2020年河南省安阳市中考数学二模试卷答案版

合集下载

【附5套中考模拟试卷】河南省安阳市2019-2020学年中考第二次模拟数学试题含解析

【附5套中考模拟试卷】河南省安阳市2019-2020学年中考第二次模拟数学试题含解析
(1)求抛物线y=ax2+bx+3的表达式,并求点E的坐标;
20.(6分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y= 的图象的两个交点.求反比例函数和一次函数的解析式;求直线AB与x轴的交点C的坐标及△AOB的面积;直接写出一次函数的值小于反比例函数值的x的取值范围.
21.(6分)如图,把两个边长相等的等边△ABC和△ACD拼成菱形ABCD,点E、F分别是CB、DC延长上的动点,且始终保持BE=CF,连结AE、AF、EF.求证:AEF是等边三角形.
A.75°B.65°C.60°D.50°
7.如图,在平面直角坐标系xOy中,菱形AOBC的一个顶点O在坐标原点,一边OB在x轴的正半轴上,sin∠AOB= ,反比例函数y= 在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于( )
A.30B.40C.60D.80
8.下列图形中,可以看作中心对称图形的是( )
河南省安阳市2019-2020学年中考第二次模拟数学试题
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符Fra bibliotek题目要求的.)
1.如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22时,y=110﹣1t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.1.其中正确结论的序号是( )

安阳市2020年中考数学试卷(II)卷

安阳市2020年中考数学试卷(II)卷

安阳市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016高一下·锦屏期末) 下列说法中,不正确的是()A . 0既不是正数,也不是负数B . 1是绝对值最小的数C . 0的相反数是0D . 0的绝对值是02. (2分)(2019·福州模拟) 下列计结果为a10的是()A . a6+a4B . a11-aC . a5·a2D . a12÷a23. (2分) (2016九下·赣县期中) 下列图形中,是中心对称图形但不是轴对称图形的是()A .B .C .D .4. (2分)已知点A(x1 , y1),B(x2 , y2)是反比例函数y=﹣的图象上的两点,若x1<0<x2 ,则下列结论正确的是()A . y1<0<y2B . y2<0<y1C . y1<y2<0D . y2<y1<05. (2分)(2019·广元) 我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A .B .C .D .6. (2分)(2017·都匀模拟) 如图,直线l经过第一、二、四象限,l的解析式是y=(m﹣3)x+m+2,则m 的取值范围在数轴上表示为()A .B .C .D .7. (2分) (2020七上·海曙期末) 某车间有26名工人,3每人每天能生产螺栓12个或螺母18个。

若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x名工人生产螺栓,其他工人生产螺母,所列方程正确的是()A . 12x=18(26-x)B . 18x=12(26-x)C . 2×18x=12(26-x)D . 2×12x=18(26-x)8. (2分)如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()A . 13B . 26C . 47D . 949. (2分)(2019·莲湖模拟) 如图,在中,点D,E分别为AB,AC边上的点,且,CD、BE相较于点O,连接AO并延长交DE于点G,交BC边于点F,则下列结论中一定正确的是A .B .C .D .10. (2分)在一次自行车越野赛中,甲乙两名选手行驶的路程y(千米)随时间x(分)变化的图象(全程)如图,根据图象判定下列结论:(1)甲先到达终点;(2)前30分钟,甲在乙的前面;(3)第48分钟时,两人第一次相遇;(4)这次比赛的全程是28千米.其中正确的个数是()A . 1B . 2C . 3D . 4二、填空题 (共10题;共11分)11. (1分)(2020·平度模拟) 2020年3月11日,全国绿化委员会办公室发布《2019年中国国土绿化状况公报》显示,2019年我国国土绿化工作取得新成绩,全年共完成造林7067000公顷。

2020河南省普通高中招生考试 中考 二模数学试题(一)(附详细解析)

2020河南省普通高中招生考试  中考 二模数学试题(一)(附详细解析)

…………○名:___________班…………○绝密★启用前2020河南省普通高中招生考试二模数学试题(一)考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题1.2-的相反数是( ) A .2-B .2C .12D .12-2.莫拉、沃姆两位博士及其同事在《PloS Biology 》期刊发表了一篇关于地球物种数量预测的文章,根据他们采用最新分析方法,这个星球总共拥有8700000个物种,8700000用科学记数法可以表示为( ) A .58.710⨯B .68.710⨯C .78.710⨯D .70.8710⨯3.如图是正方体的表面展开图,则与“前”字相对的字是( )A .认B .真C .复D .习4.下列计算正确的是( ) A .2a a a +=B .33(2)6a a =C .22(1)1a a -=-D .32a a a ÷=5.某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是( ) A .平均分是91B .中位数是90C .众数是94D .极差是206.《九章算术》中有一道“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:“现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x 钱,共同购买该物品的有y 人,则根据题意,列出的方程组是()A .8374y x y x -=⎧⎨-=⎩B .8374y x y x -=⎧⎨-=-⎩………外………………○…………※在※※装※※订※※线※※内………内………………○…………C .8374y x y x -=-⎧⎨-=-⎩D .8374y x y x -=⎧⎨-=⎩7.关于x 的一元二次方程240x x k ++=有两个实数根,则k 的取值范围是( ) A .4k ≤-B .4k <-C .4k ≤D .4k <8.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A .49B .13C .29D .199.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别一点M N 、为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P . 若点P 的坐标为11,423a a ⎛⎫⎪-+⎝⎭,则a 的值为( )A .1a =-B .7a =-C .1a =D .13a =10.如图1,荧光屏上的甲、乙两个光斑(可看作点)分别从相距8cm 的A ,B 两点同时开始沿线段AB 运动,运动工程中甲光斑与点A 的距离S 1(cm )与时间t (s )的函数关系图象如图2,乙光斑与点B 的距离S 2(cm )与时间t (s )的函数关系图象如图3,已知甲光斑全程的平均速度为1.5cm/s ,且两图象中△P 1O 1Q 1≌P 2Q 2O 2,下列叙述正确的是( )A .甲光斑从点A 到点B 的运动速度是从点B 到点A 的运动速度的4倍 B .乙光斑从点A 到B 的运动速度小于1.5cm/s……○………………○……………○………学校:_______________班级:____________……○………………○……………○………D .甲乙两光斑在运动过程中共相遇3次第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题11.计算:1)=________.12.如图,直线AB 、CD 相交于点O ,OE AB ⊥,若120∠=︒,则2∠=________.13.若关于x 的一元一次不等式组0231x a x ->⎧⎨-<⎩有2个负整数解,则a 的取值范围是_____.14.如图,在边长为4的正方形ABCD 中,以点B 为圆心,以AB 为半径画弧,交对角线BD 于点E ,则图中阴影部分的面积是_____(结果保留π)15.如图,正方形ABCD 的边长为12,点E 在边AB 上,8BE =,过点E 作//EF BC ,分别交BD 、CD 于G 、F 两点.若点P 、Q 分别为DG 、CE 的中点,则PQ 的长为________.三、解答题16.先化简,再求值:222216·44a a a a a -+-,其中a = 17.某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图 1 和图 2 所示的不完整统计图 . (1) 被调查员工的人数为 人:……○………○…………订………线…………※※请※※※※订※※线※※内※……○………○…………订………线…………(3) 若该企业有员工 10000 人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?18.如图,一次函数1522y x =-+的图像与反比例函数k y x=(k >0)的图像交于A ,B 两点,过点A 做x 轴的垂线,垂足为M ,△AOM 面积为1. (1)求反比例函数的解析式;(2)在y 轴上求一点P,使PA+PB 的值最小,并求出其最小值和P 点坐标.19.如图,在Rt △ACB 中,∠C=90°,AC=3cm ,BC=4cm ,以BC 为直径作⊙O 交AB 于点D .(1)求线段AD 的长度;(2)点E 是线段AC 上的一点,试问:当点E 在什么位置时,直线ED 与⊙O 相切?请说明理由.20.某区域平面示意图如图,点O 在河的一侧,AC 和BC 表示两条互相垂直的公路.甲勘测员在A 处测得点O 位于北偏东45°,乙勘测员在B 处测得点O 位于南偏西73.7°,测得AC=840m ,BC=500m .请求出点O 到BC 的距离.参考数据:sin73.7°≈2425,cos73.7°≈725,tan73.7°≈247线…………○……线…………○……21.已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为v (单位:吨/小时),卸完这批货物所需的时间为t (单位:小时). (1)求v 关于t 的函数表达式.(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨? 22.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,AD=2AB ,E 是AB 延长线上一点,且BE=AB ,连接DE ,交BC 于点M ,以DE 为一边在DE 的左下方作正方形DEFG ,连接AM .试判断线段AM 与DE 的位置关系. 探究展示:勤奋小组发现,AM 垂直平分DE ,并展示了如下的证明方法: 证明:∵BE=AB ,∴AE=2AB . ∵AD=2AB ,∴AD=AE .∵四边形ABCD 是矩形,∴AD ∥BC .∴EM EBDM AB=.(依据1) ∵BE=AB ,∴1EMDM=.∴EM=DM . 即AM 是△ADE 的DE 边上的中线, 又∵AD=AE ,∴AM ⊥DE .(依据2) ∴AM 垂直平分DE . 反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A 是否在线段GF 的垂直平分线上,请直接回答,不必证明; (2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE ,以CE 为一边在CE 的左下方作正方形CEFG ,发现点G 在线段BC 的垂直平分线上,请你给出证明; 探索发现:(3)如图3,连接CE ,以CE 为一边在CE 的右上方作正方形CEFG ,可以发现点C ,点B 都在线段AE 的垂直平分线上,除此之外,请观察矩形ABCD 和正方形CEFG 的…………装…………○……………线…………○…※请※※不※※要※※在※※装※※订…………装…………○……………线…………○…并加以证明.23.如图,在平面直角坐标系xOy 中,以直线52x =为对称轴的抛物线2y ax bx c =++与直线():0l y kx m k =+>交于()1,1A ,B 两点,与y 轴交于()0,5C ,直线l 与y 轴交于点D .(1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F ,G 是抛物线上位于对称轴右侧的一点,若34AF FB =,且BCG ∆与BCD ∆的面积相等,求点G 的坐标; (3)若在x 轴上有且只有一点P ,使90APB ∠=︒,求k 的值.参考答案1.B 【解析】 【分析】根据相反数的性质可得结果. 【详解】因为-2+2=0,所以﹣2的相反数是2, 故选B . 【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 . 2.B 【解析】 【分析】将原数写成a×10n的形式,其中1<| a | <10, n 的值为小数点向左移动的位数即可完成解答. 【详解】解:8700000=68.710 ,故答案为B . 【点睛】本题考查了大于1的数的科学计数法,即将原数写成a×10n的形式,解题的关键在于确定a 和n 的值. 3.B 【解析】分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形.详解:由图形可知,与“前”字相对的字是“真”. 故选B .点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题. 4.D 【解析】分析:根据合并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则逐项计算即可.详解:A,a+a=2a≠a2,故该选项错误;B,(2a)3=8a3≠6a3,故该选项错误C,(a﹣1)2=a2﹣2a+1≠a2﹣1,故该选项错误;D,a3÷a=a2,故该选项正确,故选:D.点睛:本题考查了完全平方公式,合并同类项,幂的乘方与积的乘方,同底数幂的除法等运算法则,熟练掌握这些法则是解此题的关键.5.C【解析】【分析】直接利用平均数、中位数、众数以及极差的定义分别分析得出答案.【详解】A、平均分为:15×(94+98+90+94+74)=90(分),故此选项错误;B、五名同学成绩按大小顺序排序为:74,90,94,94,98,故中位数是94分,故此选项错误;C、94分、98分、90分、94分、74分中,众数是94分.故此选项正确;D、极差是98﹣74=24,故此选项错误,故选C.【点睛】本题主要考查了平均数、中位数、众数以及极差的定义,正确把握相关定义以及求解方法是解题的关键.6.B【解析】【分析】设该物品的价格是x钱,共同购买该商品的由y人,根据题意每人出8钱,则多3钱;每人出7钱,则差4钱列出二元一次方程组.【详解】设该物品的价格是x钱,共同购买该商品的由y人,依题意可得8374y x y x -=⎧⎨-=-⎩故选:B 【点睛】本题考查由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组. 7.C 【解析】 【分析】根据根的判别式列出不等式,再解答即可. 【详解】解:∵240x x k ++=有两个实数根 ∴△=42-4k≥0,解得4k ≤ 故答案为C . 【点睛】本题考查了一元二次方程根的判别式,牢记:①当△>0时,方程有两个不等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根. 8.A 【解析】 【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验. 【详解】 画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.9.D【解析】【分析】根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得11=423a a-+,再根据P点所在象限可得横纵坐标的和为0,进而得到a的数量关系.【详解】根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故11+423a a-+=0,解得:a=1 3 .故答案选:D.【点睛】本题考查的知识点是作图—基本作图, 坐标与图形性质, 角平分线的性质,解题的关键是熟练的掌握作图—基本作图, 坐标与图形性质, 角平分线的性质作图—基本作图, 坐标与图形性质, 角平分线的性质.10.C【解析】【分析】甲乙两个光斑的运动距离与时间的图象,因为起始点不同,因而不易判断,如果图象将两个点运到的基准点变为同一个点,再根据题意,问题即可解决.【详解】∵甲到B所用时间为t0s,从B回到A所用时间为4t0﹣t0=3t0,∵路程不变,∴甲光斑从A到B的速度是从B到A运动速度的3倍,∴A错误;由于,△O1P1Q1≌△O2P2Q2,∵甲光斑全程平均速度1.5cm/s,∴乙光斑全程平均速度也为1.5cm/s,∵乙由B到A时间为其由A到B时间三倍,∴乙由B到A速度低于平均速度,则乙由A到B速度大于平均速度,∴B错误;由已知,两个光斑往返总时间,及总路程相等,则两个光斑全程的平均速度相同,∴C正确;根据题意,分别将甲、乙光斑与点A的距离与时间的函数图象画在下图中,两个函数图象交点即为两个光斑相遇位置,故可知,两个光斑相遇两次,故D错误,故选C.【点睛】本题考查了动点问题的函数图象,正确理解,分析两个图象纵坐标所代表的实际意义,将图象的意义转化为动点实际运动的状态是解题的关键.11.17【解析】【分析】运用平方差公式和二次根式的乘法直接计算即可.【详解】解:1)=(221-=18-1=17故答案为17.【点睛】本题考查了平方差公式的应用和二次根式的计算,牢记并灵活应用平方差公式是解答本题的关键.12.70°.【解析】【分析】⊥知∠BOE=90°,最后根由∠1和∠DOB是对顶角可以求得∠DOB=20°,然后再根据OE AB据角的和差完成解答即可.【详解】解:∵∠1和∠DOB是对顶角∴∠DOB=20°⊥∵OE AB∴∠BOE=90°∠=∠BOE-∠DOB=70°∴2故答案为70°.【点睛】本题考查了对顶角的性质、垂直的定义以及角的和差,其中发现对顶角是解答本题的突破口.13.﹣3≤a<﹣2【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集和已知得出a的范围即可.【详解】231x ax->⎧⎨-<⎩①②,∵解不等式①得:x>a,解不等式②得:x<2,又∵关于x的一元一次不等式组231x ax->⎧⎨-<⎩有2个负整数解,∴﹣3≤a<﹣2,故答案为:﹣3≤a<﹣2.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集和已知得出关于a的不等式是解此题的关键.14.8﹣2π【解析】【分析】根据S阴=S△ABD-S扇形BAE计算即可.【详解】解:S阴=S△ABD-S扇形BAE=12×4×4-2454360π⨯⨯=8-2π,故答案为8-2π.【点睛】本题考查扇形的面积的计算,正方形的性质等知识,解题的关键是学会用分割法求阴影部分面积.15.【解析】【分析】取DF的中点M,连接PM,取CF的中点N,连接QN,作PH⊥QN于点H,然后利用三角形中位线定理、正方形的性质求得PH和QH的长,再根据勾股定理即可解答.【详解】解:取DF的中点M,连接PM,取CF的中点N,连接QN,作PH⊥QN于点H,∵点P、Q分别为DG、CE的中点,∴PM=12GF,QN=12EF,∵正方形ABCD的边长为12,点E在边AB上,BE=8,EF∥BC,BD为正方形ABCD的对角线,∴BE=EG=8,BE=CF=8,∴GF=4,∴PM=DM=2,QN=6,FN=CN=4,∴PH=MN=12-4-2=6,QH=QN-HN=4,∴==故答案为:【点睛】本题考查三角形中位线定理、正方形的性质、勾股定理等,解答本题的关键是正确做出辅助线,运用数形结合思想作答.16.2a【解析】【分析】先因式分解,再约分即可化简,继而将a的值代入计算.【详解】原式224aa=+•444a aa a+--()()(),=2a,当a =2= 【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则. 17.(1)800;(2)答案见解析;(3)3500.【解析】【分析】(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数, 据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得 .【详解】(1)被调查员工人数为400÷50%=800人. 故答案为800;(2)“剩少量”的人数为800﹣(400+80+40)=280人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000280800⨯=3500人. 【点睛】 本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.18.(1)y=2x ;(2,P (0,1710). 【解析】【分析】(1)根据反比例函数比例系数k 的几何意义得出112k =,进而得到反比例函数的解析式; (2)作点A 关于y 轴的对称点A ',连接A B ',交y 轴于点P ,得到PA PB +最小时,点P 的位置,根据两点间的距离公式求出最小值A B '的长;利用待定系数法求出直线A B '的解析式,得到它与y 轴的交点,即点P 的坐标.【详解】(1)Q 反比例函数(0)k y k x=>的图象过点A ,过A 点作x 轴的垂线,垂足为M ,AOM ∆面积为1,∴ 112k =, 0k >Q ,2k ∴=, 故反比例函数的解析式为:2y x=; (2)作点A 关于y 轴的对称点'A ,连接'A B ,交y 轴于点P ,则PA PB +最小. 由15222y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩,解得12x y =⎧⎨=⎩,或412x y =⎧⎪⎨=⎪⎩, ()1,2A ∴,14,2B ⎛⎫⎪⎝⎭, ()'1,2A ∴-,最小值'2A B ==. 设直线'A B 的解析式为y mx n =+,则2142m n m n -+=⎧⎪⎨+=⎪⎩,解得3101710m n ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线'A B 的解析式为3171010y x =-+, 0x ∴=时,1710y =, P ∴点坐标为170,10⎛⎫ ⎪⎝⎭.【点睛】考查的是反比例函数图象与一次函数图象的交点问题以及最短路线问题,解题的关键是确定PA PB最小时,点P的位置,灵活运用数形结合思想求出有关点的坐标和图象的解析式是解题的关键.19.(1)AD=95;(2)当点E是AC的中点时,ED与⊙O相切;理由见解析.【解析】【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED 与O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE即可.【详解】(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点睛】本题考查了圆周角定理、切线的判定、相似三角形的判定与性质,熟练掌握该知识点是本题解题的关键.20.点O到BC的距离为480m.【解析】【分析】作OM⊥BC于M,ON⊥AC于N,设OM=x,根据矩形的性质用x表示出OM、MC,根据正切的定义用x表示出BM,根据题意列式计算即可.【详解】作OM⊥BC于M,ON⊥AC于N,则四边形ONCM为矩形,∴ON=MC,OM=NC,设OM=x,则NC=x,AN=840﹣x,在Rt△ANO中,∠OAN=45°,∴ON=AN=840﹣x,则MC=ON=840﹣x,在Rt△BOM中,BM==x,由题意得,840﹣x+x=500,解得,x=480,答:点O到BC的距离为480m.【点睛】本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键.21.(1)v=100t;(2)平均每小时至少要卸货20吨.【解析】【分析】(1)直接利用vt=100进而得出答案;(2)直接利用要求不超过5小时卸完船上的这批货物,进而得出答案.【详解】(1)由题意可得:100=vt,则100vt ;(2)∵不超过5小时卸完船上的这批货物,∴t≤5,则v≥1005=20,答:平均每小时至少要卸货20吨.【点睛】考查了反比例函数的应用,正确得出函数关系式是解题关键.22.(1)详见解析;(2)详见解析;(3)详见解析.【解析】【分析】(1)①直接得出结论;②借助问题情景即可得出结论;(2)先判断出∠BCE+∠BEC=90°,进而判断出∠BEC=∠BCG,得出△GHC≌△CBE,判断出AD=BC,进而判断出HC=BH,即可得出结论;(3)先判断出四边形BENM为矩形,进而得出∠1+∠2=90°,再判断出∠1=∠3,得出△ENF≌△EBC,即可得出结论.【详解】(1)①依据1:两条直线被一组平行线所截,所得的对应线段成比例(或平行线分线段成比例).依据2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”).②答:点A在线段GF的垂直平分线上.理由:由问题情景知,AM⊥DE,∵四边形DEFG是正方形,∴DE∥FG,∴点A在线段GF的垂直平分线上.(2)证明:过点G作GH⊥BC于点H,∵四边形ABCD是矩形,点E在AB的延长线上,∴∠CBE=∠ABC=∠GHC=90°,∴∠BCE+∠BEC=90°.∵四边形CEFG为正方形,∴CG=CE,∠GCE=90°,∴∠BCE+∠BCG=90°.∴∠2BEC=∠BCG.∴△GHC≌△CBE.∴HC=BE,∵四边形ABCD是矩形,∴AD=BC.∵AD=2AB,BE=AB,∴BC=2BE=2HC,∴HC=BH.∴GH垂直平分BC.∴点G在BC的垂直平分线上.(3)答:点F在BC边的垂直平分线上(或点F在AD边的垂直平分线上).过点F作FM⊥BC于点M,过点E作EN⊥FM于点N.∴∠BMN=∠ENM=∠ENF=90°.∵四边形ABCD 是矩形,点E 在AB 的延长线上,∴∠CBE=∠ABC=90°,∴四边形BENM 为矩形.∴BM=EN ,∠BEN=90°.∴∠1+∠2=90°.∵四边形CEFG 为正方形,∴EF=EC ,∠CEF=90°.∴∠2+∠3=90°.∴∠1=∠3.∵∠CBE=∠ENF=90°,∴△ENF ≌△EBC .∴NE=BE .∴BM=BE .∵四边形ABCD 是矩形,∴AD=BC .∵AD=2AB ,AB=BE .∴BC=2BM .∴BM=MC .∴FM 垂直平分BC .∴点F 在BC 边的垂直平分线上.【点睛】此题是四边形综合题,主要考查了正方形的性质,矩形的性质,全等三角形的判定和性质,线段垂直平分线的判定和性质,构造全等三角形是解本题的关键.23.(1)255y x x =-+.;(2)点G 坐标为()13,1G -;296744G ⎛⎫+- ⎪ ⎪⎝⎭.(3)1k =-+. 【解析】分析:(1)根据已知列出方程组求解即可;(2)作AM ⊥x 轴,BN ⊥x 轴,垂足分别为M ,N ,求出直线l 的解析式,再分两种情况分别求出G 点坐标即可;(3)根据题意分析得出以AB 为直径的圆与x 轴只有一个交点,且P 为切点,P 为MN 的中点,运用三角形相似建立等量关系列出方程求解即可.详解:(1)由题可得:5,225, 1.b a c a b c ⎧-=⎪⎪=⎨⎪++=⎪⎩解得1a =,5b =-,5c =. ∴二次函数解析式为:255y x x =-+.(2)作AM x ⊥轴,BN x ⊥轴,垂足分别为,M N ,则34AF MQ FB QN ==.32MQ =Q ,2NQ ∴=,911,24B ⎛⎫ ⎪⎝⎭, 1,91,24k m k m +=⎧⎪∴⎨+=⎪⎩,解得1,21,2k m ⎧=⎪⎪⎨⎪=⎪⎩,1122t y x ∴=+,102D ,⎛⎫ ⎪⎝⎭. 同理,152BC y x =-+. BCD BCG S S ∆∆=Q ,∴①//DG BC (G 在BC 下方),1122DG y x =-+, 2115522x x x ∴-+=-+,即22990x x -+=,123,32x x ∴==. 52x >Q ,3x ∴=,()3,1G ∴-.②G 在BC 上方时,直线23G G 与1DG 关于BC 对称.1211922G G y x ∴=-+,21195522x x x ∴-+=-+,22990x x ∴--=.52x >Q ,x ∴=G ∴⎝⎭.综上所述,点G 坐标为()13,1G -;2G ⎝⎭. (3)由题意可得:1k m +=.1m k ∴=-,11y kx k ∴=+-,2155kx k x x ∴+-=-+,即()2540x k x k -+++=.11x ∴=,24x k =+,()24,31B k k k ∴+++.设AB 的中点为'O , P Q 点有且只有一个,∴以AB 为直径的圆与x 轴只有一个交点,且P 为切点.OP x ∴⊥轴,P ∴为MN 的中点,5,02k P +⎛⎫∴⎪⎝⎭. AMP PNB ∆∆Q ∽,AM PN PM BN∴=,••AM BN PN PM ∴=, ()2551314122k k k k k ++⎛⎫⎛⎫∴⨯++=+-- ⎪⎪⎝⎭⎝⎭,即23650k k +-=,960∆=>.0k >Q ,1k ∴==-+. 点睛:此题主要考查二次函数的综合问题,会灵活根据题意求抛物线解析式,会分析题中的基本关系列方程解决问题,会分类讨论各种情况是解题的关键.。

2020年中考数学二模试卷 (含答案解析)(解析版)

2020年中考数学二模试卷 (含答案解析)(解析版)

2020年中考数学二模试卷一.选择题(共10小题)1.的平方根是()A.B.﹣C.±D.±2.下列四种图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列因式分解正确的是()A.3ax2﹣6ax=3(ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C.a2+2ab﹣4b2=(a+2b)2D.﹣ax2+2ax﹣a=﹣a(x﹣1)24.一种病毒的直径约为0.0000001m,将0.0000001m用科学记数法表示为()A.1×107B.1×10﹣6C.1×10﹣7D.10×10﹣85.若关于x的不等式组恰有两个整数解,求实数a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.﹣4<a≤﹣3D.﹣4<a<﹣3 6.下列图形中,主视图为图①的是()A.B.C.D.7.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=1968.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.9.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为()A.r B.2r C.r D.3r10.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个二.填空题(共4小题)11.一组数据15,20,25,30,20,这组数据的中位数为.12.分解因式:9x﹣x3=.13.如图,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y =(x<0)的图象上,则tan∠BAO的值为.14.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y 轴上,如果矩形OA'B'C'与矩形OABC关于点O位似,且矩形OA'B'C'的面积等于矩形OABC 面积的,那么点B'的坐标是.三.解答题(共9小题)15.计算:16.先化简,再求值:,其中,a=﹣1.17.如图,线段OB放置在正方形网格中,现请你分别在图1、图2、图3添画(工具只能用直尺)射线OA,使tan∠AOB的值分别为1、2、3.18.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.19.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向.(1)求∠ACB的度数;(2)船C离海岸线l的距离(即CD的长)为多少?(不取近似值)20.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.(1)求证:①BC是⊙O的切线;②CD2=CE•CA;(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.21.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.整理情况频数频率非常好0.21较好700.35一般m不好36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了名学生;(2)m=;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.22.浩然文具店新到一种计算器,进价为25元,营销时发现:当销售单价定为30元时,每天的销售量为150件,若销售单价每上涨1元,每天的销售量就会减少10件.(1)写出商店销售这种计算器,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价定为多少元时,每天的销售利润最大?最大值是多少?(3)商店的营销部结合上述情况,提出了A、B两种营销方案:方案A:为了让利学生,该计算器的销售利润不超过进价的24%;方案B:为了满足市场需要,每天的销售量不少于120件.请比较哪种方案的最大利润更高,并说明理由.23.如图,在△ABC中,AC=,tan A=3,∠ABC=45°,射线BD从与射线BA重合的位置开始,绕点B按顺时针方向旋转,与射线BC重合时就停止旋转,射线BD与线段AC相交于点D,点M是线段BD的中点.(1)求线段BC的长;(2)①当点D与点A、点C不重合时,过点D作DE⊥AB于点E,DF⊥BC于点F,连接ME,MF,在射线BD旋转的过程中,∠EMF的大小是否发生变化?若不变,求∠EMF的度数;若变化,请说明理由.②在①的条件下,连接EF,直接写出△EFM面积的最小值.参考答案与试题解析一.选择题(共10小题)1.的平方根是()A.B.﹣C.±D.±【分析】先化简,再根据平方根的定义即可求解.【解答】解:=,的平方根是±.故选:D.2.下列四种图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,是中心对称图形,故此选项符合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、不是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:B.3.下列因式分解正确的是()A.3ax2﹣6ax=3(ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C.a2+2ab﹣4b2=(a+2b)2D.﹣ax2+2ax﹣a=﹣a(x﹣1)2【分析】直接利用提取公因式法以及公式法分解因式进而判断即可.【解答】解:A、3ax2﹣6ax=3ax(x﹣2),故此选项错误;B、x2+y2,无法分解因式,故此选项错误;C、a2+2ab﹣4b2,无法分解因式,故此选项错误;D、﹣ax2+2ax﹣a=﹣a(x﹣1)2,正确.故选:D.4.一种病毒的直径约为0.0000001m,将0.0000001m用科学记数法表示为()A.1×107B.1×10﹣6C.1×10﹣7D.10×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000001=1×10﹣7,故选:C.5.若关于x的不等式组恰有两个整数解,求实数a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.﹣4<a≤﹣3D.﹣4<a<﹣3【分析】先解不等式组求得﹣2<x≤4+a,根据不等式组恰有两个整数解知不等式组的整数解为﹣1、0,据此得0≤4+a<1,解之即可.【解答】解:解不等式1+5x>3(x﹣1),得:x>﹣2,解不等式≤8﹣+2a,得:x≤4+a,则不等式组的解集为﹣2<x≤4+a,∵不等式组恰有两个整数解,∴不等式组的整数解为﹣1、0,则0≤4+a<1,解得﹣4≤a<﹣3,故选:B.6.下列图形中,主视图为图①的是()A.B.C.D.【分析】主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.【解答】解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选:B.7.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=196【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量,然后根据题意可得出方程.【解答】解:依题意得八、九月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=196.故选:C.8.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.【分析】令x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【解答】解:x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选:C.9.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为()A.r B.2r C.r D.3r【分析】首先求得围成的圆锥的母线长,然后利用勾股定理求得其高即可.【解答】解:∵圆的半径为r,扇形的弧长等于底面圆的周长得出2πr.设圆锥的母线长为R,则=2πr,解得:R=3r.根据勾股定理得圆锥的高为2r,故选:B.10.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个【分析】①根据角平分线的定义可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE=AB,从而得到AE=AD,然后利用“角角边”证明△ABE和△AHD全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等求出∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根据等角对等边可得OE=OD =OH,判断出②正确;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH和△HDF全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;④根据全等三角形对应边相等可得DF=HE,然后根据HE=AE﹣AH=BC﹣CD,BC﹣CF=BC﹣(CD﹣DF)=2HE,判断出④正确;⑤判断出△ABH不是等边三角形,从而得到AB≠BH,即AB≠HF,得到⑤错误.【解答】解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,在△ABE和△AHD中,,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵AB=AH,∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;∵HE=AE﹣AH=BC﹣CD,∴BC﹣CF=BC﹣(CD﹣DF)=BC﹣(CD﹣HE)=(BC﹣CD)+HE=HE+HE=2HE.故④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选:C.二.填空题(共4小题)11.一组数据15,20,25,30,20,这组数据的中位数为20.【分析】根据中位数的定义求解可得.【解答】解:将数据重新排列为15、20、20、25、30,所以这组数据的中位数为20,故答案为:20.12.分解因式:9x﹣x3=x(3+x)(3﹣x).【分析】首先提取公因式x,金进而利用平方差公式分解因式得出答案.【解答】解:原式=x(9﹣x2)=x(3﹣x)(3+x).故答案为:x(3﹣x)(3+x).13.如图,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y =(x<0)的图象上,则tan∠BAO的值为.【分析】过A作AC⊥x轴,过B作BD⊥x轴于D,于是得到∠BDO=∠ACO=90°,根据反比例函数的性质得到S△BDO=,S△AOC=,根据相似三角形的性质得到=()2==5,求得=,根据三角函数的定义即可得到结论.【解答】解:过A作AC⊥x轴,过B作BD⊥x轴于D,则∠BDO=∠ACO=90°,∵顶点A,B分别在反比例函数y=(x>0)与y=(x<0)的图象上,∴S△BDO=,S△AOC=,∵∠AOB=90°,∴∠BOD+∠DBO=∠BOD+∠AOC=90°,∴∠DBO=∠AOC,∴△BDO∽△OCA,∴=()2==5,∴=,∴tan∠BAO==,故答案为:.14.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y 轴上,如果矩形OA'B'C'与矩形OABC关于点O位似,且矩形OA'B'C'的面积等于矩形OABC 面积的,那么点B'的坐标是(﹣2,3)或(2,﹣3).【分析】根据位似图形的概念得到矩形OA'B'C'∽矩形OABC,根据相似多边形的性质求出相似比,根据位似图形与坐标的关系计算,得到答案.【解答】解:∵矩形OA'B'C'与矩形OABC关于点O位似,∴矩形OA'B'C'∽矩形OABC,∵矩形OA'B'C'的面积等于矩形OABC面积的,∴矩形OA'B'C'与矩形OABC的相似比为,∵点B的坐标为(﹣4,6),∴点B'的坐标为(﹣4×,6×)或(4×,﹣6×),即(﹣2,3)或(2,﹣3),故答案为:(﹣2,3)或(2,﹣3).三.解答题(共9小题)15.计算:【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:=1+﹣2+(﹣1)﹣×3=﹣216.先化简,再求值:,其中,a=﹣1.【分析】先化简分式,然后将a=﹣1代入求值.【解答】解:原式=,当时,原式=.17.如图,线段OB放置在正方形网格中,现请你分别在图1、图2、图3添画(工具只能用直尺)射线OA,使tan∠AOB的值分别为1、2、3.【分析】根据勾股定理以及正切值对应边关系得出答案即可.【解答】解:如图1所示:tan∠AOB===1,如图2所示:tan∠AOB===2,如图3所示:tan∠AOB===3,故tan∠AOB的值分别为1、2、3..18.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.【分析】(1)根据点P到直线y=kx+b的距离公式直接计算即可;(2)先利用点到直线的距离公式计算出圆心Q到直线y=x+9,然后根据切线的判定方法可判断⊙Q与直线y=x+9相切;(3)利用两平行线间的距离定义,在直线y=﹣2x+4上任意取一点,然后计算这个点到直线y=﹣2x﹣6的距离即可.【解答】解:(1)因为直线y=x﹣1,其中k=1,b=﹣1,所以点P(1,﹣1)到直线y=x﹣1的距离为:d====;(2)⊙Q与直线y=x+9的位置关系为相切.理由如下:圆心Q(0,5)到直线y=x+9的距离为:d===2,而⊙O的半径r为2,即d=r,所以⊙Q与直线y=x+9相切;(3)当x=0时,y=﹣2x+4=4,即点(0,4)在直线y=﹣2x+4,因为点(0,4)到直线y=﹣2x﹣6的距离为:d===2,因为直线y=﹣2x+4与y=﹣2x﹣6平行,所以这两条直线之间的距离为2.19.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向.(1)求∠ACB的度数;(2)船C离海岸线l的距离(即CD的长)为多少?(不取近似值)【分析】(1)根据三角形的外角的性质计算;(2)作BE∥AC交CD于E,求出CE=AB=2,根据正弦的定义求出DE,计算即可.【解答】解:(1)由题意得,∠CBD=90°﹣22.5°=67.5°,∠CAD=45°,∴∠ACB=∠CBD﹣∠CAD=22.5°;(2)作BE∥AC交CD于E,则∠EBD=∠CAD=45°,∴DB=DE,∵DA=DC,∴CE=AB=2,∵∠ACD=45°,∠ACB=22.5°,∴∠BCD=22.5°,∴∠CBE=∠BED﹣∠BCD=22.5°,∴∠CBE=∠BCE,∴BE=CE=2,∴DE=BE=,∴CD+DE+CE=2+,答:船C离海岸线l的距离为(2+)km.20.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.(1)求证:①BC是⊙O的切线;②CD2=CE•CA;(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.【分析】(1)①证明DO∥AB,即可求解;②证明CDE∽△CAD,即可求解;(2)证明△OFD、△OF A是等边三角形,S阴影=S扇形DFO,即可求解.【解答】解:(1)①连接OD,∵AD是∠BAC的平分线,∴∠DAB=∠DAO,∵OD=OA,∴∠DAO=∠ODA,则∠DAB=∠ODA,∴DO∥AB,而∠B=90°,∴∠ODB=90°,∴BC是⊙O的切线;②连接DE,∵BC是⊙O的切线,∴∠CDE=∠DAC,∠C=∠C,∴△CDE∽△CAD,∴CD2=CE•CA;(2)连接DE、OD、DF、OF,设圆的半径为R,∵点F是劣弧AD的中点,∴是OF是DA中垂线,∴DF=AF,∴∠FDA=∠F AD,∵DO∥AB,∴∠ODA=∠DAF,∴∠ADO=∠DAO=∠FDA=∠F AD,∴AF=DF=OA=OD,∴△OFD、△OF A是等边三角形,则DF∥AC,故S阴影=S扇形DFO,∴∠C=30°,∴OD=OC=(OE+EC),而OE=OD,∴CE=OE=R=3,S阴影=S扇形DFO=×π×32=.21.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.整理情况频数频率非常好0.21较好700.35一般m不好36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了200名学生;(2)m=52;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.【分析】(1)用较好的频数除以较好的频率.即可求出本次抽样调查的总人数;(2)用总人数乘以非常好的频率,求出非常好的频数,再用总人数减去其它频数即可求出m的值;(3)利用总人数乘以对应的频率即可;(4)利用树形图方法,利用概率公式即可求解.【解答】解:(1)本次抽样共调查的人数是:70÷0.35=200(人);(2)非常好的频数是:200×0.21=42(人),一般的频数是:m=200﹣42﹣70﹣36=52(人),(3)该校学生整理错题集情况“非常好”和“较好”的学生一共约有:1500×(0.21+0.35)=840(人);(4)根据题意画图如下:∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等,其中两次抽到的错题集都是“非常好”的情况有2种,∴两次抽到的错题集都是“非常好”的概率是=.22.浩然文具店新到一种计算器,进价为25元,营销时发现:当销售单价定为30元时,每天的销售量为150件,若销售单价每上涨1元,每天的销售量就会减少10件.(1)写出商店销售这种计算器,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价定为多少元时,每天的销售利润最大?最大值是多少?(3)商店的营销部结合上述情况,提出了A、B两种营销方案:方案A:为了让利学生,该计算器的销售利润不超过进价的24%;方案B:为了满足市场需要,每天的销售量不少于120件.请比较哪种方案的最大利润更高,并说明理由.【分析】(1)根据利润=(单价﹣进价)×销售量,列出函数关系式即可;(2)根据(1)式列出的函数关系式,运用配方法求最大值;(3)分别求出方案A、B中x的取值,然后分别求出A、B方案的最大利润,然后进行比较.【解答】解:(1)由题意得,销售量=150﹣10(x﹣30)=﹣10x+450,则w=(x﹣25)(﹣10x+450)=﹣10x2+700x﹣11250;(2)w=﹣10x2+700x﹣11250=﹣10(x﹣35)2+1000,∵﹣10<0,∴函数图象开口向下,w有最大值,当x=35时,w最大=1000元,故当单价为35元时,该计算器每天的利润最大;(3)B方案利润高.理由如下:A方案中:∵25×24%=6,此时w A=6×(150﹣10)=840元,B方案中:每天的销售量为120件,单价为33元,∴最大利润是120×(33﹣25)=960元,此时w B=960元,∵w B>w A,∴B方案利润更高.23.如图,在△ABC中,AC=,tan A=3,∠ABC=45°,射线BD从与射线BA重合的位置开始,绕点B按顺时针方向旋转,与射线BC重合时就停止旋转,射线BD与线段AC相交于点D,点M是线段BD的中点.(1)求线段BC的长;(2)①当点D与点A、点C不重合时,过点D作DE⊥AB于点E,DF⊥BC于点F,连接ME,MF,在射线BD旋转的过程中,∠EMF的大小是否发生变化?若不变,求∠EMF的度数;若变化,请说明理由.②在①的条件下,连接EF,直接写出△EFM面积的最小值.【分析】(1)如图1中,作CH⊥AB于H.解直角三角形求出CH,证明△CHB是等腰直角三角形即可解决问题.(2)①利用直角三角形斜边中线定理,证明△MEF是等腰直角三角形即可解决问题.②如图2中,由①可知△MEF是等腰直角三角形,当ME的值最小时,△MEF的面积最小,因为ME=BD,推出当BD⊥AC时,ME的值最小,此时BD=.【解答】解:(1)如图1中,作CH⊥AB于H.在Rt△ACH中,∵∠AHC=90°,AC=,tan A==3,∴AH=1,CH=3,∵∠CBH=45°,∠CHB=90°,∴∠HCB=∠CBH=45°,∴CH=BH=3,∴BC=CH=3.(2)①结论:∠EMF=90°不变.理由:如图2中,∵DE⊥AB,DF⊥BC,∴∠DEB=∠DFB=90°,∵DM=MB,∴ME=BD,MF=BD,∴ME=MF=BM,∴∠MBE=∠MEB,∠MBF=∠MFB,∵∠DME=∠MEB+∠MBE,∠DMF=∠MFB+∠MBF,∴∠EMF=∠DME+∠DMF=2(∠MBE+∠MBF)=90°,②如图2中,作CH⊥AB于H,由①可知△MEF是等腰直角三角形,∴当ME的值最小时,△MEF的面积最小,∵ME=BD,∴当BD⊥AC时,ME的值最小,此时BD===,∴EM的最小值=,∴△MEF的面积的最小值=××=.故答案为.。

2020年河南省安阳市中考数学模拟试卷

2020年河南省安阳市中考数学模拟试卷

中考数学模拟试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.计算2-3的结果是()A. -B.C. -8D. 82.PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm用科学记数法可表示为()A. 2.5×10-5mB. 0.25×10-7mC. 2.5×10-6mD. 25×10-5m3.某厂通过改进工艺降低了某种产品的成本,两个月内从每件产品250元降低到每件160元,则平均每月降低的百分率为()A. 10%B. 5%C. 15%D. 20%4.如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A. B.C. D.5.二次函数y=-x2+4x+1的图象中,若y随x的增大而减小,则x的取值范围是()A. x<2B. x>2C. x<-2D. x>-26.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2:1,则点B的对应点B1的坐标是()A. (4,2)B. (1,)C. (1,)或(-1,-)D. (4,2)或(-4,-2)7.日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A. 5、6、5B. 5、5、6C. 6、5、6D. 5、6、68.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是()A. 4B. -4C. 8D. -89.如图是某几何体的三视图及相关数据,则该几何体的侧面积是()A. 60πB. 65πC. 120πD. 130π10.如图,矩形OABC的顶点O(0,0),B(-2,2),若矩形绕点O逆时针旋转,每秒旋转60°,则第2017秒时,矩形的对角线交点D的坐标为()A. (-1,)B. (-1,-3)C. (-2,0)D. (1,-3)二、填空题(本大题共5小题,共15.0分)11.的算术平方根是______.12.某校九年级共有1,2,3,4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和3班比赛的概率是______.13.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH的长为______.14.如图,在边长为2的正方形ABCD中,分别以点A,B为圆心,AB的长为半径作与,两弧交于点E,则阴影部分的面积为______.15.如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点D是BC上一动点,连接AD,将△ACD沿AD折叠,点C落在点C',连接C'D交AB于点E,连接BC'.当△BC'D是直角三角形时,DE的长为______.三、解答题(本大题共8小题,共75.0分)16.先化简,再求值:÷(x-2-),其中x2+2x-1=0.17.持续大面积雾霾天气让环保和健康问题成为焦点,某校为了调查学生对雾霾天气知识的了解程度,在学生中做了一次抽样调査,跟进调查统计结果,绘制了不完整的三种统计图表.了解程度百分比A.非常了解5%B.比较了解mC.一般了解45%D.不太了解n(1)本次参与调查的学生共有______人,m=______,n=______;(2)扇形统计图中D部分所对应的圆心角是______度;(3)请补全条形统计图;(4)学校计划从对雾霾天气知识“非常了解”的同学中随机选择5名同学,到某社区开展防雾霾天气知识宣传,本次调查中对雾霾天气知识“非常了解”的小明被选中的概率是多少?18.如图,在△ABC中,∠B=60°,⊙O是△ABC的外接圆,过点A作⊙O的切线,交CO的延长线于点M,CM交⊙O于点D.(1)求证:AM=AC;(2)填空:①若AC=3,MC=______;②连接BM,当∠AMB的度数为______时,四边形AMBC是菱形.19.某处山坡上有一棵与水平面垂直的大树,狂风过后,大树被刮的倾斜后折断,倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,量得树干的倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=4m.(1)求∠DAC的度数;(2)这棵大树折断前高约多少米?(结果精确到个位,参考数据:≈1.4,≈1.7,≈2.4)20.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,已知A型车每辆进价为1100元,B型车每辆进价为1400元,B型车售价为每辆2000元,应如何进货才能使这批车获利最多?21.小美对函数y=的图象进行了探究,下面是小美的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是______;(2)表是y与x的几组对应值,表中m的值是______;x-2--1-123…y0--1-m…(3)如图,小美根据上表在平面直角坐标系xOy中描出了该函数的图象,请结合函数的图象,写出该函数的一条性质;(4)试讨论一次函数y=kx+2(k>0)的图象与函数y=的图象的交点个数.22.如图1,△ABC是直角三角形,∠ACB=90°,点D在AC上,DE⊥AB于E,连接BD,点F是BD的中点,连接EF,CF.(1)EF和CF的数量关系为______;(2)如图2,若△ADE绕着点A旋转,当点D落在AB上时,小明通过作△ABC和△ADE斜边上的中线CM和EN,再利用全等三角形的判定,得到了EF和CF的数量关系,请写出此时EF和CF的数量关系______;(3)若△AED继续绕着点A旋转到图3的位置时,EF和CF的数量关系是什么?写出你的猜想,并给予证明.23.如图,直线y=x-4与x轴、y轴分别交于A,B两点,抛物线y=x2+bx+c经过A,B两点,与x轴的另一交点为C,连接BC.(1)求抛物线的解析式;(2)点M在抛物线上,连接MB,当∠MBA+∠CBO=45°时,求点M的横坐标;(3)点P从点C出发,沿线段CA由C向A运动,同时点Q从点B出发沿线段BC由B向C运动,P,Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P,Q同时停止运动,问在坐标平面内是否存在点D,使P,Q运动过程中的某些时刻t,以C,D,P,Q为顶点的四边形为菱形?若存在,直接写出t的值;若不存在,说明理由.答案和解析1.【答案】B【解析】解:2-3==.故选:B.直接利用负整数指数幂的性质分别计算得出答案.此题主要考查了负整数指数幂的性质,正确掌握相关性质是解题关键.2.【答案】C【解析】解:2.5μm=2.5×0.000001m=2.5×10-6m;故选:C.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】D【解析】解:如果设平均每月降低率为x,根据题意可得250(1-x)2=160,∴x1=20%,x2=180%(不合题意,舍去).故选:D.根据题意,如果设平均每次降价的百分率是x,则第一次降低后的价格是250(1-x),那么第二次后的价格是250(1-x)2,即可列出方程求解.本题考查一元二次方程的应用.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“-”)4.【答案】C【解析】解:根据题意得:,由①得:x>-3;由②得:x<4,则不等式组的解集为-3<x<4,表示在数轴上,如图所示:.故选:C.根据P为第四象限点,得到横坐标大于0,纵坐标小于0,列出关于x的不等式组,求出不等式组的解集,表示在数轴上即可得到结果.此题考查了在数轴上表示不等式组的解集,解一元一次不等式组,以及点的坐标,列出不等式组是本题的突破点.5.【答案】B【解析】解:∵二次函数y=-x2+4x+1=-(x-2)2+5,∴当x>2时,y随x的增大而减小,当x<2时,y随x的增大而增大,∴若y随x的增大而减小,则x的取值范围是x>2,先将题目中的函数解析式化为顶点式,然后根据二次函数的性质,即可得到y随x的增大而减小时x的取值范围.本题考查二次函数的性质、二次函数的图象,解答本题的关键是明确题意,利用二次函数的性质解答.6.【答案】D【解析】解:由图可知,点B的坐标为(2,1),∵以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2:1,∴点B的对应点B1的坐标是(2×2,1×2)或(-2×2,-1×2),即(4,2)或(-4,-2),故选:D.先根据图形求出点B的坐标,根据以原点O为位似中心的位似图形的性质计算.本题考查的是位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比值等于k或-k.7.【答案】D【解析】【分析】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.根据众数、平均数和中位数的定义分别进行解答即可.【解答】解:5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数第10、11个数的平均数,则中位数是;平均数是:.故选D.8.【答案】D【解析】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,故选:D.连结OA,得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.9.【答案】B【解析】解:根据图形可知圆锥的高为12,底面直径为10,则母线长为:=13,圆锥侧面积公式=底面周长×母线长×=×10π×13=65π,故选:B.根据三视图易得此几何体为圆锥,圆锥的高为12,底面直径为10,再根据圆锥侧面积公式=底面周长×母线长×可计算出结果.本题主要考查圆锥侧面积公式的运用,掌握公式是关键;注意圆锥的高,母线长,底面半径组成直角三角形这个知识点.10.【答案】C【解析】解:∵矩形OABC的顶点O(0,0),B(-2,2),∴D(-1,),过D作DE⊥x轴于点E,则OE=1,DE=,∴,tan∠DOE=,∴∠DOE=60°,∵60°×2017÷360°=336,∵,又∵旋转336周时,D点刚好回到起始位置,∴第2017秒时,矩形绕点O逆时针旋转336周,此时D点在x轴负半轴上,∴此时D点的坐标为(-2,0),故选:C.先计算D点坐标,再过D作DE⊥x轴于点E,求出∠DOE的度数,并求得OD,再根据题意求得矩形绕点O逆时针旋转,每秒旋转60°,第2017秒时,D点的位置,进而求得D点坐标.本题考查了矩形的性质,点的坐标特点,旋转的性质,关键:是求OD及确定旋转的最终位置.11.【答案】3【解析】解:∵=9,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.即的算术平方根是3.故答案为:3.首先根据算术平方根的定义求出的值,然后即可求出其算术平方根.此题主要考查了算术平方根的定义,解题的关键是知道,实际上这个题是求9的算术平方根是3.12.【答案】【解析】解:画树状图为:∵共有12种等可能的结果数,其中恰好抽到1班和3班的结果数为2,∴恰好抽到1班和3班的概率为=,故答案为:.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到1班和3班的情况,再利用概率公式即可求得答案.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A的结果数目m,然后利用概率公式计算事件A的概率.13.【答案】4.8cm【解析】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4cm,OB=OD=BD=3cm,∴AB=5cm,∴S菱形ABCD=4×OA•OB=AB•DH,∴DH==4.8cm.根据菱形的对角线互相平分且垂直,可根据勾股定理得AB的长,根据菱形的面积的求解方法:底乘以高,即可得菱形的高.此题考查了菱形的性质:菱形的对角线互相平分且垂直;菱形的面积的求解方法:底乘以高.14.【答案】4+-π【解析】解:连接AE、BE,∵AE=BE=AB=2,∴△ABE是等边三角形.∴∠EBA=∠BAE=60°,∴阴影部分的面积=S正方形ABCD-S扇形ABE-S扇形BAE+S△AEB=2×2-×2+2×=4+-π,故答案为:4+-π.根据条件可以得到△ABE是等边三角形,然后根据正方形和扇形的面积公式即可得到结论.本题考查了扇形的面积的计算,正方形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.15.【答案】3或【解析】解:如图所示;点E与点C′重合时,即∠BC'D=90°.在Rt△ABC中,BC===8,由翻折的性质可知;AE=AC=6、DC=DE.则EB=10-6=4.设DC=ED=x,则BD=8-x.在Rt△DBE中,DE2+BE2=DB2,即x2+42=(8-x)2.解得x=3,如图所示:∠C'DB=90°时,则∠CDC′=180°-∠C'DB=90°,由翻折的性质可知:AC=AC′,∠C=∠AC′D=90°.∵∠C=∠AC′D=∠CDC′=90°,∴四边形ACDC′为矩形.又∵AC=AC′,∴四边形ACDC′为正方形.∴CD=AC=6.∴DB=BC-DC=8-6=2.∵DE∥AC,∴△BDE∽△BCA.∴=,即,解得DE=,假设∠DBC′=90°,则BC'∥AC,BC的长为平行线间距离,所以AC'≥BC,即AC≥BC,这个显然不可能,故∠DBC′≠90°,即∠DBC′不可能为直角.故答案为3或.点E与点C′重合时,即∠BC'D=90°.在Rt△ABC中,由勾股定理可求得BC=8,由翻折的性质可知:AE=AC=6、DC=DE.则EB=4.设DC=ED=x,则BD=8-x.在Rt△DBE 中,依据勾股定理列方程求解即可;当∠C'DB=90°时.由翻折的性质可知:AC=AC′,∠C=∠AC′D=90°,然后证明四边形ACDC′为正方形,从而求得DB=2,然后证明DE∥AC,△BDE∽△BCA,依据相似三角形的性质可求得DE.证明∠DBC′不可能为直角.即可得解.本题主要考查的是翻折的性质、勾股定理、正方形的判定、相似三角形的性质和判定,根据题意画出符合题意的图形是解题的关键.16.【答案】解:∵x2+2x-1=0,∴x2+2x=1,∴原式=÷=•===.【解析】先计算括号,后计算除法,然后整体代入即可解决问题.本题考查分式的化简求值,熟练掌握分式的混合运算法则是解决问题的关键,体现了整体代入的解题思想,属于中考常考题型.17.【答案】解:(1)400;15%;35% .(2)126;(3)D等级人数为400×35%=140(人),补全图形如下:(4)本次调查中对雾霾天气知识“非常了解”的小明被选中的概率是=.【解析】【分析】本题考查的是条形统计图、扇形统计图和概率公式的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.(1)根据C等级人数及其所占百分比可得总人数,再根据百分比的概念和百分比之和等于1可得m、n的值;(2)用360°乘以D等级对应的百分比;(3)用总人数乘以D等级对应的百分比求出其人数即可补全图形;(4)直接根据概率公式求解可得.【解答】解:(1)本次参与调查的学生共有180÷45%=400(人),m=×100%=15%,则n=1-(5%+15%+45%)=35%,故答案为:400、15%,35%;(2)扇形统计图中D部分所对应的圆心角是360°×35%=126°,故答案为:126;(3)见答案;(4)见答案.18.【答案】(1)证明:连接OA,如图1:∵AM是⊙O的切线,∴∠OAM=90°,∵∠B=60°,∴∠AOC=120°,∵OA=OC,∴∠OCA=∠OAC=30°,∴∠AOM=60°,∴∠M=30°,∴∠OCA=∠M,∴AM=AC;(2)①3;② 60°.【解析】【分析】本题是圆的综合题目,考查的是切线的性质、圆周角定理、等腰三角形的判定、勾股定理、平行线的判定与性质、等边三角形的判定与性质、菱形的判定等知识;熟练掌握圆的切线性质和圆周角定理是解题的关键.(1)连接OA,根据圆周角定理求出∠AOC=120°,得到∠OCA的度数,根据切线的性质求出∠M的度数,根据等腰三角形的性质得到答案;(2)①作AG⊥CM于G,根据直角三角形的性质求出AG的长,根据勾股定理求出CG,得到答案.②证明△ABM和△ABC是等边三角形,得出AM=AC=BC=BM,即可得出结论.【解答】(1)见答案.(2)解:①作AG⊥CM于G,如图2:∵∠OCA=30°,AC=3,∴AG=AC=,∴CG=AG=,则MC=2CG=3;故答案为:3.②当∠AMB的度数为60°时,四边形AMBC是菱形;理由如下:如图3:由(1)得:AM=AC,∠MAC=180°-∠M-∠OCA=120°,∵∠AMB=60°,∴∠MAC+∠AMB=180°,∴AC∥BM,∴∠MAB=∠ABC=60°,∴△ABM是等边三角形,∴AM=BM,∵∠BAC=∠MAC-∠MAB=60°=∠ABC,∴△ABC是等边三角形,∴BC=AC,∴AM=AC=BC=BM,∴四边形AMBC是菱形;故答案为:60°.19.【答案】解:(1)延长BA交EF于点G,在Rt△AGE中,∠E=23°,∴∠GAE=67°,又∠BAC=38°,∴∠CAE=180°-67°-38°=75°.(2)过点A作AH⊥CD,垂足为H,在△ADH中,∠ADC=60°,AD=4,cos∠ADC=,∴DH=2,sin∠ADC=,∴AH=2.在Rt△ACH中,∠C=180°-75°-60°=45°,∴CH=AH=2,AC=2.∴AB=AC+CD=2+2+2≈10(米).答:这棵大树折断前高约10米.【解析】(1)延长BA交EF于点G,在Rt△AGE中,求得∠GAE=67°,然后根据∠CAE=180°-∠GAE-∠BAC即可求得;(2)过点A作AH⊥CD,垂足为H,在△ADH中,根据余弦函数求得DH,进而根据正弦函数求得AH,在Rt△ACH中,求得CH=AH=2,AC=2,然后根据AB=AC+CH+HD 即可求得.本题是将实际问题转化为直角三角形中的数学问题,可通过作辅助线构造直角三角形,再把条件和问题转化到这个直角三角形中,使问题解决.20.【答案】解:(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由题意,得,解得:x=1600,经检验,x=1600是原方程的根;答:今年A型车每辆售价1600元;(2)设今年新进A型车a辆,则B型车(60-a)辆,获利y元,由题意,得y=(1600-1100)a+(2000-1400)(60-a),y=-100a+36000,∵B型车的进货数量不超过A型车数量的两倍,∴60-a≤2a,∴a≥20.∵k=-100<0,∴y随a的增大而减小.∴a=20时,y最大=34000元.∴B型车的数量为:60-20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.【解析】(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A型车a辆,则B型车(60-a)辆,获利y元,由条件表示出y与a 之间的关系式,由a的取值范围就可以求出y的最大值.本题考查了分式方程的应用,一元一次不等式的应用,一次函数的应用,解答时由销售问题的数量关系求出一次函数的解析式是关键.21.【答案】解:(1)x≥-2且x≠0;(2)1;(3)根据题意得,当x>0时,y随x的增大而减小(答案不唯一).(4)当x=-2时,若y=kx+2=-2k+2≤0,即k≥1时,如图1,一次函数y=kx+2(k>0)的图象与函数y=的图象有两个交点.若y=kx+2=-2k+2>0,即k<1时,如图2,一次函数y=kx+2(k>0)的图象与函数y=的图象有一个交点.综上,当0<k<1时,一次函数y=kx+2(k>0)的图象与函数y=的图象有一个交点;当k≥1时,一次函数y=kx+2(k>0)的图象与函数y=的图象有两个交点.【解析】【分析】本题是函数图象与性质的探究题,主要考查已知函数解析式求自变量的取值范围,已知自变量求函数值,探究函数图象与性质,探究函数交点问题.这种探究类的题目,通常按照题设的顺序求解,一般比较容易.(1)根据分母不为0,二次根式的被开方数非负进行解答便可;(2)把x=2代入y=中,求得函数值便可;(3)根据函数图象的增减性可以写一条性质;(4)根据函数图象可知:一次函数y=kx+2(k>0)中,当x=-2时,若y=kx+2≤0,则一次函数y=kx+2(k>0)的图象与函数y=的图象有两个交点;若y=kx+2>0,则一次函数y=kx+2(k>0)的图象与函数y=的图象有一个交点.【解答】解:(1)由题意得,,解得,x≥-2且x≠0.故答案为:x≥-2且x≠0;(2)把x=2代入y=中,得y=1,∴m=1,故答案为:1;(3)(4)见答案.22.【答案】解:(1)EF=CF;(2)EF=CF;(3)猜想,EF=CF,理由:如图3中,取AB的中点M,AD的中点N,连接MC,MF,EN,FN.∵BM=MA,BF=FD,∴MF∥AD,MF=AD,∵AN=ND,∴MF=AN,MF∥AN,∴四边形MFNA是平行四边形,∴NF=AM,∠FMA=∠ANF,在Rt△ADE中,∵AN=ND,∠AED=90°,∴EN=AD=AN=ND,同理CM=AB=AM=MB,在△AEN和△ACM中,∠AEN=∠EAN,∠MCA=∠MAC,∵∠MAC=∠EAN,∴∠AMC=∠ANE,又∵∠FMA=∠ANF,∴∠ENF=∠FMC,∵AM=FN,AM=CM,∴CM=NF,同理可得MF=EN,在△MFC和△NEF中,,∴△MFC≌△NEF(SAS),∴FE=FC.【解析】【分析】本题属于几何变换综合题,考查了直角三角形斜边中线定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.(1)根据直角三角形斜边上的中线等于斜边的一半即可得到结论;(2)根据直角三角形斜边上的中线等于斜边的一半得到CM=BM=AM=AB,AN=EN=DN=AD,根据线段中点的定义得到BF=FD,等量代换得到FM=EN,根据旋转的性质得到∠EAD=∠CAB,根据三角形外角的性质得到∠ENF=∠CMF,根据全等三角形的性质即可得到结论;(3)取AB的中点M,AD的中点N,连接MC,MF,EN,FN.想办法证明△MFC≌△NEF,可得结论.【解答】解:(1)EF=CF,理由:∵DE⊥AB,∴∠ACB=∠DEB=90°,∵F是BD的中点,∴EF=CF=BD;故答案为:EF=CF;(2)EF=CF,理由:∵∠AED=∠ACB=90°,CM和EN是△ABC和△ADE斜边上的中线,∴CM=BM=AM=AB,AN=EN=DN=AD,∵点F是BD的中点,∴BF=FD,∴AN+BF=DN+DF=FN=AB,∴FN=CM=AM,∵FM=FN-MN,AN=AM-MN,∴FM=AN,∴FM=EN,∵△ADE绕着点A旋转,当点D落在AB上,∴∠EAD=∠CAB,∵∠EAN=∠AEN,∠MAC=∠ACM,∴∠ENF=∠EAN+∠AEN=2∠EAN,∠CMF=∠CAM+∠ACM=2∠CAM,∴∠ENF=∠CMF,在△EFN与△FCM中,,∴△EFN≌△FCM(SAS),∴EF=CF,故答案为:EF=CF;(3)见答案.23.【答案】解:(1)直线解析式y=x-4,令x=0,得y=-4;令y=0,得x=4.∴A(4,0)、B(0,-4).∵点A、B在抛物线y=x2+bx+c上,∴,解得,∴抛物线解析式为:y=x2-x-4.(2)设M(x,y),令y=x2-x-4=0,解得:x=-3或x=4,∴C(-3,0).①当BM⊥BC时,如答图2-1所示.∵∠ABO=45°,∴∠MBA+∠CBO=45°,故点M满足条件.过点M1作M1E⊥y轴于点E,则M1E=x,OE=-y,∴BE=4+y.∵tan∠M1BE=tan∠BCO=,∴,∴直线BM1的解析式为:y=x-4,∴∴(舍去),∴点M1的坐标(,-)②当BM与BC关于y轴对称时,如答图2-2所示.∵∠ABO=∠MBA+∠MBO=45°,∠MBO=∠CBO,∴∠MBA+∠CBO=45°,故点M满足条件.过点M2作M2E⊥y轴于点E,则M2E=x,OE=y,∴BE=4+y.∵tan∠M2BE=tan∠CBO=,∴,∴直线BM2的解析式为:y=x-4,∴∴(舍去),∴点M2的坐标(5,),综上所述:点M的横坐标为:或5;(3)设∠BCO=θ,则tanθ=,sinθ=,cosθ=.假设存在满足条件的点D,设菱形的对角线交于点E,设运动时间为t.①若以CQ为菱形对角线,如答图3-1.此时BQ=t,菱形边长=t.∴CE=CQ=(5-t).在Rt△PCE中,cosθ===,解得t=.②若以PQ为菱形对角线,如答图3-2.此时BQ=t,菱形边长=t.∵BQ=CQ=t,∴t=,③若以CP为菱形对角线,如答图3-3.此时BQ=t,菱形边长=5-t.在Rt△CEQ中,cosθ===,解得t =.综上所述,当t =或或时,以C,D,P,Q为顶点的四边形为菱形.【解析】本题是二次函数压轴题,着重考查了分类讨论的数学思想,考查了二次函数的图象与性质,解直角三角形,菱形,一次函数,解方程等知识点,难度较大.第(3)问为存在型与运动型的综合问题,涉及两个动点,注意按照菱形对角线进行分类讨论,做到条理清晰、不重不漏.(1)首先求出点A、B的坐标,然后利用待定系数法求出抛物线的解析式;(2)满足条件的点M有两种情形,需要分类讨论:①当BM⊥BC时,如答图2-1所示;②当BM与BC关于y轴对称时,如答图2-2所示.(3)△CPQ的三边均可能成为菱形的对角线,以此为基础进行分类讨论:①若以CQ为菱形对角线,如答图3-1.此时BQ=t,菱形边长=t;②若以PQ为菱形对角线,如答图3-2.此时BQ=t,菱形边长=t;③若以CP为菱形对角线,如答图3-3.此时BQ=t,菱形边长=5-t.第21页,共21页。

河南省安阳市2019-2020学年中考数学仿真第二次备考试题含解析

河南省安阳市2019-2020学年中考数学仿真第二次备考试题含解析

河南省安阳市2019-2020学年中考数学仿真第二次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( ) A .B .C .D .2.13-的绝对值是( ) A .3B .3-C .13D .13-3.当x=1时,代数式x 3+x+m 的值是7,则当x=﹣1时,这个代数式的值是( ) A .7B .3C .1D .﹣74.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数ky x=(x>0)的图象经过顶点B ,则k 的值为A .12B .20C .24D .325.如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是( )A .1<x<5-B .x>5C .x<1-且x>5D .x <-1或x >56.下列实数中,有理数是( ) A 2B .2.1&C .πD .537.如图所示,在方格纸上建立的平面直角坐标系中,将△ABC 绕点O 按顺时针方向旋转90°,得到△A′B′O ,则点A′的坐标为( )A.(3 ,1)B.(3 ,2)C.(2 ,3)D.(1 ,3)8.如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部C的俯角为60°,热气球A与楼的水平距离为120米,这栋楼的高度BC为()A.160米B.(60+1603)C.1603米D.360米9.计算﹣8+3的结果是()A.﹣11 B.﹣5 C.5 D.1110.已知一次函数y=kx+3和y=k1x+5,假设k<0且k1>0,则这两个一次函数的图像的交点在()A.第一象限B.第二象限C.第三象限D.第四象限11.在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H.∠CBE=∠BAD,有下列结论:①FD=FE;②AH=2CD;③BC•AD=2AE2;④S△BEC=S△ADF.其中正确的有()A.1个B.2个C.3个D.4个12.已知直线y=ax+b(a≠0)经过第一,二,四象限,那么直线y=bx-a一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知二次函数y=ax2+bx(a≠0)的最小值是﹣3,若关于x的一元二次方程ax2+bx+c=0有实数根,则c的最大值是_____.14.在一个暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在0.25,那么可以推算出a大约是_________.15.在函数y=的表达式中,自变量x的取值范围是.16.已知a2+a=1,则代数式3﹣a﹣a2的值为_____.17.定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1,l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数共有______个.18.已知一组数据x1,x2,x3,x4,x5的平均数是3,则另一组新数据x1+1,x2+2,x3+3,x4+4,x5+5的平均数是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.(1)在方格纸中画出以AB为斜边的等腰直角三角形ABE,点E在小正方形的顶点上;(2)在方格纸中画出以CD为对角线的矩形CMDN(顶点字母按逆时针顺序),且面积为10,点M、N 均在小正方形的顶点上;(3)连接ME,并直接写出EM的长.20.(6分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,如图1,已知折痕与边BC交于点O,连接AP、OP、OA.若△OCP与△PDA的面积比为1:4,求边CD的长.如图2,在(Ⅰ)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M 与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP 于点E.试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.21.(6分)如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0<a<3)的图象与x轴交于点A、B (点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.22.(8分)如图1,在等腰△ABC 中,AB=AC,点D,E 分别为BC,AB 的中点,连接AD.在线段AD 上任取一点P,连接PB,PE.若BC=4,AD=6,设PD=x(当点P 与点 D 重合时,x 的值为0),PB+PE=y.小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了x 与y 的几组值,如下表:x 0 1 2 3 4 5 6y 5.2 4.2 4.6 5.9 7.6 9.5说明:补全表格时,相关数值保留一位小数.2≈1.4143≈1.7325≈2.236)(2)建立平面直角坐标系(图2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)求函数y 的最小值(保留一位小数),此时点P 在图 1 中的什么位置.23.(8分)如图,已知在平面直角坐标系xOy 中,O 是坐标原点,点A (2,5)在反比例函数ky x=的图象上,过点A 的直线y=x+b 交x 轴于点B .求k 和b 的值;求△OAB 的面积.24.(10分)如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点. (1)观察猜想图1中,线段PM 与PN 的数量关系是 ,位置关系是 ; (2)探究证明把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由; (3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.25.(10分)如图所示,在Rt ABC △中,90ACB ∠=︒,(1)用尺规在边BC 上求作一点P ,使PA PB =;(不写作法,保留作图痕迹) (2)连接AP 当B Ð为多少度时,AP 平分CAB ∠.26.(12分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.(1)这次调查的市民人数为________人,m=________,n=________;(2)补全条形统计图;(3)若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.27.(12分)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称P,Q两点为同族点.下图中的P,Q两点即为同族点.(1)已知点A的坐标为(﹣3,1),①在点R(0,4),S(2,2),T(2,﹣3)中,为点A的同族点的是;②若点B在x轴上,且A,B两点为同族点,则点B的坐标为;(2)直线l:y=x﹣3,与x轴交于点C,与y轴交于点D,①M为线段CD上一点,若在直线x=n上存在点N,使得M,N两点为同族点,求n的取值范围;②M为直线l上的一个动点,若以(m,0)为圆心,2为半径的圆上存在点N,使得M,N两点为同族点,直接写出m的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据轴对称图形的概念判断即可.【详解】A、是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、不是轴对称图形.故选:A.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【解析】【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义即可解决.【详解】在数轴上,点13-到原点的距离是13,所以,13-的绝对值是13,故选C.【点睛】错因分析容易题,失分原因:未掌握绝对值的概念.3.B【解析】【分析】【详解】因为当x=1时,代数式的值是7,所以1+1+m=7,所以m=5,当x=-1时,=-1-1+5=3,故选B.4.D【解析】【详解】如图,过点C作CD⊥x轴于点D,∵点C的坐标为(3,4),∴OD=3,CD=4.∴根据勾股定理,得:OC=5.∵四边形OABC是菱形,∴点B的坐标为(8,4).∵点B在反比例函数(x>0)的图象上,∴.故选D.5.D【解析】ax+bx+c<0的解集:利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出2由图象得:对称轴是x=2,其中一个点的坐标为(1,0),∴图象与x轴的另一个交点坐标为(-1,0).ax+bx+c<0的解集即是y<0的解集,由图象可知:2∴x<-1或x>1.故选D.6.B【解析】【分析】实数分为有理数,无理数,有理数有分数、整数,无理数有根式下不能开方的,π等,很容易选择.【详解】A、二次根2不能正好开方,即为无理数,故本选项错误,B、无限循环小数为有理数,符合;C、π为无理数,故本选项错误;D、53不能正好开方,即为无理数,故本选项错误;故选B.【点睛】本题考查的知识点是实数范围内的有理数的判断,解题关键是从实际出发有理数有分数,自然数等,无理数有 、根式下开不尽的从而得到了答案.7.D【解析】【分析】解决本题抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′.【详解】由图知A点的坐标为(-3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(1,3).故选D.8.C【解析】【分析】过点A作AD⊥BC于点D.根据三角函数关系求出BD、CD的长,进而可求出BC的长.【详解】如图所示,过点A作AD⊥BC于点D.在Rt△ABD中,∠BAD=30°,AD=120m,BD=AD∙tan30°=120×3=403m;在Rt△ADC中,∠DAC=60°,CD=AD∙tan60°=120×3=1203m.∴BC=BD+DC=40312031603+=m.故选C.【点睛】本题主要考查三角函数,解答本题的关键是熟练掌握三角函数的有关知识,并牢记特殊角的三角函数值. 9.B【解析】【分析】绝对值不等的异号加法,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.依此即可求解.【详解】解:−8+3=−2.故选B.【点睛】考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有1.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.10.B【解析】【分析】依题意在同一坐标系内画出图像即可判断.【详解】根据题意可作两函数图像,由图像知交点在第二象限,故选B.【点睛】此题主要考查一次函数的图像,解题的关键是根据题意作出相应的图像.11.C【解析】 【分析】根据题意和图形,可以判断各小题中的结论是否成立,从而可以解答本题. 【详解】∵在△ABC 中,AD 和BE 是高, ∴∠ADB=∠AEB=∠CEB=90°, ∵点F 是AB 的中点, ∴FD=12AB ,FE=12AB , ∴FD=FE ,①正确;∵∠CBE=∠BAD ,∠CBE+∠C=90°,∠BAD+∠ABC=90°, ∴∠ABC=∠C , ∴AB=AC , ∵AD ⊥BC ,∴BC=2CD ,∠BAD=∠CAD=∠CBE ,在△AEH 和△BEC 中,AEH CEBAE BEEAH CBE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEH ≌△BEC (ASA ), ∴AH=BC=2CD ,②正确;∵∠BAD=∠CBE ,∠ADB=∠CEB , ∴△ABD ∽△BCE , ∴AB ADBC BE=,即BC•AD=AB•BE , ∵∠AEB=90°,AE=BE , ∴BEBE•BE , ∴AE 2;③正确; 设AE=a ,则a , ∴a ﹣a ,∴BEC ABCCE?BES CE 2AC?BE S AC 2===V V=22-,即BEC ABC 22S =V V , ∵AF=12AB , ∴ ADF ABD ABC 11S S S 24==V V V ,∴S △BEC ≠S △ADF ,故④错误, 故选:C . 【点睛】本题考查相似三角形的判定与性质、全等三角形的判定与性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答. 12.D 【解析】 【分析】根据直线y=ax+b (a≠0)经过第一,二,四象限,可以判断a 、b 的正负,从而可以判断直线y=bx-a 经过哪几个象限,不经过哪个象限,本题得以解决. 【详解】∵直线y=ax+b (a≠0)经过第一,二,四象限, ∴a <0,b >0,∴直线y=bx-a 经过第一、二、三象限,不经过第四象限, 故选D . 【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.3 【解析】 【分析】由一元二次方程ax 2+bx+c=0有实数根,可得y=ax 2+bx (a≠0)和y=-c 有交点,由此即可解答. 【详解】∵一元二次方程ax 2+bx+c=0有实数根, ∴抛物线y=ax 2+bx (a≠0)和直线y=-c 有交点, ∴-c≥-3,即c≤3, ∴c 的最大值为3. 故答案为:3. 【点睛】本题考查了一元二次方程与二次函数,根据一元二次方程有实数根得到抛物线y=ax 2+bx (a≠0)和直线y=-c 有交点是解决问题的关键. 14.12 【解析】 【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,根据红球的个数除以总数等于频率,求解即可. 【详解】∵摸到红球的频率稳定在0.25, ∴30.25a=解得:a=12 故答案为:12 【点睛】此题主要考查了利用频率估计概率,解答此题的关键是利用红球的个数除以总数等于频率. 15.x≥1. 【解析】 【分析】根据被开方数大于等于0列式计算即可得解. 【详解】根据题意得,x ﹣1≥0, 解得x≥1. 故答案为x≥1. 【点睛】本题考查函数自变量的取值范围,知识点为:二次根式的被开方数是非负数. 16.2 【解析】 ∵21a a +=,∴23a a --23()a a =-+31=-2=, 故答案为2. 17.4 【解析】 【分析】根据“距离坐标”和平面直角坐标系的定义分别写出各点即可. 【详解】距离坐标是(1,2)的点有(1,2),(-1,2),(-1,-2),(1,-2)共四个,所以答案填写4. 【点睛】本题考查了点的坐标,理解题意中距离坐标是解题的关键. 18.1 【解析】 【分析】根据平均数的性质知,要求x 1+1,x 2+2,x 3+3,x 4+4、x 5+5的平均数,只要把数x 1、x 2、x 3、x 4、x 5的和表示出即可. 【详解】∵数据x 1,x 2,x 3,x 4,x 5的平均数是3, ∴x 1+x 2+x 3+x 4+x 5=15, 则新数据的平均数为1234512345151555x x x x x ++++++++++==1,故答案为:1. 【点睛】本题考查的是样本平均数的求法.解决本题的关键是用一组数据的平均数表示另一组数据的平均数. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)画图见解析;(2)画图见解析;(3)5. 【解析】 【分析】(1)直接利用直角三角形的性质结合勾股定理得出符合题意的图形; (2)根据矩形的性质画出符合题意的图形; (3)根据题意利用勾股定理得出结论. 【详解】 (1)如图所示;(2)如图所示;(3)如图所示,在直角三角形中,根据勾股定理得EM=5.【点睛】本题考查了勾股定理与作图,解题的关键是熟练的掌握直角三角形的性质与勾股定理.20.(1)10;(2)25.【解析】【分析】(1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;根据△OCP与△PDA的面积比为1:4,得出CP=12AD=4,设OP=x,则CO=8﹣x,由勾股定理得x2=(8﹣x)2+42,求出x,最后根据AB=2OP即可求出边AB的长;(2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=12 PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=12QB,再求出EF=12PB,由(1)中的结论求出PB=228445+=,最后代入EF=12PB即可得出线段EF的长度不变【详解】(1)如图1,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP与△PDA的面积比为1:4,∴,∴ CP=12AD=4设OP=x,则CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得x2=(8﹣x)2+42,解得:x=5,∴AB=AP=2OP=10,∴边CD的长为10;(2)作MQ∥AN,交PB于点Q,如图2,∵AP=AB ,MQ ∥AN ,∴∠APB=∠ABP=∠MQP .∴MP=MQ ,∵BN=PM , ∴BN=QM .∵MP=MQ ,ME ⊥PQ ,∴EQ=PQ .∵MQ ∥AN ,∴∠QMF=∠BNF , ∴△MFQ ≌△NFB . ∴QF=FB ,∴EF=EQ+QF=12(PQ+QB )=12PB , 由(1)中的结论可得:PC=4,BC=8,∠C=90°, ∴PB=228445+=,∴EF=12PB=25, ∴在(1)的条件下,当点M 、N 在移动过程中,线段EF 的长度不变,它的长度为25. 【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质,关键是做出辅助线,找出全等和相似的三角形21.(1)(1)A (a ,0),B (3,0),D (0,3a ).(2)a 的值为73.(3)当a=5时,D 、O 、C 、B 四点共圆. 【解析】【分析】(1)根据二次函数的图象与x 轴相交,则y=0,得出A (a ,0),B (3,0),与y 轴相交,则x=0,得出D (0,3a ).(2)根据(1)中A 、B 、D 的坐标,得出抛物线对称轴x=32a +,AO=a ,OD=3a ,代入求得顶点C (32a +,-232a -⎛⎫ ⎪⎝⎭),从而得PB=3- 32a +=32a -,PC=232a -⎛⎫ ⎪⎝⎭;再分情况讨论:①当△AOD ∽△BPC 时,根据相似三角形性质得233322a aa a =--⎛⎫ ⎪⎝⎭, 解得:a=3(舍去);②△AOD ∽△CPB ,根据相似三角形性质得233322aaa a =--⎛⎫⎪⎝⎭,解得:a 1=3(舍),a 2=73;(3)能;连接BD ,取BD 中点M ,根据已知得D 、B 、O 在以BD 为直径,M (32,32a )为圆心的圆上,若点C 也在此圆上,则MC=MB ,根据两点间的距离公式得一个关于a 的方程,解之即可得出答案.【详解】(1)∵y=(x-a )(x-3)(0<a<3)与x 轴交于点A 、B (点A 在点B 的左侧),∴A (a ,0),B (3,0), 当x=0时,y=3a , ∴D (0,3a );(2)∵A (a ,0),B (3,0),D (0,3a ).∴对称轴x=32a +,AO=a ,OD=3a , 当x= 32a +时,y=- 232a -⎛⎫ ⎪⎝⎭,∴C (32a +,-232a -⎛⎫ ⎪⎝⎭), ∴PB=3-32a +=32a -,PC=232a -⎛⎫ ⎪⎝⎭, ①当△AOD ∽△BPC 时, ∴AO OD BP PC=, 即 233322a aa a =--⎛⎫ ⎪⎝⎭,解得:a=3(舍去);②△AOD ∽△CPB , ∴AO OD CP PB=, 即233322aaa a =--⎛⎫⎪⎝⎭, 解得:a 1=3(舍),a 2=73. 综上所述:a 的值为73; (3)能;连接BD ,取BD 中点M ,∵D、B、O三点共圆,且BD为直径,圆心为M(32,32a),若点C也在此圆上,∴MC=MB,∴22222 3333333222222a a a a⎡⎤+-⎛⎫⎛⎫⎛⎫⎛⎫-++=-+⎢⎥⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,化简得:a4-14a2+45=0,∴(a2-5)(a2-9)=0,∴a2=5或a2=9,∴a15a25a3=3(舍),a4=-3(舍),∵0<a<3,∴5∴当5D、O、C、B四点共圆.【点睛】本题考查了二次函数、相似三角形的性质、四点共圆等,综合性较强,有一定的难度,正确进行分析,熟练应用相关知识是解题的关键.22.(1)4.5(2)根据数据画图见解析;(3)函数y 的最小值为4.2,线段AD上靠近D点三等分点处. 【解析】【分析】(1)取点后测量即可解答;(2)建立坐标系后,描点、连线画出图形即可;(3)根据所画的图象可知函数y的最小值为4.2,此时点P 在图 1 中的位置为.线段AD 上靠近D 点三等分点处.【详解】(1)根据题意,作图得,y=4.5故答案为:4.5(2)根据数据画图得(3)根据图象,函数y 的最小值为 4.2,此时点P 在图 1 中的位置为.线段AD 上靠近 D 点三等分点处.【点睛】本题为动点问题的函数图象问题,正确作出图象,利用数形结合思想是解决本题的关键.23.(1)k=10,b=3;(2)15 2.【解析】试题分析:(1)、将A点坐标代入反比例函数解析式和一次函数解析式分别求出k和b的值;(2)、首先根据一次函数求出点B的坐标,然后计算面积.试题解析:(1)、把x=2,y=5代入y=kx,得k==2×5=10把x=2,y=5代入y=x+b,得b=3(2)、∵y=x+3 ∴当y=0时,x=-3,∴OB=3 ∴S=12×3×5=7.5考点:一次函数与反比例函数的综合问题.24.(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形,理由详见解析;(3)492.【解析】【分析】(1)利用三角形的中位线得出PM=12CE,PN=12BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=12BD,PN=12BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.【详解】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=12 BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=12 CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=12BD,PM=12CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)方法1、如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=22,在Rt△ABC中,AB=AC=10,AN=52,∴MN最大=22+52=72,∴S△PMN最大=12PM2=12×12MN2=14×(72)2=492.方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=12 BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=12PM2=12×72=492【点睛】本题考查旋转中的三角形,关键在于对三角形的所有知识点熟练掌握. 25.(1)详见解析;(2)30°.【解析】【分析】据直角三角形两锐角互余的性质即可得∠B 的度数,可得答案.【详解】(1)如图所示:分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧相交于点E 、F ,作直线EF ,交BC 于点P ,∵EF 为AB 的垂直平分线,∴PA=PB ,∴点P 即为所求.(2)如图,连接AP ,∵PA PB =,∴PAB B ∠=∠,∵AP 是角平分线,∴PAB PAC ∠=∠,∴PAB PAC B ∠=∠=∠,∵90ACB ∠=︒,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴当30B ∠=︒时,AP 平分CAB ∠.【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.26. (1)500,12,32;(2)补图见解析;(3)该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.(1)根据项目B 的人数以及百分比,即可得到这次调查的市民人数,据此可得项目A ,C 的百分比;(2)根据对“社会主义核心价值观”达到“A .非常了解”的人数为:32%×500=160,补全条形统计图;(3)根据全市总人数乘以A 项目所占百分比,即可得到该市对“社会主义核心价值观”达到“A 非常了解”的程度的人数.【详解】试题分析:试题解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%, (2)对“社会主义核心价值观”达到“A .非常了解”的人数为:32%×500=160, 补全条形统计图如下:(3)100000×32%=32000(人),答:该市大约有32000人对“社会主义核心价值观”达到“A .非常了解”的程度.27.(1)①R ,S;②(4-,0)或(4,0);(2)①33n -≤≤;②m≤1-或m≥1.【解析】【分析】【详解】(1)∵点A 的坐标为(−2,1),∴2+1=4,点R(0,4),S(2,2),T(2,−2)中,0+4=4,2+2=4,2+2=5,∴点A 的同族点的是R ,S ;故答案为R ,S ;②∵点B 在x 轴上,∴点B 的纵坐标为0,设B(x,0),∴B(−4,0)或(4,0);故答案为(−4,0)或(4,0);(2)①由题意,直线3y x =-与x 轴交于C (2,0),与y 轴交于D (0,3-).点M 在线段CD 上,设其坐标为(x ,y ),则有:0x ≥,0y ≤,且3y x =-.点M 到x 轴的距离为y ,点M 到y 轴的距离为x , 则3x y x y +=-=.∴点M 的同族点N 满足横纵坐标的绝对值之和为2.即点N 在右图中所示的正方形CDEF 上.∵点E 的坐标为(3-,0),点N 在直线xn =上, ∴33n -≤≤.②如图,设P(m,0)为圆心, 2为半径的圆与直线y=x−2相切,2,45PN PCN CPN ︒=∠=∠=Q∴PC=2,∴OP=1,观察图形可知,当m≥1时,若以(m,0)为圆心2为半径的圆上存在点N ,使得M ,N 两点为同族点,再根据对称性可知,m≤1-也满足条件,∴满足条件的m 的范围:m≤1-或m≥1。

2020届河南省中考数学二模试卷(一)(有解析)

2020届河南省中考数学二模试卷(一)(有解析)

2020届河南省中考数学二模试卷(一)一、选择题(本大题共10小题,共30.0分)1.以下关系,一定成立的是()A. 若|a|=a,则a>0B. 若a>b,则|a|>|b|C. 若a2=b2,则|a|=|b|D. 若|a|=|b|,则a=b2.江苏淮安与新疆全屯两地之间的距离约为3780000m,用科学记数法把3780000可以写成()A. 3.78×106mB. 3.78×107mC. 3.78×106mD. 3.78×10m3.如图,正方体的每一个面上都有一个正整数,已知相对的两个面上两数之和都相等.如果13、9、3对面的数分别为a、b、c,则a2+b2+c2−ab−bc−ca的值等于()A. 48B. 76C. 96D. 1524.下列计算正确的是()A. a m+1+a m−1=a2mB. a3÷a=a3C. (a3)2=a9D. a2⋅a4=a65.一组数据−1,2,3,4的极差是()A. 2B. 3C. 4D. 56.某书店将定价为10元和8元的两种畅销书共60本按定价售出后,将所得的书款546元全部捐献给了“希望工程”.那么定价为10元和8元的书各卖了()A. 20本和40本B. 25本和35本C. 33本和27本D. 30本和30本7.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,−2),点A(−1,m)在抛物线上,则下列结论中错误的是()A. ab<0B. 一元二次方程ax2+bx+c=0的正实数根在2和3之间C. a=m+23D. 点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t>1时,y1<y238.下列说法正确的是()A. 了解“乐山市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B. 甲乙两人跳绳各10次,其成绩的平均数相等,S甲2>S乙2,则甲的成绩比乙稳定C. 一口袋中装有除颜色外其余均相同的红色小球2个,蓝色小球1个,从中随机一次性摸出2个小球,则恰好摸到同色小球的概率是12D. “任意画一个三角形,其内角和是360°”这一事件是不可能事件9.在平面直角坐标系中,⊙O是以(2,1)为圆心,1为半径的圆,则下列说法正确的是()A. ⊙O必与x轴相交B. ⊙O必与x轴相切C. ⊙O与必y轴相交D. ⊙O必与y轴相切10.如图,在△ABC中,∠ACB=90°,AC=BC=2.E、F分别是射线AC、CB上的动点,且AE=BF,EF与AB交于点G,EH⊥AB于点H,设AE=x,GH=y,下面能够反映y与x之间函数关系的图象是()A.B.C.D.二、填空题(本大题共5小题,共15.0分)11.(x+√5)(x−√5)=______ .12. 如图所示,直线AB 、CD 交于点E ,EF ⊥CD 于点E ,∠AEF =55.75°,则∠BED =______°.13. 已知m 为不等式组{m+23≥−11−m 3>−12的所有整数解,则关于x 的方程3x +6x−1=x−mx(x−1)有增根的概率为______.14. 如图,以△ABC 的边BC 为直径作⊙O ,点A 在⊙O 上,点D 在线段BC 的延长线上,AD =AB ,∠D =30°.若劣弧AC ⏜的长为2π3,则图中阴影部分的面积为______ .15. 直角三角形的两边长分别是3cm 、5cm ,则第三边长______cm . 三、计算题(本大题共2小题,共12.0分) 16. 先化简,再求值:(x 2−2x+4x−1−x +2)÷x 2−4x−41−x,其中x 是|x|<2的整数.17. (7分)计算下列各题:(1)某校初三(一)班课外活动小组为了测得学校旗杆的高度,他们在离旗杆6米的处,用高为1.5米的仪器测得旗杆顶部处的仰角为60°,如图所示,求旗杆的高度为 米.(已知结果精确到0.1米)(2)如图,在四边形中,,,,,求⋅四、解答题(本大题共6小题,共48.0分)18. 为了了解青少年形体情况,现随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况,我们对测评数据作了适当处理(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题.(1)求这次抽查一共抽查了多少名学生;(2)请将条形统计图补充完整;(3)如果全市有8.2万名初中生,那么全市初中生中,三姿良好的学生约有多少名.(k<0) 19. 已知:如图,一次函数y=x+b的图象与反比例函数y=kx的图象交于A、B两点,A点坐标为(1,m),连接OB,过点B作BC⊥x轴,垂足为点C,且△BOC .的面积为32(1)求k的值;(2)求这个一次函数的解析式;(3)根据图象直接写出:当x取何值时,反比例函数的值大于一次函数的值.20. 已知四边形ABCD是边长为2的正方形,在以AB为直径的正方形内作半圆O,P为半圆上的动点(不与A、B重合)连接PA、PB、PC、PD,(1)若DP与半圆O相切时,求PA的长.(2)如图,以BC边为x轴,以AB边为y轴,建立如图所示的平面直角坐标系,把△PAD、△PAB、△PBC的面积分别记为S1、S2、S3,试求2S1S3−S22的最大值,并求出此时点P的坐标.(3)在(2)的条件下,E为边AD上一点,且AE=3DE,连接BE交半圆O于F.连接FP并延长至点Q,使得PQ=PB,求OQ的长.21. 已知,反比例函数y=kx的图象过第二象限内的点A(−2,m),AB⊥x轴于B,Rt△AOB面积为3,若直线y=x+b经过点A,并且经过反比例函数y=kx 的图象上另一点(n,−32).(1)求反比例函数的解析式;(2)求直线y=ax+b解析式;(3)求△AOC的面积;(4)直接写出不等式ax+b≥kx的解集.22. 如图:在平面直角坐标系中,点A(−2,0)点B(0,4),OB的垂直平分线CE,与OA的垂直平分线CD相交于点C.(1)写出点C的坐标;(2)证明点C在直线AB上;(3)在平面直角坐标系内是否存在点F,会使得△CDF≌△0AB?若存在直接写出点的坐标,若没有请说明理由.23. 已知抛物线y=ax2+bx+c经过A(−1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.【答案与解析】1.答案:C解析:解:A.若|a|=a,则a≥0,故A选项错误;B.若a=1,b=−2,则a>b,但|a|=1,|b|=2,所以|a|<|b|,故B选项错误;C.若a2=b2,则a与b互为相反数,则|a|=|b|,故C选项正确;D.若|a|=|b|,则a=±b,故选项D错误.故选C.根据绝对值的意义、及互为相反数的性质判断即可.此题考查了有理数的有关知识,熟练掌握绝对值的意义、及互为相反数的性质是解题的关键.2.答案:A解析:解:3780000,用科学记数法表示为3.78×106,故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.答案:B解析:解:∵正方体的每一个面上都有一个正整数,相对的两个面上两数之和都相等,∴a+13=b+9=c+3,∴a−b=−4,b−c=−6,c−a=10,a2+b2+c2−ab−bc−ca=2a2+2b2+2c2−2ab−2bc−2ca2=(a−b)2+(b−c)2+(c−a)22=(−4)2+(−6)2+1022=76故选:B.本题须先求出a−b=−4,b−c=−6,c−a=10,再通过对要求的式子进行化简整理,代入相应的值即可求出结果.本题主要考查了整式的混合运算−化简求值问题,在解题时要注意知识的综合运用及与图形结合问题.4.答案:D解析:解:(A)原式=a m+1+a m−1,故A错误;(B)原式=a2,故B错误;(C)原式=a6,故C错误;故选:D.根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5.答案:D解析:解:数据的极差=4−(−1)=5.故选D.根据极差的定义求解.本题考查了极差:极差是指一组数据中最大数据与最小数据的差.极差=最大值−最小值.6.答案:C解析:[分析]设定价为10元的书卖了x本,则定价为8元的书卖了(60−x)本,根据总价=单价×数量,即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.[详解]解:设定价为10元的书卖了x本,则定价为8元的书卖了(60−x)本,根据题意得:10x+8(60−x)=546,解得:x=33,∴60−x=27.故选C.7.答案:D解析:解:∵抛物线开口向上,∴a>0,=1,∵抛物线的对称轴为直线x=−b2a∴b=−2a<0,∴ab<0,所以A选项的结论正确;∵抛物线的对称轴为直线x=1,抛物线与x轴的一个交点坐标在(0,0)与(−1,0)之间,∴抛物线与x轴的另一个交点坐标在(2,0)与(3,0)之间,∴一元二次方程ax2+bx+c=0的正实数根在2和3之间,所以B选项的结论正确;把B(0,−2),A(−1,m)代入抛物线得c=−2,a−b+c=m,而b=−2a,∴a+2a−2=m,∴a=m+2,所以C选项的结论正确;3∵点P1(t,y1),P2(t+1,y2)在抛物线上,∴当点P1、P2都在直线x=1的右侧时,y1<y2,此时t≥1;当点P1在直线x=1的左侧,点P2在直线x=1的右侧时,y1<y2,此时0<t<1且t+1−1>1−t,<t<1,即12<t<1或t≥1时,y1<y2,所以D选项的结论错误.∴当12故选:D.由抛物线开口方向得到a>0,利用抛物线的对称轴方程得到b=−2a<0,则可对A选项进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点坐标在(2,0)与(3,0)之间,则根据抛物线与x轴的交点问题可对B选项进行判断;把B(0,−2),A(−1,m)和b=−2a代入抛物解析式可对C选项进行判断;利用二次函数的增减性对D进行判断.本题考查了图象法求一元二次方程的近似根:利用二次函数图象的对称性确定抛物线与x轴的交点坐标,从而得到一元二次方程的根.也考查了二次函数的性质.8.答案:D解析:解:A.了解“乐山市初中生每天课外阅读书籍时间的情况”最适合的调查方式是抽样调查,此选项错误;B.甲乙两人跳绳各10次,其成绩的平均数相等,S甲2>S乙2,则乙的成绩比甲稳定,此选项错误;C.一口袋中装有除颜色外其余均相同的红色小球2个,蓝色小球1个,从中随机一次性摸出2个小,此选项错误;球,则恰好摸到同色小球的概率是13D.“任意画一个三角形,其内角和是360°”这一事件是不可能事件,此选项正确;故选:D.根据抽样调查和全面调查的概念、方差的意义、利列表法和树状图法求随机事件的概率及不可能事件的概念逐一求解可得.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.9.答案:B解析:解:∵点(2,1)到x轴的距离是1,等于半径,到y轴的距离是2,大于半径,∴圆与x轴相切,与y轴相离.故选B.由已知点(2,1)可求该点到x轴,y轴的距离,再与半径比较,确定圆与坐标轴的位置关系.设d为直线与圆的距离,r为圆的半径,则有若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.10.答案:C解析:判断出△ABC是等腰直角三角形,然后再判断出△AHE是等腰直角三角形,根据等腰直角三角形的性质求出AB、AH的长,过点B作BD//AC交EF于点D,然后利用平行线分线段成比例定理分别列式BDAE =BGAG,BFFC=BDEC,再表示出BD,然后求出BG的长度,最后根据GH=AB−AH−BG,代入数据整理即可得到y与x的函数关系式,再根据函数相应的图象解答.11.答案:x2−5解析:解:原式=x2−(√5)2=x2−5.故答案为:x2−5.利用平方差公式直接计算即可.此题考查二次根式的混合运算,掌握平方差公式是解决问题的关键.12.答案:34°.25解析:解:∵EF⊥CD,∴∠CEF=90°,∴∠AEC=∠CEF−∠AEF=90°−55.75°=34.25°,∴∠BED=∠AEC=34.25°.故答案为:34.25°.根据垂直的定义可得∠CEF=90°,然后求出∠AEC,再根据对顶角相等解答.本题考查了垂线的定义,对顶角相等的性质,是基础题,准确识图是解题的关键.13.答案:15解析:解:解不等式m+23≥−1,得:m≥−5,解不等式1−m3>−12,得:m<4.5,则不等式组的解集为−5≤m<4.5,∴不等式组的所有整数解为−5、−4、−3、−2、−1、0、1、2、3、4这10个,将分式方程的两边都乘以x(x−1),得:3(x−1)+6x=x−m,∵分式方程的增根为x=1或x=0,当x=1时,m=−5;当x=0时,m=3;所以该分式方程有增根的概率为210=15,故答案为:15.解不等式组求得其解集,从而确定出不等式组的整数解m的值有10个,再根据分式方程有增根得出m的值,利用概率公式计算可得.本题主要考查概率公式的应用,解题的关键是熟练掌握解一元一次不等式组的能力和分式方程增根的概念及概率公式.14.答案:2√3−23π解析:解:连接OA,如图,∵AD=AB,∴∠B=∠D=30°,∵OA=OB,∴∠OAB=∠B=30°,∴∠AOC=2∠B=60°,∵劣弧AC⏜的长为2π3,∴60⋅π⋅OC180=2π3,解得OC=2,∵∠D=30°,∠DOA=60°,∴∠OAD=90°,∴AD=√3OA=2√3,∴图中阴影部分的面积=S△AOD−S扇形AOC=12×2√3×2−60×π×22360=2√3−23π.故答案为2√3−23π.连接OA,如图,先利用等腰三角形的性质得到∠B=∠D=∠OAB=30°,再利用圆周角定理得到∠AOC=60°,接着利用弧长公式计算出OC=2,然后根据扇形面积公式,利用∴图中阴影部分的面积=S△AOD−S扇形AOC进行计算.本题考查了扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=n360πR2或S扇形=12lR(其中l为扇形的弧长).求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.也考查了圆周角定理.15.答案:4或√34解析:解:①当3cm和5cm都是直角边时,第三边为斜边,由勾股定理得:第三边为√32+52=√34(cm);②当3cm为直角边和5cm为斜边时,第三边为直角边,由勾股定理得:第三边为√52−32=4(cm).故答案为:4或√34.分为两种情况,①当3cm和5cm都是直角边时;②当3cm为直角边和5cm为斜边时;根据勾股定理求出即可.本题考查了勾股定理的应用,能根据勾股定理求出符合的所以情况是解此题的关键,注意:直角三角形两直角边的平方和等于斜边的平方,用了分类讨论思想.16.答案:解:原式=[x2−2x+4x−1−(x−2)(x−1)x−1]÷(x+2)21−x=x+2x−1×1−x(x+2)2=−1x+2;又x是|x|<2的整数,∴x=−1或0或1.当x=1时原式无意义.∴当x=−1时,原式=−1;.当x=0时,原式=−12解析:根据分式的混合运算法则把原式化简,根据绝对值的性质求出x,代入计算即可.本题考查的是分式的化简求值,掌握分式的混合运算法则、绝对值的性质是解题的关键.17.答案:解:(1)在Rt△ABC中,∠BAC=60°,AC=6,故BC=6×tan60°=6.BE=BC+CE=6+1.5≈11.9(米).故填11.9.(2)过点D作DE⊥AB于点E,CF⊥DE于F,则有四边形BCFE为矩形,BC=EF,BE=CF,∵∠A=60°,∴∠ADE=30°,∵∠D=90°,∴∠CDE=60°,∠DCF=30°,在△CDF中,∵CD=9,∴DF=CD=,CF=CD=,∵EF=BC=6,∴DE=EF+DF=6+=,则AE=,∴AB=AE+BE==8.故填8.解析:(1)在Rt△ABC中,知道已知角的邻边求对边,用正切函数即可解答;(2)过点D作DE⊥AB于点E,CF⊥DE于F,可得四边形BCFE为矩形,根据∠A=60°,可得出∠ADE= 30°,根据∠D=90°,可求得∠CDE=60°,∠DCF=30°,在△CDF中,根据CD=9,分别求出CF,DF的长度,然后在△ADE中,求出AE的长度,继而可求出AB的长度.18.答案:解:(1)100÷20%=500,答:这次抽查一共抽查了500名学生;(2)∵三姿良好所占的百分比为:1−20%−37%−31%=12%;三姿良好的人数为:500×12%=60人,补全图形如下所示:(3)82000×12%=9840人,答:全市初中生中,三姿良好的学生约有9840名.解析:(1)由条形统计图和扇形统计图就可以看出:坐姿不良的学生有100人,占总人的百分比为20%,进而求出这次一共抽查的学生人数;(2)根据题意将条形统计图补充完整即可;(3)根据题意列式计算即可.本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.答案:解:(1)∵△BOC 的面积为32, ∴12|k|=32, 而k <0,∴k =−3;(2)把A(1,m)代入y =−3x 得1×m =−3,解得m =−3,∴A 点坐标为(1,−3),把A(1,−3)代入y =x +b 得1+b =−3,解得b =−4,∴一次函数解析式为y =x −4;(3)解方程组{y =x −4y =−3x 得{x =1y =−3或{x =3y =−1, ∴B 点坐标为(3,−1),∴当x <0或1<x <3时,反比例函数的值大于一次函数的值.解析:(1)利用反比例函数的比例系数的几何意义可求得k =−3;(2)先把A(1,m)代入y =−3x 求出m =−3,得到A 点坐标为(1,−3),然后把A 点坐标代入一次函数求出b 的值即可;(3)先解方程组{y =x −4y =−3x 可确定B 点坐标,然后观察函数图象得到当x <0或1<x <3时,反比例函数图象都在一次函数图象上方,即反比例函数的值大于一次函数的值.20.答案:解:(1)如图1,连接OP 、OD ,AP 与OD 相交于点M ,∵DP 与半圆O 相切,∴OA =OP ,OP ⊥DP ,得OD 垂直平分AP ,∴△AMO∽△DAO , ∴AM AD =AO DO , ∵AD =2,AO =1, DO =√AD 2+AO 2=√22+12=√5,∴AM =AO×AD DO =1×2√5=2√55,∴AP =2AM =2×2√55=4√55;(2)作PE ⊥AB 于点E ,设P(x,y),在Rt △EPO 中,可得PE 2+EO 2=OP 2,即x 2+(y −1)2=12,∴x 2=2y −y 2,根据题意可得:S 1=12⋅AD ⋅(2−y)=2−y ,S 3=12⋅BC ⋅y =y ,S 2=12⋅AB ⋅x =x ,∴2S 1S 3−S 22=2⋅(2−y)⋅y −x 2=4y −2y 2−x 2=x 2∵0<x ≤1∴当x =1时,2S 1S 3−S 22有最大值,最大值为1,将x =1代入x 2=2y −y 2中,可得y =1,此时点P(1,1)(3)连接AF ,得AF ⊥BE ,作FK ⊥AB 交于点K ,∵AE =3DE ,AD =2,∴AE =32,AF =65,根据题意,易得△BAE∽△BFA∽△AFE ,即:AF BF =EF AF =AEAB ,得BF =AF⋅AB AE =65⋅232=85, 在△ABE 中,BE =2+AE 2=52,易得△BFK∽△BEA ,即:FK BF =AE BE ,得FK =AE BE ⋅BF =32⋅8552=2425,根据勾股定理可得,BK =√BF 2−FK 2=3225∴F(2425,3225), ∵P(1,1),可求得直线PF 解析式:y =−7x +8,设Q(a,−7a +8),∵PQ =PB =√2,∴√(a −1)2+(−7a +8−1)2=√2,∴a 1=45,a 2=65, ∵Q 在FP 的延长上,∴a >1,∴a =65, ∴Q 点坐标为(65,−25),∵O 点坐标为(0,1),∴QO =√(65−0)2+(−25−1)2=√855. 解析:(1)根据已知可得OD 垂直平分AP ,得到△AMO∽△DAO ,根据勾股定理从而得到AM ,即可得到AP 的值;(2)过点P 分别作PE ⊥AB ,设P 点坐标为(x,y),通过勾股定理得到x 2=2y −y 2,从而得到2S 1S 3−S 22关于x 的解析式,求得其最值即可得到P 的坐标;(3)连接AF ,作FK ⊥AB 交于点K ,易得△BAE∽△BFA∽△AFE ,根据相似三角形的性质得到BF ,从而根据勾股定理以及△BFK∽△BEA ,得到BE 、FK 及BK ,即可得出F 点坐标,接着得到直线PF 解析式,设Q(a,−7a +8),利用PQ =PB =√2得到Q 点坐标,即可得到OQ 的长度.本题考查了圆的综合题,涉及了相似三角形的判定与性质、勾股定理、二元一次方程的最值问题、两点间的距离等多个考点,此题综合性很强,解题的关键是在于数形结合与方程思想的变换,特别是第(3)问中计算量较大,需要仔细认真.21.答案:解:(1)∵点A 坐标为(−2,m),AB ⊥x 轴于B ,Rt △AOB 面积为3, ∴12×2×m =3,解得m =3, ∴A 点坐标为(−2,3), 把A(−2,3)代入y =k x 得k =−2×3=−6,所以反比例函数的解析式为y =−6x ;(2)把C(n,−32)代入y =−6x 得−32n =−6,解得n =4,∴C 点坐标为(4,−32),把A(−2,3)、C(4,−32)代入y =ax +b 得{−2a +b =34a +b =−32,解得{a =−34b =32, 所以直线y =ax +b 解析式为y =−34x +32;(3)连OC ,对于y =−34x +32,令y =0,则−34x +32=0,解得x =2,∴M 点的坐标为(2,0),∴S △AOC =S △AOM +S △COM =12×2×3+12×2×32=92; (4)∵A(−2,3),C(4,−32),∴由函数图象可知,不等式ax +b ≥k x 的解集是x ≤−2或0<x ≤4.解析:(1)根据Rt △AOB 面积为得到12×2×m =3,解得m =3,则A 点坐标为(−2,3),把A 点坐标代入y =k x 可得k =−2×3=−6,确定反比例函数的解析式为y =−6x ;(2)把C 点坐标代入反比例函数的解析式y =−6x 可确定C 点坐标为(4,−32),然后利用待定系数法确定经过A 点和C 点的直线解析式;(3)先求出M 点的坐标,然后利用S △AOC =S △AOM +S △COM 进行计算即可;(4)由A 、C 两点的坐标可直接得出不等式的解集.本题考查的是反比例函数综合题,涉及到用待定系数法求一次函数的解析式及反比例函数图象上点的坐标特点,根据题意得出A 、C 的坐标是解答此题的关键.22.答案:解:(1)∵点A(−2,0)点B(0,4),∴OA =2,OB =4,∵OB 的垂直平分线CE ,与OA 的垂直平分线CD 相交于点C ,∴OD =12OA =12×2=1,OE =12OB =12×4=2, ∴点C(−1,2);(2)设直线AB 的解析式为y =kx +b ,则{−2k +b =0b =4, 解得{k =2b =4, ∴直线AB 的解析式为y =2x +4,当x =−1时,y =2×(−1)+4=−2+4=2,∴点C(−1,2)在直线AB 上;(3)①点C 是直角顶点时,如图,∵△CDF≌△0AB ,∴CF =OB =4,点F 在CD 右边时,F 1(3,2),点F 在CD 左边时,F 2(−5,2);②点D 是直角顶点时,∵△CDF≌△A0B ,∴DF =OB =4,点F 在CD 右边时,F 3(3,0),点F 在CD 左边时,F 4(−5,0);综上所述,存在点F 1(3,2),F 2(−5,2),F 3(3,0),F 4(−5,0),使得△CDF≌△0AB .解析:(1)根据点A 、B 的坐标求出OA 、OB 的长,再根据线段垂直平分线的定义求出OD 、OE 的长,然后判断出四边形CDOE 是矩形,然后写出点C 的坐标即可;(2)利用待定系数法求一次函数解析求出直线AB 的解析式,再把点C 的坐标代入验证即可;(3)分①点C是直角顶点时,根据全等三角形对应边相等可得CF=OB,②点D是直角顶点,根据全等三角形对应边相等可得DF=OB,然后分别分两种情况写出点F的坐标即可.本题考查了全等三角形的判定与性质,线段垂直平分线的性质,坐标与图形,待定系数法求一次函数解析式,一次函数图象上点的坐标特征,难点在于(3)要分情况讨论,作出图形更形象直观.23.答案:解:(1)将A(−1,0)、B(3,0)、C(0,3)代入抛物线y=ax2+bx+c中,得:a−b+c=09a+3b+c=0c=3解得:a=−1b=2c=3∴抛物线的解析式:y=−x2+2x+3.(2)连接BC,直线BC与直线l的交点为P;∵点A、B关于直线l对称,∴PA=PB,∴BC=PC+PB=PC+PA设直线BC的解析式为y=kx+b(k≠0),将B(3,0),C(0,3)代入上式,得:解得:∴直线BC的函数关系式y=−x+3;当x=1时,y=2,即P的坐标(1,2);(3)存在,点M的坐标为(1,),(1,−),(1,1),(1,0).解析:本题考查了抛物线的性质及解析式的确定、等腰三角形的判定等知识,在判定等腰三角形时,一定要根据不同的腰和底分类进行讨论,以免漏解.(1)直接将A、B、C三点坐标代入抛物线的解析式中求出待定系数即可;(2)由图知:A、B点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知:若连接BC,那么BC与直线l的交点即为符合条件的P点;(3)由于△MAC的腰和底没有明确,因此要分三种情况来讨论:①MA=AC、②MA=MC、②AC= MC;可先设出M点的坐标,然后用M点纵坐标表示△MAC的三边长,再按上面的三种情况列式求解:∵抛物线的对称轴为:x=1,∴设M(1,m)。

安阳市2020年中考数学模拟试题及答案

安阳市2020年中考数学模拟试题及答案

安阳市2020年中考数学模拟试题及答案注意事项:1 .考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。

2 .考生必须把答案写在答题卡上,在试卷上答题一律无效。

考试结束后,本试卷和答题卡一并交回。

3 .本试卷满分120分,考试时间120分钟。

一、选择题(本题共12小题。

每小题3分,共36分。

在每小题给出的四个选项中,只有一项是正确的。

)1.J5的相反数是()A.备 B . - J5 C .谓 D .非2 .舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为()A. 4.995 X1011 B . 49.95 X 1010 C. 0.4995 X 1011 D . 4.995 X10103 .某区“引进人才”招聘考试分笔试和面试.其中笔试按60%面13t按40%十算加权平均数作为总成绩.吴老师笔试成绩为90分.面试成绩为85分,那么吴老师的总成绩为()分.A. 85 B . 86 C . 87 D . 884 .若以A(-0.5 , 0), B(2, 0), C(0, 1)三点为顶点画平行四边形,则第四个顶点不可能在()A.第一象限B.第二象限C. 第三象限D.第四象限5 .图①是由五个完全相同的小正方体组成的立方体图形,将图①中的一个小正方体改变位置后如图②,则三视图发生改变的是()圜①国②A.主视图B.俯视图C. 左视图D.主视图、俯视图和左视图都改变6 .如图,已知/ ABG= /DCB添加以下条件,不能判定^ AB挈△ DCB勺是()9.将1.2.3三个数字随机生成的点的坐标列成下表.如果每个点出现的可能性相等, 那么从中任意取(1, 1) 3 2)(1, 3) ⑵1)⑵2) ⑵3) ⑶1)⑶2)⑶3)A. / A= Z DB.D. AB= DC7.若反比例函数 y = (kw0)的图象经过点P (2, - 3),则该函数的图象不经过的点是( A. ( 3, - 2) B. ( 1, — 6) C. (T,6) 8.若圆锥的底面半径r 为6cm,高h 为8cm, 则圆锥的侧面积为( A. 30 兀 cm2B . 60 % cm2 C.48 兀 cm2.80 兀 cm2一点,这个点在函数 y=x 图象上的概率是()A.0.3B.0.5C.D.10.如图1,点P 从矩形 ABCD 勺顶点A 出发沿 A-B- C 以2cmfs 的速度匀速运动到点 C 图2是点P运动时,△ APD 的面积y (cm2)随运动时间 x (s)变化而变化的函数关系图象,则矩形ABCM面积为(A. 36B. 48C.11.如图,AB 是O O 的直径,平分线交。

2020届河南省安阳市中考数学二模试卷(有解析)

2020届河南省安阳市中考数学二模试卷(有解析)

2020届河南省安阳市中考数学二模试卷一、选择题(本大题共10小题,共30.0分)1.下列各组数中,互为相反数的是()B. −1与(−1)2C. (−1)2与1D. 2与|−2|A. 2与122.在人体内,某种细胞的直径是0.00000125m,0.00000125用科学记数法表示为1.25×10n,则n的值是()A. −5B. −6C. 5D. 63.如图,直线l//n,AB//CD,∠1=30°,则∠2=()A. 120°B. 130°C. 140°D. 150°4.如图,是由四个相同的正方体组合而成的两个几何体,则下列表述正确的是()A. 图甲的主视图与图乙的左视图形状相同B. 图甲的左视图与图乙的俯视图形状相同C. 图甲的俯视图与图乙的俯视图形状相同D. 图甲的主视图与图乙的主视图形状相同3的平方根是()5.√125A. 5B. ±5C. √5D. ±√56.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如表:该店主决定本周进货时,增加了一些码的衬衫,影响该店主决策的统计量是()尺码3940414243平均每天销售数量(件)1012201212A. 众数B. 方差C. 平均数D. 中位数7.下列事件为必然事件的是()A. 射击一次,中靶B. 画一个三角形,其内角和是180°C. 掷一枚质地均匀的硬币,正面朝上D. 12人中至少有2人的生日在同一个月8.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为3的概率是()A. 12B. 13C. 14D. 159.近几年我国物价一直上涨,已知原价为484元的新产品,经过连续两次涨价a%后,现售价为625元,则根据题意列方程,正确的是()A. 484(1+a%)=625B. 484(1+a2%)=625C. 484(1−a%)=625D. 484(1+a%)2=62510.P在第三象限内,P到x轴距离为4,到y轴距离为3,那么点P的坐标为()A. (−4,3)B. (−3,−4)C. (−3,4)D. (3,−4)二、填空题(本大题共5小题,共15.0分)11.如下图,在直角坐标系中,A(1,0),B(0,3),C(4,0),D(0,2).AB与CD交于点P,则∠APC=.12.如图,在平行四边形ABCD中,AB=8,AD=5,sinA=45,E是DC上的一点,且BE=BC,则DE的长为______.13.关于x的一元二次方程(m−1)x2−2mx+m=0有两个实数根,那么m的取值范围是__ __。

河南省2020年中考数学二模试卷(解析版)

河南省2020年中考数学二模试卷(解析版)

2020年河南省中考数学二模试卷一、选择题(每题3分,共30分)1.﹣的相反数是()A.2020 B.﹣2020 C.D.﹣2.国家统计局公布,2019年我国国内生产总值按年平均汇率折算达到14.4万亿美元,稳居世界第二位.其中14.4万亿用科学记数法可以表示为()亿.A.1.44×1012B.1.44×1013C.1.44×104D.1.44×1053.下列图形中,不是正方体平面展开图的是()A.B.C.D.4.下列运算中结果正确的是()A.=±2 B.(﹣3a2b)2=6a4b2C.3x2y﹣2yx2=x2y D.a6÷a2=a35.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分81 77 ■80 82 80 ■则被遮盖的两个数据依次是()A.80,80 B.81,80 C.80,2 D.81,26.下列方程中,没有实数根的是()A.x2﹣6x+9=0 B.x2﹣2x+3=0C.x2﹣x=0 D.(x+2)(x﹣1)=07.如图,▱ABCD中,对角线AC,BD相交于点O,现分别以点B,D为圆心,以大于BD 的长为半径画弧,两弧相交于点F,连接OF交AD于点E,再连接BE,若▱ABCD的周长为28,则△ABE的周长为()A.28 B.24 C.20 D.148.不等式组的解集在数轴上表示正确的是()A.B.C.D.9.化简÷(a﹣)的结果是()A.a+b B.a﹣b C.D.10.如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P 作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A.B.C.D.二、填空题:(每题3分,共15分)11.计算:(﹣3)﹣1+=.12.将一副三角板如图放置,使点A在DE上,BC∥DE,则∠AFC的度数为.13.从2,3,4,6中随机选取两个数记作a和b(a<b),那么点(a,b)在直线y=2x上的概率是.14.如图,Rt△ABC中,∠C=90°,∠A=30°,BC=,BD是△ABC的内角平分线.以A为圆心,AD为半径作弧交AB于E,再以B为圆心,BE为半径作弧,交BC于F,则图中阴影部分的面积为.15.如图,菱形ABCD边长为4 cm,∠A=60°,点M为AB的中点,点N是边AD上任一点,把∠A沿直线MN折叠,点A落在图中的点E处,当AN=cm时,△BCE 是直角三角形.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:(x+2y)2+(x+2y)(x﹣2y)﹣2x(x+y),其中x,y满足方程组.17.(9分)如图,AB是⊙O的直径,D是⊙O外一点.DB和DC都与⊙O相切,切点分别是点B,C,连接OD交⊙O于点E,连接AC.(1)求证:AC∥OD;(2)如果AB=2,①当BD=时,四边形OACE是菱形;②当BD=时,四边形OCDB是正方形.18.(9分)我市某学校九年级(2)班开展了为期一周的“帮父母做家务”社会活动,并根据学生帮家长做家务的时间来评价学生在活动中的表现,把结果划分成A,B,C,D,E 五个等级,老师通过家长调查了全班50名学生在这次活动中帮父母做家务的时间,制作成如下的频数分布表和扇形统计图.等级帮助父母做家务时间(小时)频数A 2.5≤t<3 2B 2≤t<2.5 10C 1.5≤t<2 aD 1≤t<1.5 bE 0.5≤t<1 3(1)求a,b的值;(2)该班的小明同学这一周帮父母做家务2 h.他认为自己帮家长做家务的时间比班级里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计量说明理由;(3)若今年我市约有3.5万九年级学生,依据以上调查结果请你估计其中帮助家长做家务的时间一周不少于2 h的学生总人数.19.(9分)抗击突如其来的“新冠”疫情,彰显我们全国一盘棋的制度优势,抗疫期间甲市急需乙市生产的一种紧急抗疫物资,乙市安排一辆厢式货车往甲市运送,同时甲市一辆轿车前去迎接,以便提前运回一部分急用.两车相遇后,轿车带一部分物资按原速返回(两车交接货物的时间不计),厢式货车以原速把余下物资送到甲市.设厢式货车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象进行以下探究:(1)甲市到乙市两地相距km,两车出发后h相遇;(2)轿车行驶的速度是km/h,厢式货车行驶的速度是km/h;(3)请判断线段DC的延长线是否经过点A,并说明理由.20.(9分)如图,一艘渔船沿南偏东42°方向航行,在A处测得一个小岛P在其南偏东64°方向.又继续航行(40﹣16)海里到达B处,测得小岛P位于渔船的南偏东72°方向,已知以小岛P为圆心,半径16海里的圆形海域内有暗礁.如果渔船不改变航向有没有触礁的危险,请通过计算加以说明.如果有危险,渔船自B处开始,沿南偏东多少度的方向航行,能够安全通过这一海域?(参考数据:sin22°=,cos22°=,tan22°=)21.(10分)已知一块矩形草坪的两边长分别是2 m与3 m,现在要把这个矩形按照如图1的方式扩大到面积为原来的2倍,设原矩形的一边加长a m,另一边长加长b m,可得a与b之间的函数关系式b=﹣2.某班“数学兴趣小组”对此函数进一步推广,得到更一般的函数y=,现对这个函数的图象和性质进行了探究,研究过程如下,请补充完整:(1)类比反比例函数可知,函数y=﹣2的自变量x的取值范围是,这个函数值y的取值范围是.(2)“数学兴趣小组”进一步思考函数y=||的图象和性质,请根据函数y=的图象,画出函数y=||的图象;(3)根据函数y=||的图象,写出两条函数的性质.(4)根据函数y=||的图象解答下列问题:①方程||=0有个实数根,该方程的根是;②如果方程||=a只有一个实数根,则a的取值范围是;③如果方程||=a有2个实数根,则a的取值范围是.22.(10分)如图1,在Rt△ABC中,∠ACB=90°,点P在斜边AB上,点D,E,F分别是线段P A,PB,PC的中点,易知△DEF是直角三角形.“现把△DEF以点P为中心,顺时针旋转α,其中0°<α<360°.连接AD,BE,CF.(1)操作发现如图2,若点P是AB的中点,连接PF,可以发现=,=;(2)类比探究如图3,Rt△ABC中,CP⊥AB于点P,请判断与的大小,结合图2说明理由;(3)拓展提高在(2)的条件下,如果∠CAB=30°,且AB=4,在△DEF旋转的过程中,当以点C,D,F,P四点为顶点的四边形与以点B,E,F,P四点为顶点的四边形都是平行四边形时,直接写出线段AD,CF,BE的长.23.(11分)在平面直角坐标系中,一次函数y=﹣x+3的图象与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过点A,B.(1)求抛物线的解析式;(2)如图1,若M(m,y1),N(n,y2)是第一象限内抛物线上的两个动点,且m<n.分别过点M,N做MC,ND垂直于x轴,分别交直线AB于点C,D.①如果四边形MNDC是平行四边形,求m与n之间的关系;②在①的前提下,求四边形MNDC的周长L的最大值;(3)如图2,设抛物线与,x轴的另一个交点为A′,在抛物线的对称轴上是否存在一点P,使得∠AP A′=∠ABO?若存在,请直接写出P点坐标;若不存在,请说明理由?2020年河南省洛阳市中考数学二模试卷参考答案与试题解析一、选择题(每题3分,共30分)1.【分析】直接利用相反数的定义得出答案.【解答】解:﹣的相反数是:.故选:C.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:14.4万亿=144000亿=1.44×105亿.故选:D.3.【分析】根据正方体的展开图的种类和特征,综合进行判断即可.【解答】解:根据正方体的展开图的特征可知,共有11种情况,可以分为“1﹣4﹣1型”6种,“2﹣3﹣1型”3种,“2﹣2﹣2型”1种,“3﹣3型”1种,没有“1﹣2﹣3型”的,因此选项B不是正方体平面展开图,故选:B.4.【分析】分别根据立方根的定义,幂的乘方与积的乘方运算法则,合并同类项法则以及同底数幂的除法法则逐一判断即可.【解答】解:A.,故本选项不合题意;B.(﹣3a2b)2=9a4b2,故本选项不合题意;C.3x2y﹣2yx2=x2y,故本选项符合题意;D.a6÷a2=a4,故本选项不合题意.故选:C.5.【分析】根据平均数的计算公式先求出丙的得分,再根据众数的意义进行分析即可得出答案.【解答】解:根据题意得:80×5﹣(81+77+80+82)=80(分),则丙的得分是80分;众数是80,故选:A.6.【分析】分别进行判别式的值,再利用判别式的意义对A,B,C进行判断;利用因式分解法解方程可对D进行判断.【解答】解:A.△=(﹣6)2﹣4×9=0,所以方程有两个相等的实数解,所以A选项错误;B.△=(﹣2)2﹣4×3<0,所以方程没有实数解,所以B选项正确;C.△=(﹣1)2﹣4×0>0,所以方程有两个不相等的实数解,所以C选项错误;D.方程两个的实数解为x1=﹣2,x2=1,所以D选项错误.故选:B.7.【分析】证明△ABE的周长=AB+AD即可解决问题.【解答】解:∵四边形ABCD是平行四边形,周长为28,∴AB=CD,AD=BC,AB+AD=14,由作图可知,OE垂直平分线段BD,∴EB=ED,∴△ABE的周长=AB+BE+AE=AB+DE+AE=AB+AD=14,故选:D.8.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x<2x+2,得:x<2,解不等式﹣x≤1,得:x≥﹣1,则不等式组的解集为﹣1≤x<2,故选:A.9.【分析】首先计算括号里面分式的减法,然后再计算除法即可.【解答】解:原式=÷=•=,故选:C.10.【分析】分点Q在AC上和BC上两种情况进行讨论即可.【解答】解:当点Q在AC上时,∵∠A=30°,AP=x,∴PQ=x tan30°=,∴y=×AP×PQ=×x×=x2;当点Q在BC上时,如下图所示:∵AP=x,AB=16,∠A=30°,∴BP=16﹣x,∠B=60°,∴PQ=BP•tan60°=(16﹣x).∴==.∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.故选:B.二、填空题:(每题3分,共15分)11.【分析】直接利用算术平方根的性质以及负整数指数幂的性质分别化简得出答案.【解答】解:原式=﹣+3=.故答案为:.12.【分析】根据两直线平行,内错角相等求出∠BCE=∠E=30°,然后求出∠ACF的度数,再根据直角三角形的两锐角互余列式求解即可.【解答】解:∵BC∥DE,∴∠BCE=∠E=30°,∴∠ACF=∠ACB﹣∠BCE=45°﹣30°=15°,在Rt△ACF中,∠AFC=90°﹣∠ACF=90°﹣15°=75°.故答案为:75°.13.【分析】画出树状图,找到b=2a的结果数,再根据概率公式解答.【解答】解:画树状图如图所示,一共有6种情况,其中b=2a的有(2,4)和(3,6)两种,所以点(a,b)在直线y=2x上的概率是=,故答案为:.14.【分析】解直角三角形求得AC,AB,根据等腰三角形的判定证得AD=BD,根据勾股定理求出BD,可求出AD,BE,进而求出两个扇形的面积,阴影部分的面积等于△ABC的面积减去扇形ADE和扇形BEF的面积之和.【解答】解:连接BD,∵∠C=90°,∠A=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠ABD=∠CBD=30°,∴∠ABD=∠A,∴AD=BD,∵BC=,∴AC=BC•tan∠B=×=3,AB=2BC=2,∴DC=3﹣AD=3﹣BD,在Rt△BCD中,BD2=BC2+CD2,∴BD2=()2+(3﹣BD)2,解得:BD=2,∴AD=AE=2,∴BE=2﹣2,阴影部分的面积为:S△ABC﹣S扇形ADE﹣S扇形BEF=×3×﹣﹣=﹣π,故答案为:﹣π.15.【分析】根据题意分两种情况讨论:①当∠EBC=90°时,根据菱形的性质可得∠ANM=90°,进而可得AN的值;②当∠BEC=90°时,点E落在菱形对角线AC上,根据点M为AB的中点,MN为折痕,此时BD⊥AC于点E,可得N为AD的中点,进而可得AN的值.【解答】解:∵菱形ABCD边长为4 cm,点M为AB的中点,∴AM=BM=2 cm,由翻折可知:EM=AM=BM,∴∠MBE=∠MEB,①当∠EBC=90°时,∵∠A=60°,∴∠ABC=120°,∴∠MBE=∠MEB=30°,∴∠BME=120°,∴∠AMN=∠EMN=30°,∴∠MNA=90°,∴AN=AM=1cm;②当∠BEC=90°时,点E落在菱形对角线AC上,∵点M为AB的中点,MN为折痕,此时BD⊥AC于点E,∴点N为AD的中点,∴AN=AD=2 cm.所以当AN=1或2 cm时,△BCE是直角三角形.故答案为:1或2.三、解答题(本大题共8小题,满分75分)16.【分析】(1)先求出x与y的值,然后将原式化简,再把x与y的值代入即可求出答案.【解答】解:原式=x2+4xy+4y2+x2﹣4y2﹣2x2﹣2xy=2xy,∵,∴,∴两式相减可得:4xy=13,∴原式=.17.【分析】(1)想办法证明AC⊥BC,OD⊥BC即可判断.(2)①当BD=时,四边形OACE是菱形.根据四边相等的四边形是菱形证明即可.②当BD=1时,四边形OCDB是正方形.根据有一个角是90°的菱形是正方形证明即可.【解答】(1)证明:连接BC,OC.∵DB,DC是⊙O的切线,∴DB=DC,∵OC=OB,∴OD⊥BC,∵AB是直径,∴∠ACB=90°,即AC⊥BC,∴AC∥OD.(2)解:①当BD=时,四边形OACE是菱形.理由:连接EC.∵BD是⊙O的切线,∴BD⊥OB,∴∠OBD=90°,∴tan∠DOB==,∴∠DOB=60°,∵AC∥OD,∴∠OAC=∠DOB=60°,∵OA=OC,∴△AOC是等边三角形,∴AC=OA=OE,∵AC∥OE,∴四边形OACE是平行四边形,∵OA=OE,∴四边形OACE是菱形.故答案为.②当BD=1时,四边形OCDB是正方形.理由:∵BD,DC是⊙O的切线,∴DB=DC,∵OB=OC=1,BD=1,∴OB=BD=DC=OC,∴四边形OCDB是菱形,∵∠OBD=90°,∴四边形OCDB是正方形.故答案为1.18.【分析】(1)读图可知:C等级的频率为40%,总人数为50人,可求出a,则b也可得到;(2)求得中位数后,根据中位数的意义分析;(3)利用样本估计总体的方法即可估计其中帮助家长做家务的时间一周不少于两小时的学生总人数.【解答】解:(1)a=50×40%=20,b=50﹣2﹣10﹣20﹣3=15;(2)符合实际.设中位数为m,根据题意,m的取值范围是:1.5≤m<2,因为小明同学这一周帮父母做家务2小时,大于中位数,所以他帮家长做家务的时间比班级里一半以上的同学多;(3)35000×=8400(人),答:估计其中帮助家长做家务的时间一周不少于两小时的学生总人数为8400人.19.【分析】(1)由A,B两点坐标结合图形中坐标系点的意义即可得出结论;(2)由函数图象的特点知,C点为轿车运回甲市,由相遇问题和追及问题求出两车的速度和与速度差,进而得结果;(3)用待定系数法求出直线CD的解析式,再验证A点是否在直线CD上便可.【解答】解:(1)当x=0时,y=640,可知甲、乙两地之间的距离为640 km;当x=4时,y=0,可知甲、乙两车出发后4 h相遇;故答案为:640;4;(2)由函数图象可知,C(m,160)表示行驶m h后,两车相距160 km,此时轿车回到了乙市,∵轿车返回甲市的时间与轿车从甲市到两车相遇处的时间相等,∴轿车返回用时4 h,设轿车的速度为x km/h,厢式货车行驶的速度是y km/h,则,∴,∴轿车的速度为100 km/h,厢式货车行驶的速度是60 km/h,故答案为:100;60;(3)线段DC的延长线经过点A.理由如下:由(2)知,m=4+4=8,∴C(8,160),厢式货车到达乙市的时间为:640÷60=,∴D(,0),设直线CD的解析式为y=kx+b(k≠0),则,解得,∴直线CD的解析式为y=﹣60x+640,当x=0时,y=640,∴直线CD经过点A(0,640),∴线段DC的延长线经过点A.20.【分析】过点P作PC⊥AB,构造直角三角形,求出直角三角形的锐角,利用锐角三角函数求出PC,与16比较得出答案;改变航线后,画出图形,求出∠PBD的度数,再根据点B所测的方位角,即可求出改变航线后的方位角.【解答】解:如图1,过点P作PC⊥AB,交AB的延长线于点C,由题意得,∠P AC=64°﹣42°=22°,∠PBC=72°﹣42°=30°,AB=40﹣16,设PC=x,在Rt△PBC中,∵∠PBC=30°,∴BC=PC=x,∴AC=AB+BC=40﹣16+x,在Rt△P AC中,∵∠P AC=22°,∴tan∠P AC=,即=,解得,x=16,即PC=16,BP=2PC=32,∵16<16,∴有危险.如图2,渔船沿着BD方向航行,过点P作PD⊥BD,垂足为D,在Rt△PBD中,∵sin∠PBD===,∴∠PBD=45°,∴∠QBD=∠QBP﹣∠DBP=72°﹣45°=27°,即渔船自B处开始,沿南偏东27°的方向航行,能够安全通过这一海域.21.【分析】(1)根据分式有意义的条件确定自变量x的取值范围,根据≠0,确定y的值即可.(2)把函数y=的图象的x轴的上方部分沿x轴翻折,可得函数y=||的图象.(3)根据函数的图象,可得结论.(4)①②③利用图象法解决问题即可.【解答】解:(1)y=﹣2的自变量x的取值范围是x≠﹣3,这个函数值y的取值范围是y≠﹣2,故答案为:x≠﹣3,y≠﹣2.(2)函数y=||的图象,如图所示:(3)根据函数的图象可知:①当x<﹣3时,y随x的增大而增大.②函数有最小值,最小值为0.③当x>3时,y随x的增大而增大.(4)①方程||=0有1个实数根,该方程的根是x=3,故答案为1,x=3.②如果方程||a只有一个实数根,则a的取值范围是a=2或a=0.故答案为:a=2或a=0.③如果方程=||a有2个实数根,则a的取值范围是0<a<2或a>2.故答案为:0<a<2或a>2.22.【分析】(1)利用直角三角形斜边中线的性质以及全等三角形的性质解决问题即可.(2)结论:=.如图3中,连接PF.利用相似三角形的性质解决问题即可.(3)分两种情形:如图4﹣1中,当PC∥DF时,满足条件,如图4﹣2中,当点D落在AC上时,四边形CDPF是矩形,四边形PEBF是矩形,分别求解即可.【解答】解:(1)如图2中,连接PF,BE.∵∠ACB=90°,AP=PB,∴PC=P A=PB,∵∠DFE=90°,PD=PE,∴PF=PD=PE,∵∠APC=∠DPF,∴∠APD=∠CPF,∴△APD≌△CPF(SAS),∴AD=CF,∴=1,同法可证,△BPE≌△CPF,∴CF=BE,∴=1.故答案为1,1.(2)结论:=.理由:如图3中,连接PF.∵PC⊥AB,PF⊥DE,∴∠APC=∠DPF=90°,∵△APC∽△DPF,∴=,∴=,∵∠APC=∠DPF=90°,∴∠APD=∠CPF,∴=,同法可证,△CPF∽△BPE,∴=,∵∠ACB=90°,CP⊥AB,∴△APC∽△CPB,∴=,∴=.(2)如图4﹣1中,当PC∥DF时,∵∠CAB=30°,∠APC=90°,∴PC=AC,∵DF=AC,∴DF=PC,∴四边形PCFD是平行四边形,∵∠EFD=90°,∴EF⊥DF,∴EF⊥PC,∵PC⊥AB,∴PB∥EF,同法可证,BP=EF=BC,∴四边形PBEF是平行四边形,∴BE∥PF,∴∠BEP=∠EPF=90°,∵AB=4,∠CAB=30°,∠ACB=90°,∴BC=AB=2,∵CP⊥AB,∠ABC=60°,∴∠CPB=90°,∠PCB=30°,∴PB=PB=1,∵∠EPB=∠DEF=60°,∴BE=PB•sin60°=,由(2)可知,===,∴CF=,AD=.如图4﹣2中,当点D落在AC上时,四边形CDPF是矩形,四边形PEBF是矩形,此时BE=PF=,由(2)可知,===,∴CF=,AD=.综上所述,BE=,CF=,AD=.23.【分析】(1)利用待定系数法,把问题转化为解方程组,即可解决问题.(2)①由题意M(m,﹣m2+m+3),N(n,﹣n2+n+3),C(m,﹣m+3),D(n,﹣n+3),利用平行四边形的性质推出MC=DN,由此构建关系式,即可解决问题.②构建二次函数,利用二次函数的性质解决问题即可.(3)如图3中,作BH平分∠OBA交OA于H,过点H作HE⊥AB于E.抛物线的对称轴x=,设对称轴交x轴于K,则AK=,证明∠APK=∠OBH,推出tan∠OBH=tan∠APK,求出PK,即可解决问题.【解答】解:(1)∵一次函数y=﹣x+3的图象与x轴交于点A,与y轴交于点B,∴A(4,0),B(0,3),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线的解析式为y=﹣x2+x+3.(2)①由题意M(m,﹣m2+m+3),N(n,﹣n2+n+3),C(m,﹣m+3),D(n,﹣n+3),∵四边形MNDC是平行四边形,∴MC=DN,∴﹣m2+4m=﹣n2+4n,∴(m﹣n)(m+n﹣4)=0,∵m<n,∴m﹣n≠0,∴m+n=4.②由题意L=2[(﹣m2+4m)+(n﹣m)]=2[﹣m2+4m+(4﹣2m)]=2(﹣m2+4m+5﹣m)=﹣2(m﹣)2+,∵﹣2<0,∴m=时,L有最大值,最大值为.(3)如图3中,作BH平分∠OBA交OA于H,过点H作HE⊥AB于E.∵∠HBE=∠HBO,∠BOH=∠BEH=90°,BH=BH,∴△BHO≌△BHE(AAS),∴BO=BE=3,OH=HE,设OH=EH=x,∵AB===5,∴AE=AB﹣BE=2,AH=4﹣x,在Rt△AEH中,则有x2+22=(4﹣x)2,解得x=,∴H(,0),∵抛物线的对称轴x=,设对称轴交x轴于K,则AK=,∴P A=P A′,∵PK⊥AA′,∴∠APK=∠A′PK,∵∠AP A′=∠OBA,∴∠APK=∠OBH,∴tan∠OBH=tan∠APK,∴=∴=,∴PK=,∴P(,),根据对称性,P′(,﹣)也符合题意,综上所述,满足条件的点P的坐标为(,)或(,﹣).。

河南省安阳市2019-2020学年中考数学二模试卷含解析

河南省安阳市2019-2020学年中考数学二模试卷含解析

河南省安阳市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若关于x 的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a 的值为( )A .1-B .1C .22-或D .31-或2.下面说法正确的个数有( )①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形; ④如果∠A=∠B=∠C ,那么△ABC 是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在△ABC 中,若∠A +∠B=∠C ,则此三角形是直角三角形.A .3个B .4个C .5个D .6个3.已知等腰三角形的周长是10,底边长y 是腰长x 的函数,则下列图象中,能正确反映y 与x 之间函数关系的图象是( )A .B .C . D4.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( )A .平均数B .中位数C .众数D .方差5.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219423x y x y +=⎧⎨+=⎩.类似地,图2所示的算筹图我们可以表述为( )A.2114327x yx y+=⎧⎨+=⎩B.2114322x yx y+=⎧⎨+=⎩C.3219423x yx y+=⎧⎨+=⎩D.264327x yx y+=⎧⎨+=⎩6.下列运算正确的是()A.a2+a3=a5B.(a3)2÷a6=1 C.a2•a3=a6D.(+)2=57.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:①这栋居民楼共有居民140人②每周使用手机支付次数为28~35次的人数最多③有15的人每周使用手机支付的次数在35~42次④每周使用手机支付不超过21次的有15人其中正确的是()A.①②B.②③C.③④D.④8.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4 B.3 C.2 D.19.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A.14°B.15°C.16°D.17°10.在3-,1-,0,1这四个数中,最小的数是()A.3-B.1-C.0 D.111.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为A .32B .3C .1D .4312.下列图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是___岁.14.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x 个,则根据题意,可列出方程:__________.15.若函数y=的图象在其所在的每一象限内,函数值y 随自变量x 的增大而减小,则m 的取值范围是_____.16.已知关于x 的一元二次方程(a-1)x 2-2x+1=0有两个不相等的实数根,则a 的取值范围是_______________.17.分解因式:244m m ++=___________.18.已知A 、B 两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A 地到B 地匀速前行,甲、乙行进的路程s 与x (小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x 的增大而增大时,x 的取值范围是___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m ,200m ,400m(分别用1A 、2A 、3A 表示);田赛项目:跳远,跳高(分别用1B 、2B 表示).()1该同学从5个项目中任选一个,恰好是田赛项目的概率为______;()2该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.20.(6分)解不等式组3(2)41213x x x x --≤⎧⎪+⎨-⎪⎩f ,并写出其所有的整数解. 21.(6分)如图,O 为直线AB 上一点,∠AOC=50°,OD 平分∠AOC ,∠DOE=90°.写出图中小于平角的角.求出∠BOD 的度数.小明发现OE 平分∠BOC ,请你通过计算说明道理.22.(8分)九年级学生到距离学校6千米的百花公园去春游,一部分学生步行前往,20分钟后另一部分学生骑自行车前往,设x (分钟)为步行前往的学生离开学校所走的时间,步行学生走的路程为1y 千米,骑自行车学生骑行的路程为2y 千米,12y y 、关于x 的函数图象如图所示.(1)求2y 关于x 的函数解析式;(2)步行的学生和骑自行车的学生谁先到达百花公园,先到了几分钟?23.(8分)如图,AB 是⊙O 的直径,弧CD ⊥AB ,垂足为H ,P 为弧AD 上一点,连接PA 、PB ,PB 交CD 于E .(1)如图(1)连接PC 、CB ,求证:∠BCP=∠PED ;(2)如图(2)过点P 作⊙O 的切线交CD 的延长线于点E ,过点A 向PF 引垂线,垂足为G ,求证:∠APG=12∠F ; (3)如图(3)在图(2)的条件下,连接PH ,若PH=PF ,3PF=5PG ,BE=25,求⊙O 的直径AB .24.(10分)为响应“植树造林、造福后人”的号召,某班组织部分同学义务植树180棵,由于同学们的积极参与,实际参加的人数比原计划增加了50%,结果每人比原计划少栽了2棵,问实际有多少人参加了这次植树活动?25.(10分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)26.(12分)李宁准备完成题目;解二元一次方程组48x yx y-=⎧⎨+=-⎩W,发现系数“□”印刷不清楚.他把“□”猜成3,请你解二元一次方程组438x yx y-=⎧⎨+=-⎩;张老师说:“你猜错了”,我看到该题标准答案的结果x、y是一对相反数,通过计算说明原题中“□”是几?27.(1218(2166÷313参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得. 【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2.C【解析】试题分析:①∵三角形三个内角的比是1:2:3,∴设三角形的三个内角分别为x,2x,3x,∴x+2x+3x=180°,解得x=30°,∴3x=3×30°=90°,∴此三角形是直角三角形,故本小题正确;②∵三角形的一个外角与它相邻的一个内角的和是180°,∴若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故本小题正确;③∵直角三角形的三条高的交点恰好是三角形的一个顶点,∴若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正确;④∵∠A=∠B=∠C,∴设∠A=∠B=x,则∠C=2x,∴x+x+2x=180°,解得x=45°,∴2x=2×45°=90°,∴此三角形是直角三角形,故本小题正确;⑤∵三角形的一个外角等于与它不相邻的两内角之和,三角形的一个内角等于另两个内角之差,∴三角形一个内角也等于另外两个内角的和,∴这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确;⑥∵三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确.故选D.考点:1.三角形内角和定理;2.三角形的外角性质.3.D【解析】【分析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x 的取值范围,然后选择即可.【详解】由题意得,2x+y=10,所以,y=-2x+10,由三角形的三边关系得,()2210210x x x x x -+--+⎧⎨⎩>①<②, 解不等式①得,x >2.5,解不等式②的,x <5,所以,不等式组的解集是2.5<x <5,正确反映y 与x 之间函数关系的图象是D 选项图象.故选:D .4.B【解析】【分析】总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.【详解】要想知道自己是否入选,老师只需公布第五名的成绩,即中位数.故选B.5.A【解析】【分析】根据图形,结合题目所给的运算法则列出方程组.【详解】 图2所示的算筹图我们可以表述为:2114327x y x y +=⎧⎨+=⎩. 故选A .【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.6.B【解析】【分析】利用合并同类项对A进行判断;根据幂的乘方和同底数幂的除法对B进行判断;根据同底数幂的乘法法则对C进行判断;利用完全平方公式对D进行判断.【详解】解:A、a2与a3不能合并,所以A选项错误;B、原式=a6÷a6=1,所以A选项正确;C、原式=a5,所以C选项错误;D、原式=2+2+3=5+2,所以D选项错误.故选:B.【点睛】本题考查同底数幂的乘除、二次根式的混合运算,:二次根式的混合运算先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.解题关键是在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7.B【解析】【分析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解.【详解】解:①这栋居民楼共有居民3+10+15+22+30+25+20=125人,此结论错误;②每周使用手机支付次数为28~35次的人数最多,此结论正确;③每周使用手机支付的次数在35~42次所占比例为2511255=,此结论正确;④每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;故选:B.【点睛】此题考查直方图的意义,解题的关键在于理解直方图表示的意义求得统计的数据8.A【解析】分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.详解:根据题意,得:67955x++++=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为15[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选A.点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.9.C【解析】【分析】依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.【详解】如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故选:C.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.10.A【解析】【分析】根据正数大于零,零大于负数,正数大于一切负数,即可得答案.【详解】由正数大于零,零大于负数,得3101-<-<<,最小的数是3-,故选A.【点睛】本题考查了有理数比较大小,利用好“正数大于零,零大于负数,两个负数绝对值大的反而小”是解题关键.11.A【解析】【分析】首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【详解】∵AB=3,AD=4,∴DC=3∴根据勾股定理得AC=5根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=3 2故选A.12.B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误.故选B.【点睛】考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】【分析】根据中位数的定义找出第20和21个数的平均数,即可得出答案.【详解】解:∵该班有40名同学,∴这个班同学年龄的中位数是第20和21个数的平均数.∵14岁的有1人,1岁的有21人,∴这个班同学年龄的中位数是1岁.【点睛】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),熟练掌握中位数的定义是本题的关键.14.300200(110%)20x x =⨯-- 【解析】 【分析】若设甲每小时检测x 个,检测时间为300x ,乙每小时检测()20x -个,检测时间为20020x -,根据甲检测300个比乙检测200个所用的时间少10%,列出方程即可. 【解答】若设甲每小时检测x 个,检测时间为300x ,乙每小时检测()20x -个,检测时间为20020x -,根据题意有:()300200110%20x x =⨯--. 故答案为()300200110%.20x x =⨯-- 【点评】考查分式方程的应用,解题的关键是找出题目中的等量关系.15.m >2【解析】试题分析:有函数的图象在其所在的每一象限内,函数值y 随自变量x 的增大而减小可得m-2>0,解得m>2,考点:反比例函数的性质.16.a <2且a≠1.【解析】【分析】利用一元二次方程根的判别式列不等式,解不等式求出a 的取值范围.【详解】试题解析:∵关于x 的一元二次方程(a-1)x 2-2x+l=0有两个不相等的实数根,∴△=b 2-4ac >0,即4-4×(a-2)×1>0, 解这个不等式得,a <2,又∵二次项系数是(a-1),∴a≠1.故a 的取值范围是a <2且a≠1.【点睛】本题考查的是一元二次方程根的判别式,根据方程有两不等的实数根,得到判别式大于零,求出a 的取值范围,同时方程是一元二次方程,二次项系数不为零.17.()22m +【解析】【分析】直接利用完全平方公式分解因式得出答案.【详解】解:244m m ++=()22m +,故答案为()22m +.【点睛】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.18.2, 0≤x≤2或43≤x≤2. 【解析】【分析】(2)由图象直接可得答案;(2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答【详解】(2)由 函数图象可知,乙比甲晚出发2小时.故答案为2.(2)在整个运动过程中,甲、乙两人之间的距离随x 的增大而增大时,有两种情况:一是甲出发,乙还未出发时:此时0≤x≤2;二是乙追上甲后,直至乙到达终点时:设甲的函数解析式为:y =kx ,由图象可知,(4,20)在函数图象上,代入得:20=4k ,∴k =5,∴甲的函数解析式为:y =5x ①设乙的函数解析式为:y =k′x+b ,将坐标(2,0),(2,20)代入得:0202k b k b=+⎧⎨=+⎩ , 解得2020k b =⎧⎨=-⎩ , ∴乙的函数解析式为:y =20x ﹣20 ②由①②得52020y x y x =⎧⎨=-⎩ , ∴43203x y ⎧=⎪⎪⎨⎪=⎪⎩,故43≤x≤2符合题意.故答案为0≤x≤2或43≤x≤2.【点睛】此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)25;(2)35.【解析】【分析】(1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案.【详解】(1)∵5个项目中田赛项目有2个,∴该同学从5个项目中任选一个,恰好是田赛项目的概率为:25.故答案为25;(2)画树状图得:∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的有12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:123 205.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.不等式组的解集为1≤x<2,该不等式组的整数解为1,2,1.【解析】【分析】先求出不等式组的解集,即可求得该不等式组的整数解.【详解】() 3241213x xxx⎧--≤⎪⎨+>-⎪⎩①②,由①得,x≥1,由②得,x<2.所以不等式组的解集为1≤x<2,该不等式组的整数解为1,2,1.【点睛】本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.21.(1)答案见解析(2)155°(3)答案见解析【解析】【分析】(1)根据角的定义即可解决;(2)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(3)根据∠COE=∠DOE﹣∠DOC和∠BOE=∠BOD﹣∠DOE分别求得∠COE与∠BOE的度数即可说明.【详解】(1)图中小于平角的角∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=25°,∠BOC=180°﹣∠AOC=180°﹣50°=130°,所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又因为∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,所以∠COE=∠BOE,所以OE平分∠BOC.【点睛】本题考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.22.20.24y x=﹣;(2)骑自行车的学生先到达百花公园,先到了10分钟.【解析】【分析】(1)根据函数图象中的数据可以求得2y 关于x 的函数解析式;(2)根据函数图象中的数据和题意可以分别求得步行学生和骑自行车学生到达百花公园的时间,从而可以解答本题.【详解】解:(1)设2y 关于x 的函数解析式是2y kx b +=,200404k b k b +=⎧⎨+=⎩,得0.24k b =⎧⎨=-⎩, 即2y 关于x 的函数解析式是20.24y x=﹣; (2)由图象可知,步行的学生的速度为:4400.1÷=千米/分钟,∴步行同学到达百花公园的时间为:60.160÷=(分钟), 当28y =时, 60.24x =﹣,得50x =,605010﹣=,答:骑自行车的学生先到达百花公园,先到了10分钟.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.23.(1)见解析;(2)见解析;(3)AB=1【解析】【分析】(1)由垂径定理得出∠CPB=∠BCD ,根据∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED 即可得证; (2)连接OP ,知OP=OB ,先证∠FPE=∠FEP 得∠F+2∠FPE=180°,再由∠APG+∠FPE=90得2∠APG+2∠FPE=180°,据此可得2∠APG=∠F ,据此即可得证;(3)连接AE ,取AE 中点N ,连接HN 、PN ,过点E 作EM ⊥PF ,先证∠PAE=∠F ,由tan ∠PAE=tan ∠F 得PE EM AP MF =,再证∠GAP=∠MPE ,由sin ∠GAP=sin ∠MPE 得GP EM AP PE =,从而得出MF GP AP AP=,即MF=GP ,由3PF=5PG 即35PG PF =,可设PG=3k ,得PF=5k 、MF=PG=3k 、PM=2k ,由∠FPE=∠PEF知PF=EF=5k 、EM=4k 及、AP=2PE tan PAE =∠k ,证∠PEM=∠ABP 得k ,继而可得,据此求得k=2,从而得出AP 、BP 的长,利用勾股定理可得答案.【详解】证明:(1)∵AB 是⊙O 的直径且AB ⊥CD ,∴∠CPB=∠BCD,∴∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED,∴∠BCP=∠PED;(2)连接OP,则OP=OB,∴∠OPB=∠OBP,∵PF是⊙O的切线,∴OP⊥PF,则∠OPF=90°,∠FPE=90°﹣∠OPE,∵∠PEF=∠HEB=90°﹣∠OBP,∴∠FPE=∠FEP,∵AB是⊙O的直径,∴∠APB=90°,∴∠APG+∠FPE=90°,∴2∠APG+2∠FPE=180°,∵∠F+∠FPE+∠PEF=180°,∵∠F+2∠FPE=180°∴2∠APG=∠F,∴∠APG=12∠F;(3)连接AE,取AE中点N,连接HN、PN,过点E作EM⊥PF于M,由(2)知∠APB=∠AHE=90°,∵AN=EN,∴A、H、E、P四点共圆,∴∠PAE=∠PHF,∵PH=PF,∴∠PHF=∠F,∴∠PAE=∠F,tan∠PAE=tan∠F,∴PE EM AP MF=,由(2)知∠APB=∠G=∠PME=90°,∴∠GAP=∠MPE,∴sin∠GAP=sin∠MPE,则GP EM AP PE=,∴MF GP AP AP=,∴MF=GP,∵3PF=5PG,∴35 PGPF=,设PG=3k,则PF=5k,MF=PG=3k,PM=2k 由(2)知∠FPE=∠PEF,∴PF=EF=5k,则EM=4k,∴tan∠PEM=2142kk=,tan∠F=4433kk=,∴tan∠PAE=43 PEAP=,∵=,∴AP=2PEtan PAE=∠,∵∠APG+∠EPM=∠EPM+∠PEM=90°,∴∠APG=∠PEM,∵∠APG+∠OPA=∠ABP+∠BAP=90°,且∠OAP=∠OPA,∴∠APG=∠ABP,∴∠PEM=∠ABP,则tan∠ABP=tan∠PEM,即AP PM BP EM=,∴224kBP k=,则,∴BE=5k=25,则k=2,∴AP=35、BP=65,根据勾股定理得,AB=1.【点睛】本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、四点共圆条件、相似三角形的判定与性质、三角函数的应用等知识点.24.45人【解析】【详解】解:设原计划有x人参加了这次植树活动依题意得:18018021.5x x=+解得x=30人经检验x=30是原方程式的根实际参加了这次植树活动1.5x=45人答实际有45人参加了这次植树活动.25.(1)5.6(2)货物MNQP应挪走,理由见解析.【解析】【详解】(1)如图,作AD⊥BC于点DRt△ABD中,AD=ABsin45°=42=22在Rt△ACD中,∵∠ACD=30°∴2 5.6≈即新传送带AC的长度约为5.6米.(2)结论:货物MNQP应挪走.在Rt △ABD 中,BD=ABcos45°=42在Rt △ACD 中,CD=ACcos30°= ∴CB=CD —BD= 2.1≈ ∵PC=PB —CB ≈4—2.1=1.9<2∴货物MNQP 应挪走.26.(1)15x y =-⎧⎨=-⎩;(2)-1 【解析】【分析】(1)②+①得出4x=-4,求出x ,把x 的值代入①求出y 即可;(2)把x=-y 代入x-y=4求出y ,再求出x ,最后把x 、y 代入②求出答案即可.【详解】解:(1)438x y x y -=⎧⎨+=-⎩①② ①+②得,1x =-.将1x =-时代入①得,5y =-,∴15x y =-⎧⎨=-⎩. (2)设“□”为a ,∵x 、y 是一对相反数,∴把x=-y 代入x-y=4得:-y-y=4,解得:y=-2,即x=2,所以方程组的解是22x y =⎧⎨=-⎩, 代入ax+y=-8得:2a-2=-8,解得:a=-1,即原题中“□”是-1.【点睛】本题考查了解二元一次方程组,也考查了二元一次方程组的解,能得出关于a 的方程是解(2)的关键.27.-3【解析】分析:先化简各二次根式,再根据混合运算顺序依次计算可得.详解:原式×()3点睛:本题考查了二次根式的混合运算,熟练掌握混合运算的法则是解题的关键.。

河南省安阳市2019-2020学年中考第二次质量检测数学试题含解析

河南省安阳市2019-2020学年中考第二次质量检测数学试题含解析

河南省安阳市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a 元/千克,乙种糖果的单价为b 元/千克,且a >b.根据需要小明列出以下三种混合方案:(单位:千克) 甲种糖果 乙种糖果 混合糖果 方案1 2 3 5 方案2 3 2 5 方案32.52.55则最省钱的方案为( ) A .方案1 B .方案2C .方案3D .三个方案费用相同2.如图是由6个完全相同的小长方体组成的立体图形,这个立体图形的左视图是( )A .B .C .D .3.在下列交通标志中,是中心对称图形的是( )A .B .C .D .4.若顺次连接四边形ABCD 各边中点所得的四边形是菱形,则四边形ABCD 一定是( ) A .矩形B .菱形C .对角线互相垂直的四边形D .对角线相等的四边形5.如图,已知AOB ∠,用尺规作图作2AOC AOB ∠=∠.第一步的作法以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点E ,F 第二步的作法是( )A.以点E为圆心,OE长为半径画弧,与第1步所画的弧相交于点DB.以点E为圆心,EF长为半径画弧,与第1步所画的弧相交于点DC.以点F为圆心,OE长为半径画弧,与第1步所画的弧相交于点DD.以点F为圆心,EF长为半径画弧,与第1步所画的弧相交于点D6.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D.任意写一个整数,它能被2整除的概率7.如图,a∥b,点B在直线b上,且AB⊥BC,∠1=40°,那么∠2的度数()A.40°B.50°C.60°D.90°8.如图是一个由4个相同的正方体组成的立体图形,它的左视图为()A.B.C.D.9.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是()A.12B.18C.38D.111222++10.甲、乙、丙、丁四名射击运动员进行淘汰赛,在相同条件下,每人射击10次,甲、乙两人的成绩如图所示,丙、丁二人的成绩如表所示.欲淘汰一名运动员,从平均数和方差两个因素分析,应淘汰()丙丁平均数8 8方差 1.2 1.8A.甲B.乙C.丙D.丁11.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为()A.2πB.4πC.5πD.6π12.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90°B.120°C.270°D.360°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知点(﹣1,m)、(2,n )在二次函数y=ax2﹣2ax﹣1的图象上,如果m>n,那么a____0(用“>”或“<”连接).14.分解因式:mx2﹣6mx+9m=_____.15.如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=__________.16.关于x的一元二次方程2210ax x-+=有实数根,则a的取值范围是__________.17.若反比例函数y=﹣6x的图象经过点A(m,3),则m的值是_____.18.已知A(x1,y1),B(x2,y2)都在反比例函数y=6x的图象上.若x1x2=﹣4,则y1⋅y2的值为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)丁老师为了解所任教的两个班的学生数学学习情况,对数学进行了一次测试,获得了两个班的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.①A、B两班学生(两个班的人数相同)数学成绩不完整的频数分布直方图如下(数据分成5组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):②A、B两班学生测试成绩在80≤x<90这一组的数据如下:A班:80 80 82 83 85 85 86 87 87 87 88 89 89B班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89 ③A、B两班学生测试成绩的平均数、中位数、方差如下:平均数中位数方差A班80.6 m 96.9B班80.8 n 153.3根据以上信息,回答下列问题:补全数学成绩频数分布直方图;写出表中m、n的值;请你对比分析A、B两班学生的数学学习情况(至少从两个不同的角度分析).20.(6分)均衡化验收以来,乐陵每个学校都高楼林立,校园环境美如画,软件、硬件等设施齐全,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走6 米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°,已如A点离地面的高度AB=4米,∠BCA=30°,且B、C、D 三点在同一直线上.(1)求树DE 的高度; (2)求食堂MN 的高度.21.(6分)(1)(﹣2)2+2sin 45°﹣11()182-⨯(2)解不等式组523(1)131322x x x x +>-⎧⎪⎨-≤-⎪⎩,并将其解集在如图所示的数轴上表示出来.22.(8分)如图,在平行四边形ABCD 中,AD >AB .(1)作出∠ABC 的平分线(尺规作图,保留作图痕迹,不写作法);(2)若(1)中所作的角平分线交AD 于点E ,AF ⊥BE ,垂足为点O ,交BC 于点F ,连接EF .求证:四边形ABFE 为菱形.23.(8分)如图,抛物线y=x 2﹣2mx (m >0)与x 轴的另一个交点为A ,过P (1,﹣m )作PM ⊥x 轴于点M ,交抛物线于点B ,点B 关于抛物线对称轴的对称点为C (1)若m=2,求点A 和点C 的坐标;(2)令m >1,连接CA ,若△ACP 为直角三角形,求m 的值;(3)在坐标轴上是否存在点E ,使得△PEC 是以P 为直角顶点的等腰直角三角形?若存在,求出点E 的坐标;若不存在,请说明理由.。

河南省2020年数学中考二模试卷B卷试题和答案

河南省2020年数学中考二模试卷B卷试题和答案

河南省2020年数学中考二模试卷共 23 题一、选择题1、中国人最早使用负数,可追溯到两千多年前的秦汉时期,-2020的相反数是()A.2020B.-2020C. D.2、据介绍,2019年央视春晚直播期间,全球观众参与百度APP红包互动活动次数达208亿次.“208亿”用科学记数法表示为()A. 2.08×1010B.0.208×1011C.208×108D. 2.08×10113、如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,FG平分∠EFD交AB于点G,若∠BEF=70°,则∠AGF的度数为()A.35°B.45°C.55°D.65°4、下列运算正确的是()A.a2•a2=2a2B.a2+a2=a4C.(1+2a)2=1+2a+4a2D.(﹣a+1)(a+1)=1﹣a25、如图是某兴趣社制作的模型,则它的俯视图是()A. B.C. D.6、我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托,如果一托为5尺,那么索长()尺.A.25B.20C.15D.107、甲、乙、丙、丁四人进行射箭测试,每人10次,测试成绩的平均数都是8.9环,方差分别是s甲2=0.45,s乙2=0.50,s丙2=0.55,s丁2=0.65,则测试成绩最稳定的是()A.甲B.乙C.丙D.丁8、已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m的取值范围是( )A.m>0B.m>﹣1C.m<0D.m<﹣19、如图,在正方形网格中用没有刻度的直尺作一组对边长度为的平行四边形.在1×3的正方形网格中最多作2个,在1×4的正方形网格中最多作6个,在1×5的正方形网格中最多作12个,则在1×8的正方形网格中最多可以作()A.28个B.42个C.21个D.56个10、如图1,在△ABC中,AB=AC,BC=m,D,E分别是AB,AC边的中点,点P为BC边上的一个动点,连接PD,PA,PE.设PC=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线可能是()A.PBB.PEC.PAD.PD二、填空题11、计算: ________.12、不等式组的解集为________.13、把反面完全相同,正面分别写着“全”“能”“模”“考”的4张卡片洗匀后反面朝上放在桌面上,从中随机抽取两张,则抽出的卡片上的汉字恰好组成“模考”的概率是________.14、已知点C在以AB为直径的半圆上,连结AC、BC,AB=10,BC:AC=3:4,阴影部分的面积为________.15、如图所示,矩形ABCD中,AB=5,BC=8,点P为BC上一动点(不与端点重合),连接AP,将△ABP沿着AP折叠.点B落到M处,连接BM、CM,若△BMC为等腰三角形,则BP的长度为________.三、解答题﹣)÷ ,其中=﹣AB是☉的直径,为☉上一点,作射线,分别交,于D,E两点,过点的切线交射线求证: .是的中点时,若,判断以若,且学生,进行每周用于课外阅读时间的调查,数据如下(单位:):课外阅读时间表格中的数据: ________, ________, ________“ ”19、数学活动课上,小明和小红要测量小河对岸大树BC的高度,小红在点A测得大树顶端B的仰角为45°,小明从A点出发沿斜坡走3 米到达斜坡上点D,在此处测得树顶端点B的仰角为31°,且斜坡AF的坡比为1:2.(1)求小明从点A到点D的过程中,他上升的高度;(2)依据他们测量的数据能否求出大树BC的高度?若能,请计算;若不能,请说明理由.(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)20、甲、乙两车分别从A、B两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B地行驶,两车之间的路程y(千米)与出发后所用时间x(小时)之间的函数关系如图所示.(1)求甲、乙两车行驶的速度V甲、V乙.(2)求m的值.(3)若甲车没有故障停车,求可以提前多长时间两车相遇.21、如图,抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(l,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P是抛物线上的动点,且满足S△PAO=2S△PCO,求出P点的坐标;(3)连接BC,点E是x轴一动点,点F是抛物线上一动点,若以B、C、E、F为顶点的四边形是平行四边形时,请直接写出点F的坐标.22、等腰直角三角形OAB中,∠OAB=90°,OA=AB,点D为OA中点,DC⊥OB,垂足为C,连接BD,点M为线段BD中点,连接AM、CM,如图①.(1)求证:AM=CM;(2)将图①中的△OCD绕点O逆时针旋转90°,连接BD,点M为线段BD中点,连接AM、CM、OM,如图②.①求证:AM=CM,AM⊥CM;②若AB=4,求△AOM的面积.23、如图,将抛物线平移后,新抛物线经过原抛物线的顶点C,新抛物线与x轴正半轴交于点B,联结BC,,设新抛物线与x轴的另一交点是A,新抛物线的顶点是.D(1)求点D的坐标;(2)设点在新抛物线上,联结AC,DC,如果CE平分,求点E的坐标;(3)在(2)的条件下,将抛物线沿轴左右平移,点C的对应点为F,当和相似时,请直接写出平移后得到抛物线的表达式.参考答案一、选择题1、【答案】A【解析】2、【答案】A【解析】3、【答案】C【解析】5、【答案】B【解析】6、【答案】B【解析】7、【答案】A【解析】9、【答案】B【解析】10、【答案】D【解析】二、填空题【第1空】1【解析】12、【答案】【第1空】x<-6【解析】13、【答案】【第1空】【解析】【第1空】π﹣24【解析】15、【答案】【第1空】或或8【解析】三、解答题16、【答案】解:原式===,当x=﹣3时,原式= .【解析】17、【答案】(1)证明:如图1,连接,则 .,.,,.,,.又,,.(2)解:如图2,连接OC,OE,BE,CE,OE与BC交于点H.①以O,B,E,C为顶点的四边形是菱形.理由如下:是直径,.,.是的中点,.又,均为等边三角形,,四边形是菱形.四边形是菱形.②9【解析】18、【答案】【第1空】5【第2空】4【第3空】80.5【第4空】B【第5空】160【第6空】13【解析】(1)解:作DH⊥AE于H,如图1所示:在Rt△ADH中,∵=,∴AH=2DH,∵AH2+DH2=AD2,∴(2DH)2+DH2=(3 )2,∴DH=3.答:小明从点A到点D的过程中,他上升的高度为3米;(2)解:如图2所示:延长BD交AE于点G,设BC=xm,由题意得,∠G=31°,∴GH=≈=5,∵AH=2DH=6,∴GA=GH+AH=5+6=11,在Rt△BGC中,tan∠G=,∴CG=≈= x,在Rt△BAC中,∠BAC=45°,∴AC=BC=x.∵GC﹣AC=AG,∴ x﹣x=11,解得:x=16.5.答:大树的高度约为16.5米.【解析】(1)解:设甲的速度为x km/h,乙的速度为y km/h,根据函数图像可得解得故甲的速度为60 km/h,乙的速度为80 km/h(2)解:甲车故障后,0.5h乙走的路程为0.5×80=40,∴m=110-40=70(3)解:甲车没有故障停车两车相遇的时间为 =∴可以提前1.5- = h.【解析】(1)解:∵抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(l,0)两点,∴,解得:,∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)解:∵抛物线y=﹣x2﹣2x+3与y轴交于点C,∴点C(0,3)∴OA=OC=3,设点P(x,﹣x2﹣2x+3)∵S△PAO=2S△PCO,∴ ×3×|﹣x2﹣2x+3|=2× ×3×|x|,∴x=± 或x=﹣2± ,∴点P(,﹣2 )或(﹣,2 )或(﹣2+ ,﹣4+2 )或(﹣2﹣,﹣4﹣2 );(3)解:若BC为边,且四边形BCFE是平行四边形,∴CF∥BE,∴点F与点C纵坐标相等,∴3=﹣x2﹣2x+3,∴x1=﹣2,x2=0,∴点F(﹣2,3)若BC为边,且四边形BCEF是平行四边形,∴BE与CF互相平分,∵BE中点纵坐标为0,且点C纵坐标为3,∴点F的纵坐标为﹣3,∴﹣3=﹣x2﹣2x+3∴x=﹣1± ,∴点F(﹣1+ ,﹣3)或(﹣1﹣,﹣3);若BC为对角线,则四边形BECF是平行四边形,∴BC与EF互相平分,∵BC中点纵坐标为,且点E的纵坐标为0,∴点F的纵坐标为3,∴点F(﹣2,3),综上所述,点F坐标(﹣2,3)或(﹣1+ ,﹣3)或(﹣1﹣,﹣3).【解析】22、【答案】(1)证明:∵∠OAB=90°,∴△ABD是直角三角形,∵点M是BD的中点,∴AM= BD,∵DC⊥OB,∴∠BCD=90°,∵点M是BD的中点,∴CM= BD,∴AM=CM;(2)解:①如图②,在图①中,∵AO=AB,∠OAB=90°,∴∠ABO=∠AOB=45°,∵DC⊥OB,∴∠OCD=90°,∴∠ODC=∠AOB,∴OC=CD,延长CM交OB于T,连接AT,由旋转知,∠COB=90°,DC∥OB,∴∠CDM=∠TBM,∵点M是BD的中点,∴DM=BM,∵∠CMD=∠TMB,∴△CDM≌△TBM(ASA),∴CM=TM,DC=BT=OC,∵∠AOC=∠BOC﹣∠AOB=45°=∠ABO,∵AO=AB,∴△OAC≌△BAT(SAS),∴AC=AT,∠OAC=∠BAT,∴∠CAT=∠OAC+∠OAT=∠BAT+∠OAT=∠OAB=90°,∴△CAT是等腰直角三角形,∵CM=TM,∴AM⊥CM,AM=CM;②如图③,在Rt△AOB中,AB=4,∴OA=4,OB= = AB=4 ,在图①中,点D是OA的中点,∴OD= OA=2,∵△OCD是等腰直角三角形,∴DC=CO=ODsin45°= =,由①知,BT=CD,∴BT=,∴OT=OB﹣TB=3 ,在Rt△OTC中,CT==2 ,∵CM=TM= CT==AM,∵OM是Rt△COT的斜边上的中线,∴OM= CT=,∴AM=OM,过点M作MN⊥OA于N,则ON=AN= OA=2,根据勾股定理得,MN==1,∴S△AOM= OA•MN= ×4×1=2.【解析】23、【答案】(1)解:∵抛物线y=- x2+4的顶点为C,∴点C(0,4)∴OC=4,∵tanB=4= ,∴OB=1,∴点B(1,0)设点D坐标(a,b)∴新抛物线解析式为:y=- (x-a)2+b,且过点C(0,4),点B(1,0)∴解得:∴点D坐标(-1,)(2)解:如图1,过点D作DH⊥OC,∵点D坐标(-1,)∴新抛物线解析式为:y=- (x+1)2+ ,当y=0时,0=- (x+1)2+ ,∴x1=-3,x2=1,∴点A(-3,0),∴AO=3,∴,∵点D坐标(-1,)∴DH=1,HO= ,∴CH=OH-OC= ,∴,∴,且∠AOC=∠DHC=90°,∴△AOC∽△CHD,∴∠ACO=∠DCH,∵CE平分∠ACD,∴∠ACE=∠DCE,∴∠ACO+∠ACE=∠DCH+∠DCE,且∠ACO+∠ACE+∠DCH+∠DCE=180°∴∠ECO=∠ECH=90°=∠AOB,∴EC∥AO,∴点E纵坐标为4,∴4=- (x+1)2+ ,∴x1=-2,x2=0,∴点E(-2,4),(3)解:如图2,∵点E(-2,4),点C(0,4),点A(-3,0),点B(1,0),点D坐标(-1,)∴DE=DC= ,,AB=3+1=4,∴∠DEC=∠DCE,∵EC∥AB,∴∠ECA=∠CAB,∴∠DEC=∠CAB,∵△DEF和△ABC相似∴或,∴或∴EF= 或∴点F(- ,4)或(,4)设平移后解析式为:y=- (x+1-c)2+4,∴4=- (- +1-c)2+4或4=- ( +1-c)2+4,∴c1= ,c2=∴平移后解析式为:y=- (x+ )2+4或y=- (x- )2+4,【解析】。

河南省安阳市2020版中考数学二模试卷A卷

河南省安阳市2020版中考数学二模试卷A卷

河南省安阳市2020版中考数学二模试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019八上·泗阳期末) 下列说法正确的是A . 立方根等于本身的数只有0和1B . 5的平方根是5C .D . 数轴上不存在表示5的点2. (2分)下列计算正确的是()A . (a2)3=a5B . 2a-a=2C . (2a)2=4aD . a•a3=a43. (2分)已知空气的单位体积质量为1.24×10-3克/厘米3 ,1.24×10-3用小数表示为()A . 0.000124B . 0.0124C . -0.00124D . 0.001244. (2分)(2020·官渡模拟) 初三(1)班一次体育模拟考试中,10名同学跳绳项目的测试成绩统计如下表:成绩(个/分钟)140160169170177180人数111232则下列说法错误的是()A . 平均数是170B . 众数是177C . 中位数是173.5D . 方差是1355. (2分)(2017·绿园模拟) 不等式组的解在数轴上表示为()A .B .C .D .6. (2分)如图,在△ABC中,∠ACB=90°,AC=5,高CD=3,则sinA+sinB等于()A .B .C . 1D .7. (2分) (2020八上·历下期末) 下列命题是假命题的是()A . 两直线平行,同旁内角互补;B . 等边三角形的三个内角都相等;C . 等腰三角形的底角可以是直角;D . 直角三角形的两锐角互余.8. (2分)(2018·毕节模拟) 数学老师给出如下数据1,2,2,3,2,关于这组数据的正确说法是()A . 众数是2B . 极差是3C . 中位数是1D . 平均数是49. (2分)如图,P是☉O外一点,PA是☉O的切线,PO=26 cm,PA=24 cm,则☉O的周长为()A . 18π cmB . 16π cmC . 20π cmD . 24π cm10. (2分) (2019九上·宜兴期末) 以下命题:相等的圆心角所对的弧相等;长度相等的弧是等弧;直径所对的圆周角是直角;抛物线的对称轴是直线,其中真命题的个数是()A . 0B . 1C . 2D . 311. (2分)(2017·孝感模拟) 如图,平行四边形ABCD的对角线AC、BD交于点O,E是AD的中点,连接BE 交AC于点F,若S△ABF=10,则S△AEF()A . 2B . 3C . 4D . 512. (2分)(2012·鞍山) 如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,点B坐标(﹣1,0),下面的四个结论:①OA=3;②a+b+c<0;③ac>0;④b2﹣4ac>0.其中正确的结论是()A . ①④B . ①③C . ②④D . ①②二、填空题 (共8题;共8分)13. (1分)(2019·南京模拟) 计算: ________.14. (1分)(2017·曹县模拟) 分解因式4(a﹣b)+a2(b﹣a)的结果是________.15. (1分) (2018九上·扬州月考) 如果关于x的一元二次方程有两个不相等的实数根,那么k的取值范围是________.16. (1分)一个口袋中装有2个红球、3个绿球、5个黄球,每个球除颜色外其它都相同,搅均匀后随机从中摸出一个球是绿球的概率是________.17. (1分) (2019九上·南丰期中) 如图,矩形ABCD对角线AC、BD交于点O,边AB=6,AD=8,四边形OCED 为菱形,若将菱形OCED绕点O旋转一周,旋转过程中OE与矩形ABCD的边的交点始终为M,则线段ME的长度可取的整数值为________.18. (1分)(2016·昆都仑模拟) 如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E=________.19. (1分)如图,等腰直角三角形BDC的顶点D在等边三角形ABC的内部,∠BDC=90°,连接AD,过点D 作一条直线将△ABD分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是________度.20. (1分)(2019·镇江) 将边长为的正方形绕点按顺时针方向旋转到的位置(如图),使得点落在对角线上,与相交于点,则=________.(结果保留根号)三、解答题 (共6题;共58分)21. (10分) (2016九下·萧山开学考) 给出下面四个方程:x+y=2,xy=1,x=cos60°,y+2x=5(1)任意两个方程所组成的方程组是二元一次方程组的概率是多少?(2)请找出一个解是整数的二元一次方程组,并直接写出这个方程组的解.22. (5分)(2020·韩城模拟) 在数学实践活动课上,老师带领同学们到附近的公园测量园内一古楼的高度.测量方法如下:首先,用测角仪在C处测得楼顶端点的仰角为,然后,往古楼方向前进米至E处,测得楼顶端点的仰角为, .已知点B、E、C在一条直线上,,,,测量示意图如图所示,请你求出该古楼的高度 .(参考数据:,,,,,)23. (12分)种商品进行销售,第x天的销售单价为m元/件,日销售量为n件,其中m,n分别是x(1≤x≤30,且x为整数)的一次函数,销售情况如表:销售第x天第1天第2天第3天第4天 (30)销售单价m(元/件)49484746 (20)日销售量n(件)45505560 (190)(1)观察表中数据,分别直接写出m与x,n与x的函数关系式:________,________。

河南省安阳市2019-2020学年中考第二次大联考数学试卷含解析

河南省安阳市2019-2020学年中考第二次大联考数学试卷含解析

河南省安阳市2019-2020学年中考第二次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠CDE的大小是()A.40°B.43°C.46°D.54°2.下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个3.把不等式组24030xx-≥⎧⎨->⎩的解集表示在数轴上,正确的是()A.B.C.D.4.我市某小区开展了“节约用水为环保作贡献”的活动,为了解居民用水情况,在小区随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)8 9 10户数 2 6 2则关于这10户家庭的月用水量,下列说法错误的是()A.方差是4 B.极差是2 C.平均数是9 D.众数是95.如图,A(4,0),B(1,3),以OA、OB为边作□OACB,反比例函数kyx=(k≠0)的图象经过点C.则下列结论不正确的是()A.□OACB的面积为12B.若y<3,则x>5C.将□OACB向上平移12个单位长度,点B落在反比例函数的图象上.D.将□OACB绕点O旋转180°,点C的对应点落在反比例函数图象的另一分支上.6.sin60°的值为()A.3B.32C.22D.127.我国古代数学著作《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑堵”某“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为1),则该“堑堵”的侧面积为()A.16+162B.16+82C.24+162D.4+428.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为()A.4.25分钟B.4.00分钟C.3.75分钟D.3.50分钟9.如图,AB是⊙O的直径,D,E是半圆上任意两点,连接AD,DE,AE与BD相交于点C,要使△ADC 与△BDA相似,可以添加一个条件.下列添加的条件中错误的是( )A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD10.如图,点M是正方形ABCD边CD上一点,连接MM,作DE⊥AM于点E,BF⊥AM于点F,连接BE,若AF=1,四边形ABED的面积为6,则∠EBF的余弦值是()A.21313B.31313C.23D.131311.将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,朝上一面上的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是()A.1216B.172C.136D.11212.如图,BC平分∠ABE,AB∥CD,E是CD上一点,若∠C=35°,则∠BED的度数为()A.70°B.65°C.62°D.60°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点P(3a,a)是反比例函kyx(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的表达式为______.14.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.15.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.16.不等式-2x+3>0的解集是___________________17.一个不透明的袋子中装有6个球,其中2个红球、4个黑球,这些球除颜色外无其他差别.现从袋子中随机摸出一个球,则它是黑球的概率是______.18.计算(+1)(-1)的结果为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.20.(6分)如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 满足4a -+|b ﹣6|=0,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O ﹣C ﹣B ﹣A ﹣O 的线路移动.a= ,b= ,点B 的坐标为 ;当点P 移动4秒时,请指出点P 的位置,并求出点P 的坐标;在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.21.(6分)先化简,再求值:22111211a a a a a a ---÷----,其中21a =+.22.(8分)已知圆O 的半径长为2,点A 、B 、C 为圆O 上三点,弦BC=AO ,点D 为BC 的中点,(1)如图,连接AC 、OD ,设∠OAC=α,请用α表示∠AOD ;(2)如图,当点B 为AC n的中点时,求点A 、D 之间的距离:(3)如果AD 的延长线与圆O 交于点E ,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求弦AE 的长.23.(8分)(1)解方程组31021 x yx y+=⎧⎨-=⎩(2)若点A是平面直角坐标系中坐标轴上的点,( 1 )中的解 ,x y分别为点B的横、纵坐标,求AB的最小值及AB取得最小值时点A的坐标.24.(10分)如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处,一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5 km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin 37°≈0.60,cos 37°≈0.80,t an 37°≈0.75)25.(10分)如图①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直径,⊙O交AC于点D,过点D的直线交BC于点E,交AB的延长线于点P,∠A=∠PDB.(1)求证:PD是⊙O的切线;(2)若AB=4,DA=DP,试求弧BD的长;(3)如图②,点M是弧AB的中点,连结DM,交AB于点N.若tanA=,求的值.26.(12分)某服装店用4000元购进一批某品牌的文化衫若干件,很快售完,该店又用6300元钱购进第二批这种文化衫,所进的件数比第一批多40%,每件文化衫的进价比第一批每件文化衫的进价多10元,请解答下列问题:(1)求购进的第一批文化衫的件数;(2)为了取信于顾客,在这两批文化衫的销售中,售价保持了一致.若售完这两批文化衫服装店的总利润不少于4100元钱,那么服装店销售该品牌文化衫每件的最低售价是多少元?27.(12分)如图,现有一块钢板余料ABCED,它是矩形缺了一角,90,6,10,A B D AB dm AD dm∠=∠=∠=︒==4,2BC dm ED dm==.王师傅准备从这块余料中裁出一个矩形AFPQ(P为线段CE上一动点).设AF x=,矩形AFPQ的面积为y.(1)求y与x之间的函数关系式,并注明x的取值范围;(2)x为何值时,y取最大值?最大值是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据DE∥AB可求得∠CDE=∠B解答即可.【详解】解:∵DE∥AB,∴∠CDE=∠B=46°,故选:C.【点睛】本题主要考查平行线的性质:两直线平行,同位角相等.快速解题的关键是牢记平行线的性质.2.C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形.故选:C.【点睛】掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3.A【分析】分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可.【详解】2x 4030x -≥⎧⎨-⎩①>②由①,得x≥2,由②,得x <1,所以不等式组的解集是:2≤x <1.不等式组的解集在数轴上表示为:.故选A .【点睛】本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.A【解析】分析:根据极差=最大值-最小值;平均数指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数,以及方差公式S 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],分别进行计算可得答案.详解:极差:10-8=2,平均数:(8×2+9×6+10×2)÷10=9, 众数为9,方差:S 2=110 [(8-9)2×2+(9-9)2×6+(10-9)2×2]=0.4, 故选A .点睛:此题主要考查了极差、众数、平均数、方差,关键是掌握各知识点的计算方法.5.B【解析】【分析】先根据平行四边形的性质得到点C 的坐标,再代入反比例函数k y x=(k≠0)求出其解析式,再根据反比例函数的图象与性质对选项进行判断.解:Q A(4,0),B (1,3),4BC OA ==,∴ ()5,3C ,Q 反比例函数k y x=(k≠0)的图象经过点C , ∴5315k =⨯=,∴反比例函数解析式为15y x=. □OACB 的面积为4312b OA y ⨯=⨯=,正确;当0y <时,0x <,故错误;将□OACB 向上平移12个单位长度,点B 的坐标变为()1,15,在反比例函数图象上,故正确;因为反比例函数的图象关于原点中心对称,故将□OACB 绕点O 旋转180°,点C 的对应点落在反比例函数图象的另一分支上,正确.故选:B.【点睛】本题综合考查了平行四边形的性质和反比例函数的图象与性质,结合图形,熟练掌握和运用相关性质定理是解答关键.6.B【解析】解:sin60°B . 7.A【解析】【分析】分析出此三棱柱的立体图像即可得出答案.【详解】由三视图可知主视图为一个侧面,另外两个侧面全等,是长×高=4=2+4×所以答案选择A 项.【点睛】本题考查了由三视图求侧面积,画出该图的立体图形是解决本题的关键.8.C【解析】根据题目数据求出函数解析式,根据二次函数的性质可得.【详解】根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:930.7 1640.8 2550.5a b ca b ca b c++=⎧⎪++=⎨⎪++=⎩解得:a=−0.2,b=1.5,c=−2,即p=−0.2t2+1.5t−2,当t=−1.5-0.22⨯=3.75时,p取得最大值,故选C.【点睛】本题考查了二次函数的应用,熟练掌握性质是解题的关键. 9.D【解析】【详解】解:∵∠ADC=∠ADB,∠ACD=∠DAB,∴△ADC∽△BDA,故A选项正确;∵AD=DE,∴»»AD DE=,∴∠DAE=∠B,∴△ADC∽△BDA,∴故B选项正确;∵AD2=BD•CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C选项正确;∵CD•AB=AC•BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是对应夹角,故D选项错误,故选:D.考点:1.圆周角定理2.相似三角形的判定10.B【解析】【分析】首先证明△ABF ≌△DEA 得到BF=AE ;设AE=x ,则BF=x ,DE=AF=1,利用四边形ABED 的面积等于△ABE 的面积与△ADE 的面积之和得到12•x•x+•x×1=6,解方程求出x 得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE ,最后利用余弦的定义求解.【详解】∵四边形ABCD 为正方形,∴BA =AD ,∠BAD =90°,∵DE ⊥AM 于点E ,BF ⊥AM 于点F ,∴∠AFB =90°,∠DEA =90°,∵∠ABF+∠BAF =90°,∠EAD+∠BAF =90°,∴∠ABF =∠EAD ,在△ABF 和△DEA 中BFA DEA ABF EAD AB DA ∠=∠⎧⎪∠=⎨⎪=⎩∴△ABF ≌△DEA (AAS ),∴BF =AE ;设AE =x ,则BF =x ,DE =AF =1,∵四边形ABED 的面积为6, ∴111622x x x ⋅⋅+⋅⨯=,解得x 1=3,x 2=﹣4(舍去), ∴EF =x ﹣1=2,在Rt △BEF中,BE ==∴cos 13BF EBF BE ∠===. 故选B .【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形. 11.C【解析】【分析】三粒均匀的正六面体骰子同时掷出共出现216种情况,而边长能构成直角三角形的数字为3、4、5,含这三个数字的情况有6种,故由概率公式计算即可.【详解】解:因为将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,按出现数字的不同共666⨯⨯=216种情况,其中数字分别为3,4,5,是直角三角形三边长时,有6种情况,所以其概率为1 36,故选C.【点睛】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.边长为3,4,5的三角形组成直角三角形.12.A【解析】【分析】由AB∥CD,根据两直线平行,内错角相等,即可求得∠ABC的度数,又由BC平分∠ABE,即可求得∠ABE的度数,继而求得答案.【详解】∵AB∥CD,∠C=35°,∴∠ABC=∠C=35°,∵BC平分∠ABE,∴∠ABE=2∠ABC=70°,∵AB∥CD,∴∠BED=∠ABE=70°.故选:A.【点睛】本题考查了平行线的性质,解题的关键是掌握平行线的性质进行解答.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.y=12 x【解析】设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:14πr2=10π解得:r=.∵点P(3a,a)是反比例函y=kx(k>0)与O的一个交点,∴3a2=k.r=∴a 2=21(210)10=4. ∴k=3×4=12, 则反比例函数的解析式是:y=12x . 故答案是:y=12x. 点睛:本题主要考查了反比例函数图象的对称性,正确根据对称性求得圆的半径是解题的关键. 14.1【解析】【分析】首先连接BE ,由题意易得BF=CF ,△ACO ∽△BKO ,然后由相似三角形的对应边成比例,易得KO :CO=1:3,即可得OF :CF=OF :BF=1:1,在Rt △OBF 中,即可求得tan ∠BOF 的值,继而求得答案.【详解】如图,连接BE ,∵四边形BCEK 是正方形,∴KF=CF=12CK ,BF=12BE ,CK=BE ,BE ⊥CK , ∴BF=CF ,根据题意得:AC ∥BK ,∴△ACO ∽△BKO ,∴KO :CO=BK :AC=1:3,∴KO :KF=1:1,∴KO=OF=12CF=12BF , 在Rt △PBF 中,tan ∠BOF=BF OF =1, ∵∠AOD=∠BOF ,∴tan ∠AOD=1.故答案为1【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.15.3:2因为DE∥BC,所以32AD AEDB EC==,因为EF∥AB,所以23CE CFEA BF==,所以32BFFC=,故答案为: 3:2.16.x<3 2【解析】【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【详解】移项,得:-2x>-3,系数化为1,得:x<32,故答案为x<32.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.17.2 3【解析】【分析】根据概率的概念直接求得. 【详解】解:4÷6=2 3 .故答案为:2 3 .【点睛】本题用到的知识点为:概率=所求情况数与总情况数之比. 18.1【解析】【分析】利用平方差公式进行计算即可.【详解】原式=()2﹣1=2﹣1=1,故答案为:1.本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.绳索长为20尺,竿长为15尺.【解析】【分析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.【详解】设绳索长、竿长分别为x 尺,y 尺, 依题意得:552x y x y =+⎧⎪⎨=-⎪⎩ 解得:20x =,15y =.答:绳索长为20尺,竿长为15尺.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 20.(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.【解析】试题分析:(160.b -=可以求得,a b 的值,根据长方形的性质,可以求得点B 的坐标; (2)根据题意点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O ----的线路移动,可以得到当点P 移动4秒时,点P 的位置和点P 的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点P 移动的时间即可.试题解析:(1)∵a 、b60.b -=∴a−4=0,b−6=0,解得a=4,b=6,∴点B 的坐标是(4,6),故答案是:4,6,(4,6);(2)∵点P 从原点出发,以每秒2个单位长度的速度沿着O−C−B−A−O 的线路移动,∴2×4=8,∵OA=4,OC=6,∴当点P 移动4秒时,在线段CB 上,离点C 的距离是:8−6=2,即当点P 移动4秒时,此时点P 在线段CB 上,离点C 的距离是2个单位长度,点P 的坐标是(2,6);(3)由题意可得,在移动过程中,当点P 到x 轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P 在OC 上时,点P 移动的时间是:5÷2=2.5秒, 第二种情况,当点P 在BA 上时,点P 移动的时间是:(6+4+1)÷2=5.5秒, 故在移动过程中,当点P 到x 轴的距离为5个单位长度时,点P 移动的时间是2.5秒或5.5秒.21.1a-1,2【解析】【分析】先根据完全平方公式进行约分化简,再代入求值即可.【详解】原式=2a 1--2a-11a-1⋅()=21-a-1a-1=1a-1,将a +1,故答. 【点睛】本题主要考查了求代数式的值、分式的运算,解本题的要点在于正确化简,从而得到答案.22.(1)1502AOD α∠=︒-;(2)AD =(3)1122or 【解析】【分析】(1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值.(2)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOB 等于30°,因为点D 为BC 的中点,则∠AOB=∠BOC=60°,所以∠AOD 等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD 、AD 的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD 的长,再过O 点作AE 的垂线,利用勾股定理列出方程即可求解.【详解】(1)如图1:连接OB 、OC.∵BC=AO∴OB=OC=BC∴△OBC 是等边三角形∴∠BOC=60°∵点D 是BC 的中点∴∠BOD=1302BOC ∠=︒ ∵OA=OC∴OAC OCA ∠=∠=α ∴∠AOD=180°-α-α-30︒=150°-2α(2)如图2:连接OB 、OC 、OD.由(1)可得:△OBC 是等边三角形,∠BOD=1302BOC ∠=︒ ∵OB=2,∴OD=OB∙cos 30︒3∵B 为AC u u u r 的中点,∴∠AOB=∠BOC=60°∴∠AOD=90°根据勾股定理得:227AO OD +=(3)①如图3.圆O 与圆D 相内切时:连接OB 、OC ,过O 点作OF ⊥AE∵BC 是直径,D 是BC 的中点∴以BC 为直径的圆的圆心为D 点由(2)可得:OD=3,圆D 的半径为1 ∴AD=31+设AF=x在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-+- 解得:331x += ∴AE=3312AF 2+=②如图4.圆O 与圆D 相外切时:连接OB 、OC ,过O 点作OF ⊥AE∵BC 是直径,D 是BC 的中点∴以BC 为直径的圆的圆心为D 点由(2)可得:OD=3,圆D的半径为1∴AD=31-在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=--+ 解得:331x -= ∴AE=3312AF -=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.23.(1)31x y =⎧⎨=⎩;(2)当A 坐标为()3 , 0时,AB 取得最小值为1. 【解析】【分析】(1)用加减消元法解二元一次方程组;(2)利用(1)确定出B 的坐标,进而得到AB 取得最小值时A 的坐标,以及AB 的最小值.【详解】解:(1)31021x y x y +=⎧⎨-=⎩①②①2⨯+②得:721x =解得:3x =把3x =代入②得1y =,则方程组的解为31x y =⎧⎨=⎩(2 )由题意得:()3, 1B ,当A 坐标为()3 , 0时,AB 取得最小值为1.【点睛】此题考查了二元一次方程组的解,以及坐标与图形性质,熟练掌握运算法则及数形结合思想解题是解本题的关键.24.35km【解析】试题分析:如图作CH ⊥AD 于H .设CH=xkm ,在Rt △ACH 中,可得AH=3737CH x tan tan =︒︒,在Rt △CEH 中,可得CH=EH=x ,由CH ∥BD ,推出AH AC HD CB =,由AC=CB ,推出AH=HD ,可得37x tan ︒=x+5,求出x 即可解决问题.试题解析:如图,作CH ⊥AD 于H .设CH=xkm ,在Rt △ACH 中,∠A=37°,∵tan37°=CH AH , ∴AH=3737CH x tan tan =︒︒, 在Rt △CEH 中,∵∠CEH=45°,∴CH=EH=x ,∵CH ⊥AD ,BD ⊥AD ,∴CH ∥BD ,∴AH AC HD CB=, ∵AC=CB ,∴AH=HD ,∴37x tan ︒=x+5, ∴x=5?37137tan tan ︒-︒≈15, ∴AE=AH+HE=1537tan ︒+15≈35km , ∴E 处距离港口A 有35km .25.(1)见解析;(2);(3).【解析】【分析】(1)连结OD ;由AB 是⊙O 的直径,得到∠ADB=90°,根据等腰三角形的性质得到∠ADO=∠A ,∠BDO=∠ABD ;得到∠PDO=90°,且D 在圆上,于是得到结论;(2)设∠A=x ,则∠A=∠P=x ,∠DBA=2x ,在△ABD 中,根据∠A+∠ABD=90o 列方程求出x 的值,进而可得到∠DOB=60o ,然后根据弧长公式计算即可;(3)连结OM ,过D 作DF ⊥AB 于点F ,然后证明△OMN ∽△FDN ,根据相似三角形的性质求解即可.【详解】(1)连结OD ,∵AB 是⊙O 的直径,∴∠ADB=90o ,∠A+∠ABD=90o ,又∵OA=OB=OD ,∴∠BDO=∠ABD ,又∵∠A=∠PDB ,∴∠PDB+∠BDO=90o ,即∠PDO=90o ,且D 在圆上,∴PD 是⊙O 的切线.(2)设∠A=x ,∵DA=DP ,∴∠A=∠P=x ,∴∠DBA=∠P+∠BDP=x+x=2x ,在△ABD 中,∠A+∠ABD=90o ,x=2x=90o ,即x=30o ,∴∠DOB=60o ,∴弧BD 长.(3)连结OM ,过D 作DF ⊥AB 于点F ,∵点M 是的中点, ∴OM ⊥AB ,设BD=x ,则AD=2x ,AB==2OM ,即OM=,在Rt △BDF 中,DF=,由△OMN ∽△FDN 得.【点睛】本题是圆的综合题,考查了切线的判定,圆周角定理及其推论,三角形外角的性质,含30°角的直角三角形的性质,弧长的计算,弧弦圆心角的关系,相似三角形的判定与性质.熟练掌握切线的判定方法是解(1)的关键,求出∠A=30o 是解(2)的关键,证明△OMN ∽△FDN 是解(3)的关键.26.(1)50件;(2)120元.【解析】【分析】(1)设第一批购进文化衫x 件,根据数量=总价÷单价结合第二批每件文化衫的进价比第一批每件文化衫的进价多10元,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)根据第二批购进的件数比第一批多40%,可求出第二批的进货数量,设该服装店销售该品牌文化衫每件的售价为y 元,根据利润=销售单价×销售数量-进货总价,即可得出关于y 的一元一次不等式,解之取其内的最小值即可得出结论.【详解】解:(1)设第一批购进文化衫x 件, 根据题意得:4000x +10=63000(140)0x +, 解得:x=50,经检验,x=50是原方程的解,且符合题意,答:第一批购进文化衫50件;(2)第二批购进文化衫(1+40%)×50=70(件),设该服装店销售该品牌文化衫每件的售价为y 元,根据题意得:(50+70)y ﹣4000﹣6300≥4100,解得:y≥120,答:该服装店销售该品牌文化衫每件最低售价为120元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.27.(1)2213169(),410326y x x =--+≤≤;(1)132x =时,y 取最大值,为1696.【解析】【分析】(1)分别延长DE,FP,与BC的延长线相交于G,H,由AF=x知CH=x-4,根据CH PHCG GE=,即4664x z--=可得z=2623x-,利用矩形的面积公式即可得出解析式;(1)将(1)中所得解析式配方成顶点式,利用二次函数的性质解答可得.【详解】解:(1)分别延长DE,FP,与BC的延长线相交于G,H,∵AF=x,∴CH=x-4,设AQ=z,PH=BQ=6-z,∵PH∥EG,∴CH PHCG GE=,即4664x z--=,化简得z=2623x-,∴y=2623x-•x=-23x1+263x (4≤x≤10);(1)y=-23x1+263x=-23(x-132)1+1696,当x=132dm时,y取最大值,最大值是1696dm1.【点睛】本题考查了二次函数的应用,解题的关键是根据相似三角形的性质得出矩形另一边AQ的长及二次函数的性质.。

河南省安阳市2019-2020学年中考数学第二次调研试卷含解析

河南省安阳市2019-2020学年中考数学第二次调研试卷含解析

河南省安阳市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示的几何体,它的左视图是()A .B .C .D .2.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件.如果全组共有x名同学,则根据题意列出的方程是()A.x(x+1)=132 B.x(x-1)=132 C.x(x+1)=132×12D.x(x-1)=132×23.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为()A.180元B.200元C.225元D.259.2元4.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.10033100x yx y+=⎧⎨+=⎩B.1003100x yx y+=⎧⎨+=⎩C.100131003x yx y+=⎧⎪⎨+=⎪⎩D.1003100x yx y+=⎧⎨+=⎩5.如图,在△ABC中,DE∥BC,若23ADDB=,则AEEC等于( )A.13B.25C.23D.356.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则»BC的长是( )A.πB.13πC.12πD.16π7.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为()A.12 B.16 C.18 D.248.如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部C的俯角为60°,热气球A与楼的水平距离为120米,这栋楼的高度BC为()A.160米B.(60+1603)C.1603米D.360米9.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.9米,则梯子顶端A下落了()A.0.9米B.1.3米C.1.5米D.2米10.若一组数据2,3,4,5,x的平均数与中位数相等,则实数x的值不可能是( )A.6 B.3.5 C.2.5 D.111.如图,在矩形ABCD中,AB=2,BC=1.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.3102B.310C.105D.35512.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )A .10,15B .13,15C .13,20D .15,15二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在矩形ABCD 中,E 、F 分别是AD 、CD 的中点,沿着BE 将△ABE 折叠,点A 刚好落在BF 上,若AB=2,则AD=________.14.因式分解:2312x -=____________.15.图中是两个全等的正五边形,则∠α=______.16.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3h ,若静水时船速为26km/h ,水速为2km/h ,则A 港和B 港相距_____km .17.已知反比例函数k y x=的图像经过点(-2017,2018),当0x >时,函数值y 随自变量x 的值增大而_________.(填“增大”或“减小”)18.如图,直线l 1∥l 2,则∠1+∠2=____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知二次函数2y x bx c =-++与x 轴交于A 、B 两点,A 在B 左侧,点C 是点A 下方,且AC ⊥x 轴.(1)已知A(-3,0),B(-1,0),AC=OA .①求抛物线解析式和直线OC 的解析式;②点P 从O 出发,以每秒2个单位的速度沿x 轴负半轴方向运动,Q 从O 出发,2个单位的速度沿OC 方向运动,运动时间为t.直线PQ 与抛物线的一个交点记为M,当2PM=QM 时,求t 的值(直接写出结果,不需要写过程)(2)过C作直线EF与抛物线交于E、F两点(E、F在x轴下方),过E作EG⊥x轴于G,连CG,BF,求证:CG∥BF20.(6分)问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O是菱形ABCD的对角线交点,AB=5,下面是小红将菱形ABCD面积五等分的操作与证明思路,请补充完整.(1)在AB边上取点E,使AE=4,连接OA,OE;(2)在BC边上取点F,使BF=______,连接OF;(3)在CD边上取点G,使CG=______,连接OG;(4)在DA边上取点H,使DH=______,连接OH.由于AE=______+______=______+______=______+______=______.可证S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.21.(6分)如图1在正方形ABCD的外侧作两个等边三角形ADE和DCF,连接AF,BE.请判断:AF与BE的数量关系是,位置关系;如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.22.(8分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:()1这次统计共抽查了______名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为______; ()2将条形统计图补充完整;()3该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名.23.(8分)某数学兴趣小组为测量如图(①所示的一段古城墙的高度,设计用平面镜测量的示意图如图②所示,点P 处放一水平的平面镜,光线从点A 出发经过平面镜反射后刚好射到古城墙CD 的顶端C 处. 已知AB ⊥BD 、CD ⊥BD ,且测得AB=1.2m ,BP=1.8m.PD=12m ,求该城墙的高度(平面镜的原度忽略不计): 请你设计一个测量这段古城墙高度的方案.要求:①面出示意图(不要求写画法);②写出方案,给出简要的计算过程:③给出的方案不能用到图②的方法.24.(10分)在平面直角坐标系xOy 中,函数a y x=(x >0)的图象与直线l 1:y =x +b 交于点A (3,a -2).(1)求a ,b 的值;(2)直线l 2:y =-x +m 与x 轴交于点B ,与直线l 1交于点C ,若S △ABC ≥6,求m 的取值范围. 25.(10分)如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经 过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,),点M 是抛物线C 2:2y mx 2mx 3m =--(m <0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.26.(12分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.27.(12分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】从左面观察几何体,能够看到的线用实线,看不到的线用虚线.【详解】从左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选:A.【点睛】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.2.B【解析】全组有x名同学,则每名同学所赠的标本为:(x-1)件,那么x名同学共赠:x(x-1)件,所以,x(x-1)=132,故选B.3.A【解析】【分析】设这种商品每件进价为x元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程. 4.C【解析】【分析】设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.【详解】解:设大马有x匹,小马有y匹,由题意得:100131003x yx y+=⎧⎪⎨+=⎪⎩,故选C.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.5.C【解析】试题解析::∵DE∥BC,∴23AE ADEC DB==,故选C.考点:平行线分线段成比例.6.B【解析】【分析】连接OB,OC.首先证明△OBC是等边三角形,再利用弧长公式计算即可.【详解】解:连接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=OC=BC=1,∴»BC的长=6011803ππ⋅⋅=,故选B.【点睛】考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.7.A【解析】【详解】解:∵四边形ABCD为矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=10,EF=DE,在Rt△ABF中,∵BF=22AF AB-=6,∴CF=BC-BF=10-6=4,∴△CEF的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1.故选A.8.C【解析】【分析】过点A作AD⊥BC于点D.根据三角函数关系求出BD、CD的长,进而可求出BC的长.【详解】如图所示,过点A作AD⊥BC于点D.在Rt△ABD中,∠BAD=30°,AD=120m,BD=AD∙tan30°=120×3403;在Rt△ADC中,∠DAC=60°,CD=AD∙tan60°==∴BC=BD+DC=m.故选C.【点睛】本题主要考查三角函数,解答本题的关键是熟练掌握三角函数的有关知识,并牢记特殊角的三角函数值. 9.B【解析】试题分析:要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC和CE的长即可.解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=1,∴AC=2,∵BD=0.9,∴CD=2.1.在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.12=0.19,∴EC=0.7,∴AE=AC﹣EC=2﹣0.7=1.2.故选B.考点:勾股定理的应用.10.C【解析】【分析】因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置.【详解】(1)将这组数据从小到大的顺序排列为2,3,4,5,x,处于中间位置的数是4,∴中位数是4,平均数为(2+3+4+5+x)÷5,∴4=(2+3+4+5+x)÷5,解得x=6;符合排列顺序;(2)将这组数据从小到大的顺序排列后2,3,4,x,5,中位数是4,此时平均数是(2+3+4+5+x)÷5=4,解得x=6,不符合排列顺序;(3)将这组数据从小到大的顺序排列后2,3,x ,4,5,中位数是x ,平均数(2+3+4+5+x )÷5=x , 解得x=3.5,符合排列顺序;(4)将这组数据从小到大的顺序排列后2,x ,3,4,5,中位数是3,平均数(2+3+4+5+x )÷5=3, 解得x=1,不符合排列顺序;(5)将这组数据从小到大的顺序排列后x ,2,3,4,5,中位数是3,平均数(2+3+4+5+x )÷5=3, 解得x=1,符合排列顺序;∴x 的值为6、3.5或1.故选C .【点睛】考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.11.B【解析】【分析】根据S △ABE =12S 矩形ABCD =1=12•AE•BF ,先求出AE ,再求出BF 即可. 【详解】如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=1,∠D=90°,在Rt △ADE 中,22AD DE +2231+10,∵S △ABE =12S 矩形ABCD =1=12•AE•BF , ∴BF=3105. 故选:B .【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.12.D【解析】【分析】将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.22【解析】如图,连接EF ,∵点E 、点F 是AD 、DC 的中点,∴AE=ED ,CF=DF=12CD=12AB=1, 由折叠的性质可得AE=A′E ,∴A′E=DE ,在Rt △EA′F 和Rt △EDF 中,EA ED EF EF ='⎧⎨=⎩, ∴Rt △EA′F ≌Rt △EDF (HL ),∴A′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3,在Rt△BCF中,BC=22223122BF CF-=-=.∴AD=BC=22.点睛:本题考查了翻折变换的知识,解答本题的关键是连接EF,证明Rt△EA′F≌Rt△EDF,得出BF的长,再利用勾股定理解答即可.14.3(x-2)(x+2)【解析】【分析】先提取公因式3,再根据平方差公式进行分解即可求得答案.注意分解要彻底.【详解】原式=3(x2﹣4)=3(x-2)(x+2).故答案为3(x-2)(x+2).【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.15.108°【解析】【分析】先求出正五边形各个内角的度数,再求出∠BCD和∠BDC的度数,求出∠CBD,即可求出答案.【详解】如图:∵图中是两个全等的正五边形,∴BC=BD,∴∠BCD=∠BDC,∵图中是两个全等的正五边形,∴正五边形每个内角的度数是0 (52)1805-⨯=108°,∴∠BCD=∠BDC=180°-108°=72°,∴∠CBD=180°-72°-72°=36°,∴∠α=360°-36°-108°-108°=108°,故答案为108°.【点睛】本题考查了正多边形和多边形的内角和外角,能求出各个角的度数是解此题的关键.16.1.【解析】【分析】根据逆流速度=静水速度-水流速度,顺流速度=静水速度+水流速度,表示出逆流速度与顺流速度,根据题意列出方程,求出方程的解问题可解.【详解】解:设A 港与B 港相距xkm ,根据题意得:3262262x x +=+- , 解得:x=1,则A 港与B 港相距1km .故答案为:1.【点睛】此题考查了分式方程的应用题,解答关键是在顺流、逆流过程中找出等量关系构造方程.17.增大【解析】【分析】根据题意,利用待定系数法解出系数的符号,再根据k 值的正负确定函数值的增减性.【详解】 ∵反比例函数k y x=的图像经过点(-2017,2018), ∴k=-2017×2018<0,∴当x>0时,y 随x 的增大而增大.故答案为增大.18.30°【解析】【分析】分别过A 、B 作l 1的平行线AC 和BD ,则可知AC ∥BD ∥l 1∥l 2,再利用平行线的性质求得答案.【详解】如图,分别过A 、B 作l 1的平行线AC 和BD ,∵l 1∥l 2,∴AC ∥BD ∥l 1∥l 2,∴∠1=∠EAC ,∠2=∠FBD ,∠CAB+∠DBA=180°,∵∠EAB+∠FBA=125°+85°=210°,∴∠EAC+∠CAB+∠DBA+∠FBD=210°,即∠1+∠2+180°=210°,∴∠1+∠2=30°,故答案为30°.【点睛】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1)①y=-x 2-4x -3;y=x ;②1113± 或63314150±;(2)证明见解析. 【解析】【分析】(1)把A(-3,0),B(-1,0)代入二次函数解析式即可求出;由AC=OA 知C 点坐标为(-3,-3),故可求出直线OC 的解析式;②由题意得OP=2t,P(-2t ,0),过Q 作QH ⊥x 轴于H,得OH=HQ=t,可得Q(-t,-t),直线 PQ 为y =-x -2t ,过M 作MG ⊥x 轴于G ,由12PG PM GH QM ==,则2PG =GH ,由2P G G H x x x x -=-,得2P M M Q x x x x -=-, 于是22M M t x x t --=+,解得533M M x t x t =-=-或,从而求出M(-3t,t)或M (51,33t t --),再分情况计算即可; (2) 过F 作FH ⊥x 轴于H ,想办法证得tan ∠CAG=tan ∠FBH ,即∠CAG=∠FBH ,即得证.【详解】2y x bx c =-++解:(1)①把A(-3,0),B(-1,0)代入二次函数解析式得09301b c b c =--+⎧⎨=--+⎩解得43b c =-⎧⎨=-⎩∴y=-x 2-4x -3;由AC=OA 知C 点坐标为(-3,-3),∴直线OC 的解析式y=x ;②OP=2t,P(-2t ,0),过Q 作QH ⊥x 轴于H,∵,∴OH=HQ=t,∴Q(-t,-t),∴PQ :y =-x -2t ,过M 作MG ⊥x 轴于G , ∴12PG PM GH QM ==, ∴2PG =GH ∴2P G G H x x x x -=-,即2P M M Q x x x x -=-,∴ 22M M t x x t --=+, ∴533M M x t x t =-=-或,∴M(-3t,t)或M (51,33t t --) 当M(-3t,t)时:29123t t t =-+-,∴t =当M (51,33t t --)时:2125203393t t t -=-+-,∴t =综上:1118t ±=或6350t ±= (2)设A(m,0)、B(n,0),∴m 、n 为方程x 2-bx -c=0的两根,∴m+n=b,mn =-c,∴y =-x2+(m+n)x -mn =-(x -m)(x -n),∵E 、F 在抛物线上,设()()2111E x x m n x mn -++-,、()()2222,F x x m n x mn -++-, 设EF :y =kx+b,∴E E FE y kx b y kx b =+⎧⎨=+⎩ , ∴()EF E F y y k x x -=-∴()()2212121212E F E F x x m n x x y y k m n x x x x x x -+++--===+---- ∴()()()()12111:F y m n x x x x x m x n =+------,令x =m∴()()()()12111c y m n x x m x x m x n =+------=()()()()112112+m x m n x x x n m x m x -+---=--∴AC=()()12m x m x ---,又∵1A E AG x x m x =-=-,∴tan ∠CAG=2AC x m AG=-, 另一方面:过F 作FH ⊥x 轴于H ,∴()()22FH x m x n =--,2BH x n =-,∴tan ∠FBH=2FH x m BH=- ∴tan ∠CAG=tan ∠FBH∴∠CAG=∠FBH∴CG ∥BF【点睛】此题主要考查二次函数的综合问题,解题的关键是熟知相似三角形的判定与性质及正确作出辅助线进行求解.20. (1)见解析;(2)3;(3)2;(4)1,EB 、BF ;FC 、CG ;GD 、DH ;HA【解析】【分析】利用菱形四条边相等,分别在四边上进行截取和连接,得出AE=EB+BF=FC+CG+GD+DH=HA ,进一步求得S △AOE =S 四边形EOFB =S 四边形FOGC =S 四边形GOHD =S △HOA .即可.【详解】(1)在AB 边上取点E ,使AE =4,连接OA ,OE ;(2)在BC 边上取点F ,使BF =3,连接OF ;(3)在CD 边上取点G ,使CG =2,连接OG ;(4)在DA 边上取点H ,使DH =1,连接OH .由于AE =EB +BF =FC +CG =GD +DH =HA .可证S △AOE =S 四边形EOFB =S 四边形FOGC =S 四边形GOHD =S △HOA .故答案为:3,2,1;EB 、BF ;FC 、CG ;GD 、DH ;HA .【点睛】此题考查菱形的性质,熟练掌握菱形的四条边相等,对角线互相垂直是解题的关键.21.(1)AF=BE ,AF ⊥BE ;(2)证明见解析;(3)结论仍然成立【解析】试题分析:(1)根据正方形和等边三角形可证明△ABE ≌△DAF ,然后可得BE=AF ,∠ABE=∠DAF ,进而通过直角可证得BE ⊥AF ;(2)类似(1)的证法,证明△ABE ≌△DAF ,然后可得AF=BE ,AF ⊥BE ,因此结论还成立; (3)类似(1)(2)证法,先证△AED ≌△DFC ,然后再证△ABE ≌△DAF ,因此可得证结论. 试题解析:解:(1)AF=BE ,AF ⊥BE .(2)结论成立.证明:∵四边形ABCD 是正方形,∴BA="AD" =DC ,∠BAD =∠ADC = 90°.在△EAD 和△FDC 中,,{,,EA FD ED FC AD DC ===∴△EAD ≌△FDC .∴∠EAD=∠FDC .∴∠EAD+∠DAB=∠FDC+∠CDA ,即∠BAE=∠ADF .在△BAE 和△ADF 中,,{,,BA AD BAE ADF AE DF =∠=∠=∴△BAE ≌△ADF .∴BE = AF ,∠ABE=∠DAF .∵∠DAF +∠BAF=90°,∴∠ABE +∠BAF=90°,∴AF ⊥BE .(3)结论都能成立.考点:正方形,等边三角形,三角形全等22.(1)100,108°;(2)答案见解析;(3)600人.【解析】【分析】(1)先利用QQ 计算出宗人数,再用百分比计算度数;(2)按照扇形图补充条形图;(3)利用微信沟通所占百分比计算总人数.【详解】解:(1)喜欢用电话沟通的人数为20,所占百分比为20%,∴此次共抽查了:20÷20%=100人.喜欢用QQ 沟通所占比例为:30310010=, ∴QQ 的扇形圆心角的度数为:360°×310=108°. (2)喜欢用短信的人数为:100×5%=5人 喜欢用微信的人数为:100-20-5-30-5=40补充图形,如图所示:(3)喜欢用微信沟通所占百分比为:40100×100%=40%. ∴该校共有1500名学生,估计该校最喜欢用“微信”进行沟通的学生有:1500×40%=600人 .【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.(1)8m;(2)答案不唯一【解析】【分析】(1)根据入射角等于反射角可得∠APB=∠CPD ,由AB⊥BD、CD⊥BD 可得到∠ABP=∠CDP=90°,从而可证得三角形相似,根据相似三角形的性质列出比例式,即可求出CD的长.(2)设计成视角问题求古城墙的高度.【详解】(1)解:由题意,得∠APB=∠CPD,∠ABP=∠CDP=90°,∴Rt△ABP∽Rt△CDP,∴AB CD BP BP=,∴CD=1.212 1.8⨯=8.答:该古城墙的高度为8m(2)解:答案不唯一,如:如图,在距这段古城墙底部am的E处,用高h(m)的测角仪DE测得这段古城墙顶端A的仰角为α.即可测量这段古城墙AB的高度,过点D作DC⊥AB于点C.在Rt△ACD中,∠ACD=90°,tanα=AC CD,∴AC=α tanα,∴AB=A C+BC=αtanα+h【点睛】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.24.(1)a=3,b=-2;(2) m≥8或m≤-2【解析】【分析】(1)把A点坐标代入反比例解析式确定出a的值,确定出A坐标,代入一次函数解析式求出b的值;(2)分别求出直线l1与x轴交于点D,再求出直线l2与x轴交于点B,从而得出直线l2与直线l1交于点C坐标,分两种情况进行讨论:①当S△ABC=S△BCD+S△ABD=6时,利用三角形的面积求出m的值,②当S△ABC=S△BCD−S△AB D=6时,利用三角形的面积求出m的值,从而得出m的取值范围.【详解】(1)∵点A在a yx=图象上∴23aa-=∴a=3∴A(3,1)∵点A在y=x+b图象上∴1=3+b∴b=-2∴解析式y=x-2(2)设直线y=x-2与x轴的交点为D∴D(2,0)①当点C在点A的上方如图(1)∵直线y=-x+m与x轴交点为B∴B(m,0)(m>3)∵直线y=-x+m与直线y=x-2相交于点C ∴2y xy x m=-⎧⎨=-+⎩解得:2222mxmy+⎧=⎪⎪⎨-⎪=⎪⎩∴C22,22m m+-⎛⎫⎪⎝⎭∵S△ABC=S△BCD-S△ABD≥6∴()()1212216222m m m -⨯-⨯--⨯≥ ∴m≥8②若点C 在点A 下方如图2∵S △ABC =S △BCD +S △ABD ≥6∴()()1122126222m m m --⨯+-⨯≥ ∴m≤-2综上所述,m≥8或m≤-2【点睛】此题考查了一次函数与反比例函数的交点问题,三角形的面积,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.25.(1)A (,0)、B (3,0).(2)存在.S △PBC 最大值为2716(3)2m =1m =-时,△BDM 为直角三角形. 【解析】【分析】 (1)在2y mx 2mx 3m =--中令y=0,即可得到A 、B 两点的坐标.(2)先用待定系数法得到抛物线C 1的解析式,由S △PBC = S △POC + S △BOP –S △BOC 得到△PBC 面积的表达式,根据二次函数最值原理求出最大值.(3)先表示出DM 2,BD 2,MB 2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m 的值.【详解】解:(1)令y=0,则2mx 2mx 3m 0--=,∵m <0,∴2x 2x 30--=,解得:1x 1=-,2x 3=.∴A (,0)、B (3,0).(2)存在.理由如下:∵设抛物线C 1的表达式为()()y a x 1x 3=+-(a 0≠),把C (0,32-)代入可得,12a =. ∴C1的表达式为:()()1y x 1x 32=+-,即213y x x 22=--. 设P (p ,213p p 22--), ∴ S △PBC = S △POC + S △BOP –S △BOC =23327p 4216--+(). ∵3a 4=-<0,∴当3p 2=时,S △PBC 最大值为2716. (3)由C 2可知: B (3,0),D (0,3m -),M (1,4m -),∴BD 2=29m 9+,BM 2=216m 4+,DM 2=2m 1+.∵∠MBD<90°, ∴讨论∠BMD=90°和∠BDM=90°两种情况:当∠BMD=90°时,BM 2+ DM 2= BD 2,即216m 4++2m 1+=29m 9+,解得:12m 2=-,22m 2=(舍去). 当∠BDM=90°时,BD 2+ DM 2= BM 2,即29m 9++2m 1+=216m 4+,解得:1m 1=-,2m 1=(舍去) .综上所述,2m =或1m =-时,△BDM 为直角三角形. 26.(1)50;(2)16;(3)56(4)见解析【解析】【分析】(1)用A 等级的频数除以它所占的百分比即可得到样本容量;(2)用总人数分别减去A 、B 、D 等级的人数得到C 等级的人数,然后补全条形图;(3)用700乘以D 等级的百分比可估计该中学八年级学生中体能测试结果为D 等级的学生数;(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.【详解】(1)10÷20%=50(名) 答:本次抽样调查共抽取了50名学生.(2)50-10-20-4=16(名)答:测试结果为C 等级的学生有16名.图形统计图补充完整如下图所示:(3)700×450=56(名) 答:估计该中学八年级学生中体能测试结果为D 等级的学生有56名. (4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率=21126=. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图.27.(1)10300y x =-+(830x ≤<);(2)定价为19元时,利润最大,最大利润是1210元.(3)不能销售完这批蜜柚.【解析】【分析】(1)根据图象利用待定系数法可求得函数解析式,再根据蜜柚销售不会亏本以及销售量大于0求得自变量x 的取值范围;(2)根据利润=每千克的利润×销售量,可得关于x 的二次函数,利用二次函数的性质即可求得;(3)先计算出每天的销量,然后计算出40天销售总量,进行对比即可得.【详解】(1)设 y kx b =+,将点(10,200)、(15,150)分别代入, 则1020015150k b k b +=⎧⎨+=⎩,解得10300k b =-⎧⎨=⎩, ∴10300y x =-+,∵蜜柚销售不会亏本,∴x 8≥,又0y >,∴103000x -+≥ ,∴30x ≤,∴ 830x ≤≤ ;(2) 设利润为w 元,则 ()()810300w x x =--+=2103802400x x -+-=2210(19)1210x x --+,∴ 当19x = 时, w 最大为1210,∴ 定价为19元时,利润最大,最大利润是1210元;(3) 当19x = 时,110y =,110×40=4400<4800,∴不能销售完这批蜜柚.【点睛】 本题考查了一次函数的应用、二次函数的应用,弄清题意,找出数量间的关系列出函数解析式是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21. 母亲节前,某淘宝店从厂家购进某款网红礼盒,已知该款礼盒每个成本价为 30 元. 经市场调查发现,该礼盒每天的销售量 y(个)与销售单价 x(元)之间满足一次 函数关系.当该款礼盒每个售价为 40 元时,每天可卖出 300 个;当该款礼盒每个 售价为 55 元时,每天可卖出 150 个. (1)求 y 与 x 之间的函数解析式(不要求写出 x 的取值范围); (2)若该店老板想达到每天不低于 240 个的销售量,则该礼盒每个售价定为多少 元时,每天的销售利润最大,最大利润是多少元?
19. 如图,在矩形 ABCD 中,点 O 在对角线 AC 上,以 OA 的长 为半径的圆 O 与 AD,AC 分别交于点 E,F,且∠ACB=∠DCE. (1)判断直线 CE 与⊙O 的位置关系,并证明你的结论;
第 3 页,共 16 页
(2)若 tan∠ACB= ,BC=4,求⊙O 的半径.
20. 如图,直线 y= x 与反比例函数 y= (x>0)的图象交于 点 A,已知点 A 的横坐标为 4. (1)求反比例函数的解析式; (2)将直线 y= x 向上平移 3 个单位后的直线 l 与 y= ( x>0)的图象交于点 C; ①求点 C 的坐标; ②记 y= (x>0)的图象在点 A,C 之间的部分与线段 OA,OC 围成的区域(不含 边界)为 W,则区域 W 内的整点(横,纵坐标都是整数的点)的个数为______.
在离木柱根部 8 尺处时绳索用尽,请问绳索有多长?若设绳索长度为 x 尺,根据题
意,可列方程为( )
A. 82+x2=(x-3)2
B. 82+(x+3)2=x2
C. 82+(x-3)2=x2
D. x2+(x-3)2=82
第 1 页,共 16 页
10. 将直角三角形纸板 OAB 按如图所示方式放置在平面 直角坐标系中,OB 在 x 轴上,OB=4,OA=2 .将三 角形纸板绕原点 O 逆时针旋转,每秒旋转 60°,则第 2019 秒时,点 A 的对应点 A′的坐标为( )
第 2 页,共 16 页
根据以上统计图,解答下列问题: (1)本次接受调查的学生共有______人. (2)已知 B 类人数是 D 类人数的 6 倍. ①补全条形统计图; ②求扇形统计图中 B 类的圆心角度数; ③根据调查结果,估计该校 2000 名学生中“家长和学生都未参与”的人数.
18. 太阳能热水器的玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最佳.如图,某 户根据本地区冬至时刻太阳光线与地面水平线的夹角(θ)确定玻璃吸热管的倾斜 角(太阳光与玻璃吸热管垂直).已知:支架 CF=100cm,CD=20cm,FE⊥AD 于 E ,若 θ=37°,求 EF 的长.(参考数据:sin37°≈ ,cos37°≈ ,tan37°≈ )
A. 56°
B. 36°
C. 30°
D. 26°
D. D. 5×10-8 米
4. 5 个大小相同的正方体搭成的几何体如图,则下列说法中正确 的是( )
A. 主视图的面积最小 B. 左视图的面积最小 C. 俯视图的面积最小 D. 三个视图面积一样大
5. 下列各式计算正确的是( )
A. - =
B. (-a2b)3=a6b3
14. 如图,点 C 为 的三等分点( < ),∠AOB=90°,OA=3,
CD⊥OB,则图中阴影部分的面积为______.
15. 如图,在△ABC 中,∠C=90°,AB=5,BC=4.点 D 是边 AC 的中点,点 E 在边 AB 上,将△ADE 沿 DE 翻折, 使点 A 落在点 A′处,当线段 AE 的长为______时, A′E∥BC.
三、计算题(本大题共 1 小题,共 8.0 分)
16. 先化简,再求值:
,其中 x 满足 x2-x-1=0.
四、解答题(本大题共 7 小题,共 67.0 分) 17. 某校为了解家长和学生“参与防溺水教育”的情况,在本校学生中随机抽取部分学
生做调查,把调查的数据分为以下 4 类情形:A:仅学生自己参与;B:家长与学 生一起参与;C:仅家长自己参与;D:家长和学生都未参与;并把调查结果绘制 成了以下两种统计图(不完整).
7. 如图,在△ABC 中,∠C=50°,∠B=35°,分别以点 A,B 为圆 心,大于 AB 的长为半径画弧,两弧相交于点 M,N,直线 MN
交 BC 于点 D,连接 AD.则∠DAC 的度数为( )
A. 85°
B. 70°
C. 60°
D. 25°
8. 一个不透明的袋子中装有 4 个标号为 1,2,3,4 的小球,
A. (-3,- ) B. (3,- ) C. (-3, ) D. (0,2 )
二、填空题(本大题共 5 小题,共 15.0 分) 11. (-2)2-2sin30°=______. 12. 如图,平行四边形 ABCD 的周长是 8cm,其对角线 AC,
BD 相交于点 O,过点 O 的直线分别与 AD,BC 相交于 点 E,F,且 OE=2cm,则四边形 CDEF 的周长是______. 13. 关于 x 的方程 2x2-2x+m-1=0 有两个相等的实数根,则 m=______.
C. a3•a=a4
D. (b+2a)(2a-b)=b2-4a2
6. 某校规定学生的学期数学成绩满分为 100 分,其中研究性学习成绩占 30%,期末卷 面成绩占 70%,小刚的两项成绩(百分制)依次是 80 分,90 分,则小明这学期的
数学成绩是( )
A. 87 分
B. 82 分
C. 80 分
D. 86 分
中考数学二模试卷
题号 得分




总分
一、选择题(本大题共 10 小题,共 30.0 分) 1. -5 的绝对值是( )
A. -5
5
C.
2. 1 纳米=10-9 米,将 50 纳米用科学记数法表示为( )
A. 50×10-9 米
B. 5×10-9 米
C. 0.5×10-9 米
3. 如图,直线 a∥b,在 Rt△ABC 中,点 C 在直线 a 上,若 ∠1=54°,∠2=24°,则∠A 的度数为( )
它们除标号外其余均球记下标号:把第一次摸出的小球标号作为十位数字,第二次
摸出的小球标号作为个位数字,则所组成的数是 3 的倍数的概率是( )
A.
B.
C.
D.
9. 《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有 绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有 3 尺,牵着绳索退行,
相关文档
最新文档