新疆生产建设兵团第二中学2019-2020学年高一数学上学期期末考试试题【含答案】
2019-2020学年高一数学上学期期末考试试题(含解析)_18
2019-2020学年高一数学上学期期末考试试题(含解析)本试题卷分第一部分(选择题)和第二部分(非选择题)两部分.第一部分1至2页,第二部分3至4页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效满分150分,考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.第一部分(选择题共60分)注意事项1.选择题必须用2B铅笔将答案标号填涂在答题卡对应题目标号的位置上.2.第一部分共12小题,每小题5分,共60分.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.的值为()A. B. C. D.【答案】C【解析】sin210°=sin(180°+30°)=﹣sin30°=﹣.故选C.2.已知全集,则正确表示集合和关系的韦恩图是()A. B.C. D.【答案】B【解析】∵集合∴集合∵集合∴故选B3.某司机看见前方处有行人横穿马路,这时司机开始紧急刹车,在刹车过程中,汽车速度v是关于刹车时间t的函数,其图象可能是()A. B. C.D.【答案】A【解析】【分析】紧急刹车速度慢慢减小到零,而速度减小的速率越来越小.【详解】根据题意,司机进行紧急刹车,速度减少到零的过程中,速度减小的速率越来越小.故选:A【点睛】此题考查实际问题的函数表示,关键在于弄清速度关于时间的函数关系,变化过程.4. 函数f(x)=|x-2|-lnx在定义域内零点的个数为( )A. 0B. 1C. 2D. 3【答案】C【解析】分别画出函数y=ln x(x>0)和y=|x-2|(x>0)的图像,可得2个交点,故f(x)在定义域中零点个数为2.5.已知,则()A. B. C. D.【答案】A【解析】【分析】变形处理,分子分母同时除以,即可得解.【详解】故选:A【点睛】此题考查三角函数给值求值,构造齐次式利用同角三角函数的关系化简求值,属于基础题目.6.已知函数的图象的一个对称中心是,则的可能取值为()A. B. C. D.【答案】D【解析】【分析】根据题意解即可求得,结合选项即可得解.【详解】由题:函数的图象的一个对称中心是,必有,,当时,.故选:D【点睛】此题考查根据三角函数的对称中心求参数的值,关键在于熟练掌握三角函数图象和性质,以及对称中心特征的辨析.7.已知函数是定义在上奇函数,且当时,,则的值为()A. 2B. 3C. -2D. -3【答案】D【解析】【分析】根据解析式求出,根据奇偶性可得.【详解】是定义在上的奇函数,当时,,则 .故选:D【点睛】此题考查根据奇偶性求函数值,关键在于熟练掌握奇偶性辨析,准确进行对数化简求值.8.在中,已知,那么一定是()A. 直角三角形B. 正三角形C. 等腰直角三角形D. 等腰三角形【答案】D【解析】【分析】利用正弦定理和余弦定理化简即可得到答案.【详解】,由正弦定理可得,由余弦定理得,化简得a=b,所以三角形为等腰三角形,故选D【点睛】本题考查利用正弦定理和余弦定理判断三角形的形状,属于简单题.9.已知函数的图象关于对称,且在上单调递增,设,,,则的大小关系为 ( )A. B.C. D.【答案】B【解析】分析:首先根据题意知函数图像关于对称,即可知,再结合在上单调递增,得出,即可得出答案.详解:因为函数图像关于对称,所以,又在上单调递增,所以,即,故选B.点睛:这是一道关于函数的对称性和函数的单调性应用的题目,解题的关键是熟练掌握函数的对称性和单调性.10.设,则( )A. B.C. D.【答案】A【解析】【分析】先由诱导公式得到a=cos2019°=–cos39°,再根据39°∈(30°,45°)得到大致范围.【详解】a=cos2019°=cos(360°×5+180°+39°)=–cos39°∵,∴可得:∈(,),=.故选A.【点睛】这个题目考查了三角函数的诱导公式的应用,以及特殊角的三角函数值的应用,题目比较基础.11.如图,当参数时,连续函数的图象分别对应曲线和,则()A. B. C. D.【答案】B【解析】【分析】根据函数单调递增判断,根据对于一切,恒成立得出.【详解】考虑函数,由图可得:当时,恒成立,即对于一切恒成立,所以,由图可得:对于一切,,即,所以,所以.故选:B【点睛】此题考查根据函数图象判断比较参数的大小关系,求参数范围,关键在于准确分析函数图象所反映的性质.12.已知函数有且只有1个零点,则实数a的取值范围为()A. 或B. 或C.D. 或【答案】B【解析】【分析】分类讨论当时,当时,当时,分别讨论函数零点个数,即可得解.【详解】函数,当时,①,,无零点,②,方程要么无解,要么有解,如果有解,根据韦达定理两根之和,两根之积为1,即有两个正根,与矛盾,所以当时,函数不可能有且只有一个零点;当时,,有且仅有一个零点符合题意;当时,,一定有且仅有一个根,所以,必有在无解,下面进行讨论:当时,满足题意,即,当时,,有一个负根-1,不合题意,舍去,当时,根据韦达定理的两根之和一定有负根,不合题意舍去,综上所述:或.故选:B【点睛】此题考查根据分段函数零点个数求解参数的取值范围,关键在于准确进行分类讨论,结合韦达定理与根的分布求解参数范围.第二部分(非选择题共90分)注意事项:1.考生须用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区城内作答,作图题可先用铅笔画线,确认后用0.5毫米黑色墨迹签字笔描清楚,答在试题卷上无效.2.本部分共10小题,共90分.二、填空题:本大题共4小题;每小题5分,共20分13.下表表示y是x的函数,则该函数的定义域是______________,值域是__________________.【答案】 (1). (2).【解析】【分析】(1)自变量的取值范围构成的集合就是定义域;(2)函数值的取值范围构成的集合就是值域.【详解】(1)由函数可得,函数的定义域为:;(2)由函数可得,函数值只有1,2,3,4,所以值域为:.故答案为:①;②【点睛】此题考查求函数定义域和值域,属于简单题,易错点在于书写形式出错,定义域值域应写成集合或区间的形式.14.电流强度(安)随时间(秒)变化的函数的图象如图所示,则当时,电流强度是_________.【答案】安.【解析】【分析】先由函数的最大值得出的值,再结合图象得出周期,得,最后再将代入解析式可得出答案.【详解】由图象可知,,且该函数的最小正周期,则,,当时,(安),故答案为安.【点睛】本题考查利用三角函数图象求值,求出解析式是关键,利用图象求三角函数的解析式,其步骤如下:①求、:,;②求:利用一些关键点求出最小正周期,再由公式求出;③求:代入关键点求出初相,如果代对称中心点要注意附近的单调性.15.如图,在等腰直角中,,点D,E分别是BC的三等分点,则_______,__________.【答案】 (1). (2).【解析】【分析】(1)根据直角三角形关系,在中即可求得;(2)在中,求出,结合(1),即可求解.【详解】(1)由题:在等腰直角中,,点D,E分别是BC的三等分点,在中,;(2)在中,,.故答案为:(1); (2)【点睛】此题考查根据直角三角形关系求三角函数值,关键在于根据几何关系结合两角差的正切公式求解.16.已知满足,且当时,,则方程的所有实根之和为__________.【答案】6【解析】分析】根据解析式求出当时方程的根,结合对称性即可得到所有实根之和.【详解】满足,所以,即关于直线对称,当时,,当,得,当时,解得:,,根据对称性得:当时,方程也有三个根,满足,所以所有实根之和为6.故答案为:6【点睛】此题考查方程的根的问题,涉及分段函数和函数对称性,根据函数的对称性解决实根之和,便于解题.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或推演步骤.17.已知角的终边经过点(1)求的值;(2)求的值.【答案】(1)(2)【解析】【分析】(1)根据角的终边上的点的坐标,求出,,结合二倍角公式即可得解;(2)根据诱导公式化简即可得解.【详解】(1)由题意知,,则(2)【点睛】此题考查根据三角函数定义求三角函数值,根据二倍角公式和诱导公式进行化简求值,关键在于熟练掌握相关公式,准确计算.18.已知集合(1)求;(2)若,求实数m的取值范围.【答案】(1);(2)【解析】【分析】(1)解不等式得到,求出或,即可得解;(2),即,分类讨论当时,当时,求出参数范围.【详解】(1)可化为则,即所以或,故.(2)由(1)知,由可知,,①当时,,②当时,,解得.综上所述,.【点睛】此题考查集合的基本运算,涉及补集运算和交集运算,根据集合运算关系判断包含关系,根据包含关系求参数的取值范围.19.已知函数是幂函数,且在上是减函数.(1)求实数m的值;(2)请画出的草图.(3)若成立,求a的取值范围.【答案】(1)(2)见解析(3)【解析】【分析】(1)根据幂函数的定义得,结合单调性取舍;(2)根据幂函数的单调性作第一象限的图象,再根据奇偶性作y轴左侧图象;(3)根据奇偶性和单调性,等价转化为解.【详解】(1)由函数是幂函数,则,解得或,又因为在上是减函数,故.(2)由(1)知,,则的大致图象如图所示:(3)由(2)知,的图象关于y轴对称,且在上递减,则由,得,即,可得,解得,又的取值范围为.【点睛】此题考查幂函数的概念辨析,作幂函数的图象,根据单调性和奇偶性求解不等式,综合性较强,涉及转化与化归思想.20.小王投资1万元2万元、3万元获得的收益分别是4万元、9万元、16万元为了预测投资资金x(万元)与收益y万元)之间的关系,小王选择了甲模型和乙模型.(1)根据小王选择的甲、乙两个模型,求实数a,b,c,p,q,r的值(2)若小王投资4万元,获得收益是25.2万元,请问选择哪个模型较好?【答案】(1);(2)甲模型更好.【解析】【分析】(1)根据待定系数法列方程组,,求解即可;(2)两种模型分别求出当时的函数值,比较哪个模型更接近25.2,即可得到更好的模型.【详解】(1)若选择甲模型,由题意得:,解得:,若选择乙模型,由题意得:解得:所以实数a,b,c,p,q,r的值为;(2)由(1)可得:甲模型为,乙模型为:,若选择甲模型,当时,,若选择乙模型,当时,,25.2与25更加接近,所以选择甲模型更好.【点睛】此题考查函数模型的选择,根据已知数据求解函数模型并选择更好的模型,关键在于准确计算,正确辨析.21.已知函数,且的最大值为2,其图象相邻对称轴的距离为2,并过点(1)求的值;(2)计算的值;【答案】(1)(2)100【解析】【分析】(1)根据最大值为2求出,根据相邻对称轴距离求出最小正周期得,结合过点,求得;(2)根据函数周期为4,只需求出,即可求解的值.【详解】(1)由题可知,因为的最大值为2,则有,又因为图象相邻对称轴的距离为2,所以,即所以,又的图象过点,则,即则有,又因为,则.(2)由(1)知其周期为,所以,故.【点睛】此题考查根据函数图象特征求函数解析式,根据函数的周期性求函数值以及函数值之和,关键在于熟练掌握三角函数的基本性质.22.已知.(1)当时,解不等式;(2)若关于的方程的解集中恰好有一个元素,求实数的值;(3)设,若对任意,函数在区间上的最大值与最小值的差不超过,求的取值范围.【答案】(1)(2)或,(3)【解析】【分析】(1)根据对数单调性化简不等式,再解分式不等式得结果;(2)先化简对数方程,再根据分类讨论方程根的情况,最后求得结果;(3)先确定函数单调性,确定最值取法,再化简不等式,根据二次函数单调性确定最值,解得结果.【详解】(1)当时,不等式解集为(2)①当时,仅有一解,满足题意;②当时,则,若时,解为,满足题意;若时,解为此时即有两个满足原方程的的根,所以不满足题意;综上,或,(3)因为在上单调递减,所以函数在区间上的最大值与最小值的差为,因此即对任意恒成立,因为,所以在上单调递增,所以因此【点睛】本题考查对数不等式、对数方程、含参数方程以及一元二次不等式恒成立,考查综合分析求解能力,属较难题.2019-2020学年高一数学上学期期末考试试题(含解析)本试题卷分第一部分(选择题)和第二部分(非选择题)两部分.第一部分1至2页,第二部分3至4页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效满分150分,考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.第一部分(选择题共60分)注意事项1.选择题必须用2B铅笔将答案标号填涂在答题卡对应题目标号的位置上.2.第一部分共12小题,每小题5分,共60分.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.的值为()A. B. C. D.【答案】C【解析】sin210°=sin(180°+30°)=﹣sin30°=﹣.故选C.2.已知全集,则正确表示集合和关系的韦恩图是()A. B.C. D.【答案】B【解析】∵集合∴集合∵集合∴故选B3.某司机看见前方处有行人横穿马路,这时司机开始紧急刹车,在刹车过程中,汽车速度v是关于刹车时间t的函数,其图象可能是()A. B. C.D.【答案】A【解析】【分析】紧急刹车速度慢慢减小到零,而速度减小的速率越来越小.【详解】根据题意,司机进行紧急刹车,速度减少到零的过程中,速度减小的速率越来越小.故选:A【点睛】此题考查实际问题的函数表示,关键在于弄清速度关于时间的函数关系,变化过程.4. 函数f(x)=|x-2|-lnx在定义域内零点的个数为( )A. 0B. 1C. 2D. 3【答案】C【解析】分别画出函数y=ln x(x>0)和y=|x-2|(x>0)的图像,可得2个交点,故f(x)在定义域中零点个数为2.5.已知,则()A. B. C. D.【答案】A【解析】【分析】变形处理,分子分母同时除以,即可得解.【详解】故选:A【点睛】此题考查三角函数给值求值,构造齐次式利用同角三角函数的关系化简求值,属于基础题目.6.已知函数的图象的一个对称中心是,则的可能取值为()A. B. C. D.【答案】D【解析】【分析】根据题意解即可求得,结合选项即可得解.【详解】由题:函数的图象的一个对称中心是,必有,,当时,.故选:D【点睛】此题考查根据三角函数的对称中心求参数的值,关键在于熟练掌握三角函数图象和性质,以及对称中心特征的辨析.7.已知函数是定义在上奇函数,且当时,,则的值为()A. 2B. 3C. -2D. -3【答案】D【解析】【分析】根据解析式求出,根据奇偶性可得.【详解】是定义在上的奇函数,当时,,则 .故选:D【点睛】此题考查根据奇偶性求函数值,关键在于熟练掌握奇偶性辨析,准确进行对数化简求值.8.在中,已知,那么一定是()A. 直角三角形B. 正三角形C. 等腰直角三角形D. 等腰三角形【答案】D【解析】【分析】利用正弦定理和余弦定理化简即可得到答案.【详解】,由正弦定理可得,由余弦定理得,化简得a=b,所以三角形为等腰三角形,故选D【点睛】本题考查利用正弦定理和余弦定理判断三角形的形状,属于简单题.9.已知函数的图象关于对称,且在上单调递增,设,,,则的大小关系为 ( )A. B.C. D.【答案】B【解析】分析:首先根据题意知函数图像关于对称,即可知,再结合在上单调递增,得出,即可得出答案.详解:因为函数图像关于对称,所以,又在上单调递增,所以,即,故选B.点睛:这是一道关于函数的对称性和函数的单调性应用的题目,解题的关键是熟练掌握函数的对称性和单调性.10.设,则( )A. B.C. D.【答案】A【解析】【分析】先由诱导公式得到a=cos2019°=–cos39°,再根据39°∈(30°,45°)得到大致范围.【详解】a=cos2019°=cos(360°×5+180°+39°)=–cos39°∵,∴可得:∈(,),=.故选A.【点睛】这个题目考查了三角函数的诱导公式的应用,以及特殊角的三角函数值的应用,题目比较基础.11.如图,当参数时,连续函数的图象分别对应曲线和,则()A. B. C. D.【答案】B【解析】【分析】根据函数单调递增判断,根据对于一切,恒成立得出.【详解】考虑函数,由图可得:当时,恒成立,即对于一切恒成立,所以,由图可得:对于一切,,即,所以,所以.故选:B【点睛】此题考查根据函数图象判断比较参数的大小关系,求参数范围,关键在于准确分析函数图象所反映的性质.12.已知函数有且只有1个零点,则实数a的取值范围为()A. 或B. 或C.D. 或【答案】B【解析】【分析】分类讨论当时,当时,当时,分别讨论函数零点个数,即可得解.【详解】函数,当时,①,,无零点,②,方程要么无解,要么有解,如果有解,根据韦达定理两根之和,两根之积为1,即有两个正根,与矛盾,所以当时,函数不可能有且只有一个零点;当时,,有且仅有一个零点符合题意;当时,,一定有且仅有一个根,所以,必有在无解,下面进行讨论:当时,满足题意,即,当时,,有一个负根-1,不合题意,舍去,当时,根据韦达定理的两根之和一定有负根,不合题意舍去,综上所述:或.故选:B【点睛】此题考查根据分段函数零点个数求解参数的取值范围,关键在于准确进行分类讨论,结合韦达定理与根的分布求解参数范围.第二部分(非选择题共90分)注意事项:1.考生须用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区城内作答,作图题可先用铅笔画线,确认后用0.5毫米黑色墨迹签字笔描清楚,答在试题卷上无效.2.本部分共10小题,共90分.二、填空题:本大题共4小题;每小题5分,共20分13.下表表示y是x的函数,则该函数的定义域是______________,值域是__________________.【答案】 (1). (2).【解析】【分析】(1)自变量的取值范围构成的集合就是定义域;(2)函数值的取值范围构成的集合就是值域.【详解】(1)由函数可得,函数的定义域为:;(2)由函数可得,函数值只有1,2,3,4,所以值域为:.故答案为:①;②【点睛】此题考查求函数定义域和值域,属于简单题,易错点在于书写形式出错,定义域值域应写成集合或区间的形式.14.电流强度(安)随时间(秒)变化的函数的图象如图所示,则当时,电流强度是_________.【答案】安.【解析】【分析】先由函数的最大值得出的值,再结合图象得出周期,得,最后再将代入解析式可得出答案.【详解】由图象可知,,且该函数的最小正周期,则,,当时,(安),故答案为安.【点睛】本题考查利用三角函数图象求值,求出解析式是关键,利用图象求三角函数的解析式,其步骤如下:①求、:,;②求:利用一些关键点求出最小正周期,再由公式求出;③求:代入关键点求出初相,如果代对称中心点要注意附近的单调性.15.如图,在等腰直角中,,点D,E分别是BC的三等分点,则_______,__________.【答案】 (1). (2).【解析】【分析】(1)根据直角三角形关系,在中即可求得;(2)在中,求出,结合(1),即可求解.【详解】(1)由题:在等腰直角中,,点D,E分别是BC的三等分点,在中,;(2)在中,,.故答案为:(1); (2)【点睛】此题考查根据直角三角形关系求三角函数值,关键在于根据几何关系结合两角差的正切公式求解.16.已知满足,且当时,,则方程的所有实根之和为__________.【答案】6【解析】分析】根据解析式求出当时方程的根,结合对称性即可得到所有实根之和.【详解】满足,所以,即关于直线对称,当时,,当,得,当时,解得:,,根据对称性得:当时,方程也有三个根,满足,所以所有实根之和为6.故答案为:6【点睛】此题考查方程的根的问题,涉及分段函数和函数对称性,根据函数的对称性解决实根之和,便于解题.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或推演步骤.17.已知角的终边经过点(1)求的值;(2)求的值.【答案】(1)(2)【解析】【分析】(1)根据角的终边上的点的坐标,求出,,结合二倍角公式即可得解;(2)根据诱导公式化简即可得解.【详解】(1)由题意知,,则(2)【点睛】此题考查根据三角函数定义求三角函数值,根据二倍角公式和诱导公式进行化简求值,关键在于熟练掌握相关公式,准确计算.18.已知集合(1)求;(2)若,求实数m的取值范围.【答案】(1);(2)【解析】【分析】(1)解不等式得到,求出或,即可得解;(2),即,分类讨论当时,当时,求出参数范围.【详解】(1)可化为则,即所以或,故.(2)由(1)知,由可知,,①当时,,②当时,,解得.综上所述,.【点睛】此题考查集合的基本运算,涉及补集运算和交集运算,根据集合运算关系判断包含关系,根据包含关系求参数的取值范围.19.已知函数是幂函数,且在上是减函数.(1)求实数m的值;(2)请画出的草图.(3)若成立,求a的取值范围.【答案】(1)(2)见解析(3)【解析】【分析】(1)根据幂函数的定义得,结合单调性取舍;(2)根据幂函数的单调性作第一象限的图象,再根据奇偶性作y轴左侧图象;(3)根据奇偶性和单调性,等价转化为解.【详解】(1)由函数是幂函数,则,解得或,又因为在上是减函数,故.(2)由(1)知,,则的大致图象如图所示:(3)由(2)知,的图象关于y轴对称,且在上递减,则由,得,即,可得,解得,又的取值范围为.【点睛】此题考查幂函数的概念辨析,作幂函数的图象,根据单调性和奇偶性求解不等式,综合性较强,涉及转化与化归思想.20.小王投资1万元2万元、3万元获得的收益分别是4万元、9万元、16万元为了预测投资资金x(万元)与收益y万元)之间的关系,小王选择了甲模型和乙模型.(1)根据小王选择的甲、乙两个模型,求实数a,b,c,p,q,r的值(2)若小王投资4万元,获得收益是25.2万元,请问选择哪个模型较好?【答案】(1);(2)甲模型更好.【解析】【分析】(1)根据待定系数法列方程组,,求解即可;(2)两种模型分别求出当时的函数值,比较哪个模型更接近25.2,即可得到更好的模型.【详解】(1)若选择甲模型,由题意得:,解得:,若选择乙模型,由题意得:解得:所以实数a,b,c,p,q,r的值为;(2)由(1)可得:甲模型为,乙模型为:,若选择甲模型,当时,,若选择乙模型,当时,,25.2与25更加接近,所以选择甲模型更好.【点睛】此题考查函数模型的选择,根据已知数据求解函数模型并选择更好的模型,关键在于准确计算,正确辨析.21.已知函数,且的最大值为2,其图象相邻对称轴的距离为2,并过点(1)求的值;(2)计算的值;【答案】(1)(2)100【解析】【分析】(1)根据最大值为2求出,根据相邻对称轴距离求出最小正周期得,结合过点,求得;(2)根据函数周期为4,只需求出,即可求解的值.【详解】(1)由题可知,因为的最大值为2,则有,又因为图象相邻对称轴的距离为2,所以,即所以,又的图象过点,则,即则有,又因为,则.(2)由(1)知其周期为,所以,故.【点睛】此题考查根据函数图象特征求函数解析式,根据函数的周期性求函数值以及函数值之和,关键在于熟练掌握三角函数的基本性质.22.已知.(1)当时,解不等式;(2)若关于的方程的解集中恰好有一个元素,求实数的值;(3)设,若对任意,函数在区间上的最大值与最小值的差不超过,求的取值范围.【答案】(1)(2)或,(3)【解析】【分析】(1)根据对数单调性化简不等式,再解分式不等式得结果;(2)先化简对数方程,再根据分类讨论方程根的情况,最后求得结果;(3)先确定函数单调性,确定最值取法,再化简不等式,根据二次函数单调性确定最值,解得结果.【详解】(1)当时,不等式解集为(2)①当时,仅有一解,满足题意;②当时,则,若时,解为,满足题意;若时,解为此时即有两个满足原方程的的根,所以不满足题意;综上,或,(3)因为在上单调递减,所以函数在区间上的最大值与最小值的差为,因此即对任意恒成立,因为,所以在上单调递增,所以因此【点睛】本题考查对数不等式、对数方程、含参数方程以及一元二次不等式恒成立,考查综合分析求解能力,属较难题.。
新疆生产建设兵团第二中学高一数学上学期期末考试试题
新疆生产建设兵团第二中学2016-2017学年高一数学上学期期末考试试题(考试时间为120分钟,满分150分)一.选择题(共12小题,每小题5分,共60分) 1.17sin4π=( ).B.12C.D.2.已知角α的终边经过点(3,4)P --,那么cos α的值是( ). A.35- B.35 C.45 D. 45- 3.函数()cos(2)6f x x π=+的最小正周期是( ).A.2πB. πC. 2πD. 4π 4.设α为锐角,若4cos()65πα+=,则sin(2)3πα+=( ).A.1225B.2425C.2425-D.1225-5. 若向量(1,2)=a ,(,4)x =-b ,若ab 则x =( ).A. 4B. 4-C. 2D. 2- 6. 已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的简图如下,则,,A ωϕ分别为 ( ).1,2,3A π-1.1,,23B π-.1,2,6C π1.1,,26D π7.若4tan 3,tan 3αβ==,则tan()αβ-= ( ) A. 3- B. 13- C. 13D. 38.若向量(cos ,sin ),(cos ,sin )ααββ==a b ,则与a b 一定满足 ( ) A. 与a b 的夹角θ等于α-β B. +-⊥()()a b a b C. a b D. ⊥a b6πO23π9. 已知||3=a ,||5=b ,且12⋅=a b ,则向量a 在向量b 上的投影为( ).A.125 B.4 C.125- D.4- 10. 如右图,在圆C 中,弦AB 的长为4,则AB AC →→⋅=A.8B.8-C. 4D. 4- 11.已知()sin 2g x x =,将()g x 的图象向左平移8π个单位长度,再将图象上各点的横坐标缩短到原来的14,得到函数()f x 的图象,则 ( ) A.()sin(8)4f x x π=- B.()sin(8)4f x x π=+ C. ()sin()24x f x π=- D.()sin()24x f x π=+12. 在ABC ∆中,312sin ,cos 513A B ==,则cos C =( ). A.3365- B. 3365 C. 6365D. 33636565-或二、填空题(本大题共4小题,每小题5分,共20分)13.已知向量 123,,OP OP OP →→→,满足123++=OP OP OP →→→0,且123===1O P O P O P→→→,则12=PP →.14.已知αβ,都是锐角,且(1+tan )(1+tan )2αβ=,则αβ+= . 15. 将函数2sin(3)2y x π=-的图象向左平移(0)ϕϕ>个单位后,所得到的图象对应的函数为奇函数,则ϕ的最小值为 .16. 计算3tan1043sin10+= .三、解答题(本大题共6小题,17题10分,其余每题12分,共70分)17.已知ABC ∆中,5,4,60a b C ===,求:(1)BC CA →→⋅; (2)求AB →.18.已知函数2()12sin cos 2cos f x x x x =++.(1)求()f x 递增区间; (2)求()f x 的对称轴方程; (3)求()f x 的最大值并写出取最大值时自变量x 的集合.19.某同学用“五点法”画函数()sin()(0,)2f x A x πωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,并直接写出函数()f x 的解析式; (2)将函数()y f x =的图象向左平移6π个单位长度,得到函数()y g x =的图象,求()y g x =的图象离原点O 最近的对称中心. (3)求当[,]44x ππ∈-时,函数()y g x =的值域.20.在平面直角坐标系中,已知向量(22=-m ,(cos ,sin )x x =n ,(0,)2x π∈. (1)若⊥m n ,求tan x 的值; (2)若与m n 的夹角为3π,求x 的值.21.如图,扇形OAB 的半径为1,圆心角为120,四边形PQRS 是扇形的内接矩形,当其面积最大时,求点P 的位置,并求此最大面积。
新疆高一上学期期末考试数学试题(解析版)
一、单选题1.已知全集,集合,则( )1234{}U =,,,{}{2,12}3A B ==,,()U A B ðA . B . C . D .{134},,{3}4,{}3{}4【答案】D 【分析】先求的并集再求补集即可.,A B 【详解】易知,则,{1,2,3}A B È={}()4U A B ⋃=ð故选:D.2.不等式的解集为( )2230x x +-<A .B . {}31x x x -或{}31x x -<<C .D .{}13x x x -或{}13x x -<<【答案】B【分析】利用一元二次不等式的解法求解.【详解】不等式可化为: 2230x x +-<,()()310x x +-<解得,31x -<<所以不等式的解集为,{}31x x -<<故选:B3.已知,,那么角的终边在( ) 3sin 5α=-3tan 4α=αA .第一象限B .第二象限C .第三象限D .第四象限【答案】C【分析】由已知条件得到角的终边所在象限 α【详解】由则角的终边在第三象限或者第四象限; 35sin α=-α由则角的终边在第一象限或者第三象限; 34tan α=α综上角的终边在第三象限,故选αC 【点睛】本题考查了由三角函数值判断角的范围,根据三角函数值符号特征求出结果,较为简单,也可以记忆“一正二正弦,三切四余弦”4.已知角α的终边经过点,那么的值为P (3,-4)sin αA .B .C .D . 43-45-34-35【答案】B【分析】由三角函数的定义直接可求得sin a.【详解】∵知角a 的终边经过点P ,3,4-()∴sin a , 45-==故选B .【点睛】本题考查任意角的三角函数的定义,属于基础题.5.已知函数,则( ) ,0()1,0x e x f x x x ⎧≤=⎨->⎩()()1f f =A .0B .1C .eD . 1e -【答案】B【解析】运用代入法进行求解即可.【详解】,0((1))(0)1f f f e ===故选:B6.若,且为第四象限角,则的值为( ) 12cos 13α=αtan αA . B . C . D . 125125-512512-【答案】D【分析】结合同角三角函数的基本关系式求得正确答案.【详解】由于,且为第四象限角, 12cos 13α=α所以, 5sin 13α==-. sin 5tan cos 12ααα==-故选:D7.已知函数,则在下列区间上,函数必有零点的是2()x f x e x =-A .B .C .D . (2,1)--(1,0)-(0,1)(1,2)【答案】B【详解】f(-2)=-4<0,f(-1)=-1<0,f(0)=e 0=1>0,f(1)=e -1>0,f(2)=e 2-4>0. 21e 1e由零点存在性定理,∵f(-1)·f(0)<0,∴f(x)在(-1,0)上必有零点,故选B.点睛:本题考查零点存在性定理的应用,属于基础题.如果函数在区间[a,b]上的图象是连续不()y f x =断的一条曲线,并且有,那么函数在区间[a,b]内有零点,即存在,使得()()0f a f b <A ()y f x =(),c a b ∈,这个c 也就是方程的实数根.但是反之不一定成立.()0f c =()0f x =8.若=log20.5,b=20.5,c=0.52,则,b ,c 三个数的大小关系是( )a a A .<b <cB .b <c <C .<c <bD .c <<ba a a a 【答案】C【详解】a=log 20.5<0,b=20.5>1,0<c=0.52<1,则a <c <b ,故选C .二、多选题9.(多选题)下列命题中的真命题是( )A .B . 1R,20x x -∀∈>()2N ,10x x *∀∈->C .D . 00R,lg 1x x ∃∈<00R,tan 2x x ∃∈=【答案】ACD【分析】根据对应函数的性质,判断命题的真假.【详解】指数函数值域为,所以,A 选项正确;()0,∞+1R,20x x -∀∈>当时,,所以是假命题,B 选项错误;1x =()210x -=()2N ,10x x *∀∈->当时,,所以,C 选项正确;01x =0lg 01x =<00R,lg 1x x ∃∈<函数值域为R ,所以,D 选项正确.tan y x =00R,tan 2x x ∃∈=故选:ACD.10.下列结论中,正确的是( )A .函数是指数函数12x y -=B .函数的值域是21(1)y ax a =+>[1,)+∞C .若,则(0,1)m n a a a a >>≠m n >D .函数的图像必过定点2()3(0,1)x f x a a a -=->≠(2,2)-【答案】BD【解析】对每一个选项进行逐一判断其真假,得出答案.【详解】选项A. 根据指数函数的定义,可得不是指数函数,故A 不正确.12x y -=选项B. 当时,,故B 正确.1a >211y ax =+≥选项C. 当时,函数单调递减,由,则,故C 不正确.01a <<x y a =m n a a >m n <选项D. 由,可得的图象恒过点,故D 正确.22(2)32f a -=-=-()f x (2,2)-故选:BD【点睛】本题考查命题真假的判断,考查指数函数的定义、单调性以及图象过定点的应用,属于基础题.11.我国著名的数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微;数形结合百般好,隔裂分家万事休.在数学学习和研究中,常用函数的图象来研究函数的性质.下列函数中,在上()0,∞+单调递增且图象关于轴对称的是( )y A . B .()3f x x =()2f x x =C .D .2y x -=()f x x =【答案】BD 【解析】根据函数解析式,逐项判断函数的单调性与奇偶性,即可得出结果.【详解】A 选项,定义域为,在上显然单调递增,但,即()3f x x =R ()0,∞+()()3f x x f x -=-≠不是偶函数,其图象不关于轴对称,A 排除;()3f x x =y B 选项,定义域为,在上显然单调递增,且, ()2f x x =R ()0,∞+()()()22f x x x f x -=-==所以是偶函数,图象关于轴对称,即B 正确;()2f x x =y C 选项,定义域为,在上显然单调递减,C 排除;2y x -=()(),00,-∞⋃+∞()0,∞+D 选项,的定义域为,在上显然单调递增,且,所以()f x x =R ()0,∞+()()f x x x f x -=-==是偶函数,图象关于轴对称,即D 正确.()f x x =y 故选:BD.12.已知函数,若函数(m ∈R )恰有两个零点,则m ()()()[)21,,12,1,x x x f x x ∞∞⎧+∈-⎪=⎨∈+⎪⎩()()g x f x m =-的取值范围可以为( )A .m ≤2B .m ≥4C .0<m <2D .m >3【答案】BC 【分析】在同一坐标系中作出函数的图象,根据因为函数(m ∈R )(),y f x y m ==()()g x f x m =-恰有两个零点,利用数形结合法求解.【详解】令,得,()()0g x f x m =-=()f x m =在同一坐标系中作出函数的图象,如图所示:(),y f x y m ==因为函数(m ∈R )恰有两个零点,()()g x f x m =-由图象知:m ≥4或0<m <2,故选:BC三、填空题13.函数的定义域是______.lg(2)y x =-【答案】(,2)-∞【详解】由题设有,解得,故函数的定义域为,填.20x ->2x <(),2∞-(),2∞-14.已知扇形的半径为1cm ,圆心角为2rad ,则该扇形的面积为_____cm 2.【答案】1【详解】试题分析:直接求出扇形的弧长,然后求出扇形的面积即可.扇形的圆心角为2,半径为1,扇形的弧长为:2,所以扇形的面积为:=1.故答案为1.15.设,,则________.ln 3a =7l n b =e a b +=【答案】21【分析】由对数运算性质可得答案.【详解】.372121l n l n l n e e e a b ++===故答案为:.2116.已知,则的解集为________.()1423x x f x +=--()0f x <【答案】{}2log 3x x <【分析】由一元二次不等式与指数不等式的解法求解即可【详解】即,也即,()0f x <14230x x +--<()222230x x -⋅-<所以, ()()23210x x -⋅+<解得,解得.023x <<2log 3x <所以的解集为,()0f x <{}2log 3x x <故答案为:{}2log 3x x <四、解答题17.计算下列各式的值:(1); ()22230327389.682--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭(2).07log 2(9.8)log lg 25lg 47+-+++【答案】(1)3; (2)132 【分析】(1)根据指数幂的运算,即可得到结果;(2)根据对数的运算性质,代入计算即可得到结果.【详解】(1)原式 2323334122⎛⎫⨯-- ⎪⎝⎭⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭3=(2)原式()323log 3lg 25421=+⨯++ 3232=++ 132=18.已知二次函数,.223y x ax =++[4,6]x ∈-(1)若,写出函数的单调增区间和减区间;1a =-(2)若,求函数的最大值和最小值;2a =-(3)若函数在上是单调函数,求实数的取值范围.[4,6]-a 【答案】(1)单调递增区间为,单调递减区间为.(2)当时,,当[1,6][4,1]-2x =min 1y =-4x =-时,.(3)或.max 35y =4a ≥6a ≤-【详解】(1)当时,,, 1a =-()222312y x x x =-+=-+[]4,6x ∈-又因为抛物线开口向上,所以它的单调递增区间为,单调递减区间为.[]1,6[]4,1-(2)当时,,, 2a =-()224321y x x x =-+=--[]4,6x ∈-图像开口向上,所以当时,,当时,. 2x =min 1y =-4x =-()2max 42136135y =---=-=(3)若函数在上是单调函数,则由得知它的对称轴为[]4,6-()222233y x ax x a a =++=++-x a =-,若它在上单调,则或,∴或.[]4,6-4a -≤-6a -≥4a ≥6a ≤-19.已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1.(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)当a >1时,求使f (x )>0的x 的解集.【答案】(1)(-1,1);(2)奇函数,证明见解析;(3)(0,1).【分析】(1)结合真数大于零得到关于的不等式组即可求得函数的定义域;x(2)结合(1)的结果和函数的解析式即可确定函数的奇偶性;(3)结合函数的单调性得到关于的不等式组,求解不等式组即可求得最终结果.x 【详解】(1)要使函数有意义,则, 1010x x +>⎧⎨->⎩解得,即函数的定义域为;11x -<<()f x (1,1)-(2)函数的定义域关于坐标原点对称,()log (1)log (1)[log (1)log (1)]()a a a a f x x x x x f x -=-+-+=-+--=- 是奇函数.()f x ∴(3)若时,由得,1a >()0f x >log (1)log (1)a a x x +>-则,求解关于实数的不等式可得, 1111x x x -<<⎧⎨+>-⎩x 01x <<故不等式的解集为.(0,1)20.已知 3tan 4α=-(1)求,的值;sin αcos α(2)求的值. πcos()2cos(π)2()sin(π)2cos()f ααααα+-+=-+-【答案】(1),或; 3sin 5α=4cos 5α=-34sin ,cos 55αα=-=(2)115【分析】(1)根据条件结合同角三角函数的平方关系,即可得到结果; (2)先由诱导公式将化简,然后由同角三角函数的关系,代入计算即可得到结果. ()f α【详解】(1)根据题意可得,,解得或 22sin 3tan cos 4sin cos 1ααααα⎧==-⎪⎨⎪+=⎩3sin 54cos 5αα⎧=⎪⎪⎨⎪=-⎪⎩3sin 54cos 5αα⎧=-⎪⎪⎨⎪=⎪⎩(2) π3cos()2cos(π)2sin 2cos tan 21124()3sin(π)2cos()sin 2cos tan 2524f ααααααααααα+-++-+-+=====-+-++-+21.设函数()230f x ax bx a =++¹,(1)若不等式的解集为,求的值()0f x >()1,3-,a b(2)若,,,求的最小值. ()14f =0a >0b >14a b +【答案】(1);(2)9. 12a b =-⎧⎨=⎩【分析】(1)由不等式的解集为,得到是方程的两根,由根与系数的()0f x >()1,3-1,3-()0f x =关系可求a ,b 值;(2)由,得到,将所求变形为展开,整理为基本不等式的形式求最()14f =1a b +=()14a b a b ⎛⎫++ ⎪⎝⎭小值.【详解】(1)的解集是知是方程的两根.()0f x >()1,3-1,3-()0f x =由根与系数的关系可得,解得. 31313a b a ⎧-⨯=⎪⎪⎨⎪-+=-⎪⎩12a b =-⎧⎨=⎩(2)得,()14f =1a b +=∵,, 0a >0b >∴ ()141445b a a b a b a b a b ⎛⎫+=++=++ ⎪⎝⎭, 59≥+=当且仅当时取得等号,2b a =∴的最小值是. 14a b+9【点睛】关键点点睛:该主要考查基本不等式,在用基本不等式求最值时,关键要明确应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.22.已知定义域为R 的函数是奇函数. 12()22x x b f x +-+=+(1)求b 的值;(2)判断函数的单调性;()f x (3)若对任意的,不等式恒成立,求k 的取值范围.t R ∈()()22220f t t f t k -+-<【答案】(1)1;(2)减函数;(3). 13k <-【分析】(1)由是R 上的奇函数,可得,可求出的值;()f x ()00=f b (2)由(1)可知的表达式,任取R ,且,比较与0的大小关系,()f x 12,x x ∈12x x <()()12f x f x -可得出函数的单调性;(3)由是奇函数,可将不等式转化为,再结合函数是R 上的减函数,()f x ()()2222f t t f k t -<-可知对一切,恒成立,令即可求出答案.t R ∈2320t t k -->∆<0【详解】(1)因为是奇函数,所以,()f x (0)0f =即,∴ 10122b b -=⇒=+112()22xx f x +-=+(2)由(1)知, 11211()22221x x x f x +-==-+++设则 12x x <()()()()21121212112221212121x x x x x x f x f x --=-=++++因为函数在R 上是增函数且,∴2x y =12x x <21220x x ->又,∴即 ()()1221210x x ++>()()120f x f x ->()()12f x f x >∴在上为减函数.()f x (,)∞∞-+(3)因是奇函数,从而不等式:()f x ()()22220f t t f t k -+-<等价于,因为减函数,由上式推得:.即对一()()()222222f t t f t k f k t -<--=-()f x 2222t t k t ->-切有:,t R ∈2320t t k -->从而判别式. 141203k k ∆=+<⇒<-【点睛】本题考查函数奇偶性、单调性的应用,考查不等式恒成立问题,考查学生的计算求解能力,属于中档题.。
新疆生产建设兵团第二中学2019-2020学年高一上学期期末数学试题(解析版)
新疆生产建设兵团第二中学2019-2020学年第一学年高一年级数学考试(试卷)考试时间:120分钟 满分:150分一、单选题(共12题;共60分)1.函数()12f x x =-的定义域为( ) A. [)0,2B. ()2,+∞C. ()1,22,2⎡⎫⋃+∞⎪⎢⎣⎭D. ()(),22,-∞+∞【答案】C 【解析】 【分析】由根式内部的代数式大于等于0,分式的分母不为0联立不等式组求解.【详解】由21020x x -≥⎧⎨-≠⎩,解得x ≥12且x ≠2.∴函数()12f x x =-的定义域为()1,22,2⎡⎫⋃+∞⎪⎢⎣⎭. 故选C .【点睛】本题考查函数的定义域及其求法,是基础的计算题. 2.函数2()+log 1f x x x =-的定义域为 A. (0,2] B. (0,2)C. (0,1)(1,2)⋃D. (0,1)(1,2]⋃【答案】D 【解析】试题分析:由于要使得原式有意义,则根据分式分母不为零和偶次根式根号下是非负数,以及对数的真数要大于零可知,那么要满足10{200x x x -≠-≥>,故解得x 解得x 的取值范围是(0,1)(1,2]⋃,选D.考点:本题主要考查了函数的定义域的求解运用.点评:解决该试题的关键是理解定义域就是使得原式有意义的自变量的取值集合.作为分式分母不为零,作为偶次根式,根号下是非负数,作为对数真数要大于零,故可知结论.3.函数()23xf x e x =+-的零点所在的一个区间是( )A. 1,02⎛⎫-⎪⎝⎭B. 102⎛⎫ ⎪⎝⎭,C. 1,12⎛⎫ ⎪⎝⎭D. 312⎛⎫ ⎪⎝⎭, 【答案】C 【解析】()23x f x e x =+-为增函数,()()101320,20,1e 102f f f ⎛⎫=-=-<==- ⎪⎝⎭.所以函数()23xf x e x =+-的零点所在的一个区间是1,12⎛⎫⎪⎝⎭.故选C. 4.已知4cos ,5θθπ=-∈(0,),则θtan =( ) A34B. 34-C.43D. 43-【答案】B 【解析】 【分析】利用三角函数的基本关系式,求得3sin 5θ=,进而求得tan θ的值,得到答案. 【详解】由题意,4cos ,5θθπ=-∈(0,),所以3sin 5θ===, 则3sin 35tan 4cos 45θθθ===--. 故选B.【点睛】本题主要考查了三角函数的的基本关系式的化简、求证问题,其中解答中熟记三角函数的基本关.系式,正确运算是解答的关键,着重考查了推理与运算能力,属于基础题. 5.570sin 的值是( )A. 12-B.12C.2D. 【答案】A 【解析】()15707201501502sin sin sin =-=-=-,故选A.6.设向量(1,3)a =-,(5,4)b =-,则3a b -=() A. (8,5)- B. (2,5)C. (2,13)D. (2,8)-【答案】B 【解析】 【分析】直接利用向量的坐标进行运算即可. 【详解】由(1,3)a =-,(5,4)b =-, 可得:3(3,9)(5,4)(2,5)a b -=---=. 故选B.【点睛】本题主要考查了向量的坐标运算,属于基础题. 7.已知2sin cos αα=,则2cos 2sin 21cos ααα++=( ) A.32B. 3C. 6D. 12【答案】B 【解析】 【分析】根据已知条件求得tan α的值,利用二倍角公式化简所求表达式为只含tan α的表达,由此求得所求表达式的值.【详解】由2sin cos αα=得1tan 2α=.故222cos 2sin 212cos 2sin cos 122tan 223cos cos 2αααααααα+++==+=+⨯=,故选B. 【点睛】本小题主要考查同角三角函数的基本关系式,考查二倍角公式,属于基础题. 8.函数(1)()lgx f x -=的大致图象是( )A. B.C.D.【答案】B 【解析】 【分析】先判断奇偶性,再利用单调性进行判断,【详解】由题()f x 是偶函数,其定义域是(,1)(1,)-∞-+∞,且()f x 在(1,)+∞上是增函数,选B【点睛】此题主要考查对数函数的图象及其性质,是一道基础题;9.已知函数2,01,()2,12,1,2,2x x f x x x ⎧⎪≤≤⎪=<<⎨⎪⎪≥⎩,则3[()]2f f f ⎧⎫⎨⎬⎩⎭的值为( )A. 1B. 2C. 3-D.12【答案】A 【解析】 【分析】.将3[()]2f f f ⎧⎫⎨⎬⎩⎭从里到外的每一个函数值代入分段函数里算出即可. 【详解】由题意得,3()=22f ,1(2)=2f ,1()=2=1122f ⨯, 所以3[()]=[(2)]=()=1212f f f f f f ⎧⎫⎨⎬⎩⎭,故选:A.【点睛】本题考查了分段函数的计算,属于基础题.10.奇函数()y f x =,()0x ≠,当()0,x ∈+∞时,()1f x x =-,则函数(1)f x -的图为( )A. B. C. D.【答案】D 【解析】 【分析】设0x <,则0x ->,利用奇函数的定义求出()f x 的解析式,可得()f x 在R 上的解析式,从而得到(1)f x -的解析式,从而得到它的图象.【详解】解:奇函数()(0)y f x x =≠,当(0,)x ∈+∞时,()1f x x =-. 设0x <,则0x ->,()1f x x -=--, ()1f x x ∴-=--, ()1f x x ∴=+.综上可得,1,0()1,0x x f x x x ->⎧=⎨+<⎩,故2,1(1),1x x f x x x ->⎧-=⎨<⎩,即可得函数图象为即D 选项满足条件;故选:D .【点睛】本题主要考查函数的图象特征,函数的奇偶性的应用,属于基础题.11.已知函数()()log 1xa f x a x =++在[]0,1上的最大值与最小值之和为a ,则a 的值为( )A.14B.12C. 2D. 4【答案】B 【解析】 【分析】由题意可判断函数f (x )=a x+log a (x +1)在[0,1]上单调,从而可得f (0)+f (1)=a ,从而解得a . 【详解】∵函数f (x )=a x+log a (x +1)在[0,1]上单调,∴函数f (x )=a x+log a (x +1)在[0,1]上的最大值与最小值在x =0与x =1时取得; ∴f (0)+f (1)=a , 即1+0+a +log a 2=a , 即log a 2=﹣1, 即a 12=; 故选B .【点睛】本题考查了对数函数与指数函数的单调性的判断与应用,同时考查了最值的应用,属于基础题. 【此处有视频,请去附件查看】12.已知幂函数()y f x =的图象过⎛ ⎝⎭,则下列求解正确的是( ) A. ()12f x x = B. ()2f x x =C. ()32f x x =D. ()12f x x-=【答案】A 【解析】 【分析】利用幂函数过的点求出幂函数的解析式即可逐项判断正误【详解】∵幂函数y =x α的图象过点(2),=2α,解得α12=,故f (x )=()12f x x=,故选A【点睛】本题考查了幂函数的定义,是一道基础题.二、填空题(共6题;共30分)13.已知定义在(,0)(0,)-∞+∞上的偶函数,当0x >时,2()f x x x =+,则(2)f -=________.【答案】6 【解析】 【分析】利用函数是偶函数,()()22f f -=,代入求值. 【详解】()f x 是偶函数,()()222226f f ∴-==+=.故答案为6【点睛】本题考查利用函数的奇偶性求值,意在考查转化与变形,属于简单题型. 14.函数21()(5)m f x m m x +=--是幂函数,且为奇函数,则实数m 的值是_____.【答案】2- 【解析】【分析】根据函数()f x 为幂函数列式,求得m 的可能取值,再根据函数()f x 为奇函数,确定m 的值. 【详解】∵()f x 是幂函数,∴251m m --=,∴260m m --=, 解得2m =-或3,当2m =-时,11+=-m ,1()f x x-=奇函数,符合题意;当3m =时,14m +=,4()f x x =是偶函数,不符合题意, ∴2m =-. 故答案为2-.【点睛】本小题主要考查根据函数为幂函数且为奇函数,求参数的值,属于基础题.15.奇函数()f x 在区间[]3,7上是增函数,在区间[]3,6上的最大值为8,最小值为1-,则()()326f f -+=________。
2019-2020年高一上学期期末考试试卷 数学 含答案
秘密★启用前2019-2020年高一上学期期末考试试卷 数学 含答案一.选择题.(每小题5分,共60分)1.已知扇形的半径为,弧长为,则该扇形的圆心角为( )A .2B . 4C . 8D . 16 2.设全集,集合,,则等于( )A .B .C .D .3.( )A. B. C. D. 4.幂函数为偶函数,且在上单调递增,则实数( )A . 1B .2C . 4D . 5 5.已知,且,则( )A .2B .C .D . 6.函数满足,那么=( )A .B .C .D . 7.已知函数,则下列说法正确的是( )A .函数为奇函数B .函数有最大值C .函数在区间上单调递增D .函数在区间上单调递增8.函数()sin()(0,0,)2f x A x A πωϕωϕ=+>><的图象如图所示,为了得到的图象,则只需将的图象 ( )A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位 9.已知函数,则不等式(2sin )3,[,]22f x x ππ>∈-的解集为( ) A . B .C .D .10.若关于的函数22222sin ()(0)tx x t x xf x t x t+++=>+的最大值为,最小值为,且,则实数的值为( )A .1 B.2 C.3 D .4 11.(原创)已知关于方程,则该方程的所有根的和为( )A.0B.2C.4D.612.(原创)已知是定义在上的奇函数,对任意满足,且当时,2()cos 1f x x x x π=-+-,则函数在区间上的零点个数是( )A .7B .9C .11D .13 二.填空题.(每小题5分,共20分)13.已知角的始边落在轴的非负半轴上,且终边过点,且,则 . 14.求值:___________. (其中为自然对数的底) 15.求值: .16.已知二次函数满足条件:①;②时,,若对任意的,都有恒成立,则实数的取值范围为 .三.解答题.(共6小题,共70分) 17.(本小题满分10分)已知, (1)求的值; (2)求2sin()cos()sin()cos()22παπαππαα-++--+的值.18.(本小题满分12分)已知函数的定义域为,关于的不等式的解集为,其中, (1)求;(2)若,求实数的取值范围.19.(本小题满分12分)在中,为锐角,角所对应的边分别为,且. (1)求的值;(2)求函数()cos 225sin sin f x x A x =+的最大值.20.(本小题满分12分)已知函数22()(sin cos )2cos 2(0)f x x x x ωωωω=++->. (1)若的最小正周期为,求在区间上的值域; (2)若函数在上单调递减.求的取值范围.21.(原创)(本小题满分12分)已知,定义在上的连续不断的函数满足,当时,且. (1)解关于不等式:; (2)若对任意的,存在,使得221122()(1)()(4)(2)4()72ag x g x g a f x f x +-+-≥-+成立,求实数的范围.22.(原创)(本小题满分12分)已知函数,, (1),若关于的方程42233log [(1)]log ()log (4)24f x a x x --=---有两个不同解,求实数的范围;(2)若关于的方程:有三个不同解,且对任意的,恒成立,求实数的范围.何 勇 关毓维xx 重庆一中高xx 级高一上期期末考试数 学 答 案xx.1一、选择题ACDBDC CDCBDB 二、填空题13. 14. 15. 16. 三、解答题 17.解:(1);(2)2sin()cos()2sin cos 2tan 12cos sin 1tan 7sin()cos()22παπααααππααααα-++--===++--+.18.解:(1)2222log 0,log 2log 4,(0,4]x x A -≥≤==; (2)由于所以,2232()0()()0x a a x a x a x a -++<⇔--<,若,,符合题意;若,,则; 若,,则,综上,.19.解:(Ⅰ)、为锐角,,2310cos 1sin 10B b ∴=-=又,,225cos 1sin 5A A =-=, 253105102cos()cos cos sin sin 5105102A B A B A B ∴+=-=⨯-⨯= ; (2)2()cos 225sin sin cos 22sin 2sin 2sin 1f x x A x x x x x =+=+=-++,所以函数的最大值为.20.解:(Ⅰ)2222()(sin cos )2cos 2sin cos sin 212cos 22f x x x x x x x x ωωωωωωω=++-=++++-sin 2cos 22sin(2)4x x x πωωω=+=+,的最小正周期为,,所以1,()2sin(2)4f x x πω==+,时,,,所以函数值域为;(2)时,令3222,242k x k k Z ππππωπ+≤+≤+∈,的单减区间为 ,由题意5(,)[,]288k k ππππππωωωω⊆++,可得8258k k πππωωπππωω⎧+≤⎪⎪⎨⎪+≥⎪⎩,解得152,480k k k Z ωω⎧+≤≤+∈⎪⎨⎪>⎩,只有当时,.21.解:(1)2255(2)()0(222)(22)022x x x x f x f x ---≤⇔++-+≤⇔51(22)0(2)(22)022x x x x -+-≤⇔--≤,解得;(2)22(2)4()7(222)4(22)5xx x x y f x f x --=-+=++-++,问题转化为对任意的,有2211()(1)()(4)12ag x g x g a +-+-≥恒成立,即2()(2)()41g x a g x a +-+-≥恒成立,下证函数在上单增:取任意的,22121111()()()()()0x xg x g x g x g x g x x -=-=-<,所以函数在上单增, 由于,,所以时函数可取到之间的所有值,2()2()32(()1)()1()1g x g x a g x g x g x ++≤=++++恒成立,所以,当时取等.22.解:(1)原方程可化为,且,即,即,且方程要有解,, ①若,则此时,方程为,,方程的解为,仅有符合; ②若,此时,,即,方程的解为均符合题意,综上;(2)原方程等价于,则为的两个不同根,所以,解得,并且令, 又对任意的,恒成立,即[()()]x f x g x mx m +-<-,取,有,即,综上 由维达定理121220,30x x m x x =->+=>,所以,则对任意,212()(32)()()0h x x x x m x x x x x =-+-=--<,且,所以当时,原不等式恒成立,综上.秘密★启用前2019-2020年高一上学期期末考试试卷 物理 含答案45° 甲乙物 理 试 题 卷 xx.1第一部分 (选择题,共70分)一、选择题(1-9小题为单项选择题,每小题5分.10-14小题为多项选择题,每小题5分,选对未选全得3分,错选得0分) 1.下列物理量的单位属于导出单位的是( )A .质量B .时间C .位移D .力 2.下列关于力的说法中,正确的是( )A .自由下落的石块速度越来越大,是因为所受的的重力越来越大B .甲用力把乙推倒而自己不倒,说明甲对乙的作用力大于乙对甲的反作用力C .只有发生弹性形变的物体才产生弹力D .摩擦力的大小与正压力成正比3.学校秋季运动会上,飞辉同学以背越式成功跳过了1.90m ,如图所所示,则下列说法正确的是( ) A .飞辉起跳时地面对她的支持力等于她的重力 B .起跳以后在上升过程中处于超重状态 C .起跳以后在下降过程中处于失重状态 D .起跳以后在下降过程中重力消失了4.如图所示,甲、乙两人分别站在赤道和纬度为45°的地面上,则 ( )A .甲的线速度大B .乙的线速度大C .甲的角速度大D .乙的角速度大5.质量为0.5kg 的物体做变速直线运动,以水平向右为正方向,它的速度一时间图象如图所示,则该物体( )A .在前2s 内和2s ~6s 内的加速度相同B .在前2s 内向右运动,2s ~6s 内向左运动C .在4s ~6s 内和6s ~8s 内的速度变化量相同D .在8s 末离出发点的距离最远6.如图所示,质量相等的三个物块A 、B 、C ,A 与天花板之间、与B 之间用轻绳相连,与之间用轻弹簧相连,当系统静止时,C 恰好与水平地面接触,此时弹簧伸长量为。
新疆生产建设兵团第二中学高一数学上学期期末考试试题
兵团二中2018届2015-2016学年(第一学期)期末考试数学试卷(满分:150分 时间:120分钟)一、 选择题(每小题5分,共60分) 1.)613sin(π-的值是( ) A.23 B. 23- C. 21 D. 21- 2. 已知α是第二象限角,且53sin =α,则tan α=( ) A. 34- B. 34 C. 43 D. 43-3.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是( )A. 1B. 2C. 3D. 44.在△ABC 中,AB →=c r ,AC →=b r ,若点D 满足BD →=2DC →,则AD →=( ) A. 23 b r +13c r B. 53c r -23b r C. 23 b r -13c r D. 13 b r +23c r5.已知向量||2,||2,1a b a b ==⋅=r r r r,则=-b a ( )A. 6B. 2C. 22D. 3 6.已知为则且是锐角,αααα,//),31,(cos ),sin ,43(b a b a ==( ) A. ο15 B. ο45 C. ο75 D. οο7515或7.已知P 是边长为2的正ABC ∆的边BC 上的动点,则()AC AB AP +•( ) A.最大值为8 B.是定值6 C.最小值为6 D.是定值38.如图,在边长为2的菱形ABCD 中,∠BAD =60︒,E 为BC 的中点,则BD AE ⋅=( )A. 3-B. 1-C. 0D. 1 9.函数()sin()f x A x ωϕ=+(其中0A >,2πϕ<)的图象如图所示,为了得到()f x 图象,则只需将()sin 2g x x =的图象( )A.向右平移6π个长度单位 B.向左平移6π个长度单位 C.向右平移3π个长度单位 D.向左平移3π个长度单位10.已知()0,απ∈,1sin cos 5αα+=-,则tan α等于 ( )A. 34B. 34-C. 43±D. 43-11. 方程lg sin 0x x -=根的个数为( )A. 1B. 2C. 3D. 412.已知c b a ,,分别是ABC ∆中角C B A ,,的对边长,c b 和是关于x 的方程0cos 2592=+-A x x 的两个根()c b >,且()()C B A C B sin sin 518sin sin sin sinA sinC sinB =-+++,则ABC ∆的形状为( )A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形 二、填空题(每小题5分,共20分) 13.已知()12cos 5cos 32=⎪⎭⎫⎝⎛-++x x ππ 则=x tan 14. 已知c b a ,,分别是ABC ∆中角C B A ,,的对边长,若1,cos 2,3===c B a b A π,则=∆ABCS __15.定义在R 上的函数()f x 既是偶函数又是周期函数,若()f x 的最小正周期是π,且当0,2x π⎛⎫∈ ⎪⎝⎭时,()sin f x x =,则20153f π⎛⎫⎪⎝⎭= 16. 函数()sin cos()6f x x x π=+-,若30a -<<,则方程()f x a =在[0,4]π内的所有实数根之和为三、解答题 (第17题10分,其余每题12分,共70分)17.(本题10分)已知()()23sin()cos tan 2()sin(5)tan 2f παπααπαπααπ⎛⎫-+-- ⎪⎝⎭=+-- (1)化简()f α;(2)若α是第三象限角,且1cos 25πα⎛⎫+= ⎪⎝⎭,求()f α的值;(3)若20153απ=,求()f α的值.18.(本小题满分12分) 已知βα,都是锐角,,54sin =α135)cos(=+βα. (1)求α2tan 的值; (2)求βsin 的值.19. (本小题满分12分) 已知函数R x x x x f ∈++=,1)6sin(cos 2)(π.(1)求函数)x f (的最小正周期及在[]0,π上的单调递增区间; (2)若⎥⎦⎤⎢⎣⎡-∈3,6ππx ,求函数的值域.20. (本小题满分12分)已知A 、B 、C 是ABC ∆的三内角,向量)3,1(-=m ρ,)sin ,(cos A A n =ρ,且1=⋅n m ρρ. (1)求角A ; (2)若3sin cos 2sin 122-=-+BB B,求C tan .21. (本小题满分12分)已知c b a ,,分别是ABC ∆中角C B A ,,的对边长,已知3,2π==C c(1)若ABC ∆的面积等于3,求b a ,的值(2)若()A A B C 2sin 2sin sin =-+,求ABC ∆的面积22. (本小题满分12分)已知向量⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=2sin ,2cos ,23sin ,23cos x x b x x a ρρ,且,2,0⎥⎦⎤⎢⎣⎡∈πx ()b a b a x f ρρρρ+-⋅=λ2,(λ为常数)(1) 求b a ρρ⋅及b a ρρ+;(2)若()x f 的最小值是23-,求实数λ的值.高一数学期末考试答案1D 2A 3B 4A 5A 6D 7B 8B 9B 10B 11C 12C 132或2- 14 3 153 16283π 17(1)cos α- (2)265 (3)12- 18 (1)247-(2)166519 (1),T π=单增区间为0,6π⎡⎤⎢⎥⎣⎦和2,3ππ⎡⎤⎢⎥⎣⎦(2)值域51,2⎡⎤⎢⎥⎣⎦ 20 (1) 3A π=(2)83tan 11C +=21 (1)2a b == (2)23s =22 (1)cos2,2cos x x (2)12λ=。
新疆2020学年高一数学上学期期末联考试题
高一数学上学期期末联考试题(卷面分值:150分;考试时间:120分钟)注意事项:1.本试卷为问答分离式试卷,共6页,其中问卷4页,答卷2页。
答题前,请考生务必将自己的学校、姓名、座位号、准考证号等信息填写在答题卡上。
2.作答非选择题时须用黑色字迹0.5毫米签字笔书写在答题卡的指定位置上,作答选择题须用2B 铅笔将答题卡上对应题目的选项涂黑。
如需改动,请用橡皮擦干净后,再选涂其它答案,请保持答题卡卡面清洁,不折叠、不破损。
第Ⅰ卷(选择题 共60分)一、选择题(每小题5分,共60分) 1.已知集合{}0,1,2,{|12}A B x x ==-<<,则A B ⋂=( )A.{}0 B. {}1 C. {}0,1 D. {}0,1,22.函数()()lg 3f x x =-的定义域为( ). A. ()0,3 B. ()1,+∞ C. ()1,3 D. [)1,33.在平面直角坐标系xOy 中,角α的终边经过点()3,4P ,则sin 2πα⎛⎫-= ⎪⎝⎭( )A. 45-B. 35-C. 35D. 454.下列函数中,既是偶函数又在()0,+∞上单调递增的是( ) A. 3y x = B. ln y x = C. 21y x =D. cos y x = 5.已知ln0.3a =, 0.33b =, 0.20.3c =,则,,a b c 的大小关系是( ) A. b c a >> B. a b c >>C. b a c >>D. c b a >>6.已知ABC ∆的边BC 上有一点D 满足3BD DC =,则AD 可表示为( )A. 23AD AB AC =-+B. 3144AD AB AC =+ C. 1344AD AB AC =+ D. 2133AD AB AC =+7.如果扇形圆心角的弧度数为2,圆心角所对的弦长也为2,那么这个扇形的面积是( )A.21sin 1 B. 22sin 1 C. 21sin 2 D. 22sin 28.将函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象向右平移2π个单位长度,所得图象对应的函数( ) A. 在区间 [7,1212ππ] 上单调递减 B. 在区间[7,1212ππ]上单调递增C. 在区间[,63ππ-]上单调递减 D. 在区间[,63ππ-]上单调递增9.函数y = ln 62x x -+的零点为0x ,则0x ∈( )A. (1,2)B. (2,3)C. (3,4)D. (5,6)10.非零向量a , b 满足a =,且()()3a b a b -⊥-,则a 与b 夹角的大小为( )A.3πB.23πC. 6πD. 56π11.若函数()(),1{ 231,1x a x f x a x x >=-+≤是R 上的减函数,则实数a 的取值范围是( )A. 2,13⎛⎫⎪⎝⎭ B. 3,14⎡⎫⎪⎢⎣⎭C. 2,3⎛⎫+∞⎪⎝⎭ D. 23,34⎛⎤ ⎥⎝⎦12.已知函数())131f x nx =-+,则()()1lg3lg 3f f ⎛⎫+= ⎪⎝⎭A. -2B. 2C. -1D. 1第Ⅱ卷(非选择题 共90分)二、填空题(每题5分,共20分)13.已知2a =, 3b =, a , b 的夹角为60︒,则2a b -=__________.14.ABC ∆所在平面上有一点P ,满足PA PB PC AB ++=,则PAB ∆与ABC ∆的面积的比值为__________.15.函数()cos25cos 2f x x x π⎛⎫=+-⎪⎝⎭的最大值为_________ 16.对函数()2sin 126x f x π⎛⎫=+- ⎪⎝⎭,有下列说法: ①()f x 的周期为4π,值域为[]3,1-; ②()f x 的图象关于直线23x π=对称; ③()f x 的图象关于点,03π⎛⎫- ⎪⎝⎭对称; ④()f x 在2,3ππ⎛⎫- ⎪⎝⎭上单调递增;⑤将()f x 的图象向左平移3π个单位,即得到函数cos 12xy =-的图象. 其中正确的是__________.(填上所有正确说法的序号)三、解答题(共70分) 17.计算下列各式的值:(1)(223231338-⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭;(218.设两个非零向量a 与b 不共线.(1)若AB a b =+, ()28,3BC a b CD a b =+=-,求证: ,,A B D 三点共线; (2)试确定实数k ,使ka b +与a kb +共线.19.设函数()()sin f x A x ωϕ=+ ()0,0,A ωϕπ>><的部分图象如图所示.(1)求函数()f x 的解析式; (2)当,3x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的取值范围.20.已知函数()2141x f x =-+ (1)求函数()f x 的定义域,判断并证明()f x 的奇偶性;(2)判断并证明函数()f x 的单调性;(3)解不等式()()225230f m m f m m -+-+>21.已知函数()sin 4f x x b a π⎛⎫=+++ ⎪⎝⎭.(1)当1a =时,求()f x 的单调递增区间;(2)当0a <,且[]0x π∈,时, ()f x 的值域是[]34,,求a 、b 的值. 22.将函数sin y x =的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),再将所得的图象向左平移6π个单位长度后得到函数()f x 的图象.(1)写出函数()f x 的解析式;(2)求函数()f x 的单调递增区间与对称中心的坐标;(3)求实数a 和正整数n ,使得()()F x f x a =-在[]0,n π上恰有2017个零点.数学答案1-5:CDBBA 6-10:CABBC 11-12:DB1/3 15: 4 16: ①②④17【答案】(1)1;(2)3. (第1问4分,第2问6分) 18【答案】(1)略;(2)1k =±. (第1问第二问各6分) 19【答案】(1)()123sin 23f x x π⎛⎫=-⎪⎝⎭;(2)()332f x -≤≤-. 解析:(1)由图象知3A =,4433T πππ=-=,即4T π=. ------- 1分 又24ππω=,所以12ω=,因此()13sin 2f x x ϕ⎛⎫=+ ⎪⎝⎭. ---------3分又因为33f π⎛⎫=-⎪⎝⎭,所以()2Z 62k k ππϕπ+=-+∈,即()22Z 3k k πϕπ=-+∈. 又ϕπ<,所以23πϕ=-,即()123sin 23f x x π⎛⎫=-⎪⎝⎭. ————6分 (2)当,3x ππ⎡⎤∈-⎢⎥⎣⎦时, 125,2366x πππ⎡⎤-∈--⎢⎥⎣⎦. --------8分 所以1211sin 232x π⎛⎫-≤-≤-⎪⎝⎭,从而有()332f x -≤≤- —————12分 20.【答案】(1) ()f x 为奇函数;(2)()f x 为R 内增函数;(3)()1,-+∞. 解析:(1)解:的定义域为R为奇函数 -----------4分(2)证明:,,1212,44x x x x <∴<,,.————————8分(3)由,得 ,因为为奇函数,,因为为增函数, 22523m m m m ∴->-+-,解得1m >-,不等式的解集为.--------12分21. 【答案】(1) 32244k k ππππ⎡⎤-+⎢⎥⎣⎦,(k Z ∈);(2) 1a = 4b =. 解析:(1)当1a =时, ()14f x x b π⎛⎫=+++ ⎪⎝⎭,所以当22242k x k πππππ-≤+≤+,即32244k x k ππππ-≤≤+(k Z ∈)时, ()f x 是增函数,故()f x 的单调递增区间是32244k k ππππ⎡⎤-+⎢⎥⎣⎦,(k Z ∈).—4分(2)因为[]0x π∈,,所以5444x πππ≤+≤,所以sin 124x π⎛⎫-≤+≤ ⎪⎝⎭.又因为0a <sin 4x a π⎛⎫≤+≤- ⎪⎝⎭()a b f x b ++≤≤.而()f x 的值域是[]34,3a b ++=且4b =,解得1a = 4b =--12分22. 【答案】(1)()sin 23f x x π⎛⎫=+ ⎪⎝⎭;(2) 5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦; ,0,26k k Z ππ⎛⎫-∈ ⎪⎝⎭;(3)当1a =, 2017n =或1a =-, 2017n =,或a =1008n =时, ()()F x f x a =-在[]0,n π上恰有2017个零点.解析:(1)将函数sin y x =的图象上所有点的横坐标缩短到原来的12倍,所得图象对应的解析式为sin2y x =,再将所得的图象向左平移6π个单位长度,所得图象对应的解析式为y sin 2263x sin x ππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦。
2019-2020学年高一数学上学期期末考试联考试题(含解析)
2019-2020学年高一数学上学期期末考试联考试题(含解析)注意事项:1. 本试卷满分150分,考试时间120分钟.2. 答卷前,考生务必将自己的姓名、考生号等信息填写在答题卡指定位置上.3. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】D【解析】分析】根据并集定义求解.【详解】由题意.故选:D.【点睛】本题考查集合的并集运算,属于基础题.2.直线的倾斜角是( )A. B. C. D.【答案】B【解析】【分析】先求斜率,即倾斜角的正切值,易得.【详解】,可知,即,故选B【点睛】一般直线方程求倾斜角将直线转换为斜截式直线方程易得斜率,然后再根据直线的斜率等于倾斜角的正切值易得倾斜角,属于简单题目.3.下列函数中,与函数是同一函数的是()A. B. C. D.【答案】C【解析】【分析】判断函数解析式和定义域是否与函数相同,即可求解.【详解】选项A,,所以不正确;选项B,但定义域为,而函数的定义域为,所以不正确;选项C,,定义域为,所以正确;选项D,,但定义域为,所以不正确.故选:C.【点睛】本题考查对函数定义的理解,判断两个函数是否相同,不仅要解析式相同,而且定义域也要一样,属于基础题.4.函数的定义域是()A. B. C. D.【答案】D【解析】【分析】由对数真数大于0可得.【详解】由题意,,即定义域为.故选:D.【点睛】本题考查对数型复合函数的定义域,即求使对数式有意义的自变量的取值范围.5.若集合,集合,则集合与的关系是()A. B. C. D.【答案】B【解析】【分析】先确定集合中的元素,然后根据子集定义判断.【详解】由题意,,显然集合中的元素都属于,所以.故选:B.【点睛】本题考查集合的包含关系,根据子集定义判断.6.以点为圆心,且经过点圆的方程为( )A. B.C. D.【答案】B【解析】【分析】通过圆心设圆标准方程,代入点即可.【详解】设圆的方程为:,又经过点,所以,即,所以圆的方程:.故选B【点睛】此题考查圆的标准方程,记住标准方程的一般设法,代入数据即可求解,属于简单题目.7.已知集合,,则图中阴影部分所表示的集合是()A. B.C. D.【答案】B【解析】【分析】用集合的运算表示出阴影部分后可得结论.【详解】阴影部分为,由题意,故选:B.【点睛】本题考查集合的混合运算,考查Venn图,掌握集合运算的定义是解题关键.8.函数的图象是()A. B. C.D.【答案】A【解析】【分析】确定函数的奇偶性与单调性,用排除法确定正确结论.【详解】,是偶函数,可排除C,D,又时,是增函数,排除B.故选:A.【点睛】本题考查由解析式选函数图象问题,可由解析式研究函数的性质,如奇偶性,单调性,对称性等等,研究函数值的变化规律,特殊的函数值等等用排除法确定正确选项.9.经过圆上一点的切线方程是()A. B.C. D.【答案】D【解析】【分析】由过切点的半径与切线垂直求出切线斜率,可得切线方程.【详解】由题意圆心,,所以切线斜率为,切线方程,即.故选:D.【点睛】本题考查求圆的切线方程,关键是求出切线斜率.这可利用切线性质:切线与过切点的半径垂直.10.如图,两条直线与的图象可能是()A. B. C.D.【答案】A【解析】【分析】显然,考虑直线的斜率,同时分和进行讨论.【详解】直线过原点,直线的斜率为1,排除B、D,直线的横截是,若,A不合题意,C也不合题意,若,C不合题,A符合题意.故选:A.【点睛】本题考查直线方程,由方程选择可能图象,从直线的特征研究,直线的斜率,直线的纵截距和横截距等等.11.设偶函数的定义域为,当时是增函数,则,,的大小关系是()A. B.C. D.【答案】B【解析】【分析】由偶函数把函数值的自变量转化到同一单调区间上,然后由单调性得出结论.【详解】因为是偶函数,所以,又,且在上是增函数,所以,即.故选:B.【点睛】本题考查函数的奇偶性与单调性,属于基础题.12.曲线y=1+与直线y=k(x-2)+4有两个交点,则实数k的取值范围是( )A. (,+∞)B. (,]C. (0,)D. (,]【答案】D【解析】【分析】根据直线的点斜式方程可得直线经过点,曲线表示以圆心半径为2的圆的上半圆,由此作出图形,求出半圆切线的斜率和直线与半圆相交时斜率的最小值,数形结合可得结果.【详解】根据题意画出图形,如图所示:由题意可得:直线过A(2,4),B(-2,-1),又曲线y=1+图象为以(0,1)为圆心,2为半径的半圆,当直线与半圆相切,C为切点时,圆心到直线的距离d=r=2,由解得:k=;当直线过B点时,直线的斜率为=,则直线与半圆有两个不同的交点时,实数k的取值范围为(,],故答案为(,].故选D.【点睛】本题主要考查圆的方程与性质,直线与圆的位置关系,考查了数形结合思想的应用,属于中档题. 数形结合就是把抽象数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的.第Ⅱ卷二、填空题:本题共4小题,每小题5分,共20分.13.函数的零点是______.【答案】【解析】【分析】解方程得出.【详解】由得,所以函数的零点是.故答案为:.【点睛】本题考查函数零点概念,掌握零点定义是解题关键.14.以点为圆心,且与直线相切的圆的方程是______.【答案】【解析】【分析】求出圆心到切线的距离即为圆半径,可得方程.【详解】由题意圆的半径为,所求圆的方程为.故答案为:.【点睛】本题考查圆的方程,解题关键是求出圆的半径,根据是圆的切线的性质:圆心到切线的距离等于圆的半径.15.如果直线的纵截距为正,且与两坐标轴围成的三角形的面积为8,则______.【答案】8【解析】【分析】先求出横、纵截距,由纵截距为正得出的范围,由三角形面积可求得.【详解】直线与轴的交点是,与轴交点是,由题意,,又,所以(-8舍去).故答案为:8.【点睛】本题考查直线方程,由直线方程求出它与坐标轴的交点即可求解.16.已知圆的方程为,对于圆有下列判断:①圆关于直线对称;②圆关于直线对称;③圆的圆心在轴上,且过原点;④圆的圆心在轴上,且过原点.其中叙述正确的判断是______.(写出所有正确判断的序号)【答案】②【解析】【分析】配方求出圆心坐标和圆的半径,然后判断.【详解】圆的标准方程是,圆心为,半径为,显然原点坐标适合圆的方程,因此原点一定在圆上,圆心在直线上,因此圆关于直线对称,圆心不可能在直线和坐标轴上,否则,此时不合题意.故答案为:②.【点睛】本题考查圆的标准方程,利用配方法易求得圆心坐标和半径.要注意所有过圆心的直线都是圆的对称轴.三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.17.(1)已知幂函数的图象经过点,求函数的解析式;(2)计算:.【答案】(1);(2)33.【解析】【分析】(1)设,代入已知点坐标计算;(2)由幂的运算法则和对数运算法则计算.【详解】(1)设,因为的图象经过点,所以,,所以;(2).【点睛】本题考查幂函数的解析式,考查幂的运算法则和对数运算法则,属于基础题.18.已知两条直线:,:.(1)若,求的值;(2)若,求的值.【答案】(1)1;(2).【解析】【分析】(1)由求解,同时要检验是否重合;(2)由求解.【详解】(1)由于,所以,解得或,时两直线方程分别为,,两直线平行,时,两直线方程分别为,,即,两直线重合,不合题意,舍去.所以;(2)若,则,.【点睛】本题考查两直线平行与垂直的条件.在由两直线平行求参数时要进行检验,排除重合的情形.19.已知圆:,直线过点.(1)判断点与圆的位置关系;(2)当直线与圆相切时,求直线的方程;(3)当直线的倾斜角为时,求直线被圆所截得的弦长.【答案】(1)圆外;(2)和;(3).【解析】【分析】(1)把点坐标代入圆的方程可判断;(2)讨论斜率不存在的直线是否为切线,斜率存在时设切线方程为,由圆心到切线距离等于半径求出,得切线方程.(3)写出直线方程,求得圆心到直线的距离,由勾股定理计算弦长.【详解】(1)因为,所以点在圆外.(2)过与轴垂直的直线是圆的切线,过与轴不垂直的直线设方程为,即,,所以,解得,切线方程为,即.所以所求切线方程为和;(3)由题意直线方程为,即,圆心到直线的距离为,又所以弦长为.【点睛】本题考查点与圆的位置关系和直线与圆的位置关系.过圆上的点的圆的切线只有一条,过圆外一点的圆的切线有两条,可分类讨论,分斜率存在和不存在两类.在求直线与圆相交弦长时,一般用几何方法求解,即求出圆心到直线的距离,由勾股定理计算.20.已知直线:,点到直线的距离为.(1)若直线过原点,求直线的方程;(2)若直线不过原点,且两坐标轴上的截距相等,求直线的方程.【答案】(1)和;(2)和.【解析】【分析】(1)设直线方程为,由点到直线距离公式求得参数;(2)设直线方程为,再由点到直线距离公式求得参数;【详解】(1)直线过原点,设直线方程为,即,由题意,整理得,解得,所以直线方程为和;(2)直线不过原点且截距相等,设其方程为,即,由题意,解得或,所以直线方程为和.【点睛】本题考查求直线方程,掌握直线方程的各种形式是解题关键.21.已知圆:和圆:,点,分别在圆和圆上.(1)求圆的圆心坐标和半径;(2)求的最大值.【答案】(1),半径为;(2).【解析】【分析】(1)圆方程配方后化为标准方程,可得圆心坐标和半径;(2)求出圆心距,圆心距加上两个半径即为的最大值.【详解】(1)圆标准方程是,圆心为,半径为,(2)圆的标准方程是,圆心为,半径为.由(1),所以.【点睛】本题考查圆的一般方程,考查两圆位置关系问题.圆的一般方程配方后成标准方程可得圆心坐标和半径,两圆上的点间距离的最值可由圆心距离与半径运算求得.22.某支上市股票在30天内每股的交易价格(单位:元)与时间(单位:天)组成有序数对,点落在如图所示的两条线段上.该股票在30天内(包括30天)的日交易量(单位:万股)与时间(单位:天)的部分数据如下表所示:第天4(万股)36(Ⅰ)根据所提供的图象,写出该种股票每股的交易价格与时间所满足的函数解析式;(Ⅱ)根据表中数据确定日交易量与时间的一次函数解析式;(Ⅲ)若用(万元)表示该股票日交易额,请写出关于时间的函数解析式,并求出在这30天中,第几天的日交易额最大,最大值是多少?【答案】(Ⅰ);(Ⅱ);(Ⅲ)第15天交易额最大,最大值为125万元.【解析】【分析】(Ⅰ)由一次函数解析式可得与时间所满足的函数解析式;(Ⅱ)设,代入已知数据可得;(Ⅲ)由可得,再根据分段函数性质分段求得最大值,然后比较即得.【详解】(Ⅰ)当时,设,则,解得,当时,设,则,解得所以.(Ⅱ)设,由题意,解得,所以.(Ⅲ)由(Ⅰ)(Ⅱ)得即,当时,,时,,当时,,它在上是减函数,所以.综上,第15天交易额最大,最大值为125万元.【点睛】本题考查函数模型应用,解题时只要根据所给函数模型求出函数解析式,然后由解析式求得最大值.只是要注意分段函数必须分段计算最大值,然后比较可得.2019-2020学年高一数学上学期期末考试联考试题(含解析)注意事项:1. 本试卷满分150分,考试时间120分钟.2. 答卷前,考生务必将自己的姓名、考生号等信息填写在答题卡指定位置上.3. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】D【解析】分析】根据并集定义求解.【详解】由题意.故选:D.【点睛】本题考查集合的并集运算,属于基础题.2.直线的倾斜角是( )A. B. C. D.【答案】B【解析】【分析】先求斜率,即倾斜角的正切值,易得.【详解】,可知,即,故选B【点睛】一般直线方程求倾斜角将直线转换为斜截式直线方程易得斜率,然后再根据直线的斜率等于倾斜角的正切值易得倾斜角,属于简单题目.3.下列函数中,与函数是同一函数的是()A. B. C. D.【答案】C【解析】【分析】判断函数解析式和定义域是否与函数相同,即可求解.【详解】选项A,,所以不正确;选项B,但定义域为,而函数的定义域为,所以不正确;选项C,,定义域为,所以正确;选项D,,但定义域为,所以不正确.故选:C.【点睛】本题考查对函数定义的理解,判断两个函数是否相同,不仅要解析式相同,而且定义域也要一样,属于基础题.4.函数的定义域是()A. B. C. D.【答案】D【解析】【分析】由对数真数大于0可得.【详解】由题意,,即定义域为.故选:D.【点睛】本题考查对数型复合函数的定义域,即求使对数式有意义的自变量的取值范围.5.若集合,集合,则集合与的关系是()A. B. C. D.【答案】B【解析】【分析】先确定集合中的元素,然后根据子集定义判断.【详解】由题意,,显然集合中的元素都属于,所以.故选:B.【点睛】本题考查集合的包含关系,根据子集定义判断.6.以点为圆心,且经过点圆的方程为( )A. B.C. D.【答案】B【解析】【分析】通过圆心设圆标准方程,代入点即可.【详解】设圆的方程为:,又经过点,所以,即,所以圆的方程:.故选B【点睛】此题考查圆的标准方程,记住标准方程的一般设法,代入数据即可求解,属于简单题目.7.已知集合,,则图中阴影部分所表示的集合是()A. B.C. D.【答案】B【解析】【分析】用集合的运算表示出阴影部分后可得结论.【详解】阴影部分为,由题意,故选:B.【点睛】本题考查集合的混合运算,考查Venn图,掌握集合运算的定义是解题关键.8.函数的图象是()A. B. C.D.【答案】A【解析】【分析】确定函数的奇偶性与单调性,用排除法确定正确结论.【详解】,是偶函数,可排除C,D,又时,是增函数,排除B.故选:A.【点睛】本题考查由解析式选函数图象问题,可由解析式研究函数的性质,如奇偶性,单调性,对称性等等,研究函数值的变化规律,特殊的函数值等等用排除法确定正确选项.9.经过圆上一点的切线方程是()A. B.C. D.【答案】D【解析】【分析】由过切点的半径与切线垂直求出切线斜率,可得切线方程.【详解】由题意圆心,,所以切线斜率为,切线方程,即.故选:D.【点睛】本题考查求圆的切线方程,关键是求出切线斜率.这可利用切线性质:切线与过切点的半径垂直.10.如图,两条直线与的图象可能是()A. B. C.D.【答案】A【解析】【分析】显然,考虑直线的斜率,同时分和进行讨论.【详解】直线过原点,直线的斜率为1,排除B、D,直线的横截是,若,A不合题意,C也不合题意,若,C不合题,A符合题意.故选:A.【点睛】本题考查直线方程,由方程选择可能图象,从直线的特征研究,直线的斜率,直线的纵截距和横截距等等.11.设偶函数的定义域为,当时是增函数,则,,的大小关系是()A. B.C. D.【答案】B【解析】【分析】由偶函数把函数值的自变量转化到同一单调区间上,然后由单调性得出结论.【详解】因为是偶函数,所以,又,且在上是增函数,所以,即.故选:B.【点睛】本题考查函数的奇偶性与单调性,属于基础题.12.曲线y=1+与直线y=k(x-2)+4有两个交点,则实数k的取值范围是( )A. (,+∞)B. (,]C. (0,)D. (,]【答案】D【解析】【分析】根据直线的点斜式方程可得直线经过点,曲线表示以圆心半径为2的圆的上半圆,由此作出图形,求出半圆切线的斜率和直线与半圆相交时斜率的最小值,数形结合可得结果.【详解】根据题意画出图形,如图所示:由题意可得:直线过A(2,4),B(-2,-1),又曲线y=1+图象为以(0,1)为圆心,2为半径的半圆,当直线与半圆相切,C为切点时,圆心到直线的距离d=r=2,由解得:k=;当直线过B点时,直线的斜率为=,则直线与半圆有两个不同的交点时,实数k的取值范围为(,],故答案为(,].故选D.【点睛】本题主要考查圆的方程与性质,直线与圆的位置关系,考查了数形结合思想的应用,属于中档题. 数形结合就是把抽象数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的.第Ⅱ卷二、填空题:本题共4小题,每小题5分,共20分.13.函数的零点是______.【答案】【解析】【分析】解方程得出.【详解】由得,所以函数的零点是.故答案为:.【点睛】本题考查函数零点概念,掌握零点定义是解题关键.14.以点为圆心,且与直线相切的圆的方程是______.【答案】【解析】【分析】求出圆心到切线的距离即为圆半径,可得方程.【详解】由题意圆的半径为,所求圆的方程为.故答案为:.【点睛】本题考查圆的方程,解题关键是求出圆的半径,根据是圆的切线的性质:圆心到切线的距离等于圆的半径.15.如果直线的纵截距为正,且与两坐标轴围成的三角形的面积为8,则______.【答案】8【解析】【分析】先求出横、纵截距,由纵截距为正得出的范围,由三角形面积可求得.【详解】直线与轴的交点是,与轴交点是,由题意,,又,所以(-8舍去).故答案为:8.【点睛】本题考查直线方程,由直线方程求出它与坐标轴的交点即可求解.16.已知圆的方程为,对于圆有下列判断:①圆关于直线对称;②圆关于直线对称;③圆的圆心在轴上,且过原点;④圆的圆心在轴上,且过原点.其中叙述正确的判断是______.(写出所有正确判断的序号)【答案】②【解析】【分析】配方求出圆心坐标和圆的半径,然后判断.【详解】圆的标准方程是,圆心为,半径为,显然原点坐标适合圆的方程,因此原点一定在圆上,圆心在直线上,因此圆关于直线对称,圆心不可能在直线和坐标轴上,否则,此时不合题意.故答案为:②.【点睛】本题考查圆的标准方程,利用配方法易求得圆心坐标和半径.要注意所有过圆心的直线都是圆的对称轴.三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.17.(1)已知幂函数的图象经过点,求函数的解析式;(2)计算:.【答案】(1);(2)33.【解析】【分析】(1)设,代入已知点坐标计算;(2)由幂的运算法则和对数运算法则计算.【详解】(1)设,因为的图象经过点,所以,,所以;(2).【点睛】本题考查幂函数的解析式,考查幂的运算法则和对数运算法则,属于基础题.18.已知两条直线:,:.(1)若,求的值;(2)若,求的值.【答案】(1)1;(2).【解析】【分析】(1)由求解,同时要检验是否重合;(2)由求解.【详解】(1)由于,所以,解得或,时两直线方程分别为,,两直线平行,时,两直线方程分别为,,即,两直线重合,不合题意,舍去.所以;(2)若,则,.【点睛】本题考查两直线平行与垂直的条件.在由两直线平行求参数时要进行检验,排除重合的情形.19.已知圆:,直线过点.(1)判断点与圆的位置关系;(2)当直线与圆相切时,求直线的方程;(3)当直线的倾斜角为时,求直线被圆所截得的弦长.【答案】(1)圆外;(2)和;(3).【解析】【分析】(1)把点坐标代入圆的方程可判断;(2)讨论斜率不存在的直线是否为切线,斜率存在时设切线方程为,由圆心到切线距离等于半径求出,得切线方程.(3)写出直线方程,求得圆心到直线的距离,由勾股定理计算弦长.【详解】(1)因为,所以点在圆外.(2)过与轴垂直的直线是圆的切线,过与轴不垂直的直线设方程为,即,,所以,解得,切线方程为,即.所以所求切线方程为和;(3)由题意直线方程为,即,圆心到直线的距离为,又所以弦长为.【点睛】本题考查点与圆的位置关系和直线与圆的位置关系.过圆上的点的圆的切线只有一条,过圆外一点的圆的切线有两条,可分类讨论,分斜率存在和不存在两类.在求直线与圆相交弦长时,一般用几何方法求解,即求出圆心到直线的距离,由勾股定理计算.20.已知直线:,点到直线的距离为.(1)若直线过原点,求直线的方程;(2)若直线不过原点,且两坐标轴上的截距相等,求直线的方程.【答案】(1)和;(2)和.【解析】【分析】(1)设直线方程为,由点到直线距离公式求得参数;(2)设直线方程为,再由点到直线距离公式求得参数;【详解】(1)直线过原点,设直线方程为,即,由题意,整理得,解得,所以直线方程为和;(2)直线不过原点且截距相等,设其方程为,即,由题意,解得或,所以直线方程为和.【点睛】本题考查求直线方程,掌握直线方程的各种形式是解题关键.21.已知圆:和圆:,点,分别在圆和圆上.(1)求圆的圆心坐标和半径;(2)求的最大值.【答案】(1),半径为;(2).【解析】【分析】(1)圆方程配方后化为标准方程,可得圆心坐标和半径;(2)求出圆心距,圆心距加上两个半径即为的最大值.【详解】(1)圆标准方程是,圆心为,半径为,(2)圆的标准方程是,圆心为,半径为.由(1),所以.【点睛】本题考查圆的一般方程,考查两圆位置关系问题.圆的一般方程配方后成标准方程可得圆心坐标和半径,两圆上的点间距离的最值可由圆心距离与半径运算求得.22.某支上市股票在30天内每股的交易价格(单位:元)与时间(单位:天)组成有序数对,点落在如图所示的两条线段上.该股票在30天内(包括30天)的日交易量(单位:万股)与时间(单位:天)的部分数据如下表所示:第天4(万36股)(Ⅰ)根据所提供的图象,写出该种股票每股的交易价格与时间所满足的函数解析式;(Ⅱ)根据表中数据确定日交易量与时间的一次函数解析式;(Ⅲ)若用(万元)表示该股票日交易额,请写出关于时间的函数解析式,并求出在这30天中,第几天的日交易额最大,最大值是多少?【答案】(Ⅰ);(Ⅱ);(Ⅲ)第15天交易额最大,最大值为125万元.【解析】【分析】(Ⅰ)由一次函数解析式可得与时间所满足的函数解析式;(Ⅱ)设,代入已知数据可得;(Ⅲ)由可得,再根据分段函数性质分段求得最大值,然后比较即得.【详解】(Ⅰ)当时,设,则,解得,当时,设,则,解得所以.(Ⅱ)设,由题意,解得,所以.(Ⅲ)由(Ⅰ)(Ⅱ)得即,当时,,时,,当时,,它在上是减函数,所以.综上,第15天交易额最大,最大值为125万元.【点睛】本题考查函数模型应用,解题时只要根据所给函数模型求出函数解析式,然后由解析式求得最大值.只是要注意分段函数必须分段计算最大值,然后比较可得.。
2019-2020学年高一数学上学期期末考试试题(含解析)_52
2019-2020学年高一数学上学期期末考试试题(含解析)本试卷共4页,22题,满分150分,考试时间120分钟.注意事项:1.答题前,考生先将自己的姓名、考号填写在答题卡与试卷上,并将考号条形码贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.答在试题卷、草稿纸上无效.3.非选择题用0.5毫米黑色墨水签字笔将答案直接答在答题卡上对应的答题区域内.答在试题卷,草稿纸上无效.4.考生必须保持答题卡的整洁.考试结束后,只交答题卡.一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则( )A. B. C. D.【答案】B【解析】【分析】先由可求出,再结合即可求得.【详解】解:因为,所以,又,所以,故选:B.【点睛】本题考查了集合的交、并、补的混合运算,属基础题.2.已知点O为四边形ABCD所在平面内一点,且向量,满足等式,则四边形ABCD是( ) A. 等腰梯形 B. 正方形 C. 菱形 D. 平行四边形【答案】D【解析】【分析】由向量的减法运算可得,再结合相等向量的定义即可得解.【详解】解:由,得,即,故,得四边形ABCD是平行四边形,故选:D.【点睛】本题考查了向量的减法运算及相等向量,属基础题.3.将函数的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图象,则函数的最小正周期是( )A. B. C. D.【答案】C【解析】【分析】先由三角函数图像的平移变换求出,再结合三角函数的周期的求法求解即可.【详解】解:将函数的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图象,则,即函数的最小正周期是,故选:C.【点睛】本题考查了函数图像的平移变换,重点考查了三角函数的周期,属基础题.4.函数零点所在的区间是( )A. B. C. D.【答案】A【解析】【分析】根据函数单调递增和,得到答案.【详解】是单调递增函数,且,,所以的零点所在的区间为故选:【点睛】本题考查了零点所在的区间,意在考查学生对于零点存在定理的应用.5.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来探究函数的图象特征,如函数的图象大致是( )A. B. C.D.【答案】A【解析】【分析】由,可得是偶函数,且,,再判断即可得解.【详解】解:由,有,即是偶函数,则的图像关于轴对称,结合特殊值,,即可判断选项A符合题意,故选:A.【点睛】本题考查了函数的奇偶性及函数图像的性质,重点考查了数形结合的数学思想方法,属基础题.6.若函数是幂函数,且在上单调递增,则( )A. B. C. 2 D. 4【答案】D【解析】【分析】由幂函数的定义及幂函数的单调性可得,再求值即可得解.【详解】解:因为函数是幂函数,所以,解得或.又因为在上单调递增,所以,所以,即,从而,故选:D.【点睛】本题考查了幂函数的定义及幂函数的单调性,重点考查了求值问题,属基础题.7.设,,,则a,b,c的大小关系为( )A. B. C. D.【答案】B【解析】【分析】结合指数幂及对数值的求法可得,得解.【详解】解:因为,,,所以.故选:B.【点睛】本题考查了求指数幂及对数值,属基础题.8.已知函数是定义在上的奇函数,则( )A. B. C. 2 D. 5【答案】B【解析】【分析】由函数,则其定义域关于原点对称且,再求解即可.【详解】解:由函数是定义在上的奇函数,则其定义域关于原点对称且,得,所以,即,则,故选:B.【点睛】本题考查了函数的奇偶性,重点考查了求值问题,属基础题.9.在平面坐标系中,,,,是单位圆上的四段弧(如图),点在其中一段上,角以轴的非负半轴为始边,为终边,若,且,则所在的圆弧是( )A. B.C. D.【答案】D【解析】【分析】假设点在指定象限,得到的符号,验证,是否成立即可【详解】若点在第一象限,则,,则,与题意不符,故排除A,B;若点在第二象限,则,,则,与题意不符,故排除C;故选:D【点睛】本题考查象限角的三角函数值的符号的应用,考查排除法处理选择题10.函数在R上单调递增,则a的取值范围是( )A. B. C. D.【答案】D【解析】【分析】由函数在R上单调递增,可得不等式组,求解即可得解.【详解】解:由函数在R上单调递增,则,得,故选:D.【点睛】本题考查了分段函数的单调性,重点考查了函数的性质,属基础题.11.在平行四边形中,点E,F分别在边,上,满足,,连接交于点M,若,则()A. B. 1 C. D.【答案】C【解析】【分析】由,,将用向量表示,再由,把向量用向量表示,根据E,F,M 三点共线的关系式特征,即可求得结论.【详解】因为,所以.因为,所以.因为E,F,M三点共线,所以,所以.故选:C.【点睛】本题考查向量的线性表示和向量基本定理,考查三点共线的向量结构特征,属于中档题.12.已知函数,若在区间内没有零点,则的取值范围是( )A. B.C. D.【答案】B【解析】【分析】由函数在区间内没有零点,可得,再结合求解即可.【详解】解:因为,,所以.因为在区间内没有零点,所以.解得.因为,所以,因为.所以或.当时;当时,,故选:B.【点睛】本题考查了函数的零点问题,重点考查了三角函数图像的性质,属中档题.二、填空题:本大题共4小题,每小题5分,共20分.13.已知函数则______.【答案】5【解析】【分析】先将代入解析式可得,再求即可【详解】由题,,所以故答案为:5【点睛】本题考查分段函数求值,考查指数、对数的运算14.已知角的终边经过点,则____________.【答案】【解析】【分析】结合三角函数的定义求解即可.【详解】解:因为,则,所以,故答案为:.【点睛】本题考查了三角函数的定义,属基础题.15.已知为第三象限角,则____________.【答案】【解析】【分析】由同角三角函数的关系可将原式变形为,再结合三角函数象限角的符号求解即可.【详解】解:,又为第三象限角,则,故原式,故答案为:.【点睛】本题考查了三角函数象限角的符号问题,重点考查了同角三角函数的关系,属基础题.16.定义在R上的偶函数满足,且当时,,则的零点个数为____________.【答案】10【解析】【分析】由函数的零点个数与函数图像的交点个数的关系,函数的零点个数等价于函数的图像与函数的图像的交点个数,再结合函数的性质作图观察即可得解.【详解】解:由于定义在R上的偶函数满足,所以的图象关于直线对称,画出时,部分的图象如图,在同一坐标系中画出的图象,由图可知:当时,有5个交点,又和都是偶函数,所以在上也是有5个交点,所以的零点个数是10,故答案为:10.【点睛】本题考查了函数的性质,重点考查了函数的零点个数与函数图像的交点个数的相互转化,属中档题.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.已知集合或,.(1)当时,求;(2)若,求实数的取值范围.【答案】(1)或;(2).【解析】【分析】(1)计算,或,再计算得到答案.(2)根据得到,故或,计算得到答案.【详解】(1)因为,所以,即,当时,或,所以或.(2)因为,所以, ,则或,即或,所以实数的取值范围为.【点睛】本题考查了并集的计算,根据包含关系求参数,意在考查学生对于集合知识的综合应用.18.已知角的终边经过点,求下列各式的值.(1);(2).【答案】(1)-2 (2)【解析】【分析】(1)由三角函数的定义可得,再结合同角三角函数的商数关系即可得解.(2)由同角三角函数的平方关系及诱导公式化简即可得解.【详解】解:(1)由角的终边经过点,可知,则.(2)由已知有,所以.【点睛】本题考查了三角函数的定义及同角三角函数的关系,重点考查了运算能力,属基础题.19.已知函数(且).(1)判断并证明奇偶性;(2)求使的的取值范围.【答案】(1)奇函数,证明见解析(2)当时,;当时,【解析】分析】(1)先判断函数的定义域关于原点对称,再判断,得解.(2)由对数函数的单调性求解对数不等式即可.【详解】解:(1)由,得,解得,即函数的定义域为,显然关于原点对称.又,所以是定义域上的奇函数.(2)由,得,即,当时,不等式等价于,解得,当时,不等式等价于,解得,综上,当时, 的取值范围为;当时, 的取值范围为.【点睛】本题考查了函数的奇偶性,重点考查了对数不等式的解法,属中档题.20.节约资源和保护环境是中国的基本国策.某化工企业,积极响应国家要求,探索改良工艺,使排放的废气中含有的污染物数量逐渐减少.已知改良工艺前所排放的废气中含有的污染物数量为,首次改良后所排放的废气中含有的污染物数量为.设改良工艺前所排放的废气中含有的污染物数量为,首次改良工艺后所排放的废气中含有的污染物数量为,则第n次改良后所排放的废气中的污染物数量,可由函数模型给出,其中n是指改良工艺的次数.(1)试求改良后所排放的废气中含有的污染物数量的函数模型;(2)依据国家环保要求,企业所排放的废气中含有的污染物数量不能超过,试问至少进行多少次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.(参考数据:取)【答案】(1)(2)6次【解析】【分析】(1)先阅读题意,再解方程求出函数模型对应的解析式即可;(2)结合题意解指数不等式即可.【详解】解:(1)由题意得,,所以当时,,即,解得,所以,故改良后所排放的废气中含有的污染物数量的函数模型为.(2)由题意可得,,整理得,,即,两边同时取常用对数,得,整理得,将代入,得,又因为,所以.综上,至少进行6次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.【点睛】本题考查了函数的应用,重点考查了阅读能力及解决问题的能力,属中档题.21.已知函数的最大值是2,函数的图象的一条对称轴是,一个对称中心是.(1)求的解析式;(2)已知B是锐角,且,求.【答案】(1)(2)【解析】【分析】(1)由三角函数图像的性质及函数的最值列方程,分别求出即可;(2)由B是锐角,结合求解即可.【详解】解:(1)设的最小正周期为T,∵图象的一条对称轴是,一个对称中心是,,,,,,∴.图象的一条对称轴是,,.,.又∵的最大值是2,∴,从而.(2)∵,∴,又,∴,∴.∴.【点睛】本题考查了三角函数解析式的求法,重点考查了三角函数求角问题,属中档题.22.已知函数,其中为自然对数的底数.(1)证明:在上单调递增;(2)函数,如果总存在,对任意都成立,求实数的取值范围.【答案】(1)证明见解析;(2)【解析】【分析】(1)用增函数定义证明;(2)分别求出和的最大值,由的最大值不小于的最大值可得的范围.【详解】(1)设,则,∵,∴,,∴,即,∴在上单调递增;(2)总存在,对任意都成立,即,的最大值为,是偶函数,在是增函数,∴当时,,∴,整理得,,∵,∴,即,∴,∴.即取值范围是.【点睛】本题考查函数的单调性,考查不等式恒成立问题.单调性的证明只能按照定义的要求进行证明.而不等式恒成立问题要注意问题的转化,本题中问题转化为,如果把量词改为:对任意,总存在,使得成立,则等价于,如果把量词改为:对任意,任意,使得恒成立,则等价于,如果把量词改为:存在,存在,使得成立,则等价于.(的范围均由题设确定).2019-2020学年高一数学上学期期末考试试题(含解析)本试卷共4页,22题,满分150分,考试时间120分钟.注意事项:1.答题前,考生先将自己的姓名、考号填写在答题卡与试卷上,并将考号条形码贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.答在试题卷、草稿纸上无效.3.非选择题用0.5毫米黑色墨水签字笔将答案直接答在答题卡上对应的答题区域内.答在试题卷,草稿纸上无效.4.考生必须保持答题卡的整洁.考试结束后,只交答题卡.一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则( )A. B. C. D.【答案】B【解析】【分析】先由可求出,再结合即可求得.【详解】解:因为,所以,又,所以,故选:B.【点睛】本题考查了集合的交、并、补的混合运算,属基础题.2.已知点O为四边形ABCD所在平面内一点,且向量,满足等式,则四边形ABCD是( )A. 等腰梯形B. 正方形C. 菱形D. 平行四边形【答案】D【解析】【分析】由向量的减法运算可得,再结合相等向量的定义即可得解.【详解】解:由,得,即,故,得四边形ABCD是平行四边形,故选:D.【点睛】本题考查了向量的减法运算及相等向量,属基础题.3.将函数的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图象,则函数的最小正周期是( )A. B. C. D.【答案】C【解析】【分析】先由三角函数图像的平移变换求出,再结合三角函数的周期的求法求解即可.【详解】解:将函数的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图象,则,即函数的最小正周期是,故选:C.【点睛】本题考查了函数图像的平移变换,重点考查了三角函数的周期,属基础题.4.函数零点所在的区间是( )A. B. C. D.【答案】A【解析】【分析】根据函数单调递增和,得到答案.【详解】是单调递增函数,且,,所以的零点所在的区间为故选:【点睛】本题考查了零点所在的区间,意在考查学生对于零点存在定理的应用.5.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来探究函数的图象特征,如函数的图象大致是( )A. B. C.D.【答案】A【解析】【分析】由,可得是偶函数,且,,再判断即可得解.【详解】解:由,有,即是偶函数,则的图像关于轴对称,结合特殊值,,即可判断选项A符合题意,故选:A.【点睛】本题考查了函数的奇偶性及函数图像的性质,重点考查了数形结合的数学思想方法,属基础题.6.若函数是幂函数,且在上单调递增,则( )A. B. C. 2 D. 4【答案】D【解析】【分析】由幂函数的定义及幂函数的单调性可得,再求值即可得解.【详解】解:因为函数是幂函数,所以,解得或.又因为在上单调递增,所以,所以,即,从而,故选:D.【点睛】本题考查了幂函数的定义及幂函数的单调性,重点考查了求值问题,属基础题.7.设,,,则a,b,c的大小关系为( )A. B. C. D.【答案】B【解析】【分析】结合指数幂及对数值的求法可得,得解.【详解】解:因为,,,所以.故选:B.【点睛】本题考查了求指数幂及对数值,属基础题.8.已知函数是定义在上的奇函数,则( )A. B. C. 2 D. 5【答案】B【解析】【分析】由函数,则其定义域关于原点对称且,再求解即可.【详解】解:由函数是定义在上的奇函数,则其定义域关于原点对称且,得,所以,即,则,故选:B.【点睛】本题考查了函数的奇偶性,重点考查了求值问题,属基础题.9.在平面坐标系中,,,,是单位圆上的四段弧(如图),点在其中一段上,角以轴的非负半轴为始边,为终边,若,且,则所在的圆弧是( )A. B.C. D.【答案】D【解析】【分析】假设点在指定象限,得到的符号,验证,是否成立即可【详解】若点在第一象限,则,,则,与题意不符,故排除A,B;若点在第二象限,则,,则,与题意不符,故排除C;故选:D【点睛】本题考查象限角的三角函数值的符号的应用,考查排除法处理选择题10.函数在R上单调递增,则a的取值范围是( )A. B. C. D.【答案】D【解析】【分析】由函数在R上单调递增,可得不等式组,求解即可得解.【详解】解:由函数在R上单调递增,则,得,故选:D.【点睛】本题考查了分段函数的单调性,重点考查了函数的性质,属基础题.11.在平行四边形中,点E,F分别在边,上,满足,,连接交于点M,若,则()A. B. 1 C. D.【答案】C【解析】【分析】由,,将用向量表示,再由,把向量用向量表示,根据E,F,M三点共线的关系式特征,即可求得结论.【详解】因为,所以.因为,所以.因为E,F,M三点共线,所以,所以.故选:C.【点睛】本题考查向量的线性表示和向量基本定理,考查三点共线的向量结构特征,属于中档题.12.已知函数,若在区间内没有零点,则的取值范围是( )A. B.C. D.【答案】B【解析】【分析】由函数在区间内没有零点,可得,再结合求解即可.【详解】解:因为,,所以.因为在区间内没有零点,所以.解得.因为,所以,因为.所以或.当时;当时,,故选:B.【点睛】本题考查了函数的零点问题,重点考查了三角函数图像的性质,属中档题.二、填空题:本大题共4小题,每小题5分,共20分.13.已知函数则______.【答案】5【解析】【分析】先将代入解析式可得,再求即可【详解】由题,,所以故答案为:5【点睛】本题考查分段函数求值,考查指数、对数的运算14.已知角的终边经过点,则____________.【答案】【解析】【分析】结合三角函数的定义求解即可.【详解】解:因为,则,所以,故答案为:.【点睛】本题考查了三角函数的定义,属基础题.15.已知为第三象限角,则____________.【答案】【解析】【分析】由同角三角函数的关系可将原式变形为,再结合三角函数象限角的符号求解即可.【详解】解:,又为第三象限角,则,故原式,故答案为:.【点睛】本题考查了三角函数象限角的符号问题,重点考查了同角三角函数的关系,属基础题.16.定义在R上的偶函数满足,且当时,,则的零点个数为____________.【答案】10【解析】【分析】由函数的零点个数与函数图像的交点个数的关系,函数的零点个数等价于函数的图像与函数的图像的交点个数,再结合函数的性质作图观察即可得解.【详解】解:由于定义在R上的偶函数满足,所以的图象关于直线对称,画出时,部分的图象如图,在同一坐标系中画出的图象,由图可知:当时,有5个交点,又和都是偶函数,所以在上也是有5个交点,所以的零点个数是10,故答案为:10.【点睛】本题考查了函数的性质,重点考查了函数的零点个数与函数图像的交点个数的相互转化,属中档题.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.已知集合或,.(1)当时,求;(2)若,求实数的取值范围.【答案】(1)或;(2).【解析】【分析】(1)计算,或,再计算得到答案.(2)根据得到,故或,计算得到答案.【详解】(1)因为,所以,即,当时,或,所以或.(2)因为,所以, ,则或,即或,所以实数的取值范围为.【点睛】本题考查了并集的计算,根据包含关系求参数,意在考查学生对于集合知识的综合应用.18.已知角的终边经过点,求下列各式的值.(1);(2).【答案】(1)-2 (2)【解析】【分析】(1)由三角函数的定义可得,再结合同角三角函数的商数关系即可得解.(2)由同角三角函数的平方关系及诱导公式化简即可得解.【详解】解:(1)由角的终边经过点,可知,则.(2)由已知有,所以.【点睛】本题考查了三角函数的定义及同角三角函数的关系,重点考查了运算能力,属基础题.19.已知函数(且).(1)判断并证明奇偶性;(2)求使的的取值范围.【答案】(1)奇函数,证明见解析(2)当时,;当时,【解析】分析】(1)先判断函数的定义域关于原点对称,再判断,得解.(2)由对数函数的单调性求解对数不等式即可.【详解】解:(1)由,得,解得,即函数的定义域为,显然关于原点对称.又,所以是定义域上的奇函数.(2)由,得,即,当时,不等式等价于,解得,当时,不等式等价于,解得,综上,当时, 的取值范围为;当时, 的取值范围为.【点睛】本题考查了函数的奇偶性,重点考查了对数不等式的解法,属中档题.20.节约资源和保护环境是中国的基本国策.某化工企业,积极响应国家要求,探索改良工艺,使排放的废气中含有的污染物数量逐渐减少.已知改良工艺前所排放的废气中含有的污染物数量为,首次改良后所排放的废气中含有的污染物数量为.设改良工艺前所排放的废气中含有的污染物数量为,首次改良工艺后所排放的废气中含有的污染物数量为,则第n次改良后所排放的废气中的污染物数量,可由函数模型给出,其中n是指改良工艺的次数.(1)试求改良后所排放的废气中含有的污染物数量的函数模型;(2)依据国家环保要求,企业所排放的废气中含有的污染物数量不能超过,试问至少进行多少次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.(参考数据:取)【答案】(1)(2)6次【解析】【分析】(1)先阅读题意,再解方程求出函数模型对应的解析式即可;(2)结合题意解指数不等式即可.【详解】解:(1)由题意得,,所以当时,,即,解得,所以,故改良后所排放的废气中含有的污染物数量的函数模型为.(2)由题意可得,,整理得,,即,两边同时取常用对数,得,整理得,将代入,得,又因为,所以.综上,至少进行6次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.【点睛】本题考查了函数的应用,重点考查了阅读能力及解决问题的能力,属中档题.21.已知函数的最大值是2,函数的图象的一条对称轴是,一个对称中心是.(1)求的解析式;(2)已知B是锐角,且,求.【答案】(1)(2)【解析】【分析】(1)由三角函数图像的性质及函数的最值列方程,分别求出即可;(2)由B是锐角,结合求解即可.【详解】解:(1)设的最小正周期为T,∵图象的一条对称轴是,一个对称中心是,,,,,,∴.图象的一条对称轴是,,.,.又∵的最大值是2,∴,从而.(2)∵,∴,又,∴,∴.∴.【点睛】本题考查了三角函数解析式的求法,重点考查了三角函数求角问题,属中档题. 22.已知函数,其中为自然对数的底数.(1)证明:在上单调递增;(2)函数,如果总存在,对任意都成立,求实数的取值范围.【答案】(1)证明见解析;(2)【解析】【分析】(1)用增函数定义证明;(2)分别求出和的最大值,由的最大值不小于的最大值可得的范围.【详解】(1)设,则,∵,∴,,∴,即,∴在上单调递增;(2)总存在,对任意都成立,即,的最大值为,是偶函数,在是增函数,∴当时,,∴,整理得,,∵,∴,即,∴,∴.即取值范围是.【点睛】本题考查函数的单调性,考查不等式恒成立问题.单调性的证明只能按照定义的要求进行证明.而不等式恒成立问题要注意问题的转化,本题中问题转化为,如果把量词改为:对任意,总存在,使得成立,则等价于,如果把量词改为:对任意,任意,使得恒成立,则等价于,如果把量词改为:存在,存在,使得成立,则等价于.(的范围均由题设确定).。
(9份试卷汇总)2019-2020学年乌鲁木齐市数学高一(上)期末经典模拟试题
2019-2020学年高一数学上学期期末试卷一、选择题1.已知数列{}n a 的前n 项和为n S ,若22a =,13n n S S +=对任意的正整数n 均成立,则5a =( ) A.162B.54C.32D.162.已知ABC ∆中,2a =,3b =,60B =o ,那么角A 等于( )A.135oB.45oC.135o 或45oD.90o3.如图所示,在正方体1111ABCD A B C D -中,侧面对角线1AB ,1BC 上分别有一点E ,F ,且11B E C F =,则直线EF 与平面ABCD 所成的角的大小为( )A.0°B.60°C.45°D.30°4.已知m ,n 是两条不同的直线,,,αβγ是三个不同的平面,则下列命题正确的是( ) A .若m α⊥,m n ⊥,则//n αB .若////m n m α,,则//n αC .若n αβ=I ,//m α,//m β,则//m nD .若αγ⊥,βγ⊥,则//αβ5.设函数()1x2,x 12f x 1log x,x 1-≤⎧=->⎨⎩,则满足()f x 2≤的x 的取值范围是( )A .[]1,2-B .[]0,2C .[)1,∞+D .[)0,∞+ 6.已知函数2()(1cos 2)cos f x x x =-,x ∈R ,则()f x 是( )A.最小正周期为2π的奇函数 B.最小正周期为2π的偶函数 C.最小正周期为π的奇函数D.最小正周期为π的偶函数7.A ,B 两名同学在5次数学考试中的成绩统计如下面的茎叶图所示,若A ,B 两人的平均成绩分别是A x ,B x ,观察茎叶图,下列结论正确的是( )A .AB x x <,B 比A 成绩稳定 B .A B x x >,B 比A 成绩稳定C .A B x x <,A 比B 成绩稳定D .A B x x >,A 比B 成绩稳定8.已知a ,b 为非零向量,则“a·b>0”是“a 与b 的夹角为锐角”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9.如图,三棱锥P ABC -中,PB ABC ⊥平面,BC CA ⊥,且22PB BC CA ===,则三棱锥P ABC -的外接球表面积为A.3πB.9πC.12πD.36π10.为了得到函数y=sin 的图象,只需把函数y=sinx 的图象上所有的点A .向左平行移动个单位长度B .向右平行移动个单位长度C .向上平行移动个单位长度D .向下平行移动个单位长度 11.已知向量,,若与平行,则实数x 的值是 A .B .0C .1D .212.函数值域为R ,则实数a 的取值范围是( )A .B .C .D .二、填空题13.将函数sin 23cos 2y x x =-的图象向左平移6π个单位长度,得到函数()y g x =的图象,则5()6g π__________. 14.函数2()log 1f x x =-________. 15.已知0a >,0b >,182+1a b +=,则2a b +的最小值为__________. 16.函数()()f x Asin x ωϕ=+的部分图象如图,其中0A >, 0ω>,02πϕ<<.则 ω=____;tan ϕ= _____.三、解答题17.已知数列{}n a 满足:123(1)(41)236n n n n a a a na +-+++⋯+=,*n N ∈(1)求1a ,2a 的值; (2)求数列{}n a 的通项公式; (3)设11n n n b a a +=⋅,数列{}n b 的前n 项和n T ,求证:12n T <18.已知()f x 是定义在R 上且满足()()2f x f x +=的函数. (1)如果0≤x<2时,有()f x x =,求()3f 的值;(2)如果0≤x≤2时,有()()21f x f x =-,若﹣2≤a≤0,求()f a 的取值范围;(3)如果()()g x x f x =+在[0,2]上的值域为[3,8],求()g x 在[﹣2,4]的值域. 19.已知函数22()56()f x x ax a a R =-+∈. (1)解关于x 的不等式()0f x <;(2)若关于x 的不等式()2f x a ≥的解集为{|41}x x x ≥≤或,求实数a 的值.20.已知某观光海域AB 段的长度为3百公里,一超级快艇在AB 段航行,经过多次试验得到其每小时航行费用Q (单位:万元)与速度v (单位:百公里/小时)(0≤v≤3)的以下数据:v0 1 2 3 Q0.71.63.3cv ,Q =0.5v+a ,Q =klog a v +b .(1)试从中确定最符合实际的函数模型,并求出相应的函数解析式;(2)该超级快艇应以多大速度航行才能使AB 段的航行费用最少?并求出最少航行费用.21.已知向量1(cos ,)2a x =-r ,3,cos 2)b x x =r ,x ∈R ,设函数()f x a b =⋅r r .(1)求()f x 的最小正周期; (2)求()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值. 22.如图,在四棱锥P ABCD -中,AB CD ∥,且90BAP CDP ==︒∠∠.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积. 【参考答案】*** 一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B B A C D B A B B A AB13.3-14.[2,+∞) 15.8 16.34三、解答题17.(1) 11a =;23a = ;(2) 21n a n =- (3)见证明; 18.(1)1;(2)[]0,1;(3)[]1,10 19.(1)①当0a =时,不等式的解集为∅;②当0a >时,由32a a >,则不等式的解集为(2,3)a a ; ③当0a <时,由32a a <,则不等式的解集为(3,2)a a ; (2)1a =20.(1)选择函数模型32Q av bv cv =++,函数解析式为320.10.20.8(03)Q v v v v =-+≤≤;(2)以1百公里/小时航行时可使AB 段的航行费用最少,且最少航行费用为2.1万元. 21.(1)T π=(2)0x =时,()f x 取最小值12-;3x π=时,()f x 取最大值1. 22.(1)证明略;(2)623+.2019-2020学年高一数学上学期期末试卷一、选择题1.化简22cos 2cos4--的结果是( ) A.sin 2B.cos2-C.3cos 2-D.3sin 22.如图,正方体ABCD-A 1B 1C 1D 1的棱长为2,E 是棱AB 的中点,F 是侧面AA 1D 1D 内一点,若EF ∥平面BB 1D 1D ,则EF 长度的范围为()A .[2,3]B .[2,5]C .[2,6]D .[2,7]3.已知圆C 的半径为2,在圆内随机取一点P ,并以P 为中点作弦AB ,则弦长23AB ≤的概率为 A .14B .34C .232- D .344.执行如图所示的程序框图,若输人的n 值为2019,则S =A .1-B .12-C .12D .15.若[0,]x π∈,则函数()cos 3sin f x x x =-的单调递增区间为( )A.5,6ππ⎡⎤⎢⎥⎣⎦ B.2π,π3轾犏犏臌C.50,6π⎡⎤⎢⎥⎣⎦ D.20,3π⎡⎤⎢⎥⎣⎦6.设()2f x x bx c =-+满足()03f =,且对任意x R ∈,有()()2f x f x =-,则( )A .()()xxf bf c ≤ B .()()xxf bf c <C .()()xxf b f c ≥D .()xf b 与()xf c 不可比较7.已知是定义在R 上的单调函数,满足,且,若,则a 与b 的关系是 A .B .C .D .8.已知函数()22||2019f x x x =-+.若()2log 5a f =-,()0.82b f =,52c f ⎛⎫= ⎪⎝⎭,则,,a b c 的大小关系为( ) A .a b c <<B .c b a <<C .b a c <<D .b c a <<9.已知函数()f x 满足下列条件:①定义域为[)1,+∞;②当12x <≤时()4sin()2f x x π=;③()2(2)f x f x =. 若关于x 的方程()0f x kx k -+=恰有3个实数解,则实数k 的取值范围是A .11[,)143B .11(,]143C .1(,2]3D .1[,2)310.已知向量a,b r r 满足||1=r a ,1⋅=-r ra b ,则(2)⋅-=r r r a a bA .4B .3C .2D .011.三棱锥P ABC -中,,,PA PB PC 互相垂直,1PA PB ==,M 是线段BC 上一动点,若直线AM 与平面PBC 所成角的正切的最大值是6,则三棱锥P ABC -的外接球的表面积是( ) A .2πB .4πC .8πD .16π12.如图所示,在斜三棱柱111ABC A B C -中,90BAC ∠=︒, 1BC AC ⊥,则点1C 在底面ABC 上的射影H 必在( )A .直线AB 上 B .直线BC 上 C .直线AC 上D .ABC ∆内部二、填空题 13.已知实数,执行如图所示的流程图,则输出的x 不小于55的概率为________.14.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm ),则这个几何体的体积是 cm 3.15.在ABC △中,已知6a =3b =,3B π=,则角C =__________.16.在ABC ∆中,150ABC ∠=o ,D 是线段AC 上的点,30DBC ∠=o ,若ABC ∆3,当BD 取到最大值时,AC =___________.三、解答题17.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入(i x 单位:千元)与月储蓄(i y 单位:千元)的数据资料,算得10180i i x ==∑,10120i i y ==∑,101184i i i x y ==∑,1021720.i i x ==∑附:线性回归方程ˆˆˆy bx a =+中,1221ni i i n i i x y nxy b x nx ==-=-∑∑$,a y b x =-$$,其中x ,y 为样本平均值.()1求家庭的月储蓄y 对月收入x 的线性回归方程ˆˆˆybx a =+; ()2判断变量x 与y 之间是正相关还是负相关;()3若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.18.已知函数2()log f x x =,(0,)x ∈+∞. (1)解不等式:2()3()4f x f x +≥;(2)若函数2()()3()F x f x f x m =+-在区间[1,2]上存在零点,求实数m 的取值范围;(3)若函数()f x 的反函数为()G x ,且()()()G x g x h x =+,其中()g x 为奇函数,()h x 为偶函数,试比较(1)g -与1()h -的大小.19.函数2()234f x x mx m =+++. (Ⅰ)若()f x 有且只有一个零点,求m 的值;(Ⅱ)若()f x 有两个零点且均比1-大,求m 的取值范围.20.已知二次函数2()21g x ax ax b =-++(0a >)在区间[]2,3上有最大值4,最小值1.(1)求函数()g x 的解析式; (2)设()()g x f x x =,若33(log )log 0f x k x -⋅≥在11,273x ⎡⎤∈⎢⎥⎣⎦时恒成立,求实数k 的取值范围. 21.某校高二年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X 表示其中男生的人数. (1)请列出X 的分布列;(2)根据你所列的分布列求选出的4人中至少有3名男生的概率.22.对于任意n ∈*N ,若数列{}n x 满足11n n x x +->,则称这个数列为“K 数列”. (1)已知数列:1,q ,2q 是“K 数列”,求实数q 的取值范围;(2)已知等差数列{}n a 的公差2d =,前n 项和为n S ,数列{}n S 是“K 数列”,求首项1a 的取值范围;(3)设数列{}n a 的前n 项和为n S ,11a =,且11232n n S S a +-=,n ∈*N . 设1(1)nn n n c a a λ+=+-,是否存在实数λ,使得数列{}n c 为“K 数列”. 若存在,求实数λ的取值范围;若不存在,请说明理由. 【参考答案】*** 一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D C B B B A A C D B BA13. 14. 15.512π 16.27三、解答题17.(1)$y 0.30.4x =-;(2)略;(3)1.7(千元) 18.(1){|2x x ≥或10}16x <≤;(2)[]0,4;(3)()()11g h -<-。
2019-2020学年高一数学上学期期末考试试题(含解析)_62
2019-2020学年高一数学上学期期末考试试题(含解析)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则( )A. B. C. D.【答案】C【解析】【分析】根据交集的定义求解即可.【详解】因为集合,,故.故选:C【点睛】本题主要考查了交集的运算,属于基础题.2.命题“”的否定是( )A. B.C. D.【答案】C【解析】【分析】根据全称命题的否定为特称命题判定即可.【详解】命题“”的否定是“”.故选:C【点睛】本题主要考查了全称命题的否定,属于基础题.3.函数的定义域为( )A. B.C. D.【答案】D【解析】【分析】根据对数中真数大于0求解即可.【详解】由题,,即,解得或.故选:D【点睛】本题主要考查了对数函数的定义域,属于基础题.4.为了得到函数的图象,可以将函数的图象()A. 向左平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向右平移个单位长度【答案】D【解析】,据此可知,为了得到函数的图象,可以将函数的图象向右平移个单位长度.本题选择D选项.5.方程的解所在的区间是( )A. B. C. D.【答案】C【解析】【分析】根据零点存在性定理判定即可.【详解】设,,根据零点存在性定理可知方程的解所在的区间是.故选:C【点睛】本题主要考查了根据零点存在性定理判断零点所在的区间,属于基础题.6.函数的图象大致为( )A. B.C. D.【答案】A【解析】【分析】判断函数的奇偶性与当时的正负判定即可.【详解】因为.故为奇函数,排除CD.又当时, ,排除B.故选:A【点睛】本题主要考查了根据函数的解析式判断函数图像的问题,需要判断奇偶性与函数的正负解决,属于基础题.7.已知,,则( )A. B. C. D.【答案】A【解析】【分析】判断各式与0,1的大小即可.【详解】,,。
2019-2020学年高一数学上学期期末考试试题(含解析)_41
2019-2020学年高一数学上学期期末考试试题(含解析)考生注意事项:1.本试卷分第Ⅰ卷(选择題)和第Ⅱ卷(非选择题)两部分.全卷满分150分,考试时间120分钟.2.答题前,考生先将自己的姓名、考号在答题卷指定位置填写清楚并将条形码粘贴在指定区域.3.考生作答时请将答案答在答题卷上.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卷上对应题目的答案标号涂黑;第Ⅱ卷请用0.5毫米的黑色墨水签字笔在答题卷上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.考试结束时,务必将答题卡交回.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题四个选项中,只有一项是符合要求的.1.已知全集,集合,集合,则=()A. B. C. D.【答案】B【分析】根据交集、补集的定义计算可得.【详解】解: ,故选:【点睛】本题考查集合的运算,属于基础题.2.已知,=(,6),且,则()A. B. C. D.【答案】A【解析】【分析】根据向量平行有公式,代入数据得到答案.【详解】,=(,6),且则即故答案选A【点睛】本题考查了向量平行的计算,属于简单题.3.设函数,则的值为()A. 0B. 1C. 2D. 3【解析】【分析】直接根据分段函数解析式计算可得.【详解】解:故选:【点睛】本题考查分段函数求函数值,考查指数以及对数的运算,属于基础题.4.已知角的终边过点,,则m的值为()A. B. C. D.【答案】B【解析】【分析】由条件利用任意角的三角函数的定义,求出的值.【详解】解:由题意可得,,,,解得,故选:.【点睛】本题主要考查任意角的三角函数的定义,属于基础题.5.函数的图象大致为A. B. C.D.【答案】D【解析】【分析】根据题中表达式得到当时,分母趋向于0,分子趋向于4,整个分式趋向于,故排除BC,当时,分母趋向于0,但小于0,分子趋向于4,整个分式趋向于,故排除A.进而得到选项.【详解】根据题干中的表达式得到x不能等于2,故图中必有渐近线,x=2或-2,当时,分母趋向于0,分子趋向于4,整个分式趋向于,故排除BC,当时,分母趋向于0,但是小于0,分子趋向于4,整个分式趋向于,故排除A.故答案为D.【点睛】这个题目考查了已知函数的表达式选择函数的图像,这类题目通常是从表达式入手,通过表达式得到函数的定义域,值域,奇偶性,等来排除部分选项,或者寻找函数的极限值,也可以排除选项.6.设函数与函数的图象交点坐标为,则所在的大致区间是()A. B. C. D.【答案】B【解析】【分析】构造函数,判断函数的零点在哪个区间即可.【详解】解:根据题意,设,则,即函数存在零点,即函数与函数图象的交点横坐标所在的区间为.故选:.【点睛】本题考查了根据根的存在性定理判断函数零点的问题,属于基础题.7.设,,,则( )A. B. C. D.【答案】A【解析】试题分析:先和0比较,得到c最小;再与1比较,得到b最大.故选A.考点:指数函数、对数函数的单调性的应用,指数式、对数式比较大小.8.已知,那么=()A. B. C. D.【答案】B【解析】【分析】首先根据同角三角函的基本关系求出与,再由诱导公式计算可得.【详解】解:故选:【点睛】本题考查同角三角函数的基本关系及诱导公式,属于基础题.9.在中,点是线段上任意一点,是线段的中点,若存在实数和,使得,则A. B.C. D.【答案】D【解析】【分析】由题意结合中点的性质和平面向量基本定理首先表示出向量,,然后结合平面向量的运算法则即可求得最终结果.【详解】如图所示,因为点D在线段BC上,所以存在,使得,因为M是线段AD的中点,所以:,又,所以,,所以.本题选择D选项.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.10.若函数的定义域、值域都是则()A. B. C. D.【答案】A【解析】结合二次函数的性质,函数的对称轴为,结合题意和二次函数的性质可得:,即:,整理可得:,解方程有:或(舍去),综上可得本题选择A选项11.函数,将其图象上每个点的纵坐标保持不变,横坐标扩大为原来的2倍,然后再将它的图形沿x轴向左平移个单位,得到函数的图象,则函数的解析式是()A. B.C. D.【答案】C【解析】【分析】此类题的做法一般是通过反变求出原来函数的解析式,由题意可由曲线与的图形沿轴向右平移个单位,再纵坐标不变,横坐标缩小为原来的一半即可得到的解析式,选出正确选项【详解】解:由题意曲线与的图象沿轴向右平移个单位,再纵坐标不变,横坐标缩小为原来的一半即可得到的图形,故的图形沿轴向右平移个单位所得图形对应的函数解析式为,然后再将所得的曲线上的点的纵坐标保持不变,横坐标缩小到原来的一半,所得的图形对应的解析式为故选:.【点睛】本题考查有函数的图象平移确定函数的解析式,本题解题的关键是对于变量的系数不是的情况,平移时要注意平移的大小是针对于系数是来说的,属于中档题.12.黎曼函数(Riemannfunction)是一个特殊的函数,由德国数学家黎曼发现并提出.黎曼函数定义在区间上,其基本定义是:,若函数是定义在R上的奇函数,且,当时,,则()A. B. C. D.【答案】A【解析】【分析】由题意可知,,从而可求得函数的周期,然后结合已知区间上的函数解析式可求.【详解】解:由题意可知,,故即函数的周期,当时,,则,.故选:.【点睛】本题主要考查了利用分段函数求解函数值,解题的关键是把所要求解函数的变量利用周期转化到已知区间上,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分.13.函数的定义域为____________.【答案】【解析】【分析】由对数式的真数大于0,二次根式的被开方数大于等于0,分母不为零,联立不等式组求解的取值集合得答案.【详解】解:解得且,即故答案为:【点睛】本题考查了函数的定义域及其求法,考查了不等式组的解法,属于基础题.14.已知向量是平面的一组基底,若,则在基底下的坐标为,那么在基底下的坐标为_____________.【答案】【解析】【分析】设,再根据得到方程组,解得.【详解】解:设,解得故,则在基底下的坐标为.故答案为:【点睛】本题考查向量的基底表示,向量相等的充要条件,属于基础题.15.已知为第三象限角且,则的值为______________.【答案】【解析】【分析】根据同角三角函数的基本关系求出,,再用二倍角公式及平方关系化简求值.【详解】解:且为第三象限角解得(舍去)或故答案为:【点睛】本题考查同角三角函数的基本关系,二倍角公式的应用,属于中档题.16.函数的零点个数为_______________.【答案】【解析】【分析】函数的零点个数,令,,转化函数与的交点个数,在同一平面直角坐标系中画出函数图象即可解答.【详解】解:函数的零点,即方程的解,令,也就是函数与的交点,在同一平面直角坐标系中画出与的图象如下所示,由图可知与有个交点,即有个零点.故答案为:【点睛】本题考查函数的零点,体现了转化思想,数形结合思想的应用,属于中档题.三、解答题:本大题共6小题,满分70分.解答应写出必要的文字说明、证明过程和演算步骤.17.(1)计算(2)化简【答案】(1);(2)【解析】【分析】(1)根据对数的运算性质及指数幂的运算性质计算可得;(2)利用诱导公式及同角三角函数的基本关系化简可得.【详解】解:(1)(2)【点睛】本题考查指数对数的运算,诱导公式及同角三角函数的基本关系的应用,属于基础题.18.已知函数的部分图象如图所示.(1)求函数的解析式;(2)求函数在区间上的值域.【答案】(1);(2).【解析】【分析】(1)由图可知即可求出,再根据函数的最小正周期求出,又函数过点,代入即可求出从而得到函数解析式;(2)由的取值范围求出的范围,再由余弦函数的性质解答.【详解】解:(1)由图可知,解得解得又函数过点即,解得,,(2)【点睛】本题考查根据函数图象求函数解析式及余弦函数的性质的应用,属于基础题.19.已知集合,函数在区间内有解时,实数a的取值范围记为集合B.(1)若,求集合B及;(2)若,求实数m的取值范围.【答案】(1),;(2)【解析】【分析】(1)根据函数在区间内有解时求出参数的取值范围即得到集合,当时带入求出集合,再根据并集的定义计算;(2)可判断集合不为空集,再由集合包含关系得到不等式组解得.【详解】解:函数在区间内有解时,即在区间内有解,因为函数在区间上单调递增,且,则即(1)当时,,(2)因为所以若,解得当时,不符题意,舍去故【点睛】本题考查集合的运算,根据集合的包含关系求参数的取值范围,一元二次不等式的解法,属于基础题.20.已知,,与的夹角是.(1)求;(2)当与的夹角为钝角时,求实数k的取值范围.【答案】(1);(2)【解析】【分析】(1)首先求出,再根据代入计算可得;(2)依题意可得且,得到不等式解得;【详解】(1),,与的夹角是.(2)与的夹角为钝角且即,即解得解得综上可得【点睛】本题考查向量的数量积的计算,向量夹角求参数的取值范围,属于中档题.21.某地为践行绿水青山就是金山银山的理念,大力开展植树造林.假设一片森林原来的面积为a亩,计划每年种植一些树苗,且森林面积的年增长率相同,当面积是原来的2倍时,所用时间是10年.(1)求森林面积的年增长率;(2)到今年为止,森林面积为原来的倍,则该地已经植树造林多少年?(3)为使森林面积至少达到6a亩至少需要植树造林多少年?(参考数据:,)【答案】(1);(2)年;(3)至少还需要年.【解析】【分析】(1)设增长率为,依题意可得解得;(2)设已经植树造林年,则解得;(3)设至少还需要年,则解得.【详解】解:(1)设增长率为,依题意可得所以即,解得(2)设已经植树造林年,则即解得,故已经植树造林年.(3)设至少还需要年,则即即解得故至少还需要年【点睛】本题考查指数型函数模型应用,指数对数的运算,属于基础题.22.已知定义在R上的偶函数和奇函数满足:.(1)求,并证明:;(2)当时,不等式恒成立,求实数a 的取值范围.【答案】(1)证明见解析;(2)【解析】【分析】(1)首先根据奇偶性构造方程组求出与的解析式,再计算可得;(2)由题意可得,令,则对上恒成立,参变分离再利用基本不等式求出参数的取值范围.【详解】解:(1)因为偶函数和奇函数满足:①.则即②①加②得,从而可得(2)即令,且函数在定义域上单调递增,,对上恒成立,即对上恒成立,令,则当且仅当即时取等号即【点睛】本题考查函数的奇偶性的应用,不等式恒成立问题,基本不等式的应用,属于难题.2019-2020学年高一数学上学期期末考试试题(含解析)考生注意事项:1.本试卷分第Ⅰ卷(选择題)和第Ⅱ卷(非选择题)两部分.全卷满分150分,考试时间120分钟.2.答题前,考生先将自己的姓名、考号在答题卷指定位置填写清楚并将条形码粘贴在指定区域.3.考生作答时请将答案答在答题卷上.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卷上对应题目的答案标号涂黑;第Ⅱ卷请用0.5毫米的黑色墨水签字笔在答题卷上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.考试结束时,务必将答题卡交回.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题四个选项中,只有一项是符合要求的.1.已知全集,集合,集合,则=()A. B. C. D.【答案】B【解析】【分析】根据交集、补集的定义计算可得.【详解】解: ,故选:【点睛】本题考查集合的运算,属于基础题.2.已知,=(,6),且,则()A. B. C. D.【答案】A【解析】【分析】根据向量平行有公式,代入数据得到答案.【详解】,=(,6),且则即故答案选A【点睛】本题考查了向量平行的计算,属于简单题.3.设函数,则的值为()A. 0B. 1C. 2D. 3【答案】C【解析】【分析】直接根据分段函数解析式计算可得.【详解】解:故选:【点睛】本题考查分段函数求函数值,考查指数以及对数的运算,属于基础题.4.已知角的终边过点,,则m的值为()A. B. C. D.【答案】B【解析】【分析】由条件利用任意角的三角函数的定义,求出的值.【详解】解:由题意可得,,,,解得,故选:.【点睛】本题主要考查任意角的三角函数的定义,属于基础题.5.函数的图象大致为A. B. C.D.【答案】D【解析】【分析】根据题中表达式得到当时,分母趋向于0,分子趋向于4,整个分式趋向于,故排除BC,当时,分母趋向于0,但小于0,分子趋向于4,整个分式趋向于,故排除A.进而得到选项.【详解】根据题干中的表达式得到x不能等于2,故图中必有渐近线,x=2或-2,当时,分母趋向于0,分子趋向于4,整个分式趋向于,故排除BC,当时,分母趋向于0,但是小于0,分子趋向于4,整个分式趋向于,故排除A.故答案为D.【点睛】这个题目考查了已知函数的表达式选择函数的图像,这类题目通常是从表达式入手,通过表达式得到函数的定义域,值域,奇偶性,等来排除部分选项,或者寻找函数的极限值,也可以排除选项.6.设函数与函数的图象交点坐标为,则所在的大致区间是()A. B. C. D.【答案】B【解析】【分析】构造函数,判断函数的零点在哪个区间即可.【详解】解:根据题意,设,则,即函数存在零点,即函数与函数图象的交点横坐标所在的区间为.故选:.【点睛】本题考查了根据根的存在性定理判断函数零点的问题,属于基础题.7.设,,,则( )A. B. C. D.【答案】A【解析】试题分析:先和0比较,得到c最小;再与1比较,得到b最大.故选A.考点:指数函数、对数函数的单调性的应用,指数式、对数式比较大小.8.已知,那么=()A. B. C. D.【答案】B【解析】【分析】首先根据同角三角函的基本关系求出与,再由诱导公式计算可得.【详解】解:故选:【点睛】本题考查同角三角函数的基本关系及诱导公式,属于基础题.9.在中,点是线段上任意一点,是线段的中点,若存在实数和,使得,则A. B.C. D.【答案】D【解析】【分析】由题意结合中点的性质和平面向量基本定理首先表示出向量,,然后结合平面向量的运算法则即可求得最终结果.【详解】如图所示,因为点D在线段BC上,所以存在,使得,因为M是线段AD的中点,所以:,又,所以,,所以.本题选择D选项.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.10.若函数的定义域、值域都是则()A. B. C. D.【答案】A【解析】结合二次函数的性质,函数的对称轴为,结合题意和二次函数的性质可得:,即:,整理可得:,解方程有:或(舍去),综上可得本题选择A选项11.函数,将其图象上每个点的纵坐标保持不变,横坐标扩大为原来的2倍,然后再将它的图形沿x轴向左平移个单位,得到函数的图象,则函数的解析式是()A. B.C. D.【答案】C【解析】【分析】此类题的做法一般是通过反变求出原来函数的解析式,由题意可由曲线与的图形沿轴向右平移个单位,再纵坐标不变,横坐标缩小为原来的一半即可得到的解析式,选出正确选项【详解】解:由题意曲线与的图象沿轴向右平移个单位,再纵坐标不变,横坐标缩小为原来的一半即可得到的图形,故的图形沿轴向右平移个单位所得图形对应的函数解析式为,然后再将所得的曲线上的点的纵坐标保持不变,横坐标缩小到原来的一半,所得的图形对应的解析式为故选:.【点睛】本题考查有函数的图象平移确定函数的解析式,本题解题的关键是对于变量的系数不是的情况,平移时要注意平移的大小是针对于系数是来说的,属于中档题.12.黎曼函数(Riemannfunction)是一个特殊的函数,由德国数学家黎曼发现并提出.黎曼函数定义在区间上,其基本定义是:,若函数是定义在R上的奇函数,且,当时,,则()A. B. C. D.【答案】A【解析】【分析】由题意可知,,从而可求得函数的周期,然后结合已知区间上的函数解析式可求.【详解】解:由题意可知,,故即函数的周期,当时,,则,.故选:.【点睛】本题主要考查了利用分段函数求解函数值,解题的关键是把所要求解函数的变量利用周期转化到已知区间上,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分.13.函数的定义域为____________.【答案】【解析】【分析】由对数式的真数大于0,二次根式的被开方数大于等于0,分母不为零,联立不等式组求解的取值集合得答案.【详解】解:解得且,即故答案为:【点睛】本题考查了函数的定义域及其求法,考查了不等式组的解法,属于基础题.14.已知向量是平面的一组基底,若,则在基底下的坐标为,那么在基底下的坐标为_____________.【答案】【解析】【分析】设,再根据得到方程组,解得.【详解】解:设,解得故,则在基底下的坐标为.故答案为:【点睛】本题考查向量的基底表示,向量相等的充要条件,属于基础题.15.已知为第三象限角且,则的值为______________.【答案】【解析】【分析】根据同角三角函数的基本关系求出,,再用二倍角公式及平方关系化简求值.【详解】解:且为第三象限角解得(舍去)或故答案为:【点睛】本题考查同角三角函数的基本关系,二倍角公式的应用,属于中档题.16.函数的零点个数为_______________.【答案】【解析】【分析】函数的零点个数,令,,转化函数与的交点个数,在同一平面直角坐标系中画出函数图象即可解答.【详解】解:函数的零点,即方程的解,令,也就是函数与的交点,在同一平面直角坐标系中画出与的图象如下所示,由图可知与有个交点,即有个零点.故答案为:【点睛】本题考查函数的零点,体现了转化思想,数形结合思想的应用,属于中档题.三、解答题:本大题共6小题,满分70分.解答应写出必要的文字说明、证明过程和演算步骤.17.(1)计算(2)化简【答案】(1);(2)【解析】【分析】(1)根据对数的运算性质及指数幂的运算性质计算可得;(2)利用诱导公式及同角三角函数的基本关系化简可得.【详解】解:(1)(2)【点睛】本题考查指数对数的运算,诱导公式及同角三角函数的基本关系的应用,属于基础题.18.已知函数的部分图象如图所示.(1)求函数的解析式;(2)求函数在区间上的值域.【答案】(1);(2).【解析】【分析】(1)由图可知即可求出,再根据函数的最小正周期求出,又函数过点,代入即可求出从而得到函数解析式;(2)由的取值范围求出的范围,再由余弦函数的性质解答.【详解】解:(1)由图可知,解得解得又函数过点即,解得,,(2)【点睛】本题考查根据函数图象求函数解析式及余弦函数的性质的应用,属于基础题.19.已知集合,函数在区间内有解时,实数a 的取值范围记为集合B.(1)若,求集合B及;(2)若,求实数m的取值范围.【答案】(1),;(2)【解析】【分析】(1)根据函数在区间内有解时求出参数的取值范围即得到集合,当时带入求出集合,再根据并集的定义计算;(2)可判断集合不为空集,再由集合包含关系得到不等式组解得.【详解】解:函数在区间内有解时,即在区间内有解,因为函数在区间上单调递增,且,则即(1)当时,,(2)因为所以若,解得当时,不符题意,舍去故【点睛】本题考查集合的运算,根据集合的包含关系求参数的取值范围,一元二次不等式的解法,属于基础题.20.已知,,与的夹角是.(1)求;(2)当与的夹角为钝角时,求实数k的取值范围.【答案】(1);(2)【解析】【分析】(1)首先求出,再根据代入计算可得;(2)依题意可得且,得到不等式解得;【详解】(1),,与的夹角是.(2)与的夹角为钝角且即,即解得解得综上可得【点睛】本题考查向量的数量积的计算,向量夹角求参数的取值范围,属于中档题.21.某地为践行绿水青山就是金山银山的理念,大力开展植树造林.假设一片森林原来的面积为a亩,计划每年种植一些树苗,且森林面积的年增长率相同,当面积是原来的2倍时,所用时间是10年.(1)求森林面积的年增长率;(2)到今年为止,森林面积为原来的倍,则该地已经植树造林多少年?(3)为使森林面积至少达到6a亩至少需要植树造林多少年?(参考数据:,)【答案】(1);(2)年;(3)至少还需要年.【解析】【分析】(1)设增长率为,依题意可得解得;(2)设已经植树造林年,则解得;(3)设至少还需要年,则解得.【详解】解:(1)设增长率为,依题意可得所以即,解得(2)设已经植树造林年,则即解得,故已经植树造林年.(3)设至少还需要年,则即即解得故至少还需要年【点睛】本题考查指数型函数模型应用,指数对数的运算,属于基础题.22.已知定义在R上的偶函数和奇函数满足:.(1)求,并证明:;(2)当时,不等式恒成立,求实数a的取值范围.【答案】(1)证明见解析;(2)【解析】【分析】(1)首先根据奇偶性构造方程组求出与的解析式,再计算可得;(2)由题意可得,令,则对上恒成立,参变分离再利用基本不等式求出参数的取值范围.【详解】解:(1)因为偶函数和奇函数满足:①.则即②①加②得,从而可得(2)即令,且函数在定义域上单调递增,,对上恒成立,即对上恒成立,令,则当且仅当即时取等号即【点睛】本题考查函数的奇偶性的应用,不等式恒成立问题,基本不等式的应用,属于难题.。
2019-2020学年新疆生产建设兵团二中高一(上)期末数学试卷
2019-2020学年新疆生产建设兵团二中高一(上)期末数学试卷一、选择题(5*12=60分)1.已知直线,a b ,平面α满足//,a b αα⊂,则直线a 与直线b 的位置关系是( )A.平行B.相交或异面C.异面D.平行或异面 2.下列四条直线,倾斜角最大的是( )A. 1y x =+B. 21y x =+C. 1y x =-+D. 1x = 3.已知直线1y x =+与直线y=x +m 平行,则m 的值为( )A. 1B.3C. -1或3D. -1或14. 如图,三棱柱A 1B 1C 1-ABC 中,侧棱AA 1⊥底面ABC ,底面三角形ABC 是正三角形,E 是BC中点,则下列叙述正确的是( ) A .AC ⊥平面ABB 1A 1 B .CC 1与B 1E是异面直线C .A 1C 1∥B 1ED .AE ⊥BB 15.已知两个不重合的平面α,β和两条不同直线m ,n ,则下列说法正确的是( )A. 若m ⊥n ,n ⊥α,m ⊂β,则α⊥βB. 若α∥β,n ⊥α,m ⊥β,则m ∥nC. 若m ⊥n ,n ⊂α,m ⊂β,则α⊥βD. 若α∥β,n ⊂α,m ∥β,则m ∥n 6.已知直线ax +by +c =0的图象如图,则( )A. 若c >0,则a >0,b >0B. 若c >0,则a <0,b >0C. 若c <0,则a >0,b <0D. 若c <0,则a >0,b >0 7. 某几何体的三视图如图所示,其中俯视图中圆的直径为4, 该几何体的表面积为( )A. (4π+B. (6π+C. (8π+D. (12π+8.斜率为4的直线经过点A (3,5),B (a,7),C (-1,b )三点,则a ,b 的值为( )A. a =72 ,b =0 B. a =-72,b =-11 C. a =72,b =-11 D. a =-72,b =119.如图,正方形O A B C ''''的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是( ) A. 6 B. 8C. 2+2+10.如图所示,将等腰直角△ABC 沿斜边BC 上的高AD 折成一个二 面角B ´-AD -C ,此时∠B ´AC =60°,那么这个二面角大小是( )A .90°B .60°C .45°D .30°11.若点)1,(b a M 和)1,(c b N 都在直线1:=+y x l 上,又点1(,)P c a 和点),1(b cQ ,则( )A .点P 和Q 都不在直线l 上B .点P 和Q 都在直线l 上C .点P 在直线l 上且Q 不在直线l 上D .点P 不在直线l 上且Q 在直线l 上12.已知点()()2,3,3,2A B ---,直线:10l mx y m +--=与线段AB 相交,则直线l 的斜率k 的取值范围是( ) A. 34k ≥或4k ≤- B. 344k -≤≤ C. 15k <- D. 344k -≤≤二、填空题(5*4=20分)13.设集合M={(x ,y )|y=x 2},N={(x ,y )|y=2x },则集合M ∩N 的子集的个数为 个. 14.设m ∈R ,过定点A 的动直线x+my=0和过定点B 的直线mx ﹣y ﹣m+3=0,则直线AB 的一般方程是 .15.已知直线l :5x+12y=60,则直线上的点与原点的距离的最小值等于 .16.某几何体的正视图与俯视图如图所示,若俯视图中的多边形为正六边形,则该几何体的侧视图的面积为 .三、解答题17.已知函数f(x)=+lg(3﹣x)的定义域为集合A,集合B={x|1﹣m<x<3m﹣1}.(1)求集合A,(2)若A∩B=B,求实数m的取值范围.18.如图,已知平行四边形ABCD的三个顶点的坐标为A(﹣1,4),B(﹣2,﹣1),C(2,3).(1)求平行四边形ABCD的顶点D的坐标;(2)在△ACD中,求CD边上的高线所在直线方程.19.已知f(x)为定义在R上的奇函数,当x>0时,f(x)为二次函数,且满足f(2)=1,f(x)在x轴上的两个交点为(1,0)、(3,0).(1)求函数f(x)在R上的解析式;(2)作出f(x)的图象,并根据图象写出f(x)的单调区间.20.已知函数f(x)=,(1)求函数f(x)的零点;(2)g(x)=f(x)﹣a 若函数g(x)有四个零点,求a的取值范围;(3)在(2)的条件下,记g(x)得四个零点从左到右分别为x1,x2,x3,x4,求x1+x2+x3x4值.21.如图,已知AF⊥平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=2,AB=4.(Ⅰ)求证:AF∥平面BCE;(II)求证:AC⊥平面BCE;(Ⅲ)求二面角F﹣BC﹣D平面角的余弦值.22.如图,已知长方形ABCD中,AB=2AD,M为DC的中点,将△ADM沿AM折起,使得平面ADM ⊥平面ABCM.(1)求证:AD⊥BM;(2)若点E是线段DB上的中点,四棱锥D﹣ABCM的体积为V,求三棱锥E﹣ADM的体积.2019-2020学年新疆生产建设兵团二中高一(上)期末数学试卷参考答案与试题解析一、选择题(5*12=60分)3 4二、填空题(5*4=20分)13.设集合M={(x,y)|y=x2},N={(x,y)|y=2x},则集合M∩N的子集的个数为8 个.【考点】交集及其运算.【分析】结合函数图象即可获得公共元素的个数,再利用集合元素的个数是n时,集合的子集个数为2n的结论即可获得解答.【解答】解:由题意可知:y=x2,y=2x在同一坐标系下的图象为:由图可知集合M∩N的元素个数为3个,所以集合M∩N的子集的个数为23个,即8个.故答案为:8.14.设m∈R,过定点A的动直线x+my=0和过定点B的直线mx﹣y﹣m+3=0,则直线AB的一般方程是3x﹣y=0 .【考点】直线的一般式方程.【分析】动直线x+my=0经过定点A(0,0);直线mx﹣y﹣m+3=0经过定点B(1,3).即可得出.【解答】解:动直线x+my=0经过定点A(0,0);直线mx﹣y﹣m+3=0即m(x﹣1)+(3﹣y)=0经过定点B(1,3).∴直线AB的方程为:y=x,化为:3x﹣y=0.故答案为:3x﹣y=0.15.已知直线l:5x+12y=60,则直线上的点与原点的距离的最小值等于.【考点】点到直线的距离公式.【分析】直线上的点与原点的距离的最小值为原点到直线的距离.【解答】解:直线上的点与原点的距离的最小值为原点到直线的距离d==.故答案为:.16.某几何体的正视图与俯视图如图所示,若俯视图中的多边形为正六边形,则该几何体的侧视图的面积为.【考点】棱柱、棱锥、棱台的体积.【分析】根据几何体的三视图,得出该几何体上部为正六棱锥,下部为圆柱,结合数据特征求出侧视图的面积即可.【解答】解:根据几何体的三视图得;该几何体的上部为正六棱锥,下部为圆柱,∴侧视图如图所示:;它的面积为2×3+×2×sin×=.故答案为:三、解答题17.已知函数f(x)=+lg(3﹣x)的定义域为集合A,集合B={x|1﹣m<x<3m﹣1}.(1)求集合A,(2)若A∩B=B,求实数m的取值范围.【考点】集合的包含关系判断及应用.【分析】(1)利用函数有意义,建立不等式,求出m范围,即可求集合A;(2)若A∩B=B,则B⊆A,分类讨论,即可求实数m的取值范围.【解答】解:(1)由题意,,∴﹣2<x<3,∴A={x|﹣2<x<3};(2)若A∩B=B,则B⊆A,①B=∅,1﹣m,∴m≤;②B≠∅,,∴,综上所述,m.18.如图,已知平行四边形ABCD的三个顶点的坐标为A(﹣1,4),B(﹣2,﹣1),C(2,3).(1)求平行四边形ABCD的顶点D的坐标;(2)在△ACD中,求CD边上的高线所在直线方程.【考点】待定系数法求直线方程.【分析】(1)求出向量的坐标,根据=,求出D的坐标即可;(2)求出CD的斜率,求出CD的垂线的斜率,代入点斜式方程即可.【解答】解:(1)=(1,5),设D(x,y),则=(x﹣2,y﹣3)=(1,5),故,解得:,故D(3,8);(2)kCD==5,故CD的高线的斜率是﹣,故所求直线的方程是:y﹣4=﹣(x+1),即x+5y﹣19=0.19.已知f(x)为定义在R上的奇函数,当x>0时,f(x)为二次函数,且满足f(2)=1,f(x)在x轴上的两个交点为(1,0)、(3,0).(1)求函数f(x)在R上的解析式;(2)作出f(x)的图象,并根据图象写出f(x)的单调区间.【考点】二次函数的性质.【分析】(1)根据二次函数的性质设出二次函数的解析式,求出即可;(2)画出函数图象,根据图象写出单调区间即可.【解答】解:(1)x>0时,f(x)在x轴上的两个交点为(1,0)、(3,0),设f(x)=a(x﹣1)(x﹣3),将(2,1)代入f(x)求出a=﹣1,故x>0时,f(x)=﹣x2+4x﹣3,而f(x)为定义在R上的奇函数,故x=0时,f(x)=0,x<0时,f(x)=x2+4x+3,故f(x)=;(2)由f(x)的解析式得函数图象,如图所示:结合图象得:增区间(﹣2,0),(0,2);减区间(﹣∞,﹣2),(2,+∞).20.已知函数f(x)=,(1)求函数f(x)的零点;(2)g(x)=f(x)﹣a 若函数g(x)有四个零点,求a的取值范围;(3)在(2)的条件下,记g(x)得四个零点从左到右分别为x1,x2,x3,x4,求x1+x2+x3x4值.【考点】分段函数的应用;函数零点的判定定理.【分析】(1)讨论当x>0时,当x≤0时,由f(x)=0,解方程即可得到零点;(2)由题意可得f(x)=a有四个不等实根,画出函数y=f(x)的图象,通过图象观察,即可得到a的范围;(3)由二次函数的对称性和对数的运算性质,结合图象即可得到所求和.【解答】解:(1)函数f (x )=,当x >0时,由|lnx|=0解得x=1,当x ≤0时,由x 2+4x+1=0解得x=﹣2+或x=﹣2﹣,可得函数的零点为1,﹣2+或﹣2﹣;(2)g (x )=f (x )﹣a 若函数g (x )有四个零点, 即为f (x )=a 有四个不等实根,画出函数y=f (x )的图象, 由图象可得当0<a ≤1时,f (x )的图象和直线y=a 有四个交点, 故函数g (x )有四个零点时a 的取值范围是0<a ≤1; (3)由y=x 2+4x+1的对称轴为x=﹣2, 可得x 1+x 2=﹣4, 由|lnx 3|=|lnx 4|=a ,即﹣lnx 3=lnx 4,即为lnx 3+lnx 4=0 则x 3x 4=1, 故x 1+x 2+x 3x 4=﹣3.21.如图,已知AF ⊥平面ABCD ,四边形ABEF 为矩形,四边形ABCD 为直角梯形,∠DAB=90°,AB ∥CD ,AD=AF=CD=2,AB=4. (Ⅰ)求证:AF ∥平面BCE ; (II )求证:AC ⊥平面BCE ;(Ⅲ)求二面角F ﹣BC ﹣D 平面角的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定;直线与平面垂直的判定.【分析】(I)由AF∥BE,BE⊂平面BCE,AF⊄平面BCE,得AF∥平面BCE.(II)过C作CM⊥AB,垂足为M,由AC2+BC2=AB2,得AC⊥BC;再证BE⊥AC,即可得到AC⊥平面BCE.(III∠FCA为二面角F﹣BC﹣D平面角的平面角,在Rt△AFC中,求得二面角F﹣BC﹣D平面角的余弦值【解答】解:(I)因为四边形ABEF为矩形,所以AF∥BE,BE⊂平面BCE,AF⊄平面BCE,所以AF∥平面BCE.(II)过C作CM⊥AB,垂足为M,因为AD⊥DC所以四边形ADCM为矩形.所以AM=MB=2,又因为AD=2,AB=4所以AC=2,CM=2,BC=2所以AC2+BC2=AB2,所以AC⊥BC;因为AF⊥平面ABCD,AF∥BE,所以BE⊥平面ABCD,所以BE⊥AC,又因为BE⊂平面BCE,BC⊂平面BCE,BE∩BC=B所以AC⊥平面BCE.(III)∵FA⊥面ABCD,AC⊥BC,∴∠FCA为二面角F﹣BC﹣D平面角的平面角,在Rt△AFC中,cos∠ACF=二面角F﹣BC﹣D平面角的余弦值为22.如图,已知长方形ABCD中,AB=2AD,M为DC的中点,将△ADM沿AM折起,使得平面ADM ⊥平面ABCM.(1)求证:AD⊥BM;(2)若点E是线段DB上的中点,四棱锥D﹣ABCM的体积为V,求三棱锥E﹣ADM的体积.【考点】棱柱、棱锥、棱台的体积;空间中直线与直线之间的位置关系.【分析】(1)由题意可得BM⊥AM,再由平面ADM⊥平面ABCM,结合面面垂直的性质可得BM⊥平面ADM,从而得到AD⊥BM;(2)直接利用等体积法求得三棱锥E﹣ADM的体积.【解答】(1)证明:∵长方形ABCD中,AB=2AD,M为DC的中点,∴AM=BM,则BM⊥AM,∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,BM⊂平面ABCM,∴BM⊥平面ADM,∵AD⊂平面ADM,∴AD⊥BM;(2)解:当E为DB的中点时,∵,∴===.。
新疆2020学年高一数学上学期期末考试试题 (3)
高一数学上学期期末考试试题考试时长:120分钟一、选择题(本题共12小题,每题5分,共计60分。
)1. 已知角α的终边经过点(3,4)P -,则sin α的值等于( ) A.35- B.35 C.45 D.45- 2.下列命题正确的个数是( )①0AB BA +=; ②00AB ⋅=; ③AB AC BC -=; ④00AB ⋅=A.1B.2C.3D.43.计算 cos75cos15sin 75sin15+的值为( )A. 120 D. 1 4.把函数sin(2)3y x π=-的图象向右平移3π个单位得到的函数解析式为( ) A.sin(2)3y x π=- B.sin(2)3y x π=+C.cos 2y x =D.sin 2y x =-5.在平行四边形ABCD 中,M 为边CD 上一点,且2DM MC =. 若 AB a =,AD b =,,则BM = A.13a b - B.13a b + C.13a b -+ D.13a b + 6.已知3sin()5πα+=,且α是第四象限角,那么cos(2)απ-的值是( ) A. 35 B .45- C .45± D. 45 7、设a 3(,sin )2α=,b 1cos ,3α⎛⎫= ⎪⎝⎭, 且a ∥b ,则锐角α为( )A 、30︒B 、60︒C 、45︒D 、75︒8.已知3a =,4b =,且()a kb +⊥()a kb -,则k 等于( ) A 、34± B 、43± C 、53± D 、54±9.若(0,)2πθ∈,sin cos 2θθ-=,则cos 2θ=( )B .C .D .12± 10.若1sin()63πα-=,则2cos(2)3πα+=( ) A .79- B .13- C.13 D.79 11.下列函数中,周期为1的奇函数是( )A.212siny x π=- B.sin(2)3y x ππ=+ C.tan 2y x π= D.sin cos y x x ππ=12.同时具有性质“①最小正周期为π;②图象关于直线3x π=对称;③在,63ππ⎡⎤-⎢⎥⎣⎦ 上是减函数”的一个函数是( ) A.sin()26x y π=+ B.cos(2)3y x π=+ C.sin(2)6y x π=- D.cos(2)6y x π=-二、填空题(本题共4小题,每题5分,共计20分)13.已知tan α=2παπ<<,那么cos sin αα-的值是________. 14.向量(,1)a x =与向量(4,)b x =共线且反向,则_____x =15.在ABC ∆中,若1AC BC ⋅=,2AB BC ⋅=-,则BC 的值为________.16.对于以下结论 ①存在实数x ,使得3sin cos 2x x +=;②函数3cos()2y x π=+ 为奇函数; ③ ,αβ是第一象限角,且sin sin αβ< ,则 αβ< . 其中正确的序号为 .三、解答题(本题共6小题,共计70分)17.(10分)已知||1,(1,3)a b ==,a b 与的夹角为60°,求|2|a b +.18.(12分)已知224sin 6sin cos 3cos 0x x x x --+=,求cos 2sin 2(1cos 2)(1tan 2)x x x x --- 的值19.(12分) 已知函数15()sin(2)262f x x π=++. (1)求()f x 的最小正周期及单调区间;(2)求()f x 的图象的对称轴和对称中心.20.(12分) 已知函数2()2sin sin cos (0)f x a x x x a b a =-++>的定义域为0,2π⎡⎤⎢⎥⎣⎦,值域为[]5,1-,求常数,a b 的值21.(12分)设函数()f x a b =⋅,其中向量(,cos 2),(1sin 2,1)a m x b x ==+,x R ∈,且()y f x =的图象经过点(,2)4π. (1)求实数m 的值;(2)求函数()f x 的最小值及此时x 的值的集合.22.(12分)设ABC ∆外心为o ,重心为G .取点H ,使OA OB OC OH ++=.(三角形三条边上的中线的交点叫重心)求证:(1)H 是ABC ∆的垂心;(2),,O G H 三点共线,且:1:2OG GH =.。
2019-2020学年高一数学上学期期末考试试题(含解析)_26
2019-2020学年高一数学上学期期末考试试题(含解析)本试卷共4页,22小题,全卷满分150分,考试用时120分钟.注意事项:1.本试卷分为试题卷[含选择题和非选择题]和答题卡[含填涂卡和答题框]两大部分.2.考试在答题前,请先将自己的学校、班级、姓名、考号填在答题卡密封线内指定的地方.3.选择题的答案选出后,用2B铅笔将答题卡上对应题目的答案标涂黑.非选择题请在答题卡指定的地方作答,本试卷上作答无效.4.考试结束后,请将答题卡上交.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合,B={,n是自然数},则()A. B. C. D.【答案】A【解析】根据交集的概念,可得结果.【详解】由B={,n是自然数},所以,所以故选:A【点睛】本题考查交集的概念,属基础题.2.()A. B. C. D.【答案】D【解析】【分析】根据终边相同的角的公式,大角化小角,结合该角的三角函数,可得结果.【详解】由所以故选:D【点睛】本题重在考查任意角的三角函数,属基础题.3.如果向量,,那么()A. 6B. 5C. 4D. 3【解析】【分析】根据向量用坐标运算,以及向量模的计算公式,可得结果.【详解】由,所以所以故选:B【点睛】本题考查向量的模用坐标计算,属基础题.4.下列函数中,既是偶函数又在上是增函数的是()A. B. C. D.【答案】B【解析】【分析】根据定义域关于原点对称以及与关系,可知函数的奇偶性,并结合函数特点,可得结果.【详解】由,定义域为又,所以为偶函数,当时,可知其为增函数,故选:B【点睛】本题考查函数的奇偶性和单调性,属基础题.5.函数的零点所在的区间是()A. B. C. D.【答案】C【解析】【分析】根据零点存在性定理即可求解.【详解】由函数,则,,,由零点存在性定理可知函数的零点所在的区间是.故选:C【点睛】本题考查了函数的零点存在性定理,属于基础题.6.已知,则A. B. C. D.【答案】B【解析】【分析】运用中间量比较,运用中间量比较【详解】则.故选B.【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.7.函数(且)的图像是下列图像中的()A. B.C. D.【答案】C【解析】【分析】将函数表示为分段函数的形式,由此确定函数图像.【详解】依题意,.由此判断出正确的选项为C.故选C.【点睛】本小题主要考查三角函数图像的识别,考查分段函数解析式的求法,考查同角三角函数的基本关系式,属于基础题.8.若函数在上是增函数,则a,b的值可能是()A. ,B. ,C. ,D. ,【答案】B【解析】【分析】采用排除法,根据复合函数的单调性法则,可得结果.【详解】当,时,则所以在递减,而是增函数,所以在上是减函数故A错当,时,则所以在递减,而是减函数所以在上是增函数所以B对,同理可知:C,D均错故选:B【点睛】本题重在于考查复合函数的单调性,对复合函数单调性,四个字“同增异减”,属基础题.9.在中,,,.D是BC边上的动点,则的取值范围是()A. B. C. D.【答案】A【解析】【分析】假设,根据向量的加法、减法运算,用表示分别出,结合数量积公式以及函数单调性,可得结果.【详解】设,所以又,可知所以化简可得又,,所以则即,又在递增所以故故选:A【点睛】本题重在考查向量用基底如何表示,还考查了数量积用参数表示,并求其范围,属中档题.10.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足,其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为( )A. 1010.1B. 10.1C. lg10.1D. 10–10.1【答案】A【解析】【分析】由题意得到关于的等式,结合对数的运算法则可得亮度的比值.【详解】两颗星的星等与亮度满足,令,.故选A.【点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及指数对数运算.11.已知函数的定义域为R,当时,,当时,,当时,,则()A. B. C. 1 D. 2【答案】B【解析】【分析】根据函数的奇偶性,周期性,以及函数表达式,可得结果.【详解】由当时,,用取代可知,周期为1所以当时,所以当时,,所以故选:B【点睛】本题考查函数的性质,属基础题.12.已知函数在上的图象有且仅有3个最高点.下面四个结论:①在上的图象有且仅有3个最低点;②在至多有7个零点;③在单调递增;④的取值范围是;正确结论是()A. ①④B. ②③C. ②④D. ②③④【答案】D【解析】【分析】根据正弦函数的性质,结合整体法以及排除法,可得结果.【详解】当时,可知由在上的图象有且仅有3个最高点可知,得故④正确,若时,没有3个最低点,故①错如图可知②正确由,所以根据上图可知:在单调递增可知③正确故答案为:D【点睛】本题重在考查正弦型函数的性质,对这种问题要结合相对应的正弦函数的性质,掌握整体法,属难题.二、填空题(本大题共4小题,每小题5分,共20分.把正确答案填写在答题卡中对应的横线上.)13.在单位圆中,的圆心角所对的弧长为_____.【答案】【解析】【分析】由弧长公式即可算出结果.【详解】由弧长公式l=|α|r1,故答案为:.【点睛】本题主要考查了弧长公式,基础题.14.已知函数(且)的图象恒过定点,若幂函数的图象也经过点,则实数t的值为________.【答案】【解析】【分析】根据对数的图像,结合平移的知识,可得点坐标,然后代值计算,可得结果.【详解】函数过定点函数是由经过向右移动1个单位,向上移动单位得到故过定点又的图象经过点所以即故答案为:【点睛】本题重在考查对数型函数过定点问题,掌握对数函数的性质,并且熟练图像的平移,属基础题.15.在直角坐标系中,已知,,若是直角三角形,则实数t的值为________.【答案】1或5【解析】【分析】根据向量垂直的坐标表示,可得结果.【详解】由是直角三角形当时,则所以当时,所以即则无解当时,所以即故值为1或5故答案为:1或5【点睛】本题考查向量垂直的坐标表示,属基础题.16.已知函数,若的值域是,则实数的取值范围是________.【答案】【解析】【分析】利用数形结合,根据对数函数的概念,可得,然后根据的值域,可得结果.【详解】,根据题意:由的值域是,如图:当时,由可知当时,由所以综上所述:故答案为:【点睛】本题重在于考查分段函数的值域,掌握各段函数的特点,熟练掌握数形结合的思想,属中档题.三、解答题.(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.)17.已知集合,集合.(1)若,求的值;(2)若,求的取值范围.【答案】(1)(2)【解析】【分析】(1)根据交集的概念可知2是的元素,可得,并进行验证,可得结果.(2)根据并集概念,可得之间关系,计算出的元素,可得结果.【详解】(1),经验证不合题意所以(2)中的两根为a,【点睛】本题重在于考查集合交集和并集的概念,属基础题.18.已知点是函数的图象上的一个最高点,且图象上相邻两条对称轴的距离为.(1)求函数的单调递减区间;(2)求函数在的值域.【答案】(1)(2)【解析】【分析】(1)根据正弦函数的性质,可以得出的表达式,然后结合整体法,可得结果.(2)根据(1)的条件,使用整体法,可得结果.【详解】(1)由题可知:,所以,则又所以则,又所以令,,所以令,所以函数的单调递减区间为(2),在值域为函数在的值域为【点睛】本题重在考查正弦型函数的性质,对这种问题要结合相对应的正弦函数的性质,掌握整体法,属中档题.19.在四边形中,,,,.(1)用,表示向量;(2)若点为线段的中点,求的值.【答案】(1)(2)【解析】【分析】(1)采用数形结合,根据三角形法则,可得结果.(2)将分别用,表示,结合数量积公式,可得结果.【详解】(1)根据题意,如图:方法一:所以 ,又所以方法二:,又所以即(2)由点为线段的中点所以.化简可得,又,,所以所以【点睛】本题主要考查平面向量基本定理,熟练应用向量的加法和减法,属基础题.20.某地区今年1月,2月,3月患某种传染病的人数分别为42,48,52.为了预测以后各月的患病人数,甲选择了模型,乙选择了模型,其中为患病人数,为月份数,a,b,c,p,q,r都是常数.结果4月,5月,6月份的患病人数分别为54,57,58.(1)求a,b,c,p,q,r的值;(2)你认为谁选择的模型好.【答案】(1),,,,,;(2)乙选择的模型好【解析】【分析】(1)根据带值计算,可得结果.(2)根据(1)的条件,代值计算比较,可得结果.【详解】(1)根据题意:;,,;,,;(2)甲模型预测4月,5月,6月份的患病人数分别为54,54,52;乙模型预测4月,5月,6月份的患病人数分别为54.7,56.4,57.6实际4月,5月,6月份的患病人数分别为54,57,58.所以乙选择的模型好【点睛】本题主要考查函数的代值计算,属基础题.21.若是奇函数.(1)求的值;(2)若对任意都有,求实数m的取值范围.【答案】(1)(2)【解析】【分析】(1)根据函数的奇偶性,可得结果.(2)根据(1)的条件使用分离常数方法,化简函数,可知的值域,结合不等式计算,可得结果.【详解】(1),因为是奇函数.所以,得;经检验满足题意(2)根据(1)可知化简可得所以可知当时,所以对任意都有所以,即【点睛】本题考查根据函数的奇偶性求参数,还考查了恒成立问题,对存在性,恒成立问题一般转化为最值问题,细心计算,属中档题.22.设函数定义域为,对于区间,如果存在,,使得,则称区间为函数的ℱ区间.(Ⅰ)判断是否是函数的ℱ区间;(Ⅱ)若是函数(其中)的ℱ区间,求的取值范围;(Ⅲ)设为正实数,若是函数的ℱ区间,求的取值范围.【答案】(Ⅰ)见证明;(Ⅱ)(Ⅲ)【解析】【分析】Ⅰ根据新定义,即可求出判断,Ⅱ根据新定义和对数函数的性质,即可求出a的取值范围,Ⅲ根据新定义和余弦函数的性质可得存在k,,使得,再分类讨论即可求出的取值范围【详解】(Ⅰ)不是函数的ℱ区间,理由如下:因为对,,所以.所以均有,即不存在,,使得.所以不是函数的ℱ区间(Ⅱ)由是函数(其中)的ℱ区间,可知存在,,使得.所以.因为所以,即.又因为且,所以.(Ⅲ)因为是函数的ℱ区间,所以存在,,使得.所以所以存在,使得不妨设. 又因为,所以.所以.即在区间内存在两个不同的偶数.①当时,区间长度,所以区间内必存在两个相邻的偶数,故符合题意.②当时,有,所以.(i)当时,有即.所以也符合题意.(ii)当时,有即.所以符合题意.(iii)当时,有即此式无解.综上所述,的取值范围是.【点睛】本题考查了抽象函数问题,以及指数函数、对数函数,余弦函数的性质,考查了运算求解能力,转化与化归思想,属于难题2019-2020学年高一数学上学期期末考试试题(含解析)本试卷共4页,22小题,全卷满分150分,考试用时120分钟.注意事项:1.本试卷分为试题卷[含选择题和非选择题]和答题卡[含填涂卡和答题框]两大部分.2.考试在答题前,请先将自己的学校、班级、姓名、考号填在答题卡密封线内指定的地方.3.选择题的答案选出后,用2B铅笔将答题卡上对应题目的答案标涂黑.非选择题请在答题卡指定的地方作答,本试卷上作答无效.4.考试结束后,请将答题卡上交.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合,B={,n是自然数},则()A. B. C. D.【答案】A【解析】【分析】根据交集的概念,可得结果.【详解】由B={,n是自然数},所以,所以故选:A【点睛】本题考查交集的概念,属基础题.2.()A. B. C. D.【答案】D【解析】【分析】根据终边相同的角的公式,大角化小角,结合该角的三角函数,可得结果.【详解】由所以故选:D【点睛】本题重在考查任意角的三角函数,属基础题.3.如果向量,,那么()A. 6B. 5C. 4D. 3【答案】B【解析】【分析】根据向量用坐标运算,以及向量模的计算公式,可得结果.【详解】由,所以所以故选:B【点睛】本题考查向量的模用坐标计算,属基础题.4.下列函数中,既是偶函数又在上是增函数的是()A. B. C. D.【答案】B【解析】【分析】根据定义域关于原点对称以及与关系,可知函数的奇偶性,并结合函数特点,可得结果.【详解】由,定义域为又,所以为偶函数,当时,可知其为增函数,故选:B【点睛】本题考查函数的奇偶性和单调性,属基础题.5.函数的零点所在的区间是()A. B. C. D.【答案】C【解析】【分析】根据零点存在性定理即可求解.【详解】由函数,则,,,由零点存在性定理可知函数的零点所在的区间是.故选:C【点睛】本题考查了函数的零点存在性定理,属于基础题.6.已知,则A. B. C. D.【答案】B【解析】【分析】运用中间量比较,运用中间量比较【详解】则.故选B.【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.7.函数(且)的图像是下列图像中的()A. B.C. D.【答案】C【解析】【分析】将函数表示为分段函数的形式,由此确定函数图像.【详解】依题意,.由此判断出正确的选项为C.故选C.【点睛】本小题主要考查三角函数图像的识别,考查分段函数解析式的求法,考查同角三角函数的基本关系式,属于基础题.8.若函数在上是增函数,则a,b的值可能是()A. ,B. ,C. ,D. ,【答案】B【解析】【分析】采用排除法,根据复合函数的单调性法则,可得结果.【详解】当,时,则所以在递减,而是增函数,所以在上是减函数故A错当,时,则所以在递减,而是减函数所以在上是增函数所以B对,同理可知:C,D均错故选:B【点睛】本题重在于考查复合函数的单调性,对复合函数单调性,四个字“同增异减”,属基础题.9.在中,,,.D是BC边上的动点,则的取值范围是()A. B. C. D.【答案】A【解析】【分析】假设,根据向量的加法、减法运算,用表示分别出,结合数量积公式以及函数单调性,可得结果.【详解】设,所以又,可知所以化简可得又,,所以则即,又在递增所以故故选:A【点睛】本题重在考查向量用基底如何表示,还考查了数量积用参数表示,并求其范围,属中档题.10.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足,其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为( )A. 1010.1B. 10.1C. lg10.1D. 10–10.1【答案】A【解析】【分析】由题意得到关于的等式,结合对数的运算法则可得亮度的比值.【详解】两颗星的星等与亮度满足,令,.故选A.【点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及指数对数运算.11.已知函数的定义域为R,当时,,当时,,当时,,则()A. B. C. 1 D. 2【答案】B【解析】【分析】根据函数的奇偶性,周期性,以及函数表达式,可得结果.【详解】由当时,,用取代可知,周期为1所以当时,所以当时,,所以故选:B【点睛】本题考查函数的性质,属基础题.12.已知函数在上的图象有且仅有3个最高点.下面四个结论:①在上的图象有且仅有3个最低点;②在至多有7个零点;③在单调递增;④的取值范围是;正确结论是()A. ①④B. ②③C. ②④D. ②③④【答案】D【解析】【分析】根据正弦函数的性质,结合整体法以及排除法,可得结果.【详解】当时,可知由在上的图象有且仅有3个最高点可知,得故④正确,若时,没有3个最低点,故①错如图可知②正确由,所以根据上图可知:在单调递增可知③正确故答案为:D【点睛】本题重在考查正弦型函数的性质,对这种问题要结合相对应的正弦函数的性质,掌握整体法,属难题.二、填空题(本大题共4小题,每小题5分,共20分.把正确答案填写在答题卡中对应的横线上.)13.在单位圆中,的圆心角所对的弧长为_____.【答案】【解析】【分析】由弧长公式即可算出结果.【详解】由弧长公式l=|α|r1,故答案为:.【点睛】本题主要考查了弧长公式,基础题.14.已知函数(且)的图象恒过定点,若幂函数的图象也经过点,则实数t的值为________.【答案】【解析】【分析】根据对数的图像,结合平移的知识,可得点坐标,然后代值计算,可得结果.【详解】函数过定点函数是由经过向右移动1个单位,向上移动单位得到故过定点又的图象经过点所以即故答案为:【点睛】本题重在考查对数型函数过定点问题,掌握对数函数的性质,并且熟练图像的平移,属基础题.15.在直角坐标系中,已知,,若是直角三角形,则实数t的值为________.【答案】1或5【解析】【分析】根据向量垂直的坐标表示,可得结果.【详解】由是直角三角形当时,则所以当时,所以即则无解当时,所以即故值为1或5故答案为:1或5【点睛】本题考查向量垂直的坐标表示,属基础题.16.已知函数,若的值域是,则实数的取值范围是________.【答案】【解析】【分析】利用数形结合,根据对数函数的概念,可得,然后根据的值域,可得结果.【详解】,根据题意:由的值域是,如图:当时,由可知当时,由所以综上所述:故答案为:【点睛】本题重在于考查分段函数的值域,掌握各段函数的特点,熟练掌握数形结合的思想,属中档题.三、解答题.(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.)17.已知集合,集合.(1)若,求的值;(2)若,求的取值范围.【答案】(1)(2)【解析】【分析】(1)根据交集的概念可知2是的元素,可得,并进行验证,可得结果.(2)根据并集概念,可得之间关系,计算出的元素,可得结果.【详解】(1),经验证不合题意所以(2)中的两根为a,【点睛】本题重在于考查集合交集和并集的概念,属基础题.18.已知点是函数的图象上的一个最高点,且图象上相邻两条对称轴的距离为.(1)求函数的单调递减区间;(2)求函数在的值域.【答案】(1)(2)【解析】【分析】(1)根据正弦函数的性质,可以得出的表达式,然后结合整体法,可得结果.(2)根据(1)的条件,使用整体法,可得结果.【详解】(1)由题可知:,所以,则又所以则,又所以令,,所以令,所以函数的单调递减区间为(2),在值域为函数在的值域为【点睛】本题重在考查正弦型函数的性质,对这种问题要结合相对应的正弦函数的性质,掌握整体法,属中档题.19.在四边形中,,,,.(1)用,表示向量;(2)若点为线段的中点,求的值.【答案】(1)(2)【解析】【分析】(1)采用数形结合,根据三角形法则,可得结果.(2)将分别用,表示,结合数量积公式,可得结果.【详解】(1)根据题意,如图:方法一:所以 ,又所以方法二:,又所以即(2)由点为线段的中点所以.化简可得,又,,所以所以【点睛】本题主要考查平面向量基本定理,熟练应用向量的加法和减法,属基础题.20.某地区今年1月,2月,3月患某种传染病的人数分别为42,48,52.为了预测以后各月的患病人数,甲选择了模型,乙选择了模型,其中为患病人数,为月份数,a,b,c,p,q,r都是常数.结果4月,5月,6月份的患病人数分别为54,57,58.(1)求a,b,c,p,q,r的值;(2)你认为谁选择的模型好.【答案】(1),,,,,;(2)乙选择的模型好【解析】【分析】(1)根据带值计算,可得结果.(2)根据(1)的条件,代值计算比较,可得结果.【详解】(1)根据题意:;,,;,,;(2)甲模型预测4月,5月,6月份的患病人数分别为54,54,52;乙模型预测4月,5月,6月份的患病人数分别为54.7,56.4,57.6实际4月,5月,6月份的患病人数分别为54,57,58.所以乙选择的模型好【点睛】本题主要考查函数的代值计算,属基础题.21.若是奇函数.(1)求的值;(2)若对任意都有,求实数m的取值范围.【答案】(1)(2)【解析】【分析】(1)根据函数的奇偶性,可得结果.(2)根据(1)的条件使用分离常数方法,化简函数,可知的值域,结合不等式计算,可得结果.【详解】(1),因为是奇函数.所以,得;经检验满足题意(2)根据(1)可知化简可得所以可知当时,所以对任意都有所以,即【点睛】本题考查根据函数的奇偶性求参数,还考查了恒成立问题,对存在性,恒成立问题一般转化为最值问题,细心计算,属中档题.22.设函数定义域为,对于区间,如果存在,,使得,则称区间为函数的ℱ区间.(Ⅰ)判断是否是函数的ℱ区间;(Ⅱ)若是函数(其中)的ℱ区间,求的取值范围;(Ⅲ)设为正实数,若是函数的ℱ区间,求的取值范围.【答案】(Ⅰ)见证明;(Ⅱ)(Ⅲ)【解析】【分析】Ⅰ根据新定义,即可求出判断,Ⅱ根据新定义和对数函数的性质,即可求出a的取值范围,Ⅲ根据新定义和余弦函数的性质可得存在k,,使得,再分类讨论即可求出的取值范围【详解】(Ⅰ)不是函数的ℱ区间,理由如下:因为对,,所以.所以均有,即不存在,,使得.所以不是函数的ℱ区间(Ⅱ)由是函数(其中)的ℱ区间,可知存在,,使得.所以.因为所以,即.又因为且,所以.(Ⅲ)因为是函数的ℱ区间,所以存在,,使得.所以所以存在,使得不妨设. 又因为,所以.所以.即在区间内存在两个不同的偶数.①当时,区间长度,所以区间内必存在两个相邻的偶数,故符合题意.②当时,有,所以.(i)当时,有即.所以也符合题意.(ii)当时,有即.所以符合题意.(iii)当时,有即此式无解.综上所述,的取值范围是.【点睛】本题考查了抽象函数问题,以及指数函数、对数函数,余弦函数的性质,考查了运算求解能力,转化与化归思想,属于难题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新疆生产建设兵团第二中学2019-2020学年高一数学上学期期末考
试试题
考试时间:120分钟满分:150分
姓名:__________ 班级:__________考场:__________考号:__________
一、单选题(共12题;共60分)
1.函数的定义域为()
A. B.
C.
D.
2.函数的定义域为()
A. B.
C.
D.
3.函数的零点所在的一个区间是()
A. B.
C.
D.
4.已知,则()
A.
B.
C.
D.
5.的值是()
A.
B.
C.
D.
6.设向量,,则()
A. B.
C.
D.
7.已知,则 =( )
A.
B.
C.
D.
8.函数的大致图象是()
A. B. C.
D.
9.已知函数,则的值为()
A. 1
B. 2
C.
D.
10.奇函数,,当时,,则函数
的图为()
A. B. C.
D.
11.已知函数在上的最大值与最小值之和为 ,则的值为()
A.
B.
C.
D.
12.已知幂函数的图象过,则下列求解正确的是()
A. B.
C.
D.
二、填空题(共6题;共30分)
13.已知定义在上的偶函数,当时,,则
________.
14.函数是幂函数,且为奇函数,则实数的值是________.
15.奇函数在区间上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则 ________。
16.函数的零点是________.
17.设分别是第二象限角,则点落在第________象限.
18.,则sin2α+2sinαcosα﹣3cos2α=________.
三、解答题(共5题;共60分)
19.计算下列各式的值:
(1);
(2) .
20.已知全集U={1,2,3,4,5,6,7,8},A={x|x2-3x+2=0},B={x|1≤x≤5,x∈Z},C={x|2<x<9,x∈Z}.求
(1)A∪(B∩C);
(2)(∁U B)∪(∁U C).
21.已知函数是指数函数.
(1)求的表达式;
(2)判断的奇偶性,并加以证明;
(3)解不等式:.
22.已知平面向量 .
(1)若,求的值;
(2)若,求向量与夹角的余弦值.
23.在中,内角所对的边分别为a,b,c,已知 . (Ⅰ)求B;
(Ⅱ)若,求sinC的值.
答案解析部分
一、单选题
1.【答案】 C
【解析】【解答】由,解得x≥且x≠2.
∴函数的定义域为.
故答案为:C.
【分析】由根式内部的代数式大于等于0,分式的分母不为0联立不等式组求解.
2.【答案】 D
【解析】【解答】由于要使得原式有意义,则根据分式分母不为零和偶次根式根号下是非负
数,以及对数的真数要大于零可知,那么要满足,故解得x解得x的取值范围是,
故答案为:D.
【分析】由已知使原式有意义列式,即可求出函数的定义域.
3.【答案】 C
【解析】【解答】为增函数,
.
所以函数的零点所在的一个区间是 .
故答案为:C.
【分析】由已知利用函数零点判定定理,得到,即可判断零点所在的区间.
4.【答案】 B
【解析】【解答】由题意,,所以
,
则 .
故答案为:B.
【分析】利用三角函数的基本关系式,求得,进而求得的值,得到答案.
5.【答案】 A
【解析】【解答】sin570°= sin(570°-360°)=sin210°=-sin(210°-180°)=- sin30°=
故答案为:A.
【分析】由已知利用诱导公式进行计算,即可化简求值.
6.【答案】 B
【解析】【解答】由,,
可得: .
故答案为:B.
【分析】直接利用向量的坐标进行运算即可.
7.【答案】 B
【解析】【解答】由得 .故
,
故答案为:B.
【分析】根据已知条件求得的值,利用二倍角公式化简所求表达式为只含的表达,由此求得所求表达式的值
8.【答案】 B
【解析】【解答】由题是偶函数,其定义域是,且在上是增函数,
故答案为: .
【分析】先判断奇偶性,再利用单调性进行判断,
9.【答案】 A
【解析】【解答】由题意得, ,
,
,
所以 ,
故答案为:A.
【分析】将从里到外的每一个函数值代入分段函数里算出即可.
10.【答案】 D
【解析】【解答】解:奇函数,当时,.设,则,,
,
.
综上可得,,
故,
即可得函数图象为
即选项满足条件;
故答案为:.
【分析】设,则,利用奇函数的定义求出的解析式,可得在上的解析式,从而得到的解析式,从而得到它的图象.
11.【答案】 B
【解析】【解答】∵函数f(x)=a x+log a(x+1)在[0,1]上单调,
∴函数f(x)=a x+log a(x+1)在[0,1]上的最大值与最小值在x=0与x=1时取得;
∴f(0)+f(1)=a,
即1+0+a+log a2=a,
即log a2=﹣1,
即a ;
故答案为:B.
【分析】由题意可判断函数f(x)=a x+log a(x+1)在[0,1]上单调,从而可得f(0)+f (1)=a,从而解得a.
12.【答案】 A
【解析】【解答】∵幂函数y=xα的图象过点(2,),
∴ 2α,解得α ,
故f(x),即,
故答案为:A
【分析】利用幂函数过的点求出幂函数的解析式即可逐项判断正误.
二、填空题
13.【答案】 6
【解析】【解答】是偶函数,
.
故答案为:6
【分析】利用函数是偶函数,,代入求值.
14.【答案】
【解析】【解答】∵ 是幂函数,∴ ,∴ ,
解得或,当时,,是奇函数,符合题意;当时,,是偶函数,不符合题意,∴ .
故答案为: .
【分析】根据函数为幂函数列式,求得的可能取值,再根据函数为奇函数,确定的值.
15.【答案】 17
【解析】【解答】∵函数f(x)在[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为﹣1,
∴f(3)=-1,最小值为f(6)=8,
∵f(x)是奇函数,
∴f(-3)+2f(6)=-f(3)+2f(6)=1+2×8=17
故答案为:17
【分析】根据奇函数在对称区间上单调性一致,判断出区间[﹣6,﹣3]上的最大值为f(﹣6)=1,最小值为f(﹣3)=﹣8,代入即可得到答案.
16.【答案】
【解析】【解答】令f(x)=0,即x2+3x-4=0,解得:x=-4,x=1.
【分析】令f(x)=0,即x2+3x-4=0,解出即可.
17.【答案】四
【解析】【解答】∵ 是第二象限角,∴ ,,
∴点在第四象限.
故答案为:四.
【分析】由是第二象限角,判断,的符号,进而可得结果.
18.【答案】 .
【解析】【解答】因为,所以,
代入,则,,
,
所以原式,
故答案为: .
【分析】根据,所以,再代入,
得出,,,代入所求的表达式可得值.
三、解答题
19.【答案】(1)解:根据指数幂的运算性质可得,原式
(2)解:根据对数的运算性质可得,原式
【解析】【分析】(1)根据指数幂的运算性质,即可求解,得到答案.(2)根据对数的运算性质,即可求解,得到答案.
20.【答案】(1)解:依题意有:A={1,2},B={1,2,3,4,5},C={3,4,5,6,7,8},∴B∩C ={3,4,5},故有A∪(B∩C)={1,2}∪{3,4,5}={1,2,3,4,5}
(2)解:由∁U B={6,7,8},∁U C={1,2};
故有(∁U B)∪(∁U C)={6,7,8}∪{1,2}={1,2,6,7,8}.
【解析】【分析】(1)先求集合A,B,C;再求B∩C,最后求A∪(B∩C)(2)先求∁U B,∁U C;再求(∁U B)∪(∁U C).
21.【答案】(1)解:∵函数是指数函数,且,∴ ,可得或(舍去),∴
(2)解:由(1)得,
∴ ,∴ ,∴ 是奇函数
(3)解:不等式:,以2为底单调递增,
即,
∴ ,解集为
【解析】【分析】(1)根据指数函数定义得到,检验得到答案.(2) ,判断关系得到答案.(3)利用函数的单调性得到答案.
22.【答案】(1)解:由可得,解得
(2)解:由得,即,
解得,则 ,
则 , ,
所以 , ,
设向量与的夹角为,则,
所以,
所以所求夹角的余弦值为 .
【解析】【分析】(1)由两向量共线的坐标表示 ,列出关于的方程求解即可;(2)由两向量垂直的坐标表示求出的值,利用向量坐标的线性运算及向量模的坐标表示及向量数量积的坐标表示,代入夹角公式求解即可.
23.【答案】解:(Ⅰ)在中,由,可得,又由
,得,所以,得;
(Ⅱ)由,可得,则
.
【解析】【分析】(Ⅰ)利用正弦定理,将边化为角: ,再根
据三角形内角范围化简得,;(Ⅱ)已知两角,求第三角,利用三角形内角和为,将所求角化为两已知角的和,再根据两角和的正弦公式求解.。