2015-2016学年江苏省扬州市邗江区八年级(上)期末数学试卷
江苏省扬州市扬州大学附属中学东部分校2015-2016学年八年级上学期期末考试数学试题解析(解析版)
(总分150分 时间120分钟)一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上)1.下列四种汽车标志中,不属于...轴对称图形的是 ( )【答案】B考点:轴对称图形2.在实数:0,722,0.74, ,39中,有理数的个数是 ( ) A .1 B .2C .3D .4 【答案】C【解析】试题分析:根据有理数的意义,有限小数和无限循环小数,因此可知有理数有:0、722、0.74,共有3个. 故选C考点:有理数 3.下列事件中,最适合使用普查方式收集数据的是 ( )A .了解扬州人民对建设高铁的意见B .了解本班同学的课外阅读情况C .了解同批次LED 灯泡的使用寿命 D .了解扬州市八年级学生的视力情况【答案】B试题分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.了解扬州人民对建设高铁的意见是抽样调查,了解本班学生的课外阅读情况是普查,了解同批次LED灯泡的使用寿命是抽样调查,了解扬州市八年级学生视力情况是抽样调查.故选B考点:数据的收集4.一架5m长的梯子斜靠在一竖直的墙上,这时梯脚距离墙角3m,如果梯子的顶端沿墙下滑1m,那么梯脚移动的距离是()A.0.5m B.0.8m C.1m D.1.2m【答案】C考点:勾股定理5.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.1对 B.2对C.3对 D.4对【解析】试题分析:根据已知条件“AB=AC ,D 为BC 的中点”,得出△ABD ≌△ACD ,然后由垂直平分线可知△AOE ≌△EOC ,然后根据全等三角形的判定与性质,由“SSS ”“SAS ”找到△BOD ≌△COD ,△AOC ≌△AOB.故选D考点:三角形全等的判定与性质6.如图,在Rt△ABC 中,∠ACB=90°,CD 为AB 边上的高,若点A 关于CD 所在直线的对称点E 恰好为AB的中点,则∠B 的度数是 ( )A .60°B . 45°C .30°D .75°【答案】C考点:1.直角三角形斜边的中点,2.三角形的外角7.如图,函数x y 2 和b ax y 2+=的图像相交于点A (m ,2),则不等式b ax x 2≤2+的解集为 ( )A . x<1B .x>1C .x≥1D . x≤1【答案】D【解析】试题分析:首先利用待定系数法由函数y=2x 过点A (m ,3),求出A 点坐标(32,0),再以交点为分界,结合图象写出不等式2x >ax+4的解集即可得到x >32. 故选D考点:一次函数与不等式的解集 8.直线2-3-b x y +=过点(1x ,1y ),(2x ,2y ),若1x —2x =2,则1y —2y = ( )A . 3B .—3C . 6D . —6【答案】D【解析】试题分析:把两个点代入解析式,可得1132y x b =-+-,2232y x b =-+-,用1y —2y 可得-3(1x —2x )=-3×2=-6.故选D考点:代入法二、填空题(本大题共10小题,每小题3分,共30分,请将答案填在答题卡相应的位置上)9.—8的立方根是 .【答案】-2【解析】试题分析:根据(-2)3=-8,可知-8的立方根为-2.考点:立方根10.将点A (-2,-3)先向右平移3个单位长度再向上平移2个单位长度得到点B ,则点B 所在象限是第 象限.【答案】四考点:坐标的平移11.王胖子在扬州某小区经营特色长鱼面,生意火爆,开业前5天销售情况如下:第一天46碗,第二天54碗,第三天69碗,第四天62碗,第五天87碗,如果要清楚地反映王胖子的特色长鱼面在前5天的销售情况,不能选择....统计图.【答案】扇形【解析】试题分析:由题意可知反应的是每天的销售情况,这是反应销售量的,故不能用扇形统计图,因为扇形统计图体现的是占有的百分比.考点:统计图的应用12.(填“>”、“=”、“<”)【答案】<【解析】试题分析:根据二次根式的意义,把635<6.考点:实数的大小比较13.下列事件中,①打开电视,它正在播关于扬州特产的广告;②太阳绕着地球转;③掷一枚正方体骰子,点数“4”朝上;④13人中至少有2人的生日是同一个月.属于随机事件的个数是.【答案】2考点:随机事件与必然事件14.如图,数轴上的点A表示的数是.-【答案】2【解析】试题分析:通过图示,结合勾股定理可知,因此可知A表示的数为.考点:1.勾股定理,2.数轴15.如图,在Rt △ABC 中,∠A=90°,BD 平分∠ABC 交AC 于点D ,且AB=4,BD=5,则点D 到BC 的距离为 .【答案】3【解析】试题分析:过D 点作DE ⊥BC 于E .由∠A=90°,AB=4,BD=5,根据勾股定理可得,然后由角平分线上的点到角的两边的距离相等,可求解得点D 到BC的距离AD=3.考点: 1.勾股定理,2.角平分线的性质16.若正比例函数x m y )21(-=的图像经过点A (3,y 1)和点B (5,y 2),且y 1>y 2,则m 的取值范围是 . 【答案】21>m考点:一次函数的图像与性质17.元旦期间,胡老师开车从扬州到相距150千米的老家探亲,如果油箱里剩余油量 y (升)与行驶里程 x (千米)之间是一次函数关系,其图像如图所示,那么胡老师到达老家时,油箱里剩余油量是 升.【答案】20【解析】试题分析:设此函数关系式为y=kx+b ,且经过(0,35)(100,25)两点,代入可求解析式为y=-0.1x+35,把x=150代入可求出y=20.考点:1.待定系数法求解析式,2.函数的图像与性质18.如图,△ABC 中,AB=AC=26,BC=20,AD 是BC 边上的中线,AD=24,F 是AD 上的动点,E 是AC 边上的动点,则CF+EF 的最小值为 .【答案】13240 【解析】试题分析:如图,根据对称性可知C 的对称点为B ,然后根据点到直线的距离是垂线段,可知这时的CF+EF=BF+EF ,且BE ⊥AC ,根据面积法可知20×24÷2=26×BE ÷2,解得BE=13240.考点:1.轴对称,2.点到直线的距离三、解答题(本大题共96分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.(本题满分8分)(1)计算:()()23322143⎪⎭⎫ ⎝⎛-⨯-+- (2)求x 的值:27)2(3--=x【答案】(1)2(2)-1考点:1.平方根,2.立方根20.(本题满分8分)已知△ABC 的三边a 、b 、c 满足010)12(24212=++c b a ---,求最长边上的高h .【答案】4.8【解析】试题分析:根据非负数的意义分别求出a 、b 、c ,然后根据勾股定理的逆定理得出三角形为直角三角形,然后根据三角形的面积求出斜边上的高. 试题解析:由题意,得:04-21=a ,012-b 2=,0-10=c , ∴a=8,b=6,c=10,∵2221003664c b a ==+=+,∴△ABC 为Rt △ABC ,且∠C=90°, ∵ab ch 2121=,∴h=4.8 考点:勾股定理的逆定理21.(本题满分8分)为了进一步了解八年级500名学生的身体素质情况,体育老师对八年级(1)班50名学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图如下所示:请结合图表完成下列问题:(1)表中的m= ,次数在140≤x<160这组的频率为 ;(2)请你把频数分布直方图补充完整; (3)若八年级学生一分钟跳绳次数(x )达标要求是:x <120不合格;x≥120为合格,求八年级合格的学生有多少人.【答案】(1) 12,0.36;(2)图形见解析(3)360【解析】试题分析:(1)本题需先根据表中所给的数据以及频数与频率之间的关系即可求出答案.(2)本题须根据频数分布表中的数据即可将直方图补充完整.(3)本题需先根据频数与频率之间的关系,再根据所了解的学生数即可求出答案. 试题解析:(1) 12,0.36;(2)补充后的频数分布直方图如下所示;(3)抽样调查中合格的频率为:(12+18+6)÷50=0.72,估计该年级学生合格的人数大约有500×0.72=360(个),答:估计该年级学生合格的人数大约有360个人.考点:频率与频数22.(本题满分8分)一个不透明的袋中装有20个球,其中7个黄球,8个黑球,5个红球,这些球只有颜色不同,其它都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是31,求从袋中取出黑球的个数.【答案】(1)207(2)2试题解析:(1)∵一个不透明的袋中装有20个只有颜色不同的球,其中7个黄球,8个黑球,5个红球,∴从袋中摸出一个球是黄球的概率为207; (2)设从袋中取出x 个黑球,根据题意,得: )20(318x x -=-, 解得:x=2答:从袋中取出黑球的个数为2个.考点:概率23.(本题满分10分)将等腰直角△ABC 斜放在平面直角坐标系中,使直角顶点C 与点(1,0)重合,点A 的坐标为(—2,1). (1)求△ABC 的面积S ;(2)求直线AB 与y 轴的交点坐标.【答案】(1)5(2)(0,2) 【解析】试题分析:(1)过点A 作AD ⊥x 轴,垂足为D .然后根据勾股定理求出直角边长,然后可求面积; (2)过点B 作BE ⊥x 轴,垂足为E ,然后可证得△ADC≌△CEB,从而求出B 的坐标,然后根据待定系数法求出直线AB 的解析式,从而求出与y 轴的交点坐标. 试题解析:(1)过点A 作AD ⊥x 轴,垂足为D .则AD=1,CD=3, ∴10222=+=DC AD AC ,S=221AC =5. (2)过点B 作BE ⊥x 轴,垂足为E ,∴∠ADC=∠CEB=90°,则∠CAD+ ∠ACD=90°,∴ ∠ACB=90°,则∠BCE+ ∠ACD=90°, ∴ ∠CAD=∠BCE, 又∵∠ADC=∠CEB=90°,AC=BC , ∴△ADC≌△CEB, ∴CD=BE=3,CE=AD=1,∴点B 的坐标为(2,3).设直线AB 的解析式为y=kx+b ,则⎩⎨⎧=+-=+12,32b k b k ,解得:⎪⎩⎪⎨⎧==2,21b k ,所以y=21x+2, 所以直线AB 交y 轴于点(0,2). 考点:1、勾股定理,2、一次函数的图像与性质 24.(本题满分10分)如图,已知函数12y x b =-+的图像与x 轴、y 轴分别交于点A 、B ,与函数x y =的图像交于点M ,点M 的横坐标为2. (1)求点A 的坐标;(2)在x 轴上有一点动点P (),0a (其中a >2),过点P 作x 轴的垂线,分别交函数12y x b =-+和y x =的图像于点C 、D ,且OB=2CD ,求a 的值.【答案】(1)(6,0)(2)a=3试题解析:(1)∵ 点M 在函数y=x 的图象上,且横坐标为2,∴ 点M 的纵坐标为2. ∵ 点M(2,2)在一次函数y=—12x+b 的图象上,∴ —12×2+b=2,∴ b=3,∴ 一次函数的表达式为y=—12x+3,令y=0,得x=6,∴ 点A的坐标为(6,0).(2) 由题意得:C(a,—12a+3),D(a,a),∴ CD= a—(—12a+3).∵ OB=2CD,∴ 2[a—(—12a+3)]=3,∴ a=3.考点:一次函数的图像与性质25.(本题满分10分)扬州商场某商家计划购进一批甲、乙两种LED节能灯共120只,这两种节能灯的进价、售价如下表:(1)如果进货总费用恰好为4600元,请你设计出进货方案.(2)如果规定:当销售完这批节能灯后,总利润不超过进货总费用的30%,请问如何进货,使得该商家获得的总利润最多,此时总利润最多为多少元?【答案】(1)商家购进甲型节能灯40只,乙型节能灯80只时,进货总费用恰好为4600元(2)商家购进甲型节能灯45只,乙型节能灯75只,销售完节能灯时获利最多,此时利润为1350元试题解析:(1)设商家应购进甲型节能灯x只,则乙型节能灯为(120-x)只,根据题意,得:25x+45(120-x)=4600,解得x=40,∴乙型节能灯为120-40=80.答:商家购进甲型节能灯40只,乙型节能灯80只时,进货总费用恰好为4600元.(2)设商家应购进甲型节能灯t只,销售完这批节能灯可获利为y元.根据题意,得:y=(30-25)t+(60-45)(120-t)=5t+1800-15t=-10t+1800,∵ 规定在销售完节能灯时利润不得高于进货价的30%,∴-10t+1800≤[25t+45(120-t)]×30%,解得t≥45.又∵ k=-10<0,y随t的增大而减小,∴t=45时,y取得最大值,最大值为-10t+1800=1350(元).答:商家购进甲型节能灯45只,乙型节能灯75只,销售完节能灯时获利最多,此时利润为1350元.考点:1.一元一次方程的应用,2.一次函数的应用26.(本题满分10分)如图,在△ABC中,∠ACB=90°,AC=BC,BE是中线,CG平分∠ACB交BE于点G,F为AB边上一点,且∠ACF=∠CBG.(1)求证:CF=BG;(2)延长CG交AB于点H,判断点G是否在线段AB的垂直平分线上?并说明理由.(3)过点A作AD⊥AB交BE的延长线于点D,请证明:CF=2DE.【答案】(1)证明见解析(2)点G在线段AB的垂直平分线上(3)证明见解析试题解析:(1)∵∠ACB=90°,CG平分∠ACB,AC=BC.∴∠BCG=∠CAB=45°,又∵∠ACF=∠CBG,AC=BC,∴△ACF≌△CBG(ASA),∴AF=CG,CF=BG.(2)点G在线段AB的垂直平分线上,理由如下:∵AC=BC,CG平分∠ACB,∴CH⊥AB,H为AB中点,∴ 点G在线段AB的垂直平分线上(3)连接AG.由(2)可知,AG=BG,∠GAB=∠G BA,∵AD⊥AB,∴∠GAB+∠GAD=∠G BA+∠D=90°,∴∠GAD=∠D,∴GA=GD=GB=CF.∵AD⊥AB,CH⊥AB∴CH∥AD,∴∠D=∠EGC,∵E为AC中点,∴ AE=EC,又∵∠AED=∠CEG,∴△AED≌△CEG,∴DE=EG,∴DG=2DE,∴CF=2DE.考点:1.全等三角形的判定与性质,2.等腰三角形,3.线段垂直平分线的性质27.(本题满分12分)甲、乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,乙车出发2h 后休息,与甲车相遇后,继续行驶.设甲、乙两车与B地的路程分别为y甲(km),y乙(km),甲车行驶的时间为x(h),y甲、y乙与x之间的函数图像如图所示,结合图像解答下列问题:(1)甲车的速度是 km/h,乙车休息了 h;(2)求乙车与甲车相遇后y乙与x的函数解析式,并写出自变量x的取值范围;(3)当甲车出发多少小时后,两车相距80km?【答案】(1)80,0.5(2)y 乙=80x(2.5≤x≤5)(3)x=916或x=3试题解析:(1)80,0.5 .(2)设y 乙与x 的函数解析式为y 乙=kx ﹢b ,把(2.5,200).(5,400)代入,得:54002.5200k b k b +=⎧⎨+=⎩ 解得:800k b =⎧⎨=⎩y 乙=80x(2.5≤x≤5),(3)相遇前:100x ﹢80x ﹢80=400,解得x=916;相遇后:80x ﹢200﹢80(x ﹣2.5)=400+80,解得x=3.综上可知,x=916或x=3.考点:1.待定系数法,2.一次函数,3.一元一次方程 28.(本题满分12分)阅读理解:【问题情境】金老师给“数学小达人”小明和小军提出这样一个问题: 如图1,△ABC 中,∠B=2∠C,AD 是∠BAC 的平分线.求证:AB+BD=AC .【证明思路】小明的证明思路是:如图2,在AC上截取AE=AB,连接DE.……小军的证明思路是:如图3,延长CB至点E,使BE=AB,连接AE.可以证得:AE=DE.……请你从他们的思路中,任意选择一种....思路继续完成下一步的证明.【变式探究】如图4,金老师把“AD是∠BAC的平分线”改成“AD是BC边上的高”,其它条件不变,那么AB+BD=AC还成立吗?若成立,请证明;若不成立,写出正确结论,并说明理由.【迁移拓展】如图5,△ABC中,∠B=2∠C.求证:AC2—AB2=AB×BC.【答案】证明见解析【解析】试题分析:【问题情境】小明:根据截取法构造证明三角形全等的条件,然后根据全等的性质可证明结论;小军:通过延长线段构造等腰三角形,通过等腰三角形的性质证明;【变式探究】结合上面小明或小军的方法求解即可;【迁移拓展】通过构造直角三角形,应用勾股定理证明即可.试题解析:【问题情境】小明的证明思路是:在AC上截取AE=AB,连接DE.(如图2)∵AD是∠BAC的平分线,∴∠BAD=∠EAD,又∵AD=AD,∴△ABD≌△AED,∴BD=DE,∠ABD=∠AED,又∵∠AED=∠EDC+∠C,∠B=2∠C,∴∠EDC=∠C,∴ DE=EC,即AB+BD=AC.小军的证明思路是:延长CB至点E,使BE=AB,连接AE.(如图3)则∠E=∠BAE,∴∠ABC=2∠E,∵∠ABC=2∠C,∴∠E=∠C,∴△AEC是等腰三角形.∵∠ADE=∠DAC+∠C,∠DAE=∠BAD+∠BAE,又∵AD是∠BAC的平分线,∴∠BAD=∠DAC,∴∠ADE=∠DAE,∴△AED是等腰三角形.∴EA=ED=AC,∴AB+BD=AC.【变式探究】AB+BD=AC不成立.正确结论是:AB+BD=CD.方法1:如图4,在CD上截取DE=DB,∵AD⊥BC,∴ AD是BE的垂直平分线,∴AE=AB,∴∠B=∠AED,∵∠AED =∠C+∠CAE,∵∠B=2∠C,∴∠C=∠CAE,∴ AE=EC,即AB+BD=CD.方法2:如图5,延长DB至点E,使BE=AB,则∠E=∠BAE,∵∠ABD =∠E+∠BAE =2∠E,∵∠B=2∠C,∴∠E=∠C,∴△AEC是等腰三角形.∵AD⊥BC,∴CD=ED,即AB+BD=CD.【迁移拓展】考点:1.三角形全等的判定与性质,2.等腰三角形的性质,3.勾股定理:。
【精品】扬州市邗江区上册期末试卷 八年级数学(含答案)
八年级上学期数学期末试卷一、选择题(本大题共8题,每题3分,共24分.每题的四个选项中,只有一个选项是符合要求的,请将正确选项前的字母代号填写在答题卡相应位置.......上) 1.下列“数字”图形中,有且仅有一条对称轴的是2.如图,已知∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 A .AB =ACB .BD =CDC .∠B =∠CD .∠BDA =∠CDA3.有一个数值转换器,原理如下:当输入的x =64时,输出的y 等于 A .2B .8C .22D .234. 如图,点E 在正方形ABCD 内,满足∠AEB =90°,AE =6,BE =8,则阴影部分的面积是 A .48B .60C .76D .805. 已知点A 与点(-4 , -5)关于y 轴对称,则A 点坐标是A .(4 , -5)B . (-4 , 5)C . (-5 , -4)D . (4 , 5) 6.如果一个数的平方根等于它的立方根,则这个数是A .1B .-1C .±1D .0 7.一条直线y =kx +b ,其中k +b =-5、kb =6,那么该直线经过A .第二、四象限B .第一、二、三象限C .第一、三象限D .第二、三、四象限8.如图,在△ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于第2题图①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的中垂线上;④S △DAC :S △ABC =1:3. A .1 B .2 C .3 D .4二、填空题(本大题共10题,每题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.81的平方根是 ▲ . 10. 函数11-=x y 中自变量的取值范围是 ▲ . 11.点B (0,-4)在直线b x y +-=图象上,则b = ▲ .12.直角三角形有两边长分别为3,4,则该直角三角形第三边为 ▲ .13.在平面直角坐标系中,若点M (1,3)与点N (x ,3)之间的距离是5,则x 的值是▲ . 14.一次函数1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___▲___ .15.将一次函数2-=x y 的图象平移,使其经过点(2,3),则所得直线的函数解析式是 ▲ . 16.如图,一束光线从A (3,3)出发,经过y 轴上的点C 反射后经过点B (1,0),则光线从A 点到B 点经过的路线长是_ ▲ .17.如图,已知AB =12,AB ⊥BC 于B ,AB ⊥AD 于A ,AD =5,BC =10,点E 是CD 的中点,则AE 的长是 ▲ .18.如图,在3×3的正方形网格中,已有两个小正方形被涂黑.再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有 ▲ 种.三、解答题 (本大题共10题,共96分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(本题满分8分)(1)已知:16)5(2=+x ,求x ; (2) 求x 的值:27)5(643=+x 。
江苏省扬州市梅岭中学2015-2016学年度八年级数学上学期期末考试试题(含解析) 苏科版
江苏省扬州市梅岭中学2015-2016学年度八年级数学上学期期末考试试题一、选择题(本大题共8题,每小题3分,共24分,请将正确选项填涂在答题卷相应位置上). 1.下图中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个2.下列数中,是无理数的是()A.﹣B.C.﹣2.171171117 D.3.估算的值是()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间4.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN5.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm6.给出下列判断:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线相等的四边形是矩形;③对角线互相垂直且相等的四边形是正方形;④有一条对角线平分一个内角的平行四边形为菱形.其中,不正确的有()A.1个B.2个C.3个D.4个7.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.58.如图,已知1号、4号两个正方形的面积和为10,2号、3号两个正方形的面积和为7,则a,b,c三个方形的面积和为()A.17 B.27 C.24 D.34二、填空题(本大题共10题,每题3分,共30分,请将正确答案写在答题卷相应位置上.)9.4是的算术平方根.10.已知点P(a,3)在一次函数y=x+1的图象上,则a= .11.扬州市瘦西湖风景区2015年某月的接待游客的人数约809700人次,将这个数字用科学记数法表示为(精确到万位).12.一次函数y=ax+b的图象如图,则关于x的不等式ax+b≥0的解集为.13.已知等腰三角形的一个外角是70°,则它顶角的度数为.14.函数y=﹣3x+2的图象上存在点P,使得P到x轴的距离等于3,则点P的坐标为.15.如图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(﹣2,﹣1),白棋③的坐标是(﹣1,﹣3),则黑棋②的坐标是.16.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC的形状为三角形.17.如图所示,在△ABC中,∠BAC=90°,AB⊥AC,AB=3,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是.18.如图,在平面直角坐标系中,一个点从A(a1,a2)出发沿图中路线依次经过B(a3,a4),C(a5,a6),D(a7,a8),…,按此一直运动下去,则a2015+a2016的值为.三、解答题(本大题共10小题,共96分,请将解答过程写在答题卷相应位置上.)19.①计算:|﹣3|+(π+1)0﹣②解方程:4(x﹣1)2﹣9=0.20.已知y与x+1成正比例,当x=1时,y=3,求y与x的函数关系式.21.如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.(1)在网格的格点中,找一点C,使△AB C是直角三角形,且三边长均为无理数(只画出一个,并涂上阴影);(2)若点P在图中所给网格中的格点上,△APB是等腰三角形,满足条件的点P共有个;(3)若将线段AB绕点A顺时针旋转90°,写出旋转后点B的坐标.22.如图,一块四边形草地ABCD,其中∠B=90°,AB=4m,BC=3m,AD=12m,CD=13cm,求这块草地的面积.23.如图,已知E、F分别为平行四边形ABCD的对边AD、BC上的点,且DE=BF,EM⊥AC于M,FN⊥AC 于N,EF交AC于点O,求证:(1)EM=FN;(2)EF与MN互相平分.24.如图,∠AOB=90°,OA=90cm,OB=30cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球,如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC 是多少?25.如图,直线l1的函数表达式为y1=﹣3x+3,且l1与x轴交于点D,直线l2:y2=kx+b经过点A,B,与直线l1交于点C.(1)求直线l2的函数表达式及C点坐标;(2)求△ADC的面积;(3)当x满足何值时,y1>y2;(直接写出结果)(4)在直角坐标系中有点E,和A,C,D构成平行四边形,请直接写出E点的坐标.26.近年来,我国多个城市遭遇雾霾天气,空气中可吸入颗粒(又称PM2.5)浓度升高,为应对空气污染,小强家购买了空气净化器,该装置可随时显示室内PM2.5的浓度,并在PM2.5浓度超过正常值25(mg/m3)时吸收PM2.5以净化空气.随着空气变化的图象(如图),请根据图象,解答下列问题:(1)写出题中的变量;(2)写出点M的实际意义;(3)求第1小时内,y与t的一次函数表达式;(4)已知第5﹣6小时是小强妈妈做晚餐的时间,厨房内油烟导致PM2.5浓度升高.若该净化器吸收PM2.5的速度始终不变,则第6小时之后,预计经过多长时间室内PM2.5浓度可恢复正常?27.如图1,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA上的点,HA=EB=FC=GD,连接EG,FH,交点为O.(1)如图2,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论;(2)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形ABCD的边长为3cm,HA=EB=FC=GD=1cm,则图3中阴影部分的面积为cm2.28.在直角坐标系xOy中,▱ABCD四个顶点的坐标分别为A(1,1),B(4,1),C(5,2),D(2,2),直线l:y=kx+b与直线y=﹣2x平行.(1)k= ;(2)若直线l过点D,求直线l的解析式;(3)若直线l同时与边AB和CD都相交,求b的取值范围;(4)若直线l沿线段AC从点A平移至点C,设直线l与x轴的交点为P,问是否存在一点P,使△PAB 为等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.江苏省扬州市梅岭中学2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题(本大题共8题,每小题3分,共24分,请将正确选项填涂在答题卷相应位置上). 1.下图中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一,第三个是中心对称图形,也是轴对称图形.故选B.【点评】掌握好中心对称与轴对称的概念.判断轴对称的关键是寻找对称轴,两边图象折叠后可重合,判断中心对称的关键是要寻找对称中心,旋转180度后原图重合.2.下列数中,是无理数的是()A.﹣B.C.﹣2.171171117 D.【考点】无理数.【分析】根据无理数的定义:无限不循环小数是无理数即可求解.【解答】解:A、﹣是有理数,故选项错误;B、﹣=﹣5是有理数,故选项错误;C、﹣2.171171117是有理数,故选项错误;D、是无理数,故选项正确;故选D.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.3.估算的值是()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间【考点】估算无理数的大小.【专题】探究型.【分析】根据,可以估算出所在的范围.【解答】解:∵,∴,故选B.【点评】本题考查估计无理数的大小,解题的关键是会估算无理数的大小.4.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN【考点】全等三角形的判定.【专题】几何图形问题.【分析】根据普通三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证.【解答】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故B选项符合题意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:B.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,本题是一道较为简单的题目.5.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm【考点】勾股定理的应用.【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.故选A.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用.6.给出下列判断:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线相等的四边形是矩形;③对角线互相垂直且相等的四边形是正方形;④有一条对角线平分一个内角的平行四边形为菱形.其中,不正确的有()A.1个B.2个C.3个D.4个【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定.【分析】根据正方形、平行四边形、菱形和矩形的判定,对选项一一分析,选择正确答案.【解答】解:①一组对边平行且相等的四边形是平行四边形,此题错误,故此选项符合题意;②对角线相等的四边形是矩形,不能正确判定,故此选项符合题意;③对角线互相垂直平分且相等的四边形是正方形,此题错误,故此选项符合题意;④有一条对角线平分一个内角的平行四边形为菱形,此说法是正确的,不符合要求;故选:C.【点评】考查了正方形、平行四边形、菱形和矩形的判定方法.解决此题的关键是熟练掌握运用这些判定.7.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5【考点】坐标与图形变化-平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.8.如图,已知1号、4号两个正方形的面积和为10,2号、3号两个正方形的面积和为7,则a,b,c三个方形的面积和为()A.17 B.27 C.24 D.34【考点】全等三角形的判定与性质;勾股定理;正方形的性质.【专题】探究型.【分析】由图可以得到a、b、c三个正方形的面积与1号、2号、3号、4号正方形的面积之间的关系,再根据1号、4号两个正方形的面积和为10,2号、3号两个正方形的面积和为7,可以求得a,b,c三个正方形的面积的和.【解答】解:如下图所示,∵∠ACB+∠DCE=90°,∠ACB+∠CAB=90°,∴∠BAC=∠ECD,在△ABC和△CED中,∴△ABC≌△CED(AAS)∴BC=DE,∵AB2+BC2=AC2,∴S1+S2=S a,同理可证,S2+S3=S b,S3+S4=S c,∴S a+S b+S c=S1+S2+S2+S3+S3+S4,∵S1+S4=10,S2+S3=7,∴S a+S b+S c=S1+S2+S2+S3+S3+S4=(S1+S4)+(S2+S3)+(S2+S3)=10+7+7=24,故选C.【点评】本题考查勾股定理、全等三角形的判定与性质、正方形的性质,解题的关键是利用数形结合的思想解答问题.二、填空题(本大题共10题,每题3分,共30分,请将正确答案写在答题卷相应位置上.)9.4是16 的算术平方根.【考点】算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵42=16,∴4是16的算术平方根.故答案为:16.【点评】此题主要考查了算术平方根的概念,牢记概念是关键.10.已知点P(a,3)在一次函数y=x+1的图象上,则a= 2 .【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】把点P的坐标代入一次函数解析式,列出关于a的方程,通过解方程来求a的值.【解答】解:∵点P(a,3)在一次函数y=x+1的图象上,∴3=a+1,解得,a=2.故答案是:2.【点评】本题考查了一次函数图象上点的坐标特征.直线上任意一点的坐标都满足函数关系式y=kx+b (k≠0).11.扬州市瘦西湖风景区2015年某月的接待游客的人数约809700人次,将这个数字用科学记数法表示为(精确到万位)8.1×105.【考点】科学记数法与有效数字.【分析】根据四舍五入,可得精确到万位的数,根据科学记数法表示的方法,可得答案案.【解答】解:809700≈8.1×105.故答案为:8.1×105.【点评】本题考查了科学记数法,a×10n,a是一位整数,n是数位的位数减一.12.一次函数y=ax+b的图象如图,则关于x的不等式ax+b≥0的解集为x≥2.【考点】一次函数与一元一次不等式.【专题】计算题.【分析】根据图象得到函数的增减性及与x轴的交点的横坐标,即能求得不等式ax+b≥0的解集.【解答】解:一次函数y=ax+b的图象经过点(2,0),且函数值y随x的增大而增大,∴不等式ax+b≥0的解集是x≥2.故答案为x≥2.【点评】本题考查了一次函数与一元一次不等式,正确理解图象,函数图象在x轴上方,即函数值大于0;在下方时,函数值小于0;图象在y轴左侧的部分函数的自变量x小于0,在右侧则自变量大于0.13.已知等腰三角形的一个外角是70°,则它顶角的度数为110°.【考点】等腰三角形的性质.【分析】三角形内角与相邻的外角和为180°,三角形内角和为180°,等腰三角形两底角相等,110°只可能是顶角.【解答】解:等腰三角形一个外角为70°,那相邻的内角为110°,三角形内角和为180°,如果这个内角为底角,内角和将超过180°,所以110°只可能是顶角.故答案为:110°.【点评】本题主要考查三角形外角性质、等腰三角形性质及三角形内角和定理;判断出80°的外角只能是顶角的外角是正确解答本题的关键.14.函数y=﹣3x+2的图象上存在点P,使得P到x轴的距离等于3,则点P的坐标为(﹣,3)或(,﹣3).【考点】一次函数图象上点的坐标特征.【分析】根据点到x轴的距离等于纵坐标的长度求出点P的纵坐标,然后代入函数解析式求出x的值,即可得解.【解答】解:∵点P到x轴的距离等于3,∴点P的纵坐标的绝对值为3,∴点P的纵坐标为3或﹣3,当y=3时,﹣3x+2=3,解得,x=﹣;当y=﹣3时,﹣3x+2=﹣3,解得x=;∴点P的坐标为(﹣,3)或(,﹣3).故答案为:(﹣,3)或(,﹣3).【点评】本题考查了一次函数图象上点的坐标特征,“点P到x轴的距离等于3”就是点P的纵坐标的绝对值为3,求出点P的纵坐标是解题的关键.15.如图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(﹣2,﹣1),白棋③的坐标是(﹣1,﹣3),则黑棋②的坐标是(1,﹣2).【考点】坐标确定位置.【分析】根据已知两点位置,建立符合条件的坐标系,从而确定其它点的位置.【解答】解:由用(﹣2,﹣1)表示白棋①的位置,用(﹣1,﹣3)表示白棋③的位置知,y轴为从左向数的第四条竖直直线,且向上为正方向,x轴是从下往上数第五条水平直线,这两条直线交点为坐标原点.那么黑棋②的位置为(1,﹣2).故答案填:(1,﹣2).【点评】解题的关键是确定坐标原点和x,y轴的位置及方向,或者直接利用坐标系中的移动法则右加左减,上加下减来确定坐标.16.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC的形状为直角三角形.【考点】勾股定理的逆定理;非负数的性质:偶次方;非负数的性质:算术平方根.【专题】计算题.【分析】根据二次根式和偶次方的非负性求出a、b的值,根据勾股定理的逆定理判断即可.【解答】解:∵+(b﹣3)2=0,∴a﹣4=0,b﹣3=0,解得:a=4,b=3,∵c=5,∴a2+b2=c2,∴∠C=90°,即△ABC是直角三角形,故答案为:直角.【点评】本题考查了二次根式的性质,偶次方,勾股定理的逆定理的应用,关键是求出a2+b2=c2.17.如图所示,在△ABC中,∠BAC=90°,AB⊥AC,AB=3,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是 4 .【考点】轴对称-最短路线问题.【分析】根据题意知点B关于直线EF的对称点为点C,故当点P与点D重合时,AP+BP的最小值,求出AC长度即可.【解答】解:∵EF垂直平分BC,∴B、C关于EF对称,AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,由勾股定理得:AC==4.故答案为:4.【点评】本题考查了勾股定理,轴对称﹣最短路线问题的应用,解此题的关键是找出P的位置.18.如图,在平面直角坐标系中,一个点从A(a1,a2)出发沿图中路线依次经过B(a3,a4),C(a5,a6),D(a7,a8),…,按此一直运动下去,则a2015+a2016的值为504 .【考点】规律型:点的坐标.【分析】由题意得即a1=1,a2=1,a3=﹣1,a4=2,a5=2,a6=3,a7=﹣2,a8=4,…,观察得到数列的规律,求出即可【解答】解:由直角坐标系可知A(1,1),B(﹣1,2),C(2,3),D(﹣2,4),E(3,5),F(﹣3,6),即a1=1,a2=1,a3=﹣1,a4=2,a5=2,a6=3,a7=﹣2,a8=4,…,由此可知,所有数列偶数个都是从1开始逐渐递增的,且都等于所在的个数除以2,则a2014=1007,a2016=1008,每四个数中有一个负数,且为每组的第三个数,每组的第1奇数和第2个奇数是互为相反数,且从﹣1开始逐渐递减的,则2016÷4=504,则a2015=﹣504,则a2015+a2016=﹣504+1008=504.故答案为504.【点评】本题主要考查了平面直角坐标系、归纳推理的问题,关键是找到规律,属于基础题.三、解答题(本大题共10小题,共96分,请将解答过程写在答题卷相应位置上.)19.①计算:|﹣3|+(π+1)0﹣②解方程:4(x﹣1)2﹣9=0.【考点】实数的运算;平方根;零指数幂.【专题】计算题;实数.【分析】①原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用算术平方根定义计算,最后一项利用立方根定义计算即可得到结果;②方程整理后,利用平方根定义开方即可求出解.【解答】解:①原式=3+1﹣3+2=3;②方程整理得:(x﹣1)2=,开方得:x﹣1=±,解得:x1=,x2=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.已知y与x+1成正比例,当x=1时,y=3,求y与x的函数关系式.【考点】待定系数法求一次函数解析式.【分析】根据正比例函数的定义设y=k(x+1)(k≠0),然后把x、y的值代入求出k的值,再整理即可得解.【解答】解:由题意,设y=k(x+1),把x=1,y=3代入,得2k=3,∴k=∴y与x的函数关系式为.【点评】本题考查了待定系数法求一次函数解析式,注意利用正比例函数的定义设出函数关系式.21.如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.(1)在网格的格点中,找一点C,使△ABC是直角三角形,且三边长均为无理数(只画出一个,并涂上阴影);(2)若点P在图中所给网格中的格点上,△APB是等腰三角形,满足条件的点P共有 4 个;(3)若将线段AB绕点A顺时针旋转90°,写出旋转后点B的坐标(3,1).【考点】勾股定理;等腰三角形的判定;勾股定理的逆定理;坐标与图形变化-旋转.【分析】(1)根据网格结构和勾股定理作出以点B为直角顶点作边即可得解;(2)根据等腰三角形的性质,分别以点A、B为顶角顶点作图即可得解;(3)根据网格结构找出点B的对应点的位置,然后写出坐标即可.【解答】解:(1)直角△ABC如图所示;(2)如图,点P共有4个;(3)点B的对应点的坐标为(3,1).故答案为:4,(3,1).【点评】本题考查了勾股定理,等腰三角形的判定,坐标与图形变化﹣旋转,熟练掌握勾股定理和网格结构的知识是解题的关键.22.如图,一块四边形草地ABCD,其中∠B=90°,AB=4m,BC=3m,AD=12m,CD=13cm,求这块草地的面积.【考点】勾股定理;勾股定理的逆定理.【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出△CAD是直角三角形,分别求出△ABC和△CAD的面积,即可得出答案.【解答】解:连结AC,在△ABC中,∵∠B=90°,AB=4m,BC=3m,∴AC==5(m),S△ABC=×3×4=6(m2),在△ACD中,∵AD=12m,AC=5m,CD=13m,∴AD2+AC2=CD2,∴△ACD是直角三角形,∴S△ACD=×5×12=30(m2).∴四边形ABCD的面积=S△ABC+S△ACD=6+30=36(m2).【点评】本题考查了勾股定理,勾股定理的逆定理的应用,解此题的关键是能求出△ABC和△CAD的面积,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形.23.如图,已知E、F分别为平行四边形ABCD的对边AD、BC上的点,且DE=BF,EM⊥AC于M,FN⊥AC 于N,EF交AC于点O,求证:(1)EM=FN;(2)EF与MN互相平分.【考点】平行四边形的判定与性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,得出∠EAM=∠FCN,AE=CF,由AAS证明△AEM≌△CFN,得出对应边相等即可;(2)连接EN、FM,求出EM=FN,EM∥FN,得出平行四边形EMFN,根据平行四边形的性质得出即可.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAM=∠FCN,∵DE=BF,∴AE=CF,∵EM⊥AC于M,FN⊥AC于N,∴∠AME=∠CNF=90°,在△AEM和△CFN中,,∴△AEM≌△CFN(AAS),∴EM=FN;(2)连接EN、FM,如图所示:∵EM⊥AC,FN⊥AC,∴∠AME=∠EMN=∠FNC=∠FNM=90°,∴EM∥FN,又∵由(1)得EM=FN,∴四边形EMFN是平行四边形,∴EF与MN互相平分.【点评】本题考查了平行四边形的性质和判定,全等三角形的性质和判定的应用;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键解.24.如图,∠AOB=90°,OA=90cm,OB=30cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球,如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC 是多少?【考点】勾股定理的应用.【分析】根据小球滚动的速度与机器人行走的速度相等,得到BC=AC,设BC=AC=xcm,根据勾股定理求出x的值即可.【解答】解:∵小球滚动的速度与机器人行走的速度相等,∴BC=AC,设BC=AC=xcm,则OC=(90﹣x)cm,在Rt△BOC中,∵OB2+OC2=BC2,∴302+(90﹣x)2=x2,解得x=50.答:机器人行走的路程BC为50cm.【点评】本题考查的是勾股定理的应用,熟知在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.25.如图,直线l1的函数表达式为y1=﹣3x+3,且l1与x轴交于点D,直线l2:y2=kx+b经过点A,B,与直线l1交于点C.(1)求直线l2的函数表达式及C点坐标;(2)求△ADC的面积;(3)当x满足何值时,y1>y2;(直接写出结果)(4)在直角坐标系中有点E,和A,C,D构成平行四边形,请直接写出E点的坐标.【考点】一次函数综合题.【分析】(1)利用待定系数法求出直线l2的解析式,利用二元一次方程组求出两条直线的交点C的坐标;(2)根据坐标与图形图中求出点D的坐标,根据三角形的面积公式计算即可;(3)运用数形结合思想解答;(4)分以AC为对角线、以AD为对角线、以CD为对角线三种情况,根据平行四边形的性质解答即可.【解答】解:(1)∵点A(4,0)、B(3,﹣)在直线l2:y2=kx+b上,∴,解得:.∴直线l2的解析式为y2=x﹣6;由,解得.∴点C的坐标为(2,﹣3);(2)∵点D是直线l1:y=﹣3x+3与x轴的交点,∴y=0时,0=﹣3x+3,解得x=1,∴D(1,0),∵A(4,0),∴AD=4﹣1=3,∴△ADC的面积=×3×3=;(3)由图象可知,当x<2时,y1>y2;(4)符合条件的E点的坐标为E1(5,﹣3)、E2(3,3)、E3(﹣1,﹣3),①以AC为对角线时,∵四边形ADCE是平行四边形,∴CE∥DA,CE=DA=3,∴将点C(2,﹣3)向右平移3个单位得到点E,即E1(5,﹣3);②以AD为对角线时,∵四边形ACDE是平行四边形,∴CE与AD互相平分,即CE与AD的中点重合,则E2(3,3);③以CD为对角线时,∵四边形ADEC是平行四边形,∴CE∥AD,CE=AD=3,∴将点C(2,﹣3)向左平移3个单位得到点E,即E3(﹣1,﹣3);综上所述,符合条件的E点的坐标为E1(5,﹣3)、E2(3,3)、E3(﹣1,﹣3).【点评】本题考查的是一次函数知识的综合运用、待定系数法求一次函数解析式、平行四边形的判定和性质以及图象法求不等式的解集,灵活运用待定系数法求函数解析式、利用方程组求两条直线的交点坐标是解题的关键.26.近年来,我国多个城市遭遇雾霾天气,空气中可吸入颗粒(又称PM2.5)浓度升高,为应对空气污染,小强家购买了空气净化器,该装置可随时显示室内PM2.5的浓度,并在PM2.5浓度超过正常值25(mg/m3)时吸收PM2.5以净化空气.随着空气变化的图象(如图),请根据图象,解答下列问题:(1)写出题中的变量;(2)写出点M的实际意义;(3)求第1小时内,y与t的一次函数表达式;(4)已知第5﹣6小时是小强妈妈做晚餐的时间,厨房内油烟导致PM2.5浓度升高.若该净化器吸收PM2.5的速度始终不变,则第6小时之后,预计经过多长时间室内PM2.5浓度可恢复正常?【考点】一次函数的应用.【分析】(1)由函数图象可以得出变量是时间t和PM2.5的浓度;(2)1小时后PM2.5的浓度达到正常值25;(3)设第1小时内,y与t的一次函数表达式为y=kt+b,由待定系数法求出其解即可;(4)设经过a小时后室内PM2.5浓度可恢复正常,由工程问题的数量关系建立方程求出其解即可.【解答】解:(1)由函数图象,得题中的变量是时间t和PM2.5的浓度;(2)点M的实际意义是:1小时后PM2.5的浓度达到正常值25;(3)设第1小时内,y与t的一次函数表达式为y=kt+b,由题意,得,解得:,∴y=﹣60t+85;(4)设经过a小时后室内PM2.5浓度可恢复正常,由题意,得125﹣60a=25,解得:a=.答:预计经过时间室内PM2.5浓度可恢复正常.【点评】本题考查了一次函数的解析式的运用,待定系数法求一次函数的解析式的运用,一元一次方程的运用,解答时求出函数的解析式是关键.27.如图1,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA上的点,HA=EB=FC=GD,连接EG,FH,交点为O.(1)如图2,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论;(2)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形ABCD的边长为3cm,HA=EB=FC=GD=1cm,则图3中阴影部分的面积为 1 cm2.【考点】正方形的判定与性质;全等三角形的判定与性质;菱形的判定与性质.【专题】证明题;操作型.【分析】(1)先证明△AEH≌△BFE≌△CGF≌△DHG,可得出四边形GHEF是菱形,再根据全等三角形角之间的关系,又可得出菱形的一个角是直角,那么就可得出四边形GHEF是正方形.(2)根据已知条件,可以知道重新拼成的四边形是正方形(因为正方形GHEF的对角线翻到了外边,做了新拼成的正方形的边长),利用勾股定理求出GF和GO、FO的长,所的面积是10减去4个四边形GOFC的面积就是阴影部分的面积.【解答】解:(1)四边形EFGH是正方形.证明:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵HA=EB=FC=GD,∴AE=BF=CG=DH,∴△AEH≌△BFE≌△CGF≌△DHG,∴EF=FG=GH=HE,∴四边形EFGH是菱形,∵△DHG≌△AEH,∴∠DHG=∠AEH,∵∠AEH+∠AHE=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,。
[推荐]扬州邗江区度第一学期期末试卷 八年级数学
2019—2020学年度第一学期期末试卷八年级数学(满分:150分 测试时间:120分钟)题号 一二三总 分 合分人 1-8 9-18 19 20 21 22 23 24 25 26 27 28 得分一、选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格 )1.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是A 、B 、C 、D 、2.在平面直角坐标系中,点P (2,-3)在A 、第一象限B 、第二象限C 、第三象限D 、第四象限 3.有一个数值转换器,原理如下:当输入的x =64时,输出的y 等于( )A 、2B 、8C 、23D 、22 4.如果等腰三角形两边长是6cm 和3cm ,那么它的周长是( ) A 、9cm B 、12cm C 、15cm 或12cm D 、15cm BC =8,则梯形ABCD 的周长为( )A 、22B 、24C 、26D 、286.已知一次函数y =kx +b 的图象经过第一、二、三象限,则b 的值可以是( )A 、﹣2B 、-1C 、0D 、27.如图,在Rt △ABC 中,∠ACB =90º,∠A =30º,BC =2,将△ABC 绕点C 按顺时针方向旋转n 度后,得到△EDC ,此时,点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( ) A 、30,2 B 、60,2 C 、60,D 、60,3题号 1 2 3 4 5 6 7 8 答案学校 姓名 考试号 班级 密 封输入 取算术平方根 输出是无理数 是有理数8.在平面直角坐标系中,□ABCD 的顶点A 、B 、C 的坐标分别是(0,0)、(3,0)、(4,2)则顶点D 的坐标为( ) A 、(7,2) B 、(5,4) C 、(1,2) D 、(2,1)二、填空题(本大题共10小题,每小题3分,共30分,把答案填在题目中的横线上)9.已知:一个正数的两个平方根分别是2a ﹣2和a ﹣4,则a 的值是 . 10.函数x 2 x 的取值范围是 .11.函数y =3x -2的y 值随自变量x 值的增大而 ( “增大”或“减小”). ,则它的面积是 .13.如图,点P 在∠AOB 的平分线上,PE 丄OA 于E ,PF 丄OB 于F ,若PE =3,则PF = .14. 如图,在梯形ABCD 中,AB ∥DC ,∠ADC 的平分线与∠BCD 的平分线的交点E恰在AB 上.若AD =7cm ,BC =8cm ,则AB 的长度是 cm .15.如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到△ABC ,则△ABC 中BC 边上的高是 。
2015-2016学年江苏省扬州市高邮市八年级上学期期末数学试卷(带解析)
绝密★启用前2015-2016学年江苏省扬州市高邮市八年级上学期期末数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:144分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、如图,Rt △ABC ,∠ACB=90°,AC=3,BC=4,将边Ac 沿CE 翻折,使点A 落在AB 上的D 处,再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点F 处,两条折痕与斜边AB 分别交于点E 、F ,则线段BF 的长为( )A .B .C .D .2、已知A (x 1,y 1),B (x 2,y 2)是一次函数y=2x ﹣kx+1图象上的不同两个点,m=(x 1﹣x 2)(y 1﹣y 2),则当m <0时,k 的取值范围是( ) A .k <0B .k >0C .k <2D .k >23、如图,若BC=EC ,∠BCE=∠ACD ,则添加不能使△ABC ≌△DBC 的条件是( )A .AB=DEB .∠B=∠EC .AC=DCD .∠A=∠D4、下列四组线段中,可以构成直角三角形的是( ) A .4,5,6B .2,3,4C .,3,4D .1,,35、化简的结果是( )A .x+1B .C .x ﹣1D .6、点M (﹣3,2)关于y 轴对称的点的坐标为( ) A .(﹣3,﹣2)B .(3,﹣2)C .(3,2)D .(﹣3,2)7、16的平方根是( ) A .4B .±4C .﹣4D .±88、下列图形中不是轴对称图形的是( )第II 卷(非选择题)二、填空题(题型注释)9、如图,在直角坐标系中,点A 、B 的坐标分别为(2,4)和(3、0)点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,在运动的过程中,当△ABC 是以AB 为底的等腰三角形时,此时点C 的坐标为 .10、已知一次函数y=kx+b ,若3k ﹣b=2,则它的图象一定经过的定点坐标为 .11、若关于x 的方程+=2的解为正数,则m 的取值范围是 .12、如图,AB=AC=AD ,∠BAD=80°,则∠BCD 的大小是 .13、一次函数y 1=kx+b 与y 2=x+a 的图象如图,则kx+b >x+a 的解集是 .14、如图所示,在Rt △ABC 中,∠A=90°,BD 平分∠ABC ,交AC 于点D ,且AD=2,BC=5,则△BCD 的面积是 .15、如图,在3×3的正方形网格中有四个格点,A 、B 、C 、D ,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是 点.16、一次函数y=﹣2x+1的图象一定不经过第 象限.17、一个等腰三角形的一个角为50°,则它的顶角的度数是 .18、在实数1.732,中,无理数的个数为 .三、解答题(题型注释)19、小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min 后距出发点的距离为y m .图中折线表示小亮在整个训练中y 与x 的函数关系,其中A 点在x 轴上,M 点坐标为(2,0).(1)A 点所表示的实际意义是 ;= ;(2)求出AB 所在直线的函数关系式;(3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?20、如图,P 为正方形ABCD 的边BC 上一动点(P 与B 、C 不重合),连接AP ,过点B 作BQ ⊥AP 交CD 于点Q ,将△BQC 沿BQ 所在的直线对折得到△BQC′,延长QC′交BA 的延长线于点M .(1)试探究AP 与BQ 的数量关系,并证明你的结论; (2)当AB=3,BP=2PC ,求QM 的长; (3)当BP=m ,PC=n 时,求AM 的长.21、如图,在边长为4的正方形ABCD 中,请画出以A 为一个顶点,另外两个顶点在正方形ABCD 的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)22、如图,一次函数y=﹣x+m 的图象和y 轴交于点B ,与正比例函数y=x 图象交于点P (2,n ).(1)求m 和n 的值; (2)求△POB 的面积.考点:两条直线相交或平行问题;二元一次方程组的解.23、如图,在Rt △ABC 中,∠C=90°,BD 是△ABC 的一条角平分线.点O 、E 、F 分别在BD 、BC 、AC 上,且四边形OECF 是正方形.(1)求证:点O 在∠BAC 的平分线上; (2)若AC=5,BC=12,求OE 的长.24、如图,△ABC 中,AB=AC ,AD ⊥BC ,CE ⊥AB ,AE=CE .求证:(1)△AEF ≌△CEB ; (2)AF=2CD .25、春节前夕,某商店根据市场调查,用2000元购进第一批盒装花,上市后很快售完,接着又用4200元购进第二批这种盒装花.已知第二批所购的盒数是第一批所购花盒数的3倍,且每盒花的进价比第一批的进价少6元.求第一批盒装花每盒的进价.26、先化简:,然后从﹣2≤x≤2的范围内选择一个合适的整数作为x的值代入求值.27、解分式方程:(1)=1(2)2﹣.28、(1)计算:(2)求x的值:25(x+2)2﹣36=0.参考答案1、B.2、D.3、A.4、C.5、A.6、C.7、C8、A.9、(0,).10、(﹣3,﹣2).11、m<6且m≠0.12、140°.13、x<﹣2.14、5.15、B点.16、三.17、50°或80°.18、2.19、(1)小亮出发分钟回到了出发点;.(2)y=﹣360x+1200.(3)2.5(min).20、(1)AP=BQ;(2)(3)21、22、(1)5,3;(2)5.23、(1)(2)见解析24、(1)(2)证明见解析.25、20元26、,7.27、(1)x=﹣4;(2)x=2.28、(1);(2)x1=﹣,x2=﹣.【解析】1、试题分析:首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=,ED=AE=,从而求得B′D=1,DF=,在Rt△B′DF中,由勾股定理即可求得B′F的长,进而得出BF的长.解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC=AC×BC=AB×CE,∴AC×BC=AB×CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE=,∴DF=EF﹣ED=,∴B′F=.∴BF=B'F=,故选B.考点:翻折变换(折叠问题).2、试题分析:根据一次函数的性质判断出y随x的增大而减小,从而得出2﹣k<0.解:∵A(x1,y1)、B(x2,y2)是一次函数y=2x﹣kx+1图象上的不同两个点,m=(x1﹣x2)(y1﹣y2)<0,∴该函数图象是y随x的增大而减小,∴2﹣k<0,解得k>2.故选D.考点:一次函数图象上点的坐标特征.3、试题分析:先求出∠ACB=∠DCE,再根据全等三角形的判定定理(SAS,ASA,AAS,SSS)逐个判断即可.解:∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,∴∠ACB=∠DCE,A、根据BC=CE,AB=DE,∠ACB=∠DCE不能推出△ABC≌△DEC,故本选项正确;B、因为∠ACB=∠DCE,∠B=∠E,BC=CE,所以符合AAS定理,即能推出△ABC≌△DEC,故本选项错误;C、因为BC=CE,∠ACB=∠DCE,AC=CD,所以符合SAS定理,即能推出△ABC≌△DEC,故本选项错误;D、因为∠A=∠D,∠ACB=∠DCE,BC=CE,所以符合AAS定理,即能推出△ABC≌△DEC,故本选项错误;故选A.考点:全等三角形的判定.4、试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.解:A、42+52≠62,不能构成直角三角形,故不符合题意;B、22+32≠64,不能构成直角三角形,故不符合题意;C、()2+32=42,能构成直角三角形,故符合题意;D、12+()2≠32,不能构成直角三角形,故不符合题意.故选C.考点:勾股定理的逆定理.5、试题分析:原式变形后,利用同分母分式的减法法则计算即可得到结果.解:原式=﹣===x+1.故选A考点:分式的加减法.6、试题分析:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y),可以直接得到答案.解:点M(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:C.考点:关于x轴、y轴对称的点的坐标.7、试题分析:根据算术平方根的定义求解即可求得答案.解:∵42=16,∴16的算术平方根是4.故选C.考点:算术平方根.8、试题分析:根据轴对称图形的概念求解.解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.考点:轴对称图形.9、试题分析:根据等腰三角形的判定,可得AC=BC,根据解方程,可得C点的坐标.解:设C点坐标为(0,a),当△ABC是以AB为底的等腰三角形时,BC=AC,平方,得BC2=AC2,22+(4﹣a)2=32+a2,化简,得8a=11,解得a=,故点C的坐标为(0,),故答案为(0,).考点:等腰三角形的判定;坐标与图形性质.10、试题分析:把一次函数解析式转化为y=k(x+3)+2,可知点(﹣3,﹣2)在直线上,且与系数无关.解:∵3k﹣b=2,∴b=3k﹣2,∴y=kx+b=kx+3k﹣2=k(x+3)﹣2,∴函数一定过点(﹣3,﹣2),故答案为(﹣3,﹣2).考点:一次函数图象上点的坐标特征.11、试题分析:首先解方程求得方程的解,根据方程的解是正数,即可得到一个关于m 的不等式,从而求得m的范围.解:∵关于x的方程+=2有解,∴x﹣2≠0,∴x≠2,去分母得:2﹣x﹣m=2(x﹣﹣2),即x=2﹣,根据题意得:2﹣>0且2﹣≠2,解得:m<6且m≠0.故答案是:m<6且m≠0.考点:分式方程的解.12、试题分析:在△ABC中可得∠BCA=(180°﹣∠BAC),在△ACD中可得∠DCA=(180°﹣∠CAD),结合条件,两式相加可求得∠BCD的大小.解:∵AB=AC=AD,∴∠BCA=∠B=(180°﹣∠BAC),∠DCA=∠D=(180°﹣∠CAD),∴∠BCD=∠BCA+∠DCA=(180°﹣∠BAC)+(180°﹣∠CAD)=180°﹣(∠BAC+∠CAD)=180°﹣∠BAD=180°﹣40°=140°,故答案为:140°.考点:等腰三角形的性质.13、试题分析:把x=﹣2代入y1=kx+b与y2=x+a,由y1=y2得出=2,再求不等式的解集.解:把x=﹣2代入y1=kx+b得,y1=﹣2k+b,把x=﹣2代入y2=x+a得,y2=﹣2+a,由y1=y2,得:﹣2k+b=﹣2+a,解得=2,解kx+b>x+a得,(k﹣1)x>a﹣b,∵k<0,∴k﹣1<0,解集为:x<,∴x<﹣2.故答案为:x<﹣2.考点:一次函数与一元一次不等式.14、试题分析:首先作DE⊥BC,利用角平分线的性质可得DE=DA=2,利用三角形的面积公式可得结果.解:过点D作DE⊥BC,∵BD平分∠ABC,∠A=90°,∴DE=DA=2,∴S△BCD===5.故答案为:5.考点:角平分线的性质.15、试题分析:以每个点为原点,确定其余三个点的坐标,找出满足条件的点,得到答案.解:当以点B为原点时,A(﹣1,﹣1),C(1,﹣1),则点A和点C关于y轴对称,符合条件.故答案为:B点.考点:关于x轴、y轴对称的点的坐标.16、试题分析:根据了一次函数与系数的关系可判断一次函数y=﹣2x+1的图象经过第一、二、四象限.解:∵k=﹣2<0,∴一次函数y=﹣2x+1的图象经过第二、四象限;∵b=1>0,∴一次函数y=﹣2x+1的图象与y轴的交点在x轴上方,∴一次函数y=﹣2x+1的图象经过第一、二、四象限,不经过第三象限.故答案为三.考点:一次函数图象与系数的关系.17、试题分析:等腰三角形一内角为50°,没说明是顶角还是底角,所以有两种情况.解:(1)当50°角为顶角,顶角度数即为50°;(2)当50°为底角时,顶角=180°﹣2×50°=80°.故填50°或80°.考点:等腰三角形的性质;三角形内角和定理.18、试题分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:,是无理数,故答案为:2.考点:无理数.19、试题分析:(1)根据已知M点的坐标进而得出上坡速度,再利用已知下坡的平均速度则是各自上坡平均速度的1.5倍,得出下坡速度以及下坡所用时间,进而得出A点实际意义和OM,AM的长度,即可得出答案;(2)根据A,B两点坐标进而利用待定系数法求出一次函数解析式即可;(3)根据小刚上坡平均速度是小亮上坡平均速度的一半首先求出小刚的上坡的平均速度,进而利用第一次相遇两人中小刚在上坡,小亮在下坡,即可得出小亮返回时两人速度之和为:120+360=480(m/min),进而求出所用时间即可.解:(1)根据M点的坐标为(2,0),则小亮上坡速度为:=240(m/min),则下坡速度为:240×1.5=360(m/min),故下坡所用时间为:=(分钟),故A点横坐标为:2+=,纵坐标为0,得出实际意义:小亮出发分钟回到了出发点;==.故答案为:小亮出发分钟回到了出发点;.(2)由(1)可得A点坐标为(,0),设y=kx+b,将B(2,480)与A(,0)代入,得:,解得.所以y=﹣360x+1200.(3)小刚上坡的平均速度为240×0.5=120(m/min),小亮的下坡平均速度为240×1.5=360(m/min),由图象得小亮到坡顶时间为2分钟,此时小刚还有480﹣2×120=240m没有跑完,两人第一次相遇时间为2+240÷(120+360)=2.5(min).(或求出小刚的函数关系式y=120x,再与y=﹣360x+1200联立方程组,求出x=2.5也可以.)考点:一次函数的应用.20、试题分析:(1)要证AP=BQ,只需证△PBA≌△QCB即可;(2)过点Q作QH⊥AB于H,如图.易得QH=BC=AB=3,BP=2,PC=1,然后运用勾股定理可求得AP(即BQ)=,BH=2.易得DC∥AB,从而有∠CQB=∠QBA.由折叠可得∠C′QB=∠CQB,即可得到∠QBA=∠C′QB,即可得到MQ=MB.设QM=x,则有MB=x,MH=x﹣2.在Rt△MHQ中运用勾股定理就可解决问题;(3)过点Q作QH⊥AB于H,如图,同(2)的方法求出QM的长,就可得到AM的长.解:(1)AP=BQ.理由:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∴∠ABQ+∠CBQ=90°.∵BQ⊥AP,∴∠PAB+∠QBA=90°,∴∠PAB=∠CBQ.在△PBA和△QCB中,,∴△PBA≌△QCB,∴AP=BQ;(2)过点Q作QH⊥AB于H,如图.∵四边形ABCD是正方形,∴QH=BC=AB=3.∵BP=2PC,∴BP=2,PC=1,∴BQ=AP===,∴BH===2.∵四边形ABCD是正方形,∴DC∥AB,∴∠CQB=∠QBA.由折叠可得∠C′QB=∠CQB,∴∠QBA=∠C′QB,∴MQ=MB.设QM=x,则有MB=x,MH=x﹣2.在Rt△MHQ中,根据勾股定理可得x2=(x﹣2)2+32,解得x=.∴QM的长为;(3)过点Q作QH⊥AB于H,如图.∵四边形ABCD是正方形,BP=m,PC=n,∴QH=BC=AB=m+n.∴BQ2=AP2=AB2+PB2,∴BH2=BQ2﹣QH2=AB2+PB2﹣AB2=PB2,∴BH=PB=m.设QM=x,则有MB=QM=x,MH=x﹣m.在Rt△MHQ中,根据勾股定理可得x2=(x﹣m)2+(m+n)2,解得x=m+n+,∴AM=MB﹣AB=m+n+﹣m﹣n=.∴AM的长为.考点:四边形综合题;全等三角形的判定与性质;勾股定理;正方形的性质;轴对称的性质.21、试题分析:①以A为圆心,以3为半径作弧,交AD、AB两点,连接即可;②连接AC,在AC上,以A为端点,截取1.5个单位,过这个点作AC的垂线,交AD、AB 两点,连接即可;③以A为端点在AB上截取3个单位,以截取的点为圆心,以3个单位为半径画弧,交BC一个点,连接即可;④连接AC,在AC上,以C为端点,截取1.5个单位,过这个点作AC的垂线,交BC、DC两点,然后连接A与这两个点即可;⑤以A为端点在AB上截取3个单位,再作着个线段的垂直平分线交CD一点,连接即可.解:满足条件的所有图形如图所示:考点:作图—应用与设计作图;等腰三角形的判定;勾股定理;正方形的性质.22、试题分析:(1)先把P(2,n)代入y=x即可得到n的值,从而得到P点坐标为(2,3),然后把P点坐标代入y=﹣x+m可计算出m的值;(2)先利用一次函数解析式确定B点坐标,然后根据三角形面积公式求解.解:(1)把P(2,n)代入y=x得n=3,所以P点坐标为(2,3),把P(2,3)代入y=﹣x+m得﹣2+m=3,解得m=5,即m和n的值分别为5,3;(2)把x=0代入y=﹣x+5得y=5,所以B点坐标为(0,5),所以△POB的面积=×5×2=5.23、试题分析:(1)过点O作OM⊥AB,由角平分线的性质得OE=OM,由正方形的性质得OE=OF,易得OM=OF,由角平分线的判定定理得点O在∠BAC的平分线上;(2)由勾股定理得AB的长,利用方程思想解得结果.(1)证明:过点O作OM⊥AB,∵BD是∠ABC的一条角平分线,∴OE=OM,∵四边形OECF是正方形,∴OE=OF,∴OF=OM,∴AO是∠BAC的角平分线,即点O在∠BAC的平分线上;(2)解:∵在Rt△ABC中,AC=5,BC=12,∴AB===13,设CE=CF=x,BE=BM=y,AM=AF=z,∴,解得:,∴CE=2,∴OE=2.考点:角平分线的性质;全等三角形的判定与性质;正方形的性质.24、试题分析:(1)由AD⊥BC,CE⊥AB,易得∠AFE=∠B,利用全等三角形的判定得△AEF≌△CEB;(2)由全等三角形的性质得AF=BC,由等腰三角形的性质“三线合一”得BC=2CD,等量代换得出结论.证明:(1)∵AD⊥BC,CE⊥AB,∴∠BCE+∠CFD=90°,∠BCE+∠B=90°,∴∠CFD=∠B,∵∠CFD=∠AFE,∴∠AFE=∠B在△AEF与△CEB中,,∴△AEF≌△CEB(AAS);(2)∵AB=AC,AD⊥BC,∴BC=2CD,∵△AEF≌△CEB,∴AF=BC,∴AF=2CD.考点:全等三角形的判定与性质;等腰三角形的性质.25、试题分析:设第一批盒装花每盒的进价为x元,根据第二批所购的盒数是第一批所购花盒数的3倍,每盒花的进价比第一批的进价少6元,列出方程求解即可.解:设第一批盒装花每盒的进价为x元,根据题意列方程得:=,解得:x=20,经检验:x=20是原方程的根;答:第一批盒装花每盒的进价是20元.考点:分式方程的应用.26、试题分析:原式括号中两项通分并利用同分母分式的加法法则计算,约分后利用同分母分式的减法法则计算得到最简结果,把x=﹣2代入计算即可求出值.解:原式=×﹣=﹣=,当x=﹣2时,原式==7.考点:分式的化简求值.27、试题分析:(1)观察可得最简公分母是(x+3)(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.(2)观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解:(1)方程的两边同乘(x+3)(x﹣3),得3+x(x+3)=(x+3)(x﹣3),解得x=﹣4.检验:把x=﹣4代入(x+3)(x﹣3)=7≠0.故原方程的解为:x=﹣4;(2)原方程可化为:2+=,方程的两边同乘(x﹣2),得2(x﹣2)+1=3﹣x,解得x=2.检验:把x=2代入(x+3)(x﹣3)=﹣5≠0.故原方程的解为:x=2.考点:解分式方程.28、试题分析:(1)原式利用立方根的定义及绝对值的代数意义化简,计算即可得到结果;(2)方程整理后,利用平方根定义开方即可求出解.解:(1)原式=1﹣2+﹣+1+=;(2)方程整理得:(x+2)2=,开方得:x+2=±,解得:x1=﹣,x2=﹣.考点:实数的运算;平方根.。
扬州市初二数学上学期期末试卷
扬州市初二数学上学期期末试卷一、选择题1.如图,在四边形ABCD 中,AB ∥DC ,AD=BC=5,DC=7,AB=13,点P 从点A 出发以3个单位/s 的速度沿AD→DC 向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动.当四边形PQBC 为平行四边形时,运动时间为( )A .4sB .3sC .2sD .1s2.若分式15x -在实数范围内有意义,则实数x 的取值范围是( ) A .5x ≠ B .5x = C .5x > D .5x < 3.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三B .二、三、四C .一、二、四D .一、三、四4.下列二次根式中属于最简二次根式的是( ) A .8 B .36C .ab(a >0,b >0) D .7 5.1(1)1a a--变形正确的是( ) A .1- B .1a -C .1a --D .1a --6.在22、0.3•、227-、38中,无理数的个数有( )A .1个B .2个C .3个D .4个7.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,08.甲、乙两地相距80km ,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km/h ,并继续匀速行驶至乙地,汽车行驶的路程y (km )与时间x(h)之间的函数关系如图所示,该车到达乙地的时间是当天上午()A.10:35 B.10:40 C.10:45 D.10:50 9.变量x与y之间的关系是y=2x+1,当y=5时,自变量x的值是()A.13 B.5 C.2 D.3.510.如图,在平面直角坐标系xOy中,直线y=﹣43x+4与x轴、y轴分别交于点A、B,M是y轴上的点(不与点B重合),若将△ABM沿直线AM翻折,点B恰好落在x轴正半轴上,则点M的坐标为()A.(0,﹣4 )B.(0,﹣5 )C.(0,﹣6 )D.(0,﹣7 )二、填空题11.若等腰三角形的一个角为70゜,则其顶角的度数为_____ .12.如图,在△ABC中,∠B=40°,BC边的垂直平分线交BC于D,交AB于E,若CE平分∠ACB,则∠A=______°.13.点A(2,-3)关于x轴对称的点的坐标是______.14.分解因式:12a2-3b2=____.15.将一次函数y=2x+2的图象向下平移2个单位长度,得到相应的函数表达式为____.16.若点P(3m﹣1,2+m)关于原点的对称点P′在第四象限的取值范围是_____.17.如图,△ABC中,AB=AC,AB的垂直平分线分别交边AB,BC于D,E点,且AC=EC,则∠BAC=_____.18.如图,△ABC 中,BD 平分∠ABC ,交AC 于D ,DE ⊥AB 于点E ,△ABC 的面积是42cm 2,AB =10cm ,BC =14cm ,则DE =_____cm .19.若等腰三角形的顶角为30°,那么这个等腰三角形的底角为_____°20.如图,在△ABC 中,AB =6,AC =5,BC =9,∠BAC 的角平分线AP 交BC 于点P ,则CP 的长为_____.三、解答题21.如图,一次函数1y x b =+的图像与x 轴y 轴分别交于点A 、点B ,函数1y x b =+,与243y x =-的图像交于第二象限的点C ,且点C 横坐标为3-. (1)求b 的值;(2)当120y y <<时,直接写出x 的取值范围; (3)在直线243y x =-上有一动点P ,过点P 作x 轴的平行线交直线1y x b =+于点Q ,当145PQ OC =时,求点P 的坐标.22.已知一次函数y =3x +m 的图象经过点A (1,4). (1)求m 的值;(2)若点B (﹣2,a )在这个函数的图象上,求点B 的坐标.23.定义:到一个三角形三个顶点的距离相等的点叫做该三角形的外心.(1)如图①,小海同学在作△ABC 的外心时,只作出两边BC ,AC 的垂直平分线得到交点O ,就认定点O 是△ABC 的外心,你觉得有道理吗?为什么?(2)如图②,在等边三角形ABC 的三边上,分别取点D ,E ,F ,使AD =BE =CF ,连接DE ,EF ,DF ,得到△DEF .若点O 为△ABC 的外心,求证:点O 也是△DEF 的外心.24.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地两人之间的距离y (米)与时间t (分钟)之间的函数关系如图所示(1)根据图象信息,当t = 分钟时甲乙两人相遇,甲的速度为 米/分钟; (2)求出线段AB 所表示的函数表达式 (3)甲、乙两人何时相距400米?25.阅读下列材料,并回答问题.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:()1一个直角三角形的两条直角边分别为512、,那么这个直角三角形斜边长为____; ()2如图①,AD BC ⊥于,,,10,6D AD BD AC BE AC DC ====,求BD 的长度; ()3如图②,点A 在数轴上表示的数是____请用类似的方法在图2数轴上画出表示数10B 点(保留痕迹).四、压轴题26.如图1所示,直线:5L y mx m =+与x 轴负半轴,y 轴正半轴分别交于A 、B 两点.(1)当OA OB =时,求点A 坐标及直线L 的解析式.(2)在(1)的条件下,如图2所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM OQ ⊥于M ,BN OQ ⊥于N ,若17AM =,求BN 的长. (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角OBF ∆和等腰直角ABE ∆,连接EF 交y 轴于P 点,如图3.问:当点B 在y 轴正半轴上运动时,试猜想PB 的长是否为定值?若是,请求出其值;若不是,说明理由. 27.如图,直线112y x b =-+分别与x 轴、y 轴交于A ,B 两点,与直线26y kx =-交于点()C 4,2.(1)b = ;k = ;点B 坐标为 ;(2)在线段AB 上有一动点E ,过点E 作y 轴的平行线交直线y 2于点F ,设点E 的横坐标为m ,当m 为何值时,以O 、B 、E 、F 为顶点的四边形是平行四边形;(3)若点P 为x 轴上一点,则在平面直角坐标系中是否存在一点Q ,使得P ,Q ,A ,B 四个点能构成一个菱形.若存在,直接写出所有符合条件的Q 点坐标;若不存在,请说明理由.28.阅读下列材料,并按要求解答.(模型建立)如图①,等腰直角三角形ABC 中,∠ACB =90°,CB =CA ,直线ED 经过点C ,过A 作AD ⊥ED 于点D ,过B 作BE ⊥ED 于点E .求证:△BEC ≌△CDA . (模型应用)应用1:如图②,在四边形ABCD中,∠ADC=90°,AD=6,CD=8,BC=10,AB2=200.求线段BD的长.应用2:如图③,在平面直角坐标系中,纸片△OPQ为等腰直角三角形,QO=QP,P(4,m),点Q始终在直线OP的上方.(1)折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,当m=2时,求Q点的坐标和直线l与x轴的交点坐标;(2)若无论m取何值,点Q总在某条确定的直线上,请直接写出这条直线的解析式.29.已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求ABFACFSS的值.30.如图,四边形ABCD是直角梯形,AD∥BC,AB⊥AD,且AB=AD+BC,E是DC的中点,连结BE并延长交AD的延长线于G.(1)求证:DG=BC;(2)F是AB边上的动点,当F点在什么位置时,FD∥BG;说明理由.(3)在(2)的条件下,连结AE交FD于H,FH与HD长度关系如何?说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 【详解】解:设运动时间为t 秒,则CP=12-3t ,BQ=t , 根据题意得到12-3t=t , 解得:t=3, 故选B . 【点睛】本题考查一元一次方程及平行四边形的判定,难度不大.2.A解析:A 【解析】 【分析】根据分式的定义即可求解. 【详解】依题意得50x -≠,解得5x ≠, 故选A. 【点睛】此题主要考查分式的性质,解题的关键是熟知分式的性质.3.C解析:C 【解析】试题分析:直线y=﹣5x+3与y 轴交于点(0,3),因为k=-5,所以直线自左向右呈下降趋势,所以直线过第一、二、四象限. 故选C .考点:一次函数的图象和性质.4.D解析:D 【解析】 【分析】根据最简二次根式的定义即可求出答案. 【详解】解:(A )原式=,故A 不符合题意; (B )原式=6,故B 不符合题意;(C )ab 是分式,故C 不符合题意; 故选:D . 【点睛】本题考查最简二次根式,解题的关键是熟练运用最简二次根式的定义,本题属于基础题型.5.C解析:C 【解析】 【分析】先根据二次根式有意义有条件得出1-a>0,再由此利用二次根式的性质化简得出答案. 【详解】11a-有意义, 10a ∴->, 10a ∴-<,(a ∴-== 故选C . 【点睛】考查了二次根式的性质与化简,正确化简二次根式是解题关键.6.A解析:A 【解析】 【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合题意判断即可. 【详解】、•0.3、227-中,2是无理数; •0.3循环小数,是有理数;227-是分数,是有理数;=2,是整数,是有理数;所以无理数共1个. 故选:A . 【点睛】此题考查了无理数的概念,解答本题的关键是掌握无理数的定义,属于基础题,要熟练掌握无理数的三种形式,难度一般.7.B解析:B 【解析】 【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论. 【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0. 故选: B. 【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.8.B解析:B 【解析】 【分析】根据图象可知走前一半路程用了1小时,由此可得走前一半路程的速度为40km/h ,从而可得走后一半路程的速度为60km/h ,根据时间=路程÷速度即可求得答案. 【详解】由图象知走前一半路程用的时间为1小时, 所以走前一半路程时的速度为40km/h ,因为匀速行驶了一半的路程后将速度提高了20km/h ,所以以后的速度为20+40=60km/h,时间为4060×60=40分钟,故该车到达乙地的时间是当天上午10:40,故选B.【点睛】本题考查了函数的图象,读懂图象,从中找到必要的信息是解题的关键.9.C解析:C【解析】【分析】直接把y=5代入y=2x+1,解方程即可.【详解】解:当y=5时,5=2x+1,解得:x=2,故选:C.【点睛】此题主要考查了函数值,关键是掌握已知函数解析式,给出函数值时,求相应的自变量的值就是解方程.10.C解析:C【解析】【分析】设沿直线AM将△ABM折叠,点B正好落在x轴上的C点,则有AB=AC,而AB的长度根据已知可以求出,所以C点的坐标由此求出;又由于折叠得到CM=BM,在直角△CMO中根据勾股定理可以求出OM,也就求出M的坐标.【详解】设沿直线AM将△ABM折叠,点B正好落在x轴上的C点,∵直线y=﹣43x+4与x轴、y轴分别交于点A、B,∴A(3,0),B(0,4),∴AB5,设OM=m,由折叠知,AC=AB=5,CM=BM=OB+OM=4+m,∴OC=8,CM=4+m,根据勾股定理得,64+m2=(4+m)2,解得:m=6,∴M(0,﹣6),故选:C.【点睛】本题主要考查一次函数的图象,图形折叠的性质以及勾股定理,通过勾股定理,列方程,是解题的关键.二、填空题11.70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为:解析:70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为: 70°或40°.【点睛】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键. 12.60【解析】∵E在线段BC的垂直平分线上,∴BE=CE,∴∠ECB=∠B=40°,∵CE平分∠ACB,∴∠ACD=2∠ECB=80°,又∵∠A+∠B+∠ACB=180°,∴∠A=18解析:60【解析】∵E在线段BC的垂直平分线上,∴BE=CE,∴∠ECB=∠B=40°,∵CE平分∠ACB,∴∠ACD=2∠ECB=80°,又∵∠A+∠B+∠ACB=180°,∴∠A=180°−∠B−∠ACB=60°,故答案为:60.13.(2,3)【解析】【分析】根据 “关于x轴对称的点,横坐标相同, 纵坐标互为相反数” 解答.【详解】解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛解析:(2,3)【解析】【分析】根据“关于x轴对称的点,横坐标相同, 纵坐标互为相反数”解答.【详解】解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛】本题考查了关于x轴,y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数:(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3) 关于原点对称的点, 横坐标与纵坐标都互为相反数.14.3(2a+b)(2a-b)【解析】12a2-3b2=3(4a2-b2)=3(2a+b)(2a-b);故答案是:3(2a+b)(2a-b)。
扬州市八年级(上)期末数学试卷(含答案)
扬州市八年级(上)期末数学试卷(含答案)一、选择题1.下列调查中适合采用普查的是( )A .了解“中国达人秀第六季”节目的收视率B .调查某学校某班学生喜欢上数学课的情况C .调查我市市民知晓“礼让行人”交通新规的情况D .调查我国目前“垃圾分类”推广情况2.如图,在ABC ∆中,31C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么A ∠的度数为( )A .31︒B .62︒C .87︒D .93︒3.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点F ,过F 作//DE BC ,交AB 于点D ,交AC 于点E ,若4BD =,7DE =,则线段EC 的长为( )A .3B .4C .3.5D .2 4.计算021( 3.14)()2π--+=( ) A .5B .-3C .54D .14- 5.一次函数112y x =-+的图像不经过的象限是:( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.下列图案属于轴对称图形的是( )A .B .C .D .7.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是( )A .a >bB .a =bC .a <bD .以上都不对8.下列实数中,无理数是( )A .227B .3πC .4-D .3279.如果m 是任意实数,则点()P m 4m 1-+,一定不在A .第一象限B .第二象限C .第三象限D .第四象限 10.某篮球运动员的身高为1.96cm ,用四舍五人法将1.96精确到0.1的近似值为( )A .2B .1.9C .2.0D .1.90 二、填空题11.地球上七大洲的总面积约为149480000km 2(精确到10000000 km 2),用四舍五入法按要求取近似值,并用科学记数法为_________ km 2.12.计算112242⨯+=__________. 13.若1712a +=,则352020a a -+=__________. 14.一次函数32y x =-+的图象一定不经过第______象限.15.如图,在△ABC 中,∠B=40°,BC 边的垂直平分线交BC 于D ,交AB 于E ,若CE 平分∠ACB,则∠A=______°.16.等腰三角形的顶角为76°,则底角等于__________.17.函数y =-3x +2的图像上存在一点P ,点P 到x 轴的距离等于3,则点P 的坐标为________.18.已知以点C (a ,b )为圆心,半径为r 的圆的标准方程为(x -a )2+(y -b )2=r 2.例如:以A (2,3)为圆心,半径为2的圆的标准方程为(x -2)2+(y -3)2=4,则以原点为圆心,过点P (1,0)的圆的标准方程为____.19.16_______.20.若一次函数y x a =-+与y x b =+的图像的交点坐标(,1010)m ,则a b +=__________.三、解答题21.如图,在四边形ABCD 中,90ABC ∠=︒,过点B 作BE CD ⊥,垂足为点E ,过点A 作AF BE ⊥,垂足为点F ,且BE AF =.(1)求证:ABF BCE ∆≅∆;(2)连接BD ,且BD 平分ABE ∠交AF 于点G .求证:BCD ∆是等腰三角形.22.小明和小华加工同一种零件,己知小明比小华每小时多加工15个零件,小明加工300个零件所用时间与小华加工200个零件所用的时间相同,求小明每小时加工零件的个数.23.如图,正方形网格中每个小正方形的边长为1,格点△ABC 的顶点A (2,3)、B (﹣1,2),将△ABC 平移得到△A ′B ′C ′,使得点A 的对应点A ′,请解答下列问题:(1)根据题意,在网格中建立平面直角坐标系;(2)画出△A ′B ′C ′,并写出点C ′的坐标为 .24.在长方形纸片ABCD 中,点E 是边CD 上的一点,将△AED 沿AE 所在的直线折叠,使点D 落在点F 处.(1)如图1,若点F 落在对角线AC 上,且∠BAC =54°,则∠DAE 的度数为 °. (2)如图2,若点F 落在边BC 上,且AB =6,AD =10,求CE 的长.(3)如图3,若点E 是CD 的中点,AF 的沿长线交BC 于点G ,且AB =6,AD =10,求CG的长.25.已知:如图点A 、B 、C 、D 在一条直线上,EA ∥FB ,EC ∥FD ,AB=CD ,求证:EA=FB .四、压轴题26.如图1所示,直线:5L y mx m =+与x 轴负半轴,y 轴正半轴分别交于A 、B 两点.(1)当OA OB =时,求点A 坐标及直线L 的解析式.(2)在(1)的条件下,如图2所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM OQ ⊥于M ,BN OQ ⊥于N ,若17AM =,求BN 的长. (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角OBF ∆和等腰直角ABE ∆,连接EF 交y 轴于P 点,如图3.问:当点B 在y 轴正半轴上运动时,试猜想PB 的长是否为定值?若是,请求出其值;若不是,说明理由.27.如图,已知四边形ABCO 是矩形,点A ,C 分别在y 轴,x 轴上,4AB =,3BC =.(1)求直线AC 的解析式;(2)作直线AC 关于x 轴的对称直线,交y 轴于点D ,求直线CD 的解析式.并结合(1)的结论猜想并直接写出直线y kx b =+关于x 轴的对称直线的解析式;(3)若点P 是直线CD 上的一个动点,试探究点P 在运动过程中,||PA PB -是否存在最大值?若不存在,请说明理由;若存在,请求出||PA PB 的最大值及此时点P 的坐标.28.如图,已知△ABC 中,AB=AC=10cm ,BC=8cm ,点D 为AB 的中点.如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. (1)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,BP= cm ,CQ= cm . (2)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等,请说明理由;(3)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(4)若点Q 以(3)中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次相遇?29.问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC 是等边三角形,点D 是BC 的中点,且满足∠ADE =60°,DE 交等边三角形外角平分线于点E .试探究AD 与DE 的数量关系.操作发现:(1)小明同学过点D 作DF ∥AC 交AB 于F ,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD 与DE 的数量关系,并进行证明.类比探究:(2)如图2,当点D 是线段BC 上任意一点(除B 、C 外),其他条件不变,试猜想AD 与DE 之间的数量关系,并证明你的结论.拓展应用:(3)当点D 在线段BC 的延长线上,且满足CD =BC ,在图3中补全图形,直接判断△ADE的形状(不要求证明).30.一次函数y=kx+b的图象经过点A(0,9),并与直线y=53x相交于点B,与x轴相交于点C,其中点B的横坐标为3.(1)求B点的坐标和k,b的值;(2)点Q为直线y=kx+b上一动点,当点Q运动到何位置时△OBQ的面积等于272?请求出点Q的坐标;(3)在y轴上是否存在点P使△PAB是等腰三角形?若存在,请直接写出点P坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、了解“中国达人秀第六季”节目的收视率适合采用抽样调查的方式;B、调查某学校某班学生喜欢上数学课的情况适合采用全面调查的方式;C 、调查我市市民知晓“礼让行人”交通新规的情况适合采用抽样调查的方式;D 、调查我国目前“垃圾分类”推广情况适合采用抽样调查的方式;故选:B .【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.C解析:C【解析】【分析】根据垂直平分线的性质,可以得到∠C=∠ABC ,再根据角平分线的性质,得到∠ABC 的度数,最后利用三角形内角和即可解决.【详解】∵DE 垂直平分BC ,DB DC ∴=,31C DBC ︒∴∠=∠=,∵BD 平分ABC ∠,262ABC DBC ︒∴∠=∠=,180A ABC C ︒∴∠+∠+∠=,180180623187A ABC C ︒︒︒︒︒∴∠=-∠-∠=--=故选C【点睛】本题考查了垂直平分线的性质,角平分线的性质和三角形内角和,解决本题的关键是熟练掌握三者性质,正确理清各角之间的关系.3.A解析:A【解析】【分析】根据△ABC 中,∠ABC 和∠ACB 的平分线相交于点F.求证∠DBF=∠FBC,∠ECF=∠BCF,再利用两直线平行内错角相等,求证出∠DFB=∠DBF ,∠CFE=∠BCF,即BD=DF,FE=CE ,然后利用等量代换即可求出线段CE 的长.【详解】解:∵∠ABC 和∠ACB 的平分线相交于点F,∴∠DBF=∠FBC ,∠ECF=∠BCF,∵DF//BC,交AB 于点D,交AC 于点E.∴∠DFB=∠DBF ,∠CFE=∠BCF ,∴BD=DF=4,FE=CE,∴CE=DE-DF=7-4=3.故选:A.【点睛】本题考查了平行线的性质和角平分线的性质,解决本题的关键是正确理解题意,熟练掌握平行线和角平分线的性质,能够找到相等的量.4.A解析:A【解析】【分析】根据0指数幂和负整数幂定义进行计算即可.【详解】021( 3.14)()1452π--+=+= 故选:A【点睛】考核知识点:幂的运算.理解0指数幂和负整数幂定义是关键.5.C解析:C【解析】试题分析:根据一次函数y=kx+b (k≠0,k 、b 为常数)的图像与性质可知:当k >0,b >0时,图像过一二三象限;当k >0,b <0时,图像过一三四象限;当k <0,b >0时,图像过一二四象限;当k <0,b <0,图像过二三四象限.这个一次函数的k=12-<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像 6.D解析:D【解析】分析:根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有D 有一条对称轴,由此即可得出结论.详解:A 、不能找出对称轴,故A 不是轴对称图形;B 、不能找出对称轴,故B 不是轴对称图形;C 、不能找出对称轴,故C 不是轴对称图形;D 、能找出一条对称轴,故D 是轴对称图形.故选D .点睛:本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.解析:A【解析】【分析】【详解】∵k=﹣2<0,∴y 随x 的增大而减小,∵1<2,∴a >b .故选A .8.B解析:B【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】 A.227是有理数,不符合题意; B.3π是无理数,符合题意;C.=-2,是有理数,不符合题意;是有理数,不符合题意.故选:B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.9.D解析:D【解析】【分析】求出点P 的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.【详解】∵()()m 1m 4m 1m 450+--=+-+=>,∴点P 的纵坐标一定大于横坐标..∵第四象限的点的横坐标是正数,纵坐标是负数,∴第四象限的点的横坐标一定大于纵坐标.∴点P 一定不在第四象限.故选D .10.C【解析】【分析】根据四舍五入法可以将1.96精确到0.1,本题得以解决.【详解】1.96≈2.0(精确到0.1),故选:C .【点睛】此题主要考查有理数的近似值,熟练掌握,即可解题.二、填空题11.5×108【解析】试题解析:将149480000用科学记数法表示为:1.4948×108≈1.5×108.故答案为:1.5×108. 点睛:科学记数法的表示形式为的形式,其中 为整数.解析:5×108【解析】试题解析:将149480000用科学记数法表示为:1.4948×108≈1.5×108.故答案为:1.5×108.点睛:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数. 12.【解析】【分析】先计算乘法,然后合并同类二次根式即可.【详解】解:.【点睛】本题考查了二次根式的化简求值,熟悉二次根式的计算法则是解题的关键.解析:【解析】【分析】先计算乘法,然后合并同类二次根式即可.【详解】 1122426.【点睛】本题考查了二次根式的化简求值,熟悉二次根式的计算法则是解题的关键.13.2024【解析】【分析】,代入a 值,根据乘法法则进行计算即可.【详解】===4+2020=2024故答案为:2024【点睛】考核知识点:二次根式运算.掌握运算法则,运用乘法公解析:2024【解析】【分析】352020a a -+=()252020a a -+,代入a 值,根据乘法法则进行计算即可.【详解】352020a a -+=()225202052020a a ⎡⎤⎢⎥-+=-+⎢⎥⎝⎭⎣⎦=1185202024⎡⎤+⨯-+⎢⎥⎣⎦=11202022⨯+ =4+2020=2024故答案为:2024【点睛】 考核知识点:二次根式运算.掌握运算法则,运用乘法公式是关键.14.三【解析】【分析】根据一次函数的解析式中的k、b的符号,确定函数图象的位置,即可确定其不经过的象限;【详解】解:在一次函数y=-3x+2中,∵b=2>0,∴函数图象经过y轴的正半轴,解析:三【解析】【分析】根据一次函数的解析式中的k、b的符号,确定函数图象的位置,即可确定其不经过的象限;【详解】解:在一次函数y=-3x+2中,∵b=2>0,∴函数图象经过y轴的正半轴,k=-3<0,∴y随x的增大而减小,∴函数的图象经过第一、二、四象限,∴不经过第三象限.故答案为:三.【点睛】本题考查了一次函数的性质. 解题时可根据解析式中的k、b的值的正负作出草图,从而很容易判断函数经过(或不经过)那一象限.15.60【解析】∵E在线段BC的垂直平分线上,∴BE=CE,∴∠ECB=∠B=40°,∵CE平分∠ACB,∴∠ACD=2∠ECB=80°,又∵∠A+∠B+∠ACB=180°,∴∠A=18解析:60【解析】∵E在线段BC的垂直平分线上,∴BE=CE,∴∠ECB=∠B=40°,∵CE平分∠ACB,∴∠ACD=2∠ECB=80°,又∵∠A+∠B+∠ACB=180°,∴∠A=180°−∠B−∠ACB=60°,故答案为:60.16.52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可. 【详解】解:∵等腰三角形的顶角为76°,∴底角为:,故答案为:52°.【点睛】本题考查了等腰三角形性解析:52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可.【详解】解:∵等腰三角形的顶角为76°,∴底角为:11=104=52 22⨯︒︒⨯︒︒(180-76),故答案为:52°.【点睛】本题考查了等腰三角形性质,以及三角形内角和定理,解题的关键是掌握等腰三角形等边对等角计算角度.17.或【解析】【分析】根据点到x轴的距离等于纵坐标的长度求出点P的纵坐标,然后代入函数解析式求出x的值,即可得解.【详解】解:∵点P到x轴的距离等于3,∴点P的纵坐标的绝对值为3,解析:1,33⎛⎫⎪⎝⎭或533⎛⎫⎪⎝⎭,【解析】【分析】根据点到x轴的距离等于纵坐标的长度求出点P的纵坐标,然后代入函数解析式求出x的值,即可得解.【详解】解:∵点P到x轴的距离等于3,∴点P的纵坐标的绝对值为3,∴点P的纵坐标为3或﹣3,当y=3时,﹣3x+2=3,解得,x=﹣13;当y=﹣3时,﹣3x+2=﹣3,解得x=53;∴点P的坐标为(﹣13,3)或(53,﹣3).故答案为(﹣13,3)或(53,﹣3).【点睛】本题考查一次函数图象上点的坐标特征,利用数形结合思想解题是本题的关键,注意分类讨论.18.x2+y2=1【解析】因为原点为圆心,过点P(1,0)的圆即是以(0,0)半径为1的圆,则标准方程为: (x-0)2+(y-0)2=1,即x2+y2=1,故答案为: x2+y2=1.解析:x2+y2=1【解析】因为原点为圆心,过点P(1,0)的圆即是以(0,0)半径为1的圆,则标准方程为:(x-0)2+(y-0)2=1,即x2+y2=1,故答案为: x2+y2=1.19.4【解析】【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【详解】解:原式==4.故答案为4.【点睛】此题主解析:4【解析】【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【详解】解:原式.故答案为4.【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.20.2020【解析】【分析】把分别代入与,然后把两个式子相加即可求解.【详解】把分别代入与,得-m+a=1010①,m+b=1010②,①+②得a+b=2020.故答案为:2020.解析:2020【解析】【分析】把(,1010)m 分别代入y x a =-+与y x b =+,然后把两个式子相加即可求解.【详解】把(,1010)m 分别代入y x a =-+与y x b =+,得-m+a=1010①,m+b=1010②,①+②得a+b=2020.故答案为:2020.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适应此函数的解析式是解答此题的关键.三、解答题21.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据ASA证明ΔABF≌ΔBCE即可;(2)根据直角三角形两锐角互余、角平分线的性质以及余角的性质可得∠DBC=∠BDE,根据等角对等边即可得到BC=CD,从而得到结论.【详解】(1)∵BE⊥CD,AF⊥BE,∴∠BEC=∠AFB=90°,∴∠ABE+∠BAF=90°.∵∠ABC=90°,∴∠ABE+∠EBC=90°,∴∠BAF=∠EBC.在ΔABF和ΔBCE中,∵∠AFB=∠BEC,AF=BE,∠BAF=∠EBC,∴ΔABF≌ΔBCE.(2)∵∠ABC=90°,∴∠ABD+∠DBC=90°.∵∠BED=90°,∴∠DBE+∠BDE=90°.∵BD分∠ABE,∴∠ABD=∠DBE,∴∠DBC=∠BDE,∴BC=CD,即ΔBCD是等腰三角形.【点睛】本题考查了等腰三角形的判定与全等三角形的判定与性质.解题的关键是证明ΔABF≌ΔBCE.22.45【解析】【分析】设小明每小时加工零件x个,则小华每小时加工(x-15)个, 根据时间关系,得30020015 x x=-【详解】解:设小明每小时加工零件x个,则小华每小时加工(x-15)个由题意,得30020015 x x=-解得:x=45经检验:x=45是原方程的解,且符合题意.答:小明每小时加工零件45个.【点睛】考核知识点:分式方程应用.理解题,根据时间关系列方程是关键.23.(1)见解析;(2)(﹣3,﹣4)【解析】【分析】(1)根据点A和点B的坐标可建立平面直角坐标系;(2)利用平移变换的定义和性质可得答案.【详解】解:(1)如图所示,(2)如图所示,△A′B′C′即为所求,其中点C′的坐标为(﹣3,﹣4),故答案为:(﹣3,﹣4).【点睛】本题考查的知识点是作图-平移变换,找出三角形点A的平移规律是解此题的关键.24.(1)18;(2)CE的长为83;(3)CG的长为910.【解析】【分析】(1)由矩形的性质可知∠BAD=90°,易知∠DAC的度数,由折叠的性质可知∠DAE=12∠DAC,计算可得∠DAE的度数.(2)由矩形四个角都是直角及对边相等的性质及折叠后图形对应边相等的性质,结合勾股定理可得BF长,由CF=BC﹣BF可求出CF长,设CE=x,则EF=ED=6﹣x,在Rt△CEF 中,根据勾股定理求出x值即可;(3)连接EG,由中点及折叠的性质利用HL定理可证Rt△CEG≌△FEG,结合全等三角形对应边相等的性质可设CG=FG=y,可用含y的代数式表示出AG、BG,在Rt△ABG中,根据勾股定理求解即可.【详解】解:(1)∵四边形ABCD是矩形,∴∠BAD =90°,∵∠BAC =54°,∴∠DAC =90°﹣54°=36°,由折叠的性质得:∠DAE =∠FAE ,∴∠DAE =12∠DAC =18°; 故答案为:18; (2)∵四边形ABCD 是矩形,∴∠B =∠C =90°,BC =AD =10,CD =AB =6,由折叠的性质得:AF =AD =10,EF =ED ,∴BF 8,∴CF =BC ﹣BF =10﹣8=2,设CE =x ,则EF =ED =6﹣x ,在Rt △CEF 中,由勾股定理得:22+x 2=(6﹣x )2,解得:x =83, 即CE 的长为83; (3)连接EG ,如图3所示:∵点E 是CD 的中点,∴DE =CE ,由折叠的性质得:AF =AD =10,∠AFE =∠D =90°,FE =DE ,∴∠EFG =90°=∠C ,在Rt △CEG 和△FEG 中,EG EG CE FE =⎧⎨=⎩, ∴Rt △CEG ≌△FEG (HL ),∴CG =FG ,设CG =FG =y ,则AG =AF +FG =10+y ,BG =BC ﹣CG =10﹣y ,在Rt △ABG 中,由勾股定理得:62+(10﹣y )2=(10+y )2,解得:y =910, 即CG 的长为910.【点睛】本题考查了四边形的折叠问题,涉及了矩形的性质、折叠的性质、直角三角形的判定、勾股定理,灵活利用矩形与折叠的性质是解题的关键.25.用ASA 证明△EAC ≌△FBD 即可.【解析】【分析】首先利用平行线的性质得出,∠A=∠FBD ,∠D=∠ECA ,根据AB=CD 即可得出AC=BD ,进而得出△EAC ≌△FBD .【详解】证明:∵EA ∥FB ,∴∠A =∠FBD ,∵EC ∥FD ,∴∠D =∠ECA ,∵AB =CD ,∴AC =BD ,在△EAC 和△FBD 中,ECA D A FBD AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EAC ≌△FBD (AAS),∴EA =FB .【点睛】考查全等三角形的判定与性质,平行线的性质,熟练掌握全等三角形的判定方法是解题的关键.四、压轴题26.(1)5y x =+;(2)223)PB 的长为定值52【解析】【分析】(1)先求出A 、B 两点坐标,求出OA 与OB ,由OA= OB ,求出m 即可;(2)用勾股定理求AB ,再证AMO OBN ∆≅∆,BN=OM ,由勾股定理求OM 即可; (3)先确定答案定值,如图引辅助线EG ⊥y 轴于G ,先证AOB EBG ∆≅∆,求BG 再证BFP GEP ∆≅∆,可确定BP 的定值即可.【详解】(1)对于直线:5L y mx m =+.当0y =时,5x =-.当0x =时,5y m =.()5,0A ∴-,()0,5B m .OA OB =.55m ∴=.解得1m =.∴直线L 的解析式为5y x =+.(2)5OA =,17AM =.∴由勾股定理,2222OM OA AM =-=.180AOM AOB BON ∠+∠+∠=︒.90AOB ∠=︒.90AOM BON ∴∠+∠=︒.90AOM OAM ∠+∠=︒.BON OAM ∴∠=∠.在AMO ∆与OBN ∆中,90BON OAM AMO BNO OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩.()AMO OBN AAS ∴∆≅∆.22BN OM ∴==..(3)如图所示:过点E 作EG y ⊥轴于G 点.AEB ∆为等腰直角三角形,AB EB ∴=90ABO EBG ∠+∠=︒.EG BG ⊥,90GEB EBG ∴∠+∠=︒.ABO GEB ∴∠=∠.AOB EBG ∴∆≅∆.5BG AO ∴==,OB EG =OBF ∆为等腰直角三角形,OB BF ∴=BF EG ∴=.BFP GEP ∴∆≅∆.1522BP GP BG ∴===. 【点睛】本题考查求解析式,线段的长,判断定值问题,关键是掌握求坐标,利用条件OA= OB ,求OM ,用勾股定理求AB ,再证AMO OBN ∆≅∆,构造 AOB EBG ∆≅∆,求BG ,再证BFP GEP ∆≅∆.27.(1)y =34-x +3;(2)y =34x -3,y =-kx -b ;(3)存在,4,(8,3) 【解析】【分析】(1)利用4AB =,3BC =,找出A 、C 两点的坐标,设直线解析式,利用待定系数法求出AC 的解析式;(2)由直线AC 关于x 轴的对称直线为CD 可知点D 的坐标,设直线解析式,利用待定系数法求出CD 的解析式,对比AC 的解析式进而写出直线y kx b =+关于x 轴的对称直线的解析式;(3)先判断||PA PB -存在最大值,在P 、A 、B 三点不共线时,P 点在运动过程中,与A 、B 两点组成三角形,两边之差小于第三边,得出结论在P 、A 、B 三点共线时,此时||PA PB -最大,y p = y A =3,求出P 点的纵坐标,最后根据点P 在直线CD 上,将P 点的纵坐标代入直线方程可得横坐标,从而求出P 点坐标.【详解】解:(1)在矩形ABCD 中,OC =AB =4,OA =BC =3,故A (0,3),C (4,0),设直线AC 的解析式为:y =kx +b (k ≠0,k 、b 为常数),点A 、C 在直线AC 上,把A 、C 两点的坐标代入解析式可得:340b k b =⎧⎨+=⎩解得:343k b ⎧=-⎪⎨⎪=⎩,所以直线AC 的解析式为:y =34-x +3. (2)由直线AC 关于x 轴的对称直线为CD 可知:点D 的坐标为:(0,-3),设直线CD 的解析式为:y =mx +n (m ≠0,m 、n 为常数),点C 、D 在直线CD 上,把C 、D 两点的坐标带入解析式可得:-340n m n =⎧⎨+=⎩解得:343m n ⎧=⎪⎨⎪=-⎩, 所以直线CD 的解析式为:y =34x -3, 故猜想直线y kx b =+关于x 轴的对称直线的解析式为:y =-kx -b .(3)点P 在运动过程中,||PA PB -存在最大值,由题意可知:如图,延长AB 与直线CD 交点即为点P ,此时||PA PB -最大,其他位置均有||PA PB -<AB (P 点在运动过程中,与A 、B 两点组成任意三角形,两边之差小于第三边),此时,||PA PB -= AB =4,y p = y A =3,点P 在直线CD 上,将P 点的纵坐标代入直线方程可得:34x -3=3, x =8,故P 点坐标为(8,3),||PA PB -的最大值为x p -x B =8-4=4.【点睛】本题主要考查利用待定系数法求解一次函数解析式及类比推理能力,掌握任意三角形两边之差小于第三边是解题的关键.28.(1)BP=3cm ,CQ=3cm ;(2)全等,理由详见解析;(3)154;(4)经过803s 点P 与点Q 第一次相遇.【解析】【分析】(1)速度和时间相乘可得BP 、CQ 的长;(2)利用SAS 可证三角形全等;(3)三角形全等,则可得出BP=PC ,CQ=BD ,从而求出t 的值;(4)第一次相遇,即点Q 第一次追上点P ,即点Q 的运动的路程比点P 运动的路程多10+10=20cm 的长度.【详解】解:(1)BP=3×1=3㎝,CQ=3×1=3㎝(2)∵t=1s ,点Q 的运动速度与点P 的运动速度相等∴BP=CQ=3×1=3cm ,∵AB=10cm ,点D 为AB 的中点,∴BD=5cm .又∵PC=BC ﹣BP ,BC=8cm ,∴PC=8﹣3=5cm ,∴PC=BD又∵AB=AC ,∴∠B=∠C ,在△BPD 和△CQP 中,PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∴△BPD ≌△CQP(SAS)(3)∵点Q 的运动速度与点P 的运动速度不相等,∴BP 与CQ 不是对应边,即BP≠CQ∴若△BPD ≌△CPQ ,且∠B=∠C ,则BP=PC=4cm ,CQ=BD=5cm ,∴点P ,点Q 运动的时间t=433BP =s , ∴154Q CQ V t ==cm/s ; (4)设经过x 秒后点P 与点Q 第一次相遇. 由题意,得154x=3x+2×10, 解得80x=3 ∴经过803s 点P 与点Q 第一次相遇. 【点睛】本题考查动点问题,解题关键还是全等的证明和利用,将动点问题视为定点问题来分析可简化思考过程.29.(1)AD=DE,见解析;(2)AD=DE,见解析;(3)见解析,△ADE是等边三角形,【解析】【分析】(1)根据题意,通过平行线的性质及等边三角形的性质证明ADF EDC∆∆≌即可得解;(2)根据题意,通过平行线的性质及等边三角形的性质证明AFD DCE∆∆≌即可得解;(3)根据垂直平分线的性质及等边三角形的判定定理进行证明即可.【详解】(1)如下图,数量关系:AD=DE.证明:∵ABC∆是等边三角形∴AB=BC,60B BAC BCA∠∠∠︒===∵DF∥AC∴BFD BAC∠∠=,∠BDF=∠BCA∴60B BFD BDF∠∠∠︒===∴BDF∆是等边三角形,120AFD∠︒=∴DF=BD∵点D是BC的中点∴BD=CD∴DF=CD∵CE是等边ABC∆的外角平分线∴120DCE AFD∠︒∠==∵ABC∆是等边三角形,点D是BC的中点∴AD⊥BC∴90ADC∠︒=∵60BDF ADE∠∠︒==∴30ADF EDC∠∠︒==在ADF∆与EDC∆中AFD ECDDF CDADF EDC∠∠⎧⎪⎨⎪∠∠⎩===∴()ADF EDC ASA∆∆≌∴AD=DE;(2)结论:AD=DE.证明:如下图,过点D作DF∥AC,交AB于F ∵ABC∆是等边三角形∴AB=BC,60B BAC BCA∠∠∠︒===∵DF∥AC∴BFD BAC BDF BCA∠∠∠∠=,=∴60B BFD BDF∠∠∠︒===∴BDF∆是等边三角形,120AFD∠︒=∴BF=BD∴AF=DC∵CE是等边ABC∆的外角平分线∴120DCE AFD∠︒∠==∵∠ADC是ABD∆的外角∴60ADC B FAD FAD∠∠∠︒∠=+=+∵60ADC ADE CDE CDE ∠∠∠︒∠=+=+∴∠FAD=∠CDE在AFD∆与DCE∆中AFD DCEAF CDFAD EDC∠∠⎧⎪⎨⎪∠∠⎩===∴()AFD DCE ASA∆∆≌∴AD=DE;(3)如下图,ADE∆是等边三角形.证明:∵BC CD=∴AC CD=∵CE平分ACD∠∴CE 垂直平分AD∴AE =DE∵60ADE ∠=︒∴ADE ∆是等边三角形.【点睛】本题主要考查了等边三角形的性质及判定,三角形全等的判定及性质,平行线的性质,垂直平分线的性质等相关内容,熟练掌握三角形综合解决方法是解决本题的关键.30.(1)点B (3,5),k =﹣43,b =9;(2)点Q (0,9)或(6,1);(3)存在,点P 的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478) 【解析】【分析】(1)53y x =相交于点B ,则点(3,5)B ,将点A 、B 的坐标代入一次函数表达式,即可求解; (2)OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=,即可求解; (3)分AB AP =、AB BP =、AP BP =三种情况,分别求解即可.【详解】解:(1)53y x =相交于点B ,则点(3,5)B , 将点A 、B 的坐标代入一次函数表达式并解得:43k =-,9b =; (2)设点4(,9)3Q m m -+, 则OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=, 解得:0m =或6,故点Q (0,9)或(6,1);(3)设点(0,)P m ,而点A 、B 的坐标分别为:(0,9)、(3,5),则225AB =,22(9)AP m =-,229(5)BP m =+-,当AB AP =时,225(9)m =-,解得:14m或4; 当AB BP =时,同理可得:9m =(舍去)或1-; 当AP BP =时,同理可得:478m =; 综上点P 的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478). 【点睛】本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、面积的计算等,其中(3),要注意分类求解,避免遗漏.。
2015-2016学年江苏省扬州市高邮市八年级上学期期末数学试卷(带解析)
绝密★启用前2015-2016学年江苏省扬州市高邮市八年级上学期期末数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:144分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、下列图形中不是轴对称图形的是( )2、16的平方根是( )A .4B .±4C .﹣4D .±83、点M (﹣3,2)关于y 轴对称的点的坐标为( )A .(﹣3,﹣2)B .(3,﹣2)C .(3,2)D .(﹣3,2)4、化简的结果是()A .x+1B .C .x ﹣1D .5、下列四组线段中,可以构成直角三角形的是( ) A .4,5,6 B .2,3,4 C .,3,4 D .1,,36、如图,若BC=EC ,∠BCE=∠ACD ,则添加不能使△ABC ≌△DBC 的条件是( )A .AB=DEB .∠B=∠EC .AC=DCD .∠A=∠D7、已知A (x 1,y 1),B (x 2,y 2)是一次函数y=2x ﹣kx+1图象上的不同两个点,m=(x 1﹣x 2)(y 1﹣y 2),则当m <0时,k 的取值范围是( ) A .k <0 B .k >0 C .k <2 D .k >28、如图,Rt △ABC ,∠ACB=90°,AC=3,BC=4,将边Ac 沿CE 翻折,使点A 落在AB 上的D 处,再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点F 处,两条折痕与斜边AB 分别交于点E 、F ,则线段BF 的长为( )A .B .C .D .第II卷(非选择题)二、填空题(题型注释)9、在实数1.732,中,无理数的个数为.10、一个等腰三角形的一个角为50°,则它的顶角的度数是.11、一次函数y=﹣2x+1的图象一定不经过第象限.12、如图,在3×3的正方形网格中有四个格点,A、B、C、D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是点.13、如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AD=2,BC=5,则△BCD的面积是.14、一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是.15、如图,AB=AC=AD ,∠BAD=80°,则∠BCD 的大小是 .16、若关于x 的方程+=2的解为正数,则m 的取值范围是 .17、已知一次函数y=kx+b ,若3k ﹣b=2,则它的图象一定经过的定点坐标为 .18、如图,在直角坐标系中,点A 、B 的坐标分别为(2,4)和(3、0)点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,在运动的过程中,当△ABC 是以AB 为底的等腰三角形时,此时点C 的坐标为 .三、解答题(题型注释)19、(1)计算:(2)求x 的值:25(x+2)2﹣36=0.20、解分式方程:(1)=1(2)2﹣.21、先化简:,然后从﹣2≤x≤2的范围内选择一个合适的整数作为x 的值代入求值.22、春节前夕,某商店根据市场调查,用2000元购进第一批盒装花,上市后很快售完,接着又用4200元购进第二批这种盒装花.已知第二批所购的盒数是第一批所购花盒数的3倍,且每盒花的进价比第一批的进价少6元.求第一批盒装花每盒的进价.23、如图,△ABC 中,AB=AC ,AD ⊥BC ,CE ⊥AB ,AE=CE .求证:(1)△AEF ≌△CEB ; (2)AF=2CD .24、如图,在Rt △ABC 中,∠C=90°,BD 是△ABC 的一条角平分线.点O 、E 、F 分别在BD 、BC 、AC 上,且四边形OECF 是正方形.(1)求证:点O 在∠BAC 的平分线上; (2)若AC=5,BC=12,求OE 的长.25、如图,一次函数y=﹣x+m 的图象和y 轴交于点B ,与正比例函数y=x 图象交于点P (2,n ).(1)求m 和n 的值; (2)求△POB 的面积.考点:两条直线相交或平行问题;二元一次方程组的解.26、如图,在边长为4的正方形ABCD 中,请画出以A 为一个顶点,另外两个顶点在正方形ABCD 的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)27、如图,P 为正方形ABCD 的边BC 上一动点(P 与B 、C 不重合),连接AP ,过点B 作BQ ⊥AP 交CD 于点Q ,将△BQC 沿BQ 所在的直线对折得到△BQC′,延长QC′交BA 的延长线于点M .(1)试探究AP 与BQ 的数量关系,并证明你的结论; (2)当AB=3,BP=2PC ,求QM 的长; (3)当BP=m ,PC=n 时,求AM 的长.28、小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min 后距出发点的距离为y m .图中折线表示小亮在整个训练中y 与x 的函数关系,其中A 点在x 轴上,M 点坐标为(2,0).(1)A点所表示的实际意义是;= ;(2)求出AB所在直线的函数关系式;(3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?参考答案1、A.2、C3、C.4、A5、C.6、A.7、D.8、B.9、2.10、50°或80°.11、三.12、B点.13、5.14、x<﹣2.15、140°.16、m<6且m≠0.17、(﹣3,﹣2).18、(0,).19、(1);(2)x1=﹣,x2=﹣.20、(1)x=﹣4;(2)x=2.21、,7.22、20元23、(1)(2)证明见解析.24、(1)(2)见解析25、(1)5,3;(2)5.26、27、(1)AP=BQ;(2)(3)28、(1)小亮出发分钟回到了出发点;.(2)y=﹣360x+1200.(3)2.5(min).【解析】1、试题分析:根据轴对称图形的概念求解.解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.考点:轴对称图形.2、试题分析:根据算术平方根的定义求解即可求得答案.解:∵42=16,∴16的算术平方根是4.故选C.考点:算术平方根.3、试题分析:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y),可以直接得到答案.解:点M(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:C.考点:关于x轴、y轴对称的点的坐标.4、试题分析:原式变形后,利用同分母分式的减法法则计算即可得到结果.解:原式=﹣===x+1.故选A考点:分式的加减法.5、试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.解:A、42+52≠62,不能构成直角三角形,故不符合题意;B、22+32≠64,不能构成直角三角形,故不符合题意;C、()2+32=42,能构成直角三角形,故符合题意;D、12+()2≠32,不能构成直角三角形,故不符合题意.故选C.考点:勾股定理的逆定理.6、试题分析:先求出∠ACB=∠DCE,再根据全等三角形的判定定理(SAS,ASA,AAS,SSS)逐个判断即可.解:∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,∴∠ACB=∠DCE,A、根据BC=CE,AB=DE,∠ACB=∠DCE不能推出△ABC≌△DEC,故本选项正确;B、因为∠ACB=∠DCE,∠B=∠E,BC=CE,所以符合AAS定理,即能推出△ABC≌△DEC,故本选项错误;C、因为BC=CE,∠ACB=∠DCE,AC=CD,所以符合SAS定理,即能推出△ABC≌△DEC,故本选项错误;D、因为∠A=∠D,∠ACB=∠DCE,BC=CE,所以符合AAS定理,即能推出△ABC≌△DEC,故本选项错误;故选A.考点:全等三角形的判定.7、试题分析:根据一次函数的性质判断出y随x的增大而减小,从而得出2﹣k<0.解:∵A(x1,y1)、B(x2,y2)是一次函数y=2x﹣kx+1图象上的不同两个点,m=(x1﹣x2)(y1﹣y2)<0,∴该函数图象是y随x的增大而减小,∴2﹣k<0,解得k>2.故选D.考点:一次函数图象上点的坐标特征.8、试题分析:首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=,ED=AE=,从而求得B′D=1,DF=,在Rt△B′DF中,由勾股定理即可求得B′F的长,进而得出BF的长.解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC=AC×BC=AB×CE,∴AC×BC=AB×CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE=,∴DF=EF﹣ED=,∴B′F=.∴BF=B'F=,故选B.考点:翻折变换(折叠问题).9、试题分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:,是无理数,故答案为:2.考点:无理数.10、试题分析:等腰三角形一内角为50°,没说明是顶角还是底角,所以有两种情况.解:(1)当50°角为顶角,顶角度数即为50°;(2)当50°为底角时,顶角=180°﹣2×50°=80°.故填50°或80°.考点:等腰三角形的性质;三角形内角和定理.11、试题分析:根据了一次函数与系数的关系可判断一次函数y=﹣2x+1的图象经过第一、二、四象限.解:∵k=﹣2<0,∴一次函数y=﹣2x+1的图象经过第二、四象限;∵b=1>0,∴一次函数y=﹣2x+1的图象与y轴的交点在x轴上方,∴一次函数y=﹣2x+1的图象经过第一、二、四象限,不经过第三象限.故答案为三.考点:一次函数图象与系数的关系.12、试题分析:以每个点为原点,确定其余三个点的坐标,找出满足条件的点,得到答案.解:当以点B为原点时,A(﹣1,﹣1),C(1,﹣1),则点A和点C关于y轴对称,符合条件.故答案为:B点.考点:关于x轴、y轴对称的点的坐标.13、试题分析:首先作DE⊥BC,利用角平分线的性质可得DE=DA=2,利用三角形的面积公式可得结果.解:过点D作DE⊥BC,∵BD平分∠ABC,∠A=90°,∴DE=DA=2,∴S△BCD===5.故答案为:5.考点:角平分线的性质.14、试题分析:把x=﹣2代入y1=kx+b与y2=x+a,由y1=y2得出=2,再求不等式的解集.解:把x=﹣2代入y1=kx+b得,y1=﹣2k+b,把x=﹣2代入y2=x+a得,y2=﹣2+a,由y1=y2,得:﹣2k+b=﹣2+a,解得=2,解kx+b>x+a得,(k﹣1)x>a﹣b,∵k<0,∴k﹣1<0,解集为:x<,∴x<﹣2.故答案为:x<﹣2.15、试题分析:在△ABC中可得∠BCA=(180°﹣∠BAC),在△ACD中可得∠DCA=(180°﹣∠CAD),结合条件,两式相加可求得∠BCD的大小.解:∵AB=AC=AD,∴∠BCA=∠B=(180°﹣∠BAC),∠DCA=∠D=(180°﹣∠CAD),∴∠BCD=∠BCA+∠DCA=(180°﹣∠BAC)+(180°﹣∠CAD)=180°﹣(∠BAC+∠CAD)=180°﹣∠BAD=180°﹣40°=140°,故答案为:140°.考点:等腰三角形的性质.16、试题分析:首先解方程求得方程的解,根据方程的解是正数,即可得到一个关于m 的不等式,从而求得m的范围.解:∵关于x的方程+=2有解,∴x﹣2≠0,∴x≠2,去分母得:2﹣x﹣m=2(x﹣﹣2),即x=2﹣,根据题意得:2﹣>0且2﹣≠2,解得:m<6且m≠0.故答案是:m<6且m≠0.考点:分式方程的解.17、试题分析:把一次函数解析式转化为y=k(x+3)+2,可知点(﹣3,﹣2)在直线上,且与系数无关.解:∵3k﹣b=2,∴b=3k﹣2,∴y=kx+b=kx+3k﹣2=k(x+3)﹣2,∴函数一定过点(﹣3,﹣2),故答案为(﹣3,﹣2).考点:一次函数图象上点的坐标特征.18、试题分析:根据等腰三角形的判定,可得AC=BC,根据解方程,可得C点的坐标.解:设C点坐标为(0,a),当△ABC是以AB为底的等腰三角形时,BC=AC,平方,得BC2=AC2,22+(4﹣a)2=32+a2,化简,得8a=11,解得a=,故点C的坐标为(0,),故答案为(0,).考点:等腰三角形的判定;坐标与图形性质.19、试题分析:(1)原式利用立方根的定义及绝对值的代数意义化简,计算即可得到结果;(2)方程整理后,利用平方根定义开方即可求出解.解:(1)原式=1﹣2+﹣+1+=;(2)方程整理得:(x+2)2=,开方得:x+2=±,解得:x1=﹣,x2=﹣.考点:实数的运算;平方根.20、试题分析:(1)观察可得最简公分母是(x+3)(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.(2)观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解:(1)方程的两边同乘(x+3)(x﹣3),得3+x(x+3)=(x+3)(x﹣3),解得x=﹣4.检验:把x=﹣4代入(x+3)(x﹣3)=7≠0.故原方程的解为:x=﹣4;(2)原方程可化为:2+=,方程的两边同乘(x﹣2),得2(x﹣2)+1=3﹣x,解得x=2.检验:把x=2代入(x+3)(x﹣3)=﹣5≠0.故原方程的解为:x=2.考点:解分式方程.21、试题分析:原式括号中两项通分并利用同分母分式的加法法则计算,约分后利用同分母分式的减法法则计算得到最简结果,把x=﹣2代入计算即可求出值.解:原式=×﹣=﹣=,当x=﹣2时,原式==7.考点:分式的化简求值.22、试题分析:设第一批盒装花每盒的进价为x元,根据第二批所购的盒数是第一批所购花盒数的3倍,每盒花的进价比第一批的进价少6元,列出方程求解即可.解:设第一批盒装花每盒的进价为x元,根据题意列方程得:=,解得:x=20,经检验:x=20是原方程的根;答:第一批盒装花每盒的进价是20元.考点:分式方程的应用.23、试题分析:(1)由AD⊥BC,CE⊥AB,易得∠AFE=∠B,利用全等三角形的判定得△AEF≌△CEB;(2)由全等三角形的性质得AF=BC,由等腰三角形的性质“三线合一”得BC=2CD,等量代换得出结论.证明:(1)∵AD⊥BC,CE⊥AB,∴∠BCE+∠CFD=90°,∠BCE+∠B=90°,∴∠CFD=∠B,∵∠CFD=∠AFE,∴∠AFE=∠B在△AEF与△CEB中,,∴△AEF≌△CEB(AAS);(2)∵AB=AC,AD⊥BC,∴BC=2CD,∵△AEF≌△CEB,∴AF=BC,∴AF=2CD.考点:全等三角形的判定与性质;等腰三角形的性质.24、试题分析:(1)过点O作OM⊥AB,由角平分线的性质得OE=OM,由正方形的性质得OE=OF,易得OM=OF,由角平分线的判定定理得点O在∠BAC的平分线上;(2)由勾股定理得AB的长,利用方程思想解得结果.(1)证明:过点O作OM⊥AB,∵BD是∠ABC的一条角平分线,∴OE=OM,∵四边形OECF是正方形,∴OE=OF,∴OF=OM,∴AO是∠BAC的角平分线,即点O在∠BAC的平分线上;(2)解:∵在Rt△ABC中,AC=5,BC=12,∴AB===13,设CE=CF=x,BE=BM=y,AM=AF=z,∴,解得:,∴CE=2,∴OE=2.考点:角平分线的性质;全等三角形的判定与性质;正方形的性质.25、试题分析:(1)先把P(2,n)代入y=x即可得到n的值,从而得到P点坐标为(2,3),然后把P点坐标代入y=﹣x+m可计算出m的值;(2)先利用一次函数解析式确定B点坐标,然后根据三角形面积公式求解.解:(1)把P(2,n)代入y=x得n=3,所以P点坐标为(2,3),把P(2,3)代入y=﹣x+m得﹣2+m=3,解得m=5,即m和n的值分别为5,3;(2)把x=0代入y=﹣x+5得y=5,所以B点坐标为(0,5),所以△POB的面积=×5×2=5.26、试题分析:①以A为圆心,以3为半径作弧,交AD、AB两点,连接即可;②连接AC,在AC上,以A为端点,截取1.5个单位,过这个点作AC的垂线,交AD、AB 两点,连接即可;③以A为端点在AB上截取3个单位,以截取的点为圆心,以3个单位为半径画弧,交BC一个点,连接即可;④连接AC,在AC上,以C为端点,截取1.5个单位,过这个点作AC的垂线,交BC、DC两点,然后连接A与这两个点即可;⑤以A为端点在AB上截取3个单位,再作着个线段的垂直平分线交CD一点,连接即可.解:满足条件的所有图形如图所示:考点:作图—应用与设计作图;等腰三角形的判定;勾股定理;正方形的性质.27、试题分析:(1)要证AP=BQ,只需证△PBA≌△QCB即可;(2)过点Q作QH⊥AB于H,如图.易得QH=BC=AB=3,BP=2,PC=1,然后运用勾股定理可求得AP(即BQ)=,BH=2.易得DC∥AB,从而有∠CQB=∠QBA.由折叠可得∠C′QB=∠CQB,即可得到∠QBA=∠C′QB,即可得到MQ=MB.设QM=x,则有MB=x,MH=x﹣2.在Rt△MHQ中运用勾股定理就可解决问题;(3)过点Q作QH⊥AB于H,如图,同(2)的方法求出QM的长,就可得到AM的长.解:(1)AP=BQ.理由:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∴∠ABQ+∠CBQ=90°.∵BQ⊥AP,∴∠PAB+∠QBA=90°,∴∠PAB=∠CBQ.在△PBA和△QCB中,,∴△PBA≌△QCB,∴AP=BQ;(2)过点Q作QH⊥AB于H,如图.∵四边形ABCD是正方形,∴QH=BC=AB=3.∵BP=2PC,∴BP=2,PC=1,∴BQ=AP===,∴BH===2.∵四边形ABCD是正方形,∴DC∥AB,∴∠CQB=∠QBA.由折叠可得∠C′QB=∠CQB,∴∠QBA=∠C′QB,∴MQ=MB.设QM=x,则有MB=x,MH=x﹣2.在Rt△MHQ中,根据勾股定理可得x2=(x﹣2)2+32,解得x=.∴QM的长为;(3)过点Q作QH⊥AB于H,如图.∵四边形ABCD是正方形,BP=m,PC=n,∴QH=BC=AB=m+n.∴BQ2=AP2=AB2+PB2,∴BH2=BQ2﹣QH2=AB2+PB2﹣AB2=PB2,∴BH=PB=m.设QM=x,则有MB=QM=x,MH=x﹣m.在Rt△MHQ中,根据勾股定理可得x2=(x﹣m)2+(m+n)2,解得x=m+n+,∴AM=MB﹣AB=m+n+﹣m﹣n=.∴AM的长为.考点:四边形综合题;全等三角形的判定与性质;勾股定理;正方形的性质;轴对称的性质.28、试题分析:(1)根据已知M点的坐标进而得出上坡速度,再利用已知下坡的平均速度则是各自上坡平均速度的1.5倍,得出下坡速度以及下坡所用时间,进而得出A点实际意义和OM,AM的长度,即可得出答案;(2)根据A,B两点坐标进而利用待定系数法求出一次函数解析式即可;(3)根据小刚上坡平均速度是小亮上坡平均速度的一半首先求出小刚的上坡的平均速度,进而利用第一次相遇两人中小刚在上坡,小亮在下坡,即可得出小亮返回时两人速度之和为:120+360=480(m/min),进而求出所用时间即可.解:(1)根据M点的坐标为(2,0),则小亮上坡速度为:=240(m/min),则下坡速度为:240×1.5=360(m/min),故下坡所用时间为:=(分钟),故A点横坐标为:2+=,纵坐标为0,得出实际意义:小亮出发分钟回到了出发点;==.故答案为:小亮出发分钟回到了出发点;.(2)由(1)可得A点坐标为(,0),设y=kx+b,将B(2,480)与A(,0)代入,得:,解得.所以y=﹣360x+1200.(3)小刚上坡的平均速度为240×0.5=120(m/min),小亮的下坡平均速度为240×1.5=360(m/min),由图象得小亮到坡顶时间为2分钟,此时小刚还有480﹣2×120=240m没有跑完,两人第一次相遇时间为2+240÷(120+360)=2.5(min).(或求出小刚的函数关系式y=120x,再与y=﹣360x+1200联立方程组,求出x=2.5也可以.)考点:一次函数的应用.。
扬州市八年级上学期期末数学试卷 (解析版)
扬州市八年级上学期期末数学试卷 (解析版)一、选择题1.下列长度的三条线段能组成直角三角形的是( ) A .3,4,4 B .3,4,5 C .3,4,6 D .3,4,8 2.一次函数y =﹣2x+3的图象不经过的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限3.下列各数中,是无理数的是( ) A .38B .39C .4-D .2274.下列等式从左到右的变形,属于因式分解的是( ) A .()a x y ax ay -=-B .()()311x x x x x -=+-C .()()21343x x x x ++=++D .()22121x x x x ++=++5.如图,AD 是ABC 的角平分线,DE AB ⊥于E ,已知ABC 的面积为28.6AC =,4DE =,则AB 的长为( )A .4B .6C .8D .10 6.64的立方根是( )A .4B .±4C .8D .±87.如果0a b -<,且0ab <,那么点(),a b 在( ) A .第一象限B .第二象限C .第三象限D .第四象限8.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣1 9.直线y=ax+b(a <0,b >0)不经过( )A .第一象限B .第二象限C .第三象限D .第四象限10.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( )A .x >-1B .x <-1C .x <-2D .无法确定二、填空题11.如图,在ABC ∆中,90ACB ∠=︒,点D 为AB 中点,若4AB =,则CD =_______________.12.如图,已知函数y =3x +b 和y =ax -3的图象交于点P(-2,-5),则根据图象可得不等式3x +b >ax -3的解集是________.13.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2.则最大的正方形E 的面积是___.14.如图①的长方形ABCD 中, E 在AD 上,沿BE 将A 点往右折成如图②所示,再作AF ⊥CD 于点F ,如图③所示,若AB =2,BC =3,∠BEA =60°,则图③中AF 的长度为_______.15.36的算术平方根是.16.在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的图象如图所示,则关于x,y的方程组1122y k x by k x b-=⎧⎨-=⎩的解是________.17.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿y轴翻折,再向下平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC的顶点C的坐标为____.18.计算:16=_______.19.若点(3,)P m-与(,6)Q n关于x轴对称,则m n+=__________.20.如图,在△ABC中,AB=6,AC=5,BC=9,∠BAC的角平分线AP交BC于点P,则CP的长为_____.三、解答题21.(模型建立)如图1,等腰直角三角形ABC 中,90ACB ∠=︒,CB CA =,直线ED 经过点C ,过A 作AD ED ⊥于点D ,过B 作BE ED ⊥于点E .求证:BEC CDA ∆∆≌; (模型应用) ①已知直线1l :443y x =+与x 轴交于点A ,与y 轴交于点B ,将直线1l 绕着点A 逆时针旋转45︒至直线2l ,如图2,求直线2l 的函数表达式;②如图3,在平面直角坐标系中,点()8,6B,作BA y ⊥轴于点A ,作BC x ⊥轴于点C ,P 是线段BC 上的一个动点,点Q 是直线26y x =-上的动点且在第一象限内.问点A 、P 、Q 能否构成以点Q 为直角顶点的等腰直角三角形,若能,请直接写出此时点Q的坐标,若不能,请说明理由.22.计算:(1)23(5)427- (212426(8)18.23.我们知道,假分数可以化为整数与真分数的和的形式.例如:31122=+.在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像11x x +-,22x x -,…这样的分式是假分式;像42x - ,221x x +,…这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:112122111111()x x x x x x x x +-+-==+=+-----’ 2244(2)(2)4422222x x x x x x x x x -++-+===++----. (1)将分式12x x -+化为整式与真分式的和的形式; (2)如果分式2211x x --的值为整数,求x 的整数值.24.在学习了一次函数图像后,张明、李丽和王林三位同学在赵老师的指导下,对一次函数()210y kx k k =-+≠进行了探究学习,请根据他们的对话解答问题.(1)张明:当1k =-时,我能求出直线与x 轴的交点坐标为 ; 李丽:当2k =时,我能求出直线与坐标轴围成的三角形的面积为 ;(2)王林:根据你们的探究,我发现无论k 取何值,直线总是经过一个固定的点,请求出这个定点的坐标.(3)赵老师:我来考考你们,如果点P 的坐标为()1,0一,该点到直线()210y kx k k =-+≠的距离存在最大值吗?若存在,试求出该最大值;若不存在,请说明理由. 25.已知一次函数y=2x+b.(1)它的图象与两坐标轴所围成的图形的面积等于4,求b 的值; (2)它的图象经过一次函数y=-2x+1、y=x+4图象的交点,求b 的值.四、压轴题26.如图1所示,直线:5L y mx m =+与x 轴负半轴,y 轴正半轴分别交于A 、B 两点.(1)当OA OB =时,求点A 坐标及直线L 的解析式.(2)在(1)的条件下,如图2所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM OQ ⊥于M ,BN OQ ⊥于N ,若17AM =,求BN 的长. (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角OBF ∆和等腰直角ABE ∆,连接EF 交y 轴于P 点,如图3.问:当点B 在y 轴正半轴上运动时,试猜想PB 的长是否为定值?若是,请求出其值;若不是,说明理由.27.如图1,直线MN 与直线AB 、CD 分别交于点E 、F ,∠1与∠2互补. (1)试判断直线AB 与直线CD 的位置关系,并说明理由;(2)如图2,∠BEF 与∠EFD 的角平分线交于点P ,EP 与CD 交于点G ,点H 是MN 上一点,且GH ⊥EG ,求证:PF ∥GH ;(3)如图3,在(2)的条件下,连接PH ,K 是GH 上一点使∠PHK =∠HPK ,作PQ 平分∠EPK ,求∠HPQ 的度数.28.(1)问题发现.如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌. ②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________. (2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明) 29.如图,在等边ABC ∆中,线段AM 为BC 边上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边CDE ∆,连结BE . (1)求CAM ∠的度数;(2)若点D 在线段AM 上时,求证:ADC BEC ∆≅∆;(3)当动点D 在直线AM 上时,设直线BE 与直线AM 的交点为O ,试判断AOB ∠是否为定值?并说明理由.30.在ABC 中,AB AC =,D 是直线AB 上一点,E 在直线BC 上,且DE DC =. (1)如图1,当D 在AB 上,E 在CB 延长线上时,求证:EDB ACD ∠=∠; (2)如图2,当ABC 为等边三角形时,D 是BA 的延长线上一点,E 在BC 上时,作//EF AC ,求证:BE AD =;(3)在(2)的条件下,ABC ∠的平分线BF 交CD 于点F ,连AF ,过A 点作AH CD ⊥于点H ,当30EDC ∠=︒,6CF =时,求DH 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可. 【详解】解:A 、∵2223+44≠,∴三条线段不能组成直角三角形,错误; B 、∵2223+4=5,∴三条线段能组成直角三角形,正确; C 、∵2223+46≠,∴三条线段不能组成直角三角形,错误; D 、∵2223+48≠,∴∴三条线段不能组成直角三角形,错误; 故选:B . 【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.2.C解析:C 【解析】试题解析:∵k=-2<0, ∴一次函数经过二四象限; ∵b=3>0,∴一次函数又经过第一象限,∴一次函数y=-x+3的图象不经过第三象限, 故选C .3.B解析:B 【解析】 【分析】根据无理数的定义结合算术平方根和立方根逐一判断即可得. 【详解】2=,为有理数,故该选项错误;D.2-,为有理数,故该选项错误; D.227,为有理数,故该选项错误.【点睛】本题考查无理数的定义,立方根,算术平方根.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.B解析:B【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A、不是因式分解,故本选项不符合题意;B、是因式分解,故本选项符合题意;C、不是因式分解,故本选项不符合题意;D、不是因式分解,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.5.C解析:C【解析】【分析】作DF⊥AC于F,根据角平分线的性质求出DF,根据三角形的面积公式计算即可.【详解】解:作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DF=DE=4,∴112228 AB DE AC DF即112246428 AB解得,AB=8,故选:C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关6.A解析:A 【解析】试题分析:∵43=64,∴64的立方根是4, 故选A 考点:立方根.7.B解析:B 【解析】 【分析】根据0a b -<,且0ab <可确定出a 、b 的正负情况,再判断出点(),a b 的横坐标与纵坐标的正负性,然后根据各象限内点的坐标特征解答. 【详解】解:∵0a b -<,且0ab <, ∴a 0,0b <> ∴点(),a b 在第二象限 故选:B 【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8.D解析:D 【解析】因为函数12y x =-与23y ax =+的图象相交于点A (m ,2),把点A 代入12y x =-可求出1m =-,所以点A (-1,2),然后把点A 代入23y ax =+解得1a =, 不等式23x ax ->+,可化为23x x ->+,解不等式可得:1x <-,故选D.9.C解析:C 【解析】 【分析】先根据一次函数的图象与系数的关系得出直线y =ax +b (a <0,b >0)所经过的象限,故可得出结论. 【详解】∵直线y =ax +b 中,a <0,b >0,∴直线y=ax+b经过一、二、四象限,∴不经过第三象限.故选:C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象经过一、二、四象限.10.B解析:B【解析】【分析】如图,直线l1:y1=k1x+b与直线l2:y2=k2x在同一平面直角坐标系中的图像如图所示,则求关于x的不等式k1x+b>k2x的解集就是求:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围.【详解】解:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围是x<-1.故关于x的不等式k1x+b>k2x的解集为:x<-1.故选B.二、填空题11.【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出CD.【详解】∵D是AB的中点,∴CDAB=2.故答案为:2.【点睛】本题主要是运用了直角三角形的性质:直角三角形斜解析:2【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出CD.【详解】∵D是AB的中点,∴CD12AB=2.故答案为:2.【点睛】本题主要是运用了直角三角形的性质:直角三角形斜边上的中线等于斜边的一半.12.x>-2【解析】【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【详解】解:观察图象知,当x>-2时,y=3x+b的图象在y=ax-3的图象的上方,故该不等式的解集为x>-2故解析:x>-2【解析】【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【详解】解:观察图象知,当x>-2时,y=3x+b的图象在y=ax-3的图象的上方,故该不等式的解集为x>-2故答案为:x>-2【点睛】本题考查了议程函数与一元一次不等式的应用,主要考查学生的观察能力和理解能力,题型较好,难度不大.13.10【解析】试题分析:如图,根据勾股定理的几何意义,可得A、B的面积和为S1,C、D 的面积和为S2,S1+S2=S3,∵正方形A、B、C、D的面积分别为2,5,1,2,∵最大的正方形E的面解析:10【解析】试题分析:如图,根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1+S2=S3,∵正方形A 、B 、C 、D 的面积分别为2,5,1,2,∵最大的正方形E 的面积S 3=S 1+S 2=2+5+1+2=10.14.3-【解析】【分析】 作AH ⊥BC 于H .证明四边形AFCH 是矩形,得出AF=CH ,在Rt △ABH 中,求得∠ABH=30°,则根据勾股定理可求出BH=,可求出HC 的长度即为AF 的长度.【详解】解析:3-3【解析】【分析】作AH ⊥BC 于H .证明四边形AFCH 是矩形,得出AF=CH ,在Rt △ABH 中,求得∠ABH=30°,则根据勾股定理可求出BH=3,可求出HC 的长度即为AF 的长度.【详解】解:如下图,作AH ⊥BC 于H .则∠AHC=90°,∵四边形形ABCD 为长方形,∴∠B=∠C=∠EAB=90°,∵AF ⊥CD ,∴∠AFC=90°,∴四边形AFCH 是矩形,,AF CH =∵∠BEA =60°,∴∠EAB=30°,∴根据折叠的性质可知∠AEH=90°-2∠EAB=30°,∵在Rt△ABH 中, AB=2,∴112AH AB ==,根据勾股定理BH ==∵BC=3,∴3AF HC BC BH ==-=-故填:3【点睛】本题考查矩形的性质和判定,折叠变化,勾股定理,含30°角的直角三角形.能作辅助线构造直角三角形是解决此题的关键.15.【解析】试题分析:根据算术平方根的定义,36的算术平方根是6.故答案为6. 考点:算术平方根.解析:【解析】试题分析:根据算术平方根的定义,36的算术平方根是6.故答案为6.考点:算术平方根.16..【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y =k1x+b1与y =k2x+b2的图象的交点坐标为(2,1),∴关于x ,y 的方程组的解是.解析:21x y =⎧⎨=⎩. 【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y =k 1x +b 1与y =k 2x +b 2的图象的交点坐标为(2,1),∴关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是21x y =⎧⎨=⎩. 故答案为21x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标. 17.(2,).【解析】据轴对称判断出点C变换后在y轴的右侧,根据平移的距离求出点C变换后的纵坐标,最后写出即可.【详解】∵△ABC是等边三角形,AB=3﹣1=2,∴点C到y轴的距离为解析:(22019).【解析】【分析】据轴对称判断出点C变换后在y轴的右侧,根据平移的距离求出点C变换后的纵坐标,最后写出即可.【详解】∵△ABC是等边三角形,AB=3﹣1=2,∴点C到y轴的距离为1+2×1=2,点C到AB,2∴C(2,把等边△ABC先沿y轴翻折,得C’(-2,再向下平移1个单位得C’’( -2故经过一次变换后,横坐标变为相反数,纵坐标减1,故第2020次变换后的三角形在y轴右侧,点C的横坐标为2,+1﹣﹣2019,所以,点C的对应点C'的坐标是(22019).故答案为:(22019).【点睛】本题考查了坐标与图形变化−平移,等边三角形的性质,读懂题目信息,确定出连续2020次这样的变换得到三角形在y轴右侧是解题的关键.18.4【解析】【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【详解】解:原式==4.故答案为4.【点睛】解析:4【解析】【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【详解】解:原式.故答案为4.【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.19.-9【解析】【分析】先根据关于轴对称对称的两点横坐标相等,纵坐标互为相反数求出m 和n 的值,然后代入m+n 计算即可.【详解】∵点与关于轴对称,∴m=-6,n=-3,∴m+n=-6-3=-解析:-9【解析】【分析】先根据关于x 轴对称对称的两点横坐标相等,纵坐标互为相反数求出m 和n 的值,然后代入m+n 计算即可.【详解】∵点(3,)P m 与(,6)Q n 关于x 轴对称,∴m=-6,n=-3,∴m+n=-6-3=-9.故答案为:-9.【点睛】本题考查了坐标平面内的轴对称变换,关于x 轴对称的两点,横坐标相同,纵坐标互为相反数;关于y 轴对称的两点,纵坐标相同,横坐标互为相反数.20..【解析】【分析】作PM⊥AB于M,PN⊥AC于N,根据角平分线的性质得出PM=PN,由三角形面积公式得出,从而得到,即可求得CP的值.【详解】作PM⊥AB于M,PN⊥AC于N,∵AP是解析:45 11.【解析】【分析】作PM⊥AB于M,PN⊥AC于N,根据角平分线的性质得出PM=PN,由三角形面积公式得出162152APBAPCAB PMS ABS ACAC PN⋅===⋅,从而得到162152APBAPCPB hS PBS PCPC h⋅===⋅,即可求得CP的值.【详解】作PM⊥AB于M,PN⊥AC于N,∵AP是∠BAC的角平分线,∴PM=PN,∴162152APBAPCAB PMS ABS ACAC PN⋅===⋅,设A到BC距离为h,则162152APBAPCPB hS PBS PCPC h⋅===⋅,∵PB+PC=BC=9,∴CP=9×511=4511,故答案为:45 11.【点睛】本题主要考查三角形的角平分线的性质,结合面积法,推出ABACPBPC=,是解题的关键.三、解答题21.【模型建立】详见解析;【模型应用】①721y x =--;②Q 点坐标为(4,2)或(203,223). .【解析】【分析】模型建立:根据△ABC 为等腰直角三角形,AD ⊥ED ,BE ⊥ED ,可判定△ACD ≌△CBE ;模型应用:①过点B 作BC ⊥AB ,交l 2于C ,过C 作CD ⊥y 轴于D ,根据△CBD ≌△BAO ,得出BD=AO=2,CD=OB=3,求得C (-3,5),最后运用待定系数法求直线l 2的函数表达式;②分两种情况考虑:如图3,∠AQP=90°,AQ=PQ ,设Q 点坐标为(a ,2a-6),利用三角形全等得到a+6-(2a-6)=8,得a=4,易得Q 点坐标;如图4,同理求出Q 的坐标.【详解】模型建立:证明:∵AD CD ⊥,BE EC ⊥∴90D E ∠=∠=︒.∵CB CA =,∠ACB=90°.∴1809090ACD BCE ︒︒∠+∠=-=︒.又∵90EBC BCE ∠+∠=︒,∴ACD EBC ∠=∠.在ACD ∆与CBE ∆中, D E ACD EBC CA CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴BEC CDA ∆∆≌.模型应用:如图2,过点B 作BC AB ⊥交2l 于C ,过C 作CD y ⊥轴于D ,∵45BAC ∠=︒,∴ABC ∆为等腰直角三角形.由(1)可知:CBD BAO ∆∆≌,∴BD AO =,CD OB =.∵144,3:l y x =+ ∴令0y =,得3x =-,∴()30A -,, 令0x =,得4y =,∴()0,4B .∴3BD AO ==,4CD OB ==,∴437OD =+=.∴()4,7C -.设2l 的解析式为y kx b =+∴7403k b k b =-+⎧⎨=-+⎩∴721k b =-⎧⎨=-⎩ 2l 的解析式:721y x =--.分以下两种情况:如图3,当∠AQP=90°时,AQ=PQ ,过点Q 作EF ⊥y 轴,分别交y 轴和直线BC 于点E 、F .在△AQE 和△QPF 中,由(1)可得,△AQE ≌△QPF (AAS ),AE=QF ,设点Q 的坐标为(a,2a-6),即6-(2a-6)=8-a ,解得a=4.此时点Q 的坐标为(4,2).如图4:当∠AQP=90°时,AQ=PQ 时,过点Q 作EF ⊥y 轴,分别交y 轴和直线BC 于点E 、F ,设点Q 的坐标为(a,2a-6),则AE=2a-12,FQ=8-a .,在△AQE 和△QPF 中,同理可得△AQE ≌△QPF (AAS ),AE=QF ,即2a-12=8-a ,解得a=203. 此时点Q 的坐标为(203,223). 综上所述:A 、P 、Q 可以构成以点Q 为直角顶点的等腰直角三角形,点Q 的坐标为 (4,2)或(203,223). 【点睛】 本题考查一次函数综合题,主要考查了点的坐标、矩形的性质、待定系数法、等腰直角三角形的性质以及全等三角形等相关知识的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行计算,需要考虑的多种情况,解题时注意分类思想的运用.22.(1)6;(2. 【解析】【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用二次根式的乘除法则计算,合并即可得到结果.【详解】解:(1)原式=5﹣2+3=6;(2)原式=. 【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.23.(1)312x ;(2)2或0 【解析】【分析】(1)根据题意把分式12x x -+化为整式与真分式的和形式即可; (2)根据题中所给出的例子把原式化为整式与真分式的和形式,再根据分式的值为整数即可得出x 的值.【详解】(1)12x x -+()232x x +-=+ 2322x x x +=-++312x =-+ . (2)2211x x --22211x x -+=- ()()21111x x x +-+=- ()1211x x =++-. ∵分式的值为整数,且x 为整数,∴11x -=±,∴x =2或0.【点睛】本题考查了分式的混合运算,熟知分式混合运算的法则是解答此题的关键.24.(1) (3,0),94; (2) (2,1);; 【解析】【分析】(1) 张明:将k 值代入求出解析式即可得到答案;李丽: 将k 值代入求出解析式,得到直线与x 轴和y 轴的交点,即可得到答案;(2) 将()210y kx k k =-+≠转化为(y-1)=k (x-2)正比例函数,即可求出;(3) 由图像()210y kx k k =-+≠ 必过(2,1)设必过点为A,P 到直线的距离为PB ,发现直角三角形ABP 中PA 是最大值,所以当PA 与()210y kx k k =-+≠垂直时最大,求出即可.【详解】解:(1)张明: 将1k =-代入()210y kx k k =-+≠得到y=-x-2×(-1)+1y=-x+3令y=0 得-x+3=0,得x=3所以直线与x 轴的交点坐标为(3,0)李丽:将2k = 代入()210y kx k k =-+≠得到 y=2x-3直线与x 轴的交点为(32,0) 直线与y 轴的交点为(0,-3) 所以直线与坐标轴围成的三角形的面积=1393=224⨯⨯ (2) ∵()210y kx k k =-+≠转化为(y-1)=k (x-2)正比例函数∴(y-1)=k (x-2)必过(0,0)∴此时x=2,y=1通过图像平移得到()210y kx k k =-+≠必过(2,1)(3)由图像()210y kx k k =-+≠ 必过(2,1)设必过点为A,P 到直线的距离为PB由图中可以得到直角三角形ABP 中AP 大于直角边PB所以P 到()210y kx k k =-+≠最大距离为PA 与直线垂直,即为PA∵ P (-1,0)A (2,1)得到10答:点P 到()210y kx k k =-+≠10.【点睛】此题主要考查了一次函数的性质及一次函数的实际应用-几何问题,正确理解点到直线的距离是解题的关键.25.(1)±4;(2)5【解析】【分析】(1)分别求出一次函数y=2x+b 与坐标轴的交点,然后根据它的图象与坐标轴所围成的图象的面积等于4列出方程即可求出b 的值;(2)由题意可知:三条直线交于一点,所以可先求出一次函数y=-2x+1与y=x+4的交点坐标,然后代入y=2x+b 求出b 的值.【详解】解:(1)令x=0代入y=2x+b ,∴y=b ,令y=0代入y=2x+b , ∴x=-2b , ∵y=2x+b 的图象与坐标轴所围成的图象的面积等于4,∴12×|b|×|-2b |=4, ∴b 2=16,∴b=±4;(2)联立214y x y x =-+⎧⎨=+⎩, 解得:13x y =-⎧⎨=⎩, 把(-1,3)代入y=2x+b ,∴3=-2+b ,∴b=5,【点睛】本题考查了一次函数与坐标轴的交点,图形与坐标的性质,待定系数求一次函数的解析式,解题的关键是根据条件求出b 的值,本题属于基础题型.四、压轴题26.(1)5y x =+;(2)3)PB 的长为定值52 【解析】【分析】(1)先求出A 、B 两点坐标,求出OA 与OB ,由OA= OB ,求出m 即可;(2)用勾股定理求AB ,再证AMO OBN ∆≅∆,BN=OM ,由勾股定理求OM 即可; (3)先确定答案定值,如图引辅助线EG ⊥y 轴于G ,先证AOB EBG ∆≅∆,求BG 再证BFP GEP ∆≅∆,可确定BP 的定值即可.【详解】(1)对于直线:5L y mx m =+.当0y =时,5x =-.当0x =时,5y m =.()5,0A ∴-,()0,5B m .OA OB =.55m ∴=.解得1m =.∴直线L 的解析式为5y x =+.(2)5OA =,AM =∴由勾股定理,OM ==.180AOM AOB BON ∠+∠+∠=︒.90AOB ∠=︒.90AOM BON ∴∠+∠=︒.90AOM OAM ∠+∠=︒.BON OAM ∴∠=∠.在AMO∆与OBN∆中,90BON OAMAMO BNOOA OB∠=∠⎧⎪∠=∠=︒⎨⎪=⎩.()AMO OBN AAS∴∆≅∆.22BN OM∴==..(3)如图所示:过点E作EG y⊥轴于G点.AEB∆为等腰直角三角形,AB EB∴=90ABO EBG∠+∠=︒.EG BG⊥,90GEB EBG∴∠+∠=︒.ABO GEB∴∠=∠.AOB EBG∴∆≅∆.5BG AO∴==,OB EG=OBF∆为等腰直角三角形,OB BF∴=BF EG∴=.BFP GEP∴∆≅∆.1522BP GP BG∴===.【点睛】本题考查求解析式,线段的长,判断定值问题,关键是掌握求坐标,利用条件OA= OB,求OM,用勾股定理求AB,再证AMO OBN∆≅∆,构造AOB EBG∆≅∆,求BG,再证BFP GEP∆≅∆.27.(1)AB∥CD,理由见解析;(2)证明见解析;(3)45°.【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;(2)利用(1)中平行线的性质推知∠BEF+∠EFD=180°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG ⊥PF ,故结合已知条件GH ⊥EG ,易证PF ∥GH ; (3)利用三角形外角定理、三角形内角和定理求得90902KPG PKG HPK ︒︒∠=-∠=-∠;然后由邻补角的定义、角平分线的定义推知1452QPK EPK HPK ︒∠=∠=+∠;最后根据图形中的角与角间的和差关系求得∠HPQ =45°.【详解】(1)AB ∥CD ,理由如下:∵∠1与∠2互补,∴∠1+∠2=180°,又∵∠1=∠AEF ,∠2=∠CFE ,∴∠AEF +∠CFE =180°,∴AB ∥CD ;(2)由(1)知,AB ∥CD ,∴∠BEF +∠EFD =180°.又∵∠BEF 与∠EFD 的角平分线交于点P , ∴1()902FEP EFP BEF EFD ︒∠+∠=∠+∠= ∴∠EPF =90°,即EG ⊥PF .∵GH ⊥EG ,∴PF ∥GH ;(3)∵∠PHK =∠HPK ,∴∠PKG =2∠HPK .又∵GH ⊥EG ,∴∠KPG =90°﹣∠PKG =90°﹣2∠HPK ,∴∠EPK =180°﹣∠KPG =90°+2∠HPK .∵PQ 平分∠EPK , ∴1452QPK EPK HPK ︒∠=∠=+∠, ∴∠HPQ =∠QPK ﹣∠HPK =45°.答:∠HPQ 的度数为45°.【点睛】本题考查了平行线的判定与性质.解题过程中,注意“数形结合”数学思想的运用.28.(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+【解析】【分析】(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.【详解】解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,∴AC CB =,CD CE =,又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,∴ACD ECB ∠=∠,∴()ADC BEC SAS ∆∆≌.②∵CDE ∆为等边三角形,∴60CDE ∠=︒.∵点A 、D 、E 在同一直线上,∴180120ADC CDE ∠=︒-∠=︒,又∵ADC BEC ∆∆≌,∴120ADC BEC ∠=∠=︒,∴1206060AEB ∠=︒-︒=︒.③AD BE =ADC BEC ∆∆≌,∴AD BE =.故填:AD BE =;(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,∴AC CB =,CD CE =,又∵90ACB DCE ∠=∠=︒,∴ACD DCB ECB DCB ∠+∠=∠+∠,∴ACD ECB ∠=∠,在ACD ∆和BCE ∆中,AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴E ACD BC ∆∆≌,∴ADC BEC ∠∠=.∵点A 、D 、E 在同一直线上, ∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.②∵CDA CEB ∆∆≌,∴BE AD =.∵CD CE =,CM DE ⊥, ∴DM ME =.又∵90DCE ∠=︒,∴2DE CM =,∴2AE AD DE BE CM =+=+.故填:①90°;②2AE BE CM =+.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.29.(1)30°;(2)证明见解析;(3)AOB ∠是定值,60AOB ∠=︒.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC AC =,DC EC =,,60ACB DCE ∠=∠=︒,由等式的性质就可以BCE ACD ∠=∠,根据SAS 就可以得出ADC BEC ∆≅∆;(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出ACD BCE ≅∆∆而有30CBE CAD ∠=∠=︒而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出ACD BCE ≅∆∆同样可以得出结论.【详解】(1)ABC ∆是等边三角形,60BAC ∴∠=︒.线段AM 为BC 边上的中线,12CAM BAC ∴∠=∠, 30CAM ∴∠=︒.(2)ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACD DCB DCB BCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=.在ADC ∆和BEC ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆;(3)AOB ∠是定值,60AOB ∠=︒,理由如下:①当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,则30CBE CAD ∠=∠=︒,又60ABC ∠=︒,603090CBE ABC ∴∠+∠=︒+︒=︒,ABC ∆是等边三角形,线段AM 为BC 边上的中线AM ∴平分BAC ∠,即11603022BAM BAC ∠=∠=⨯︒=︒ 903060BOA ∴∠=︒-︒=︒.②当点D 在线段AM 的延长线上时,如图2,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACB DCB DCB DCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,30CBE CAD ∴∠=∠=︒,同理可得:30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.③当点D 在线段MA 的延长线上时,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,60ACD ACE BCE ACE ∴∠+∠=∠+∠=︒,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,CBE CAD ∴∠=∠,同理可得:30CAM ∠=︒150CBE CAD ∴∠=∠=︒30CBO ∴∠=︒,∵30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.综上,当动点D 在直线AM 上时,AOB ∠是定值,60AOB ∠=︒.【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,等边三角形三线合一的性质,解题中注意分类讨论的思想解题.30.(1)见解析;(2)见解析;(3)3【解析】【分析】(1)根据等腰三角形的性质和外角的性质即可得到结论;(2)过E 作EF ∥AC 交AB 于F ,根据已知条件得到△ABC 是等边三角形,推出△BEF 是等边三角形,得到BE=EF ,∠BFE=60°,根据全等三角形的性质即可得到结论; (3)连接AF ,证明△ABF ≌△CBF ,得AF=CF ,再证明DH=AH=12CF=3. 【详解】解:(1)∵AB=AC ,∴∠ABC=∠ACB ,∵DE=DC ,∴∠E=∠DCE ,∴∠ABC-∠E=∠ACB-∠DCB ,即∠EDB=∠ACD ;(2)∵△ABC 是等边三角形,∴∠B=60°,∴△BEF 是等边三角形,∴BE=EF ,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD ,在△DEF 与△CAD 中, EDF DCA DFE CAD DE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF ≌△CAD (AAS ),∴EF=AD,∴AD=BE;(3)连接AF,如图3所示:∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF平分∠ABC,∴∠ABF=∠CBF,在△ABF和△CBF中,AB BCABF CBFBF BF=⎧⎪∠=∠⎨⎪=⎩,△ABF≌△CBF(SAS),∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH⊥CD,∴AH=12AF=12CF=3,∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【点睛】本题考查了全等三角形的判定与性质,等腰三角形和直角三角形的性质,三角形的外角的性质,等边三角形的判定和性质,证明三角形全等是解决问题的关键.。
江苏省扬州市邗江区八年级上学期期末模拟数学试题
江苏省扬州市邗江区八年级上学期期末模拟数学试题一、选择题1.下列成语描述的事件为随机事件的是( ) A .守株待兔 B .水中捞月 C .瓮中捉鳖 D .水涨船高 2.下列长度的三条线段能组成直角三角形的是( ) A .3,4,4 B .3,4,5 C .3,4,6 D .3,4,8 3.下列长度的三条线段不能组成直角三角形的是( )A .1.5,2.5,3B .1,3,2C .6,8,10D .3,4,54.下列图案属于轴对称图形的是( )A .B .C .D .5.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是( ) A .a >bB .a =bC .a <bD .以上都不对6.如图,若一次函数y =﹣2x +b 的图象与两坐标轴分别交于A ,B 两点,点A 的坐标为(0,3),则不等式﹣2x +b >0的解集为( )A .x >32B .x <32C .x >3D .x <37.如图,直线y mx n =+与y kx b =+的图像交于点(3,-1),则不等式组,0mx n kx b mx n +≥+⎧⎨+≤⎩的解集是( )A .3x ≤B .n x m≥-C .3nx m-≤≤ D .以上都不对8.下列一次函数中,y 随x 增大而增大的是( ) A .y=﹣3xB .y=x ﹣2C .y=﹣2x+3D .y=3﹣x9.下列关于10的说法中,错误的是( ) A .10是无理数 B .3104<<C .10的平方根是10D .10是10的算术平方根10.2的算术平方根是() A .4B .±4C .2D .2±二、填空题11.关于x 的分式方程211x ax +=+的解为负数,则a 的取值范围是_________. 12.已知点A (x 1,y 1)、B (x 2,y 2 )是函数y =﹣2x +1图象上的两个点,若x 1<x 2,则y 1﹣y 2_____0(填“>”、“<”或“=”).13.如图,在Rt △ABO 中,∠OBA=90°,AB=OB ,点C 在边AB 上,且C (6,4),点D 为OB 的中点,点P 为边OA 上的动点,当∠APC=∠DPO 时,点P 的坐标为 ____.14.已知113-=a b ,则分式232a ab b a ab b+-=--__________. 15.16_______.16.如图,点C 坐标为(0,1)-,直线334y x =+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.17.如图,已知点M (-1,0),点N (5m ,3m +2)是直线AB :4y x =-+右侧一点,且满足∠OBM=∠ABN ,则点N 的坐标是_____.18.如图,等边三角形的顶点A (1,1)、B (3,1),规定把等边△ABC “先沿y 轴翻折,再向下平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC 的顶点C 的坐标为____.19.如图,△ABC 中,AB =AC ,AB 的垂直平分线分别交边AB ,BC 于D ,E 点,且AC =EC ,则∠BAC =_____.20.已知以点C (a ,b )为圆心,半径为r 的圆的标准方程为(x -a )2+(y -b )2=r 2.例如:以A (2,3)为圆心,半径为2的圆的标准方程为(x -2)2+(y -3)2=4,则以原点为圆心,过点P (1,0)的圆的标准方程为____.三、解答题21.为缓解油价上涨给出租车待业带来的成本压力,某巿自2018年11月17日起,调整出租车运价,调整方案见下列表格及图象(其中a ,b ,c 为常数)行驶路程收费标准调价前调价后 不超过3km 的部分 起步价6元起步价a 元 超过3km 不超出6km 的部分每公里2.1元每公里b 元超出6km 的部分每公里c 元设行驶路程xkm 时,调价前的运价y 1(元),调价后的运价为y 2(元)如图,折线ABCD 表示y 2与x 之间的函数关系式,线段EF 表示当0≤x≤3时,y 1与x 的函数关系式,根据图表信息,完成下列各题:(1)填空:a= ,b= ,c= .(2)写出当x >3时,y 1与x 的关系,并在上图中画出该函数的图象.(3)函数y 1与y 2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.22.已知2y +与x 成正比,当x =1时,y =﹣6. (1)求y 与x 之间的函数关系式;(2)若点(a ,2)在这个函数图象上,求a 的值.23.小明在学习等边三角形时发现了直角三角形的一个性质:直角三角形中,30角所对的直角边等于斜边的一半。
江苏省扬州市邗江区八年级(上)期末数学试卷
江苏省扬州市邗江区八年级(上)期末数学试卷一、选择题(本大题共8题,每小题3分,共24分,请将正确选项填涂在答题卷相应位置上)1.(3分)下面四个图案中,不是轴对称图形的是()A.B.C.D.2.(3分)在实数,,,0,π,中,无理数的个数是()A.1B.2C.3D.43.(3分)如图,BF=EC,∠B=∠E,请问添加下面哪个条件不能判断△ABC ≌△DEF()A.∠A=∠D B.AB=ED C.DF∥AC D.AC=DF 4.(3分)如果一个等腰三角形的两边长分别是5cm和6cm,那么此三角形的周长是()A.15cm B.16cm C.17cm D.16cm或17cm 5.(3分)下列各式中,计算正确的是()A.=4B.=±5C.=1D.=±5 6.(3分)一次函数y=﹣3x+5的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)如图,在Rt△ABC中,∠C=90°,AC=5cm,BC=12cm,∠CAB 的平分线交BC于D,过点D作DE⊥AB于E,则DE的长为()A.4B.3C.D.8.(3分)如图,A,B的坐标分别为(2,0),(0,1),将线段AB平移至A1B1,连接BB1,AA1,则四边形ABB1A1的面积为()A.2B.3C.4D.5二、填空题(本大题共10题,每题3分,共30分,请将正确答案写在答题卷相应位置上.)9.(3分)点M(3,﹣4)关于x轴的对称点的坐标是.10.(3分)计算:=.11.(3分)等腰三角形的一个内角为100°,则它的底角为.12.(3分)2017年11月11日,天猫平台成交额是1682亿元,用科学记数法表示1682亿并精确到亿位为.13.(3分)如图,直线y=kx+b与直线y=mx+n交于P(1,),则方程组的解是.14.(3分)比较大小:﹣﹣2.15.(3分)如图,函数y=3x和y=ax+4的图象相交于点A(m,3),不等式3x≥ax+4的解集为.16.(3分)已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b ﹣3)2=0,则△ABC的形状为三角形.17.(3分)如图,Rt△ABC中,∠C=90°,AC=13.5,BC=9,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段CN的长为.18.(3分)若m=(x1﹣x2)(y1﹣y2),且A(x1,y1)、B(x2,y2)是一次函数y=ax﹣3x+b图象上两个不同的点,当m<0时,a的取值范围是.三、解答题(本大题共10小题,共96分,请将解答过程写在答题卷相应位置上.)19.(8分)(1)求x的值:4x2﹣9=0(2)计算:20.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(﹣4,3)、(﹣1,1).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标;(4)△ABC的面积.21.(8分)如图,已知在四边形ABCD中,AD∥BC,∠A=90°,AD=BE,CE⊥BD,垂足为E.(1)求证:△ABD≌△ECB;(2)若∠DBC=50°,求∠DCE的度数.22.(8分)如图,一架长2.5m的梯子AB斜靠在墙AC上,∠C=90°,此时,梯子的底端B离墙底C的距离BC为0.7m.(1)求此时梯子的顶端A距地面的高度AC;(2)如果梯子的顶端A下滑了0.9m,那么梯子的顶端B在水平方向上向右滑动了多远?23.(10分)在直角坐标系中画出一次函数y=2x﹣4的图象,并完成下列问题:(1)此函数图象与坐标轴围成的三角形的面积是;(2)观察图象,当0≤x≤4时,y的取值范围是;(3)将直线y=2x﹣4平移后经过点(﹣3,1),求平移后的直线的函数表达式.24.(10分)如图,已知一次函数y=x+m的图象与x轴交于点A(﹣6,0),交y轴于点B.(1)求m的值与点B的坐标;(2)若点C在y轴上,且使得△ABC的面积为12,请求出点C的坐标.(3)若点P在x轴上,且△ABP为等腰三角形,请直接写出点P的坐标.25.(10分)如图,在△ABC中,BD⊥AC于D,CE⊥AB于E,M,N分别是BC,DE的中点.(1)求证:MN⊥DE;(2)若BC=20,DE=12,求△MDE的面积.26.(10分)对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1﹣x2|+|y1﹣y2|叫做P1、P2两点间的“转角距离”,记作d(P1,P1).(1)令P0(3,﹣4),O为坐标原点,则d(O,P0)=;(2)已知O为坐标原点,动点P(x,y)满足d(O,P)=2,请写出x与y之间满足的关系式,并在所给的直角坐标系中,画出所有符合条件的点P所组成的图形;(3)设P0(x0,y0)是一个定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的“转角距离”.若P(a,﹣2)到直线y=x+4的“转角距离”为10,求a的值.27.(12分)甲、乙两人共同加工一批零件,从工作开始到加工完这批零件,两人恰好同时工作6小时,两人各自加工零件的个数y(个)与加工时间x(小时)之间的函数图象如图所示,根据信息回答下列问题:(1)请解释图中点C的实际意义;(2)求出甲、乙在整个过程中的函数表达式(并注明自变量的范围);(3)如果甲、乙两人完成同样数量的零件时,甲比乙少用1小时,那么此时甲、乙两人各自完成多少个零件?28.(12分)背景资料:在已知△ABC所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图①,当△ABC三个内角均小于120°时,费马点P在△ABC内部,此时∠APB=∠BPC=∠CP A=120°,此时,P A+PB+PC的值最小.解决问题:(1)如图②,等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP,这样就可以利用旋转变换,将三条线段P A,PB,PC转化到一个三角形中,从而求出∠APB=;基本运用:(2)请你利用第(1)题的解答思想方法,解答下面问题:如图③,△ABC中,∠CAB=90°,AB=AC,E,F为BC上的点,且∠EAF=45°,判断BE,EF,FC之间的数量关系并证明;能力提升:(3)如图④,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,点P为Rt △ABC的费马点,连接AP,BP,CP,求P A+PB+PC的值.江苏省扬州市邗江区八年级(上)期末数学试卷参考答案一、选择题(本大题共8题,每小题3分,共24分,请将正确选项填涂在答题卷相应位置上)1.B;2.C;3.D;4.D;5.A;6.C;7.D;8.B;二、填空题(本大题共10题,每题3分,共30分,请将正确答案写在答题卷相应位置上.)9.(3,4);10.4;11.40°;12.1.682×1011;13.;14.>;15.x≥1;16.直角;17.6;18.a<3;三、解答题(本大题共10小题,共96分,请将解答过程写在答题卷相应位置上.)19.;20.(2,﹣1);4;21.;22.;23.4;﹣4≤y ≤4;24.;25.;26.7;27.;28.150°;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年江苏省扬州市邗江区八年级(上)期末数学试卷一、选择题(每题3分,共24分)1.(3分)下列“QQ表情”中属于轴对称图形的是()A. B.C.D.2.(3分)下列各数中,无理数的是()A.3 B.C.D.3.(3分)已知一次函数y=mx+n﹣3的图象如图,则m、n的取值范围是()A.m>0,n<3 B.m>0,n>3 C.m<0,n<3 D.m<0,n>34.(3分)请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS5.(3分)下列说法正确的是()A.1的平方根是1 B.1是算术平方根是±1C.﹣1的立方根是﹣1 D.(﹣1)2的平方根是﹣16.(3分)已知:△ABC是一个任意三角形,用直尺和圆规作出∠A,∠B的平分线,如果两条平分线交于点O,下列选项中不正确的是()A.点O到△ABC的三顶点的距离一定相等B.∠C的平分线一定经过点OC.点O到△ABC的三边距离一定相等D.点O一定在△ABC的内部7.(3分)在△ABC中,已知∠A=∠B,且该三角形的一个内角等于100°.现有下面四个结论:①∠A=100°;②∠C=100°;③AC=BC;④AB=BC.其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个8.(3分)如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P,则下列结论:①图中全等的三角形只有两对;②△ABC的面积等于四边形CDOE面积的2倍;③OD=OE;④CE+CD=BC,其中正确的结论有()A.1个 B.2个 C.3个 D.4个二、填空题(每题3分,共30分)9.(3分)计算:+()2=.10.(3分)209506精确到千位的近似值是.11.(3分)点B(0,﹣2)在直线y=ax+b图象上,则b=.12.(3分)已知等腰三角形的周长为16cm,若其中一边长为4cm,则底边长为cm.13.(3分)在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是.14.(3分)在Rt△ABC中,∠C=90°,AC=5cm,BC=12cm,D为斜边AB的中点,则CD=cm.15.(3分)将一次函数y=x﹣2的图象平移,使其经过点(2,3),则所得直线的函数解析式是.16.(3分)已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是.17.(3分)过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是.18.(3分)如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=10,A点的坐标为(﹣6,2),B、C两点在方程式y=﹣6的图形上,D、E两点在y轴上,则F点的纵坐标为2,则直线EF解析式为.三、解答题(本大题共10题,共96分)19.(8分)计算:(1)+|2﹣|﹣π0(2)﹣(﹣)2.20.(8分)求各式中的实数x:(1)2x2=18;(2)8(x﹣1)3+27=0.21.(8分)已知:如图,有人在岸上点C的地方,用绳子拉船靠岸,开始时,绳长CB=10米,CA⊥AB,且CA=6米,拉动绳子将船从点B沿BA方向行驶到点D后,绳长CD=6米.(1)试判定△ACD的形状,并说明理由;(2)求船体移动距离BD的长度.22.(8分)已知:如图,方格纸中格点A,B的坐标分别为(﹣1,3),(﹣3,2).(1)请在方格内画出平面直角坐标系;(2)已知点A与点C关于y轴对称,点B与点D关于x轴对称,请描出点C、D 的位置,并求出直线CD的函数表达式.23.(10分)已知:如图:AB∥CD,AB=CD,AD、BC相交于点O,BE∥CF,BE、CF分别交AD于点E、F,求证:(1)OA=OD;(2)BE=CF.24.(10分)已知:如图:△ABC是等边三角形,点D、E分别是边BC、CA上的点,且BD=CE,AD、BE相交于点O.(1)求证:△ACD≌△BAE;(2)求∠AOB的度数.25.(10分)已知一次函数y=kx+b的图象过(1,1)和(2,﹣1).(1)求一次函数y=kx+b的解析式;(2)求直线y=kx+b与坐标轴围成的三角形的面积.26.(10分)已知:如图,等腰△ABC,AB=AC,点D为△ABC的BC边上一点,连接AD,将线段AD旋转至AE,使得∠DAE=∠BAC,连接CE.(1)求证:△ACE≌△ABD;(2)若∠BAC=∠DAE=90°,EC=3,CD=1,求AC的长.27.(12分)某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm 的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m=,n=;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?28.(12分)已知:如图,正方形OABC的边长为4单位上,OA边在x轴上,OC边在y轴上,点D是x轴上一点,坐标为(1,0),点E为OC的中点,连接BD、BE、DE.(1)点B的坐标为.(2)判断△BDE的形状,并证明你的结论;(3)点M为x轴上一个动点,当∠MBD=45°时,请你直接写出点M的坐标.2015-2016学年江苏省扬州市邗江区八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共24分)1.(3分)(2007•邵阳)下列“QQ表情”中属于轴对称图形的是()A. B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、B、D都不是轴对称图形,C关于直线对称.故选C.【点评】轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.(3分)(2015秋•邗江区期末)下列各数中,无理数的是()A.3 B.C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、3是整数,是有理数,故选项错误;B、是分数,是有理数,故选项错误;C、=2是整数,是有理数,选项错误;D、是无理数,选项正确.故选D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.(3分)(2015秋•邗江区期末)已知一次函数y=mx+n﹣3的图象如图,则m、n的取值范围是()A.m>0,n<3 B.m>0,n>3 C.m<0,n<3 D.m<0,n>3【分析】先根据一次函数的图象经过二、四象限可知m<0,再根据函数图象与y轴交于正半轴可知n﹣3>0,进而可得出结论.【解答】解:∵一次函数y=mx+n﹣3的图象过二、四象限,∴m<0,∵函数图象与y轴交于正半轴,∴n﹣3>0,∴n>3.故选D.【点评】本题考查的是一次函数的图象,即直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.4.(3分)(2017春•萍乡期末)请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS【分析】根据作图过程,O′C′=OC,O′B′=OB,C′D′=CD,所以运用的是三边对应相等,两三角形全等作为依据.【解答】解:根据作图过程可知O′C′=OC,O′B′=OB,C′D′=CD,∴△OCD≌△O′C′D′(SSS).故选D.【点评】本题考查基本作图“作一个角等于已知角”的相关知识,其理论依据是三角形全等的判定“边边边”定理和全等三角形对应角相等.从作法中找已知,根据已知条件选择判定方法.5.(3分)(2015秋•邗江区期末)下列说法正确的是()A.1的平方根是1 B.1是算术平方根是±1C.﹣1的立方根是﹣1 D.(﹣1)2的平方根是﹣1【分析】依据平方根、算术平方根、立方根的定义回答即可.【解答】解:A、1的平方根是±1,故A错误;B、1的算术平方根是1,故B错误;C、﹣1的立方根是﹣1,故C正确;D、(﹣1)2=1,1的平方根是±1,故D错误.故选:C.【点评】本题主要考查的是平方根、算术平方根、立方根的定义,掌握相关定义是解题的关键.6.(3分)(2015秋•邗江区期末)已知:△ABC是一个任意三角形,用直尺和圆规作出∠A,∠B的平分线,如果两条平分线交于点O,下列选项中不正确的是()A.点O到△ABC的三顶点的距离一定相等B.∠C的平分线一定经过点OC.点O到△ABC的三边距离一定相等D.点O一定在△ABC的内部【分析】根据角的平分线上的点到角的两边的距离相等解答即可.【解答】解:点O到△ABC的三顶点的距离不一定相等,A不正确;∠C的平分线一定经过点O,B正确;点O到△ABC的三边距离一定相等,C正确;点O一定在△ABC的内部,D正确,故选:A.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.7.(3分)(2015秋•邗江区期末)在△ABC中,已知∠A=∠B,且该三角形的一个内角等于100°.现有下面四个结论:①∠A=100°;②∠C=100°;③AC=BC;④AB=BC.其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个【分析】假如∠A=100°,求出∠B=100°,不符合三角形的内角和定理,即可判断①;假如∠C=100°,能够求出∠A、∠B的度数;关键等腰三角形的判定推出AC=BC,即可判断③④.【解答】解:∠A=∠B=100°时,∠A+∠B+∠C>180°,不符合三角形的内角和定理,∴①错误;∠C=100°时,∠A=∠b=(180°﹣∠c)=40°,∴②正确;∵∠A=∠B,∴AC=BC,③正确;④错误;正确的有②③,2个,故选B.【点评】本题考查了等腰三角形的判定和三角形的内角和定理等知识点的应用,能根据定理进行说理是解此题的关键,分类讨论思想的运用.8.(3分)(2015秋•泸县期末)如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P,则下列结论:①图中全等的三角形只有两对;②△ABC的面积等于四边形CDOE面积的2倍;③OD=OE;④CE+CD=BC,其中正确的结论有()A.1个 B.2个 C.3个 D.4个【分析】结论①错误.因为图中全等的三角形有3对;结论②正确.由全等三角形的性质可以判断;结论③正确.利用全等三角形的性质可以判断.结论④正确.利用全等三角形和等腰直角三角形的性质可以判断.【解答】解:结论①错误.理由如下:图中全等的三角形有3对,分别为△AOC≌△BOC,△AOD≌△COE,△COD≌△BOE.由等腰直角三角形的性质,可知OA=OC=OB,易得△AOC≌△BOC.∵OC⊥AB,OD⊥OE,∴∠AOD=∠COE.在△AOD与△COE中,,∴△AOD≌△COE(ASA).同理可证:△COD≌△BOE.结论②正确.理由如下:∵△AOD≌△COE,∴S=S△COE,△AOD=S△COD+S△COE=S△COD+S△AOD=S△AOC=S△ABC,∴S四边形CDOE即△ABC的面积等于四边形CDOE的面积的2倍.结论③正确,理由如下:∵△AOD≌△COE,∴OD=OE;结论④正确,理由如下:∵△AOD≌△COE,∴CE=AD,∵AB=AC,∴CD=EB,∴CD+CE=EB+CE=BC.综上所述,正确的结论有3个.故选:C.【点评】本题是几何综合题,考查了等腰直角三角形、全等三角形的判定与性质等重要几何知识点.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.二、填空题(每题3分,共30分)9.(3分)(2015秋•邗江区期末)计算:+()2=4.【分析】先利用二次根式的性质化简,然后进行加法运算即可.【解答】解:原式=2+2=4.故答案为4.【点评】本题考查的是二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.10.(3分)(2015秋•邗江区期末)209506精确到千位的近似值是 2.10×105.【分析】先用科学记数法表示,然后把百位上的数字5进行四舍五入即可.【解答】解:209506≈2.10×105(精确到千位).故答案为2.10×105.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所以这些数字都叫这个近似数的有效数字.11.(3分)(2015秋•邗江区期末)点B(0,﹣2)在直线y=ax+b图象上,则b=﹣2.【分析】把点B(0,﹣2)代入直线y=ax+b,列出方程求出b的值即可.【解答】解:点B(0,﹣2)代入直线y=ax+b,得:﹣2=0+b,b=﹣2.故答案为:﹣2.【点评】本题考查了待定系数法求一次函数解析式.此题比较简单,解答此题的关键是熟知函数图象上点的坐标一定适合此函数的解析式.12.(3分)(2015秋•邗江区期末)已知等腰三角形的周长为16cm,若其中一边长为4cm,则底边长为4cm.【分析】此题分为两种情况:4cm是等腰三角形的底边或4cm是等腰三角形的腰.然后进一步根据三角形的三边关系进行分析能否构成三角形.【解答】解:当4cm是等腰三角形的底边时,则其腰长是(16﹣4)÷2=6(cm),能够组成三角形;当4cm是等腰三角形的腰时,则其底边是16﹣4×2=8(cm),不能够组成三角形.故该等腰三角形的底边长为:4 cm.故答案为:4.【点评】此题考查了等腰三角形的两腰相等的性质,同时注意三角形的三边关系.13.(3分)(2011•沈阳)在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是﹣4或6.【分析】点M、N的纵坐标相等,则直线MN在平行于x轴的直线上,根据两点间的距离,可列出等式|x﹣1|=5,从而解得x的值.【解答】解:∵点M(1,3)与点N(x,3)之间的距离是5,∴|x﹣1|=5,解得x=﹣4或6.故答案为:﹣4或6.【点评】本题是基础题,考查了坐标与图形的性质,当两点的纵坐标相等时,则这两点在平行于x轴的直线上.14.(3分)(2015秋•邗江区期末)在Rt△ABC中,∠C=90°,AC=5cm,BC=12cm,D为斜边AB的中点,则CD= 6.5cm.【分析】根据勾股定理求出斜边AB的长,再根据直角三角形斜边上的中线等于斜边的一半的性质解答.【解答】解:∵∠C=90°,AC=5cm,BC=12cm,∴AB===13cm,∵D为斜边AB的中点,∴CD=AB=×13=6.5cm.故答案为:6.5.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,比较简单,熟记性质是解题的关键.15.(3分)(2013•南开区一模)将一次函数y=x﹣2的图象平移,使其经过点(2,3),则所得直线的函数解析式是y=x+1.【分析】根据平移不改变k的值可设y=x+b,然后将点(2,3)代入即可得出直线的函数解析式.【解答】解:设y=x+b,∴3=2+b,解得:b=1.∴函数解析式为:y=x+1.故答案为:y=x+1.【点评】本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k的值不变.16.(3分)(2013•颍州区模拟)已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是﹣1<x<1或x>2.【分析】根据函数图象直接回答问题即可.【解答】解:如图所示,当y<0时,﹣1<x<1或x>2.故答案是:﹣1<x<1或x>2.【点评】本题考查了函数图象.要求学生具有一定的读图能力,知道函数值是增大还是减小.17.(3分)(2014•舟山)过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).【分析】依据与直线平行设出直线AB的解析式y=﹣x+b;代入点(﹣1,7)即可求得b,然后求出与x轴的交点横坐标,列举才符合条件的x的取值,依次代入即可.【解答】解:∵过点(﹣1,7)的一条直线与直线平行,设直线AB为y=﹣x+b;把(﹣1,7)代入y=﹣x+b;得7=+b,解得:b=,∴直线AB的解析式为y=﹣x+,令y=0,得:0=﹣x+,解得:x=,∴0<x<的整数为:1、2、3;把x等于1、2、3分别代入解析式得4、、1;∴在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).故答案为:(1,4),(3,1).【点评】本题考查了待定系数法求解析式以及直线上点的情况,列举出符合条件的x的值是本题的关键.18.(3分)(2015秋•邗江区期末)如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=10,A点的坐标为(﹣6,2),B、C两点在方程式y=﹣6的图形上,D、E两点在y轴上,则F点的纵坐标为2,则直线EF解析式为y=x﹣4.【分析】如图,作辅助线;证明△AKC≌△CHA,即可求得CK=AH=8,证明∠BAC=∠EDF,AC=DF,进而证明△AKC≌△DPF,即可求得E、F点的坐标,然后根据待定系数法即可求得解析式.【解答】解:如图,在△ABC中,分别作高线AH、CK,则∠AKC=∠CHA.∵AB=BC,∴∠BAC=∠BCA.在△AKC和△CHA中,,∴△AKC≌△CHA(AAS),∴CK=AH.∵A点的坐标为(﹣6,2),B、C两点的纵坐标均为﹣6,∴AH=8.又∵CK=AH,∴CK=AH=8.∵AB=BC=10,∴BK===6,∴AK=10﹣6=4,∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF,DE=AB=10.在△AKC和△DPF中,,∴△AKC≌△DPF(AAS),∴PF=KC=8,DP=AK=4.∴PE=10﹣4=6,∵F点的纵坐标为2,∴E(0,﹣4),F(8,2),设直线EF的解析式为y=kx﹣4,代入F(8,2)得,2=8k﹣4,解得k=,∴直线EF解析式为y=x﹣4.故答案为y=x﹣4.【点评】该题主要考查了全等三角形的判定及其性质以及待定系数法求一次函数的解析式;解题的关键是作辅助线,构造全等三角形,灵活运用全等三角形的判定及其性质来分析、判断、推理或解答.三、解答题(本大题共10题,共96分)19.(8分)(2015秋•邗江区期末)计算:(1)+|2﹣|﹣π0(2)﹣(﹣)2.【分析】(1)先根据数的开方法则及绝对值的性质分别计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据数的乘方及开方法则分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:(1)原式=﹣3+2﹣﹣π0=﹣2﹣;(2)原式=3﹣4﹣3=﹣4.【点评】本题考查的是实数的运算,熟知数的乘方及开方法则、绝对值的性质是解答此题的关键.20.(8分)(2015秋•邗江区期末)求各式中的实数x:(1)2x2=18;(2)8(x﹣1)3+27=0.【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用立方根的定义开立方即可求出解.【解答】解:(1)2x2=18x2=9x=±3,(2)8(x﹣1)3+27=0(x﹣1)3=﹣x﹣1=﹣1.5x=﹣0.5【点评】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.21.(8分)(2015秋•邗江区期末)已知:如图,有人在岸上点C的地方,用绳子拉船靠岸,开始时,绳长CB=10米,CA⊥AB,且CA=6米,拉动绳子将船从点B沿BA方向行驶到点D后,绳长CD=6米.(1)试判定△ACD的形状,并说明理由;(2)求船体移动距离BD的长度.【分析】(1)直接利用勾股定理得出AD的长,进而得出△ACD的形状;(2)利用勾股定理得出AB的长,进而得出BD的长.【解答】解:(1)由题意可得:AC=6m,DC=6m,∠CAD=90°,可得AD==6(m),故△ACD是等腰直角三角形;(2)∵AC=6m,BC=10m,∠CAD=90°,∴AB==8(m),则BD=AB﹣AD=8﹣6=2(m).答:船体移动距离BD的长度为2m.【点评】此题主要考查了勾股定理的应用,根据题意正确应用勾股定理是解题关键.22.(8分)(2016秋•靖江市期末)已知:如图,方格纸中格点A,B的坐标分别为(﹣1,3),(﹣3,2).(1)请在方格内画出平面直角坐标系;(2)已知点A与点C关于y轴对称,点B与点D关于x轴对称,请描出点C、D 的位置,并求出直线CD的函数表达式.【分析】(1)根据AB两点的坐标建立平面直角坐标系即可;(2)描出点C、D的位置,并求出直线CD的函数表达式即可.【解答】解:(1)如图所示;(2)如图所示,由图可知,C(1,3),D(﹣3,﹣2),设直线CD的解析式为y=kx+b(k≠0),则,解得,故直线CD的解析式为y=x+.【点评】本题考查的是作图﹣轴对称变换,熟知关于x,y轴对称的点的坐标特点是解答此题的关键.23.(10分)(2016秋•靖江市期末)已知:如图:AB∥CD,AB=CD,AD、BC相交于点O,BE∥CF,BE、CF分别交AD于点E、F,求证:(1)OA=OD;(2)BE=CF.【分析】(1)根据平行线的性质得到∠A=∠D,推出△ABO≌△CDO,根据全等三角形的性质即可得到结论;(2)根据平行线的性质可得∠A=∠D,∠BEO=∠CFO,进而得到∠AEB=∠DFC,然后根据AAS定理判定△ABE≌△DCF,再根据全等三角形的性质可得EB=CF.【解答】证明:(1)∵AB∥CD,∴∠A=∠D,在△ABO与△CDO中,,∴△ABO≌△CDO,∴AO=CO;(2)∵AB∥CD,∴∠A=∠D,∵BE∥CF,∴∠BEO=∠CFO,∴∠AEB=∠DFC,在△EBA和△FCD中,,∴△ABE≌△DCF(AAS).∴EB=CF.【点评】此题主要考查了全等三角形的判定与性质,平行线的性质,关键是掌握全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.24.(10分)(2016秋•东台市期末)已知:如图:△ABC是等边三角形,点D、E分别是边BC、CA上的点,且BD=CE,AD、BE相交于点O.(1)求证:△ACD≌△BAE;(2)求∠AOB的度数.【分析】(1)根据等边三角形的性质求出∠BAC=∠C=60°,AC=BC,求出AE=CD,根据SAS推出全等即可;(2)根据全等三角形的性质求出∠CAD=∠ABE,根据三角形外角性质求出∠AOE=∠BAC=60°,即可得出答案.【解答】(1)证明:∵△ABC是等边三角形,∴∠BAC=∠C=60°,BC=AC,∵BD=CE,∴BC﹣BD=AC﹣CE,∴AE=CD,在△ACD和△BAE中∴△ACD≌△BAE(SAS);(2)解:∵△ACD≌△BAE,∴∠CAD=∠ABE,∴∠AOE=∠BAD+∠ABE=∠BAD+∠CAD=∠BAC=60°,∴∠AOB=180°﹣60°=120°.【点评】本题考查了等边三角形的性质,全等三角形的性质和判定的应用,能求出△ACD≌△BAE是解此题的关键.25.(10分)(2015秋•邗江区期末)已知一次函数y=kx+b的图象过(1,1)和(2,﹣1).(1)求一次函数y=kx+b的解析式;(2)求直线y=kx+b与坐标轴围成的三角形的面积.【分析】(1)利用待定系数法把A(1,1),B(2,﹣1)代入一次函数y=kx+b,可得到一个关于k、b的方程组,再解方程组即可得到k、b的值,然后即可得到一次函数的解析式;(2)利用(1)的解析式,求出与x轴、y轴交点的坐标,进一步利用三角形的面积计算公式求得结果.【解答】解:(1)∵一次函数y=kx+b的图象经过两点A(1,1),B(2,﹣1),∴,解得:,∴一次函数解析式为:y=﹣2x+3.(2)∵y=﹣2x+3与x轴、y轴交点的坐标分别为(,0)、(0,3),∴与坐标轴围成的三角形的面积S=×3×=.【点评】此题主要考查了待定系数法求一次函数解析式,以及三角形面积求法,求出坐标交点是解题关键.26.(10分)(2015秋•邗江区期末)已知:如图,等腰△ABC,AB=AC,点D为△ABC的BC边上一点,连接AD,将线段AD旋转至AE,使得∠DAE=∠BAC,连接CE.(1)求证:△ACE≌△ABD;(2)若∠BAC=∠DAE=90°,EC=3,CD=1,求AC的长.【分析】(1)求出∠CAE=∠BAD,AE=AD,根据SAS推出全等即可;(2)根据全等求出BD,求出BC,根据勾股定理求出AC即可.【解答】(1)证明:根据旋转得出AE=AD,∵∠DAE=∠BAC,∴∠DAE﹣∠DAC=∠BAC﹣∠DAC,∴∠CAE=∠BAD,在△ACE和△ABD中∴△ACE≌△ABD(SAS);(2)解:∵△ACE≌△ABD,EC=3,∴BD=EC=3,∵CD=1,∴BC=3+1=4,∵∠CAB=90°,AC=AB,∴2AC2=BC2=42=16,∴AC=2.【点评】本题考查了勾股定理,全等三角形的性质和判定的应用,能求出△ACE ≌△ABD是解此题的关键.27.(12分)(2009•河北)某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m=0,n=3;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?【分析】(1)按裁法二裁剪时,2块A型板材块的长为120cm,150﹣120=30,所以无法裁出B型板,按裁法三裁剪时,3块B型板材块的长为120cm,120<150,而4块块B型板材块的长为160cm>150所以无法裁出4块B型板;(2)由题意得:共需用A型板材240块、B型板材180块,又因为满足x+2y=240,2x+3z=180,然后整理即可求出解析式;(3)由题意,得Q=x+y+z=x+120﹣x+60﹣x和,[注:事实上,0≤x≤90且x是6的整数倍].由一次函数的性质可知,当x=90时,Q最小.此时按三种裁法分别裁90张、75张、0张.【解答】解:(1)按裁法二裁剪时,2块A型板材块的长为120cm,150﹣120=30,所以无法裁出B型板,按裁法三裁剪时,3块B型板材块的长为120cm,120<150,而4块块B型板材块的长为160cm>150cm,所以无法裁出4块B型板;∴m=0,n=3;(2)由题意得:共需用A型板材240块、B型板材180块,又∵满足x+2y=240,2x+3z=180,∴整理即可求出解析式为:y=120﹣x,z=60﹣x;(3)由题意,得Q=x+y+z=x+120﹣x+60﹣x.整理,得Q=180﹣x.由题意,得解得x≤90.[注:事实上,0≤x≤90且x是6的整数倍]由一次函数的性质可知,当x=90时,Q最小.由(2)知,y=120﹣x=120﹣×90=75,z=60﹣x=60﹣×90=0;故此时按三种裁法分别裁90张、75张、0张.【点评】本题重点考查了一次函数图象和实际应用相结合的问题,在做题时要明确所裁出A型板材和B型板材的总长度不能超过150cm.28.(12分)(2015秋•邗江区期末)已知:如图,正方形OABC的边长为4单位上,OA边在x轴上,OC边在y轴上,点D是x轴上一点,坐标为(1,0),点E为OC的中点,连接BD、BE、DE.(1)点B的坐标为(4,4).(2)判断△BDE的形状,并证明你的结论;(3)点M为x轴上一个动点,当∠MBD=45°时,请你直接写出点M的坐标.【分析】(1)利用正方形的性质得到BC=BA,然后利用第一象限点的坐标特征写出B点坐标;(2)先利用勾股定理分别计算出DE、BE、BD,然后利用勾股定理的逆定理可证明△BDE为直角三角形;(3)连结BO,根据正方形的性质得BO=OA=4,∠BOA=45°,分类讨论:当点M在点D右侧,如图1,先证明△MBD∽△MOB,利用相似比可得到MB2=M O•MD=MA2+7MA+12,而由勾股定理得到MB2=AB2+AM2,所以MA2+7MA+12=AB2+AM2=42+AM2,解方程得到AM=,则此时M点坐标为(,0);当点M在点D左侧,如图2,证明△DOB∽△DBM,利用相似比可计算出DM,从而可确定此时M点的坐标.【解答】解:(1)∵正方形ABCO的边长为4,∴BC=BA=4,∴B点坐标为(4,4);故答案为(4,4);(2)△BDE为直角三角形.理由如下:∵D(1,0),点E为OC的中点,∴OE=CE=2,OD=1,∴AD=3,∴DE2=OD2+OE2=1+4=5,BE2=CE2+BE2=4+16=20,DB2=AD2+AB2=9+16=25,∵5+20=25,∴DE2+BE2=DB2,∴△BDE为直角三角形,∠BED=90°;(3)连结BO,∵正方形ABCO的边长为4,∴BO=OA=4,∠BOA=45°,当点M在点D右侧,如图1,∵∠MBD=∠BOM=45°,∠DMB=∠OBM,∴△MBD∽△MOB,∴MB:MO=MD:MB,即MB2=MO•MD,∴MB2=(MA+4)(MA+3)=MA2+7MA+12,而MB2=AB2+AM2,∴MA2+7MA+12=AB2+AM2=42+AM2,∴AM=,∴OM=4+=,∴M点坐标为(,0);当点M在点D左侧,如图2,∵∠MBD=∠BOD=45°,∠ODB=∠BDM,∴△DOB∽△DBM,∴OD:BD=BD:DM,即1:5=5:DM,∴DM=25,∴MO=MD﹣OD=25﹣1=24,∴M点坐标为(﹣24,0),综上所述,M点的坐标为(﹣24,0)或(,0).【点评】本题考查了一次函数的综合题:熟练掌握一次函数图象上点的坐标特征和正方形的性质;理解坐标与图形性质,能利用两点间的距离公式计算线段的长;会运用相似比进行几何计算,同时注意分类讨论思想的运用.。