∠ABK﹣∠KBM=∠ABC=30°.13.已知AB∥CD,直线EF与AB、CD分别交于点E、F,点G为落在直线AB和直线CD 之间的一个动点.(1)如图1,点G恰为∠BEF和∠DFE的角平分线的交点,则∠EGF=;(2)若点G恰为∠BEF和∠DFE的三等分线的交点,有如下结论:①∠EGF一定为钝角;②∠EGF可能为60°;③若∠EGF为直角,则EF⊥CD.其中正确结论的序号为.(3)进一步探索,若EF⊥CD,且点G不在线段EF上,记∠AEG=α,∠CFG=β,EM 为∠AEG最接近EG的n等分线,FN是∠CFG最接近CF的n等分线(其中n≥2).直线EM、FN交于点P n,是否存在某一正整数n,使得∠EP n F=90°?说明理由.【解答】解:(1)∵AB∥CD,∴∠BEF+∠DFE=180°,∵点G恰为∠BEF和∠DFE的角平分线的交点,∴∠FEG+∠EFG=×180°=90°,∴∠EGF=180°﹣90°=90°.故答案为:90°.(2)若点G恰为∠BEF和∠DFE的三等分线的交点,∴∠FEG+∠EFG=×180°或者∠FEG+∠EFG=×180°,∠FEG+∠EFG=60°或∠FEG+∠EFG=120°,∴∠EGF=180°﹣60°=120°或∠EGF=180°﹣120°=60°,∴①错误,②正确,当∠EGF为直角,只有∠BEF+∠DFE=90°或∠BEF+∠DFE=90°,不妨假设∠BEF+∠DFE=90°,∴∠BEF+∠DFE=90°,∴(∠BEF﹣∠DFE)+(∠DFE﹣∠BEF)=0,∴∠BEF=∠DFE,∵∠BEF+∠DFE=180°,∴∠BEF=∠DFE=90°,∴EF⊥CD,故③正确.故答案为:②③.(3)不存在某一整数n,使得∠EP n F=90°,理由如下:∵EM为∠AEG最接近EG的n等分线,FN是∠CFG最接近CF的n等分线(其中n≥2),∴∠AEM=α,∠CFM=β.①当点G在EF的左侧,此时α<90°,β<90°,P n必在EF的左侧,如图2所示,过点P n作P n Q∥AB,∵AB∥CD,∴P n Q∥CD,∴∠EP n F=∠EPnQ+∠FP n Q=∠AEM+∠CFN=α+β<×90°+×90°<90°,②当点G在右侧,此时α>90°,β>90°.若α<90°,则P n在EF的左侧,如图3中,同理可得∠EP n F=α+β>90°.若α=90°,则P n与F重合,不存在∠EP n F,舍弃.若α>90°,则P n在EF的右侧,如图4中,过点P n作P n Q∥AB,∵AB∥CD,∴P n Q∥CD,∴∠EP n F=∠EP n Q﹣∠FP n Q=∠BEM+∠CFN=(180°﹣α)﹣β,∵α>90°,β>0,∴(180°﹣α)﹣β<90°,即∠EP n F<90°,综上所述,不存在某一整数n,使得∠EP n F=90°.。

平行线四大模型(完整版+培优)

平行线四大模型(完整版+培优)

平行线四大模型(完整版+培优)平行线四大模型模型一:铅笔模型当点P在EF右侧,在AB、CD内部时,有以下结论:1.若AB∥CD,则∠P+∠AEP+∠PFC=360°;2.若∠P+∠AEP+∠PFC=360°,则AB∥CD.模型二:猪蹄模型当点P在EF左侧,在AB、CD内部时,有以下结论:1.若AB∥CD,则∠P=∠AEP+∠CFP;2.若∠P=∠AEP+∠CFP,则AB∥CD.模型三:臭脚模型当点P在AB、CD之间时,有以下结论:1.若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;2.若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.模型四:骨折模型当点P在EF右侧,在AB、CD外部时,有以下结论:1.若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;2.若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.当点P在EF左侧,在AB、CD外部时,有以下结论:1.若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;2.若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.应用:例1:1.∠l+∠2+∠3=180°;2.∠E=110°;3.∠BCD=40°;4.∠P=70°.练:1.∠EAB的度数为17°;2.∠C=30°;3.∠P=30°+n×20°.例2:BF、DF分别平分∠ABC、∠XXX,则∠C、∠F的关系为∠ABF=∠XXX∠XXX.练:1.∠XXX∠BDE;2.当n=2时,∠C=∠F;3.∠C=n×∠F.1.如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,要证明∠E=2(∠A+∠C)。

2.如图,已知AB∥DE,BF、DF分别平分∠ABC、∠XXX,要求出∠C、∠F的关系。

专题01平行线(四种模型)专项训练(解析版)

专题01平行线(四种模型)专项训练(解析版)

专题01平行线(四种模型)专项训练题型一:M 模型(锯齿形) 题型二:笔尖型题型三:“鸡翅”型 题型四:“骨折”型模型一:M 模型如图,若 AB // CD ,你能确定∠B 、∠D 与∠BED 的大小关系吗?解:∠B +∠D =∠DEB .理由如下:过点E 作 EF // AB又 ∵ AB//CD .∴ EF//CD .∴ ∠D =∠DEF .∠B=∠BEF .∴∠B +∠D =∠BEF +∠DEF =∠DEB即∠B +∠D =∠DEB .一.选择题(共3小题)1.(2023春•临淄区期末)如图,//AB EF ,90C Ð=°,则a 、b 和g 的关系是( )A .b a g =+B .180a b g ++=°C .90a b g +-=°D .180b g a +-=°【分析】此题可以构造辅助线,利用三角形的外角的性质以及平行线的性质建立角之间的关系.【解答】解:延长DC 交AB 与G ,延长CD 交EF 于H .在直角BGC D 中,190a Ð=°-;EHD D 中,2b g Ð=-,//AB EF Q ,12\Ð=Ð,90a b g \°-=-,即90a b g +-=°.故选:C .【点评】本题考查的是平行线的性质,根据题意作出辅助线是解答此题的关键.2.(2023春•天宁区校级期中)如图,//AB CD ,EMNF 是直线AB 、CD 间的一条折线.若140Ð=°,260Ð=°,370Ð=°,则4Ð的度数为( )A .55°B .50°C .40°D .30°【分析】过M 作//OM AB ,//PN AB ,根据平行线的性质得到1EMO Ð=Ð,4PNF Ð=Ð,OMN PNM Ð=Ð,由角的和差得到(1)(4)14EMN MNF MNP MNP Ð-Ð=Ð+Ð-Ð+Ð=Ð-Ð,代入数据即可得到结论.【解答】解:如图2,过M 作//OM AB ,//PN AB ,//AB CD Q ,//////AB OM PN CD \,1EMO \Ð=Ð,4PNF Ð=Ð,OMN PNM Ð=Ð,(1)(4)14EMN MNF MNP MNP \Ð-Ð=Ð+Ð-Ð+Ð=Ð-Ð,6070404\°-°=°-Ð,450\Ð=°.故选:B .【点评】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.3.(2022春•海安市校级月考)如图,//AB EF ,90C Ð=°,则a 、b 、g 的关系为( )A .b a g =+B .90a b g +-=°C .180a b g ++=°D .90b g a +-=°【分析】此题可以构造辅助线,利用三角形的外角的性质以及平行线的性质建立角之间的关系.【解答】解:延长DC 交AB 于G ,延长CD 交EF 于H .直角BGC D 中,190a Ð=°-;EHD D 中,2b g Ð=-,//AB EF Q ,12\Ð=Ð,90a b g \°-=-,即90a b g +-=°.故选:B .【点评】此题主要考查了三角形的外角的性质以及平行线的性质,解题的关键是通过作辅助线,构造了三角形以及由平行线构成的内错角.二.解答题(共6小题)4.(2023春•仪征市期末)如图1,已知线段AB 、线段CD 被直线l 所截于点A 、点C ,150Ð=°,2Ð的度数是1Ð的3倍少20°.(1)求证://AB CD ;(2)如图2,连接BD ,AB 沿BD 方向平移得到EF ,点F 在BD 上,点G 是BD 上的一点,连接AG 、EG ,30BAG Ð=°,20FEG Ð=°,求AGE Ð的度数;(3)如图3,点M 是线段BD 上一点,点N 是射线CD 上一点,CAM Ð度数为k ,AMN Ð度数为m ,MND Ð度数为n ,请直接写出k 、m 、n 之间的数量关系.(本题的角均小于180)°【分析】(1)根据已知先求得1Ð的邻补角BAC Ð的度数,得到2BAC Ð=Ð即可得结论;(2)过G 作//GQ AB ,利用平行线的性质定理和平行公理的推论即可;(3)利用平行线的性质定理和平行公理的推论即可.【解答】证明:(1)150Ð=°Q ,2Ð的度数是1Ð的3倍少20°,23120130\Ð=Ð-°=°,180250ACD \Ð=°-Ð=°,12\Ð=Ð,//AB CD \;(2)过G 作//GQ AB ,30AGQ BAG \Ð=Ð=°,//AB EF Q ,//GQ EF \,20GEF EGQ \Ð=Ð=°,50AGE AGQ EGQ \Ð=Ð+Ð=°;(3)//AB CD Q ,与(2)同理可得:AMN MAB MND Ð=Ð+Ð,AMN m Ð=Q ,MND n Ð=,m n MAB \=+Ð,150Ð=°Q ,CAM k Ð=,180118050BAM CAM k \Ð=°-Ð-Ð=°-°-,130m n k \=+°-,即130m n k -+=°.【点评】本题考查了平行线的性质定理及平行公理的推论,理解题意是解决问题的关键.5.(2022春•赣榆区期末)已知:如图,//AB CD ,BFE FEC Ð=Ð.求证:ABF DCE Ð=Ð.(1)下面是小明同学的推理过程,请按先后顺序填写空格:解:连接BC .BFE FEC Ð=ÐQ (已知),\ BF // (内错角相等,两直线平行).\Ð=Ð ),FBC ECB(AB CDQ(已知),//\Ð=Ð(两直线平行,内错角相等)ABC DCB\Ð-Ð=Ð- ( ),ABC FBC DCB即ABF DCEÐ=Ð.(2)试用其他方法进行推理,并书写证明过程.【分析】(1)连接BC,根据已知,得出//AB CDÐ=Ð,再根据//BF CE,根据平行线的性质得到FBC ECB得出ABC DCBÐ-Ð=Ð-Ð即可得出答案;Ð=Ð,进而得出ABC FBC DCB ECBÐ=Ð,再利用等量代换可得H DCE (2)延长BF交DC的延长线于H,根据平行线的性质可得ABF HÐ=Ð,进而可判定//Ð=Ð.BH CE,然后可得BFE FEC【解答】(1)解:连接BC.BFE FECQ(已知),Ð=ÐBF CE\(内错角相等,两直线平行).//FBC ECB\Ð=Ð两直线平行,内错角相等),(Q(已知),//AB CD\Ð=Ð(两直线平行,内错角相等)ABC DCBABC FBC DCB ECB\Ð-Ð=Ð-Ð等式的基本性质),(即ABF DCEÐ=Ð.故答案为:BF,CE;两直线平行,内错角相等;ECBÐ;等式的基本性质.(2)证明:延长BF交DC的延长线于H,Q,AB CD//\Ð=Ð,ABF HABF DCE Ð=ÐQ .H DCE \Ð=Ð,//BH CE \,BFE FEC \Ð=Ð.【点评】本题考查了平行线的判定和性质,熟练应用判定定理和性质定理是解题的关键,平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.6.(2023春•天宁区校级期中)已知:如图,180ABE CEB Ð+Ð=°,12Ð=Ð,求证:M N Ð=Ð.【分析】首先证明//AB CD ,再根据平行线的性质得出ABE DEB Ð=Ð,然后结合已知条件可得到MBE NEB Ð=Ð,进而可判定//BM EN ,据此可得出结论.【解答】证明:180ABE CEB Ð+Ð=°Q ,//AB CD \,ABE DEB \Ð=Ð,即:12MBE NEB Ð+Ð=Ð+Ð,又12Ð=ÐQ ,MBE NEB \Ð=Ð,//BM EN \,M N \Ð=Ð.【点评】此题主要考查了平行线的判定和性质,解答此题的关键是准确识图,熟练掌握平行线的判定及性质:两直线平行Û同位角相等,两直线平行Û内错角相等,两直线平行Û同旁内角互补.7.(2023春•崇川区期中)如图1,已知直线EF 与直线AB 交于点E ,与直线CD 交于点F ,EM 平分AEF Ð交直线CD 于点M ,且FEM FME Ð=Ð.(1)试判断直线AB 与CD 的位置关系,并说明理由;(2)点G 是射线MD 上的一个动点(不与点M ,F 重合),EH 平分FEG Ð交直线CD 于点H ,过点H 作//HN EM 交直线AB 于点N .设EHN a Ð=,EGF b Ð=.①如图2,当点G 在点F 的右侧,且50a =°时,求b 的值;②当点G 在运动过程中,a 和b 之间有怎样的数量关系?请写出你的猜想,并加以证明.【分析】(1)由EM 平分AEF Ð,得到AEM FEM Ð=Ð,又FEM FME Ð=Ð,所以AEM FME Ð=Ð,证得//AB CD .(2)①由EH 平分FEG Ð,EM 平分AFE Ð,得到12HEM HEF FEM AEG Ð=Ð+Ð=Ð,由//HN EM ,//AB CD 可得,HEM EHN a Ð=Ð=,GEB EGF b =Ð=,即可得到结果.②当点G 在点F 的左侧时,由EM 平分AEF Ð,EH 平分FEH Ð,得到12HEM HEF FEM AEG Ð=Ð+Ð=Ð,由//AB CD ,//HN EM ,得到AEG b Ð=,HEM a Ð=,从而得到结果.【解答】解(1)如图1,//AB CD ,理由如下:EM Q 平分AEF Ð,AEM FEM \Ð=Ð,FEM FME Ð=ÐQ ,AEM FME \Ð=Ð,//AB CD \.(2)①如图2,EH Q 平分FEG Ð,12HEF FEG \Ð=Ð,EM Q 平分AFE Ð,12FEM AEF \Ð=Ð,12HEM HEF FEM AEG \Ð=Ð+Ð=Ð,//HN EM Q ,HEM EHN a \Ð=Ð=,//AB CD Q ,GEB EGF b \Ð=Ð=,1(180)2a b \=°-,180218025080b a \=°-=°-´°=°.②a 和b 之间的数量关系为2b a =或1802b a =°-.理由如下:当点G 在点F 的右侧时,由①得1802b a =°-,当点G 在点F 的左侧时,如图3,EM Q 平分AEF Ð,2AEF FEM \Ð=Ð,EH Q 平分FEH Ð,2GEF HEF \Ð=Ð,222AEG AEF GEF FEM HEF HEM \Ð=Ð-Ð=Ð-Ð=Ð,//AB CD Q ,AEG b \Ð=,//HN EM Q ,HEM a \Ð=,2b a \=,综上得,a 和b 之间的数量关系为2b a =或1802b a =°-.【点评】本题主要考查了平行线的判定与性质,角平分线的定义,熟练运用平行线的判定与性质是解题关键.8.(2023春•海安市期末)如图,在ABC D 中,ACB BAC Ð=Ð.过点A 作//MN BC .(1)判断AC 是否平分BAN Ð,并说明理由;(2)如图2,点D 是射线CB 上一动点(不与点B ,C 重合),AE 平分BAD Ð交射线BC 于E ,过点E 作EF AC ^于F .①当点D 在点B 左侧时,若20AEF Ð=°,求ADB Ð的度数;②点D 在运动过程中,AEF Ð和ADB Ð之间有怎样的数量关系?请写出你的猜想,并说明理由.【分析】(1)根据//MN BC 得ACB CAN Ð=Ð,结合已知条件得证;(2)①在直角三角形AFE 中,20AEF Ð=°,则9070EAF EAF Ð=°-Ð=°,根据19020702EAF BAC BAE DAE CAN DAN Ð=Ð+Ð=°-°=°=Ð+Ð=Ð,从而求出140DAN Ð=°,即可求出ADB Ð;②分两种情况进行讨论,当点D 在点B 左侧时和点D 在点B 右侧时,数形结合即可解答.【解答】解:(1)AC 平分BAN Ð,//MN BC Q ,ACB CAN \Ð=Ð,ACB BAC Ð=ÐQ .BAC CAN \Ð=Ð,AC \平分BAN Ð,(2)EF AC ^Q ,9070EAF EAF \Ð=°-Ð=°,AC Q 、AE 是角平分线,DAE BAE \Ð=Ð,BAC CAN Ð=Ð,19020702EAF BAC BAE DAE CAN DAN \Ð=Ð+Ð=°-°=°=Ð+Ð=Ð,140DAN \Ð=°,40ADB \Ð=°.②设AEF a Ð=,EF AC ^Q ,90EAF a \Ð=°-,如图2,当点D 在点B 左侧时,由(1)知12NAC BAC BAN Ð=Ð=Ð,AE Q 平分BAD Ð交射线BC 于E ,12DAE BAE BAD \Ð=Ð=Ð,又1111()902222EAF BAE BAC BAD BAN BAD BAN DAN a Ð=Ð+Ð=Ð+Ð=Ð+Ð=Ð=°-Q ,1802DAN a \Ð=°-,//MN BC Q ,180ADB DAN \Ð+Ð=°,180180(1802)2ADB DAN a a \Ð=°-Ð=°-°-=,2ADB AEF \Ð=Ð;当点D 在点B 右侧时,如图:AC Q 、AE 是角平分线,12DAE BAE BAD \Ð=Ð=Ð,12BAC CAN BAN Ð=Ð=Ð,1111()902222EAF BAC BAE BAN BAD BAN BAD DAN a Ð=Ð-Ð=Ð-Ð=Ð-Ð=Ð=°-Q ,1802DAN a \Ð=°-,//MN BC Q ,1802ADB DAN a \Ð=Ð=°-,1802ADB AEF \Ð=°-Ð.综上,2ADB AEF Ð=Ð或1802AEF °-Ð.【点评】本题主要考查了平行线的性质与判定,角平分线的定义的运用,解决问题的关键是掌握两直线平行内错角相等,两直线平行同旁内角,利用角的和差关系进行推理论证.9.(2023春•姜堰区期末)已知12//l l ,李想同学将ABC D 放置在这两条平行线上展开探究,其中ABC D 三边与两条平行线分别交于点D 、E 、F 、G .(1)【特例探究】如图1,90C Ð=°.①CED CGF Ð+Ð= 270 度;②若CED Ð与CGF Ð的角平分线相交于点P ,则EPG Ð= 度;(2)【一般探索】如图2,C a Ð=,EPG b Ð=.①若13DEP CED Ð=Ð,13FGP CGF Ð=Ð,求a 与b 的关系;②若1DEP CED n Ð=Ð,1(2FGP CGF n nÐ=Ð…且n 为整数),直接写出a 与b 的关系 ;(3)【拓展应用】如图3,CED Ð与CGF Ð的角平分线相交于点1P ,1PED Ð与1PGF Ð的角平分线相交于点2P ,2P ED Ð与2P GF Ð的角平分线相交于点3P ;¼,以此类推,则2023360C EP G°-ÐÐ的值是多少?(直接写出结果)【分析】(1)①作1//CM l 根据平行线的性质可得180CED ECM Ð+Ð=°,_180CGF GCM Ð+Ð=°两式相加即可得360CED CGF C Ð+Ð=°-Ð;②由①知:360CED CGF C Ð+Ð=°-Ð,再根据平行线的性质以及角平分线的定义即可得:1()2EPG CED CGF Ð=Ð+Ð化简整理即可;(2)①13DEP CED Ð=Ð,13FGP CGF Ð=Ð时,结合(1)中的结论和平行线的性质,可得a 与b 之间的关系;②类似于前面的证明,结合平行线的性质和角平分线的定义即可得结论;(3)根据角平分线的定义和平行线的性质找到规律即可得结论.【解答】解:(1)①作1//CM l,180CED ECM \Ð+Ð=°,2l Q //1l ,2//CM l \,_180CGF GCM \Ð+Ð=°,360CED ECM CGF GCM \Ð+Ð+Ð+Ð=°,90ECG ECM CGF Ð=Ð+Ð=°Q ,_90360CED CGF \Ð+Ð+°=°,270CED CGF \Ð+Ð=°,故答案为270°;②CED ÐQ 与CGF Ð的角平分线相交于点P ,2CED CEP \Ð=Ð,2CGF CGP Ð=Ð,由①知:270CED CGF Ð+Ð=°,22270CEP CGP \Ð+Ð=°,135CEP CGP \Ð+Ð=°,360CEP CGP EPG ECG Ð+Ð+Ð+Ð=°Q ,135EPF \Ð=°;(2)21//l l Q ,ECG a Ð=,由(1)①知360CED CGF ECF Ð+Ð+Ð=°,360360CED CGF ECG a \Ð+Ð=°-Ð=°-,由(1)②知若13DEP CED Ð=Ð,13FGP CGF Ð=Ð,\23CED CEP Ð=Ð,23CGF CGP Ð=Ð,2222()(360)3333CEP CGP CED CGF CED CGF a \Ð+Ð=Ð+Ð=Ð+Ð=°-,360CEP CGP EPG ECG Ð+Ð+Ð+Ð=°Q ,\2(360)3603a b a °-++=°,整理得:3360a b +=°;②若1DEP CED n Ð=Ð,1(2FGP CGF n nÐ=Ð…且n 为整数)时,由①同理可得a 与b 的关系:360n a b +=°;(3)通过前面的证明易得360360CED CGF C a Ð+Ð=°-Ð=°-,当CED Ð与CGF Ð的角平分线相交于点1P ,1PED Ð与1PGF Ð的角平分线相交于点2P ,2P ED Ð与2P GF Ð的角平分线相交于点3P ;¼,以此类推,则111111()()(360)222EPG CED CGF CED CGF a Ð=Ð+ÐÐ+Ð=°-,222111()())(360)422EP G CED CGF CED CGF a Ð=Ð+Ð=Ð+Ð==°-,333111()())(360)822EP G CED CGF CED CGF a Ð=Ð+Ð=Ð+Ð=°-,444111()())(360)1622EP G CED CGF CED CGF a Ð=Ð+Ð=Ð+Ð=°-,551(360)2EP G a Ð=°-,......1(360)2n nEP G a Ð=°-,当2023n =时,202320231(360)2EP G a Ð=°-,\20232023202336036021(360)2C EP G a a °-а-==а-,【点评】本题考查了平行线的性质,以及角平分线的定理,灵活运用所学知识找到规律是解决问题的关键.模型二、笔尖型如图,AB // CD ,探索∠B 、∠D 与∠DEB 的大小关系 ?解:∠B +∠D +∠DEB =360°.理由如下:过点E 作 EF // AB.又∵AB//CD.∴EF//CD.∴∠B+∠BEF=180°.∠D+∠DEF=180°.∴∠B+∠D+∠DEB=∠B+∠D+∠BEF+∠DEF =360°.即∠B+∠D+∠DEB=360°.一.选择题(共3小题)1.(2022春•海陵区期末)如图//a b,M、N分别在a、b上,P为两平行线间一点,那么Ð+Ð+Ð= )123(A.180°B.270°C.360°D.540°【分析】首先过点P作//PA a,构造三条平行线,然后利用两直线平行,同旁内角互补进行做题.【解答】解:过点P作//a b PA,PA a,则////Ð+Ð=°,1180NPA\Ð+Ð=°,3180MPA\Ð+Ð+Ð=°.123360故选:C.【点评】两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.2.(2023春•沭阳县期末)如图,把一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果137Ð=°,那么2Ð的度数是( )A.30°B.25°C.23°D.37°【分析】根据平行线的性质,两直线平行,内错角相等,进而可以得出答案.【解答】解:如图,Q直尺的两条边平行,137Ð=°,\Ð=Ð=°,1337Q直角三角板的一个角为30°,\Ð+Ð=°,2360\Ð=°-°=°,2603723故选:C.【点评】本题主要考查了平行线的性质,注意隐含条件,直尺的两条对边平行和直角三角板的一个锐角是30°是解题的关键.3.(2023春•东台市月考)某小区车库门口的“曲臂直杆道闸”(如图)可抽象为如图所示模型.已知AB 垂直于水平地面AE.当车牌被自动识别后,曲臂直杆道闸的BC段将绕点B缓慢向上抬高,CD段则一直保持水平状态上升(即CD与AE始终平行),在该运动过程中ABC BCDÐ+Ð的度数始终等于( )度A.360B.180C.250D.270【分析】过点B作//Ð+Ð=°,从而可C CBGBG AE,利用平行线的性质可得180BAE ABGÐ+Ð=°,180得360BAEÐ=°,最后进行计算即可解答.Ð+Ð+Ð=°,然后根据垂直定义可得90BAE ABC BCD【解答】解:过点B作//BG AE,BAE ABG\Ð+Ð=°,180AE CDQ,//\,BG CD//\Ð+Ð=°,180C CBG\Ð+Ð+Ð+Ð=°,BAE ABG CBG C360BAE ABC BCD\Ð+Ð+Ð=°,360^Q,BA AE\Ð=°,90BAE\Ð+Ð=°-Ð=°,ABC BCD BAE360270故选:D.【点评】本题考查了平行线的性质,熟练掌握铅笔模型是解题的关键.二.填空题(共3小题)4.(2022春•崇川区校级月考)如图,直线//Ð=°,则3Ð= 78 度,Ð=°,250a b,128Ð+Ð+Ð= 度.345【分析】过3Ð的顶点作已知直线的平行线,充分运用平行线的性质,不难发现:312Ð=Ð+Ð,Ð+Ð+Ð=°345360【解答】解:如图所示:过3Ð的顶点作//c a,a bQ,//\,a b c////Ð=Ð,16\Ð=Ð,72又367Ð=Ð+Ð,\Ð=Ð+Ð=°;31278又4675180Ð+Ð=Ð+Ð=°\Ð+Ð+Ð=°.345360【点评】注意此类题中常见的辅助线:构造已知直线的平行线.根据平行线的性质发现并证明:312Ð=Ð+Ð;345360Ð+Ð+Ð=°.5.(2022春•淮安期末)如图,//Ð和AB CD,E、F分别是AB、CD上的点,EH、FH分别是AEGÐ= 125 °.GÐ=°,则HCFGÐ的角平分线.若110【分析】过点G作//CD GM,Ð+Ð=°,再结合已知可得// GM AB,根据平行线的性质可得180AEG EGM然后利用平行线的性质可得180Ð+Ð=°,再利用角平分线的定AEG CFGÐ+Ð=°,从而可得250CFG MGF义可得125Ð+Ð=°,最后利用四边形的内角和定理进行计算即可解答.HEG GFH【解答】解:过点G作//GM AB,\Ð+Ð=°,AEG EGM180Q,//AB CD//CD GM \,180CFG MGF \Ð+Ð=°,360AEG EGM CFG MGF \Ð+Ð+Ð+Ð=°,110EGF EGM MGF Ð=Ð+Ð=°Q ,360250AEG CFG EGF \Ð+Ð=°-Ð=°,EH Q 、FH 分别是AEG Ð和CFG Ð的角平分线,12HEG AEG \Ð=Ð,12GFH CFG Ð=Ð,1112522HEG GFH AEG CFG \Ð+Ð=Ð+Ð=°,360125H HEG HFG EGF \Ð=°-Ð-Ð-Ð=°,故答案为:125.【点评】本题考查了平行线的性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.6.(2023春•邗江区期中)将一副三角板如图1所示摆放,30BAC Ð=°,45E Ð=°,直线//GH MN ,现将三角板ABC 绕点A 以每秒1°的速度顺时针旋转,同时三角板DEF 绕点D 以每秒3°的速度顺时针旋转,如图2,设时间为t 秒,当0120t ……时,若边BC 与三角板DEF 的一条直角边(边DE ,)DF 平行,则所有满足条件的t 的值为 15或105或60 .【分析】先根据题意画出旋转后的图形,由已知条件,利用平行线的旋转,求出旋转角之间的关系,列出方程解答即可.【解答】解:由题意得:30HAC BAH BAC t Ð=Ð+Ð=°+°,3FDM t Ð=°,(1)当//BC DE 时,如图所示:延长AC 交MN 于点P ,①DE 在MN 上方,//DE BC Q ,DE DF ^,AC BC ^,//AP DF \,FDM MPA \Ð=Ð,//MN GH Q ,MPA HAC \Ð=Ð,FDM HAC \Ð=Ð,即330t t =+,15t =;②1DE 在MN 下方时,1(3180)F DP t Ð=-°,1//DE BC Q ,11DE DF ^,AC BC ^,1//AP DF \,1F DM MPA \Ð=Ð,//MN GH Q ,MPA HAC \Ð=Ð,1F DM HAC \Ð=Ð,即318030t t -=+,解之得:105t =;如图:当//BC DF 时,延长AC 交MN 于点I ,①DF 在MN 上方,(1803)FDN t Ð=-度,//DF BC Q ,AC BC ^,//AI DE \,90FDN MIA \Ð+Ð=°,//MN GH Q ,MIA HAC \Ð=Ð,90FDN HAC \Ð+Ð=°,即18033090t t -++=,解之得:60t =;②DF 在MN 下方,2(1803)F DN t Ð=-度,2//DF BC Q ,AC BC ^,22ED DF ^,2//AC DE \,2AIM MDE \Ð=Ð,//MN GH Q ,MIA HAC \Ð=Ð,2E DM HAC \Ð=Ð,即318030t t -=+,解之得:105t =,综上可知:所有满足条件的t 的值为:15或105或60,故答案为:15或105或60.【点评】本题主要考查了平行线的性质,解题关键是根据题意,画出旋转后的图形.三.解答题(共3小题)7.(2022春•海州区校级期中)如图,在ABC D 中,点D 、E 分别在AB 、BC 上,且//DE AC ,12Ð=Ð.求证://AF BC .【分析】根据平行线的性质得出1C Ð=Ð,求出2C Ð=Ð,根据平行线的判定得出即可.【解答】证明://DE AC Q ,1C \Ð=Ð,12Ð=ÐQ ,2C \Ð=Ð,//AF BC \.【点评】本题考查了平行线的判定和性质,熟练应用判定定理和性质定理是解题的关键,平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.8.(2023春•盐都区期中)如图,在ABC D 中,点D 、E 分别在AB 、BC 上,//AF BC ,12Ð=Ð,求证://DE AC .【分析】由两直线平行内错角相等得到1C Ð=Ð,再根据同位角相等两直线平行可解题.【解答】证明://AF BC Q ,1C \Ð=Ð,12Ð=ÐQ ,2C \Ð=Ð,//DE AC \.【点评】本题考查平行线的判定与性质,是重要考点,掌握相关知识是解题关键.9.(2022春•亭湖区校级月考)如图,已知1BDC Ð=Ð,23180Ð+Ð=°.(1)AD 与EC 平行吗?试说明理由.(2)若DA 平分BDC Ð,DA FA ^于点A ,182Ð=°,试求FAB Ð的度数.【分析】(1)直接利用平行线的判定与性质得出//AB CD ,进而得出3180ADC Ð+Ð=°,即可得出答案;(2)利用角平分线的定义结合平行线的性质得出2Ð,即可得出答案.【解答】(1)解:AD 与EC 平行,理由如下:1BDC Ð=ÐQ ,//AB CD \(同位角相等,两直线平行),2ADC \Ð=Ð(两直线平行,内错角相等),23180Ð+Ð=°Q ,3180ADC \Ð+Ð=°(等量代换),//AD CE \(同旁内角互补,两直线平行);(2)解:1BDC Ð=ÐQ ,182Ð=°,82BDC \Ð=°,DA Q 平分BDC Ð,1412ADC BDC \Ð=Ð=°(角平分线定义),241ADC \Ð=Ð=°(已证),又DA FA ^Q ,90FAD \Ð=°(垂直定义),2904149FAB FAD \Ð=Ð-Ð=°-°=°.【点评】此题主要考查了平行线的判定与性质,正确得出90AEC FAD Ð=Ð=°是解题关键.模型三、“鸡翅”型如图,已知AB//CD ,试猜想∠A 、∠E 、∠C 的关系,并说明理由.解:∠AEC=∠A-∠C,理由如下:过点E 作 EF // AB又 ∵AB//CD .∴EF//CD .∴∠A+∠FEA=180°,∠C+∠FEC=180°∴ ∠AEC = ∠FEC- ∠FEA= 180°- ∠C –(180°-∠A)=∠A-∠C即:∠AEC=∠A-∠C一、单选题1.(2021下·湖南株洲·七年级统考期末)①如图1,AB ∥CD ,则360A E C Ð+Ð+Ð=°;②如图2,AB ∥CD ,则P A C Ð=Ð-Ð;③如图3,AB ∥CD ,则1E A Ð=Ð+Ð;④如图4,直线AB ∥CD ∥ EF ,点O 在直线EF 上,则180a b g Ð-Ð+Ð=°.以上结论正确的个数是( )A.1个B.2个C.3个D.4个【答案】C【分析】①过点E作直线EF∥AB,由平行线的性质:两直线平行,同旁内角互补,即可得出结论;②如图2,先根据三角形外角的性质得出∠1=∠C+∠P,再根据两直线平行,内错角相等即可作出判断;③如图3,过点E作直线EF∥AB,由平行线的性质可得出∠A+∠AEC﹣∠1=180°,即得∠AEC=180°+∠1﹣∠A;④如图4,根据平行线的性质得出∠α=∠BOF,∠γ+∠COF=180°,再利用角的关系解答即可.【详解】解:①如图1,过点E作直线EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠A+∠1=180°,∠2+∠C=180°,∴∠A+∠1+∠2+∠C=360°,∴∠A+∠AEC+∠C=360°,故①正确;②如图2,∵∠1是△CEP的外角,∴∠1=∠C+∠P,∵AB∥CD,∴∠A=∠1,即∠P=∠A﹣∠C,故②正确;③如图3,过点E作直线EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠A +∠3=180°,∠1=∠2,∴∠A +∠AEC ﹣∠1=180°,即∠AEC =180°+∠1﹣∠A ,故③错误;④如图4,∵AB ∥EF ,∴∠α=∠BOF ,∵CD ∥EF ,∴∠γ+∠COF =180°,∵∠BOF =∠COF +∠β,∴∠COF =∠α﹣∠β,∴∠γ+∠α﹣∠β=180°,故④正确;综上结论正确的个数为3,故选:C .【点睛】本题考查的是平行线的性质及三角形外角的性质,熟练掌握平行线的性质,根据题意作出辅助线是解答此题的关键.二、解答题2.(2021下·浙江台州·七年级统考期末)如图,已知AD AB ^于点A ,AE ∥CD 交BC 于点E ,且EF AB ^于点F .求证:12C Ð=Ð+Ð.证明:∵AD AB ^于点A ,EF AB ^于点F ,(已知)∴90DAB EFB Ð=Ð=°.(垂直的定义)∴AD ∥EF ,( )∴__________1=Ð( )∵AE ∥CD ,(已知)∴C Ð=________.(两直线平行,同位角相等)∵2AEB AEF Ð=Ð+Ð,∴12C Ð=Ð+Ð.(等量代换)【答案】见解析Q 1PE l ∥,12l l ∥,\12PE l l ∥∥,PAC APE \Ð=Ð,PBD BPE Ð=Ð,APB APE BPE Ð=Ð+ÐQ ,PAC PBD APB \Ð+Ð=Ð.(2)解:结论:当点P 在直线1l 上方时,Ð-Ð=ÐPBD PAC APB ;当点P 在直线2l 下方时,Ð-Ð=ÐPAC PBD APB .①当点P 在直线1l 上方时,如图2所示.过点P 作1PE l ∥.Q 1PE l ∥,12l l ∥,\12PE l l ∥∥,PAC APE \Ð=Ð,PBD BPE Ð=Ð,APB BPE APE Ð=Ð-ÐQ ,PBD PAC APB \Ð-Ð=Ð.②当点P 在直线2l 下方时,如图3所示.过点P 作1PE l ∥.Q 1PE l ∥,12l l ∥,\12PE l l ∥∥,PAC APE \Ð=Ð,PBD BPE Ð=Ð,APB APE BPE Ð=Ð-ÐQ ,PAC PBD APB \Ð-Ð=Ð.【点睛】本题考查了平行线的性质以及角的计算,解题的关键是根据“两直线平行,内错角相等”找到相等的角.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键.4.(2021下·广东东莞·七年级东莞市光明中学校考期中)(1)如图(1)AB CD P ,猜想BPD Ð与B D ÐÐ、的关系,说出理由.(2)观察图(2),已知AB CD P ,猜想图中的BPD Ð与B D ÐÐ、的关系,并说明理由.(3)观察图(3)和(4),已知AB CD P ,猜想图中的BPD Ð与B D ÐÐ、的关系,不需要说明理由.【答案】(1)360B BPD D Ð+Ð+Ð=°,理由见解析;(2)BPD B D Ð=Ð+Ð,理由见解析;(3)图(3)BPD D B Ð=Ð-Ð,图(4)BPD B DÐ=Ð-Ð【分析】(1)过点P 作EF AB ∥,得到180B BPE Ð+Ð=°,由AB CD P ,EF AB ∥,得到EF CD P ,得到180EPD D Ð+Ð=°,由此得到360B BPD D Ð+Ð+Ð=°;(2)过点P 作PE AB P ,由PE AB CD ∥∥,得到12B D Ð=ÐÐ=Ð,,从而得到结论12BPD B D Ð=Ð+Ð=Ð+Ð;(3)由AB CD P ,根据两直线平行,内错角相等与三角形外角的性质,即可求得BPD Ð与B D ÐÐ、的关系.【详解】(1)解:猜想360B BPD D Ð+Ð+Ð=°.理由:过点P 作EF AB ∥,∴180B BPE Ð+Ð=°,∵AB CD P ,EF AB ∥,∴EF CD P ,∴180EPD D Ð+Ð=°,∴360B BPE EPD D Ð+Ð+Ð+Ð=°,∴360B BPD D Ð+Ð+Ð=°;(2)BPD B D Ð=Ð+Ð.理由:如图,过点P 作PE AB P ,∵AB CD P ,∴PE AB CD ∥∥,∴12B D Ð=ÐÐ=Ð,,∴12BPD B D Ð=Ð+Ð=Ð+Ð;(3)如图(3):BPD D B Ð=Ð-Ð.理由:∵AB CD P ,∴1D Ð=Ð,∵1B P Ð=Ð+Ð,∴D B P Ð=Ð+Ð,即BPD D B Ð=Ð-Ð;如图(4):BPD B D Ð=Ð-Ð.理由:∵AB CD P ,∴1B Ð=Ð,∵1D P Ð=Ð+Ð,∴B D P Ð=Ð+Ð,即BPD B D Ð=Ð-Ð.【点睛】此题考查了平行线的性质,平行公理的推论,三角形的外角的性质定理,熟记平行线的性质是解题的关键.5.(2021下·浙江·七年级期末)已知//AM CN ,点B 为平面内一点,AB BC ^于B .(1)如图1,点B 在两条平行线外,则A Ð与C Ð之间的数量关系为______;(2)点B 在两条平行线之间,过点B 作BD AM ^于点D .①如图2,说明ABD C Ð=Ð成立的理由;②如图3,BF 平分DBC Ð交DM 于点,F BE 平分ABD Ð交DM 于点E .若180,3FCB NCF BFC DBE ÐÐÐÐ+=°=,求EBC Ð的度数.【答案】(1)∠A +∠C =90°;(2)①见解析;②105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)①过点B 作BG ∥DM ,根据平行线找角的联系即可求解;②先过点B 作BG ∥DM ,根据角平分线的定义,得出∠ABF =∠GBF ,再设∠DBE =α,∠ABF =β,根据∠CBF +∠BFC +∠BCF =180°,可得2α+β+3α+3α+β=180°,根据AB ⊥BC ,可得β+β+2α=90°,最后解方程组即可得到∠ABE =15°,进而得出∠EBC =∠ABE +∠ABC =15°+90°=105°.【详解】解:(1)如图1,AM 与BC 的交点记作点O ,∵AM ∥CN ,∴∠C =∠AOB ,∵AB ⊥BC ,∴∠A +∠AOB =90°,∴∠A +∠C =90°;(2)①如图2,过点B 作BG ∥DM ,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥DM,BG CN\//,∴∠C=∠CBG,∠ABD=∠C;②如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC =3α+β,∵∠AFC +∠NCF =180°,∠FCB +∠NCF =180°,∴∠FCB =∠AFC =3α+β,△BCF 中,由∠CBF +∠BFC +∠BCF =180°得:2α+β+3α+3α+β=180°,∵AB ⊥BC ,∴β+β+2α=90°,∴α=15°,∴∠ABE =15°,∴∠EBC =∠ABE +∠ABC =15°+90°=105°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.6.(2021下·福建厦门·七年级厦门市第十一中学校考期中)已知,//AE BD ,A D Ð=Ð.(1)如图1,求证://AB CD ;(2)如图2,作BAE Ð的平分线交CD 于点F ,点G 为AB 上一点,连接FG ,若CFG Ð的平分线交线段AG 于点H ,连接AC ,若ACE BAC BGM Ð=Ð+Ð,过点H 作HM FH ^交FG 的延长线于点M ,且3518E AFH Ð-Ð=°,求EAF GMH Ð+Ð的度数.【答案】(1)见解析;(2)72°【分析】(1)根据平行线的性质得出180A B Ð+Ð=°,再根据等量代换可得180B D Ð+Ð=°,最后根据平行线的判定即可得证;(2)过点E 作//EP CD ,延长DC 至Q ,过点M 作//MN AB ,根据平行线的性质及等量代换可得出ECQ BGM DFG Ð=Ð=Ð,再根据平角的含义得出ECF CFG Ð=Ð,然后根据平行线的性质及角平分线的定义可推出,BHF CFH CFA FAB Ð=ÐÐ=Ð;设,FAB CFH a b Ð=Ð=,根据角的和差可得出2AEC AFH Ð=Ð,结合已知条件35180AEC AFH Ð-Ð=°可求得18AFH Ð=°,最后根据垂线的含义及平行线的性质,即可得出答案.AFH CFH CFA CFH FABÐ=Ð-Ð=Ð-ÐQ AFH b a \Ð=-,BHF CFH bÐ=Ð=222ECF AFH AEC EAB AFH AEC b\Ð+Ð=Ð+Ð+Ð=Ð+22ECF AFH E BHF\Ð+Ð=Ð+Ð2AEC AFH\Ð=Ð35180AEC AFH Ð-Ð=°Q 18AFH \Ð=°FH HM^Q 90FHM \Ð=°90GHM b\Ð=°-180CFM NMF Ð+Ð=°Q 90HMB HMN b\Ð=Ð=°-EAF FABÐ=ÐQ 18EAF CFA CFH AFH b \Ð=Ð=Ð-Ð=-°189072EAF GMH b b \Ð+Ð=-°+°-=°72EAF GMH \Ð+Ð=°.【点睛】本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键.模型四、“骨折模型”如图,已知BC//DE ,试猜想∠A 、∠B 、∠D 的关系,并说明理由.解:∠BAD=∠D-∠B ,理由如下:过点A 作 AG // BC又 ∵CB//DE .∴AG//DE∴∠GAB+∠B=180°,∠GAD+∠D=180°∴ ∠BAD = ∠GAB- ∠GAD=180°-∠B–(180°-∠D)=∠D-∠B即:∠BAD=∠D-∠B注:平行线四大模型大题不可直接使用,必须证明后再用,选择填空满足条件即可直接用!【答案】60°【分析】过点B作BD∥2CBDÐ=Ð,进而可得Ð【详解】解:如图,过点Q Rt ABC△中,30AÐ=°,\9060ABC AÐ=°-Ð=°.Q BD EF∥,\1ABDÐ=Ð.【答案】40°/40度∥【分析】过C作CF ABÐ=°即可得到答案;CDE140【点睛】本题考查平行线的判定与性质,解题的关键是作出辅助线,根据平行线性质得到角度关系.二、解答题4.(2021·全国·九年级专题练习)已知AB //CD ,求证:∠B =∠E +∠D【答案】见解析【分析】过点E 作EF ∥CD ,根据平行线的性质即可得出∠B =∠BOD ,根据平行线的性质即可得出∠BOD =∠BEF 、∠D =∠DEF ,结合角之间的关系即可得出结论.【详解】证明:过点E 作EF ∥CD ,如图∵AB ∥CD ,∴∠B =∠BOD ,∵EF ∥CD (辅助线),∴∠BOD =∠BEF (两直线平行,同位角相等);∠D =∠DEF (两直线平行,内错角相等);∴∠BEF =∠BED +∠DEF =∠BED +∠D (等量代换),∴∠BOD=∠E +∠D (等量代换), 即∠B =∠E +∠D .【点睛】本题考查了平行线的性质以及角的计算,解题的关键是根据平行线的性质找出相等或互补的角.5.(2021下·山西晋中·七年级统考期中)综合与探究【问题情境】王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,//EF MN ,点A 、B 分别为直线EF 、MN 上的一点,点P 为平行线间一点,请直接写出PAF Ð、PBN Ð和APB Ð之间的数量关系;【问题迁移】(2)如图2,射线OM 与射线ON 交于点O ,直线//m n ,直线m 分别交OM 、ON 于点A 、D ,直线n 分别交OM 、ON 于点B 、C ,点P 在射线OM 上运动,①当点P 在A 、B (不与A 、B 重合)两点之间运动时,设ADP a Ð=Ð,BCP b Ð=Ð.则CPD Ð,a Ð,Ðb 之间有何数量关系?请说明理由.②若点P 不在线段AB 上运动时(点P 与点A 、B 、O 三点都不重合),请你画出满足条件的所有图形并直接写出CPD Ð,a Ð,Ðb 之间的数量关系.【答案】(1)360PAF PBN APB Ð+Ð+Ð=°;(2)①CPD a b Ð=Ð+Ð,理由见解析;②图见解析,CPD b a Ð=Ð-Ð或CPD a bÐ=Ð-Ð【分析】(1)作PQ ∥EF ,由平行线的性质,即可得到答案;(2)①过P 作//PE AD 交CD 于E ,由平行线的性质,得到DPE a Ð=Ð,CPE b Ð=Ð,即可得到答案;②根据题意,可对点P 进行分类讨论:当点P 在BA 延长线时;当P 在BO 之间时;与①同理,利用平行线的性质,即可求出答案.【详解】解:(1)作PQ ∥EF ,如图:∵//EF MN ,∴////EF MN PQ ,∴180PAF APQ Ð+Ð=°,180PBN BPQ Ð+Ð=°,∵APB APQ BPQÐ=Ð+Ð∴360PAF PBN APB Ð+Ð+Ð=°;(2)①CPD a b Ð=Ð+Ð;理由如下:如图,过P 作//PE AD 交CD 于E ,∵//AD BC ,∴////AD PE BC ,∴DPE a Ð=Ð,CPE b Ð=Ð,∴CPD DPE CPE a b Ð=Ð+Ð=Ð+Ð;②当点P 在BA 延长线时,如备用图1:∵PE ∥AD ∥BC ,∴∠EPC=b ,∠EPD =a ,∴CPD b a Ð=Ð-Ð;当P 在BO 之间时,如备用图2:∵PE ∥AD ∥BC ,∴∠EPD =a ,∠CPE =b ,∴CPD a b Ð=Ð-Ð.【点睛】本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角。

初中平行线模型整理—全面完整版2018.5.23

初中平行线模型整理—全面完整版2018.5.23

初中平行线模型整理——全面完整版(模型总结+精选例题+优化练习)第一部分 模型总结一、平行线模型:1)a//b,AC.BC 分别为∠BAD. ∠ABE 的角平分线, 则∠ACB=90 总结:两直线平行,一对同旁内角的角平分线互相垂直2)直线CF//BG ,OE 平分∠AOF ,PH 平分∠APG ,则OE//PH ,总结:两直线平行,一对同位角的角平分线互相平行3)直线CF//BG ,OE 平分∠COP ,PH 平分∠APG,则OE//PH总结:两直线平行,一对内错角的角平分线互相平行二、平行线拐点模型1)如图,线段AB//ED ,则∠B=∠C+∠D2) 如图,线段AB//EF 则∠F=∠C+∠B3)如图,线段AB//EF 则∠C=∠F+∠B总结:以上(1)(2)(3)可总结为,图中最大的角等于零两个角之和bF JF J E D E F B E F4)已知:如图,AA1∥BA3,则有∠B1+∠B2=∠A1+∠A2+∠A3(即向左凸出的角的和等于向右凸出的角的和)5)如图1,线段AB//EF则∠F+∠C+∠B=360图1如图2,线段AB//CD,则∠F+∠E+∠B+∠FD=540图2总结:综合图1和图2,则每增加一个拐点,就增加了180度,即当有n个顶点时,内角和为(n-1)180第二部分精选例题例1已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.例2 .如图,直线AB.CD被EF所截,∠1 =∠2,∠CNF =∠BME。

求证:AB∥CD,MP∥NQ.例3.如图3,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G.ABECFA BEFA A1A2A3B1B2B(练习1)F2A BC DQE1PMN1A CBFG例4.如图4,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1 +∠2 = 90°.求证:(1)AB∥CD; (2)∠2 +∠3 = 90°.第三部分 优化练习1.如图,已知AD ∥BC ,BD 平分ABC ∠,A ∠:ABC ∠=2:1,则ADB ∠的度数是多少? 分析:对象:ADB ∠的度数 角度:(1)AD ∥BC (2)BD 平分ABC ∠ (3)A ∠:ABC ∠=2:1 2.如图,EF ∥BC ,DF ∥AB ,图中与A ∠相等的角有那些? 3.已知一个角的余角为︒40,那么这个角的补角是 ; 4、A ∠与B ∠互为补角,如果︒=∠37A ,则B ∠的度数为 度;5、如图21∠=∠,︒∠=∠1253,则2∠= ;6、如图,︒=∠701,︒=∠502,则C ∠= 时,AB ∥CD ;7、若FDE A ∠=∠,则互相平行的直线是 ;8、如图,若a MN =,b NP =,则MP = ,MP MN 22+= ;1 2 3 第3题第1题A B C DM N P第8题A B CD E FG第2题 A E C B D F 第4题1 2A E BC DC图4 12 3AB DF9、下列选项中正确的是()。

2023年中考数学专题《平行线四大模型》含答案解析

2023年中考数学专题《平行线四大模型》含答案解析

专题03 平行线四大模型(知识解读)【专题说明】历年中考考试中,有不少题目都考查了平行线的性质及应用,现汲取四大模型,供同学们赏析,希望能到达指导学习之目的。

【方法技巧】模型一“铅笔”模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.模型二“猪蹄”模型(M模型)点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.模型三“臭脚”模型点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD模型四“骨折”模型点P在EF左侧,在AB、CD外部·“骨折”模型结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.【典例分析】【模型1 “铅笔”模型】【典例1】如图,直线a∥b,点M、N分别在直线a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于( )A.360°B.300°C.270°D.180°【答案】A【解答】解:如图,过点P作PA∥a,则a∥b∥PA,∴∠3+∠NPA=180°,∠1+∠MPA=180°,∴∠1+∠2+∠3=180°+180°=360°.故选:A.【变式1-1】把一块等腰直角三角尺和直尺按如图所示的方式放置,若∠1=32°,则∠2的度数为( )A.20°B.18°C.15°D.13°【答案】D【解答】解:如图,过点O作OP∥AB,则OP∥AB∥CD,∴∠1=∠3,∠2=∠4,∵∠3+∠4=45°,∴∠1+∠2=45°,∴∠2=45°﹣∠1=45°﹣32°=13°.故选:D.【典例2】问题情境:(1)如图1,AB∥CD,∠BAP=120°,∠PCD=130°,求∠APC的度数.(提示:如图2,过P作PE∥AB)问题迁移:(2)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP =α,∠PCB=β,α、β、∠DPC之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出α、β、∠DPC之间的数量关系.(提示:三角形内角和为180°)【解答】解:(1)∵AB∥CD,∠PAB=120°,∠PCD=130°,∴∠PAB+∠APE=180°,∠EPC+∠C=180°,∴∠APE=180°﹣120°=60°,∠EPC=180°﹣130°=50°,∴∠APC=∠APE+∠EPC=60°+50°=110°;(2)∠CPD=∠α+∠β,理由如下:如图3,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(3)①当P在OA延长线时,∠CPD=∠β﹣∠α;②当P在AB延长线时,∠CPD=∠α﹣∠β,①当P在OA延长线时,∠CPD=∠β﹣∠α;理由:如图4,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE﹣∠DPE=∠β﹣∠α;②当P在AB延长线时,∠CPD=∠α﹣∠β,理由:如图5,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE﹣∠CPE=∠α﹣∠β.【变式2-1】已知,AB∥CD,试解决下列问题:(1)如图1,∠1+∠2= ;(2)如图2,∠1+∠2+∠3= ;(3)如图3,∠1+∠2+∠3+∠4= ;(4)如图4,试探究∠1+∠2+∠3+∠4+…+∠n= .【解答】解:(1)∵AB∥CD,∴∠1+∠2=180°(两直线平行,同旁内角互补);(2)过点E作一条直线EF∥AB,∵AB∥CD,∴CD∥EF,∴∠1+∠AEF=180°,∠FEC+∠3=180°,∴∠1+∠2+∠3=360°;(3)过点E、F作EG、FH平行于AB,∵AB∥CD,∴AB∥EG∥FH∥CD,∴∠1+∠AEG=180°,∠GEF+∠EFH=180°,∠HFC+∠4=180°;∴∠1+∠2+∠3+∠4=540°;(4)根据上述规律,显然作(n﹣2)条辅助线,运用(n﹣1)次两条直线平行,同旁内角互补.即可得到n个角的和是180°(n﹣1).【变式2-2】如图,已知BQ∥GE,AF∥DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACB的度数.【解答】解:(1)∵BQ∥GE,∠1=50°,∴∠E=∠1=50°,∵AF∥DE,∴∠AFG=∠E=50°;(2)过点A作AM∥BQ,由(1)得∠AFG=∠E=50°,∵BQ∥GE,∴AM∥BQ∥GE,∴∠FAM=∠AFG=50°,∠MAQ=∠Q=15°,∴∠FAQ=∠FAM+∠MAQ=65°,∵AQ平分∠FAC,∴∠QAC=∠FAQ=65°,∴∠MAC=∠QAC+∠MAQ=80°,∵AM∥BQ,∴∠ACB=∠MAC=80°.【模型2 “猪蹄”模型(M模型)】【典例3】【问题背景】同学们,观察小猪的猪蹄,你会发现一个熟悉的几何图形,我们就把这个图形的形象称为“猪蹄模型”,猪蹄模型中蕴含着角的数量关系.【问题解决】(1)如图1,AB∥CD,E为AB、CD之间一点,连接AE、CE.若∠A=42°,∠C=28°.则∠AEC= .【问题探究】(2)如图2,AB∥CD,线段AD与线段BC交于点E,∠A=36°,∠C=54°,EF平分∠BED,求∠BEF的度数.【问题拓展】(3)如图3.AB∥CD,线段AD与线段BC相交于点G,∠BCD=56°,∠GDE=20°,过点D作DF∥CB交直线AB于点F,AE平分∠BAD,DG平分∠CDF,求∠AED的度数.【解答】解:(1)延长CE交AB于点F,∵AB∥CD,∴∠AFC=∠C=28°,∵∠AEC是△AEF的一个外角,∴∠AEC=∠A+∠AFC=∠A+∠C=70°,故答案为:70°;(2)利用(1)的结论可得:∠AEC=∠A+∠C=36°+54°=90°,∴∠AEC=∠BED=90°,∵EF平分∠BED,∴∠BEF=∠BED=45°,∴∠BEF的度数为45°;(3)∵BC∥DF,∴∠CDF=180°﹣∠BCD=124°,∵DG平分∠CDF,∴∠CDG=∠CDF=62°,∵AB∥CD,∴∠BAG=∠CDG=62°,∵AE平分∠BAD,∴∠BAE=∠BAD=31°,∵∠GDE=20°,∴∠EDH=180°﹣∠CDG﹣∠GDE=98°,利用(1)的结论可得:∠AED=∠BAE+∠EDH=31°+98°=129°,∴∠AED的度数为129°.。

(完整版)平行线经典四大模型典型例题及练习

(完整版)平行线经典四大模型典型例题及练习

平行线四大模型平行线的判定与性质l、平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.判定方法l:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.2、平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补本讲进阶平行线四大模型模型一“铅笔”模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.模型二“猪蹄”模型(M模型)点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.模型三“臭脚”模型点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.模型四“骨折”模型点P在EF左侧,在AB、CD外部“骨折”模型结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.巩固练习平行线四大模型证明(1)已知AE // CF ,求证∠P +∠AEP +∠PFC = 360°.(2)已知∠P=∠AEP+∠CFP,求证AE∥CF.(3)已知AE∥CF,求证∠P=∠AEP-∠CFP.(4)已知∠P= ∠CFP -∠AEP,求证AE //CF.模块一平行线四大模型应用例1(1)如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .(2)如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.(3)如图,已知AB∥DE,∠ABC=80°,∠CDE =140°,则∠BCD= .(4) 如图,射线AC∥BD,∠A= 70°,∠B= 40°,则∠P= .练(1)如图所示,AB∥CD,∠E=37°,∠C= 20°,则∠EAB的度数为.(2) (七一中学2015-2016七下3月月考)如图,AB∥CD,∠B=30°,∠O=∠C.则∠C= .例2如图,已知AB∥DE,BF、DF分别平分∠ABC、∠CDE,求∠C、∠F的关系.如图,已知AB ∥DE ,∠FBC =n 1∠ABF ,∠FDC =n1∠FDE . (1)若n =2,直接写出∠C 、∠F 的关系 ; (2)若n =3,试探宄∠C 、∠F 的关系;(3)直接写出∠C 、∠F 的关系 (用含n 的等式表示).例3如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .求证:∠E = 2 (∠A +∠C ) .练如图,己知AB ∥DE ,BF 、DF 分别平分∠ABC 、∠CDE ,求∠C 、∠F 的关系.例4如图,∠3==∠1+∠2,求证:∠A +∠B +∠C +∠D = 180°.(武昌七校2015-2016 七下期中)如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F则∠F的度数为().A. 120°B. 135°C. 145°D. 150°模块二平行线四大模型构造例5如图,直线AB∥CD,∠EF A= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,则∠GHM= .练如图,直线AB∥CD,∠EFG =100°,∠FGH =140°,则∠AEF+ ∠CHG= .已知∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.练已知AB∥EF,求∠l-∠2+∠3+∠4的度数.(1)如图(l),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n,∠B1、∠B2…∠B n-1之间的关系.(2)如图(2),己知MA1∥NA4,探索∠A1、∠A2、∠A3、∠A4,∠B1、∠B2之间的关系.(3)如图(3),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n之间的关系.如图所示,两直线AB∥CD平行,求∠1+∠2+∠3+∠4+∠5+∠6.挑战压轴题(粮道街2015—2016 七下期中)如图1,直线AB ∥CD ,P 是截线MN 上的一点,MN 与CD 、AB 分别交于E 、F . (1) 若∠EFB =55°,∠EDP = 30°,求∠MPD 的度数;(2) 当点P 在线段EF 上运动时,∠CPD 与∠ABP 的平分线交于Q ,问:DPBQ∠∠是否为定值?若是定值,请求出定值;若不是,说明其范围;(3) 当点P 在线段EF 的延长线上运动时,∠CDP 与∠ABP 的平分线交于Q ,问DPBQ∠∠的值足否定值,请在图2中将图形补充完整并说明理由.第一讲 平行线四大模型(课后作业)1.如图,AB // CD // EF , EH ⊥CD 于H ,则∠BAC +∠ACE +∠CEH 等于( ).A . 180°B . 270°C . 360°D . 450° 2.(武昌七校2015-2016七下期中) 若AB ∥CD ,∠CDF =32∠CDE ,∠ABF =32∠ABE ,则∠E :∠F =( ).A .2:1B .3:1C .4:3D .3:23.如图3,己知AE∥BD,∠1=130°,∠2=30°,则∠C= .4.如图,已知直线AB∥CD,∠C =115°,∠A= 25°,则∠E= .5.如阁所示,AB∥CD,∠l=l l0°,∠2=120°,则∠α= .6.如图所示,AB∥DF,∠D =116°,∠DCB=93°,则∠B= .7.如图,将三角尺的直角顶点放在直线a上,a∥b.∠1=50°,∠2 =60°,则∠3的度数为 . 8.如图,AB∥CD,EP⊥FP, 已知∠1=30°,∠2=20°.则∠F的度数为.9.如图,若AB∥CD,∠BEF=70°,求∠B+∠F+∠C的度数.10.已知,直线AB∥CD.(1)如图l,∠A、∠C、∠AEC之间有什么关系?请说明理由;(2)如图2,∠AEF、∠EFC、∠FCD之间有什么关系?请说明理由;(3)如图3,∠A、∠E、∠F、∠G、∠H、∠O、∠C之间的关是.。

专题 平行线四大模型(专项训练)(解析版)

专题  平行线四大模型(专项训练)(解析版)

专题03 平行线四大模型(专项训练)1.将一副三角板按图中方式叠放,则角α等于()A.30°B.45°C.60°D.75°【答案】D【解答】解:如图,根据两直线平行,内错角相等,∴∠1=45°,根据三角形的一个外角等于与它不相邻的两个内角的和,∴∠α=∠1+30°=75°.故选:D.2.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=55°,则∠2的度数是()A.50°B.70°C.80°D.110°【答案】B【解答】解:∵AD平分∠BAC,∴∠BAD=∠CAD,∵a∥b,∠1=55°,∴∠BAD=∠CAD=55°,∴∠2=180°﹣55°﹣55°=70°.故选:B.3.如图,a∥b,M、N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=()A.180°B.360°C.270°D.540°【答案】B【解答】解:过点P作P A∥a,∵a∥b,P A∥a,∴a∥b∥P A,∴∠1+∠MP A=180°,∠3+∠APN=180°,∴∠1+∠MP A+∠3+∠APN=180°+180°=360°,∴∠1+∠2+∠3=360°.故选:B.4.把一块直尺与一块直角三角板如图放置,若∠1=38°,则∠2的度数为.【答案】128°【解答】解:如图,∵∠1=∠3=38°,∴∠2=90°+∠3=90°+38°=128°.故答案为:128°.5.如图,是赛车跑道的一段示意图,其中AB∥DE,测得∠B=140°,∠D=120°,则∠C的度数为度.【答案】100【解答】解:如图所示:过点C作CF∥AB.∵AB∥DE,∴DE∥CF;∴∠BCF=180°﹣∠B=40°,∠DCF=180°﹣∠D=60°;∴∠C=∠BCF+∠DCF=100°.故答案为:100.6.问题情境(1)如图①,已知∠B+∠E+∠D=360°,试探究直线AB与CD有怎样的位置关系?并说明理由.小明给出下面正确的解法:直线AB与CD的位置关系是AB∥CD.理由如下:过点E作EF∥AB(如图②所示),所以∠B+∠BEF=180°(依据1),因为∠B+∠BED+∠D=360°(已知),所以∠B+∠BEF+∠FED+∠D=360°,所以∠FED+∠D=180°,所以EF∥CD(依据2),因为EF∥AB,所以AB∥CD(依据3).交流反思上述解答过程中的“依据1”,“依据2”,“依据3”分别指什么?“依据1”:,“依据2”:,“依据3”:,类比探究(2)如图,当∠B、∠E、∠F、∠D满足条件时,有AB ∥CD.拓展延伸(3)如图,当∠B、∠E、∠F、∠D满足条件时,有AB∥CD.【解答】解:(1)“依据1”:两直线平行,同旁内角互补,“依据2”:同旁内角互补,两直线平行,“依据3”:平行于同一条直线的两直线平行,故答案为:两直线平行,同旁内角互补;同旁内角互补,两直线平行;平行于同一条直线的两直线平行,(2)如图,当∠B、∠BEF、∠EFD、∠D满足条件∠B+∠BEF+∠EFD+∠D=540°时,有AB∥CD.理由:过点E、F分别作GE∥HF∥CD.则∠GEF+∠EFH=180°,∠HFD+∠CDF=180°,∴∠GEF+∠EFD+∠FDC=360°;又∵∠B+∠BEF+∠EFD+∠D=540°,∴∠B+∠BEG=180°,∴AB∥GE,∴AB∥CD;故答案为:∠B+∠BEF+∠EFD+∠D=540°;(3)如图,当∠B、∠BEF、∠EFD、∠D满足条件∠B+∠BEF+∠D=180°+∠EFD时,有AB∥CD.理由:过点E、F分别作GE∥FH∥CD.则∠GEF=∠EFH,∠D=∠HFD,∵∠B+∠BEF+∠D=180°+∠EFD,即∠B+∠BEG+∠GEF+∠D=180°+∠EFH+∠HFD,∴∠B+∠BEG=180°,∴AB∥GE,∴AB∥CD,故答案为:∠B+∠BEF+∠D=180°+∠EFD.7.如图,a∥b,将一个等腰直角三角板放置到如图所示位置.若∠1=15°,则∠2的大小是()A.20°B.25°C.30°D.45°【答案】C【解答】解:如图:过点B作BC∥b,∴∠1=∠CBD=15°,∵△ABD是等腰直角三角形,∴∠ABD=45°,∴∠ABC=∠ABD﹣∠CBD=30°,∵a∥b,∴a∥BC,∴∠2=∠ABC=30°,故选:C.8.将长方形纸条按如图方式折叠,折痕为DE,点A,B的对应点分别为A′,B′,若∠α=∠β﹣20°,则∠β的度数为()A.50°B.60°C.70°D.80【答案】C【解答】解:如图:延长EB′交AF于点G,∵四边形ABHF是矩形,∴∠B=90°,AF∥BH,由折叠得:∠B=∠A′B′E=90°,∠BEB′=2∠BED=2∠β,∴∠CB′G=180°﹣∠A′B′E=90°,∵AF∥BH,∴∠FGB′=∠BEB′=2∠β,∵∠FGB′是△CGB′的一个外角,∴∠FGB′=∠GCB′+∠CB′G,∴2∠β=∠α+90°,∵∠α=∠β﹣20°,∴2∠β=∠β﹣20°+90°,∴∠β=70°,故选:C.9.如图,AB∥DE,∠ABC=80°,∠CDE=140°,则∠BCD的度数为()A.30°B.40°C.60°D.80°【答案】B【解答】解:反向延长DE交BC于M,如图:∵AB∥DE,∴∠BMD=∠ABC=80°,∴∠CMD=180°﹣∠BMD=100°;又∵∠CDE=∠CMD+∠C,∴∠BCD=∠CDE﹣∠CMD=140°﹣100°=40°.故选:B.10.如图,将直尺与30角的三角尺叠放在一起,若∠2=50°,则∠1的大小是()A.40°B.50°C.70°D.80°【答案】C【解答】解:如图:由题意得,∠3=60°,∵∠2=50°,AB∥CD,∴∠4=∠2=50°,∴∠1=180°﹣60°﹣50°=70°,故选:C.11.如图,一副三角板叠放在一起,使直角顶点重合于点O,AB∥OC,DC与OA交于点E,则∠DEO的度数为()A.85°B.75°C.70°D.60°【答案】B【解答】解:过点E作EF∥CO,∴∠AEF=∠A=30°,∵AB∥CO,∴EF∥CO,∴∠FEC=∠C=45°,∴∠AEC=∠AEF+∠FEC=75°,∴∠DEO=∠AEC=75°,故选:B.12.如图,船C在观测站A的北偏东35°方向上,在观测站B的北偏西20°方向上,那么∠ACB=()度.A.20°B.35°C.55°D.60°【答案】C【解答】解:如图:过点C作CF∥AD,由题意得:∠DAC=35°,∠CBE=20°,AD∥EB,∴CF∥EB,∴∠FCB=∠CBE=20°,∵CF∥AD,∴∠ACF=∠DAC=35°,∴∠ACB=∠ACF+∠FCB=55°,故选:C.13.如图,AB∥CD,将一副直角三角板作如下摆放,∠GEF=60°,∠MNP=45°.下列结论:①GE∥MP;②∠EFN=150°;③∠BEF=65°;④∠AEG=35°,其中正确的个数是()A.1B.2C.3D.4【答案】B【解答】解:①由题意得:∠G=∠MPN=90°,∴GE∥MP,故①正确;②由题意得∠EFG=30°,∴∠EFN=180°﹣∠EFG=150°,故②正确;③过点F作FH∥AB,如图,∵AB∥CD,∴∠BEF+∠EFH=180°,FH∥CD,∴∠HFN=∠MNP=45°,∴∠EFH=∠EFN﹣∠HFN=105°,∴∠BEF=180°﹣∠EFH=75°,故③错误;④∵∠GEF=60°,∠BEF=75°,∴∠AEG=180°﹣∠GEF﹣∠BEF=45°,故④错误.综上所述,正确的有2个.故选:B.14.已知l1∥l2,一个含有30°角的三角尺按照如图所示的位置摆放,若∠1=65°,则∠2=度.【答案】25【解答】解:如图,过直角顶点作l3∥l1,∵l1∥l2,∴l1∥l2∥l3,∴∠1=∠3,∠2=∠4,∴∠1+∠2=∠3+∠4=90°,∵∠1=65°,∴∠2=25°.故答案为:25.15.如图,AB∥CD,点E,F分别是AB,CD上的点,点M位于AB与CD之间且在EF的右侧.(1)若∠M=90°,则∠AEM+∠CFM=;(2)若∠M=n°,∠BEM与∠DFM的角平分线交于点N,则∠N的度数为.(用含n的式子表示)【答案】270°n°.【解答】解:(1)过点M作MP∥AB,∵AB∥CD,∴AB∥CD∥MP,∴∠1=∠MEB,∠2=∠MFD,∵∠M=∠1+∠2=90°,∴∠MEB+∠MFD=90°,∵∠AEM+∠MEB+∠CFM+∠MFD=180°+180°=360°,∴∠AEM+∠CFM=360°﹣90°=270°.故答案为:270°;(2)过点N作NQ∥AB,∵AB∥CD,∴AB∥CD∥NQ,∴∠3=∠NEB,∠4=∠NFD,∴∠NEB+∠NFD=∠3+∠4=∠ENF,∵∠BEM与∠DFM的角平分找交于点N,∵∠NEB=∠MEB,∠DFN=MFD,∴∠3+∠4=∠BEN+∠DFN=(∠MEB+∠MFD),由(1)得,∠MEB+∠MFD=∠EMF,∴∠ENF=∠EMF=n°.故答案为:n°.16.小明同学遇到这样一个问题:如图①,已知:AB∥CD,E为AB、CD之间一点,连接BE,ED,得到∠BED.求证:∠BED=∠B+∠D.小亮帮助小明给出了该问的证明.证明:过点E作EF∥AB,则有∠BEF=∠B.∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D.请你参考小亮的思考问题的方法,解决问题:直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,猜想:如图②,若点P在线段CD上,∠P AC=15°,∠PBD=40°,求∠APB的度数.拓展:如图③,若点P在直线EF上,连接P A、PB(BD<AC),直接写出∠P AC、∠APB、∠PBD之间的数量关系.【解答】解:猜想:如图1,过点P作PH∥AC,则∠P AC=∠APH,∵l1∥l2,∴BD∥PH,∴∠PBD=∠BPH,∴∠APB=∠APH+∠BPH=∠P AC+∠PBD,∵∠P AC=15°,∠PBD=40°,∴∠APB=15°+40°=55°.拓展:①如图1,当点P在线段CD上时,由猜想可知,∠APB=∠P AC+∠PBD;②如图2,当点P在射线DP上时,过点P作PH∥AC,则∠P AC=∠APH,∵l1∥l2,∴BD∥PH,∴∠PBD=∠BPH,∴∠APB=∠APH﹣∠BPH=∠P AC﹣∠PBD;③如图3,当点P在射线CE上时,过点P作PH∥AC,则∠P AC=∠APH,∵l1∥l2,∴BD∥PH,∴∠PBD=∠BPH,∴∠APB=∠BPH﹣∠APH=∠PBD﹣∠P AC;综上所述,∠P AC、∠APB、∠PBD之间的数量关系为∠APB=∠P AC+∠PBD或∠APB =∠P AC﹣∠PBD或∠APB=∠PBD﹣∠P AC.17.如图1,AB∥CD,EOF是直线AB、CD间的一条折线.(1)试证明:∠O=∠BEO+∠DFO.(2)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC之间会满足怎样的数量关系,证明你的结论.【解答】(1)证明:作OM∥AB,如图1,∴∠1=∠BEO,∵AB∥CD,∴OM∥CD,∴∠2=∠DFO,∴∠1+∠2=∠BEO+∠DFO,即:∠O=∠BEO+∠DFO.(2)解:∠O+∠PFC=∠BEO+∠P.理由如下:作OM∥AB,PN∥CD,如图2,∵AB∥CD,∴OM∥PN∥AB∥CD,∴∠1=∠BEO,∠2=∠3,∠4=∠PFC,∴∠1+∠2+∠PFC=∠BEO+∠3+∠4,∴∠O+∠PFC=∠BEO+∠P.18.如图,AB∥CD,点E为AB上方一点,FB、CG分别为∠EFG、∠ECD的角平分线,若∠E+2∠G=210°,则∠EFG的度数为()A.140°B.150°C.130°D.160°【答案】A【解答】解:过G作GM∥AB,∴∠2=∠5,∵AB∥CD,∴MG∥CD,∴∠6=∠4,∴∠G=∠5+∠6=∠2+∠4,∵FB、CG分别为∠EFG,∠ECD的角平分线,∴∠1=∠2=∠EFG,∠3=∠4=∠ECD,∴∠E+∠EFG+∠ECD=210°,∵AB∥CD,∴∠ENB=∠ECD,∴∠E+∠EFG+∠ENB=210°,∵∠1=∠E+∠ENB,∴∠1+∠EFG=∠1+∠1+∠2=210°,∴3∠1=210°,∴∠1=70°,∴∠EFG=2×70°=140°.故选:A.19.如图,AB∥EF,∠C=90°,则α、β和γ的关系是()A.β=α+γB.α+β+γ=180°C.α+β﹣γ=90°D.β+γ﹣α=180°【答案】C【解答】解:延长DC交AB与G,延长CD交EF于H.在直角△BGC中,∠1=90°﹣α;△EHD中,∠2=β﹣γ,∵AB∥EF,∴∠1=∠2,∴90°﹣α=β﹣γ,即α+β﹣γ=90°.故选:C.20.某小区车库门口的“曲臂直杆道闸”(如图)可抽象为如右图所示模型.已知AB垂直于水平地面AE.当车牌被自动识别后,曲臂直杆道闸的BC段将绕点B缓慢向上抬高,CD段则一直保持水平状态上升(即CD与AE始终平行),在该运动过程中∠ABC+∠BCD的度数始终等于()度A.360B.180C.250D.270【答案】D【解答】解:过点B作BG∥AE,∴∠BAE+∠ABG=180°,∵AE∥CD,∴BG∥CD,∴∠C+∠CBG=180°,∴∠BAE+∠ABG+∠CBG+∠C=360°,∴∠BAE+∠ABC+∠BCD=360°,∵BA⊥AE,∴∠BAE=90°,∴∠ABC+∠BCD=360°﹣∠BAE=270°,故选:D.。

部编数学七年级下册专题03平行线四大模型与动态角度问题专题讲练(解析版)含答案

部编数学七年级下册专题03平行线四大模型与动态角度问题专题讲练(解析版)含答案

专题03 平行线四大模型与动态角度问题专题讲练平行线与动态角度问题在初中数学几何模块中属于基础工具类问题,也是学生必须掌握的一块内容,该份资料就平行线的四大模型(铅笔模型、猪蹄模型、拐弯模型、“5”字模型)和动态角度问题(翻折、旋转、动点)进行梳理及对应试题分析,方便掌握。

模型1:铅笔头模型【解题技巧】如图,①已知:AB∥CD,结论:∠PAB+∠APB+∠PCD=360°;②已知:∠PAB+∠APB+∠PCD=360°,结论:AB∥CD.图①、图②图③③已知:AB∥CD,结论:∠1+∠2+…+∠n=180(n-1).例1、(2021.河北七年级月考)如图,已知:AB∥CD,求证:∠PAB+∠APB+∠PCD=360°;【解析】方法一(破角):过点P作PQ∥AB则AB∥CD∥PQ∴∠BAP+∠APQ=180°,∠CPQ+∠PCD=180°∴∠BAP+∠APQ+∠CPQ+∠PCD=360° 即∠PAB+∠APB+∠PCD=360°.方法二(添角):连接AC,易知,∠1+∠4=180°,∠2+∠3+∠P=180°∴∠1+∠4+∠2+∠3+∠P=360°即∠PAB +∠APB +∠PCD =360°.变式1.(2021·河南·七年级期中)如图,直线12l l P ,130Ð=°,则23Ð+Ð=( )A .150°B .180°C .210°D .240°【答案】C 【分析】根据题意作直线l 平行于直线l 1和l 2,再根据平行线的性质求解即可.【解析】解:作直线l 平行于直线l 1和l 212////l l l Q 1430;35180°°\Ð=Ð=Ð+Ð=245Ð=Ð+ÐQ 2+3=4+5+3=30180210°°°\ÐÐÐÐÐ+= 故选C.【点睛】本题主要考查平行线的性质,关键在于等量替换的应用,两直线平行同旁内角互补,两直线平行内错角相等.变式2.(2021·黑龙江·哈尔滨市第四十七中学七年级期中)如图,已知直线l 1∥l 2,∠A =125°,∠B =85°,且∠1比∠2大4°,那么∠1=______.【答案】17°【分析】延长AB ,交两平行线与C 、D ,根据平行线的性质和领补角的性质计算即可;【详解】延长AB ,交两平行线与C 、D ,∵直线l 1∥l 2,∠A =125°,∠B =85°,∴4285Ð+Ð=°,13125Ð+Ð=°,34180Ð+Ð=°,∴852*******°-Ð+°-Ð=°,∴1230Ð+Ð=°,又∵∠1比∠2大4°,∴2=14ÐÐ-°,∴2134Ð=°,∴117Ð=°;故答案是17°.【点睛】本题主要考查了平行线的性质应用,准确计算是解题的关键.例2.(2021·福建泉州七年级期末)问题情境:我市某中学班级数学活动小组遇到问题:如图1,AB ∥CD ,∠PAB =130°,∠PCD =120°,求∠APC 的度数.经过讨论形成的思路是:如图2,过P 作PE ∥AB ,通过平行线性质,可求得∠APC 的度数.(1)按该数学活动小组的思路,请你帮忙求出∠APC 的度数;(2)问题迁移:如图3,AD ∥BC ,点P 在A 、B 两点之间运动时, ADP a Ð=,BCP βÐ=.请你判断CPD Ð、a 、 β之间有何数量关系?并说明理由;(3)拓展应用:如图4,已知两条直线AB ∥CD ,点P 在两平行线之间,且BEP Ð的平分线与 ∠DFP 的平分线相交于点Q ,求2P Q Ð+Ð的度数.【答案】(1)110°;(2)∠CPD =α+β,见解析;(3)360°.【解析】解:(1)过点P 作PE ∥AB ,∵AB ∥CD , ∴PE ∥AB ∥CD .∴∠A +∠APE =180°,∠C +∠CPE =180°∵∠PAB =130°,∠PCD =120°,∴∠APE =50°,∠CPE =60°,∴∠APC =∠APE +∠CPE =110°.(2)∠CPD =α+β,理由如下:过P 作PE ∥AD 交CD 于E .∵AD ∥BC ,∴AD ∥PE ∥BC ,∴∠DPE =α,∠CPE =β,∴∠CPD =∠DPE +∠CPE =α+β.(3)由(1)可得,∠P +∠BEP +∠DFP =360° 又∵QE 平分∠PEB ,QF 平分∠PFQ∴∠BEP =2∠BEQ ,∠DFP =2∠DFQ ∴∠P +2∠Q =∠P +2(∠BEQ +∠DFQ )=∠P +∠BEP +∠DFP =360°.变式3.(2021·佛山顺德区月考)问题情境1:如图1,AB ∥CD ,P 是ABCD 内部一点,P 在BD 的右侧,探究∠B ,∠P ,∠D 之间的关系?小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质,可得∠B ,∠P ,∠D 之间满足 关系.(直接写出结论)问题情境2:如图3,AB ∥CD ,P 是AB ,CD 内部一点,P 在BD 的左侧,可得∠B ,∠P ,∠D 之间满足 关系.(直接写出结论)问题迁移:请合理的利用上面的结论解决以下问题:已知AB ∥CD ,∠ABE 与∠CDE 两个角的角平分线相交于点F (1)如图4,若∠E =80°,求∠BFD 的度数;(2)如图5中,∠ABM =13∠ABF ,∠CDM =13∠CDF ,写出∠M 与∠E 之间的数量关系并证明你的结论.(3)若∠ABM =1n ∠ABF ,∠CDM =1n∠CDF ,设∠E =m °,用含有n ,m °的代数式直接写出∠M = .【答案】问题情境1:∠B +∠BPD +∠D =360°,∠P =∠B +∠D ;(1)140°;(2)16∠E +∠M =60°(3)360m 2nM °°-Ð=.【解析】(1)∵BF 、DF 分别是∠ABE 和∠CDE 的平分线,∴∠EBF =12∠ABE ,∠EDF =12∠CDE ,由问题情境1得:∠ABE +∠E +∠CDE =360°,∵∠E =80°,∴∠ABE +∠CDE =280°,∴∠EBF +∠EDF =140°,∴∠BFD =360°﹣80°﹣140°=140°;(2)16∠E +∠M =60°,理由是:设∠ABM =x ,∠CDM =y ,则∠FBM =2x ,∠EBF =3x ,∠FDM =2y ,∠EDF =3y ,由问题情境1得:∠ABE +∠E +∠CDE =360°,∴6x +6y +∠E =360°,即16∠E =60﹣x ﹣y ,∵∠M +∠EBM +∠E +∠EDM =360°,∴6x +6y +∠E =∠M +5x +5y +∠E ,∴∠M =x +y ,∴16∠E +∠M =60°;(3)设∠ABM =x ,∠CDM =y ,则∠FBM =(n ﹣1)x ,∠EBF =nx ,∠FDM =(n ﹣1)y ,∠EDF =ny ,由问题情境1得:∠ABE +∠E +∠CDE =360°,∴2nx +2ny +∠E =360°,∴x +y =360m 2n°°-,∵∠M +∠EBM +∠E +∠EDM =360°,∴2nx +2ny +∠E =∠M +(2n ﹣1)x +(2n ﹣1)y +∠E ,∴∠M =360m 2n °°-;故答案为:∠M =360m 2n°°-.变式4.(2021·洛阳市期中)已知:如图1,12180°Ð+Ð=,Ð=ÐAEF HLN .(1)判断图中平行的直线,并给予证明;(2)如图2,2Ð=ÐPMQ QMB ,2Ð=ÐPNQ QND ,请判断P Ð与Q Ð的数量关系,并证明.【答案】(1)AB ∥CD ,EF ∥HL ,见解析;(2)∠P =3∠Q ,见解析.【解析】解:(1)AB∥CD,EF∥HL,∵∠1=∠AMN,∴∠1+∠2=180°,∴∠AMN+∠2=180°,∴AB∥CD;延长EF交CD于F1,∵AB∥CD,∴∠AEF=∠EF1L,∵∠AEF=∠HLN,∴∠EF1L=∠HLN,∴EF∥HL;(2)∠P=3∠Q,由(1)得AB∥CD,作QR∥AB,PL∥AB,∴∠RQM=∠QMB,RQ∥CD,∴∠RQN=∠QND,∴∠MQN=∠QMB+∠QND,∵AB∥CD,PL∥AB,∴AB∥CD∥PL,∴∠MPL=∠PMB,∠NPL=∠PND,∴∠MPN=∠PMB+∠PND,∵∠PMQ=2∠QMB,∠PNQ=2∠QND,∴∠PMB=3∠QMB,∠PND=3∠QND,∴∠MPN=3∠MQN,即∠P=3∠Q.例3.(2021·西安七年级月考)下列各图中的MA1与NA n平行.(1)图①中的∠A1+∠A2= 度,图②中的∠A1+∠A2+∠A3= 度,图③中的∠A1+∠A2+∠A3+∠A4= 度,图④中的∠A1+∠A2+∠A3+∠A4+∠A5= 度,…,第⑩个图中的∠A1+∠A2+∠A3+…+∠A10= 度(2)第n个图中的∠A1+∠A2+∠A3+…+∠A n= .【答案】(1)180;360;540;720;1620;(2)180°(n﹣1).【解析】解:(1)∵MA1∥NA2,∴∠A1+∠A2=180°,如图,分别过A2、A3、A4作MA1的平行线,图②中的∠A1+∠A2+∠A3=360°,图③中的∠A1+∠A2+∠A3+∠A4=540°,图④中的∠A1+∠A2+∠A3+∠A4+∠A5=720°,…,第⑩个图中的∠A1+∠A2+∠A3+…+∠A10=1620°;(2)第n个图中的∠A1+∠A2+∠A3+…+∠A n=180°(n﹣1).故答案为180,360,540,720,1620;180°(n﹣1).变式5.(2021·全国初二课时练习)如图①:MA1∥NA2,图②:MA11NA3,图③:MA1∥NA4,图④:MA1∥NA5,……,则第n个图中的∠A1+∠A2+∠A3+…+∠A n+1______.(用含n的代数式表示)n【答案】n180°分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.【解析】如图①中,∠A1+∠A2=180∘=1×180∘,如图②中,∠A1+∠A2+∠A3=360∘=2×180∘,如图③中,∠A1+∠A2+∠A3+∠A4=540∘=3×180∘,…,n,故答案为180n°.第n个图,∠A1+∠A2+∠A3+…+∠A n+1学会从=n180°点睛:平行线的性质.模型2:猪蹄模型(M型)【解题技巧】如图,①已知:AB∥CD,结论:∠APC=∠A+∠C;②已知:∠APC=∠A+∠C,结论:AB∥CD.图①、图②图③③已知:AB ∥CD ,结论:∠A +∠P 2+∠C =∠P 1+∠P 3. 例1、(2022.广东省初一月考)如图所示,已知:AB ∥CD ,求证:∠APC =∠A +∠C ;【解析】方法一(破角):过点P 作PQ ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥PQ ∴∠1=∠2,∠3=∠4∴∠APC =∠2+∠3=∠1+∠4.方法二(添角): 连接AC ,∵AB ∥CD ∴∠1+∠3+∠2+∠4=180°,又∠2+∠3+∠APC =180° ∴∠APC =∠1+∠4.变式1.(2021·山东青岛期末)如图,//AB CD ,点E 在AC 上,110A Ð=°,15D Ð=°,则下列结论正确的个数是( )(1)AE EC =;(2)85AED Ð=°;(3)A CED D Ð=Ð+Ð;(4)45BED Ð=°A .1个B .2个C .3个D .4个【答案】B .【解析】解:过点E 作EF ∥AB ,(1)无法判断;(2)∵AB //CD ,AB //EF ,∴EF //CD ,∴∠AEF =70°,∠DEF =15°,∴∠AED =85°,正确;(3)由(2)得:∠A =∠CEF =∠CED +∠DEF ,∠DEF =∠D ∴∠A =∠CED +∠D ,正确;(4)无法判断;故答案为:B .变式2.(2021.湖北七年级期中)如图,//AB EF ,90C Ð=°,则a Ð,βÐ,g Ð之间的关系是( )A .βa gÐ=Ð+ÐB .180a βg Ð+Ð+Ð=°C .90a βg Ð+Ð-Ð=°D .90βg a Ð+Ð-Ð=°【答案】C .【解析】解:分别过C 、D 作AB 的平行线CM 和DN ,则AB ∥CM ∥DN ∥EF ∴∠α=∠BCM ,∠DCM =∠CDN ,∠NDE =∠γ而∠β=∠CDN +∠NDE =∠DCM +∠γ=90°-∠BCM +∠γ=90°-∠α+∠γ.即∠α+∠β-∠γ=90°,故答案为:C .例2.(2021·浙江杭州七年级期中)如图(1)所示是一根木尺折断后的情形,你可能注意过,木尺折断后的断口一般是参差不齐的,那么请你深入考虑一下其中所包含的一类数学问题,我们不妨取名叫“木尺断口问题”.(1)如图(2)所示,已知//AB CD ,请问B Ð,D Ð,E Ð有何关系并说明理由;(2)如图(3)所示,已知//AB CD ,请问B Ð,E Ð,D Ð又有何关系并说明理由;(3)如图(4)所示,已知//AB CD ,请问E G +∠∠与B F D ++∠∠∠有何关系并说明理由.【答案】见解析.【解析】解:(1)∠E =∠B +∠D ,理由如下:过点E 作直线a ∥AB ,则a ∥AB ∥CD ,则∠B =∠1,∠D =∠2,∴∠BED =∠1+∠2=∠B +∠D .(2)∠E +∠B +∠D =360°,理由如下:过点E 作直线b ∥AB ,则b ∥AB ∥CD ∴∠B +∠3=180°,∠4+∠D =180°∴∠B +∠3+∠4+∠D =360°即∠E +∠B +∠D =360°.(3)∠B +∠F +∠D =∠E +∠G ,理由如下:过点E ,F ,G 作直线c ∥AB ,d ∥AB ,e ∥AB ,则c ∥AB ∥d ∥e ∥CD ,则∠B =∠5,∠6=∠7,∠8=∠9,∠10=∠D∴∠B +∠EFG +∠D =∠5+∠7+∠8+∠10=∠5+∠6+∠9+∠10=∠BEF +∠FGD .变式3.(2021·山西八年级期末)综合与探究问题情境:综合实践课上,王老师组织同学们开展了探究三角之间数量关系的数学活动.(1)如图1,//EF MN ,点,A B 分别为直线,EF MN 上的一点,点P 为平行线间一点且130,120PAF PBN Ð=°Ð=°,求APB Ð度数;问题迁移:(2)如图2,射线OM 与射线ON 交于点O ,直线//m n ,直线m 分别交,OM ON于点,A D ,直线n 分别交,OM ON 于点,B C ,点P 在射线OM 上运动.①当点P 在,A B (不与,A B 重合)两点之间运动时,设,ADP BCP a βÐ=ÐÐ=Ð.则,,CPD a βÐÐÐ之间有何数量关系?②若点P 不在线段AB 上运动时(点P 与点,,A B O 三点都不重合),请你直接写出,,CPD a βÐÐÐ间的数量关系.【答案】(1)110°;(2)①∠CPD =α+β;②当P 在BA 延长线时,∠CPD =β-α;;当P 在OB 之间时,∠CPD =α-β.【解析】解:(1)过P 作PG ∥EF ,则PG ∥EF ∥MN ,∴∠PAF +∠GPA =180°,∠PBN +∠GPB =180°∴∠GPA =180°-130°=50°,∠GPB =180°-∠PBN =60°∴∠APB =∠GPA+∠GPB =50°+60°=110°.(2)①∠CPD =∠α+∠β. ②当P 在BA 延长线时,∠CPD =β-α.过P 作PE ∥AD 交AD 于E ,∵AD ∥BC ,∴∠DPE =α,∠CPE =β ∴∠CPD =β-α.当P 在OB 之间时,∠CPD =α-β 过P 作PE ∥AD 交CD 于E ,同理,得:∠CPD =α-β.变式4.(2021·河南七年级期末)把一块含60°角的直角三角尺()0090,60EFG EFG EGF Ð=Ð=放在两条平行线,AB CD 之间.(1)如图1,若三角形的60°角的顶点G 放在CD 上,且221Ð=Ð,求1Ð的度数;(2)如图2,若把三角尺的两个锐角的顶点,E G 分别放在AB 和CD 上,请你探索并说明AEF Ð与FGC Ð间的数量关系;(3)如图3,若把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上,请直接写出AEG Ð与CFG Ð的数量关系.【答案】(1)40°;(2)∠AEF +∠FGC =90°;(3)∠AEG +∠CFG =300°.【解析】解:(1)∵AB ∥CD ,∴∠1=∠EGD ,∵∠2+∠FGE +∠EGD =180°,∠2=2∠1,∴2∠1+60°+∠1=180°,∴∠1=40°;(2)过点F 作FP ∥AB ,∵CD ∥AB ,∴FP ∥AB ∥CD ,∴∠AEF =∠EFP ,∠FGC =∠GFP .∴∠AEF +∠FGC =∠EFP +∠GFP =∠EFG ,∵∠EFG =90°,∴∠AEF +∠FGC =90°;(3) ∠AEG +∠CFG =300°,理由如下:∵AB ∥CD ,∴∠AEF +∠CFE =180°,即∠AEG −30°+∠CFG −90°=180°,整理得:∠AEG +∠CFG =300°.模型3:拐弯模型【解题技巧】类型1(鸟嘴形):如图,已知AB ∥CD ,结论:∠1=∠2+∠3.类型2(骨折形):如图,AB ∥CD ,结论:∠2=∠1+∠3.例1.(2021.广东省七年级期中)如图,已知AB ∥CD ,求证:∠1=∠2+∠3.【解析】证法1(添角):过点P 作PQ ∥AB ,则AB ∥CD ∥PQ∴∠2+∠3+∠4=180°,∠1+∠4=180°∴∠1=∠2+∠3.证法2:延长AB交PD于Q,则∠2=∠4,∠1+∠5=180°,∠5+∠3+∠4=180°∴∠1=∠3+∠4=∠2+∠3.例2. (2021·忠县七年级月考)如图,已知直线l1//l2,l3、和l1、l2分别交于点A、B、C、D,点P在直线l3或上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明;(4)若点P在线段DC延长线上运动时,请直接写出∠1、∠2、∠3之间的关系.【答案】(1)见详解;(2)∠3=∠2﹣∠1;(3)∠3=360°﹣∠1﹣∠2;(4)∠3=360°﹣∠1﹣∠2.【解析】(1)证明:过P作PQ∥l1,则PQ∥l1∥l2,∴∠1=∠QPE、∠2=∠QPF∵∠EPF=∠QPE+∠QPF,∴∠EPF=∠1+∠2.(2)∠3=∠2﹣∠1;过P 作PQ ∥l 1,则PQ ∥l 1∥l 2,则:∠1=∠QPE 、∠2=∠QPF ∵∠EPF =∠QPF ﹣∠QPE ,∴∠EPF =∠2﹣∠1.(3)∠3=360°﹣∠1﹣∠2.过P 作PQ ∥l 1,则PQ ∥l 1∥l 2,∴∠EPQ +∠1=180°,∠FPQ +∠2=180°,∵∠EPF =∠EPQ +∠FPQ ;∴∠EPQ +∠FPQ +∠1+∠2=360°,即∠EPF =360°﹣∠1﹣∠2;(4)点P 在线段DC 延长线上运动时,∠3=∠1﹣∠2.过P 作PQ ∥l 1,则PQ ∥l 1∥l 2,∴∠1=∠QPE 、∠2=∠QPF ;∵∠QPE ﹣∠QPF=∠EPF ;∴∠3=∠1﹣∠2.变式3.(2021·余干县期末)如图1,AD //BC ,BAD Ð的平分线交BC 于点G ,90BCD Ð=°.(1)求证:BAG BGA Ð=Ð;(2)如图2,若50ABC Ð=°,BCD Ð的平分线交AD 于点E ,交射线GA 于点F ,AFC Ð的度数.【答案】(1)见解析;(2)20°.【解析】解:(1)∵DA ∥BC ∴∠DAG =∠AGB∵AC 平分∠BAD ∴∠BAG =∠DAG ∴∠BAG =∠AGB .(2)∵∠ABC =50°∴∠BGA =∠BAG =65°,∴∠AGC =115°∵CE 平分∠DCB ∴∠ECB =45°,∴∠AFC =180°-∠AGC -∠ECB =20°.变式4.(2021·福建三明七年级期中)问题情境:在综合与实践课上,老师让同学们以“两条平行线AB ,CD 和一块含60°角的直角三角尺()90,60EFG EFG EGF Ð=Ð=o o ”为主题开展数学活动.操作发现:(1)如图1,小明把三角尺的60o 角的顶点G 放在CD 上,若221Ð=Ð,求1Ð的度数;(2)如图2,小颖把三角尺的两个锐角的顶点E 、G 分别放在AB 和CD 上,请你探索并说明AEF Ð与FGC Ð之间的数量关系;结论应用:(3)如图3,小亮把三角尺的直角顶点F 放在CD 上,30o 角的顶点E 落在AB 上.若AEG a Ð=,求CFG Ð的度数(用含a 的式子表示).图1 图2 图3【答案】(1)40°;(2)∠AEF +∠FGC =90°;(3)∠CFG =60°-α.【解析】解:(1)∵AB ∥CD ,∴∠1=∠EGD .又∵∠2=2∠1,∴∠2=2∠EGD .又∵∠FGE =60°,∴∠EGD =13(180°﹣60°)=40°,∴∠1=40°;(2)∵AB ∥CD ,∴∠AEG +∠CGE =180°,即∠AEF +∠FEG +∠EGF +∠FGC =180°.又∵∠FEG +∠EGF =90°,∴∠AEF +∠FGC =90°;(3)∵AB ∥CD ,∴∠AEF +∠CFE =180°,即∠AEG +∠FEG +∠EFG +∠GFC =180°.又∵∠GFE =90°,∠GEF =30°,∠AEG =α,∴∠GFC =180°﹣90°﹣30°﹣α=60°﹣α.模型4:“5”字模型基本模型:如图,AB ∥CD ,结论:∠1+∠3-∠2=180°.例1.(2021.浙江七年级期中)如图,AB ∥CD ,求证:∠1+∠3-∠2=180°.【解析】过P作PQ∥AB,则AB∥CD∥PQ∴∠1+∠4=180°,∠4+∠5=∠3,∠5=∠2 ∴∠1+∠3-∠2=180°.变式1.(2021.北京七年级期中)如图,已知AB∥CD, EF∥CD,则下列结论中一定正确的是( )A.∠BCD= ∠DCE;B.∠ABC+∠BCE+∠CEF=360°;C.∠BCE+∠DCE=∠ABC+∠BCD;D.∠ABC+∠BCE -∠CEF=180°.【分析】根据平行线的性质,找出图形中的同旁内角、内错角即可判断.【解析】延长DC到H。

专题5.4 平行线中的四大经典模型(人教版)(解析版)

专题5.4 平行线中的四大经典模型(人教版)(解析版)

∵ PE ∥ l1,l1∥l2, ∴ PE ∥ l1∥l2, ∴ ∠PAC = ∠APE,∠PBD = ∠BPE, ∵ ∠APB = ∠APE − ∠BPE, ∴ ∠PAC − ∠PBD = ∠APB. 【点睛】本题考查了平行线的性质以及角的计算,解题的关键是根据“两直线平行,内错角相等”找到相等的 角.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键. 4.(2023 下·山东聊城·七年级统考阶段练习)已知直线 AB//CD,EF 是截线,点 M 在直线 AB、CD 之间.
专题 5.4 平行线中的四大经典模型
【模型 1 “猪蹄”型(含锯齿型)】
【人教版】
1.(2020 下·湖北武汉·七年级统考期末)如图,퐴 ∥ 퐶 ,퐸 平分∠ 퐸 ,∠ 퐸 + ∠ = 66°,∠ −
∠ = 28°,则∠ 퐸 =

【答案】80° 【分析】过 E 点作 EM∥AB,根据平行线的性质可得∠BED=∠B+∠D,利用角平分线的定义可求得 ∠B+3∠D=132°,结合∠B-∠D=28°即可求解. 【详解】解:过 E 点作 EM∥AB,
AE 平分∠BAC 可得∠BAE=∠EAC,等量代换可得∠ECD+∠EAC=90°,继而求得∠DCE=∠ECA; (2)①过 E 作 EF∥AB,先利用平行线的传递性得出 EF∥AB∥CD,再利用平行线的性质及已知条件可推得
答案; ②过 E 作 EF∥AB,先利用平行线的传递性得出 EF∥AB∥CD,再利用平行线的性质及已知条件可推得答案. 【详解】(1)解:因为퐴 //퐶 , 所以∠BAC+∠DCA=180°, 因为퐴퐸 ⊥ 퐶퐸, 所以∠EAC+∠ECA=90°, 因为 AE 平分∠BAC, 所以∠BAE=∠EAC, 所以∠BAE+∠DCE=90°, 所以∠EAC+∠DCE=90°, 所以∠DCE=∠ECA, 所以 CE 平分∠ACD; (2)①∠BAE 与∠MCD 存在确定的数量关系:∠BAE+12∠MCD=90°, 理由如下: 过 E 作 EF∥AB,

《平行线四大模型》专题

《平行线四大模型》专题

A
B
F
C
D
E
E
F
A
B
C
D
四、典例分析--“钩子型”
【典例1】如图,已知 BC//DE,试猜想∠A、∠B、∠D 的关系,并说明理由.
解:∠D=∠A+∠B , 理由如下:
∵∠AFB+∠A+∠B=180° 又∵∠AFB+∠AFC=180° ∴∠A+∠B=∠AFC ∵BC//DE,∴∠AFC=∠D ∴∠D=∠A+∠B
解:∠B+∠D=∠DEB.理由如下:
过点E 作 EF // AB. ∵ EF // AB , ∴∠B=∠BEF. 又 ∵ AB//CD. ∴ EF//CD. ∴ ∠D =∠DEF. ∴∠B+∠D=∠BEF+∠DEF=∠DEB. 即∠B+∠D=∠DEB.
A E
C
B F
D
典例拓展1:
A1 A2 A3 B1 B2
平行线“拐点”专题
温故知新
平行线的判定与性质
线的关系
两直线平行
平行线的性质
同旁内角互补
平行线经典四大模型
1.猪蹄型
A
B
E
C
D
4.钩子型
2.铅笔型
A
B
E
C
D
A
B
F
C
D
E
3.靴子型
E
A
B
C
D
一、典例分析--“猪蹄型”(M模型)
【典例1】如图,若 AB // CD,你能确定∠B、∠D与∠BED 的大小关系吗?
∴ ∠D +∠DEF=180°.
C
∴ ∠B+∠D+∠DEB
=∠B+∠D+∠BEF+∠DEF =360°.

专题01平行线的四大模型(原卷版)-2023-2024学年七年级数学下册压轴题(人教版)

专题01平行线的四大模型(原卷版)-2023-2024学年七年级数学下册压轴题(人教版)

专题01 平行线的四大模型平行线的性质和判定是证明角相等、研究角的关系的重要依据,是研究几何图形位置关系与数量关系的基础,是平面几何的一个重要内容和学习简单的逻辑推理的素材。

它不但为三角形的内角和定理的证明提供了转化的方法,而且也是今后学习三角形、四边形知识的基础.本节课重点学习平行线的基础模型的应用迁移.模型一“铅笔”模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.专题分析模型分类模型分析【典例1】(2023秋•南岗区校级期中)已知,射线FG分别交射线AB、DC于点F、G,点E为射线FG上一点.(1)如图1,若∠A+∠D=∠AED,求证:AB∥CD.(2)如图2,若AB∥CD,求证:∠A﹣∠D=∠AED.(3)如图3,在(2)的条件下,DI交AI于点Ⅰ,交AE于点K,∠EDI=∠CDE,∠BAI=∠EAI,∠I=∠AED=25°,求∠EKD的度数.【变式11】(2023•渝中区校级模拟)如图,已知直线a∥b,∠BAC=90°,∠1=40°,则∠2的度数为()A.40°B.50°C.130°D.140°典例分析【变式12】(2023•金安区一模)如图,已知a∥b,∠1=45°,∠2=125°,则∠ABC的度数为()A.100°B.105°C.115°D.125°【变式13】(2022春•肇州县期末)如图,AB∥CD,∠C=110°,∠B=120°,则∠BEC =()A.110°B.120°C.130°D.150°【变式14】(2023春•巴南区月考)已知直线MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN和PO之间.(1)如图1,求证:∠CAB﹣∠MCA=∠PBA;(2)如图2,CD∥AB,点E在直线PQ上,且∠MCA=∠DCE,求证:∠ECN=∠CAB;(3)如图3,BF平分∠PBA,CG平分∠ACN,且AF∥CG.若∠CAB=50°,直接写出∠AFB的度数.【变式15】(2023春•遂宁期末)如图,直线PQ∥MN,两个三角形如图①放置,其中∠ABC =∠CDE=90°,∠ACB=30°,∠BAC=60°,∠DCE=∠DEC=45°,点E在直线PQ上,点B,C均在直线MN上,且CE平分∠ACN.(1)求∠DEQ的度数;(2)如图②,若将△ABC绕B点以每秒3°的速度按逆时针方向旋转(A,C的对应点分别为F,G).设旋转时间为t秒,当t=10时,边BG与CD有何位置关系?请说明理由.模型分析模型二“猪蹄”模型(模型)点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.典例分析【典例2】(2023春•邵阳县期末)如图,直线AB∥CD,连接EF,直线AB,CD及线段EF 把平面分成①②③④四个部分,规定:线上各点不属于任何部分.当动点G落在某个部分时,连接GE,GF,构成∠EGF,∠GEB,∠GFD三个角.(1)当动点G落在第③部分时,如图一,试说明:∠EGF,∠GEB,∠GFD三者的关系;(2)当动点G落在第②部分时,如图二,思考(1)中三者关系是否仍然成立若不成立,说明理由.【变式21】(2023•盘锦)如图,直线AB∥CD,将一个含60°角的直角三角尺EGF按图中方式放置,点E在AB上,边GF,EF分别交CD于点H,K,若∠BEF=64°,则∠GHC 等于()A.44°B.34°C.24°D.14°【变式22】(2023•盘锦)如图,直线AB∥CD,将一个含60°角的直角三角尺EGF按图中方式放置,点E在AB上,边GF,EF分别交CD于点H,K,若∠BEF=64°,则∠GHC 等于()A.44°B.34°C.24°D.14°【变式23】(2023•海南模拟)如图,已知AB∥DE,∠B=20°,∠D=130°,那么∠BCD 等于()A.60°B.70°C.80°D.90°【变式24】(2023春•覃塘区期末)如图,AB∥CD,将一副直角三角板作如下摆放,∠GEF =60°,∠MNP=45°.下列结论:①GE∥MP;②∠EFN=150°;③∠BEF=65°;④∠AEG=35°,其中正确的个数是()A.1B.2C.3D.4【变式25】(2023春•赣县区期末)【问题背景】:同学们,观察小猪的猪蹄,你会发现一个熟悉的几何图形,我们就把这个图形的形象称为“猪蹄模型”,猪蹄模型中蕴含着角的数量关系.【问题探究】:(1)如图1,AB∥CD,E为AB、CD之间一点,连接BE、DE,得到∠BED 与∠B、∠D之间的数量关系,并说明理由;【类比迁移】:(2)请你利用上述“猪蹄模型”得到的结论或解题方法,完成下面的问题:如图2,直线AB∥CD,若∠B=23°,∠G=35°,∠D=25°,求∠BEG+∠GFD的度数;【灵活应用】:(3)如图3,直线AB∥CD,若∠E=∠B=60°,∠F=85°,则∠D=25度.【变式26】(2023春•邵阳期末)如图1,直线AB∥CD,P是截线MN上的一点.(1)若∠MNB=45°,∠MDP=20°,求∠MPD;(2)如图1,当点P在线段MN上运动时,∠CDP与∠ABP的平分线交于Q,问是否为定值,若是定值,请求出;若不是定值,请说明理由;(3)如图2,若T是直线MN上且位于M点的上方的一点,如图所示,当点P在射线MT上运动时,∠CDP与∠ABP的平分线交于Q,问的值是否和(2)问中的情况一样呢?请你写出探究过程,说明理由.【变式27】(2023春•防城港期末)阅读下面材料:(1)小亮同学遇到这样一个问题:已知:如图甲,AB∥CD,E为直线AB,CD之间一点,连接BE、DE得到∠BED.求证:∠BED=∠B+∠D.下面是小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴CD∥EF,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,直线a∥b,BE平分∠ABC,DE平分∠ADC,若∠ABC=50°,∠ADC=60°,求∠BED的度数,(过点E作EF∥AB)模型分析模型三“臭脚”模型点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP∠CFP或∠P=∠CFP∠AEP;结论2:若∠P=∠AEP∠CFP或∠P=∠CFP∠AEP,则AB∥CD.典例分析【典例3】(2023春•中山区期末)如图,∠ABE+∠BED=∠CDE.(1)如图1,求证AB∥CD;(2)如图2,点P在AB上,∠CDP=∠EDP,BF平分∠ABE,交PD于点F,探究∠BFP,∠BED的数量关系,并证明你的结论;(3)在(2)的条件下,如图3,PQ交ED延长线于点Q,∠DPQ=2∠APQ,∠PQD =80°,求∠CDE的度数.【变式31】已知AB ∥CD .(1)如图1,求证:∠ABE +∠DCE ﹣∠BEC =180°;(2)如图2,∠DCE 的平分线CG 的反向延长线交∠ABE 的平分线BF 于F .若BF ∥CE ,∠BEC =26°,求∠BFC .结论1:若AB ∥CD ,则∠P =∠CFP ∠AEP 或∠P =∠AEP ∠CFP ; 结论2:若∠P =∠CFP ∠AEP 或∠P =∠AEP ∠CFP ,则AB ∥CD .模型四“骨折”模型点P 在EF 左侧,在AB 、 CD 外部·“骨折”模型模型分析典例分析【典例4】(2022秋•朝阳区校级期末)已知AB∥CD,点E在AB上,点F在DC上,点G 为射线EF上一点.(1)【基础问题】如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分)证明:过点G作直线MN∥AB,又∵AB∥CD,∴∥CD∵MN∥AB,∴∠=∠MGA.∵MN∥CD,∴∠D=()∴∠AGD=∠AGM+∠DGM=∠A+∠D.(2)【类比探究】如图2,当点G在线段EF延长线上时,请写出∠AGD、∠A、∠D三者之间的数量关系,并说明理由.(3)【应用拓展】如图3,AH平分∠GAE,DH交AH于点H,且∠GDH=2∠HDF,∠HDF=22°,∠H=32°,直接写出∠DGA的度数为°.【变式41】(2022秋•肃州区校级期末)如图(1),AB∥CD,∠AEP=40°,∠PFD=130°,求∠EPF的度数.小明想到了以下方法:解:如图(1),过点P作PM∥AB,∴∠1=∠AEP=40°(两直线平行,内错角相等)∵AB∥CD(已知)∴PM∥CD(平行于同一条直线的两直线平行)∴∠2+∠PFD=180°(两直线平行,同旁内角互补)∵∠PFD=130°(已知)∴∠2=180°﹣130°=50°∴∠EPF=∠1+∠2=40°+50°=90°即∠EPF=90°【探究】如图(2),AB∥CD,∠AEP=50°,∠PFC=120°,求∠EPF的度数.【应用】如图(3),在【探究】的条件下,∠PEA的平分线和∠PFC的平分线交于点G,求∠G的度数.【变式42】(2022春•朝阳县期末)学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1,l2内部,探究∠A,∠APB,∠B的关系,小明过点P作l1的平行线,可得∠APB,∠A,∠B之间的数量关系是:∠APB=.(2)如图2,若AC∥BD,点P在AC,BD外部,∠A,∠B,∠APB的数量关系是否发生变化?请写出证明过程.【变式43】(2020春•乳山市期中)【信息阅读】材料信息:如图①,AB∥DE,点C是直线AB,DE外任意一点,连接BC,DC.方法信息:如图②,在“材料信息”的条件下,∠B=55°,∠D=35°,求∠BCD的度数.解:过点C作CF∥AB.∴∠BCF=∠B=55°.∵AB∥DE,∴CF∥DE.∴∠DCF=∠D=35°.∴∠BCD=55°﹣35°=20°.【问题解决】(1)通过【信息阅读】,猜想:∠B,∠D,∠BCD之间有怎样的等量关系?请直接写出结论:;(2)如图③,在“材料信息”的条件下,改变点C的位置,∠B,∠D,∠BCD之间的等量关系是否改变?若不改变,请写出理由;若改变,请写出新的等量关系及理由.1.(2023春•建昌县期末)如图,将一个含30°角的直角三角板的直角顶点C放在直尺的两边MN,PQ之间,则下列结论中:①∠1=∠3;②∠2=∠3;③∠1+∠3=90°;④若∠3=60°,则AB⊥PQ,其中正确结论的个数是()A.1个B.2个C.3个D.4个2.(2023春•芜湖期末)如图所示是汽车灯的剖面图,从位于O点灯发出光照射到凹面镜上反射出的光线BA,CD都是水平线,若∠ABO=α,∠DCO=60°,则∠BOC的度数为()A.180°﹣αB.120°﹣αC.60°+αD.60°﹣α3.(2022•恩施州)已知直线l1∥l2,将含30°角的直角三角板按如图所示摆放.若∠1=120°,则∠2=()A.120°B.130°C.140°D.150°4.(2022•博山区一模)如图,直线a∥b,点M、N分别在直线a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于()A.360°B.300°C.270°D.180°5.(2021春•椒江区校级月考)如图,已知AB∥CD,∠BAD和∠BCD的平分线交于点E,∠FBC=n°,∠BAD=m°,则∠AEC等于()度.A.90﹣+m B.90﹣﹣C.90﹣D.90﹣+ 6.(2023春•赫山区期末)【问题情景】(1)如图1,AB∥CD,∠P AB=135°,∠PCD=115°,求∠APC的度数;【问题迁移】(2)如图2,已知∠MON,AD∥BC,点P在射线OM上运动,当点P在A,B两点之间运动时,连接PD,PC,∠ADP=∠α,∠BCP=∠β,求∠CPD与∠α,∠β之间的数量关系,并说明理由;【知识拓展】(3)在(2)的条件下,若将“点P在A,B两点之间运动”改为“点P在A,B两点外侧运动(点P与点A,B,O三点不重合)”其他条件不变,请直接写出∠CPD 与∠α,∠β之间的数量关系.7.(2022春•良庆区校级期中)已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB=∠CFD,∠BFC=3∠DBE,求∠EBC的度数.8.(2021秋•平昌县期末)如图,AD∥BC,∠BAD的平分线交BC于点G,∠BCD=90°.(1)试说明:∠BAG=∠BGA;(2)如图1,点F在AG的反向延长线上,连接CF交AD于点E,若∠BAG﹣∠F=45°,求证:CF平分∠BCD.(3)如图2,线段AG上有点P,满足∠ABP=3∠PBG,过点C作CH∥AG.若在直线AG上取一点M,使∠PBM=∠DCH,求的值.9.(2023春•黑山县期中)问题情境我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.已知三角板ABC中,∠BAC=60°,∠B=30°,∠C=90°,长方形DEFG中,DE∥GF.问题初探(1)如图(1),若将三角板ABC的顶点A放在长方形的边GF上,BC与DE相交于点M,AB⊥DE于点N,求∠EMC的度数.分析:过点C作CH∥GF.则有CH∥DE,从而得∠CAF=∠HCA,∠EMC=∠MCH,从而可以求得∠EMC的度数.由分析得,请你直接写出:∠CAF的度数为,∠EMC的度数为.类比再探(2)若将三角板ABC按图(2)所示方式摆放(AB与DE不垂直),请你猜想写∠CAF 与∠EMC的数量关系,并说明理由.(3)请你总结(1),(2)解决问题的思路,在图(3)中探究∠BAG与∠BMD的数量关系?并说明理由.10.(2022春•龙亭区校级期末)如图,已知AB∥CD,E、F分别在AB、CD上,点G在AB、CD之间,连接GE、GF.(1)当∠BEG=40°,EP平分∠BEG,FP平分∠DFG时:①如图1,若EG⊥FG,则∠P的度数为;②如图2,在CD的下方有一点Q,EG平分∠BEQ,FD平分∠GFQ,求∠Q+2∠P的度数;(2)如图3,在AB的上方有一点O,若FO平分∠GFC.线段GE的延长线平分∠OEA,则当∠EOF+∠EGF=100°时,请直接写出∠OEA与∠OFC的数量关系.11.(2023春•孝义市期末)综合与探究数学活动课上,老师以“一个含45°的直角三角板和两条平行线”为背景展开探究活动,如图1,已知直线m∥n,直角三角板ABC中,∠ACB=90°,∠BAC=∠ABC=45°.(1)如图1,若∠2=65°,则∠1=;(直接写出答案)(2)“启航”小组在图1的基础上继续展开探究:如图2,调整三角板的位置,当三角板ABC的直角顶点C在直线n上,直线m与AB,AC相交时,他们得出的结论是:∠1﹣∠2=135°,你认为启航小组的结论是否正确,请说明理由;(3)如图3,受到“启航”小组的启发,“睿智”小组提出的问题是:在图2的基础上,继续调整三角板的位置,当点C不在直线n上,直线m与AC,BC相交时,∠1与∠2有怎样的数量关系?请你用平行线的知识说明理由.12.(2023春•安化县期末)在课后学习中,小红探究平行线中的线段与角的数量关系,如图,直线AB∥CD,点N在直线CD上,点P在直线AB上,点M为平面上任意一点,连接MP,MN,PN.(1)如图1,点M在直线CD上,PM平分∠APN,试说明∠PMN=∠MPN;(2)如图2,点M在直线AB,CD之间,∠PMN=70°,∠MNC=30°,求∠APM的度数;(3)如图3,∠APM和∠MNC的平分线交于点Q,∠PQN与∠PMN有何数量关系?并说明理由.12.(2023春•甘井子区期末)如图1,点M在射线BA,CD之间,0°<∠ABM<30°,连接BM,过点M作ME⊥BM交射线CD于点E,且∠MED﹣∠B=90°.(1)求证:AB∥CD;(2)过点C作∠ECN=∠B,交直线ME于点N,先按要求画图,再解决下列问题.①当CN在CD上方,满足∠CNE=5∠B时,在图2中画图,求∠B的度数;②作∠BME的角平分线交射线CD于点K,交∠ECN的角平分线于点F,请直接写出∠MKC与∠MFC之间的数量关系.。

(2021年整理)平行线模型经典例题

(2021年整理)平行线模型经典例题

平行线模型经典例题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(平行线模型经典例题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为平行线模型经典例题的全部内容。

平行线模型经典例题几何学有形象化的好处,几何会给人以数学直觉,不能把几何学等同于逻辑推理,只会推理,缺乏数学直觉,是不会有创造的。

现在初一的学生刚刚开始接触几何的证明,普遍会出现证明步骤不规范,在书写的时候也会出现无从下手的情况,做题速度也普遍变慢,只有少数学生能够在规定时间内正确作答。

所以,只要学生能够学会利用平行线的性质和判定的几个基本模型去解决实际问题,会起到事半功倍的效果。

下面,我就平行线的判定与性质中的一个经典题型为例,引导学生来掌握最基本的平行线的模型,为以后的学习打好一个坚实的基础。

探究:(1)如图a,若AB∥CD,则∠B+∠D=∠E,你能说明为什么吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?请证明;(3)若将点E移至图b所示位置,此时∠B、∠D、∠E之间有什么关系?请证明;(4)若将E点移至图c所示位置,情况又如何?(5)在图d中,AB∥CD,∠E+∠G与∠B+∠F+∠D又有何关系?(6)在图e中,若AB∥CD,又得到什么结论?名师点拨:已知AB∥CD,连接AB、CD的折线内折或外折,或改变E点位置、或增加折线的条数,通过适当地改变其中的一个条件,就能得出新的结论,给我们创造性的思考留下了极大的空间,解题的关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.解:(1)过E作EF∥AB,则∠B=∠BEF,∵AB∥CD,∴EF∥CD,∴∠D=∠DEF,∴∠BED=∠BEF+∠DEF=∠B+∠D.(2)若∠B+∠D=∠E,由EF∥AB,∴∠B=∠BEF,∵∠E=∠BEF+∠DEF=∠B+∠D,∴∠D=∠DEF,∴EF∥CD,∴AB∥CD;(3)若将点E移至图b所示位置,过E作EF∥AB,∴∠BEF+∠B=180°,∵EF∥CD,∴∠D+∠DEF=180°,∠E+∠B+∠D=360°;(4)∵AB∥CD,∴∠B=∠BFD,∵∠D+∠E=∠BFD,∴∠D+∠E=∠B;(5)∵AB∥CD,∴∠E+∠G=∠B+∠F+∠D;(6)由以上可知:∠E1+∠E2+…+∠E n=∠B+∠F1+∠F2+…+∠F n-1+∠D;方法总结:本题是一类夹在两平行线间的折线问题,考查了平行线的性质与判定,属于基础题,关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形。

初中七年级数学平行线四大模型题

初中七年级数学平行线四大模型题

七下专题:平行线四大模型知识导航一、平行线的定义1、定义:在同一平面内,不相交的两条直线叫做平行线,直线a与直线b互相平行,记作a∥b.2、在同一平面内,两条直线的位置关系只有两种:(1)相交;(2)平行.这里,我们把重合的两直线看成一条直线.【注】初中不涉及到重合.二、平行公理及推论平行公理:经过直线外一点,有且只有一条直这条直线平行.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.三、行线的判定判定1:同位角相等,两直线平行.判定2:内错角相等,两直线平行.判定3:同旁内角互补,两直线平行.四、平行线的性质性质1:两直线平行,同位角相等.性质2:两直线平行,内错角相等.性质3:两直线平行,同旁内角互补.五、两条平行线间的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度叫做这两条平行线的距离,平行线间的距离处处相等.如图2,EF的长度就是AB和CD这两条平行线的距离题型一基础巩固例1(1)(二中广雅)如图,已知AB∥CD,CB平分∠ACD,且∠A:∠ACD=3:1,则∠B的度数为.(2)(武昌七校七下期中)如图,已知AB平行CD,能判断BE平行CF的条件是()A.∠1=∠3B.∠2=∠4C.∠1=∠4D.∠1=∠2(3)如图AF∥CD,BC平分∠ACD,交AF于点B,点E在CD上,BD平分∠EBF,交CE的延长线于点D,且BD⊥BC,下列结论:①BC平分∠ABE;②AC∥BE;③∠BCD+∠CDB=90°;④∠DBF=2=S△ABD.∠ABC;⑤S△BCEA.2个B.3个C.4个D.5个练1(1)两条直线被第三条直线所截,那么内错角之间的大小关系是()A.相等B.互补C.不相等D.无法确定(2)(二中广雅七下期中)如图,∠1=∠2,且∠3=105°,则∠4的度数为()A.75°B.62°C.82°D.108°(3)(武昌七校七下期中)完成下面的推理填空:如图,已知AD⊥BC,EF⊥BC,垂足分别为D、F,∠2+∠3=180°,求证:∠GDC=∠B.证明:∵AD⊥BC,EF⊥BC(已知),∴∠ADB==90°(垂直的定义),∴AD∥EF()∴(),又∠2+∠3=180°(已知),∵∠1=∠3(同角的补角相等),∴∥(),∴∠GDC=∠B().模块二四大模型之“铅笔”“猪蹄”模型知识导航四大模型之模型一:“铅笔”模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=360°;结论2:若∠P+∠AEP+∠PFC=360°,则AB∥CD.四大模型之模型二:“猪蹄”模型点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠PFC;结论2:若∠P=∠AEP+∠PFC,则AB∥CD.题型一“铅笔”与“猪蹄”的证明例2(1)若AE∥CF,求证:∠P+∠AEP+∠PFC=360°.(2)若AE∥CF,求证:∠P=∠AEP+∠PFC.(2)若∠P=∠AEP+∠PFC,求证:AE∥CF.题型二“铅笔”“猪蹄”基础应用例3(1)(七一月考)已知EF∥MN,一直角三角板如图放置,∠ACB=90°.①如图1,若∠1=60°,则∠2=度;②如图2,若∠1=∠B-20°,则∠2=度.练2(1)若∠P+∠AEP+∠PFC=360°,求证:AE∥CF;.练3(1)如图,已知直线a∥b,∠1=40°,∠2=60°,则∠3等于()A.100°B.60°C.40°D.20°(2)如图,a∥b,M、N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=.巅峰突破已知:如图,AF∥CD,求证:∠A+∠C+∠E=∠B+∠D+∠F.(2)(武昌区七下期中)如图,已知a∥b,∠1=100°,∠2=140°,则∠3=模块三四大模型之“臭脚”“骨折”模型知识导航四大模型之模型三:“臭脚”模型点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.四大模型之模型三:“骨折”模型点P在EF左侧,在AB、CD外部“骨折”模型结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.题型一“臭脚”与“骨折”的证明例4(1)若AE∥CF,求证:∠P=∠AEP-∠CFP.(2)若AE∥CF,求证:∠P=∠CFP-∠AEP.练4(1)若∠P=∠AEP-∠CFP,则AE∥CF.(2)若∠P=∠CFP-∠AEP,求证:AE∥CF.题型二“臭脚”“骨折”基础应用例5(梅苑中学七下期中)已知直线AB∥CD,E是直线AB的上方一点,连接AE、EC ①如图1,求证:∠AEC+∠EAB=∠ECD;②如图2,AF平分∠BAE,CF平分∠DCE,且∠AFC比∠AEC的32倍少40°,直接写出∠AEC的度数.练5(1)如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=()A.70°B.80°C.90°D.100°(2)如图,已知a∥b,∠3=50°,则∠1+∠2=.例6★★如图,AC∥DE,∠EFG=∠A+∠E,试判断AB和FG的位置关系,井说明你的理由.练6如图,AB∥EF,∠B=50°,∠C=20°,∠E=130°,求证:BC∥DE.总结归纳所有的四大模型解决方法都是:转折角处画平行线(拐点+平行)“铅笔”模型“猪蹄”模型“骨折”模型“臭脚”模型典题示例已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°,求证:AB∥EF.【考点】“铅笔”“猪蹄”模型结合配套作业平行线四大模型(一)1.如图,∠1=∠2,且∠3=108°,则∠4的度数为()A.72°B.62°C.82°D.80°2.下列说法中,正确的有()①两点之间,线段最短;②在同一平面内,过一点有且只有一条直线与已知直线平行;③平行于同一直线的两条直线互相平行A.0个B.1个C.2个D.3个3.如图,l1∥l2,∠1=120°,∠2=100°,则∠3=.4.如图,射线AC∥BD,∠A=70°,∠B=40°,则∠P=.第4题图第5题图5.(武珞路七下期中)如图,直线AB、CD、EF被直线GF所截,∠1=70°,∠2=110°,∠3=70°,求证:AB∥CD证明:∵∠1=70°,∠3=70°(已知)∴∠1=∠3()∴∥()∵∠2=110°,∠3=70°(已知)∴+=180°(等式性质)∴∥()∴AB∥CD.;请证明.②在图2中,∠BMF 、∠F 、∠FND 的数量关系为;请证明.7.如图,已知180EFC BDC ︒∠+∠=,DEF B ∠=∠.(1)试判断DE 与BC 的位置关系,并说明理由.(2)若DE 平分ADC ∠,3BDC B ∠=∠,求EFC ∠的度数.6.(武昌区七下期末)如图,直线AB ∥CD ,①在图1中,∠BME 、∠E 、∠END 的数量关系为9.如图(1)所示是一根木尺折断后的情形,你可能注意过,木尺折断后的断口一般是参差不齐的,那么请你深入考虑一下其中所包含的一类数学问题,我们不妨取名叫“木尺断口问题”.(1)如图(2)所示,已知//AB CD ,请问B Ð,D ∠,E ∠有何关系并说明理由;(2)如图(3)所示,已知//AB CD ,请问B Ð,E ∠,D ∠又有何关系并说明理由;(3)如图(4)所示,已知//AB CD ,请问E G +∠∠与B F D ++∠∠∠有何关系并说明理由8.如图1,AB ∥CD ,∠PAB =130°,∠PCD =120°,求∠APC 的度数.小明的思路是:过P 作PE ∥AB ,通过平行线性质来求∠APC .(1)按小明的思路,求∠APC 的度数;(2)如图2,AB ∥CD ,点P 在射线OM 上运动,记∠PAB =α,∠PCD =β当点P 在B 、D 两点之间运动时,问∠APC 与α、β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请直接写出∠APC 与α、β之间的数量关系.(2)如图,当点G 在AB 上方时,且90EGF ︒∠=,求证:90︒∠-∠=BEG DFG;(3)如图,在(2)的条件下,过点E 作直线HK 交直线CD 于K ,FT 平分DFG ∠交HK 于点T ,延长GE 、FT 交于点R ,若ERT TEB ∠=∠,请你判断FR 与HK 的位置关系,并证明.(不可以直接用三角形内角和180°)10、已知AB //CD ,点E 、F 分别在AB 、CD 上,点G 为平面内一点,连接EG 、FG .(1)如图,当点G 在AB 、CD 之间时,请直接写出∠AEG 、∠CFG 与∠G 之间的数量关系__________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线四大模型
平行线的判定与性质
l、平行线的判定
根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.
判定方法l:
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
简称:同位角相等,两直线平行.
判定方法2:
两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
简称:内错角相等,两直线平行,
判定方法3:
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
简称:同旁内角互补,两直线平行,
如上图:
若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);
若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);
若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).
另有平行公理推论也能证明两直线平行:
平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
2、平行线的性质
利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.
性质1:
两条平行线被第三条直线所截,同位角相等.
简称:两直线平行,同位角相等
性质2:
两条平行线被第三条直线所截,内错角相等.
简称:两直线平行,内错角相等
性质3:
两条平行线被第三条直线所截,同旁内角互补.
简称:两直线平行,同旁内角互补
本讲进阶平行线四大模型

P在EF右侧,在AB、CD内部“铅笔”模型
结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;
结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.
模型二“猪蹄”模型(M模型)
点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;
结论2:若∠P=∠AEP+∠CFP,则AB∥CD.
模型三“臭脚”模型
点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;
结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.
模型四“骨折”模型
点P在EF左侧,在AB、CD外部
“骨折”模型结论1:若
AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;
结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.
巩固练习平行线四大模型证明
(1)已知AE // CF ,求证∠P +∠AEP +∠PFC = 360°
.(2)已知∠P=∠AEP+∠CFP,求证AE∥CF.
(3)已知AE∥CF,求证∠P=∠AEP-∠CFP.
(4)已知∠P= ∠CFP -∠AEP ,求证AE //CF .
模块一平行线四大模型应用
例1
(1)如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .
(2)如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.
(3)如图,已知AB∥DE,∠ABC=80°,∠CDE =140°,则∠BCD= .
(4) 如图,射线AC∥BD,∠A= 70°,∠B= 40°,则∠P= .

(1)如图所示,AB∥CD,∠E=37°,∠C= 20°,则∠EAB的度数为.
(2) (七一中学2015-2016七下3月月考)
如图,AB∥CD,∠B=30°,∠O=∠C.则∠C= .
例2
如图,已知AB∥DE,BF、DF分别平分∠ABC、∠CDE,求∠C、∠F的关系.

如图,已知AB ∥DE ,∠FBC =
n 1∠ABF ,∠FDC =n
1
∠FDE . (1)若n =2,直接写出∠C 、∠F 的关系 ; (2)若n =3,试探宄∠C 、∠F 的关系;
(3)直接写出∠C 、∠F 的关系 (用含n 的等式表示).
例3
如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .求证:∠E = 2 (∠A +∠C ) .

如图,己知AB ∥DE ,BF 、DF 分别平分∠ABC 、∠CDE ,求∠C 、∠F 的关系.
例4
如图,∠3==∠1+∠2,求证:∠A+∠B+∠C+∠D= 180°.

(武昌七校2015-2016 七下期中)如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F则∠F的度数为().
A. 120°
B. 135°
C. 145°
D. 150°
模块二平行线四大模型构造
例5
如图,直线AB∥CD,∠EFA= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,则
∠GHM= .

如图,直线AB∥CD,∠EFG =100°,∠FGH =140°,则∠AEF+ ∠CHG= .
例6
已知∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.

已知AB∥EF,求∠l-∠2+∠3+∠4的度数.
(1)如图(l),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n,∠B1、∠B2…∠B n-1之间的
关系.
(2)如图(2),己知MA1∥NA4,探索∠A1、∠A2、∠A3、∠A4,∠B1、∠B2之间的关系.
(3)如图(3),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n之间的关系.
如图所示,两直线AB∥CD平行,求∠1+∠2+∠3+∠4+∠5+∠6.
挑战压轴题
(粮道街2015—2016 七下期中)
如图1,直线AB ∥CD ,P 是截线MN 上的一点,MN 与CD 、AB 分别交于E 、F . (1) 若∠EFB =55°,∠EDP = 30°,求∠MPD 的度数;
(2) 当点P 在线段EF 上运动时,∠CPD 与∠ABP 的平分线交于Q ,问:DPB
Q
∠∠是否为定值?若是定值,请求出定值;若不是,说明其范围;
(3) 当点P 在线段EF 的延长线上运动时,∠CDP 与∠ABP 的平分线交于Q ,问DPB
Q
∠∠的值足否定值,请在图2中将图形补充完整并说明理由.
第一讲 平行线四大模型(课后作业)
1.如图,AB // CD // EF , EH ⊥CD 于H ,则∠BAC +∠ACE +∠CEH 等于( ).
A . 180°
B . 270°
C . 360°
D . 450° 2.(武昌七校2015-2016七下期中) 若AB ∥CD ,∠CDF =
32∠CDE ,∠ABF =3
2
∠ABE ,则∠E :∠F =( ).
A .2:1
B .3:1
C .4:3
D .3:2
3.如图3,己知AE ∥BD ,∠1=130°,∠2=30°,则∠C = .
4.如图,已知直线AB ∥CD ,∠C =115°,∠A = 25°,则∠E = .
5.如阁所示,AB ∥CD ,∠l =l l 0°,∠2=120°,则∠α= .
6.如图所示,AB∥DF,∠D =116°,∠DCB=93°,则∠B= .
7.如图,将三角尺的直角顶点放在直线a上,a∥b.∠1=50°,∠2 =60°,则∠3的度数为 .
8.如图,AB∥CD,EP⊥FP, 已知∠1=30°,∠2=20°.则∠F的度数为.
9.如图,若AB∥CD,∠BEF=70°,求∠B+∠F+∠C的度数.
10.已知,直线AB∥CD.
(1)如图l,∠A、∠C、∠AEC之间有什么关系?请说明理由;
(2)如图2,∠AEF、∠EFC、∠FCD之间有什么关系?请说明理由;
(3)如图3,∠A、∠E、∠F、∠G、∠H、∠O、∠C之间的关是 .。

相关文档
最新文档