相似三角形的几种基本图形复习

合集下载

最新初三上数学培优专题讲义九AB------相似三角形

最新初三上数学培优专题讲义九AB------相似三角形

初三上数学培优专题讲义九AB 相似三角形提高训练一.相似三角形中的几个基本图形:两个三角形相似,一般说来必须具备下列六种图形之一:二、典例分析:考点(一)-------有关三角形的内接矩形或正方形的计算问题例题1、已知:如图,正方形DEFG 内接于△ABC ,AM ⊥BC 于M 交DG 于N ,BC=18,AM=12。

求正方形边长.变式:如图,在△ABC 中,∠ACB=90°,AC=3,BC=4,试比较图中正方形CDEF 和正方形PQRS 的面积的大小考点(二)------ 两个三角形相似的判定 例题2.如图,四边形ABCD 是平行四边形,AE ⊥BC 于E ,AF ⊥CD 于F.(1)ΔABE 与ΔADF 相似吗?说明理由.(2)ΔAEF 与ΔABC 相似吗?说说你的理由.变式:如图,⊿ABC 是等边三角形,点D,E 分别在BC,AC 上,且BD=CE,AD 与BE 相交于点F.(1)试说明⊿ABD≌⊿BCE。

(2)⊿AEF 与⊿ABE 相似吗?说说你的理由。

(3)BD 2=AD·DF 吗?请说明理由。

考点(三)------相似三角形中的面积问题EF AFFC FD +例题3. 如图,在□ABCD 中,E 为CD 中点,AE 与BD 相交于点O ,S △DOE =12cm 2,求S △AOD 、 S △AOB .变式:(2011•丹东,16,3分)已知:如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB 于点Q ,求S △DPQ :S △ABC .考点(四)------作平行线构造相似三角形例题4.如图,E 是ABC ∆中线AD 上的一点,CE 交AB 于F ,已知AE :ED=1:2,求AF :BF 的值。

变式:如图,已知△ABC 中,AE:EB=1:4,BD:DC=2:1,AD 与CE 相交于F.求: 的值.考点(5)------利用相似三角形测高例5. 某测量工作人员眼睛A 与标杆顶端F 、电视塔顶端E 在同一直线上,已知此人眼睛距地面1.5米,标杆为3米,且BC=1米,CD=6米,求电视塔的高ED 。

相似三角形知识点大总结

相似三角形知识点大总结

相似三角形知识点大总结知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念(1)如果选用同一单位量得两条线段的长度分别为,那么就说这两条线段的比是,或写成.注:在求线段比时,线段单位要统一。

(2)在四条线段中,如果的比等于的比,那么这四条线段叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说是的第四比例项,那么应得比例式为:.②a、d叫比例外项,b、c叫比例内项, a、c叫比例前项,b、d叫比例后项,d叫第四比例项,如果b=c,即 那么b叫做a、d的比例中项, 此时有。

(3)黄金分割:把线段分成两条线段,且使是的比例中项,即,叫做把线段黄金分割,点叫做线段的黄金分割点,其中≈0.618.即 简记为:注:黄金三角形:顶角是360的等腰三角形。

黄金矩形:宽与长的比等于黄金数的矩形知识点3 比例的性质(注意性质立的条件:分母不能为0)(1) 基本性质:①;②.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如,除了可化为,还可化为,,,,,,.(2) 更比性质(交换比例的内项或外项):(3)反比性质(把比的前项、后项交换): .(4)合、分比性质:.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:等等.(5)等比性质:如果,那么.注:①此性质的证明运用了“设法”(即引入新的参数k)这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:;其中.知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE∥BC可得:注:①重要结论:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例.已知AD∥BE∥CF,可得等.注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。

相似三角形专题复习——几个常用图形的简单

相似三角形专题复习——几个常用图形的简单
源自CD CBCB CA
CB CD CA
2
3、如图,∠ABC=90°, BD⊥AC于D,DC=4 ,AD=9, C 则BD的长为( ) (A)36 (B)16 16 . (C) 6 (D) A
9
D
C
B
BD AD
CD BD
2
(或BD AD CD)
3、如图,∠ABC=90°, BD⊥AC于D,DC=4 ,AD=9, B C 则BD的长为( ) (A)36 (B)16 16 . (C) 6 (D) A C
9
D
C
BD AD
CD BD
2
D
BA
(或BD AD CD)
E
B
C
F
D
A
4、如图,F、C、D共线,BD⊥FD, EF⊥FD , BC⊥EC ,若DC=2 ,BD=3,FC=9,则EF的长为( A ) (A)6 (B)16 27 FC CD EF (C) 26 (D)2 . CD BD ,即EF FC BD
C
O
D
B
A 例1如图,四边形ABCD中,AD∥BC, ∠ABC=90°,AD=9,BC=12,AB=10, 在线段BC上任取一点P,作射线 E PE⊥PD,与线段AB交于点E. B (1)试确定CP=3时点E的位置; (2)若设CP=x,BE=y,试写出y关 于自变量x的函数关系式,并求出自 变量x的取值范围.
相似中常用基本图形:
A字型 8字型 公共边角型 三垂直型 (K型图)
双垂直型
小组比赛 1.如图,已知⊙O的两条弦AB、 CD交于E,AE=BE=6,ED=4,则 9 CE=____.
CE AE
C

BE ED

初中数学三角形相似模型大总结

初中数学三角形相似模型大总结

初中数学三角形相似模型大总结三角形相似是初中数学里非常重要的知识点,是中考中一定会涉及的考点之一。

三角形相似的判定和应用题型千变万化,但“万变不离其宗”,常用的一共有以下8种模型。

1、8字形模型2、反8字形模型3、A字形模型4、反A字形模型5、共边反A字形模型6、剪刀反A字形模型7、一线三等角模型8、一线三垂直模型【模型总结】8种具体模型实际上可以分为三个大类,如下面表格所示:【应用提示】三角形相似的实际应用中遇到的模型基本上是属于上面8种模型的变化。

比如当三角形为直角三角形时的反A字形。

【应用举例】思路分析:通常来讲,题目中遇到线段成某个比例的已知条件,往往会和三角形相似结合起来。

因为三角形相似就能利用线段的比例。

本题中,△CEF和△EFD是对折关系,所以∠EDF=∠C=60度。

进而得到∠A=∠B=∠EDF=60度,一线三等角模型太明显不过了。

因此:△AED∽△DBF。

虽然,解题过程中还用到了设未知数解方程的代数思想,但是如果不能及时发现一线三等角模型,然利用相似比例列出2个方程,此题难度也不小。

【总结】三角形相似就意味着对应线段的比值相等,所以就能建立等式关系。

因此,题目中只要看到线段比例已知,就要首先考虑构建三角形相似来利用这个已知条件,为进一步完成解题创下基础。

口诀:线段比例若知道,三角相似解题巧。

有些同学相似三角形的判定方法明明都知道,却还是不会证三角形相似,在有些图形中甚至找不到谁和谁相似,完全无从下手。

这种情况,其中一个很大的原因就是——对相似的基本模型不熟悉。

本文就来说说相似的几种基本模型,让你能在复杂的图形中快速识别,迅速上手。

1、A字型(金字塔形)A字型分两种,一种上下平行的,一种上下不平行的。

注意两种A字型对应关系不同。

2、8字型(沙漏型)同A字型一样,8字型也有两种,一种上下平行,一种上下不平行,对应关系也不同。

3、子母型子母型相似可看作由非平行的A字型相似变化而来。

子母型相似的对应关系比较容易写错,为了避免出错可采用两种书写习惯:①仿照A字型写法,从公共点写起,△BAD∽△BCA;②按角的大小排序来写,小中大,△ABD∽△CBA.推荐第一种,更不容易错。

相似三角形证明技巧(整理)

相似三角形证明技巧(整理)

相似三角形解题方法、技巧、步骤、辅助线解析一、相似三角形(1)三角形相似的条件:①;② ;③ . 二、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.三、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例;找另一角 两角对应相等,两三角形相似找夹边对应成比例 两边对应成比例且夹角相等,两三角形相似找夹角相等 两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例 三边对应成比例,两三角形相似找一个直角 斜边、直角边对应成比例,两个直角三角形相似找另一角 两角对应相等,两三角形相似找两边对应成比例 判定定理2 找顶角对应相等 判定定理1找底角对应相等 判定定理1找底和腰对应成比例 判定定理3e)相似形的传递性 若△1∽△2,△2∽△3,则△1∽△3四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。

具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。

有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。

例1、已知:如图,ΔABC 中,CE ⊥AB,BF ⊥AC. 求证: BAAC AF AE(判断“横定”还是“竖定”? )a)已知一对等b)己知两边对应成比c)己知一个直d)有等腰关例2、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?说明理由。

(完整版)初中相似三角形基本知识点和经典例题

(完整版)初中相似三角形基本知识点和经典例题

初三相似三角形知识点与经典题型知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念(1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。

(2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b=.②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。

(3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB.即12AC BC AB AC ==简记为:12长短==全长注:黄金三角形:顶角是360的等腰三角形。

黄金矩形:宽与长的比等于黄金数的矩形知识点3 比例的性质(注意性质立的条件:分母不能为0)(1) 基本性质:①bc ad d c b a =⇔=::;②2::a b b c b a c =⇔=⋅.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.(2) 更比性质(交换比例的内项或外项):()()()a bc d a c d cb db a d bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b da c=⇔=.(4)合、分比性质:a c abcd b d b d±±=⇔=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc d c b a b a ccd a a b d c b a 等等.(5)等比性质:如果)0(≠++++====n f d b nm f e d c b a ,那么b an f d b m e c a =++++++++ .注:①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:ba f db ec a f ed c b a fe d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b . 知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或注:①重要结论:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形三边......对应成比例.②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. 已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE EF=====或或或或等.注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。

相似三角形的基本图形总结

相似三角形的基本图形总结

相似三角形的基本图形总结+一模相似汇总用相似三角形的性质来证线段成比例和角相等,是几何证题中的重点之一,而解题的关键是在几何图形中发现或构造所需的相似三角形,下面举例说明。

相似三角形主要基本类型:一、平行线型如图1,若DE ∥BC ,则△ADE ∽△ABC 。

例1. 已知,如图2所示,AD 为△ABC 的中线,任一直线CF 交AD 、AB 于E 、F 。

求证:FB AF 2ED AE =。

证明:例2. 已知,如图3所示,BE 、CF 分别为△ABC 的两中线,交点为G 。

求证:2GF GC GE GB ==。

例3. 已知,如图4所示,在△ABC 中,直线MN 交AB 、AC 和BC 的延长线于X 、Y 、Z 。

求证:AY CY CZ BZ BX AX ⋅⋅=1。

二、相交线型 如图5,若∠1=∠B ,则可由公共角或对顶角得△ADE ∽△ABC 。

例4. 已知,如图6所示,△ABC 中,AB=AC ,D 为AB 上的点,E 为AB 延长线上的点,且AE AD AB 2⋅=。

求证:BC 平分∠DCE 。

例5. 已知,如图7所示,CD 为Rt △ABC 的高,E 为CD 的中点,AE 的延长线交BC 于F ,FG ⊥AB 于G 。

求证:FB FC FG 2⋅=。

三、旋转翻折型如图8,若∠BAD=∠CAE ,则△ADE 绕点A 旋转一定角度后与△ABC 构成平行线型的相似三角形。

如图9,直角三角形中的相似三角形,若∠ACB=︒90,AB ⊥CD ,则△ACD ∽△CBD∽△ABC 。

例6. 已知,如图10所示,D 为△ABC 内的一点,E 为△ABC 外的一点,且∠EBC=∠DBA ,∠ECB=∠DAB 。

求证:DB ·AC=AB ·DE 。

例7. 已知,如图11所示,F 为正方形ABCD 的边AB 的中点,E 为AD 上的一点,AE=41AD ,FG ⊥CE 于G 。

求证:CG EG FG 2⋅=。

相似三角形重点复习

相似三角形重点复习

第二十七章相似三角形【本讲教育信息】一.教学内容:相似三角形1.比例线段2. 相似三角形3. 相似多边形4. 位似二.知识要点:相似形是指两个在形状、大小方面具有某种特殊关系的图形,它以全等三角形和相似变换为基础,是全等三角形在边上的推广,是相似变换的延续和深化.相似多边形、图形的位似则是相似三角形的推广和应用.它是空间与图形领域中的重要内容,对前后各部分知识起到纽带的作用.本章内容重视对知识的探究和运用,重视与实际问题的联系及运用相似知识解决实际问题能力的培养.1.比例线段比例的基本性质、比例线段、黄金分割.研究相似三角形离不开研究比例线段,比例线段又是以比例的基本性质为依托,因此课本首先介绍比例的基本性质,利用比例的基本性质进行一些简单的变形.这里主要要求理解并初步掌握两种基本方法(或技能):一是利用比例的基本性质进行变形或求值;二是用“设比值”的方法进行变形或求值.(1)比例的基本性质2.相似三角形从相似变换引入相似三角形,反映了知识间的一种联系,同时也揭示相似三角形所要研究的本质就是两个三角形边角之间的关系.通过与全等三角形的比较,突出全等与相似的相互关系:既有相同之处,更有不同之处.本节的学习应突出一种对应关系,即找两个相似三角形的对应边和对应角,关键是先找到其对应顶点.(一)三角形相似的判定:(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.基本图形:推理格式:在△ABC中,∵ DE//BC,∴△ADE∽△ABC.(2)如果两个三角形三组对应边的比相等,那么这两个三角形相似.基本图形:(4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

基本图形:答案:1:3:5分析:∵DE//FG//BC,∴△ADE∽△AFG∽△ABC 又∵AD=DF=FB∴ AD:AF:AB=1:2:3.点评:要抓住AD=DF=FB,DE//FG//BC的条件,利用基本图形进行三角形相似的判定,然后利用性质解题。

相似三角形专题复习(共66张PPT)

相似三角形专题复习(共66张PPT)
8
3.右图中, DE∥BC,S△ADE:S四边形DBCE = 1:8,则AE:AC=_____
1:3
课堂训练:
E
B
D
C
4. 在△ABCAC=4,AB=5.D是AC上一动点,且∠ADE=∠B,设AD=x,AE=y,写出y与x之间的函数关系式.试确定x的取值范围.
A
解: ∵∠A=∠A ∵∠ADE=∠B ∴△ADE∽△ABC ( ) ∴AD:AB=AE:AC ∴x:5=y:4 ∴y=0.8x
相似三角形
DE∥BC
△ ADE∽ △ ABC
∠DAE= ∠CAB
△ ADE∽ △ ABC
基本图形
判定方法
∠AED= ∠B
∠DAE= ∠BAC
△ADE∽ △ ABC
对应角相等;
性质定理
对应边成比例;
周长的比 等于相似比;
面积的比等于 相似比的平方;
三边对应成比例的 两个三角形相似.
灵感 智慧
M1
A
B
C
P
Q
A
B
C
P
Q
M2
例:如图,在ABC中,∠C=90°,AC=4,BC=3,PQ∥AB,点P在AC上(与点A、C不重合),点Q在BC上。试问:在AB上是否存在点M,使得△PQM为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出PQ的长。
灵感 智慧
1.矩形ABCD中,把DA沿AF对折,使D与CB边上的点E重合,若AD=10, AB= 8, 则EF=______
善于在复杂图形中寻找基本型
5
A
D
B
C
E
F
A
B
C
F
E
E
E

北师大版数学九上第四章《相似三角形的基本图形》专题复习(教案)

北师大版数学九上第四章《相似三角形的基本图形》专题复习(教案)
3.直角三角形中,30°-60°-90°和45°-45°-90°三角形的性质及其应用。
4.利用相似三角形解决实际问题的方法。
5.本章典型例题与习题的复习巩固,如相似三角形的应用题、图形的放大与缩小等。
6.相似多边形的性质及判定方法。
二、核心素养目标
1.培养学生的几何直观能力,通过观察、分析相似三角形的基本图形,提高学生对几何图形的理解和识别能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相似三角形的基本图形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要测量不可到达的距离或高度的情况?”(如测量旗杆的高度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相似三角形的奥秘。
在小组讨论环节,学生们表现得非常积极,能够主动提出自己的观点并与他人交流。但在分享成果时,部分学生的表达能力还有待提高。为了提高学生的表达能力,我计划在接下来的课程中增加一些课堂演讲或辩论环节,让他们有更多机会锻炼自己的口头表达能力。
最后,从这节课的教学过程中,我也意识到了关注学生个体差异的重要性。有些学生可能需要更多的时间来消化和理解相似三角形的知识点,因此在课后,我要针对这些学生进行个别辅导,帮助他们克服学习难点。
三、教学难点与重点
1.教学重点
-理解并掌握相似三角形的判定方法(SSS、SAS、ASA、AAS)。
-掌握相似三角形的性质,尤其是对应角相等和对应边成比例。
-能够运用相似三角形解决实际问题,如测量不可到达的距离或高度。
-理解并运用直角三角形特殊比例关系(30°-60°-90°和45°-45°-90°)。
其次,在解决实际问题时,部分学生构建相似三角形模型的能力较弱。针对这一点,我打算在接下来的课程中,设计一些更具挑战性的问题,让学生们通过小组合作的方式,一起探讨如何将实际问题转化为数学模型。这样既能提高他们的解决问题的能力,也能培养他们的团队合作精神。

20171005相似三角形几种基本模型

20171005相似三角形几种基本模型

相似三角形基本模型经典模型“平行旋转型”图形梳理:AEF 旋转到AE‘F’CBAAEF 旋转到AE‘F’F'CBBCAEF 旋转到AE‘F’ABCAEF 旋转到AE‘F’特殊情况:B 、'E 、'F 共线AEF 旋转到AE‘F’CBAAB CEFE'F'AEF 旋转到AE‘F’C ,'E ,'F 共线AEF 旋转到AE‘F’CBAAEF 旋转到AE‘F’CBA母子型已知∠ACB=90°,AB ⊥CD ,则△CBD ∽△ABC ∽△ACD .相似三角形常见的图形1、下面我们来看一看相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)(2) 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。

(有“反A 共角型”、B(3)DB(2)D“反A 共角共边型”、 “蝶型”)(3)如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”“三垂直型”)(4)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形。

(5)母子型已知∠ACB=90°,AB ⊥CD ,则△CBD ∽△ABC ∽△ACD .2、几种基本图形的具体应用:(1)若DE ∥BC (A 型和X 型)则△ADE ∽△ABC(2)射影定理 若CD 为Rt △ABC 斜边上的高(双直角图形)则Rt △ABC ∽Rt △ACD ∽Rt △CBD 且AC 2=AD ·AB ,CD 2=AD ·BD ,BC 2=BD ·AB ;(3)满足1、AC 2=AD ·AB ,2、∠ACD=∠B ,3、∠ACB=∠ADC ,都可判定△ADC ∽△ACB . (4)当AD AEAC或AD ·AB=AC ·AE 时,△ADE∽△ACB .BEACD12ABCD E12AAB BCC DD EE12412BBC (D)。

相似三角形的几种基本图形复习

相似三角形的几种基本图形复习

A相似三角形的几种基本图形:(1)称为“平行线型”的相似三角形.(2)其中∠1=∠2,则△ADE ∽△ABC 称为“相交线型”的相似三角形.ABCD E12AABBCC DD EE12412(3)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形.(4)一线三等角型1、 矩形ABCD 中,把DA 沿AF 对折,使D 与CB 边上的点E 重合,若AD=10,AB= 8,则EF=______2、 如图,在矩形ABCD 中,E 在AD 上,连结BE 、EF 、BF 。

已知AE=4,ED=2,AB=3,若△ABE 和△EDF 相似,则DF=__________。

3、 如图,在直角梯形ABCD 中,AD ∥BC , ∠B=900, AD=3,BC=6,点PB E A CD 12A B CD E B D BEA B C C D在AB上滑动。

若△DAP与△PBC相似,且AP=4.5 ,求PB的长。

4、如图,在△ABC中,∠C=90°,BC=8,AC=6.点P从点B出发,沿着BC方向点C以2cm/s的速度移动;点Q从点C出发,沿着CA向点A以1cm/s的速度移动。

如果P、Q分别从B、C同时出发,问:经过多少秒时以C、P、Q为顶点的三角形恰好与△ABC相似?5、如图,菱形ABCD的边长为24厘米,∠A=60°,点P从点A出发沿线路AB→BD作匀速运动,点Q从点D同时出发沿线路DC→CB→BA作匀速运动.(1)求BD的长;(2)已知点P、Q运动的速度分别为4厘米/秒,5厘米/秒,经过12秒后,P、Q分别到达M、N两点,若按角的大小进行分类,请你确定△AMN是哪一类三角形,并说明理由;(3)设(2)中的点P、Q分别从M、N同时沿原路返回,点P的速度不变,点Q的速度改变为a厘米/秒,经过3秒后,P、Q分别到达E、F两点,若△BEF与(2)中的△AMN相似,试求a的值.如图,□ABCD中, G是AB延长线上一点, DG交AC于E, 交BC于F, 则图中所有相似三角形有( )对。

相似三角形的12种基本模型

相似三角形的12种基本模型

相似三角形Ⲵ基本模型
【模型概述ᙍ㔤ሬമ】
аǃ八字型
Ҽǃ母子型
1、共角型(A 字型)
(平行)
(不平行)
2、共角共边型
(双垂直)射影定理
B
C
B C
B
【典ර㓳Ґ仈】——母子型(A 型)
1.已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边
AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A
、P 两点的距离为x ,△BEP 的面积为y . (1)求证:AE =2PE ;
(2)求y 关于x 的函数解析式,并写出它的定义域;
【典例㓳Ґ仈】——双垂直型直角三角形˖:
Rt △ABC 中,∠C =90º,CD ⊥AB 于D ,则
∽ ∽ 射影定理:
CD 2
= ·
AC 2
= ·
BC 2
= ·
A
C
B
P
D E
йǃ一线三等角相似模型
一 线 三 等 角
直角形一线三等角
(K 字型)
钝角形一线三等角
锐角形一线三等角
ഋǃ手拉手相似模型
1、定义:
两个相似且共顶点的三角形形成的图形。

2、固定结论:
将三角形顶角(头)朝上,正对读者,读者左边为着手顶点,右边为右手顶点,会得到一对新的相似三角形
ӄǃ十字架相似模型
.。

相似三角形基本知识点+经典例题

相似三角形基本知识点+经典例题

ac
在比例式
(a: b = c: d)中,a、d 叫比例外项,b、c 叫比例内项,a、c 叫比例前项,b、d 叫比例后
bd
项,d 叫第四比例项,如果 b=c,即 a: b 二 b: d 那么 b 叫做 a、d 的比例中项,
此时有 b2 二 ad。
(3)黄金分割:把线段 AB 分成两条线段 AC,BC(AC ■ BC),且使 AC 是 AB 和 BC 的比例中项,即
发生同样和差变化比例仍成立•如:
{a c
b
等等
a「b •
a b c -d
a
(5 )等比性质:如果
b
注:
=m(b d - f
n
m
n = 0),那么 a c e b +d + f +…+ n
① 此性质的证明运用了“设 k 法” (即引入新的参数 k) 这样可以减少未知数的个数,这种方法是有关比例
计算变形中一种常用方法•②应用
① 反身性:对于任一 :ABC 有. ABC s ;ABC .
② 对称性:若:ABC s .lA'B'C',则:A'B'C' s :ABC .
③ 传递性则. ABCs ABC
(2)
三角形相似的判定定理的预备定理: 平行于三角形一边的直线和其它两边(或
形的对应角和对应边. ②顺序性:相似三角形的相似比是有顺序的.
③两个三角形形状一样,但大小不一定一样.④全等三角形是相似比为 1 的相似三角形.二者的区别在于全等要
求对应边相等,而相似要求对应边成比例.
知识点 6 三角形相似的等价关系与三角形相似的判定定理的预备定理
(1) 相似三角形的等价关系:

相似三角形中考复习(知识点+题型分类练习)

相似三角形中考复习(知识点+题型分类练习)

相似三角形一、知识概述1.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其它直线上截得的线段也相等。

2.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例。

3.相似三角形的定义对应边成比例、对应角相等的两个三角形叫做相似三角形.4.相似三角形的基本性质①相似三角形的对应边成比例、对应角相等.②相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

③相似三角形的周长比等于相似比④面积比等于相似比的平方温馨提示:①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当且仅当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.5. 相似三角形的判定定理①平行于三角形一边的直线和其他两边或其延长线相交,所得的三角形与原三角形相似;②三边对应成比例的两个三角形相似;③两角对应相等的两个三角形相似;④两边对应成比例且夹角相等的两个三角形相似。

温馨提示:(1)判定三角形相似的几条思路:①条件中若有平行,可采用判定定理1;②条件中若有一对角相等(包括隐含的公共角或对顶角),可再找一对角相等或找夹边对应成比例;③条件中若有两边对应成比例,可找夹角相等;但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等.④条件中若有等腰关系,可找顶角相等或底角相等,也可找腰和底对应成比例。

(2)在综合题中,注意相似知识的灵活运用,并熟练掌握线段代换、等比代换、等量代换技巧的应用,培养综合运用知识的能力。

(3)运用相似的知识解决一些实际问题,要能够在理解题意的基础上,把它转化为纯数学知识的问题,要注意培养当数学建模的思想。

相似三角形的九大模型

相似三角形的九大模型

相似三角形的九大模型相似三角形是几何学中一类重要的图形,它具有一些独特的性质和模型。

这些模型可以用来解决各种实际问题,从简单的长度关系到复杂的空间结构。

本文将介绍相似三角形的九大模型,并给出相应的例子和应用场景。

相似三角形是指两个三角形形状相同,大小成比例。

相似三角形的对应边成比例,对应角相等。

相似三角形还有一些其他的性质,例如,相似三角形的中线、角平分线、高的比等于它们的相似比。

平行线模型:两个三角形分别在两条平行线上,它们的对应边平行且成比例。

这种模型经常用于解决一些与长度和角度相关的问题。

共顶点模型:两个三角形有一个共同的顶点,且它们的对应边成比例。

这种模型常用于证明两个三角形相似,以及求解一些角度问题。

角平分线模型:一个三角形的角平分线将这个三角形分成两个小的相似三角形。

这种模型可以用于证明两个三角形相似,以及求解一些角度问题。

平行四边形模型:一个平行四边形被它的两条对角线分成四个小的相似三角形。

这种模型可以用于解决一些与面积和长度相关的问题。

位似模型:一个相似变换将一个三角形映射到另一个三角形,这种变换称为位似变换。

这种模型可以用于解决一些与长度、角度和面积相关的问题。

旋转模型:一个三角形绕着它的一个顶点旋转一定的角度后得到另一个三角形,这两个三角形是相似的。

这种模型可以用于解决一些与角度和长度相关的问题。

镜像模型:一个三角形沿一条直线翻折后得到另一个三角形,这两个三角形是相似的。

这种模型可以用于解决一些与长度和角度相关的问题。

传递模型:如果一个三角形与另一个三角形相似,那么这个三角形的每一个部分都与另一个三角形的对应部分相似。

这种模型可以用于解决一些与长度和角度相关的问题。

扩展模型:如果一个三角形与另一个三角形相似,那么这个三角形的每一个部分都与另一个三角形的对应部分成比例。

这种模型可以用于解决一些与长度和角度相关的问题。

相似三角形的九创作者是几何学中一类重要的模型,它们具有广泛的应用价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形的几种基本图形:
(1)称为“平行线型”的相似三角形.
(2)其中∠1=∠2,则△ADE∽△ABC称为“相交线型”的相似三角形.
A
B
C
D
A
B
C
D
E
(3)如图:∠1=∠2,∠B=∠D,则△ADE∽△ABC,称为“旋转型”的相似三角形.
(4)一线三等角型
1、矩形ABCD中,把DA沿AF对折,使D与CB边上的点E重合,若
AD=10, AB= 8,则EF=______
2、如图,在矩形ABCD中,E在AD上,连结BE、EF、BF。

已知
AE=4,ED=2,AB=3,若△ABE和△EDF相似,则
DF=__________。

3、如图,在直角梯形ABCD中,AD∥BC,∠B=900,AD=3,
BC=6,点P在AB上滑动。

若△DAP与△PBC相似,且
AP=4.5 ,求PB的长。

4、如图,在△ABC中,∠C=90°,BC=8,AC=6.点P从点B出发,沿着BC 方向点C以2cm/s的速度移动;点Q从点C出发,沿着CA向点A以1cm/s的速度移动。

如果P、Q分别从B、C同时出发,问:经过多少秒时以C、P、Q为顶点的三角形恰好与△ABC相似?
5、如图,菱形ABCD的边长为24厘米,∠A=60°,点P从点A出发沿线路AB→BD作匀速运动,点Q从点D同时出发沿线路DC→CB→BA作匀速运动.
(1)求BD的长;
(2)已知点P、Q运动的速度分别为4厘米/秒,5厘米/秒,经过12秒后,P、Q分别到达M、N两点,若按角的大小进行分类,请你确定
△AMN是哪一类三角形,并说明理由;
(3)设(2)中的点P、Q分别从M、N同时沿原路返回,点P的速度不变,点Q的速度改变为a厘米/秒,经过3秒后,P、Q分别到达E、F两点,若△BEF与(2)中的△AMN相似,试求a的值.
如图, □ABCD中, G是AB延长线上一点, DG交AC
A
B
F
C
D
E
G
于E, 交BC于F, 则图中所有相似三角形有( )对。

(A)4 对(B) 5对
(C)6对(D) 7对。

相关文档
最新文档