2005 TNFa
射频消融术前后血清IL-6、TNF-α水平变化的临床分析
山东大学硕士学位论文射频消融术前后血清IL.6、TNF—a水平变化的临床研究研究生孙景芝导师刘同宝教授摘要[背景]经导管射频消融(radiofrequencycatheterablation,RFCA)治疗快速心律失常是近十年来心脏病治疗学中的重大进展之一。
己成为某些心动过速的首选治疗方法。
射频能量可致局部心肌以凝固性坏死为中心,周围伴有出血及急性炎症反应的损害。
炎症反应的存在及发展和射频消融的后效应及一些并发症有关。
[目的]通过对在我院接受RFCA治疗的34例阵发性室上性心动过速患者,连续观察其不同时刻炎症反应生化标志物(白细胞介素一6(Interleukin一6,IL一6)及肿瘤坏死因子一缸(tumornecrosisfactor—a,TNF一旺))水平的变化,研究射频消融术导致局部心肌损伤及炎症反应的程度以及影响因素。
[方法]对34例患者,分别于RFCA术前、术后即刻、6小时、24小时抽取静脉血,采用酶联免疫吸附法(ELISA),分别测定血清IL,6、TNF—d、肌钙蛋白I(TroponinIcTnI)。
[结果]34例患者均无并发症。
术前IL一6、TNF—a及cTnI值分别为(6.056±3.468)pg/ml、(2.875--+2.050)ng/ml、(2.964--+2.020)ng/ml,术后E口刻为(8.155±4.341)pg/ml、(5.574-+4.060)ngtmt、(5.516-1-5.288)ng/ml,(p<O,05、p<00t),6小时达高峰水平(10.582-+5.570)pg/ml、(6.424-+3.760)ng/ml、(7.755±4.519)ng/ml(p<O.01),24小时为(8,849-+3.932)pg/ml、(6.104__+4.615)ng/ml,(4.884l山东大学硕士学位论文±1.431)ng/ml,与术前相比仍有显著性差异(p<o.01)。
TNF-——精选推荐
TNF-T N F 根据来源和结构不同分为T N F- a 、T N F -?,其中T N F-a 与⾻质疏松关系密切。
T N F 主要由单核巨噬细胞产⽣,另外,活化的T 细胞、⾃然杀伤细胞、肥⼤细胞、软⾻细胞也能分泌这种因⼦。
单核巨噬细胞合成的TN F 是⼀个25 ku 左右的⾮糖化跨膜蛋⽩,有两种不同的受体(P55 ,P75 ) ,其分⼦量分别为55 ku 和75 ku 。
T NF 与受体结合后,信号传⼈细胞内,通过N F -xB 或活化蛋⽩(A P ).1 转录因⼦来实现其功能。
⼈的TN F .a 基因位于第 6 对染⾊体上。
1975年E.A. Carswell等⼈发现接种卡介苗的⼩⿏注射细菌脂多糖后,⾎清中出现⼀种能使多种肿瘤发⽣出⾎性坏死的物质,将其命名为肿瘤坏死因⼦(tumor necrosis factor,TNF)。
⼋⼗年代⼈们发现其在消耗症中起了重要作⽤,⼜称恶液质素。
TNF主要由活化的巨噬细胞,NK细胞及T淋巴细胞产⽣。
1985年Shalaby把巨噬细胞产⽣的TNF命名为TNF-α,把T淋巴细胞产⽣的淋巴毒素(lymphotoxin,LT)命名为TNF-β。
虽然TNF-α与TNF-β仅有约30%的同源性,但它们却拥有共同的受体。
TNFα的⽣物学活性占TNF总活性的70 %~95 %,因此⽬前常说的TNF多指TNF-α。
1984年TNF基因的克隆开辟了临床试验的时代,是第⼀个⽤于肿瘤⽣物疗法的细胞因⼦,但因其缺少靶向性且有严重的副作⽤,⽬前仅⽤于局部治疗。
⼈类TNF-α基因于1985年成功克隆,定位于6p21.4,长约3.6 kbp,有4个外显⼦和3个内含⼦,与主要组织相容性复合体(MHC)基因紧密连锁位于HLA-B 和 HLA-C2 位点之间的 MHC3 类基因区内,由TNFA和TNFB组成,分别编码TNFα和TNFβ。
位于启动⼦区238位和308位存在单核苷酸多态性,被认为可调节TNF 的转录⽔平,与慢性⼄肝、⾃⾝免疫性疾病、胰岛素抵抗、肿瘤等多种疾病的易感性相关。
TNF-α和IL-13基因多态性与儿童哮喘的关系
TNF一(和 I 】 [ L一1 因多 态性 3基 与 儿 童 哮喘 的 关 系
高 鑫
002) 1 0 0
( 内蒙古 自治 区妇 幼保 健院 儿 内科 , 内蒙古 呼 和浩特
[ 要 ]目的 : 摘 通过 研 究 T NF—a和 I L一1 3基 因的 多态性 为哮喘 的诊 断提供 基础 。 方法 : 选择 1 5例哮 0 喘 患儿 和正 常儿 童 8 0例 。 采集外 周静 脉血 , 用多 聚酶 链反 应 一限 制性 片段 长度 多态性 ( C 采 P R—R L ) F P 技 术检测 T NF—a和 I L一1 3基 因多 态性 。结 果 : 病例 组 等位 基 因 T NF—aA 的分 布 频 率 均 显著 高于 对 照 组 ( P<0 0 ) L一1 . 5 。I 3位 点病例 组 等位 基 因 A 的分布 频 率远 高于 对 照组 ( P<0 0 ) 结论 : F—a和 I .5 。 TN L一 1 3多态 性可 能做 为确定 哮喘 易感 人群 的一个 重要指 标 。
—
27 4.
[ ] 柴国禄 , 6 潘佳秋 , 谭丽艳 . 糖尿病合并高血 压患者血浆尾加压素 Ⅱ的变化及 临床 意 义[ ] J .中国现 代医学 杂志, 0 8 1 ( ) 20。8 5 :
616— 61R
B 2一knngo rl etr cvt ni dae c asJ . m ii lmeu r e po t ai i t t[]A J ar c a i o n bi r
1 6 29
内蒙古医学杂志 In r noi Me 2 1 年第 4 n e gl dJ 0 1 Mo a 3卷第 1 1期
要机 制 。血 A M 可 能成 为诊 断 更 早 期 D 的 新 的 D N 敏感 指 标 , 监测 肾病进 展有重 要 意义 。 对 [ 考 文 献] 参
10、TNF-α的检测及临床意义
10、TNF-α的检测及临床意义54?体外循环手术患者血浆检测及临床意义李郝江华郑颖中国临床实用医学2008年4月第2卷第4期ChinaClinPracMed,Apr2008,V o1.2,No.4IL一8,IL一10,TNF—OL的临床研究【摘要】目的了解体外循环手术对患者血浆中IL一8,IL.10,TNF—a含量的影响.方法用ELISA方法测定心脏瓣膜置换术前后患者血浆中IL一8,IL一10,TNF—a的浓度,并进行比较.结果血浆IL一8,TNF—a,IL一10在体外循环开始后增高,P<0.01.结论CPB可引起细胞因子释放增加,IL一8,TNF—a,IL一10等细胞因子直接参与了整个炎性反应过程.【关键词】IL一8;TNF—a;IL一10;体外循环;血管麻痹综合征近年来体外循环(cardiopulmonarybypass,CPB)引起的血管麻痹综合征(V asoplegicsyndrome)已引起了国内外学者的重视.随着对血管麻痹综合征研究的不断深入,人们逐渐认识到CPB的诸多因素可对细胞因子产生影响,促进炎性反应,而细胞因子释放的增加在血管麻痹综合征的发生,发展过程中起着十分重要的作用.本文以心脏瓣膜患者为研究对象行瓣膜置换术,通过对比研究血浆细胞因子IL一8,IL一10,TNF—a浓度变化,探讨其在里面的作用.1材料与方法1.1实验对象选用2004年9月至2006年3月湖北省襄樊市第一人民医院胸外科行择期心脏瓣膜置换术患者18 例,所有患者均随机,年龄,病种,术前心功能分级无差异,CPB中的人工循环管道,微滤,人工肺均用同一厂家同一型号产品,CPB时间,阻断时间无差异,严格按所置时间点采集标本,标本采集至贮存过程中试管材料,抗凝试剂,离心转数及时间均一致.1.2标本采集与贮存取以下8个时间点采集血标本:T1:诱导麻醉后;T2:CPB末(停机);T3:CPB后2h;T4:CPB后6h;T5:CPB后12h;T6:CPB后24h;T7:CPB后48h;T8:CPB后72h;于上述时间点采集动脉血6ml,经离心(4000r/min,10min),留取血浆统一编号,一2O℃贮存以备检测.1.3标本检测与方法1.3.1检测方法酶联免疫吸附试验(ELISA)双抗体夹心法测定.1.3.2试剂盒IL一8,IL一10和TNF—a试剂盒:美国HOPE公司生产.1.3.3酶标仪BIO—RAD680型酶标仪(405nm/630nm).1.4统计方法所有资料均用均值±标准差(±S)表示,均数差异的显着性以组间成对双尾t检验,统计处理用SPSS10.1软件,检验水准a:0.05,P>0.05表明差异无统计学意义,P<0.05表明差异有统计学意义,P<0.01表明差异有统计学意义.2结果2.1血浆IL.8,IL一10,TNF—a浓度(±S),见表1,(单位pg/m1)表1血浆IL一8,IL一10,TNF—a浓度(±S),单位pg/ml2.2各时间点IL一8比较2.2.1P<0.O1:T1/T2;T1/T3;T1/T4;T1/T5;T2/T3;T2/T4;T2/T5;T2/T6;T2/1v7;T2/T8;T3/T4;T3/T5;T3/T6;T3/T7;T3/T8;T4/T5;T4/T6;T4/1v7;T4/T8;T5/T6;T5/1v7;T5/T8.2.2.2P<0.05:T1/T6;T6/r7;T6/T8;r7/T8.2.2.3P>0.05:T1/1v7;T1/T8.2.3各时间点IL一10比较2.3.1P<0.01:T1/T2;T1/T3;T1/T4;T1/T5;T2/T4;T2/T5;T2/T6;T2/1v7;T2/T8;T3/T4;T3/T5;T3/T6;T3/1v7;T3/T8;T4/T6;T4/T7;T4/T8.2.3.2P<0.05:T1/T6;T1/,丌;T1/T8;T2/T3;T4/T5;T5/T6;T5/r7;T5/T8.2.3.3P>0.05:T6/1v7;T6/T8;1v7/T8.作者单位:441000湖北省襄樊市第一人民医院实验中心(李郝);襄樊市中Ii,医院(江华郑颖)2.4各时间点TNF—a比较2.4.1P<0.O1:T1/'1"2;T1/T3;T1/T4;T1/T5;T2/T3;T2/T5;T2/T6;T2/1v7;T2/T8;T3/T4;T3/T5;T3/T6;T3/1v7;T3/T8;T4/T5;T4/T6;T4/1v7;T4/T8;T5/T6;T5/1v7;T5/T8;r6/1v7.2.4.2P<0.05:T1/T6;T1/T7;T1/T8;T2/T4.2.4.3P>0.05:T6/T8;1v7/T8.3讨论?自从CPB问世以来,CPB对机体产生的不良影响越来越受关注,包括不同程度的肺,肾功能不全,出凝血紊乱,白细胞激活氧自由基释放,全身非特异性炎性反应,发热与血管收缩等.血管麻痹综合征又称血管扩张性休克,指脱离CPB 后早期出现的以严重低血压伴血流动力学高排低阻为特征. 类似脓毒血症暖休克变化的新现象,诸多国内外学者的研究表明,其发病机制可能与CPB过程中释放化学介质及它们之间相互作用有关?"].IL一8是一种重要的粒细胞趋化因子.中国临床实用医学2008年4月第2卷第4期ChinaClinPracMed,Apr2008,V o1.2,No.4主要吸引中性粒细胞,嗜酸性细胞,嗜碱性粒细胞以及T细胞,是目前已知细胞因子中最强的炎性细胞趋化因子,能诱导中性粒细胞脱颗粒释放蛋白水解酶,花生四烯酸等物质,造成组织损伤促进炎性反应形成.IL-8还可以通过其网络效应增强内皮细胞E—selectin,P—selectin的高表达,增加内皮细胞和中性粒细胞黏附,增加炎性反应的程度;其与结缔组织病的形成也有一定关系.IL一10是抗炎症细胞因子,主要由TH2细胞产生,能有效抑制TH1细胞和B细胞合成细胞因子.它通过改变细胞内信号传导途径而选择性抑制有关细胞因子mRNA的合成.发挥抑制免疫应答的生物学效应'.体内及体外实验证实可抑制促炎症细胞因子TNF一0【,IL一6,IL-8的释放,并促进抗炎症细胞因子TNF一0【受体,IL一1受体拮抗剂的释放,抑制ICAM一1的表达,降低中性粒细胞与内皮细胞的黏附作用.TNF是一类能直接造成肿瘤细胞死亡的细胞因子,分为TNF一0【和TNF—B两类.TNF一"主要由巨噬细胞产生,内毒素的脂多糖(LPS)是诱导其产生的强刺激物,其生物学效应主要表现为抗感染,引发炎性反应,抗肿瘤,大剂量则引起恶液质,它可介导白细胞与内皮细胞黏附,激活中性粒细胞,刺激诱导IL一1,IL-6,IL-8以及TNF本身生成增多.TNF一"还有放大效应,使炎症过程成倍增强'.CPB可导致术后细胞因子释放增加.这是CPB术后炎性反应的显着特征,促炎性细胞因子释放增加与CPB术后组织损伤,器官功能障碍相关].我们的实验结果显示血浆IL-8,TNF一0【,IL一10在体外循环开始后增高,说明了IL-8,TNF一0【,IL一10等细胞因子直接参与了整个炎症过程,表明CPB可引起细胞因子释放增加.因此针对CPB术后不良影响的发生如血管麻痹综合征,可以考虑通过减弱继发细胞因子的释放来减轻术后炎性反应.参考文献[1]施乾坤,陈鑫.体外循环后血管麻痹综合征.中华心血管外科杂志,2002,18(2):119-121.[2]KirklinJK,WestabyS,plementandthedamagingeffects ofcardiopulmonarybypass.JThoracCardiovascSurg,1983,86:857.[3]KennethM.SIRS?thesytlemicinflammatoryresponsesyndromeaf- tercardiacoperations.AnnThoracSurg,1996,61:1603—1606.[4]ButlerJ,eta1.Inflammatoryresponsetocardiopulmonarybypass. AnnThoracSurg,1993,55:552559.55?[5]FinnA,NaikS,eta1.Interleukinreleaseandneutrophildegranula—tionafterpediatriccardiopulmonarybypass.JThoracCardiovasc Surg,1993,105:234—241.[6]HenneinHA,EbbaH,eta1.Relationshipoftheproinflammatory cytokinestomyocardialischemiaanddysfunctionafteruncomplicat—edcoronaryrevascularization.JThoracCardiovascSurg,1994,108: 626-635.[7]WanS,MarchantA,eta1.Humancytokineresponsestocardiac transplantationandcoronarya~erybypassgrafting.JThoracCardio—vascSurg,1996,111:469—747.[8]TabardelY,DuchateauJ,eta1.Corticosteroidsincreasebloodin—terleukin*10levelsduringcardiopulmonarybypassinmen.Surgerg, 1996,119:76-80.[9]RiegelW,SpillnerG,eta1.Plasmalevelsofmaingranulocytecom—ponentsduringcardiopulmonarybypass.JthoracCardiovascSurg,1988,95:1014—1019.[10]MarkewitzA,eta1.Successfulrestorationofcell—mediatedimmune responseaftercardiopulmonarybypassbyimmunomodulation.J ThoracCardiovascSurg,1995,105(1):15.[11]KalfinRE,EngelmanRM,eta1.Inductionofinterleukin一8expres* sionduringcardiopulmonarybypass.Circulation,1993,88:(suppl2):401-406.[12]王太重,李栋,等.心肌特异脂肪酸结合蛋白监测冠脉搭桥围手术期心肌损伤的比较研究.临床检验杂志,2001,19(1):42-44.[13]免疫学检验的热点与难点.临床检验杂志,2000,18(1):59_62.[14]王奇,高长青,李伯君,等.抑肽酶对小儿体外循环术后细胞因子的影响.中华胸心血管外科杂志,2002,18(2):91—92.[15]刘正明,胡建国,尹帮良,等.抑肽酶对体外循环术后细胞因子水平的影响及其意义.中华胸心血管外科杂志,2002,18 (2):110.[16]SpiekstraSW,ToebakMJ,Sampat—SardjoepersadS,eta1.Induc tionofcytokine(interleukin一1alphaandtumornecrosisfactor?al—pha)andchemokine(CCL20,CCL27,andCXCL8)alarmsig—nalsafterallergenandiEitantexposure.ExpDermatol,2005,14(2):109—116.[17]LitvinovD,TurpaevK.Extracellularcatalaseinducescyclooxygen—ase2,interleukin8,andstromelysingenesinprimaryhuman chondrocytes.Biochimie,2004,86(12):945—950.(收稿日期:2008-01—16)男性膀胱颈挛缩合并尿潴留的手术治疗虞立平司马衡史文华段建春戴国芳临床研究?【摘要】目的探讨男性膀胱颈挛缩的手术治疗方法与效果.方法对15例膀胱颈挛缩合并急,慢性尿潴留的男性患者,8例行经尿道膀胱颈电切术(TURBn),或加经尿道前列腺切除术(TURP);另7例分别合并膀胱憩室,结石和肿瘤,行开放性手术.结果15例手术后均排尿通畅,1例有轻度尿失禁,提肛训练5d后好转.10例随诊6—24个月残余尿均<50ml,1例术后1个月出现排尿不畅,尿道扩张后好转.结论对男性膀胱颈挛缩合并尿潴留的患者均需手术治疗,TURBn或加TURP为最佳选择,对有膀胱憩室,结石,肿瘤等合并症者,可行开放手术治疗,但需彻底切除膀胱颈后唇增生的疤痕,获得足够大的膀胱颈出口,防止再缩窄.【关键词】膀胱颈挛缩;尿潴留;手术作者单位:213200江苏省金坛市人民医院泌尿外科。
Blood丨修饰的TNF-a联合R-CHOP方案治疗原发中枢神经系统淋巴瘤
Blood丨修饰的TNF-a联合R-CHOP方案治疗原发中枢神经系统淋巴瘤原发中枢神经系统淋巴瘤(PCNSL)是一种以特异性神经系统临床症状为主要表现的恶性疾病,95%以上的病理类型为弥漫大B细胞淋巴瘤。
PCNSL预后差的原因之一是由于用于神系统外DLBCL治疗的传统R-CHOP 方案(rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone)不能很好地透过血脑屏障(blood-brain barrier,BBB),因此目前PCNSL治疗中,仍以大剂量甲氨蝶呤(methotrexate)为基础,联合阿糖胞苷(cytarabine)、烷基化剂(alkylating agents)和利妥昔单抗(rituximab)等化疗药物的方案为一线治疗策略。
尽管该治疗方案能够改善预后,但毒副作用明显且需住院治疗,比常规R-CHOP方案花费大。
如果能增强R-CHOP方案的中枢药物浓度,将对PCNSL病人带来以下利好:毒副作用低,耐受性好;无需住院,门诊化疗即可。
既往研究发现,某些炎症因子,如肿瘤坏死因子(TNF),能够改善内皮细胞间黏附,促进BBB通透性,增强化疗药物的中枢浓度,从而杀伤肿瘤细胞。
然而单纯TNF的运用导致了肿瘤患者难以承受的毒副作用,主要是由血管渗漏综合征引起的血流动力学不稳定、低血压甚至肺水肿。
为此,研究人员开发了CNGRCG-人TNF融合蛋白,简称NGR-hTNF(CNGRCG是一种肿瘤血管多肽,能够特异性识别肿瘤血管CD13分子,CD13分子特异表达于肿瘤血管,低/不表达于正常血管),使得极低剂量的细胞因子能够精确到达肿瘤血管,改善血管通透性,增强了肿瘤组织中化疗药物浓度,且避免了系统毒副作用的发生。
基于这些研究结果,本项临床研究旨在探索低剂量NGR-hTNF能否改善BBB,进而增强R-CHOP方案在复发/难治PCNSL中的治疗效果。
TNF-α、MMP-2及 VEGF 在大隐静脉曲张形成中的作用
TNF-α、MMP-2及 VEGF 在大隐静脉曲张形成中的作用张陈;雷跃华;李曦;冯会和;付召君;魏健;杨玉辉;王勇【摘要】目的:探讨肿瘤坏死因子α(TNF-α)、基质金属蛋白酶2(MMP-2)及血管内皮细胞生长因子( VEGF)在大隐静脉曲张形成中的作用。
方法采用免疫组化SP法检测15例正常大隐静脉、40例曲张大隐静脉中TNF-α、MMP-2及VEGF的表达,分析其表达情况。
结果 TNF-α、MMP-2及VEGF在正常大隐静脉与曲张大隐静脉中均有表达,在大隐静脉曲张血管中的阳性表达率较对照组明显升高( P<0.05)。
结论 TNF-α、MMP-2、VEGF在大隐静脉曲张形成的病理过程中起到重要的免疫调节作用。
【期刊名称】《山东医药》【年(卷),期】2014(000)033【总页数】2页(P46-47)【关键词】静脉曲张;肿瘤坏死因子α;基质金属蛋白酶;血管内皮细胞生长因子【作者】张陈;雷跃华;李曦;冯会和;付召君;魏健;杨玉辉;王勇【作者单位】自贡市第四人民医院,四川自贡643000;自贡市第四人民医院,四川自贡643000;自贡市第四人民医院,四川自贡643000;自贡市第四人民医院,四川自贡643000;自贡市第四人民医院,四川自贡643000;自贡市第四人民医院,四川自贡643000;自贡市第四人民医院,四川自贡643000;自贡市第四人民医院,四川自贡643000【正文语种】中文【中图分类】R392.32大隐静脉曲张血管形成是发生于曲张大隐静脉中平滑肌细胞和细胞外基质等主要成分的结构改变,是静脉血管壁组织系统适应来自各种病理状态所发生的自身代偿的结果。
肿瘤坏死因子α(TNF-α)、基质金属蛋白酶2(MMP-2)及血管内皮细胞生长因子(VEGF)在大隐静脉的形成中具有重要作用。
本研究通过检测曲张大隐静脉组织标本中TNF-α、MMP-2、VEGF 的表达,探讨三者在大隐静脉曲张形成中的作用。
TNF-α通过提高PML蛋白的表达及其SUMO化水平来促进PML-NBs形成
TNF-α通过提高PML蛋白的表达及其SUMO化水平来促进PML-NBs形成伍权;姚雪彪;李敏【期刊名称】《中国科学技术大学学报》【年(卷),期】2012(042)006【摘要】PML-NBs是一个动态的结构,这种结构在正常情况下趋于稳态,当在细胞应激反应状态下,核体的结构和位置都发生明显的变化.不同类型的基因毒性压力对PML-NBs的影响也各不相同,例如,UV照射或热休克处理,PML-NBs迅速地进行微斑重建,而IFN的刺激可以促进PML-NBs结构的稳固.先前的研究试图解释这些表型,然而不同压力下PML微结构的改变机理仍不完全明了.在最近的研究中,我们发现TNF-α可以诱导Hela细胞产生数目更多的PML-NBs,同时,TNF-α限制了Hela细胞内的PML蛋白被高表达的Ubiquitin诱导出核.进一步研究揭示,TNF-α是通过提高PML的表达及其SUMO化水平来促进PML-NBs形成,我们的研究为进一步探索PML和PML-NB的功能提供了证据,也将对化学治疗药物的筛选有所帮助.%PML-NBs are dynamic structures, which are stable under normal cellular circumstances. However, the morphology and position of PML-NBs undergo significant changes in response to various cellular stresses. For instance, UV irradiation and heat shock can induce redistribution of PML-NBs into multitudinous small nuclear bodies, while IFN enhances the stability of PML-NBs. Although previous studies have tried to explore these phenotypes, the mechanism of changes of PML microstructures under different stresses is still unknown. The authors have tried to showthat TNF-α can result in an increase in the number of PML-NBs. Interestingly, TNF-α suppresses the nuc lear export of PML, a process induced by over expression of Ubiquitin. Further research reveals that TNF-α promotes the formation of PML-NBs through increasing the expression level of PML and its sumoylation. This study provides evidence to better understand the function of PML and PML-NBs, and may be helpful with screening of chemotherapeutic drugs.【总页数】8页(P509-516)【作者】伍权;姚雪彪;李敏【作者单位】安徽医科大学附属省立医院中心实验室,安徽合肥230001;中国科学技术大学生命科学学院,安徽合肥230027;安徽医科大学附属省立医院妇产科,安徽合肥230001【正文语种】中文【中图分类】R733.7【相关文献】1.类泛素化修饰蛋白SUMO3/GST融合蛋白表达载体的构建及表达 [J], 杨南扬;缪璇;伍贤军;刘金美;迁一郎;李晓萌2.CdCl2通过破坏PML-NBs结构和促进PML降解诱导细胞凋亡 [J], 伍权;姚雪彪;李文庭3.SUMO特异性蛋白酶3通过调控巨噬细胞极化促进磷酸钙诱导的小鼠腹主动脉瘤形成 [J], 陈阳; 张永兴; 倪焕尔; 李伟峰; 汪芳4.SUMO-1与PML-NB [J], 茆臻贞;丁其诚;李稻5.硒化壳聚糖通过促进PML-RARα融合蛋白与分子伴侣Hsp90解离下调融合蛋白水平 [J], 邓守恒;蔡晓军;李林均;俞远东;李芳;陈萍因版权原因,仅展示原文概要,查看原文内容请购买。
免疫法血清tnf-α正常水平
免疫法血清tnf-α正常水平
TNF-α即肿瘤坏死因子α,是一种具有广泛生物学活性的细胞因子,在机体的免疫调节、炎症反应、细胞凋亡等过程中发挥重要作用。
血清TNF-α的正常水平可能因不同的检测方法、试剂盒和实验室而有所差异。
一般来说,血清TNF-α的正常水平在健康人体内通常较低,一般在1-2pg/ml 之间。
需要注意的是,血清TNF-α水平的正常范围可能受到多种因素的影响,如年龄、性别、身体状况、炎症性疾病等。
在某些疾病状态下,如炎症性肠病、类风湿关节炎、自身免疫性疾病等,血清TNF-α水平可能升高。
血清TNF-α水平的检测结果应结合临床表现、其他实验室检查和影像学检查等综合评估,以确定疾病的诊断和治疗方案。
TNF―α,INF―γ的诊断意义
TNF―α,INF―γ的诊断意义摘要:目的为更好地为儿童急性再生障碍性贫血体内细胞因子浓度变化提供证据。
方法采再障组(46例)和对照组(48例)静脉血,用酶联免疫吸附法测定所取血样标本中肿瘤坏死因子-α(TNF-α)和干扰素-γ(INF-γ)的含量。
并用独立样本t检验分析两组外周血中细胞因子是否存在显著性差异。
结果再障组患儿外周血TNF-α和INF-γ的含量均高于对照组儿童。
结论通过对TNF-α和INF-γ的监测,可以有效的了解再障患儿疾病进展,治疗效果和预后情况。
关键词:再生障碍性贫血;肿瘤坏死因子-α;干扰素-γ再生障碍性贫血可分为急性再障和慢性再障两型。
其中急性再生障碍性贫血发病急、进展快,骨髓衰竭是其主要病理过程,常伴内脏出血、严重感染,常危及生命,预后不良。
但是现在大部分的病例被诊断为特发性免疫异常导致的再生障碍性[1]。
细胞因子失调,包括肿瘤坏死因子(TNF-α),干扰素(INF-γ),今年来研究发现在再生障碍性贫血的发病机制中起到了重要的作用[2]。
儿童再生障碍性贫血已经成为继儿童白血病之后,儿童死亡率较高的一种血液系统疾病[3]。
本研究为了给临床上提供更好的关于儿童急性再障体内细胞因子浓度变化的证据。
现报告如下:1 资料与方法1.1一般资料2010年6月~2013年6月我院诊治的46名急性再生障碍性贫血患儿。
符合我国小儿再生障碍性贫血的诊断及分型标准[4]。
患儿均为急性再生障碍性贫血发作。
其中男20例,女26例,中位年龄6.3(2~14)岁。
对照组选择同期到我院体检中心体检的正常儿童,共48例,男21例,女27例,中位年龄7(2~16)岁。
两组儿童的年龄比较和性别比例上无显著性差异,P≥0.05。
1.2方法1.2.1标本收集用肝素钠抗凝管采集静脉血5ml用于TNF-α测定。
取用无肝素采集管采集静脉血15ml用于INF-γ测定。
1.2.2TNF-α含量的测定以鼠源性的抗TNF-α单抗以每孔400ng的量,在PH值为9的碳酸-碳酸钠缓冲液中包被96孔板中,置4℃环境过夜。
鼻息肉患者血清TNF-α、IL-17的表达及其意义
HEILONGJING MEDICICE AND PHARMACY Oct.2022,Vol.43No.5・57•鼻息肉患者血清TNF-a、IL-16的表达及其意义①罗经泾,黄晓丽,范宗宪(住木斯大学附属第一黑龙江住木斯154025)摘要:目的:研究肿瘤坏死因子a(TNF-a)、白介素17(IL-17)在初发和术后复发鼻息肉-者血清的表达情况,分析鼻息肉-者的血清当中肿瘤坏死因子a和白介素5二者的相关性,从而探究这两个因子在鼻息肉发生和复发机制中的作用。
方法:鼻息肉-者为实验组(初发者为A组、术后复发者为B组)、正常志愿者为对照组,晨起空腹采血,酶联免疫吸附法(ELISA)测定血清中的TNF-a和IL-17含量。
结果:实验组血清中的TNF-a、IL-17含量高于对照组,且B组对象血清中的TNF-a、IL-5含量高于A组。
A组、B组的血清TNF-a水平和IL-17水平呈中等程度相关,而对照组则呈极弱程度相关。
结论:TNF-a、IL-5可能在鼻息肉的发生和复发中扮演重要角色。
关键词:鼻息肉;IL-17;TNF-a中图分类号:R765.25文献标识码:B文章编号:503-0144(2020)05-0075-05鼻息肉(nasal polya)是一种很常见的耳鼻咽喉头颈外科的疾病,目前的治疗方法以手术治疗为主。
其成人发病率约为1%-2%,术后复发率约为15%[]。
其难治性和易复发性的一个重要原因就在于该病的发病机制尚不明了。
鼻息肉的发病已有很多学说表明可能与遗传、变态反应、感染等多种因素相关[2]。
就目前已有的研究来看,各种免疫细胞和细胞因子的作用举足轻重。
很多学者发现Th1和Th2细胞失衡是鼻息肉病程的关键机制,而Th17细胞是否参与其中的平衡也是目前很多研究的对象。
Th17细胞通过产生的白介素17[]与Th1细胞产生的肿瘤坏死因子a可能在鼻息肉的发病及复发中扮演重要角色。
在Reibman等的研究中TNF-a和IL-17会导致呼吸道的上皮细胞产生巨噬细胞炎性蛋白MIP-3a/CCL现增多5],而吴等[]学者认为MIP_3a/CCL2直接对鼻黏膜产生作用,且趋化嗜酸性粒细胞和中性粒细胞,促进炎症的发展,刺激新生血管的产生,最终造成鼻息肉发生。
高血压脑出血患者血清TNF-α、VEGF、ET-1水平的变化及意义
高血压脑出血患者血清TNF-α、VEGF、ET-1水平的变化及意义刘思洋;吴建龙;乔建勇;张艳利【摘要】目的:探讨高血压脑出血(hypertensive cerebral hemorrhage,HICH)患者血清肿瘤坏死因子-α(TNF-α)、血管内皮生长因子(VEGF)和内皮素-1(ET-1)水平的变化及临床意义.方法:采用ELISA法检测HICH患者及健康体检者血清TNF-α、VEGF和ET-1的水平,并分析不同GCS评分HICH患者血清TNF-α、VEGF和ET-1水平的变化情况.结果:HICH患者血清TNF-α、VEGF和ET-1水平均明显高于健康体检者(P<0.05).并且,随着HICH患者GCS评分的降低,血清TNF-α、VEGF和ET-1水平逐渐升高(P<0.05).结论:检测HICH患者血清TNF-α、VEGF和ET-1水平,对于HICH患者病情和预后判断有重要意义.【期刊名称】《承德医学院学报》【年(卷),期】2018(035)004【总页数】3页(P296-298)【关键词】高血压脑出血;肿瘤坏死因子-α;血管内皮生长因子;内皮素-1【作者】刘思洋;吴建龙;乔建勇;张艳利【作者单位】承德市中心医院,河北承德 067000;承德市中心医院,河北承德067000;承德市中心医院,河北承德 067000;承德市中心医院,河北承德 067000【正文语种】中文【中图分类】R743.34高血压脑出血(HICH)是高血压患者发生的脑实质出血,是临床常见病、多发病,严重危害着人类健康。
当前,随着心脑血管疾病发病率的逐年升高,HICH患者也在逐渐增加。
HICH在我国占所有脑卒中的20%~30%,病死率高达30%~52%[1]。
并且,HICH患者即使存活,也会遗留有不同程度的失语、偏瘫等后遗症,预后较差。
HICH是一个复杂的病理生理过程,患者脑出血后继发性损伤可能是引起预后不良的主要原因[2]。
内蒙古地区蒙汉族人群TNF-α基因多态性与支气管哮喘的相关性
THE S CI AS O ATI ON BETW EEN TNF 一 GENE PoLYM oR P S S AND HI M BRONCHI AL THM A AS AM oNG M oNGoLI AND A HAN NATI oNALI TY N NNER ONGO LI I I M A
gn e e一2 8 t 3 n .一3 8 ta e n tt t a i e e c ew e n o i s ma i p t n s a d h at 0 n r o saii ld f r n e b t e n mo g l a t sc a h t ai t n e l c e h
p t n s a d h a t o t l . o c lu ae a d c mp r h e o y e f q e c n h H l tt n ai t n e l c n r s T a c lt n o a e t e g n tp r u n y a d t e a ee mu ai e h o e o
g n —2 8n n —3 8n i g en lo i e g n o y r h s bewe n Mo g l n n a tmai e e ・ 3 ta d — 0 tsn l uce td e e p lmo p im t e n o i a d Ha sh tc a
哮 喘 组 间 T F一 基 因 一 3 N 2 8位 点 和 一 0 3 8住 点 基 因 多 态性 分 布 无 差异 。
关键 词 : 瘤 坏 死 因 子 一 ; 因 多 态性 ; 因型 ; 位 基 因 ; 气管 哮 喘 肿 基 基 等 支 中 图分 类 号 :52 2 R 6 . 5 文献 标 识 码 : A 文章 编 号 :0 4— 13 2 1 )4— 34—0 10 2 1 (00 0 0 5 4
IL-6、IL-8、IL-10、TNF-α在严重多发伤的表达及与预后的相关性研究
胞 因子反应 , 伤后 动态观 察患者血清细胞 因子 I L ・ 6 、 I L 一 8 、 I L 一 1 0 、 T N F 断。
曾 杰 。陈 宁波 , 张 健 ,李 艳 ,陈 仿 , 刘 建 ,胡卫 建
( 1  ̄ 1 3 1 1 省医学科学院 ・四川省人民医院急救中心外科 , 四川 成都 6 1 0 0 7 2 )
【 摘 要】 目的
探讨血 清炎性 因子 I L - 6 、 I L - 8 、 I L - 1 0 、 T N F 一 1 3 . / 在 多发伤 中的作 用 , 及 对严重 多发 伤继发 多器官功能 不
MO D S组 ( 8例 ) 和 非 MO D S组 ( 3 2例 ) 。分 别 于发 病 就 诊 后 第 O 、 5 、 l 、 2 、 3 、 5 、 7天静 脉 取 血 ,测 定 I L - 6、 I L 一 8 、 I L- 1 0 、 T N F -
的含量 , 并与 4 0例健康体检 者( 对照组) 对照。结果
Ch i n a
【 A b s t r a c t 】 Ob j e c t i v e T o r e s e a r c h t h e c o n t r i b u t i o n s o f I L - 6 、 I L ・ 8 、 I L - 1 0 a n d T N F - a f o r m u l t i p l e i n j u r i e s a n d t h e v a l u e s
or f p r e d i c t i o n o f MO D S t h a t f o l l o w e d m u l t i p l e i n j u i r e s .Me t h o d s 4 0 p a t i e n t s i n s e v e r e m u l t i p l e i n j u r i e s g r o u p w h i c h w a s d i v i d e d
前后稀释
关于前后稀释的问题7612009-10-14 01:31阅读:标签:杂谈血液滤过模仿肾单位的滤过重吸收原理设计,将患者的动脉血液引入具有良----原理好的通透性并与肾小球滤过膜面积相当的半透膜滤过器中,当血液通过滤器时,血浆内的水分就被滤出(类似肾小球滤过),以达到清除潴留于血中过多的水分和溶质的治疗),1/4(只占肾血流量的1/6~目的。
由于流经滤过器的血流仅有200~300ml/min以及在半透膜对需在动脉端用血泵加压,故单独依靠动脉血压不可能滤出足够的液量,使流过滤器以内,500mmHg)侧由负压泵造成一定的跨膜压,一般限制在66.66kPa((约为肾小球滤过率的90ml/min60~的血浆液体有35%~45%被滤过,滤过率达到某物质**(1/2~3/4)。
血液滤过率的大小取决于滤过膜的面积、跨膜压、筛过系数每次血滤总的滤液量血液中某物质的浓度)和血流量,筛过系数=滤过中某物质的浓度/左右才能达到较好的治疗效果,为了补偿被滤出的液体和电解质,保持机需达到20L体内环境的平衡,需要在滤器后(前)补回相应的液量和电解质以代替肾小管的重吸收功能。
置换液在滤器临床上根据病人情况两种选择都有,一般多采用后稀释。
前稀释法----前输入,其优点是血流阻力小,滤过稳定,残余血量少和不易形成蛋白覆盖层。
但由于置换液在滤器次)。
目前少使用。
后稀释法----50~70L/清除率低,要大量置换液( 30L/次),提高了清除率。
目前普遍采用此法。
后输入,减少了置换液用量(20~,必然引起滤器空心纤维的血液浓缩,但”先超(脱水)后补后稀释血液滤过的模式是“要注意一些细节,临床上还是很少发生管路凝血的。
超过TMP不超过150mmHg,如起始(1)注意跨膜压:建议治疗起始时的 TMP不断快速上升,应考虑减少总置换液量。
当治疗结束时,最理TMP150mmHg或治疗时。
也不应超过350mmHg想的 TMP治60min/hr x x = 病人血流速率 x 30% (2)计算好置换液量:治疗总置换液量 2400ml 200ml/min x 30% x 60min/hr x 4hrs –病人超滤量(例如:疗时间–是国外的经验,根据以上原理中30%总置换液量 12liters )。
原发性高血压病患者治疗前后血清SOD、TNF-α和IL-6检测的临床意义
do e J . l e h l 20 , 5 2 9 7 . r [] C n pr , 0 1 5 : 6 - 4 m iN o 2
I t 0 2,6 n ,2 0 2:8-7. 1
[] 7 李伟民 , , 亚娟 , . G — 徐魁 余 等 T FB 在 糖尿病 肾病 中的含量检测 [ ] 咸宁学院学报 ( J. 医学版)2 0 , ( ) 3 - . , 41 1 : 3 0 8 0 2 [] 8 刘静 , 王青 . 糖尿病患者 血清一些细胞 因子, c肽和胰 岛素变化 [ ] 第 四军医大学学报 , 0 , :1— 1 J. 2 0 6 191 . 0 2
原发性高血压病 患者治疗前后血清 S OD、 N — T Fa和 I 检测 的临床意义 L
徐 承 来 张
文献报告 自由基在疾病的发生和发展 中起着十分重 ”, 要 的作用。T F 是 由单核细胞 、 N。 巨噬细胞 产生的 内源性 细 胞因子 。I- L6是由一条单链 多肽组 成 的糖 蛋 白 。国内 还少见有原发性高血压病患者治疗前后血清 S D T F 和 O 、N . I- L6水平变化 的报道 , 为此 , 我们进行 了探讨 , 现临床价值 。
参考 文献
[] 1 罗涵 . 超氧化物歧化酶 的临床意义 ( 综述) J.国外 医学生理病 []
理科学分册 ,9 5 5 2 :4 - 9 18 ,( ) 181 . 4
[] 2 董碧蓉 . 肿瘤坏死因子与 临床 [] 华西 医讯 , 9 ,( )37 J. 1 05 2 :0— 9
毛细支气管炎患儿血清TNF-α的检测及临床意义
毛细支气管炎患儿血清TNF-α的检测及临床意义(1.中国人民解放军第二五一医院河北张家口 075000;2.河北医科大学第二医院河北石家庄 050000)【摘要】目的:观察TNF-α在毛细支气管炎患儿血清中的变化,探讨它的临床意义。
方法:将34例确诊毛细支气管炎并且初次发作喘息的患儿作为试验组(A组),将30例同时期同年龄组健康体检患儿作为对照组(B组),采用ELISA法测定两组儿童血清中TNF-α的水平。
结果:试验组明显高于对照组;差异具有统计学意义(P<0.05)。
结论:TNF-α参与了毛细支气管炎的发生、发展过程,是毛细支气管炎发病过程中的重要因子。
【关键词】毛细支气管炎;呼吸道合胞病毒(RSV);TNF-α【中图分类号】R725.6 【文献标识码】A 【文章编号】1004-6194(2015)02-0085-02 【Abstract】Objective:To observe the changes of TNF-α in serum in children with bronchiolitis and explore its clinical significance. Methods: 34 cases confirmed first episode of bronchiolitis and wheezing in children as a test group (A group), 30 cases in the same period of healthy children of the same age group as the control group (group B), using the ELISA assay groups children serum levels of TNF-α. Results: The experimental group was significantly higher; the difference was statistically significant (P <0.05). Conclusion: TNF-α involved in the genesis and development of bronchiolitis, bronchiolitis is an important factor in the pathogenesis.【Key words】Bronchiolitis, respiratory syncytial virus(RSV), TNF alpha近年来,毛细支气管炎发病逐年增多,阻碍了婴幼儿的正常发育,对婴幼儿的身心健康造成了严重的不良影响,同时也给患儿家庭造成了沉重的负担[1]。
老年代谢综合征的研究现状与防治对策
.综述.老年代谢综合征的研究现状与防治对策刘庆苗涂修毅周秋娴广州市白云区太和镇卫生院(510445)【摘要】代谢综合征(MS)是临床上多个症候群构成的代谢紊乱聚合体。
近几十年来,MS的发病率和患病率一直呈上升趋势。
笔者整理近5年关于老年代谢综合征研究的相关文献,分析老年人群代谢综合征患病情况、特点及影响因素等,并对老年代谢综合征的防治提出一些建议。
【关键词】代谢综合征;老年;现状;防治DOI:10.3969/j.issn.1000-8535.2019.02.035随着人们生活水平和医疗条件的提高,我国人均寿命不断提高,人们生活方式、习惯也发生巨大改变,随之而来的是老年化社会问题日益突出。
慢性非传染性疾病已成为老年人最常见的疾病。
我国因慢性疾病而死亡者占全国总死亡人数的85%,所致疾病负担占全国总疾病负担的70%⑴,给社会养老、医疗服务及家庭经济带来巨大压力。
其中,代谢相关性疾病及心脑血管疾病成为威胁老年人健康的最主要因素。
代谢综合征(metabolic syndrome,MS)是糖尿病、心血管疾病等慢性疾病的多种危险因子在个体内聚集的状态,主要组分是腹型肥胖、糖尿病或糖调节受损、血脂代谢紊乱、高血压。
此外,还包括胰岛素抵抗、高尿酸血症、微量白蛋白尿,并涉及持续低度炎症反应及血液凝溶异常等。
以上危险因素在体内的聚集增加了心脑血管疾病的发病风险⑵。
MS被公认为影响人类健康的重大卫生问题。
我国居民MS患病率为21.9% (95%CI:18.2%-25.7%);东部地区患病率为23.6%,中部地区为22.4%、西部地区为19.3%;其中,男性的患病率为21.3%,女性患病率21.0%⑶。
相对于儿童和成年MS患者,老年患者各种机能开始逐渐退化,代谢缓慢,治疗效果不理想,患病率高,合并症多而广泛,极容易发生其他代谢疾病和心脑血管疾病,后果相当严重。
因此,必须加强老年人的健康管理,早期发现其危险因素。
本文针对老年MS的研究现状及防治对策进行综述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Regular ArticleEffects of TNF-A and curcumin on the expression of thrombomodulin and endothelial protein C receptor in human endothelial cellsBicheng Nan,Peter Lin,Alan B.Lumsden,Qizhi Yao,Changyi Chen *Molecular Surgeon Research Center ,Division of Vascular Surgery and Endovascular Therapy,Michael E.DeBakey Department of Surgery,Baylor College of Medicine,One Baylor Plaza,Mail stop:NAB-2010,Houston,TX 77030,United StatesReceived 27September 2004;received in revised form 16October 2004;accepted 26October 2004Available online 14November 2004Abstract The objective of this study was to elucidate the effects of tumor necrosis factor-alpha (TNF-a )on the expression of thrombomodulin (TM)and endothelial protein C receptor (EPCR)in human endothelial cells as well as the effect of curcumin,a spice and coloring food compound,as a potential therapeutic agent.Human umbilical vein endothelial cells (HUVECs)treated with TNF-a (2.0ng/ml)showed reduced TM mRNA levels by 80%,97%,94%,and 97%at 3,6,12,and 24h,respectively (P b 0.05),by real-time PCR analysis.Dose-dependent study showed that TM mRNA levels of HUVECs were decreased by 86%,89%,91%,and 94%after treatment of TNF-a (0,0.25,0.5,1,and 2ng/ml)for 6h,respectively (P b 0.05).TM protein levels in HUVECs were significantly reduced by 69%in TNF-a -treated cells as compared to controls (P b 0.05)by Western blot analysis.Secreted protein and activity of TM of HUVEC cultures were also significantly reduced in TNF-a -treated cells.In addition,EPCR mRNA levels of HUVECs were significantly reduced in TNF-a -treated group as compared to controls (P b 0.05).Furthermore,these effects were observed in other types of endothelial cells from human coronary arteries,lung,and skin.Curcumin effectively blocked these effects of TNF-a on downregulation of TM and EPCR.These data demonstrate that TNF-a significantly decreases expression of TM and EPCR at both mRNA and protein levels in several human endothelial cells.0049-3848/$-see front matter D 2004Elsevier Ltd.All rights reserved.doi:10.1016/j.thromres.2004.10.010Abbreviations:TNF-a :tumor necrosis factor-alpha;TM:thrombomodulin;EPCR:endothelial protein C receptor;HUVECs:Human umbilical vein endothelial cells;IL-1:interleukin-1;TF:tissue factor;PAI-1:plasminogen activator inhibitor type-1;tPA:tissue-type plasminogen activator;TAFI:thrombin activatable fibrinolysis inhibitor;APC:activated protein C;ICAM-1:intercellular adhesion molecule-1;IL-8:interleukin-8;HMVECs-L:human lung microvascular endothelial cells;HCAECs:human coronary artery endothelial cells;HMECs:human dermal microvascular endothelial cells;EBM-2:endothelial cell basal medium;hFGF-2:human basic fibroblast growth factor;R3-IGF-1:human recombinant insulin-like growth factor;VEGF:vascular endothelial growth factor;CT:threshold cycle.*Corresponding author .Tel.:+17137984401;fax:+17137986633.E-mail address:jchen@ (C.Chen).KEYWORDSTNF-a ;Curcumin;Thrombomodulin;Endothelial protein C receptor;Endothelial cell;Antioxidant;InflammationThrombosis Research (2005)115,417—426/journals/threCurcumin can effectively block TNF-a-induced endothelial dysfunction.This study suggests a new molecular mechanism of inflammation-induced thrombosis and a new therapeutic strategy to prevent this clinical problem.D2004Elsevier Ltd.All rights reserved.IntroductionEndothelial dysfunction is a key initiating event in the etiology of vascular diseases and has been linked to the pathogenesis of atherosclerosis, stroke,thrombosis,hypertension,and diabetes. Thrombosis has been reported to be a consequence of imbalance of functional phenotypes,such as thrombosis markers of the endothelial cell surface, which is involved in the procoagulant and anti-coagulant pathways.Increasing evidence has shown that inflammatory cytokines,such as interleukin-1 (IL-1)and tumor necrosis factor-a(TNF-a),have a profound effect on endothelial cell injury via regulating endothelial phenotypes,modulating the coagulant system,changing vascular perme-ability,and inducing the expression of adhesion molecules and chemoattractive cytokines.TNF-a is produced by monocytes,macrophages, lymphocytes,and other types of cells during the inflammatory process[1].TNF-a is able to disturb the hemostatic balance on the surface of endothe-lial cells by changing the expression of several thrombosis factors,such as tissue factor(TF), plasminogen activator inhibitor type-1(PAI-1),and tissue-type plasminogen activator(tPA),in a con-certed way and facilitate blood clot formation and lead to thrombosis[2—5].However,the effect of TNF-a on thrombomodulin(TM)and endothelial protein C receptor(EPCR)in different types of human endothelial cells is not known.TM is constitutively expressed on the endothelial cell surface[6,7].The major function of TM is to form a high affinity1:1complex with thrombin. The complex of TM/Thrombin has several impor-tant roles including activation of protein C[8]and thrombin activatable fibrinolysis inhibitor(TAFI) [9],as well as inhibition of inflammation[10]. Thus,TM has a critical effect on anticoagulation and anti-inflammation[10,11].Functional defi-ciency of TM could enhance thrombosis formation.EPCR is a transmembrane glycoprotein[12,13], which effectively augments rate of protein C activation and thereby inhibits the thrombin for-mation from prothrombin[14—16].Formation of activated protein C(APC)depends on the inter-action of at least four proteins,including thrombin, TM,protein C,and EPCR,on the endothelial cell surface.Any change of these factors could reduce the efficiency of APC generation,thereby enhanc-ing the risk of thrombosis[17].Curcumin(diferuloylmethane),a natural and crystalline compound isolated from the plant Curcuma longa,has anti-inflammatory,antioxida-tive,and anticarcinogenic properties[18].It has been reported that curcumin can counteract TNF-a-induced TF expression,intercellular adhesion molecule-1(ICAM-1)expression,and interleukin-8 (IL-8)production[19—23].It is not clear whether curcumin could affect the expression of TNF-a of TM and EPCR in human endothelial cells.The purpose of this study was to determine the effects of TNF-a on TM and EPCR gene expression in human endothelial cells as well as the effect of curcumin as a potential therapeutic agent.Several different types of human endothelial cells were tested.The data from this study will provide a better understanding of the mechanism involved in TNF-a-induced thrombosis as well as provide a new strategy to control inflammation-induced endothe-lial dysfunction.Materials and methodsChemicals and reagentsTNF-a,TRI reagent,thrombin,and monoclonal mouse antihuman h-actin were purchased from Sigma(St.Louis,MO).Chromozym PCa and mono-clonal mouse antihuman TM antibody were obtained from American Diagnostica(Greenwich, CT).Human protein C and antithrombin III were purchased from Calbiochem Novabiochem(La Jolla,CA).Tissue culture plastic wares were purchased from Corning Life Sciences(West Ches-ter,PA).Cell culture media and reagents were ordered from Cambrex(Walkersville,MD)and Invitrogen(Carsbad,CA).Goat polyclonal antihu-man EPCR was purchased from Santa Cruz Biotech-nology(Santa Cruz,CA).ECL plus Western Blotting Detection System and sheep antimouse Ig linked with horseradish peroxidase were purchased from Amersham Pharmacia Biotech(Piscataway,NJ). iScrip cDNA Synthesis kit and iQ SYBR Green Supermix kit were purchased from BioRad Labora-tories(Hercules,CA).B.Nan et al.418Cell cultureHuman umbilical vein endothelial cells(HUVECs), human lung microvascular endothelial cells (HMVECs-L),and human coronary artery endothe-lial cells(HCAECs)were purchased from Cambrex at passage3.Immortalized human dermal micro-vascular endothelial cells(HMECs)were obtained from Dr.Wright S.Caughman,Department of Dermatology,Emory University(Atlanta,GA). HUVECs,HCAECs,and HMECs were routinely main-tained in the endothelial cell basal medium(EBM-2) supplemented with10%fetal bovine serum and a set of EGM-2SingleQuots including0.04%hydro-cortisone,0.4%human basic fibroblast growth factor(hFGF-2),and0.1%each of human recombi-nant epidermal growth factor,human recombinant vascular endothelial growth factor(VEGF),ascorbic acid,heparin,gentamicin sulfate,amphotericin-B (CA-1000),and human recombinant insulin-like growth factor(R3-IGF-1).With the exception of heparin,HMVECs-L were cultured with the same medium.All cells were maintained at378C in a5% CO2humidified environment with the medium changed every2days.Confluent cells were detached with trypsin-EDTA(0.25%,Invitrogen) and reseeded into6-well plates(6.3Â106cells/ well).The cells were then grown in the complete medium for48h to90%confluence,with a change of the medium after24h.The cells were switched to a starvation medium(EBM-2supplemented with 1%fetal bovine serum,0.1%gentamicin sulfate and amphotericin-B,heparin,and ascorbic acid)for24 h.The cells were then stimulated with recombinant human TNF-a(2ng/ml)at378C for6h.Control cells were received only from the fresh starvation medium without TNF-a.All samples were per-formed in triplicate.RNA extraction and real-time PCRThe cells were washed with cold PBS twice and total RNA was isolated by TRI reagent.Briefly,the cells were harvested and treated with1ml TRI reagent for5min at room temperature and then centrifuged at12,000rpm for15min at48C.The aqueous portion containing RNA was transferred to another RNAase free Eppendorf tube,and0.5ml Isopronol was added and incubated for10min at room temperature,followed by precipitating total RNA with centrifugation at12,000rpm at48C for10 min.The pellet was then washed with75%ethanol twice,dried at room temperature on ice for5min, and total RNA pellet was dissolved in20A l H2O. Genomic DNA was digested by DNAase with TURBO DNA free kit(Ambion,Austin,TX).RNA concen-tration was measured at A260with Beckman DU530 Life Science UV/Vis Spectrophotometer.cDNA was obtained from reverse transcription of1A g of total RNA in a20-A l reaction volume by iScrip cDNA Synthesis kit(BioRad Laboratories).The specific primers for TM and EPCR(Table1)were designed with Beacon Designer2.1software(Premier Biosoft International,Palo Alto,CA)and synthesized by Sigma-Genosys(The Woodlands,TX).The sequence for the house keeping gene,h-actin,is as follows: sense:5V CTGGAACGGTGAAGGTGACA3V;antisense: 5V AAGGGACTTCCTGTAACAATGCA3V.Quantitative real-time PCR was performed using the iQ SYBR Green Supermix kit(BioRad Laboratories).Briefly,1 A l reaction product of RT reaction was used in a25-A l real-time PCR reaction.The annealing temper-ature and primer concentration were adapted for each gene.The amplification was initially incu-bated at958C for 1.5min and followed by performing40cycles for1min at608C,1min at 958C,and1min at558C by using iCycler iQ real-time PCR detection system(BioRad Laboratories). Data were analyzed by software version 3.0a (BioRad Laboratories).Data were presented by the relative amount of mRNA with the formula 2(ÀD CT),which stands for the difference of thresh-old cycle(CT)between a gene of interest and the housekeeping gene h-actin.The threshold cycle is the point at which sample fluorescence rises above the background level.Each sample was measured in triplicate.The mRNA(no reverse transcription)or H2O(no DNA samples)were included in the real-time PCR reaction for negative controls.ELISASecreted levels of TM were detected using an IMUBIND thrombomodulin ELISA Kit(AmericanTable1Design of real-time PCR primersGene Accession no.Primer sequenceTM M16552Sense5V TAACGAAGACACAGACTGCGATT3VAntisense5V CTAGCCCACGAGGTCAAGGT3V EPCR BC01445Sense5V AACACCAAAGGGAGCCAAACAAG3VAntisense5V CTACAGCCACACCAGCAATCATG3V Effects of TNF-a and curcumin on the expression of thrombomodulin and EPCR419Diagnostica).Briefly,200A l cell supernatants were added into precoated microtest wells,covered with a sticky plastic lid,and incubated for1h at room temperature.The wells were washed(Â4) with wash buffer.The detection antibody(200A l) was added to each well and incubated for30min at room temperature with lid covering.After the antibody was incubated,the wells were washed with wash buffer.The enzymatic reaction occurred by adding200A l of substrate solution into each well for20min.Blue color indicated a positive reaction.The reaction was terminated by adding100A l of0.5M H2SO4.The absorbance was read in the next30min at the wavelength of450 nm with EL800Universal Microplate Reader(Bio-Tek Instruments).All samples were measured in duplicate.Western blot analysisThe cells were washed three times with cold PBS, lysed with lysis buffer(25mM Tris—HCl,pH7.4, 0.15M NaCl,1%Triton X-100)and complete protease inhibitor cocktail(Roche),and then placed on a shaker at48C for1h.After centrifugation at12,000rpm for10min,the protein concentration of the supernatant was measured by Bio-Rad Protein Assay.Proteins(40 A g)were separated by10%sodium dodecyl sul-fate-polyacrylamide gel eletrophoresis(SDS-PAGE). The separated proteins were transferred to Hybond TM ECL TM Nitrocellulose Membrane (Amersham Pharmacia Biotech).Immunoblot was blocked with blocking buffer(5%nonfat milk from Bio-Rad,10mmol/l Tris,pH7.5,100mmol/l NaCl, and0.1%T ween-20)at room temperature for1h. TM was detected by1:1000dilution of monoclonal mouse antihuman TM antibody and incubated overnight at48C.Then,the membrane was washed by TBS-T(1ÂTris Buffered Saline,1% T ween20,Sigma)three times for5min.The second antibody(sheep antimouse Ig linked horse-radish)at1:2000dilution was incubated at room temperature for1h.Protein visualization was performed with enhanced chemiluminescence detection kit ECL plus.Densitometric analysis of western blot bands was performed with Alpha image software(Alpha Innotech). Thrombomodulin activity assayEndothelial cell TM activity was assayed by meas-uring the changes in APC as previously described [24].In brief,HUVECs were seeded onto the96-well plate at a density of2Â104and allowed to reattach overnight.Next,the cells were starved for 24h with the starvation medium and treated with TNF-a in a concentration of0.25,0.5,1,or2ng/ml for6h,respectively.After treatment,the cells were washed with a wash buffer(20mM Tris pH7.4, 0.15M NaCl,2.5mM CaCl2,and5mg/ml bovine serum albumin).The cells were incubated with40 A l of reaction buffer at378C for30min(37.5nM thrombin and5A g/ml protein C in the washing buffer).The reaction of protein C activation was terminated by adding40A l of mixture(6IU/ml antithrombin and12IU/ml heparin)at378C for5 min.The enzymatic activity of activated protein C was measured by adding50A l of the peptide substrate of Chromozym PCa at378C(H-d-Lys-Z-Pro-Arg-4-nitroanilidediacetate,0.5mM in20mM Tris,pH7.4,0.15mM NaCl and5mg/ml bovine serum albumin).The absorbance was measured at 405nm with EL800Universal Microplate Reader (Bio-Tek Instruments)within2h.APC(American Diagnostica)was used as a positive control. Statistical analysisAll data were presented as mean F S.E.Where indicated,comparisons between two groups were made by paired Student’s t-test(two tails,Excel program,Microsoft)A P b0.05was considered statistically significant.ResultsEffects of TNF-A on TM mRNA expression in human endothelial cellsTM mRNA levels of HUVECs were determined by real-time PCR.In response to a concentration-dependent treatment of TNF-a for6h(Fig.1A), TM mRNA expression,as normalized with h-actin mRNA,was dramatically decreased.As compared to controls(100%),TM mRNA levels were14%,11%, 9%,and6%with the treatment of TNF-a at0.25, 0.5,1,and2ng/ml,representing reductions by 86%,89%,91%,and94%,respectively(P b0.05).As treated with TNF-a(2ng/ml)for different times (Fig.1B),TM mRNA was decreased by80%,97%, 94%,and97%at3,6,12,and24h,respectively (P b0.05).To determine whether TNF-a could affect TM mRNA expression in other types of endothelial cells which represent different ana-tomic locations,HCAECs,HMVECs-L,and HMECs,as well as HUVECs,were treated with TNF-a(2ng/ml) for6h,and TM mRNA levels were determined by real-time PCR(Fig.1C).As compared to controlsB.Nan et al.420(100%),TM mRNA was reduced to 7%,12%,28%,and 43%of HUVECs,HCAECs,HMVECs-L,and HMECs,representing reductions by 93%,88%,72%,and 57%,respectively (P b 0.05).In control conditions with-out TNF-a treatment,HMECs had much higher TM expression as compared to other types of cells.Thus,TNF-a significantly reduces TM mRNA expres-sion in human endothelial cells.Effects of TNF-A on TM protein levels and activity in HUVECsTo determine whether TNF-a could reduce TM protein levels in HUVECs,the cell culture super-natants were collected and analyzed for soluble TM protein levels by ELISA (Fig.2).With treatment ofTNF-a (2ng/ml)for 6h,the soluble TM antigen level was reduced by 29%as compared to controls (P b 0.05).Cellular TM protein levels were deter-mined by Western blot analysis (Fig.3),showing a 68%reduction in TNF-a (2ng/ml)-treated group as compared to controls (P b 0.05).Additionally,cel-lular TM activity was also determined by measuring the thrombin-catalyzed activation of protein C in HUVECs (Fig.4).After treatment withdifferentFigure 1Effects of TNF-A on TM mRNA expression in human endothelial cells.Total RNA was extracted from endothelial cells exposed to media with TNF-A .TM mRNA levels were measured by quantitative real-time PCR.Data were presented by the relative amount of mRNA normalized by B -actin and the percentage change compared with control.Relative mRNA level was presented as 2[Ct(B actin)ÀCt(gene)].Data are expressed as mean F S.E.of triplicate values.(A)TM mRNA level in concentration-dependent manner .HUVECs were exposed to media with indicated doses of TNF-A for 12h.TM mRNA was significantly diminished by TNF-A as com-pared to control group (*P b 0.05,n =3).(B)TM mRNA level in time-dependent manner.HUVEC cell was incubated with media with 2ng/ml TNF-a for indicated times.TM mRNA was significantly reduced within 3h and remained low until 24h incubation (*P b 0.05,n =3).(C)TM mRNA level in different endothelial cell lines.Four different endothelial cells were exposed to media with 2ng/ml TNF-a for 6h.Downregulation of TM expression was shown in different cell lines (*P b 0.05,n =3).Data represent the mean F S.E.from three inde-pendent experiments.HUVEC:Human umbilical venous endothelial cell;HCAEC:human coronary arterial endo-thelial cell;HMVEC-L:Human lung microvascular endo-thelial cell;HMEC:Human microvascular endothelial cell;TM:thrombomodulin.Figure 2Effect of TNF-A on soluble TM protein level by ELISA analysis.HUVECs were treated by 2ng/ml TNF-A for 6h,and the supernatant was detected for soluble TM antigen by IMUBIND ELISA kit.TM antigen level was reduced after TNF-A treatment compared to the control (*P b 0.05,n =3).Data shown are the mean F S.E.from three independent experiments.Effects of TNF-a and curcumin on the expression of thrombomodulin and EPCR 421TNF-a(1and2ng/ml)for6h,TM activity was significantly reduced by22%to23%as compared to controls(P b0.05).Thus,TNF-a significantly reduces both TM protein levels and TM activity in HUVECs.Effect of the TNF-A on EPCR mRNA expression in human endothelial cells EPCR is a crucial factor involved in the TM and thrombin-induced protein C activation.To deter-mine whether TNF-a could affect the expression of EPCR,HUVECs were treated with TNF-a similar to the TM experiments described above.As compared to controls(100%),the treatment of TNF-a for6h significantly reduced EPCR mRNA levels in a con-centration-dependent manner(Fig.5A),showing a 35%reduction in the2ng/ml TNF-a treated cells as compared to controls(P b0.05).In addition to HUVECs,the effect of TNF-a on EPCR mRNA expression was also studied in HCAECs,HMVECs-L, Figure3Effect of TNF-A on TM protein levels byWestern blot analysis.(A)HUVEC cell was treated byTNF-A.Protein(40M g)per well was separated by12%SDS-PAGE.TM expression was detected by monoclonal mouseantihuman TM.The density of TM signal was reduced byTNF-A.(B)The ratio of TM/B-actin band density showedreduction in TNF-A treatment group compared to thecontrol(*P b0.05,n=3).42kDa h-actin is used as a loadingcontrol.Data are expressed as mean F S.E.of triplicatevalues.Figure4Effect of TNF-A on TM activity.TM activity inintact HUVEC cell was measured by the change of theactivated protein C level using a two-stage as in theMaterials and methods.TM activity was reduced in aconcentration-dependent manner(*P b0.05,n=3).Valuesrepresent the mean F S.E.of threedeterminations.Figure5Effects of TNF-A on EPCR mRNA expression inhuman endothelial cells.Different endothelial cells wereexposed to TNF-A.EPCR mRNA was determined byquantitative real-time PCR.Data were presented by therelative amount of mRNA normalized by B-actin and thepercentage change compared with control.RelativemRNA level was presented as2[Ct(B actin)ÀCt(gene)].Dataare expressed as mean F S.E.of triplicate values.(A)TNF-A concentration-dependent study in EPCR mRNA levels.(B)EPCR mRNA expression in different cell lines.EPCRexpression in TNF-A-treated endothelial cells was down-regulated except for HMECs(*P b0.05,n=3).B.Nan et al. 422and HMECs (Fig.5B).In the control condition without TNF-a treatment,HUVECs had a much higher EPCR mRNA expression than other types of cells.Following TNF-a (2ng/ml)treatment for 6h,EPCR mRNA levels were significantly reduced by 36%,39%,and 46%in HUVECs,HCAECs,and HMVECs-L,respectively,as compared to controls (P b 0.05).However ,TNF-a increased EPCR mRNA by 27%in HMECs as compared to controls.Effects of curcumin on TNF-A -induced downregulation of TM and EPCR in HUVECsSince curcumin has an anti-inflammatory effect,we attempted to determine whether curcumin could block TNF-A -induced downregulation of TM and EPCR expression.Three different concentra-tions of curcumin (5,10,and 25M M)with TNF-A (2ng/ml)were used to treat HUVECs for 6h,and both TM and EPCR mRNA levels were determined by real-time PCR.Curcumin (5,10,and 25M M)significantly increased TM mRNA levels by 127%,286%,and 229%,respectively,as compared to the TNF-A -treated group (P b 0.05.Fig.6A).Furthermore,curcumin (5,10,and 25A M)also significantly increased EPCR mRNA levels by 57%,66%,and 112%,respectively,as compared to the TNF-a treated group (P b 0.05,Fig.6B).Thus,curcumin effectively blocks TNF-a -induced downregulation of TM and EPCR in HUVECs in a concentration-dependent manner.DiscussionIn this study,we show that TNF-a significantly decreased TM expression in a concentration-or time-dependent manner in human endothelial cells,including HUVECs,HCAECs,HMVEC-L,and HMECs.Both mRNA and protein levels,as well as biological activity of TM,were decreased in TNF-a -treated cells.Soluble TM in the culture supernatant of TNF-a -treated cells was also decreased,respec-tively.EPCR mRNA levels were significantly reduced in the TNF-a -treated cells,including HUVECs,HCAECs,and HMVEC-L,but not HMECs.Further-more,curcumin concentration-dependently blocked TNF-a -induced TM and EPCR downregua-tion.The data from this study suggests a new molecular mechanism of TNF-a -associated throm-bosis and a new strategy to prevent this problem.TM on the endothelial cell surface functions as a receptor for thrombin-mediated activation of pro-tein C,providing an anticoagulant property.Down-regulation of TM impairs normal endothelial function and promotes thrombosis formation.Our data demonstrate that TNF-a has potent effects on the downregulation of TM mRNA expression in several human endothelial cells,including HUVECs,HCAECs,HMVECs-L,and HMECs.Protein levels and activity of TM were also significantly decreased after TNF-a treatment in HUVECs.Our findings are consistent with previous reports [25—27].Muruge-san et al.[28]reported that TM mRNA reduction by TNF-a was greater (~À50—80%)in microvascular and pulmonary artery EC than in aortic EC (~30%).However,our data showed additional potent effects of TNF-a on TM downregulation.Further-more,our study used more cell types.TNT-a treatment (2ng/ml for 6h)reduced TM mRNA by 93%,88%,72%,and 57%in HUVECs,HCAECs,HMVECs-L,and HMECs,respectively.HMECs had much higher basal TM expression than other types of cells.It is not clear whether the downregulation of TM mRNA occurs at the transcriptional level orasFigure 6Effect of curcumin on TNF-A induced dowre-gualtion of TM and EPCR.HUVEC cell was incubated with various concentrations of curcumin for 30min before adding TNF-A .The mRNA expression was detected by quantitative real-time PCR.Results are expressed as the percentage of the control value after normalization to B -actin mRNA levels and represent the mean from three independent experiments.Data are expressed as mean F S.E.of triplicate values.(A)Curcumin partially reversed the effect of TNF-A on TM expression (*P b 0.05,n =3).(B)EPCR mRNA was increased significantly by pretreatment with curcumin (*P b 0.05,n =3).Effects of TNF-a and curcumin on the expression of thrombomodulin and EPCR 423a function of the mRNA degradation rate.It has been reported that TNF-a primarily inhibits the TM gene transcription[25,29].However,Scarpati and Sadler[30]reported that TNF-a reduced TM activity approximately80%with no change in TM mRNA levels in HUVECs.This discrepancy may be due to the different culture conditions and assay methods used in the different investigations.TNF-a could promote the endocytosis and degradation of TM[30,31].The protein C anticoagulant pathway is critical for controlling microvascular thrombosis and is initiated when thrombin binds to TM on the surface of endothelial cells.Protein C activation is potentially augmented by an EPCR,which is shed from the endothelium by inflammatory mediators and thrombin[32].Impairment of the APC path-way enhances thrombin formation from prothrom-bin,thereby promoting thrombosis.The role of TNF-a and other inflammatory mediators in EPCR expression in human endothelial cells is not clear. With quantitative real-time PCR,our data showed that TNF-a downregulated the expression of EPCR mRNA in a concentration-dependent manner.How-ever,the extent of EPCR mRNA decrease was less than that of TM.In addition,EPCR mRNA down-regulation was delayed as compared to TM mRNA in response to TNF-a.Fukudome and Esmon[12] reported that EPCR mRNA was detected at high levels only in HUVECs among the tested cell lines. Our results demonstrated that four different types of human endothelial cells had EPCR mRNA expression,and HUVECs had higher expression than the others.TNF-a treatment reduced EPCR mRNA levels in HUVECs,HCAECs,and HMVEC-L, but not HMECs.In fact,TNF-a increased EPCR mRNA by27%in HMECs.Thus,TNF-a has differ-ential effects on TM and EPCR expression in human endothelial cells.Curcumin is a major constituent of the spice turmeric from the plant Curcuma longa and is a potent agent with diverse functions,including antioxidation,antithrombosis,and anti-inflamma-tion[21].Curcumin effectively inhibited endothe-lial cell proliferation and the tube formation in vivo [33,34].Recently,several studies have shown that curcumin can antagonize actions of certain cyto-kines such as verotoxin-(VT-1)and TNF-a in human endothelial cells through inactivation of transcrip-tional factors NF n B and AP-1[19—21,35].Curcumin also can block leukocyte recruitment by inhibition of TNF-a-induced monocytes adhering to endothe-lial cells as well as the cell surface expression of ICAM-1,VACM-1,and ELAM-1in HUVEC[23].For the first time,our data elucidates that curcumin inhibited the TNF-a-induced TM and EPCR mRNA downregulation in a concentration-dependent man-ner.Our study and other published data suggest that curcumin is a very promising nonsteroidal anti-inflammatory drug,which may have potent appli-cations in the treatment of vascular diseases.Endothelial cells derived from different ana-tomical locations may have different biological properties and responses to inflammation.Indeed, human aorta endothelial cells have much higher basal ICAM-1levels than endothelial cells from human vena cava and dermal microvessels[36]. HUVECs were mainly used in this study to test the effect of TNF-a and curcumin on TM and EPCR.In order to verify the finding in HUVECs,other types of human endothelial cells were also included in the present study.HCAEC and HMVEC-L expressed slightly lower TM and significant lower EPCR mRNA levels than HUVECs at the same culture condi-tions.TNF-a reduced TM and EPCR expression in these cell types.However,HMECs showed differ-ent properties and responses to TNF-a treatment. HMECs expressed much higher TM and significant lower EPCR mRNA levels than HUVECs.TNF-a significantly reduced TM expression but slightly increased EPCR levels in HMECs.However,clinical implications of the diversity of human endothelial cells have not been investigated.It is possible that different types or locations of endothelial cells involve different mechanisms in vascular lesion formation.Specifically,it is not clear whether this difference between HUVECs and other types of cells is due to the different origin (venous cells)or age.To address this question,the study should include more control cells such as adult and pediatric artery and vein endothelial cells.This could be an interesting investigation in the future.HMEC is an SV-40T transfected human micro-vascular endothelial cell line that maintains many endothelial characteristics,including constitutive expression of von Willebrand factor(vWF)and TM [37,38].Tissue factor(TF)can be induced in response to stimulation with TNF-a,interleukin-1, and phorbol12-myristate13-acetate(PMA)[38]. This cell line has been extensively used as a model to investigate coagulation/fibrinolytic properties and gene expression of microvascular endothelium [39—41].Because HMECs are immortalized cells,it is not clear whether these results generated from HMECs are consistent with those from normal endothelial cells from human dermal microvessels. This could be a limit of these data.Direct comparison between the HMEC line and primary cells is warranted in future study.In summary,our data showed that TNF-a signifi-cantly decreased the expression of TM and EPCR inB.Nan et al.424。