小学四年级奥数找规律
四年级奥数-找规律
第一节、奥数找规律一、知识综述(一)简单数列的规律找规律填数是指给定一列数,这列数按照某种规律排列起来,其中留有部分空缺。
只要从连续的几个数中找规律,那么就可以知道其余所有的数,从而把题目中给定的空缺补充完整。
寻找数列的排列规律,除了从相邻两个数的和、差考虑外,有时还可以从积和商来考虑。
解决这类问题的基本思路就是认真观察出现的已知数量,在观察的基础上找出规律,然后运用规律解决问题。
找规律填数经常用到的知识有以下几个方面:1、找规律时要抓住日常生活和学习中通常存在的现象以及已经被人们公认的习惯。
比如数是由小到大排列的或由大到小排列的,即人们所说的等差数列。
如:2,4,6,____,______.2、找规律时要善于观察数与数之间的关系,有时相邻的两个数相差的数又形成一个等差数列。
如:1,2,4,7,11,______,______.3、有些找规律填数的题目,相邻的两个数之间存在着倍数关系(称为等比数列)。
比如数与数之间存在着2倍、3倍关系,或者存在着2倍多1、3倍少1的关系,甚至有的数列相邻的两个数之间商是一组连续的数。
4、找规律填数,一定要细心观察,从中找出它们之间存在的规律。
有些数列属于双数列,即不仅相邻数有一定的排列规律,而且相隔的数也存在着一定的排列规律。
比如:5,6,8,9,11,____,_____,_____.5、介绍几个特殊的数列。
○1完全平方数列:即每项都等于自身项数与项数的乘积。
如:1,4,9,16,_____,_____.○2斐波那契数列:即三个数为一组,每组中前两个数相加的和等于第三个数。
如: 1,1,2,3,5,8,_____,______.○3相邻的两个数十位上的数字有一定的规律,个位上的数字也有一定的规律。
如:98,87,76,65,_____,_____,_____.○4有一些数列相邻的两个数的差又能构成一个等比数列。
如:5,7,11,19,35,______.找规律填数也可以发展为按规律填图,遇到这样的题目就要注意研究图形的变化规律,从中找到解题的途径。
小学四年级奥数
小学四年级奥数基础的找规律(1)例题:找出下列数列的规律,并根据规律在括号里填出适当的数。
1、1 3 6 10 15 ()28 ()45〖思路〗计算相邻两数的差,3-1=2,6-3=3,10-6=4,15-10=5,由此可以推出这些差依次为2、3、4、5、6、7、8、9,这样第一个()里的数应比15多6,比28少7,填21。
同理,第二个()里的数应比28多8,比45少9,填36。
2、98 88 79 71 64 58 ()()〖思路〗从98-88=10,88-79=9,79-71=8,71-64=7,64-58=6,可以看出前一个数减去后一个数所得的差分别是10、9、8、7、6、5、4……,按此规律,应得到58-()=5,所以第一个()里填53,第二个人括号里就填49。
针对性训练思考下面各题中的变化规律,在括号里填出适当的数。
①8 10 14 20 28 ()()② 1 5 10 16 ()31 ()③0 3 7 12 ()25 ()④ 1 2 4 7 ()16 22⑤100 92 85 79 74 ()67⑥25 21 17 13 ()()⑦97 87 78 70 63 57 ()()⑧ 1 2 6 24 120 ()5040⑨486 162 ()18 6 2⑩ 2 4 12 48 ()1440答案:38 50 23 40 18 33 11 70 9 5 52 48 720 54 240找规律(2)例题:按一定的规律在括号里填上适合的数。
1、4 1 6 3 8 5 10 7 ()()〖思路〗数列仅从相邻的两个数,难以看出这列数的排列规律。
这时,我们换个角度,隔一个数观察,就会发现,这列数是由两列数复合而成。
奇数项:4 6 8 10(每两个数差2)偶数项:1 3 5 7(每两个数差2)2、7 6 14 7 21 8 28 9 ()()〖思路〗数列仅从相邻的两个数,难以看出这列数的排列规律。
这时,我们换个角度,隔一个数观察,就会发现,这列数是由两列数复合而成。
四年级奥数专题第二讲 找规律(二)
四年级奥数专题第二讲找规律(二)【一】找规律填空。
1、2、4、8、16、、64练习(1)1、3、9、27、(2)3、6、12、24、、96【二】找规律填空。
(10,15,5)、(3、9、6)、(5、、7)练习(1)(6、1、2)、(18、3、6)、(、5、10)(2)【三】根据下表中的排列规律,在空格里填上适当的数。
10188815766练习找规律,在空格里填上适当的数。
(1)(2)【四】根据前面图形中的数之间的关系,想一想第三个图形的空格处应填什么数?练习根据前面图形中数之间的关系,想一想第三个图形的空格处应填什么数。
1、2、【五】 先计算下面一组算式的第一题,然后找出其中的规律,并根据规律直接写出后几题的得数。
12345679×9= 12345679×18=12345679×27= 12345679×36=练习找规律,写得数。
(1)4×4-3×3=75×5-4×4=96×6-5×5=( )14×14-13×13=( )(2)1×1=1 11×11=121111×111=12321 1111×1111=1234321191911111111个个 =【六】 找规律计算。
(1)71-17=(7-1)×9=6×9=54(2)42-24=(4-2)×9=2×9=18(3)63-36=( - )×9= ×9=练习利用规律计算。
(1)93-39 (2)81-18 (3)72-27 (4)61-16 (5)75-57【七】计算。
(1)27×11 (2)48×11练习计算下面各题。
(1)33×11 (2)54×11 (3)75×11 (4)83×11课外作业1、200,100,50,2、3、填空。
四年级奥数找规律轻松填数
四年级奥数找规律轻松填数四年级的奥数是一门有趣又富有挑战性的学科。
在奥数的学习过程中,找规律是一个非常重要的技巧。
通过找规律,我们能够更快地解题,提高解题效率。
本文将介绍一些在四年级奥数中找规律轻松填数的方法和技巧。
一、相邻数差的规律在奥数中,经常会出现一串数字,我们需要在其中找出规律,然后按照规律继续填充数字。
一种常见的规律是相邻数之间有一个固定的差值。
以以下数列为例:2, 4, 6, 8, 10, ___。
观察这个数列,我们可以发现每两个相邻的数字之间的差值都是2。
所以,下一个数字应该是10 + 2 = 12。
同样,我们可以利用这个规律解决更复杂的问题。
比如:3, 6, 12, 24, 48, ___。
我们可以发现每两个相邻的数字之间的差值都是前一个数的两倍。
所以,下一个数字应该是48 * 2 = 96。
二、递推规律除了相邻数差的规律,还有一种常见的规律是递推规律。
这种规律是指通过前面的数字来推算出后面的数字。
以以下数列为例:1, 4, 9, 16, 25, ___。
观察这个数列,我们可以发现每个数字都是前一个数的平方。
所以,下一个数字应该是25的平方,即25 * 25 = 625。
同样,我们可以应用递推规律解决更复杂的问题。
比如:2, 6, 18, 54, 162, ___。
我们可以发现每个数字都是前一个数的3倍。
所以,下一个数字应该是162 * 3 = 486。
三、数字组合规律除了相邻数差的规律和递推规律,还有一种常见的规律是数字的组合规律。
这种规律是指通过数字的组合来推算出后面的数字。
以以下数列为例:1, 2, 4, 8, 16, ___。
观察这个数列,我们可以发现每个数字都是前一个数乘以2。
所以,下一个数字应该是16 * 2 = 32。
同样,我们可以利用数字的组合规律解决更复杂的问题。
比如:1, 3, 6, 10, 15, ___。
我们可以发现每个数字都是前一个数加上一个递增的数列。
小学四年级奥数找规律(练习版)
小学四年级奥数第五讲找规律(一)一、精讲精练【例题1】在括号内填上合适的数。
(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()练习1:在括号内填上合适的数。
(1)2,4,6,8,10,(),()(2)1,2,5,10,17,(),()(3)2,8,32,128,(),()(4)1,5,25,125,(),()(5)12,1,10,1,8,1,(),()【例题2】先找出规律,再在括号里填上合适的数。
(1)15,2,12,2,9,2,(),()(2)21,4,18,5,15,6,(),()练习2:按规律填数。
(1)2,1,4,1,6,1,(),()(2)3,2,9,2,27,2,(),()(3)18,3,15,4,12,5,(),()(4)1,15,3,13,5,11,(),()(5)1,2,5,14,(),()【例题3】先找出规律,再在括号里填上合适的数。
(1)2,5,14,41,()(2)252,124,60,28,()(3)1,2,5,13,34,()(4)1,4,9,16,25,36,()练习3:按规律填数。
(1)2,3,5,9,17,(),()(2)2,4,10,28,82,(),()(3)94,46,22,10,(),()(4)2,3,7,18,47,(),()【例题4】根据前面图形里的数的排列规律,填入适当的数。
(1)(3)练习4:找出排列规律,在空缺处填上适当的数。
(1) (3)【例题5】按规律填数。
(1)187,286,385,( ),( ) (2)练习5:根据规律,在空格内填数。
(1)198,297,396,( ),( ) (2)(3)(2)9437148428164(2)4892768287找规律(二)一、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。
1,4,7,10,(),16,19练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。
四年级奥数找规律
小学四年级奥数找规律暑期讲义第1讲找规律(一)一、知识要点观察是解决问题的根据。
通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。
二、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。
1,4,7,10,( ),16,19【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。
根据这一规律,括号里应填的数为:10+3=13或16-3=13。
像上面按照一定的顺序排列的一串数叫做数列。
练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。
(1)2,6,10,14,( ),22,26(2)3,6,9,12,( ),18,21(3)33,28,23,( ),13,( ),3(4)55,49,43,( ),31,( ),19(5)3,6,12,( ),48,( ),192(6)2,6,18,( ),162,( )(7)128,64,32,( ),8,( ),2(8)19,3,17,3,15,3,( ),( ),11,3..【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。
1,2,4,7,( ),16,22【思路导航】在这列数中,前4个数每相邻的两个数的差依次是1,2,3。
由此可以推算7比括号里的数少4,括号里应填:7+4=11。
经验证,所填的数是正确的。
应填的数为:7+4=11或16-5=11。
练习2:先找出下列数排列的规律,然后在括号里填上适当的数。
(1)10,11,13,16,20,( ),31(2)1,4,9,16,25,( ),49,64(3)3,2,5,2,7,2,( ),( ),11,2(4)53,44,36,29,( ),18,( ),11,9,8(5)81,64,49,36,( ),16,( ),4,1,0(6)28,1,26,1,24,1,( ),( ),20,1(7)30,2,26,2,22,2,( ),( ),14,2(8)1,6,4,8,7,10,( ),( ),13,14【例题3】先找出规律,然后在括号里填上适当的数。
四年级奥数找规律轻松填满
四年级奥数找规律轻松填满在四年级学生的数学学习中,奥数是一个重要的组成部分。
奥数不仅可以提升学生的逻辑思维能力,还可以培养他们的发散思维和创造力。
其中,找规律是奥数中的一种重要技巧,它帮助学生在数列、图形等问题中准确找到规律并进行填空。
下面,我将介绍一些四年级奥数找规律的方法,帮助学生轻松填满空白。
一、数列找规律法数列找规律是四年级奥数中常见的题型。
在数列中,每个数字都有自己的位置和特征,学生只需要观察并找出数字之间的规律,就能轻松填满空格。
例如,对于以下数列:2, 4, 6, 8, __, __, __, 14我们可以观察到,每个数字都比前一个数字大2。
根据这个规律,可以很轻松地填充空格:10, 12同样地,在奥数考试中,还存在一些更复杂的数列题型,如等差数列和等比数列。
学生可以运用均差法或者倍率法等方法来找到规律,从而填满空白。
二、图形找规律法除了数列,图形找规律也是四年级奥数中常见的题型。
在图形中,学生需要观察每个图形的形状、颜色、数量等特征,并找到它们之间的规律。
通过找规律,学生可以轻松填满空白。
例如,对于以下图形序列:△, □, △, □, △, __, __, __我们可以发现,图形序列中,每隔一个图形是一个△,每隔一个△是一个□。
根据这个规律,可以填充空白:□, △, □除了形状之外,图形的颜色、大小、重复等特征也可以作为找规律的依据。
学生可以积极观察、比较图形的特征,从而找到规律并解决问题。
三、数字找规律法在四年级的数学学习中,数字找规律也是一个重要内容。
通过观察、分析数字之间的关系,学生可以准确找到规律并填充空白。
例如,对于以下数字序列:1, 3, 5, 7, 9, __, __, 15我们可以发现,数字序列中的每个数字都是前一个数字加2。
根据这个规律,可以轻松填充空白:11, 13另外,四年级学生也可以通过运算法则来找到数字之间的规律。
例如,加法、减法、乘法、除法等运算规则都可以帮助学生解决数字找规律的问题。
四年级奥数找规律填数题目
四年级奥数找规律填数题目一、找规律填数题目。
1. 2,4,6,8,(),()。
- 解析:这组数字是依次增加2的等差数列,所以后面两个数依次为10,12。
2. 1,4,9,16,(),()。
- 解析:这组数字分别是1² = 1,2² = 4,3² = 9,4² = 16,所以后面两个数依次为5² = 25,6² = 36。
3. 3,6,12,24,(),()。
- 解析:后一个数是前一个数的2倍,所以后面两个数依次为48,96。
4. 1,3,4,7,11,(),()。
- 解析:从第三项起,每一项都是前两项之和,4 = 1+3,7 = 3 + 4,11=4+7,所以后面两个数依次为18(7 + 11),29(11+18)。
5. 5,10,15,(),(),30。
- 解析:这组数字是依次增加5的等差数列,所以括号里依次为20,25。
6. (6)2,5,9,14,(),()。
- 解析:相邻两个数的差依次为3,4,5,那么下一个差应该是6,14+6 = 20,再下一个差是7,20+7 = 27。
7. (7)1,3,6,10,(),()。
- 解析:相邻两个数的差依次为2,3,4,下一个差应该是5,10+5 = 15,再下一个差是6,15+6 = 21。
8. (8)18,15,12,(),(),6。
- 解析:这组数字是依次减少3的等差数列,所以括号里依次为9,6。
9. (9)2,4,8,16,(),()。
- 解析:后一个数是前一个数的2倍,所以后面两个数依次为32,64。
10. (10)1,5,2,10,3,15,(),()。
- 解析:奇数项是1,2,3,依次增加1;偶数项是5,10,15,依次增加5,所以后面两个数依次为4,20。
11. (11)4,9,16,25,(),()。
- 解析:这组数字分别是2² = 4,3² = 9,4² = 16,5² = 25,所以后面两个数依次为6² = 36,7² = 49。
四年级奥数找规律
找规律(第一讲)在数学竞赛中,常常显现按规律填数的题目,找规律的方式是依照已知数的前后(可上下)之间的联系,找出其中的规律,求得相应的数。
找到的规律往往和那个数的位置有关。
【例1】请找出以下各组数排列的规律,并依照规律在括号里填上适当的数。
(1)1,5,9,13,(),21,25。
(2)3,6,12,24,(),96,192。
(3)1,4,9,16,25,(),49,64,81。
(4)2,3,5,8,12,17,(),30,38。
(5)21,4,16,4,11,4,(),()。
(6)1,6,5,10,9,14,13,(),()。
【例2】依照下表中数的排列规律,在空格里填上适当的数。
(1)(2)【例3】下面每一个括号里两个数按必然规律组合,在空格里填上适当的数。
(9,13),(17,5),(14,8),( ,16)。
【例4】依照前面两个圈里三个数的关系,在第三个圈里的( )里填上适当的数。
变式练习:1.找出下面各组数排列的规律,并依照规律在括号里填上适合的数。
(1)1,4,3,6,5,( ),( )。
(2)1,4,16,64,( )。
(3)11,3,8,3,5,3,( ),( )。
(4)0,1,3,8,21,( )。
2.找规律,在空格里填上适当的数。
(1)(2)3.下面括号里和两个数是按必然规律组合,依照规律在空格里填上适当的数。
(1)(8,7),(6,9),(10,5),( ,13)。
(2)(1,3),(5,9),(7,13),(9, )。
4.依照前面两个圈里三个数的关系,在第三个圈里的( )里填上适当的数。
(1)(2第二讲找出一列算式中的计算规律,直接写出得数 。
所找到的规律应该适合所有算式。
【例1】请先计算下面一组算式的前三题,然后找出其中的规律,并依照规律直接写出后六题的得数。
1×8+1=12×8+2=123×8+3=1234×8+4=12345×8+5=123456×8+6=1234567×8+7=×8+8=9×8+9=【例2】请先计算下现的一组算式的第一题,然后找出其中的规律,并依照规律直接写出后几题的得数。
四年级奥数:找规律
四年级奥数:找规律(一)我们在三年级已经见过“找规律”这个题目,学习了如何发现图形、数表和数列的变化规律.这一讲重点学习具有“周期性”变化规律的问题.什么是周期性变化规律呢?比如,一年有春夏秋冬四季,百花盛开的春季过后就是夏天,赤日炎炎的夏季过后就是秋天,果实累累的秋季过后就是冬天,白雪皑皑的冬季过后又到了春天.年复一年,总是按照春、夏、秋、冬四季变化,这就是周期性变化规律.再比如,数列0,1,2,0,1,2,0,1,2,0,…是按照0,1,2三个数重复出现的,这也是周期性变化问题.下面,我们通过一些例题作进一步讲解.例1 节日的夜景真漂亮,街上的彩灯按照5盏红灯、再接4盏蓝灯、再接3盏黄灯,然后又是5盏红灯、4盏蓝灯、3盏黄灯、……这样排下去.问:(1)第100盏灯是什么颜色?(2)前150盏彩灯中有多少盏蓝灯?分析与解:这是一个周期变化问题.彩灯按照5红、4蓝、3黄,每12盏灯一个周期循环出现.(1)100÷12=8……4,所以第100盏灯是第9个周期的第4盏灯,是红灯.(2)150÷12=12……6,前150盏灯共有12个周期零6盏灯,12个周期中有蓝灯4×12=48(盏),最后的6盏灯中有1盏蓝灯,所以共有蓝灯48+1=49(盏).例2 有一串数,任何相邻的四个数之和都等于25.已知第1个数是3,第6个数是6,第11个数是7.问:这串数中第24个数是几?前77个数的和是多少?分析与解:因为第1,2,3,4个数的和等于第2,3,4,5个数的和,所以第1个数与第5个数相同.进一步可推知,第1,5,9,13,…个数都相同.同理,第2,6,10,14,…个数都相同,第3,7,11,15,…个数都相同,第4,8,12,16…个数都相同.也就是说,这串数是按照每四个数为一个周期循环出现的.所以,第2个数等于第6个数,是6;第3个数等于第11个数,是7.前三个数依次是3,6,7,第四个数是25-(3+6+7)=9.这串数按照3,6,7,9的顺序循环出现.第24个数与第4个数相同,是9.由77÷4=9……1知,前77个数是19个周期零1个数,其和为25×19+3=478. 例3 下面这串数的规律是:从第3个数起,每个数都是它前面两个数之和的个位数.问:这串数中第88个数是几?628088640448…分析与解:这串数看起来没有什么规律,但是如果其中有两个相邻数字与前面的某两个相邻数字相同,那么根据这串数的构成规律,这两个相邻数字后面的数字必然与前面那两个相邻数字后面的数字相同,也就是说将出现周期性变化.我们试着将这串数再多写出几位:当写出第21,22位(竖线右面的两位)时就会发现,它们与第1,2位数相同,所以这串数按每20个数一个周期循环出现.由88÷20=4……8知,第88个数与第8个数相同,所以第88个数是4.从例3看出,周期性规律有时并不明显,要找到它还真得动点脑筋.例 4 在下面的一串数中,从第五个数起,每个数都是它前面四个数之和的个位数字.那么在这串数中,能否出现相邻的四个数是“2000”?135761939237134…分析与解:无休止地将这串数写下去,显然不是聪明的做法.按照例3的方法找到一周期,因为这个周期很长,所以也不是好方法.那么怎么办呢?仔细观察会发现,这串数的前四个数都是奇数,按照“每个数都是它前面四个数之和的个位数字”,如果不看具体数,只看数的奇偶性,那么将这串数依次写出来,得到奇奇奇奇偶奇奇奇奇偶奇……可以看出,这串数是按照四个奇数一个偶数的规律循环出现的,永远不会出现四个偶数连在一起的情况,即不会出现“2000”.例5 A,B,C,D四个盒子中依次放有8,6,3,1个球.第1个小朋友找到放球最少的盒子,然后从其它盒子中各取一个球放入这个盒子;第2个小朋友也找到放球最少的盒子,然后也从其它盒子中各取一个球放入这个盒子……当100位小朋友放完后,A,B,C,D四个盒子中各放有几个球?分析与解:按照题意,前六位小朋友放过后,A,B,C,D四个盒子中的球数如下表:可以看出,第6人放过后与第2人放过后四个盒子中球的情况相同,所以从第2人放过后,每经过4人,四个盒子中球的情况重复出现一次.(100-1)÷4=24……3,所以第100次后的情况与第4次(3+1=4)后的情况相同,A,B,C,D 盒中依次有4,6,3,5个球.练习71.有一串很长的珠子,它是按照5颗红珠、3颗白珠、4颗黄珠、2颗绿珠的顺序重复排列的.问:第100颗珠子是什么颜色?前200颗珠子中有多少颗红珠?2.将1,2,3,4,…除以3的余数依次排列起来,得到一个数列.求这个数列前100个数的和.3.有一串数,前两个数是9和7,从第三个数起,每个数是它前面两个数乘积的个位数.这串数中第100个数是几?前100个数之和是多少?4.有一列数,第一个数是6,以后每一个数都是它前面一个数与7的和的个位数.这列数中第88个数是几?5.小明按1~3报数,小红按1~4报数.两人以同样的速度同时开始报数,当两人都报了100个数时,有多少次两人报的数相同?6.A,B,C,D四个盒子中依次放有9,6,3,0个小球.第1个小朋友找到放球最多的盒子,从中拿出3个球放到其它盒子中各1个球;第2个小朋友也找到放球最多的盒子,也从中拿出3个球放到其它盒子中各1个球……当100个小朋友放完后,A,B,C,D四个盒子中各放有几个球?第8讲找规律(二)整数a与它本身的乘积,即a×a叫做这个数的平方,记作a2,即a2=a×a;同样,三个a的乘积叫做a的三次方,记作a3,即a3=a×a×a.一般地,n个a相乘,叫做a的n次方,记作a n,即本讲主要讲a n的个位数的变化规律,以及a n除以某数所得余数的变化规律.因为积的个位数只与被乘数的个位数和乘数的个位数有关,所以an的个位数只与a的个位数有关,而a的个位数只有0,1,2,…,9共十种情况,故我们只需讨论这十种情况.为了找出一个整数a自乘n次后,乘积的个位数字的变化规律,我们列出下页的表格,看看a,a2,a3,a4,…的个位数字各是什么.从表看出,a n的个位数字的变化规律可分为三类:(1)当a的个位数是0,1,5,6时,a n的个位数仍然是0,1,5,6.(2)当a的个位数是4,9时,随着n的增大,a n的个位数按每两个数为一周期循环出现.其中a的个位数是4时,按4,6的顺序循环出现;a的个位数是9时,按9,1的顺序循环出现.(3)当a的个位数是2,3,7,8时,随着n的增大,a n的个位数按每四个数为一周期循环出现.其中a的个位数是2时,按2,4,8,6的顺序循环出现;a的个位数是3时,按3,9,7,1的顺序循环出现;当a的个位数是7时,按7,9,3,1的顺序循环出现;当a的个位数是8时,按8,4,2,6的顺序循环出现.例1求67999的个位数字.分析与解:因为67的个位数是7,所以67n的个位数随着n的增大,按7,9,3,1四个数的顺序循环出现.999÷4=249……3,所以67999的个位数字与73的个位数字相同,即67999的个位数字是3.例2求291+3291的个位数字.分析与解:因为2n的个位数字按2,4,8,6四个数的顺序循环出现,91÷4=22……3,所以,291的个位数字与23的个位数字相同,等于8.类似地,3n的个位数字按3,9,7,1四个数的顺序循环出现,291÷4=72……3,所以3291与33的个位数相同,等于7.最后得到291+3291的个位数字与8+7的个位数字相同,等于5.例3求28128-2929的个位数字.解:由128÷4=32知,28128的个位数与84的个位数相同,等于6.由29÷2=14 (1)知,2929的个位数与91的个位数相同,等于9.因为6<9,在减法中需向十位借位,所以所求个位数字为16-9=7.例4 求下列各除法运算所得的余数:(1)7855÷5;(2)555÷3.分析与解:(1)由55÷4=13……3知,7855的个位数与83的个位数相同,等于2,所以7855可分解为10×a+2.因为10×a能被5整除,所以7855除以5的余数是2.(2)因为a÷3的余数不仅仅与a的个位数有关,所以不能用求555的个位数的方法求解.为了寻找5n÷3的余数的规律,先将5的各次方除以3的余数列表如下:注意:表中除以3的余数并不需要计算出5n,然后再除以3去求,而是用上次的余数乘以5后,再除以3去求.比如,52除以3的余数是1,53除以3的余数与1×5=5除以3的余数相同.这是因为52=3×8+1,其中3×8能被3整除,而53=(3×8+1)×5=(3×8)×5+1×5,(3×8)×5能被3整除,所以53除以3的余数与1×5除以3的余数相同.由上表看出,5n除以3的余数,随着n的增大,按2,1的顺序循环出现.由55÷2=27……1知,555÷3的余数与51÷3的余数相同,等于2.例5 某种细菌每小时分裂一次,每次1个细茵分裂成3个细菌.20时后,将这些细菌每7个分为一组,还剩下几个细菌?分析与解:1时后有1×3=31(个)细菌,2时后有31×3=32(个)细菌……20时后,有320个细菌,所以本题相当于“求320÷7的余数”.由例4(2)的方法,将3的各次方除以7的余数列表如下:由上表看出,3n÷7的余数以六个数为周期循环出现.由20÷6=3……2知,320÷7的余数与32÷7的余数相同,等于2.所以最后还剩2个细菌.最后再说明一点,a n÷b所得余数,随着n的增大,必然会出现周期性变化规律,因为所得余数必然小于b,所以在b个数以内必会重复出现.练习81.求下列各数的个位数字:(1)3838;(2)2930;(3)6431;(4)17215.2.求下列各式运算结果的个位数字:(1)9222+5731;(2)615+487+349;(3)469-6211;(4)37×48+59×610.3.求下列各除法算式所得的余数:(1)5100÷4;(2)8111÷6;(3)488÷7答案练习71.红;74颗.2.100. 提示:数列是1,2,0,1,2,0,1,2,0,…,以1,2,0三个数为周期循环出现.3.1;436.提示:这串数按9,7,3,1,3,3六个数循环出现.4.5.提示:这列数按6,3,0,7,4,1,8,5,2,9循环出现.5.27次. 提示:每报12个数有3个数相同.6.5,6,,3,4. 提示:解法同例5.练习81.(1)4;(2)1;(3)4;(4)3.2.(1)7;(2)7;(3)8;(4)2.3.(1)1;(2)2;(3)4.提示:(1)任何数除以4的余数都等于这个数的后两位数除以4的余数,5的任何(大于2)次方的后两位都是25.(2)8n除以6的余数,当n是奇数时等于2,当n是偶数时等于4.(3)与例4类似可得下表:4n除以7的余数,随着n的增大,按4,2,1的顺序循环出现.由88÷3=29 (1)知,488÷7的余数与41÷7的余数相同,是4.。
四年级奥数数字找规律
2×2=4
(2)1,2,2,4,8,32,( 256),······
1×2=2 2×4=8
2×2+1
11×2+1
47×2+1
(3)2,5,11,23,47,( 95 ),······
5×2+1
23×2+1
7+3=10
3+3=6
(4)6,7,3,0,3,3,6,9,5,( ),······
6+7=13 3+0=3
• 每个数都是前两个数成绩的个位数字,那么这一
列
4
• 数的第50个数是
。
3. 你能根据左边的一张表格中的规律,完成右边 的表格吗?
5
1
6
2
7
3
8
4
9
5
10
10
5
15
4
14
3
? 13
2
? 12
1
? 11
4. 先找出下图中的规律,再在空格中填上合 适的数。
6 10
2 7
3
0
8 4?
5. 把没有按规律填写的数划去。 (1)1,3,5,7,10,9,11 (2)1,2,3,1,2,5,1,2,7,2,3,8,1,2,9 (3)1,1+2,2,2+2,3,3+2,4,4+2,6,6+2,5,5+2
1、从相邻两数之间的关系找规律 2、从相邻三数之间的关系找规律 3、从间隔两数之间的关系找规律 4、整体把握
作业设计
1. 练习册 第一讲做完 2. 预习第二讲并做完前测部分
励志小故事
有个老人在河边钓鱼,一个小孩走过去看他钓鱼,老人技巧纯熟,所 以没多久就钓上了满篓的鱼,老人见小孩很可爱,要把整篓的鱼送给他, 小孩摇摇头,老人惊异的问道:「你为何不要?」小孩回答:「我想要 你手中的钓竿。」老人问:「你要钓竿做什么?」小孩说:「这篓鱼没 多久就吃完了,要是我有钓竿,我就可以自己钓,一辈子也吃不完。」 我想你一定会说:好聪明的小孩。错了,他如果只要钓竿,那他一条鱼 也吃不到。因为,他不懂钓鱼的技巧,光有鱼竿是没用的,因为钓鱼重 要的不在<钓竿>,而在<钓技>有太多人认为自己拥有了人生道上的 钓竿,再也无惧于路上的风雨,如此,难免会跌倒于泥泞地上。就如小 孩看老人,以为只要有钓竿就有吃不完的鱼,像职员看老板,以为只要 坐在办公室,就有滚进的财源。
四年级奥数 找 规 律
第1讲找规律(一)【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。
1,4,7,10,(),16,19练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。
(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),19(5)3,6,12,(),48,(),192(6)2,6,18,(),162,()(7)128,64,32,(),8,(),2(8)19,3,17,3,15,3,(),(),11,3..【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。
1,2,4,7,(),16,22练习2:先找出下列数排列的规律,然后在括号里填上适当的数。
(1)10,11,13,16,20,(),31(2)1,4,9,16,25,(),49,64(3)3,2,5,2,7,2,(),(),11,2(4)53,44,36,29,(),18,(),11,9,8(5)81,64,49,36,(),16,(),4,1,0(6)28,1,26,1,24,1,(),(),20,1(7)30,2,26,2,22,2,(),(),14,2【例题3】先找出规律,然后在括号里填上适当的数。
23,4,20,6,17,8,(),(),11,12练习3:先找出规律,然后在括号里填上适当的数。
(1)1,6,5,10,9,14,13,(),()(2)13,2,15,4,17,6,(),()(3)3,29,4,28,6,26,9,23,(),(),18,14(4)21,2,19,5,17,8,(),()(5)32,20,29,18,26,16,(),(),20,12(6)2,9,6,10,18,11,54,(),(),13,486(7)1,5,2,8,4,11,8,14,(),()(8)320,1,160,3,80,9,40,27,(),()(9)1,6,4,8,7,10,(),(),13,14【例题4】在数列1,1,2,3,5,8,13,(),34,55……中,括号里应填什么数?练习4:先找出规律,然后在括号里填上适当的数。
四年级奥数练习-找规律(含答案)
找规律(一)
例题与方法
例1. 请找出下列各组数排列的规律,并根据规律在括号里填上适当的数。
(1)1,5,9,13,( ),21,25。
(2)3,6,12,24,( ),96,192。
(3)1,4,9,16,25,( ),49,64,81。
(4)2,3,5,8,12,17,( ),30,38。
(5)21,4,16,4,11,4,( ),( )。
(6)1,6,5,10,9,14,13,( ),( )。
例2.根据下表中数的排列规律,在空格里填上适当的数。
(1)
(2)
例3.下面每个括号里两个数按一定规律组合,在里填上适当的数。
(9,13),(17,5),(14,8),( ,16)。
例4.根据前面两个圈里三个数的关系,在第三个圈里的( )里填上适当的数。
练习与思考
1.找出下面各组数排列的规律,并根据规律在括号里填上合适的数。
(1)1,4,3,6,5,( ),( )。
(2)1,4,16,64,( )。
(3)11,3,8,3,5,3,( ),( )。
(4)0,1,3,8,21,()。
2.找规律,在空格里填上适当的数。
(1)
(2)
3.下面括号里和两个数是按一定规律组合,根据规律在里填上适当的数。
(1)(8,7),(6,9),(10,5),(,13)。
(2)(1,3),(5,9),(7,13),(9,)。
4.根据前面两个圈里三个数的关系,在第三个圈里的()里填上适当的数。
(1) (2)
(2)。
(完整版)小学奥数图形找规律(四年级)
找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题:⑴图形数量的变化;⑵图形形状的变化;⑶图形大小的变化;⑷图形颜色的变化;⑸图形位置的变化;⑹图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.板块一数量规律【例 1】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【解析】横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个圆形。
【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?丁【解析】(方法一)横着看,每行三角形的个数依次减少,而正方形的个数依次增加,但每行图形的总个数不变.因为三角形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个三角形△.(方法二)竖着看,三角形由左而右依次减少,而正方形由左而右依次增加,三角形按照4、?、2、1的顺序变化,也可以看出“?”处应是三角形△.【例 2】观察下面的图形,按规律在“?”处填上适当的图形.丁图形找规律【解析】本题中,几何图形的变化表现在数量关系上,图中黑三角形的个数从左到右依次增多,从(2)起,每一个格比前面一个格多两个黑三角形,所以,第(4)个方框中应填七个黑三角形.【例 3】观察图形变化规律,在右边补上一幅,使它成为一个完整系列。
【解析】观察发现,乌龟的顺序是:头、身→一只脚、背上一个点→两只脚、背上两个点→两只脚、一条尾、背上三个点→三只脚、一条尾、背上四个点,根据这个规律,最后一幅图应该是:→四只脚、一条尾、背上五个点.即:【例 4】观察图形变化规律,在右边再补上一幅,使它们成为一个完整的系列.【解析】第一格有8个圆圈,第二格有4个圆圈,第三格有2个圆圈,第四格有1个圆圈,第五格有半个圆圈.由此发现,前一格中的图减少一般,正好是后一格的图.所以第六格的图应该是第五格图的一半,即:板块二 旋转、轮换型规律【例 5】相传古时候一位老人留在人间很多宝盒,里面装着世界上最宝贵的财富,但是并不是拥有宝盒都可以得到这笔财富,在宝盒的上面设置了密码,只有写出密码的人才会真正拥有这笔财富,聪明的你你能找出密码吗?○ □ ☆ △ ○ □ ☆ △ △ ○ □ ☆ △ ○ □ ☆☆ △ ○ □ ☆ △ ○ □()()()()()()()()【解析】有几种方法可以找出密码:(方法一)后面一排和前面一排比,上排的第一个图形移到最后,其他每个图形都向前移动了一格,变成了下一排.(方法二)斜着看,每一斜列的图形是一样的.所以密码就是: □ ☆ △ ○ □ ☆ △ ○【例 6】观察下图的变化规律,画出丙图.丁丁丁A【解析】AC【总结】旋转是数学中的重要概念,掌握好这个概念,可以提高观察能力,加快解题速度,对于许多问题的解决,也有事半而功倍的效果.【例 7】下面各种各样的娃娃头好看吗?认真观察你能找到它们排列的规律吗?根据规律把最后一个画出来.【解析】【例 8】观察图中所给出图形的变化规律,然后在空白处填画上所缺的图形.e an dh e i rb 【解析】【例 9】琪琪特别喜欢蝴蝶,她用直尺和圆规在纸上画了9幅蝴蝶图,并用剪刀将它们一一剪下来.她将这9只纸蝴蝶摆在桌上,见下图1,她发现这些纸蝴蝶排列挺有规律,突然一阵风来,吹走了3只纸蝴蝶,见下图2.你能找出蝴蝶的排列规律,将图2的3只蝴蝶放入图1的空缺处吗?丁1987654321丁2B CA【解析】从已摆好的第一行和第一列来看,无论横看或竖看,同一行中3只蝴蝶的翅膀形状各不相同,翅膀上的斑点的形状也各不相同.根据这个规律,剩下的3只蝴蝶图案的排列应该是:6号位置放图案C ;8号位置放图案B ;9号位置放图案A.【例 10】观察下列各组图的变化规律,并在“?”处画出相关的图形.(1)丁丁丁丁丁【解析】(1)这四个图形的变化规律是:每一个图形都是由其前一个图形顺时针旋转90°而得到的.见下面左图;(2)甲乙丙丁四个图形变化规律也类似,注意因为图形是由旋转而得到的,所以其中三角形、菱形的方向随旋转而变化,作图的时候要注意到这一点.丁图处的图形应是下面右图:丁【例 11】请你认真仔细观察,按照下面图形的变化规律,在“?”处画出合适的图形。
四年级奥数找规律填数的技巧与策略
四年级奥数找规律填数的技巧与策略随着数学水平的不断提高,越来越多的四年级学生开始接触奥数,而找规律填数是奥数常见的题型之一。
本文将为大家介绍一些四年级奥数找规律填数的技巧与策略,帮助大家提高解题能力。
一、寻找数字规律在找规律填数的问题中,我们首先需要观察一组数字的规律。
有时候规律可能是数字的变化规律,有时候则可能是数字之间的关系。
以下是一些常见的数字规律:1. 数字序列递增或递减:当数字序列出现递增或递减的规律时,我们可以通过观察数字之间的差异来填写下一个数字。
例如,序列1、3、5、7、9,下一个数字很有可能是11。
2. 数字间的运算规律:有时候数字之间可能存在一定的运算关系。
我们可以通过观察数字之间的运算规律来填写下一个数字。
例如,序列2、4、6、8,我们可以发现每个数字都是前一个数字加2得到的,下一个数字很有可能是10。
3. 数字之间的模式:有时候数字序列中存在一种模式,如乘法、幂运算等。
我们可以通过观察数字之间的模式来填写下一个数字。
例如,序列1、2、4、8,我们可以发现每个数字都是前一个数字的两倍,下一个数字很有可能是16。
二、尝试不同的策略当我们遇到找规律填数的问题时,可以尝试使用以下一些策略来解决问题:1. 递归法:如果我们找到了数字序列的规律,可以通过不断递归应用规律来填写下一个数字。
例如,序列2、4、8、16,我们可以发现每个数字都是前一个数字的两倍,我们可以继续递归应用这个规律,下一个数字很有可能是32。
2. 变化法:有时候可能存在多种规律,我们可以通过改变数字序列或者尝试不同的规律来填写下一个数字。
例如,序列2、6、18、54,我们可以发现每个数字都是前一个数字乘以3得到的,但是我们也可以发现每个数字都是前一个数字加2乘以3得到的。
3. 推理法:有时候我们需要根据已有的规律进行推理来填写下一个数字。
例如,序列5、10、20、40,我们可以发现每个数字都是前一个数字的两倍,我们可以根据这个规律推理出下一个数字很有可能是80。
小学四年级奥数找规律(练习 版)
小学四年级奥数第五讲 找规律(一)一、精讲精练【例题1】在括号内填上合适的数。
(1)3,6,9,12,( ),( )(2)1,2,4,7,11,( ),( )(3)2,6,18,54,( ),( )练习1:在括号内填上合适的数。
(1)2,4,6,8,10,( ),( )(2)1,2,5,10,17,( ),( )(3)2,8,32,128,( ),( )(4)1,5,25,125,( ),( )(5)12,1,10,1,8,1,( ),( )【例题2】先找出规律,再在括号里填上合适的数。
(1)15,2,12,2,9,2,( ),( )(2)21,4,18,5,15,6,( ),( )练习2:按规律填数。
(1)2,1,4,1,6,1,( ),( )(2)3,2,9,2,27,2,( ),( )(3)18,3,15,4,12,5,( ),( )(4)1,15,3,13,5,11,( ),( )(5)1,2,5,14,( ),( )【例题3】先找出规律,再在括号里填上合适的数。
(1)2,5,14,41,( ) (2)252,124,60,28,( )(3)1,2,5,13,34,( ) (4)1,4,9,16,25,36,( )练习3:按规律填数。
(1)2,3,5,9,17,( ),( ) (2)2,4,10,28,82,( ),( )(3)94,46,22,10,( ),( ) (4)2,3,7,18,47,( ),( )【例题4】根据前面图形里的数的排列规律,填入适当的数。
(1)5109147121116914139327124363612(3)练习4:找出排列规律,在空缺处填上适当的数。
(1)37598121014121614(3)8416168323216645151272118927【例题5】按规律填数。
(1)187,286,385,( ),( )(2)23312541412346433524练习5:根据规律,在空格内填数。
小学四年级奥数找规律
小学四年级奥数找规律小学四年级奥数找规律编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(小学四年级奥数找规律)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为小学四年级奥数找规律的全部内容。
小学四年级奥数找规律小学四年级奥数第五讲找规律(一)一、知识要点按照一定次序排列起来的一列数,叫做数列。
如自然数列:1,2,3,4,……双数列:2,4,6,8,……我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。
按照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。
寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑.善于发现数列的规律是填数的关键。
二、精讲精练【例题1】在括号内填上合适的数。
(1)3,6,9,12,(),()(2)1,2,4,7,11,(),( )(3)2,6,18,54,( ),()练习1:在括号内填上合适的数。
(1)2,4,6,8,10,(),()(2)1,2,5,10,17,(),( )(3)2,8,32,128,(),()(4)1,5,25,125,( ),()(5)12,1,10,1,8,1,( ),()【例题2】先找出规律,再在括号里填上合适的数.(1)15,2,12,2,9,2,( ),( )(2)21,4,18,5,15,6,( ),()练习2:按规律填数。
(1)2,1,4,1,6,1,(),( )(2)3,2,9,2,27,2,( ),( )(3)18,3,15,4,12,5,(),()(4)1,15,3,13,5,11,( ),()(5)1,2,5,14,(),()【例题3】先找出规律,再在括号里填上合适的数。
小学四年级奥数第一讲找规律
⼩学四年级奥数第⼀讲找规律第⼀讲找规律(⼀)解题⽅法我们常见到⼀些寻找⼀组数规律的题,⼀般情况下是观察前后两个数或⼀组数的变化规律。
也可以根据相隔的每两个数之间的关系找出规律,从⽽推断出要填的数。
例题1 找出下列数列的排列规律,并填上合适的数。
0、3、9、18、()、()……步骤由上表可知它们的差分别是3、6、9……即按照3的1倍、2倍、3倍、4倍、5倍??这样的规律排列的,所以应填30、45。
引申1、找出下列数列的排列规律,并填上合适的数。
1、5、25、125、()……解:在1、5、25、125中,后⼀个数等于前⼀个数乘5,根据这⼀规律可以确定括号内应填6252、找出下列数列的排列规律,并填上合适的数。
1、4、7、10、()、16……解:在这列数中,每⼀个数加上3都等于后⾯的⼀个数,这列数排列的规律相邻两个数的差是3,所以括号内应填13。
3、找出下列数列的排列规律,并填上合适的数。
1、15、3、20、5、()、()、……例题2 找规律,在括号中填⼊适当的数。
1、2、4、7、11、()、()、……()思考:先仔细观察这列数,第⼀个数是1,第⼆个数是1+1=2,第三个数是1+1+2=4,第四个数是1+1+2+3=7,第五个数是1+1+2+3+4=11,…那么第n 个数是1+1+2+3+…+(n-1),根据规律可得答案。
由上⾯的规律可得第6个数是1+1+2+3+4+5=16,第7个数1+1+2+3+4+5+6=22,第43个数是1+1+2+3+4+5+6+…+42=904。
引申1、先观察,再按规律填数。
1、4、9、16、()、()、…、()答案:25、36、100002、先观察,再按规律填数。
2、4、6、8、()、()、…()、…()第43个第100个第20个第61个解:仔细观察可知,第1个数×2得2,第2个数×2得4,第3个数×2得6,?,第n 个数×2得2n,所以第1个空填10,第2个空填12,第20个空填40,第61个空填122。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学四年级奥数第五讲找规律(一)一、知识要点按照一定次序排列起来的一列数,叫做数列。
如自然数列:1,2,3,4,……双数列:2,4,6,8,……我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。
按照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。
寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。
善于发现数列的规律是填数的关键。
二、精讲精练【例题1】在括号内填上合适的数。
(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()练习1:在括号内填上合适的数。
(1)2,4,6,8,10,(),()(2)1,2,5,10,17,(),()(3)2,8,32,128,(),()(4)1,5,25,125,(),()(5)12,1,10,1,8,1,(),()【例题2】先找出规律,再在括号里填上合适的数。
(1)15,2,12,2,9,2,(),()(2)21,4,18,5,15,6,(),()练习2:按规律填数。
(1)2,1,4,1,6,1,(),()(2)3,2,9,2,27,2,(),()(3)18,3,15,4,12,5,(),()(4)1,15,3,13,5,11,(),()(5)1,2,5,14,(),()【例题3】先找出规律,再在括号里填上合适的数。
(1)2,5,14,41,()(2)252,124,60,28,()(3)1,2,5,13,34,( ) (4)1,4,9,16,25,36,( )练习3:按规律填数。
(1)2,3,5,9,17,( ),( ) (2)2,4,10,28,82,( ),( )(3)94,46,22,10,( ),( ) (4)2,3,7,18,47,( ),( )【例题4】根据前面图形里的数的排列规律,填入适当的数。
(1)(3) 练习4:找出排列规律,在空缺处填上适当的数。
(1)(3) 【例题5】按规律填数。
(1)187,286,385,( ),( )(2)5 10 9 14 7 12 11 16 9 14 13(2)94371484281649 3 27 12 4 36 36 123 7 5 9 8 12 10 14 12 16 14 8 4 16 16 8 32 32 16 645 15 12 7 2118 9 27(2)489276828723 31 2541 41 23 4643 35 24练习5:根据规律,在空格内填数。
(1)198,297,396,(),()(2)(3)32 54386421 45266532 5737 25389523 45277534 25找规律(二)一、知识要点观察是解决问题的根据。
通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。
二、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。
1,4,7,10,(),16,19【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。
根据这一规律,括号里应填的数为:10+3=13或16-3=13。
像上面按照一定的顺序排列的一串数叫做数列。
练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。
(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),19(5)3,6,12,(),48,(),192(6)2,6,18,(),162,()(7)128,64,32,(),8,(),2(8)19,3,17,3,15,3,(),(),11,3..【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。
1,2,4,7,(),16,22【思路导航】在这列数中,前4个数每相邻的两个数的差依次是1,2,3。
由此可以推算7比括号里的数少4,括号里应填:7+4=11。
经验证,所填的数是正确的。
应填的数为:7+4=11或16-5=11。
练习2:先找出下列数排列的规律,然后在括号里填上适当的数。
(1)10,11,13,16,20,(),31(2)1,4,9,16,25,(),49,64(3)3,2,5,2,7,2,(),(),11,2 (4)53,44,36,29,(),18,(),11,9,8(5)81,64,49,36,(),16,(),4,1,0(6)28,1,26,1,24,1,(),(),20,1(7)30,2,26,2,22,2,(),(),14,2(8)1,6,4,8,7,10,(),(),13,14 【例题3】先找出规律,然后在括号里填上适当的数。
23,4,20,6,17,8,(),(),11,12【思路导航】在这列数中,第一个数减去3的差是第三个数,第二个数加上2的和是第四个数,第三个数减去3的差是第五个数,第四个数加上2的和是第六个数……依此规律,8后面的一个数为:17-3=14,11前面的数为:8+2=10练习3:先找出规律,然后在括号里填上适当的数。
(1)1,6,5,10,9,14,13,(),()(2)13,2,15,4,17,6,(),()(3)3,29,4,28,6,26,9,23,(),(),18,14(4)21,2,19,5,17,8,(),()(5)32,20,29,18,26,16,(),(),20,12(6)2,9,6,10,18,11,54,(),(),13,486(7)1,5,2,8,4,11,8,14,(),()(8)320,1,160,3,80,9,40,27,(),()【例题4】在数列1,1,2,3,5,8,13,(),34,55……中,括号里应填什么数?【思路导航】经仔细观察、分析,不难发现:从第三个数开始,每一个数都等于它前面两个数的和。
根据这一规律,括号里应填的数为:8+13=21或34-13=21上面这个数列叫做斐波那切(意大利古代著名数学家)数列,也叫做“兔子数列”。
练习4:先找出规律,然后在括号里填上适当的数。
(1)2,2,4,6,10,16,(),()(2)34,21,13,8,5,(),2,()(3)0,1,3,8,21,(),144(4)3,7,15,31,63,(),()(5)33,17,9,5,3,()(6)0,1,4,15,56,()(7)1,3,6,8,16,18,(),(),76,78 (8)0,1,2,4,7,12,20,()【例题5】下面每个括号里的两个数都是按一定的规律组合的,在□里填上适当的数。
(8,4)(5,7)(10,2)(□,9)【思路导航】经仔细观察、分析,不难发现:每个括号里的两个数相加的和都是12。
根据这一规律,□里所填的数应为:12-9=3 练习5:下面括号里的两个数是按一定的规律组合的,在□里填上适当的数。
(1)(6,9)(7,8)(10,5)(□,)(2)(1,24)(2,12)(3,8)(4,□)(3)(18,17)(14,10)(10,1)(□,5)(4)(2,3)(5,9)(7,13)(9,□)(5)(2,3)(5,7)(7,10)(10,□)(6)(64,62)(48,46)(29,27)(15,□)(7)(100,50)(86,43)(64,32)(□,21)(8)(8,6)(16,3)(24,2)(12,□)找规律(三)一、知识要点对于较复杂的按规律填数的问题,我们可以从以下几个方面来思考:1.对于几列数组成的一组数变化规律的分析,需要我们灵活地思考,没有一成不变的方法,有时需要综合运用其他知识,一种方法不行,就要及时调整思路,换一种方法再分析;2.对于那些分布在某些图中的数,它们之间的变化规律往往与这些数在图形中的特殊位置有关,这是我们解这类题的突破口。
3.对于找到的规律,应该适合这组数中的所有数或这组算式中的所有算式。
二、精讲精练【例题1】根据下表中的排列规律,在空格里填上适当的数。
【思路导航】经仔细观察、分析表格中的数可以发现:12+6=18,8+7=15,即每一横行中间的数等于两边的两个数的和。
依此规律,空格中应填的数为:4+8=12。
练习1:找规律,在空格里填上适当的数。
【例题2】根据前面图形中的数之间的关系,想一想第三个图形的括号里应填什么数?【思路导航】经仔细观察、分析可以发现前面两个圈中三个数之间有这样的关系:5×12÷10=6 4×20÷10=8根据这一规律,第三个圈中右下角应填的数为:8×30÷10=24.练习2:根据前面图形中数之间的关系,想一想第三个图形的空格里应填什么数。
(1)(2)(3)【例题3】先计算下面一组算式的第一题,然后找出其中的规律,并根据规律直接写出后几题的得数。
12345679×9= 12345679×18=12345679×54= 12345679×81=【思路导航】题中每个算式的第一个因数都是12345679,它是有趣的“缺8数”,与9相乘,结果是由九个1组成的九位数,即:111111111。
不难发现,这组题得数的规律是:只要看每道算式的第二个因数中包含几个9,乘积中就包含几个111111111。
因为:12345679×9=111111111所以:12345679×18=12345679×9×2=22222222212345679×54=12345679×9×6=666666666 12345679×81=12345679×9×9=999999999.练习3:找规律,写得数。
(1) 1+0×9= 2+1×9= 3+12×9=4+123×9= 9+12345678×9=(2) 1×1= 11×11= 111×111=111111111×111111111=(3)19+9×9= 118+98×9=1117+987×9=11116+9876×9= 111115+98765×9=【例题4】找规律计算。