导数的概念及运算复习课件

合集下载

导数的概念及运算课件

导数的概念及运算课件
第三章 第一节
走向高考 ·高考一轮总复习 ·人教A版 ·数学
(文)曲线 y=xsinx 在点-2π,π2处的切线与 x 轴、直线 x=π
所围成的三角形的面积为( )
π2 A. 2
B.π2
C.2π2 D.12(2+π)2
第三章 第一节
走向高考 ·高考一轮总复习 ·人教A版 ·数学
解析:∵y′=sinx+xcosx,∴y′|x=-2π=-1,∴曲线 y=xsinx 在点-π2,π2处的切线方程为 y=-x,所围成的三角 形的面积为π22.故选 A.
夯实基础 稳固根基
一、导数及有关概念
1.函数的平均变化率
一般地,已知函数y=f(x),x0、x1是定义域内不同的两
点,记Δx=x1-x0,Δy=y1-y0=f(x1)-f(x0)=f(x0+Δx)-
f(x0),则当Δx≠0时,商
fቤተ መጻሕፍቲ ባይዱ0+Δx-fx0 Δx
Δy =__Δ_x___.称为函数y
=f(x)从x0到x1的平均变化率.
第三章 第一节
走向高考 ·高考一轮总复习 ·人教A版 ·数学
解析:∵y′=-ex4+ex12, ∴tanα=-ex4+ex12=-ex2+4e2xex+1=-ex+4e1x+2, ∵ex>0,∴ex+e1x ≥2(当且仅当 x=0 时取等号), ∴ex+e1x+2≥4,∴0<ex+4e1x+2≤1,∴-1≤tanα<0, ∵α∈[0,π),∴α∈[34π,π),故选 D. 答案:D
第三章 第一节
走向高考 ·高考一轮总复习 ·人教A版 ·数学
二、导数公式 1.常用的导数公式 C′=0(C 为常数); (xm)′=mxm-1(x>0,m≠0 且 m∈Q); (xn)′=nxn-1(n∈N+) (sinx)′=cosx; (cosx)′=-sinx; (ex)′=ex,(ax)′=axlna; (lnx)′=1x;(logax)′=xl1na.

课件5:3.1 导数的概念及运算

课件5:3.1 导数的概念及运算
__f′_(x_0_)__;切线方程为__y_-__f(_x_0_)=__f_′_(x_0_)_(_x_-__x_0_)_. 物理意义:若物体位移随时间变化的关系为 s=
f(t),则 f′(t0)是物体运动在 t=t0 时刻的___瞬__时__速__度___.
4.基本初等函数的导数公式
(1)常用函数的导数
【解析】(1)设切点为(x0,y0), 故切线的斜率为 k=x20=1,解得 x0=±1, 故切点为1,53,(-1,1).
故所求切线方程为 y-53=x-1 和 y-1=x+1, 即 3x-3y+2=0 和 x-y+2=0.
(2)∵y′=x2,且 P(2,4)在曲线 y=13x3+43上, ∴在点 P(2,4)处的切线的斜率 k=y′|x=2=4. ∴曲线在点 P(2,4)处的切线方程为 y-4=4(x- 2),即 4x-y-4=0. (3)设曲线 y=13x3+43与过点 P(2,4)的切线相切于
1+2x2 1+x2.
【点评】求复合函数的导数,关键在于分析函数的 复合关系,适当确定中间变量,然后“由外及内”逐层 求导.
三、导数的几何意义及应用
例3已知曲线 y=13x3+43. (1)求满足斜率为 1 的曲线的切线方程; (2)求曲线在点 P(2,4)处的切线方程; (3)求曲线过点 P(2,4)的切线方程.
例4已知函数 f(x)=xln2+x,2xx+>0a,,x<0,其中 a 是实
数.设 A(x1,f(x1)),B(x2,f(x2))为该函数图象上的两 点,且 x1<x2.
(1)指出函数 f(x)的单调区间; (2)若函数 f(x)的图象在点 A,B 处的切线互相垂直, 且 x2<0,证明:x2-x1≥1; (3)若函数 f(x)的图象在点 A,B 处的切线重合,求 a 的取值范围.

导数的概念和计算(复习课件)

导数的概念和计算(复习课件)

1 上,∴ab=1 x
------------②
所求直线方程为 x+y-2=0
练习4 (1)曲线y=x4的斜率等于4的切线的方程为 4x-y-3=0 . π 1 ( , ) 且与过这点的切线垂直的 (2)过曲线y=cosx上的点 3 2
1 2 3 π y = (x . ) 切线方程为 2 3 3
(3)设l1为曲线y=sinx在点(0,0)处的切线,l2为曲线 π ( ,0)处的切线,则l1与l2的夹角大小为 90° . y=cosx在点
′ = 2e 2 x cos x e 2 x sin x y
(4)
2 x log 3 e 1 2 y′ = 2 log 3 e ( x 1)′ = x 1 x2 1
练习3: 1.已知两条曲线y=x2-1与y=1-x3 0或 2 3. (1)这两条曲线在x=x0的点处的切线互相平行,则x0= (2)这两条曲线在x=x1的点处的切线互相垂直,则x1= 4 2.已知f(x)=cos2x ,则 f ′′( ) = . 2 3.已知函数y=x3的切线的斜率等于3,则其切线有
B. 0
二,求导公式 1.常用导数公式
c′=0(c为常数) (xm) ′=mxm-1(m∈Q) (sinx) ′=cosx (cosx) ′=-sinx (ex) ′=ex (ax) ′=ax lna (lnx) ′= 1
1 (log a x)′ = log a e x
x
2.两个函数四则运算的导数
y x
lim y
t →0
x
5.二阶导数:y=f(x)的导数f′(x)的导数,记作f ″(x)或y ″ 物体运动的加速度a=s″(t)
练习1:(1) 一球沿斜面自由滚下,其运动方程是s=s(t)=t2 位移单位:m,时间单位:s).求小球在t=5时的瞬时速 度(用定义法求) 解:△s=s(5+△t)-s(5)=(5+△t)2-52=△t2+10△t s = t + 10 t

导数的概念及其意义 、导数的运算(高三一轮复习)

导数的概念及其意义 、导数的运算(高三一轮复习)


gfxx′=f′xgx[g-xf]2xg′x(g(x)≠0);
[cf(x)]′= 16 cf′(x)

— 8—
数学 N 必备知识 自主学习 关键能力 互动探究
— 9—
5.复合函数的定义及其导数
(1)一般地,对于两个函数y=f(u)和u=g(x),如果通过中间变量u,y可以表示成x 的函数,那么称这个函数为函数y=f(u)与u=g(x)的复合函数,记作y= 17 f(g(x)) .
— 20 —
数学 N 必备知识 自主学习 关键能力 互动探究
— 21 —
命题点2 导数的几何意义
考向1 求切线方程
例2
(1)(2022·湖南衡阳二模)函数f(x)=xln(-2x),则曲线y=f(x)在x=-
e 2
处的
切线方程为 4x-2y+e=0
.
(2)(2y0=22-·新1e高x 考Ⅱ卷.)曲线y=ln|x|过坐标原点的两条切线的方程为
(2)f1x′=-f[′fxx]2(f(x)≠0). (3)曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次函数的图 象相切只有一个公共点. (4)函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变 化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越 “陡”.
f(x)=xα(α∈Q且α≠0) f′(x)= 7αxα-1
f(x)=sin x
f′(x)= 8 cos x
f(x)=cos x
f′(x)= 9 -sin x
— 6—
数学 N 必备知识 自主学习 关键能力 互动探究
f(x)=ax(a>0且a≠1) f′(x)= 10 axln a

课件4:3.1 导数的概念及运算

课件4:3.1 导数的概念及运算

利用导数研究曲线上某点的切线方程 求曲线的切线方程是导数的重要应用之一,其关键在于 求出切点及斜率. 曲线 y=f(x)在点 P(x0,f(x0))处的切线方程可按如下方法 可得: (1)求出函数 y=f(x)在点 x=x0 处的导数,即曲线 y=f(x) 在点 P(x0,f(x0))处的切线的斜率; (2)在已知切点和求出切线斜率的条件下,利用直线方 程的点斜式写出切线方程:y-f(x0)=f′(x0)·(x-x0),如果 曲线 y=f(x)在点 P(x0,f(x0))处的切线平行于 y 轴(此时导数 不存在),切线方程为 x=x0.
第三章 导数及其应用
3.1 导数的概念及运算
1. 物体在地球上作自由落体运动时,下落距离 S=12gt2
其中 t 为经历的时间,g=9.8 m/s2,若 V=Δlit→m0
S1+Δt-S1 Δt
=9.8 m/s,则下列说法正确的是( C )
A.0~1 s 时间段内的速率为 9.8 m/s
B.在 1~(1+Δt)s 时间段内的速率为 9.8 m/s
=lhi→m0 fx0+hh-fx0,所以此极限仅与 x0 有关而与 h 无关,
故选 B.
二 导数的运算
【例 2】求下列函数的导数:
(1)y=x2sinx;
(2)y=ln(x+2);
(3)y=eexx+-11;
(4)y=xx++csoinsxx.
【 解 答 过 程 】 (1)y′ = (x2)′sinx + x2(sinx)′ = 2xsinx + x2cosx.
【温馨提示】切点处的导数值是切线的斜率;注意“在 点处的切线”与“过点的切线”的区别.
【跟踪训练 5】(2014·广东)曲线 y=e-5x+2 在点(0,3)处的

高考数学-导数-专题复习课件

高考数学-导数-专题复习课件

)
v0t
,求1物gt体2 在时刻
2
时的瞬t0时速度.
解析:
s(t)
v0
1 2
g
2t
v0
gt
∴物体在 t时0 刻瞬时速度为 s(t0 ) v0 gt0. 题型四 导数的几何意义及几何上的应用
【例4】(12分)已知曲线 y 1 x3 4 .
33
(1)求曲线在点P(2,4)处的切线方程; (2)求过点P(2,4)的曲线的切线方程.
x0
x0
x0
典例分析
题型一 利用导数求函数的单调区间
【例1】已知f(x)= e-xax-1,求f(x)的单调增区间.
分析 通过解f′(x)≥0,求单调递增区间.
解 ∵f(x)= -aexx -1,∴f′(x)= -a. ex 令f′(x)≥0,得 ≥ae. x 当a≤0时,有f′(x)>0在R上恒成立; 当a>0时,有x≥ln a. 综上,当a≤0时,f(x)的单调增区间为(-∞,+∞); 当a>0时,f(x)的单调增区间为[ln a,+∞).
分析 (1)在点P处的切线以点P为切点.关键是求出切线斜率k=f′(2). (2)过点P的切线,点P不一定是切点,需要设出切点坐标.
解(1)∵y′= ,…x2……………………………2′ ∴在点P(2,4)处的切线的斜率 k y |x..23′ 4. ∴曲线在点P(2,4)处的切线方程为y-4=4(x-2), 即4x-y-4=0……………………………………….4′ (2)设曲线 y 1 x过3 点4 .P(2,4)的切线相切于点
33
则切线的斜率 k y |xx0……x02…. …………..6′
∴切线方程为
y
(1 3

导数的概念-课件-导数的概念

导数的概念-课件-导数的概念

导数在现代数学中的地位和作用
基本概念
导数是现代数学的基本概念之一,是研究函数性质和解决实际问题的 重要工具。
数学分析
导数是数学分析的重要分支,是研究函数的可微性、可导性和连续性 的基础。
应用领域
导数的应用领域非常广泛,不仅限于数学和物理领域,还涉及到工程 学、经济学和计算机科学等多个领域。
数学建模
导数的应用发展
物理学
工程学
导数在物理学的各个分支中都有广泛的应 用,如力学、电磁学、热学等。
在机械工程、航空航天工程、土木工程等 领域,导数被用于优化设计、控制工程和 流体力学等方面。
经济学
计算机科学
导数在经济学中被用于研究经济系统的变 化率和最优决策问题。
在计算机图形学、数值分析和机器学习等 领域,导数被用于计算图像处理、数据拟 合和模型训练等方面。
高阶导数在研究函数的极值、拐 点、曲线的形状等方面有重要应 用。
微分学基本定理
微分学基本定理的内容
微分学基本定理是导数与微分之间的关系,即函数在某点的导数 等于该函数在该点的切线的斜率。
微分学基本定理的推导
通过极限的概念和性质,利用切线斜率的定义推导出微分学基本定 理。
微分学基本定理的应用
微分学基本定理是微分学的基础,在研究函数的增减性、极值、曲 线的形状等方面有重要应用。
复合函数求导法则
若$y = f(u)$和$u = g(x)$都可导, 则复合函数$y = f[g(x)]$的导数为 $(y)' = u' cdot (u)' = u' cdot v'$。
隐函数的导数
由显函数表示的隐函数求 导
若由显函数$F(x, y) = 0$表示的隐函数为$y = f(x)$,则通过求偏导数$frac{partial F}{partial x}$和$frac{partial F}{partial y}$ ,可以得到隐函数$y = f(x)$的导数。

高数课件-导数的概念

高数课件-导数的概念

导数的四则运算规则
加法规则:导数相加等于导数之和
乘法规则:导数相乘等于导数之积
添加标题
添加标题
添加标题
添加标题
减法规则:导数相减等于导数之差
除法规则:导数相除等于导数之商
复合函数的导数计算
复合函数的定 义:由两个或 多个函数组成
的函数
复合函数的导 数计算方法:
链式法则
链式法则:将 复合函数分解 为多个简单函 数,分别计算 导数,然后将
导数的性质定理
导数的定义:导数是函数在某一点的切线斜率 导数的性质:导数是连续的,可导函数在定义域内处处可导 导数的公式:导数的基本公式包括导数的四则运算、复合函数求导公式、隐函数求导公式等 导数的应用:导数在微积分、函数极限、函数极值、函数凹凸性等方面有广泛应用
感谢观看
汇报人:
导数的定理与公式
导数的定义:导数是函数在某一点 的切线斜率
导数的基本定理
导数的公式:导数公式包括基本导 数公式、复合函数导数公式、隐函 数导数公式等
添加标题
添加标题
添加标题
添加标题
导数的性质:导数是函数在某一点 的极限值
导数的应用:导数在微积分、函数 分析、=lim(h>0)(f(x+h)-f(x))/h
导数的推导公式
导数的定义:函数在某一点的导数是该函数在该
01
点附近曲线的切线斜率 导数的基本公式:f'(x)=lim(h->0) [f(x+h)-
02
f(x)]/h 导数的四则运算法则:f'(x)=f(x)+g'(x),
03
f'(x)=f(x)-g'(x),f'(x)=f(x)*g'(x),f'(x)=f(x)/g'(x) 04 导数的复合函数公式:f'(g(x))=f'(g(x))*g'(x)

小学数学导数的基本概念与运算课件

小学数学导数的基本概念与运算课件

拐点的判定条件:函数在某点的二 阶导数为零,且三阶导数不为零。
导数的零点与方程的根
导数为零的点称为临界点或驻点 导数的零点不一定是方程的根 导数的符号决定了函数在零点附近的单调性 通过导数的零点可以判断方程的根的类型
导数在实际问题中的应用案 例
第五章
速度与加速度的计算
导数在速度计算中的应用:通过导数描述物体运动的速度和加速度,进而解决实际问题
导数在实际问题中的应用
导数在经济学中的应用:研究边际成本和边际收益,分析经济行为的变化趋势。 导数在物理学中的应用:解释速度、加速度、功率等物理量的变化规律,研究物体的运动状态。 导数在工程学中的应用:优化设计、控制工程、信号处理等领域,提高工程质量和效率。 导数在金融学中的应用:评估投资组合的风险和回报,预测股票价格的变化趋势。
第一章
导数的定义与意义
第二章
导数的概念
导数定义:函数 在某一点处的切 线斜率
导数意义:表示 函数在某一点处 的变化率
导数应用:研究 函数的单调性、 极值和最值等
导数运算:求导 公式和法则
导数在数学中的意义
导数是函数局部性质的一种量度
导数可以用来研究函数的单调性、极值和最值等性质
导数在几何上可以用来求切线的斜率 导数在物理和工程中有着广泛的应用,如速度、加速度、电流强度等物理 量的计算
分析。
导数在数学建模中的应用
导数在经济学中的应用:研究边际成本、边际收益等经济变量,分析经济现象。 导数在物理学中的应用:描述速度、加速度、温度等物理量的变化规律,解决物理问题。 导数在生物学中的应用:研究种群增长、传染病传播等生物学现象,预测未来趋势。 导数在工程学中的应用:优化设计、控制工程系统等,提高工程效率。

核按钮高考数学专题复习课件导数的概念与运算

核按钮高考数学专题复习课件导数的概念与运算

最大值和最小值
函数的极值是最大值和最小值的 统称,可以通过导数和二阶导数 计算。
拐点和凸凹性
函数的拐点是凸凹性转换的点, 可以通过导数和二阶导数计算。
最优化问题
最优化问题是实际应用中常见的 问题类型,可以通过导数方法求 解。
总结
导数是数学和物理中的基础概念,具有广泛的应用和深刻的理论意义。希望通过本课程的学习,大家能够深入 理解导数的概念和计算方法,掌握导数分析的基本技能,从而在数学和科学领域更加自信和成功。
核按钮高考数学专题复习 课件导数的概念与运算
导数是高中数学和微积分的基本概念之一。导数用于描述函数在给定点处的 变化率,是许多数学和物理问题的核心概念。在本课程中,我们将深入了解 导数的概念、性质和计算方法。
导数的定义和几何意义
切线
导数是曲线在给定点处的切线的 斜率。
斜率
导数是函数在给定点处的斜率, 表示函数值的变化率。
隐函数
隐函数是复杂曲面的显式函数表示,导数需数
向量代数和微积分
向量函数是高维空间中的映 射,导数描述了向量场的局 部性质。
偏导数和全导数
高维函数的导数需要使用偏 导数和全导数等更复杂的计 算方法。
导数的应用
导数广泛应用于科学工程与 实际问题,如最值问题和最 优化问题等。
函数的导数和反函数的导数
1
一阶导数
函数的导数可以表示为函数的初等函数或数学公式的形式。
2
高阶导数
函数的导数也可以求二阶导、三阶导等高阶导数,揭示函数的更多性质。
3
反函数的导数
反函数的导数可以通过求导链式法则和反函数公式获得。
参数方程的导数和隐函数的导数
参数方程
参数方程描述曲线的参数关系,导数需要通过参数 求导法则计算。

第4章+第2讲+导数的概念及运算2024高考数学一轮复习+PPT(新教材)

第4章+第2讲+导数的概念及运算2024高考数学一轮复习+PPT(新教材)

=(x2)′ex+x2(ex)′=2xex+x2ex=(2x+x2)ex,错误;对于 C,(xcosx)′=cosx
-xsinx,错误;对于 D,x-1x′=1-1x′=1+x12,错误.故选 A.
解析 答案
x-3 (2)(2021·贵阳模拟)已知 f(x)的导函数为 f′(x),f(x)= ex +2f′(1)·x, 则 f′(1)=________. 答案 -3e 解析 ∵f(x)=x-ex 3+2f′(1)·x,∴f′(x)=4-ex x+2f′(1),∴f′(1)=3e+ 2f′(1),解得 f′(1)=-3e.
解析 由导函数图象可知两函数的图象在x0处的切线斜率相等,故选D.
解析 答案
4. (2021·长沙检测)如图所示,y=f(x)是可导函数,直线 l:y=kx+3 是 曲线 y=f(x)在 x=1 处的切线,令 h(x)=fxx,h′(x)是 h(x)的导函数,则 h′(1) 的值是( )
A.2
B.1

导数的运算方法 (1)连乘积形式:先展开化为多项式的形式,再求导. (2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分 式函数,再求导. (3)对数形式:先化为和、差的形式,再求导. (4)根式形式:先化为分数指数幂的形式,再求导. (5)三角形式:先利用三角函数公式转化为和或差的形式,再求导. (6)复合函数:确定复合关系,由外向内逐层求导.
的值,即ΔΔyx有极限,则称 y=f(x)在 x=x0 处可导,并把这个确定的值叫做 y
=f(x)在 x=x0 处的导数(也称为瞬时变化率),记作 f′(x0)或 y′|x=x0,即
f′(x0)= lim Δx→0
ΔΔyx=Δlixm→0
fx0+Δx-fx0

第3章 §3.1 导数的概念及其意义、导数的运算--新高考数学新题型一轮复习课件

第3章 §3.1 导数的概念及其意义、导数的运算--新高考数学新题型一轮复习课件

新高考数学新题型一轮复习课件第三章§3.1 导数的概念及其意义、导数的运算考试要求1.了解导数的概念、掌握基本初等函数的导数.2.通过函数图象,理解导数的几何意义3.能够用导数公式和导数的运算法则求简单函数的导数,能求简单的复合函数(形如 f(ax+b))的导数.落实主干知识探究核心题型内容索引课时精练L U O S H I Z H U G A N Z H I S H I 落实主干知识知识梳理1.导数的概念(1)函数y =f (x )在x=x0处的导数记作 或 .0'|x x y f ′(x 0)(2)函数y =f (x )的导函数2.导数的几何意义函数y =f (x )在x =x 0处的导数的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的,相应的切线方程为 .y -f (x 0)=f ′(x 0)(x -x 0)斜率3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数)f ′(x )=___f (x )=x α(α∈Q ,且α≠0)f ′(x )=______f (x )=sin xf ′(x )=______f (x )=cos xf ′(x )=_______f (x )=a x (a >0,且a ≠1)f ′(x )=_______0αx α-1cos x -sin x a x ln ae xf(x)=e x f′(x)=____ f(x)=log a x(a>0,且a≠1)f′(x)=______ f(x)=ln x f′(x)=___4.导数的运算法则若f ′(x ),g ′(x )存在,则有[f (x )±g (x )]′= ;[f (x )g (x )]′= ;f ′(x )±g ′(x )f ′(x )g (x )+f (x )g ′(x)[cf (x )]′= .cf ′(x )5.复合函数的定义及其导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y′x y′u·u′x=,即y对x的导数等于y对u的导数与u对x的导数的乘积.1.区分在点处的切线与过点处的切线(1)在点处的切线,该点一定是切点,切线有且仅有一条.(2)过点处的切线,该点不一定是切点,切线至少有一条.判断下列结论是否正确(请在括号中打“√”或“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( )(2)与曲线只有一个公共点的直线一定是曲线的切线.( )(3)f ′(x 0)=[f (x 0)]′.( )(4)若f (x )=sin (-x ),则f ′(x )=cos (-x ).( )××××教材改编题∴f ′(1)=e -1,又f (1)=e +1,∴切点为(1,e +1),切线斜率k =f ′(1)=e -1,即切线方程为y -(e +1)=(e -1)(x -1),即y =(e -1)x +2.1.函数f (x )=e x + 在x =1处的切线方程为______________.y =(e -1)x +22.已知函数f(x)=x ln x+ax2+2,若f′(e)=0,则a=______. f′(x)=1+ln x+2ax,3.若f(x)=ln(1-x)+e1-x,则f′(x)=____________.T A N J I U H E X I N T I X I N G 探究核心题型题型一导数的运算例1 (1)(多选)(2022·济南质检)下列求导运算正确的是√√(x2e x)′=(x2+2x)e x,故B错误;教师备选1.函数y=sin 2x-cos 2x的导数y′等于√y′=2cos 2x+2sin 2x2.(2022·济南模拟)已知函数f′(x)=e x sin x+e x cos x,则f(2 021)-f(0)等于√A.e2 021cos 2 021B.e2 021sin 2 021C. D.e因为f′(x)=e x sin x+e x cos x,所以f(x)=e x sin x+k(k为常数),所以f(2 021)-f(0)=e2 021sin 2 021.(1)求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.(2)抽象函数求导,恰当赋值是关键,然后活用方程思想求解.(3)复合函数求导,应由外到内逐层求导,必要时要进行换元.跟踪训练1 (1)若函数f(x),g(x)满足f(x)+xg(x)=x2-1,且f(1)=1,则f′(1)+g′(1)等于√A.1B.2C.3D.4当x=1时,f(1)+g(1)=0,∵f(1)=1,得g(1)=-1,原式两边求导,得f′(x)+g(x)+xg′(x)=2x,当x=1时,f′(1)+g(1)+g′(1)=2,得f′(1)+g′(1)=2-g(1)=2-(-1)=3.e2 (2)已知函数f(x)=ln(2x-3)+ax e-x,若f′(2)=1,则a=___.∴f′(2)=2+a e-2-2a e-2=2-a e-2=1,则a=e2.命题点1 求切线方程题型二导数的几何意义例2 (1)(2021·全国甲卷)曲线y = 在点(-1,-3)处的切线方程为_____________.5x -y +2=0所以切线方程为y +3=5(x +1),即5x -y +2=0.(2)已知函数f(x)=x ln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,x-y-1=0则直线l的方程为_____________.∵点(0,-1)不在曲线f(x)=x ln x上,∴设切点为(x0,y0).又f′(x)=1+ln x,∴直线l的方程为y+1=(1+ln x0)x.∴直线l的方程为y=x-1,即x-y-1=0.命题点2 求参数的值(范围)例3 (1)(2022·青岛模拟)直线y=kx+1与曲线f(x)=a ln x+b相切于点P(1,2),则2a+b等于√A.4B.3C.2D.1∵直线y=kx+1与曲线f(x)=a ln x+b相切于点P(1,2),将P(1,2)代入y=kx+1,可得k+1=2,解得k=1,解得a=1,可得f(x)=ln x+b,∵P(1,2)在曲线f(x)=ln x+b上,∴f(1)=ln 1+b=2,解得b=2,故2a+b=2+2=4.(2)(2022·广州模拟)过定点P(1,e)作曲线y=a e x(a>0)的切线,恰有2条,(1,+∞)则实数a的取值范围是__________.由y ′=a e x ,若切点为(x0, ),则切线方程的斜率k = = >0,∴切线方程为y = (x -x 0+1),又P (1,e)在切线上,∴ (2-x 0)=e ,0'|x x y 0e x a 0e x 0e x a 0e x a 0e x a 令φ(x )=e x (2-x ),∴φ′(x )=(1-x )e x ,当x ∈(-∞,1)时,φ′(x )>0;当x∈(1,+∞)时,φ′(x)<0,∴φ(x)在(-∞,1)上单调递增,在(1,+∞)上单调递减,∴φ(x)max=φ(1)=e,又x→-∞时,φ(x)→0;x→+∞时,φ(x)→-∞,解得a>1,即实数a的取值范围是(1,+∞).1.已知曲线f (x )=x 3-x +3在点P 处的切线与直线x +2y -1=0垂直,则P 点的坐标为A.(1,3)B.(-1,3)C.(1,3)或(-1,3)D.(1,-3)√教师备选设切点P(x0,y0),f′(x)=3x2-1,又切点P(x0,y0)在y=f(x)上,∴当x0=1时,y0=3;当x0=-1时,y0=3.∴切点P为(1,3)或(-1,3).2.(2022·哈尔滨模拟)已知M是曲线y=ln x+x2+(1-a)x上的任一点,若曲线在M点处的切线的倾斜角均是不小于的锐角,则实数a的取值范围是A.[2,+∞) B.[4,+∞)√C.(-∞,2]D.(-∞,4]故a≤2,所以a的取值范围是(-∞,2].(1)处理与切线有关的参数问题,关键是根据曲线、切线、切点的三个关系列出参数的方程:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.(2)注意区分“在点P处的切线”与“过点P处的切线”.跟踪训练2 (1)(2022·南平模拟)若直线y=x+m与曲线y=e x-2n相切,则√设直线y =x +m 与曲线y =e x -2n 切于点(x0, ),因为y ′=e x -2n ,所以  =1,所以x 0=2n ,所以切点为(2n ,1),代入直线方程得1=2n +m ,02e x n -02e x n -(2)若函数f(x)=ln x+2x2-ax的图象上存在与直线2x-y=0平行的切线,[2,+∞)则实数a的取值范围是__________.直线2x-y=0的斜率k=2,又曲线f(x)上存在与直线2x-y=0平行的切线,∴a≥4-2=2.∴a的取值范围是[2,+∞).例4 (1)(2022·邯郸模拟)已知函数f (x )=x ln x ,g (x )=x 2+ax (a ∈R ),直线l 与f (x )的图象相切于点A (1,0),若直线l 与g (x )的图象也相切,则a 等于A.0B.-1C.3D.-1或3√题型三两曲线的公切线由f(x)=x ln x求导得f′(x)=1+ln x,则f′(1)=1+ln 1=1,于是得函数f(x)在点A(1,0)处的切线l的方程为y =x-1,因为直线l与g(x)的图象也相切,即关于x的一元二次方程x2+(a-1)x+1=0有两个相等的实数根,因此Δ=(a-1)2-4=0,解得a=-1或a=3,所以a=-1或a=3.(2)(2022·韶关模拟)若曲线C1:y=ax2(a>0)与曲线C2:y=e x存在公共切线,则a的取值范围为__________.由y =ax 2(a >0),得y ′=2ax ,由y =e x ,得y ′=e x ,曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x 存在公共切线,与曲线C 2切于点(x 2, ),2e x 222121e e ,x x ax x x -=-则2ax 1=可得2x 2=x 1+2,1121e 2x x +∴a = ,12e 2x x+记f (x )= ,122e (2)4x x x +-则f ′(x )= ,当x ∈(0,2)时,f ′(x )<0,f (x )单调递减;当x ∈(2,+∞)时,f ′(x )>0,f (x )单调递增.延伸探究 在本例(2)中,把“存在公共切线”改为“存在两条公共切线”,则a的取值范围为___________.由本例(2)知,∵两曲线C 1与C 2存在两条公共切线,∴a = 有两个不同的解.1121e 2x x +12e 2x x +∵函数f (x )= 在(0,2)上单调递减,又x →0时,f (x )→+∞,x →+∞时,f (x )→+∞,1.若f (x )=ln x 与g (x )=x 2+ax 两个函数的图象有一条与直线y =x 平行的公共切线,则a 等于A.1B.2C.3D.3或-1教师备选√解得x=1,故切点为(1,0),可求出切线方程为y=x-1,此切线和g(x)=x2+ax也相切,故x2+ax=x-1,化简得到x2+(a-1)x+1=0,只需要满足Δ=(a-1)2-4=0,解得a=-1或a=3.。

第一节导数的概念及其意义、导数的运算课件-2025届高三数学一轮复习

第一节导数的概念及其意义、导数的运算课件-2025届高三数学一轮复习
读 4.能利用给出的基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数;能
求简单的复合函数(限于形如f ax + b )的导数.会使用导数公式表.
01
强基础 知识回归
知识梳理
一、导数的概念
1.平均变化率
函数f x
f x2 −f x1
x2 −x1
在区间[x1 , x2 ]上的平均变化率为__________.






− − = ,得切线的斜率 = ,所以 − = ,得 = ,所以 = + .








当 = 时, = ,所以切点为 , ,将 , 代入切线方程,得 × − − = ,







解得 = ,所以 = × = .故答案为 .
(2)对解析式中含有导数值的函数,即解析式类似f x = f′ x0 g x + h x
(x0 为常数)的函数,解决这类问题的关键是明确f′ x0 是常数,其导数值为0,因此
先求导数f′ x .令x = x0 ,即可得到f′ x0 的值,进而得到函数解析式,求得所求导数
值.
题型二 求切线方程
角度1 曲线在某点处的切线问题
A.y = −2x − 1
B.y = −2x + 1
C.y = 2x − 3
B)
D.y = 2x + 1
[解析] ∵ = − ,∴ ′ = − ,∴ = −,′ = −,∴ 所
求切线的方程为 + = − − ,即 = − + .故选B.

第三章 第1讲 导数的概念及运算

第三章  第1讲 导数的概念及运算

第1讲导数的概念及运算基础知识整合1.导数的概念(1)f(x)在x=x0处的导数就是f(x)在x=x0处的□01瞬时变化率,记作:y′|x=x0或f′(x0),即f′(x0)=limΔx→0f(x0+Δx)-f(x0)Δx.(2)当把上式中的x0看作变量x时,f′(x)即为f(x)的导函数,简称导数,即y′=f′(x)=□02limΔx→0f(x+Δx)-f(x)Δx.2.导数的几何意义函数f(x)在x=x0处的导数就是曲线y=f(x)在点□03P(x0,f(x0))处的切线的斜率,即曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k=f′(x0),切线方程为□04y -y0=f′(x0)(x-x0).3.基本初等函数的导数公式(1)C′=□050(C为常数);(2)(x n)′=□06nx-(n∈Q*);(3)(sin x)′=□07cos x;(4)(cos x)′=□08-sin x;(5)(a x)′=□09a ln_a;(6)(e x)′=□10e;(7)(log a x)′=1x ln a;(8)(ln x)′=□111x.4.导数的运算法则(1)[f(x)±g(x)]′=□12f′(x)±g′(x).(2)[f (x )·g (x )]′=□13f ′(x )g (x )+f (x )g ′(x ). 特别地:[C ·f (x )]′=□14Cf ′(x )(C 为常数). (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=□15f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).5.复合函数的导数设函数u =φ(x )在点x 处有导数u ′=φ′(x ),函数y =f (u )在点x 的对应点u 处有导数y ′=f ′(u ),则复合函数y =f [φ(x )]在点x 处也有导数y ′x =f ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.1.f ′(x 0)与x 0的值有关,不同的x 0,其导数值一般也不同. 2.f ′(x 0)不一定为0,但[f (x 0)]′一定为0.3.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.1.(2019·海南模拟)曲线y =x2x -1在点(1,1)处的切线方程为( )A .x -y -2=0B .x +y -2=0C .x +4y -5=0D .x -4y -5=0答案 B 解析 y ′=2x -1-2x (2x -1)2=-1(2x -1)2,当x =1时,y ′=-1,所以切线方程是y -1=-(x -1),整理得x +y -2=0.故选B.2.函数f (x )=x (2017+ln x ),若f ′(x 0)=2018,则x 0的值为( ) A .e 2 B .1 C .ln 2 D .e 答案 B解析 f ′(x )=2017+ln x +x ·1x =2018+ln x ,故由f ′(x 0)=2018,得2018+ln x 0=2018,则ln x 0=0,解得x 0=1.故选B.3.若曲线y =e x +ax +b 在点(0,2)处的切线l 与直线x +3y +1=0垂直,则a +b =( )A .3B .-1C .1D .-3 答案 A解析 因为直线x +3y +1=0的斜率为-13,所以切线l 的斜率为3,即y ′|x=0=e 0+a =1+a =3,所以a =2;又曲线过点(0,2),所以e 0+b =2,解得b =1.故选A.4.(2019·河北质检)已知直线y =kx 是曲线y =ln x 的切线,则k 的值是( ) A .e B .-e C.1e D .-1e 答案 C解析 依题意,设直线y =kx 与曲线y =ln x 切于点(x 0,kx 0),则有⎩⎨⎧kx 0=ln x 0,k =1x 0,由此得ln x 0=1,x 0=e ,k =1e .故选C.5.f (x )=2x +3x 的图象在点(1,f (1))处的切线方程为________. 答案 x -y +4=0解析 f ′(x )=-2x 2+3,f ′(1)=1,即切线的斜率为1,又f (1)=5,即切点坐标为(1,5),故切线方程为y -5=x -1,即x -y +4=0.6.(2019·郑州模拟)直线x -2y +m =0与曲线y =x 相切,则切点的坐标为________.答案 (1,1)解析 ∵y =x =x12 ,∴y ′=12x -12 ,令y ′=12x -12 =12,则x =1,则y =1=1,即切点坐标为(1,1).核心考向突破考向一 导数的基本运算 例1 求下列函数的导数:(1)y =cos x e x ;(2)y =x ⎝ ⎛⎭⎪⎫x 2+1x +1x 3;(3)y =sin 3x +sin3x ;(4)y =1(2x -1)3.解 (1)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos xe x.(2)因为y =x 3+1x 2+1,所以y ′=3x 2-2x 3. (3)y ′=(sin 3x )′+(sin3x )′=3sin 2x cos x +3cos3x . (4)y ′=⎣⎢⎡⎦⎥⎤1(2x -1)3′=[(2x -1)-3]′=-3(2x -1)-4×2=-6(2x -1)-4. 触类旁通导数的运算方法(1)连乘积形式:先展开化为多项式的形式,再求导.(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导.(3)对数形式:先化为和、差的形式,再求导. (4)根式形式:先化为分数指数幂的形式,再求导.(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导. (6)复合函数:确定复合关系,由外向内逐层求导.即时训练 1.求下列函数的导数: (1)y =(3x 2-4x )(2x +1);(2)y =x 2sin x ; (3)y =11-2x;(4)y =ln xx 2+1.解 (1)因为y =(3x 2-4x )(2x +1)=6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x ,所以y ′=18x 2-10x -4.(2)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(3)y ′=[(1-2x ) -12]′=-12(1-2x )-32 ×(-2)=(1-2x ) -32 .(4)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-2x ln x(x 2+1)2=x 2+1-2x 2ln x x (x 2+1)2.考向二 导数的几何意义角度1 求切线的方程例2 (1)(2019·四川成都模拟)曲线y =x sin x 在点P (π,0)处的切线方程是( )A .y =-πx +π2B .y =πx +π2C .y =-πx -π2D .y =πx -π2答案 A解析 因为y =x sin x ,所以y ′=sin x +x cos x ,在点P (π,0)处的切线斜率为k =sinπ+πcosπ=-π,所以曲线y =x sin x 在点P (π,0)处的切线方程是y =-π(x -π)=-πx +π2.故选A.(2)曲线y =f (x )=e 2x +1在点⎝ ⎛⎭⎪⎫-12,1处的切线方程为________.答案 2x -y +2=0解析 ∵f ′(x )=e 2x +1·(2x +1)′=2e 2x +1, ∴f ′⎝ ⎛⎭⎪⎫-12=2e 0=2,∴曲线y =e 2x +1在点⎝ ⎛⎭⎪⎫-12,1处的切线方程为y -1=2⎝ ⎛⎭⎪⎫x +12,即2x -y +2=0.角度2 求切点的坐标例3 (1)(2019·陕西模拟)设曲线y =e x在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则点P 的坐标为( )A .(1,1)B .(-1,-1)C .(1,-1)D .(-1,1)答案 A解析 对y =e x 求导得y ′=e x ,令x =0,得曲线y =e x 在点(0,1)处的切线斜率为1,故曲线y =1x (x >0)上点P 处的切线斜率为-1,由y ′=-1x 2=-1,得x =1,则y =1,所以点P 的坐标为(1,1).故选A.(2)(2018·江西模拟)若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.答案 (e ,e)解析 设点P (x 0,y 0),∵y =x ln x ,∴y ′=ln x +x ·1x =1+ln x .∴曲线y =x ln x 在点P 处的切线斜率k =1+ln x 0.又k =2,∴1+ln x 0=2,∴x 0=e ,y 0=eln e =e.∴点P 的坐标是(e ,e). 角度3 求公切线的方程例4 (1)已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-2 答案 D解析 ∵f ′(x )=1x ,∴直线l 的斜率为k =f ′(1)=1, 又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,于是解得m =-2.故选D.(2)若直线l 与曲线y =e x及y =-14x 2都相切,则直线l 的方程为________.答案 y =x +1解析 设直线l 与曲线y =e x 的切点为(x 0,e x 0),直线l 与曲线y =-14x 2的切点为⎝ ⎛⎭⎪⎫x 1,-x 214,因为y =e x 在点(x 0,e x 0)处的切线的斜率为y ′|x =x 0=e x0,y =-x 24在点⎝ ⎛⎭⎪⎫x 1,-x 214处的切线的斜率为y ′|x =x 1=⎝ ⎛⎭⎪⎫-x 2| x =x 1=-x 12,则直线l 的方程可表示为y =e x 0x -x 0e x 0+e x0或y =-12x 1x +14x 21,所以⎩⎪⎨⎪⎧e x0=-x 12,-x 0e x 0+e x0=x 214,所以e x 0=1-x 0,解得x 0=0,所以直线l 的方程为y =x +1.触类旁通(1)求曲线切线方程的步骤①求出函数y =f (x )在点x =x 0处的导数,即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率;②由点斜式方程求得切线方程为y -f (x 0)=f ′(x 0)·(x -x 0).(2)求曲线f (x ),g (x )的公切线l 的方程的步骤,①设点求切线,即分别设出两曲线的切点的坐标(x 0,f (x 0)),(x 1,g (x 1)),并分别求出两曲线的切线方程;,②建立方程组,即利用两曲线的切线重合,则两切线的斜率及在y 轴上的截距都分别相等,得到关于参数x 0,x 1的方程组,解方程组,求出参数x 0,x 1的值;,③求切线方程,把所求参数的值代入曲线的切线方程中即可.即时训练 2.(2019·衡水调研)已知曲线y =x 22-3ln x 的一条切线的斜率为2,则切点的横坐标为( )A .3B .2C .1 D.12 答案 A解析 设切点坐标为(x 0,y 0),且x 0>0,由y ′=x -3x ,得k =x 0-3x 0=2,∴x 0=3.故选A.3.曲线y =1-2x +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -2答案 A 解析 ∵y =1-2x +2=x x +2,∴y ′=x +2-x(x +2)2=2(x +2)2,y ′|x =-1=2, ∴曲线在点(-1,-1)处的切线斜率为2, ∴所求切线方程为y +1=2(x +1),即y =2x +1.4.(2016·全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln (x +1)的切线,则b =________.答案 1-ln 2解析 直线y =kx +b 与曲线y =ln x +2,y =ln (x +1)均相切,设切点分别为A (x 1,y 1),B (x 2,y 2),由y =ln x +2得y ′=1x ,由y =ln (x +1)得y ′=1x +1,∴k =1x 1=1x 2+1,∴x 1=1k ,x 2=1k -1,∴y 1=-ln k +2,y 2=-ln k .即A ⎝ ⎛⎭⎪⎫1k ,-ln k +2,B ⎝ ⎛⎭⎪⎫1k -1,-ln k ,∵A ,B 在直线y =kx +b 上, ∴⎩⎪⎨⎪⎧2-ln k =k ·1k +b ,-ln k =k ·⎝ ⎛⎭⎪⎫1k -1+b ⇒⎩⎪⎨⎪⎧b =1-ln 2,k =2.考向三 求参数的范围例5 (1)(2019·沈阳模拟)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值为( )A .1B .2C .5D .-1 答案 A解析 由题意可得3=k +1,3=1+a +b ,则k =2.又曲线的导函数y ′=3x 2+a ,所以3+a =2,解得a =-1,b =3,所以2a +b =1.故选A.(2)已知函数f (x )=e x -mx +1的图象为曲线C ,若曲线C 存在与直线y =e x 垂直的切线,则实数m 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫1e ,+∞解析 由题意知,方程f ′(x )=-1e 有解,即e x -m =-1e 有解,即e x=m -1e 有解,故只要m -1e >0,即m >1e 即可.故填⎝ ⎛⎭⎪⎫1e ,+∞.触类旁通处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.即时训练 5.已知函数f (x )=ax 2+2b ln x ,若曲线y =f (x )在点(2,f (2))处的切线方程为y =x +2-6ln 2,则a +b =( )A .-2B .-1C .2D .1 答案 A解析 由切线方程,得f (2)=4-6ln 2,f ′(2)=1. ∵f (x )=ax 2+2b ln x ,∴f ′(x )=2ax +2bx ,∴⎩⎪⎨⎪⎧4a +2b ln 2=4-6ln 2,4a +b =1,解得a =1,b =-3, ∴a +b =-2.故选A.6.若曲线y =13x 3+ax 2+x 存在垂直于y 轴的切线,则实数a 的取值范围为( )A.⎝ ⎛⎦⎥⎤-∞,-12∪[1,+∞) B .(-∞,-1]∪[1,+∞) C .(-∞,-1]∪[0,+∞) D.⎣⎢⎡⎭⎪⎫-12,+∞ 答案 B解析 令y =f (x )=13x 3+ax 2+x ,则f ′(x )=x 2+2ax +1,∵曲线y =f (x )存在垂直于y 轴的切线,∴f ′(x )=0有解,即x 2+2ax +1=0有解,∴Δ=(2a )2-4≥0,∴a ≥1或a ≤-1,即实数a 的取值范围为(-∞,-1]∪[1,+∞),故选B.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22
解析:因为函数 f(x)在 x=x0 处可导,所以可得 f′(x0) fx0+h-fx0 =lim ,所以此极限仅与 x0 有关而与 h 无关, h→0 h 故选 B.
23

导数的运算
【例 2】求下列函数的导数: (1)y=x2sinx; ex + 1 (3)y= x ; e -1 (2)y=ln(x+2); x+cosx (4)y= . x+sinx
8
4. 一木块沿一斜面下滑, 下滑的水平距离 S(m)与时间 t(s) 12 之间的函数关系式为 S=4t ,t=3 s 时,此木块在水平方向上 1.5 m/s 的瞬时速度为 .
9
S3+Δt-S3 1 3 解析:v= =4Δt+2,当 Δt 趋向于 0 时, Δt v 趋向于 1.5,故所求瞬时速度为 1.5 m/s.
24
【思路点拨】根据函数的求导公式可得答案.
25
【解答过程】 (1)y′= (x2)′sinx + x2(sinx)′= 2xsinx + x2cosx. 1 1 (2)y′= (x+2)′= . x+2 x+2 ex+1′ex-1-ex+1ex-1′ -2ex (3)y′= = x x 2 2. e -1 e -1
+30t2+45t+4,其中 h 的单位为 m,t 的单位为 s. ①h(0),h(1),h(2)分别表示什么; ②求第 2 s 内的平均速度; ③求第 2 s 末的瞬时速度.
14
【思路点拨】(1)利用导数定义求函数的导数时,先算 Δy fx+Δx-fx 函数的增量 Δy, 再算比值Δx= , 再求极限 y′ Δx Δy =Δ lim x→0 Δx;(2)①由 h(t)表示航天飞机发射 t 秒后的高度分 h2-h0 别说明 h(0),h(1),h(2)的意义;②直接由 得到第 2 -0 2 s 内的平均速度;③求出 2 秒末的瞬时变化率,取极限值 求第 2【解答过程】(1)y′=Δ lim x→0 Δx fx+Δx-fx x+Δx2-x2 = = Δx Δx x2+2x·Δx+Δx2-x2 = Δx =2x+Δx, Δy 所以 y′=Δ lim lim x→0 Δx=Δ x→0 (2x+Δx)=2x.
16
(2)①h(0)表示航天飞机发射前的高度; h(1)表示航天飞机升空后 1 s 的高度; h(2)表示航天飞机升空后 2 s 的高度; ②航天飞机升空后第 2 秒内的平均速度为 h2-h0 5×23+30×22+45×2+4-4 - v= = 2 2 -0 =125(m/s).
20
2 f 1 + Δ x - f 1 [ 1 + Δ x +1]-2 Δy 解析:Δx= = =2+Δx. Δx Δx
21
【跟踪训练 2】设函数 f(x)在 x=x0 处可导,则 fx0+h-fx0 lim ( ) h→0 h A.与 x0,h 都有关 B.仅与 x0 有关而与 h 无关 C.仅与 h 有关而与 x0 无关 D.与 x0、h 均无关
18
【温馨提示】(1)求函数的增量 Δy=f(x0+Δx)-f(x0); Δy fx0+Δx-fx0 (2)求平均变化率Δx= ; Δx Δy (3)得导数 f′(x0)=Δ lim x→0 Δx.简记作:一差、二比、三极 限.
19
【跟踪训练 1】在曲线 y=x2+1 的图象上取一点(1,2)及邻 Δy 近一点(1+Δx,2+Δy),则Δx为( 1 A.Δx+Δx+2 C.Δx+2 ) 1 B.Δx-Δx-2 1 D.2+Δx-Δx
第 1讲
导数的概念及运算
1
2
1 2 1. 物体在地球上作自由落体运动时,下落距离 S=2gt S1+Δt-S1 其中 t 为经历的时间, g=9.8 m/s , 若 V=Δt lim →0 Δt
2
=9.8 m/s,则下列说法正确的是( C ) A.0~1 s 时间段内的速率为 9.8 m/s B.在 1~(1+Δt)s 时间段内的速率为 9.8 m/s C.在 1 s 末的速率为 9.8 m/s D.若 Δt>0,则 9.8 m/s 是 1~(1+Δt)s 时段的速率
10
5.已知 f(x)=x2+2x· f′(1),则 f′(0)= 4
.
11
解析: f′(x) = 2x + 2f′(1) ⇒ f′(1) = 2 + 2f′(1) ,所以 f′(1)=-2,f(x)=x2-4x,f′(x)=2x-4,所以 f′(0)=-4.
12
13

利用定义求函数的导数
【例 1】(1)用定义法求 y=x2 的导数. (2)航天飞机升空后一段时间内,第 t s 时的高度 h(t)=5t3
3
S1+Δt-S1 解析: 由导数的物理意义可知, V=Δt lim 指 →0 Δt 的是物体在 1 秒末的瞬时速度,由此可知正确答案是 C.
4
2. f(x)=x3,f′(x0)=6,则 x0=(C ) A. 2 C.± 2 B.- 2 D.± 1
5
解析:用幂函数的导数公式求出 f′(x),解方程可得答 案.
6
3. 函数 y=f(x)的自变量在 x=1 处有增量 Δx 时,函数值 相应的增量为 f(1+Δx)-f(1) .
7
解析:因为函数 y=f(x)的自变量在 x=1 处有增量 Δ x, 所以函数在 1+Δx 处的函数值为 f(1+Δx), 所以函 数 y=f(x)的自变量在 x=1 处有增量 Δx 时,函数值相 应的增量为 Δy=f(1+Δx)-f(1).
17
③航天飞机升空后在 t=2 时的位移增量与时间增量的比 h2+Δt-h2 3 2 值为 v= = [5(2 + Δ t ) + 30(2 + Δ t ) +45(2+Δt) Δt + 4 - (5×23 + 30×22 + 45×2 + 4)]/Δt = 5Δt3+60Δt2+225Δt 2 = 5( Δ t ) + 60( Δ t ) + 225 , Δt 当 Δt 趋向于 0 时,v 趋向于 225, 因此,第 2 s 末的瞬时速度为 225 m/s.
相关文档
最新文档