初中数学一次函数知识点训练及答案
八年级下数学刷题答案
八年级下数学刷题答案第二十章 一次函数第一节 一次函数的概念 20.2一次函数的概念【知识要点】1.一次函数的概念一般地,解析式形如(0)y kx b k =+≠的函数叫一次函数,这里特别强调k ≠0,如果0k =,则解析式就是一个常值函数,不再是一次函数,而b 则可取零也可以不取零。
当k =0且0b =时,则解析式变成0y =,它是特殊的常值函数,其图像即为x 轴,若k =0,0b ≠时,它是常值函数,其图像是一条平行于x 轴的直线。
一般地,对于任意一个常值函数,它的图像是一条垂直于x 轴的直线。
正比例函数的特殊的一次函数。
2.待定系数法求一次函数解析式 求一次函数解析式的一般步骤:(1) 代入将两个变量 x 、y 的两组对应值分别代入(0)y kx b k =+≠中,注意代入字母的值不要混淆,若这一步出错,后面的计算是徒劳的。
(2) 解这个二元一次方程组,得k 、b 的值。
(3) 将k 、b 代入(0)y kx b k =+≠中,求得一次函数解析式。
需要注意的是,经过两个点可以确定一条直线,但是只有当这两个点的横坐标不相等、纵坐标也不相等时,才能确定一个一次函数图像。
3. 一次函数的定义域每一个函数都有它的定义域,一次函数的定义域是一切实数,也可以是部分实数。
用解析法给出一次函数时,如果对函数的定义域不加以说明,那么就意味着定义域由解析式确定为一切实数,如果给出的这个一次函数的定义域不是一切实数,那么必须指明。
【典型例题】1. 一次函数的概念【例1】下列解析式中,哪些是一次函数?① 15y x=+ ②y kx b =+ ③2(1)y k x b =++ ④163s t =+⑤8h t = ⑥1x y x+= ⑦3m n = ⑧32q m =-【分析】可以根据一次函数的定义来区分。
【解答】一次函数有③、⑤、⑦、⑧。
【点评】②、③中,为什么③是一次函数而②不是呢,因为一次函数(0)y kx b k =+≠电脑定义中k 必须不等于零,②中没有对k 作说明,如果k 等于零,则不能成为一次函数,而在③中,由于一次项系数是21k +,而不管k 取何值,21k +均不等于零;本题要注意抓住一次函数定义的实质。
《常考题》初中八年级数学下册第十九章《一次函数》知识点(含答案解析)
一、选择题1.小明和小华同时从小华家出发到球场去.小华先到并停留了8分钟,发现东西忘在了家里,于是沿原路以同样的速度回家去取.已知小明的速度为180米/分,他们各自距离小华家的路程y (米)与出发时间x (分)之间的函数关系如图所示,则下列说法正确的是( )A .小明到达球场时小华离球场3150米B .小华家距离球场3500米C .小华到家时小明已经在球场待了8分钟D .整个过程一共耗时30分钟2.已知函数(0)y kx k =≠中y 随x 的增大而减小,则一次函数23y kx k =+的图象大致是( )A .B .C .D .3.下列图象中,不表示y 是x 的函数的是( )A .B .C .D .4.如图,一次函数y =2x 和y =ax +4的图象相交于点A (m ,3),则不等式0<ax +4<2x 的解集是( )A .0<x <32B .32<x <6C .32<x <4D .0<x <35.若直线y =kx+b 经过第一、二、四象限,则函数y =bx -k 的大致图像是( ) A . B . C . D . 6.如图,已知在平面直角坐标系xOy 中.以(О为圆心,适当长为半径作圆弧,与x 轴交于点A ,与y 轴交于点,B 再分别以A B 、为圆心.大于12AB 长为半径作圆弧,两条圆弧在第四象限交于点C .以下四组x 与y 的对应值中,能够使得点(),1P x y -在射线OC 上的是( )A .2和1-B .2和2-C .2和2D .2和37.如图,已知直线1:2l y x =,过点()0,1A 作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点C ,过点C 作y 轴的垂线交直线l 于点D ,则点D 的坐标为( )A .()10,5B .()0,10C .()0,5D .()5,108.如图,在平面直角坐标系中,点()2,A m 在第一象限,若点A 关于x 轴的对称点B 在直线1y x =-+上,则m 的值为( )A .-1B .1C .2D .39.在数轴上,点A 表示-2,点B 表示4.,P Q 为数轴上两点,点Р从点A 出发以每秒1个单位长度的速度向左运动,同时点Q 从点B 出发以每秒2个单位长度的速度向左运动,点Q 到达原点О后,立即以原来的速度返回,当点Q 回到点B 时,点Р与点Q 同时停止运动.设点Р运动的时间为x 秒,点Р与点Q 之间的距离为y 个单位长度,则下列图像中表示y 与x 的函数关系的是( )A .B .C .D .10.如图,在四边形ABCD 中,AD ∥BC ,∠B =60°,∠D =90°,AB =4,AD =2,点P 从点B 出发,沿B→A→D→C 的路线运动到点C ,过点P 作PQ ⊥BC ,垂足为Q .若点P 运动的路程为x ,△BPQ 的面积为y ,则表示y 与x 之间的函数关系图象大致是( )A .B .C .D .11.已知一次函数(6)1y a x =-+经过第一、二、三象限,且关于x 的不等式组1()0232113a x x x ⎧-->⎪⎪⎨+⎪+≥⎪⎩恰有 4 个整数解,则所有满足条件的整数a 的值的和为( )A.9 B.11 C.15 D.1812.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图像描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是()A.①②③B.①②④C.③④D.①③④→→→匀速运13.如图,边长为2的正方形ABCD中,点P从点A出发沿路线A B C D动至点D停止,已知点P的速度为1,运动时间为t,以P.A.B为项点的三角形面积为S,则S与t之间的函数图象可能是()A.B.C.D.14.在某大国的技术封锁下,华为公司凭借自身强大的创造力和凝聚力,华为概念指数从年初至今涨幅连连翻倍,比如硕贝德股票涨幅接近200%(如图AB段),小丽在图片中=+图象的一部分,则k,b的取值范围是(建立了坐标系,将AB段看作一次函数y kx b)A .0k >,0b <B .0k >,0b >C .0k <,0b <D .0k <,0b > 15.直线y mx b =+与y kx =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式mx b kx +<的解集为( )A .3x >-B .3x <-C .1x >-D .1x <-二、填空题16.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③当x <3时,y 1<y 2正确的是_____.17.如图,一次函数y ax b =+与y cx d =+的图象交于点P .下列结论中,所有正确结论的序号是_________.①0b <;②0ac <;③当1x >时,ax b cx d +>+;④a b c d +=+;⑤c d >.18.如图,已知直线l:y =12x ,点A 1(2,0),过点A 1作x 轴的垂线交直线l 于点B 1,以A 1B 1为边,向右侧作正方形A 1B 1C 1A 2,延长A 2C 1交直线l 于点B 2;以A 2B 2为边,向右侧作正方形A 2B 2C 2A 3,延长A 3C 2交直线l 于点B 3;……;按照这个规律进行下去,点B n 的横坐标为______.(结果用含正整数n 的代数式表示)19.已知一次函数y kx b =+与y mx n =+的图象如图所示.(1)写出关于x ,y 的方程组y kx b y mx n=+⎧⎨=+⎩的解为________. (2)若0kx b mx n <+<+,写出x 的取值范围________.20.如图,已知,,a b c 分别是Rt ABC △的三条边长,90C ∠=︒,我们把关于x 的形如a b y x c c =+的一次函数称为“勾股一次函数”;若点351,5P ⎛⎫ ⎪ ⎪⎝⎭在“勾股一次函数”的图象上,且Rt ABC △的面积是10,则c 的值是_________.21.如图,在平面直角坐标系中,点A 、C 分别在x 轴、y 轴上,四边形ABCO 是边长为2的正方形,点D 为AB 的中点,点P 为OB 上的一个动点,连接DP 、AP ,当点P 满足DP AP +的值最小时,则点P 的坐标为______.22.如图,在同一直角坐标系中作出一次函数1y k x =与2y k x b =+的图象,则关于x 、y 的二元一次方程组12y k x y k x b =⎧⎨=+⎩的解是___________.23.已知一次函数y =2x +b 的图象经过点A (2,y 1)和B (﹣1,y 2),则y 1_____y 2(填“>”、“<”或“=”).24.已知正比例函数y kx =的图像经过点)(2,5A -,点M 在正比例函数y kx =的图像上,点)(3,0B ,且10ABM S =△,则点M 的坐标为______.25.如图,正方形ABCD 的边长为4,A 为坐标原点,AB 和AD 分别在x 轴、y 轴上,点E 是BC 边的中点,过点A 的直线y kx =交线段DC 于点F ,连接EF ,若AF 平分DFE ∠,则k 的值为_________.26.如图,在ABC 中90ACB ∠=︒,AC BC =,BC 与y 轴交于D 点,点C 的坐标为()2,0-,点A 的坐标为()6,3-,则D 点的坐标是__________.三、解答题27.某超市预购进A 、B 两种品牌的T 恤共200件,已知两种T 恤的进价如表所示,设购进A 种T 恤x 件,且所购进的两种T 恤全部卖出,获得的总利润为W 元.品牌 进价/(元/件)售价/(元/件) A 5080 B40 65 (1)求W 关于x 的函数关系式;(2)如果购进两种T 恤的总费用为9500元,那么超市获得的总利润是多少? (提示:利润=售价-进价)28.如图,在平面直角坐标系中,点(1,3)A ,点(3,1)B ,点(4,5)C .(1)画出ABC 关于y 轴的对称图形111A B C △,并写出点1A ,1B ,1C 的坐标;(2)若点P 在x 轴上,连接PA 、PB ,是否存在一点P ,使PA PB +的值最小,若存在,请在图中标出点P 的位置;(3)若直线//MN y 轴,与线段AB 、AC 分别交于点M 、N (点M 不与点A 重合),若将AMN 沿直线MN 翻折,点A 的对称点为点A ',当点A '落在ABC 的内部(包含边界)时,点M 的横坐标m 的取值范围是________.29.请你用学习“一次函数和二次根式”时积累的经验和方法解决下列问题:(1)在平面直角坐标系中,画出函数|1|y x =-的图象: ①列表填空:x …-2 -1 0 1 2 3 4 … y …… ②描点、连线,画出|1|y x =-的图象:(2)结合所画函数图象,写出|1|y x =-两条不同类型的性质;(3)结合所画函数图象,当x =________时,|1|1x -=.30.某校服生产厂家计划在年底推出两款新校服A 和B 共80套,预计前期投入资金不少于20900元,但不超过20960元,且所投入资金全部用于两种校服的研制,其成本和售价如表:A B 成本价(元/套)250 280 售价(元/套) 300 340(2)该厂家要想获得最大的利润,最大利润为多少?(3)经市场调查,年底前每套B 款校服售价不会改变,而每套A 款校服的售价将会提高m 元()0m >,且所生产的两种校服都可以售完,该厂家又该如何安排生产校服才能获得最大利润呢?。
最新初中数学一次函数知识点总复习含答案解析
最新初中数学一次函数知识点总复习含答案解析一、选择题1.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个B.3个C.4个D.5个【答案】B【解析】【分析】根据图形给出的信息求出两车的出发时间,速度等即可解答.【详解】解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.②慢车0时出发,快车2时出发,故正确.③快车4个小时走了276km,可求出速度为69km/h,错误.④慢车6个小时走了276km,可求出速度为46km/h,正确.⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.⑥快车2时出发,14时到达,用了12小时,错误.故答案选B.【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.2.正比例函数y=kx与一次函数y=x﹣k在同一坐标系中的图象大致应为()A.B.C.D.【答案】B【解析】【分析】根据图象分别确定k 的取值范围,若有公共部分,则有可能;否则不可能.【详解】根据图象知:A 、k <0,﹣k <0.解集没有公共部分,所以不可能;B 、k <0,﹣k >0.解集有公共部分,所以有可能;C 、k >0,﹣k >0.解集没有公共部分,所以不可能;D 、正比例函数的图象不对,所以不可能.故选:B .【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b 的图象的四种情况是解题的关键.3.若一次函数32y x =-+的图象与x 轴交于点A ,与y 轴交于点,B 则AOB V (O 为坐标原点)的面积为( )A .32B .2C .23D .3【答案】C【解析】【分析】根据直线解析式求出OA 、OB 的长度,根据面积公式计算即可.【详解】当32y x =-+中y=0时,解得x=23,当x=0时,解得y=2, ∴A(23,0),B(0,2), ∴OA=23,OB=2, ∴1122223AOB S OA OB =⋅=⨯⨯=V 23, 故选:C.【点睛】此题考查一次函数图象与坐标轴的交点坐标,正确理解交点坐标的计算方法是解题的关键.4.下列函数中,y 随x 的增大而增大的函数是( )A .2y x =-B .21y x =-+C .2y x =-D .2y x =--【答案】C【解析】【分析】根据一次函数的性质对各选项进行逐一分析即可.【详解】∵y=-2x 中k=-2<0,∴y 随x 的增大而减小,故A 选项错误;∵y=-2x+1中k=-2<0,∴y 随x 的增大而减小,故B 选项错误;∵y=x-2中k=1>0,∴y 随x 的增大而增大,故C 选项正确;∵y=-x-2中k=-1<0,∴y 随x 的增大而减小,故D 选项错误.故选C .【点睛】本题考查的是一次函数的性质,一次函数y=kx+b (k≠0)中,当k >0时y 随x 的增大而增大;k<0时y 随x 的增大而减小;熟练掌握一次函数的性质是解答此题的关键.5.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】 本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.6.若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( ) A .2B .8C .﹣2D .﹣8【答案】A【解析】试题分析:设正比例函数解析式为:y=kx ,将点A (3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x ,将B (m ,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A .考点:一次函数图象上点的坐标特征.7.甲、乙两人一起步行到火车站,途中发现忘带火车票了,于是甲立刻原速返回,乙继续以原速步行前往火车站,甲取完火车票后乘出租车赶往火车站,途中与乙相遇,带上乙一同前往,结果比预计早到3分钟,他们与公司的路程y (米)与时间t (分)的函数关系如图所示,则下列结论错误的是( )A .他们步行的速度为每分钟80米;B .出租车的速度为每分320米;C .公司与火车站的距离为1600米;D .出租车与乙相遇时距车站400米.【答案】D【解析】【分析】 根据图中一条函数的折返点的纵坐标是480,我们可得知,甲走了480米后才发现了没带票的,然后根据返回公司用时12分钟,速度不变,可以得出他的速度是80米/分钟,甲乙再次相遇时是16分钟,则可以得出相遇时,距离公司的距离是1280米,再根据比预计早到3分钟,即可求出各项数据,然后判别即可.【详解】解:根据题意,由图可知,甲走了480米后才发现了没带票,返回公司用时12分钟,行进过程中速度不变,即:甲步行的速度为每分钟480806=米,乙步行的速度也为每分钟80米, 故A 正确; 又∵甲乙再次相遇时是16分钟,∴16分乙共走了80161280?米,由图可知,出租车的用时为16-12=4分钟,∴出租车的速度为每分12804320?米,故B 正确;又∵相遇后,坐出租车去火车站比预计早到3分钟,设公司与火车站的距离为x 米,依题意得:12380320x x =++,解之得:1600x =, ∴公司与火车站的距离为1600米,出租车与乙相遇时距车站1600-1280=320米. 故C 正确,D 不正确.故选:D .【点睛】本题通过考查一次函数的应用来考查从图象上获取信息的能力.要注意题中分段函数的意义.8.如图,直线y=kx+b (k≠0)经过点A (﹣2,4),则不等式kx+b >4的解集为( )A .x >﹣2B .x <﹣2C .x >4D .x <4【答案】A【解析】 【分析】求不等式kx+b >4的解集就是求函数值大于4时,自变量的取值范围,观察图象即可得.【详解】由图象可以看出,直线y=4上方函数图象所对应自变量的取值为x>-2, ∴不等式kx+b >4的解集是x>-2,故选A .【点睛】本题考查了一次函数与一元一次不等式;观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.也考查了数形结合的思想.9.某一次函数的图象经过点()1,2,且y 随x 的增大而减小,则这个函数的表达式可能是( )A .24y x =+B .24y x =-+C .31y x =+D .31y x -=-【答案】B【解析】【分析】设一次函数关系式为y kx b =+,把(1,2)代入可得k+b=2,根据y 随x 的增大而减小可得k <0,对各选项逐一判断即可得答案.【详解】设一次函数关系式为y kx b =+,∵图象经过点()1,2,2k b ∴+=;∵y 随x 增大而减小,∴k 0<,A.2>0,故该选项不符合题意,B.-2<0,-2+4=2,故该选项符合题意,C.3>0,故该选项不符合题意,D.∵31y x -=-,∴y=-3x+1,-3+1=-2,故该选项不符合题意,故选:B .【点睛】本题考查一次函数的性质及一次函数图象上的点的坐标特征,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.10.一次函数y =3x +b 和y =ax -3的图象如图所示,其交点为P(-2,-5),则不等式3x +b >ax -3的解集在数轴上表示正确的是( )A .B .C .D .【答案】A【解析】【分析】 直接根据两函数图象的交点求出不等式的解集,再在数轴上表示出来即可.【详解】解:∵由函数图象可知,当x>-2时,一次函数y=3x+b的图象在函数y=ax-3的图象的上方,∴不等式3x+b>ax-3的解集为:x>-2,在数轴上表示为:故选:A.【点睛】本题考查的是一次函数与一元一次不等式,能利用函数图象求出不等式的解集是解答此题的关键.11.下列命题是假命题的是()A.三角形的外心到三角形的三个顶点的距离相等B.如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C.将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限D.若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m£【答案】B【解析】【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D. 若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m£,正确,是真命题;故答案为:B【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.12.关于一次函数y=3x+m﹣2的图象与性质,下列说法中不正确的是()A.y随x的增大而增大B.当m≠2时,该图象与函数y=3x的图象是两条平行线C.若图象不经过第四象限,则m>2D.不论m取何值,图象都经过第一、三象限【答案】C【解析】【分析】根据一次函数的增减性判断A;根据两条直线平行时,k值相同而b值不相同判断B;根据一次函数图象与系数的关系判断C、D.【详解】A、一次函数y=3x+m﹣2中,∵k=3>0,∴y随x的增大而增大,故本选项正确;B、当m≠2时,m﹣2≠0,一次函数y=3x+m﹣2与y=3x的图象是两条平行线,故本选项正确;C、若图象不经过第四象限,则经过第一、三象限或第一、二、三象限,所以m﹣2≥0,即m≥2,故本选项错误;D、一次函数y=3x+m﹣2中,∵k=3>0,∴不论m取何值,图象都经过第一、三象限,故本选项正确.故选:C.【点睛】本题考查了两条直线的平行问题:若直线y1=k1x+b1与直线y2=k2x+b2平行,那么k1=k2,b1≠b2.也考查了一次函数的增减性以及一次函数图象与系数的关系.13.若一次函数y=(k-3)x-1的图像不经过第一象限,则A.k<3 B.k>3 C.k>0 D.k<0【答案】A【解析】【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【详解】解:∵一次函数y=(k-3)x-1的图象不经过第一象限,且b=-1,∴一次函数y=(k-3)x-1的图象经过第二、三、四象限,∴k-3<0,解得k<3.故选A.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.14.在平面直角坐标系中,直线:1m y x =+与y 轴交于点A ,如图所示,依次正方形1M ,正方形2M ,……,正方形n M ,且正方形的一条边在直线m 上,一个顶点x 轴上,则正方形n M 的面积是( )A .222n -B .212n -C .22nD .212n +【答案】B【解析】【分析】由一次函数1y x =+,得出点A 的坐标为(0,1),求出正方形M 1的边长,即可求出正方形M 1的面积,同理求出正方形M 2的面积,即可推出正方形n M 的面积.【详解】一次函数1y x =+,令x=0,则y=1,∴点A 的坐标为(0,1),∴OA=1,∴正方形M 122112+=∴正方形M 1的面积222=,∴正方形M 1()()22222⨯=,∴正方形M 2222222+=, ∴正方形M 2的面积=3222282==,同理可得正方形M 3的面积=5322=,则正方形n M 的面积是212n -,故选B.【点睛】本题考查一次函数图象上点的坐标特征、规律型,解答本题的关键是明确题意,发现题目中面积之间的关系,运用数形结合思想解答.15.已知直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于不等式12k x b k x +>的解集为( )A .1x <B .1x >C .2x >D .0x <【答案】A【解析】【分析】 根据函数图象可知直线l 1:y=k 1x+b 与直线l 2:y=k 2x 的交点是(1,2),从而可以求得不等式12k x b k x +>的解集.【详解】由图象可得,12k x b k x +>的解集为x <1,故选:A .【点睛】此题考查一次函数与一元一次不等式的关系,解题的关键是明确题意,利用数形结合的思想解答问题.16.如图,已知一次函数3y x b =+与3y ax =-交于点P (-2,-5),则关于x 的不等式33x b ax +>-的解集在数轴上表示正确的是( )A .B .C .D . 【答案】C【解析】【分析】直接根据两函数图象的交点求出不等式的解集,再在数轴上表示出来即可.【详解】解:∵由函数图象可知,当x >−2时,一次函数y =3x +b 的图象在函数y =ax−3的图象的上方,∴不等式3x +b >ax−3的解集为x >−2, 在数轴上表示为:.故选:C .【点睛】本题考查的是一次函数与一元一次不等式,能利用函数图象求出不等式的解集是解答此题的关键.17.如图,平面直角坐标系中,ABC ∆的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线12y x b =+与ABC ∆有交点时,b 的取值范围是( )A .11b -≤≤B .112b -≤≤ C .1122b -≤≤ D .112b -≤≤【答案】B【解析】【分析】 将A (1,1),B (3,1),C (2,2)的坐标分别代入直线y =12x+b 中求得b 的值,再根据一次函数的增减性即可得到b 的取值范围.【详解】解:直线y=12x+b 经过点B 时,将B (3,1)代入直线y =12x+b 中,可得32+b=1,解得b=-12; 直线y=12x+b 经过点A 时:将A (1,1)代入直线y =12x+b 中,可得12+b=1,解得b=12; 直线y=12x+b 经过点C 时:将C (2,2)代入直线y =12x+b 中,可得1+b=2,解得b=1. 故b 的取值范围是-12≤b≤1. 故选B .【点睛】 考查了一次函数的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.18.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x 的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.19.如图,经过点B (﹣2,0)的直线y =kx +b 与直线y =4x +2相交于点A (﹣1,﹣2),4x +2<kx +b <0的解集为( )A .x <﹣2B .﹣2<x <﹣1C .x <﹣1D .x >﹣1【答案】B【解析】【分析】由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(-1,-2)及直线y=kx+b与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x轴下方的部分对应的x的取值即为所求.【详解】∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.m-的图像过点(0,2),且 y 随 x 的增大而增大,则 m 的值为20.一次函数 y = mx +1()A.-1 B.3 C.1 D.- 1 或 3【答案】B【解析】【分析】先根据函数的增减性判断出m的符号,再把点(0,2)代入求出m的值即可.【详解】∵一次函数y=mx+|m-1|中y随x的增大而增大,∴m>0.∵一次函数y=mx+|m-1|的图象过点(0,2),∴当x=0时,|m-1|=2,解得m1=3,m2=-1<0(舍去).故选B.【点睛】本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.。
初三数学一次函数(一)专项训练及答案解析
初中数学专项训练:一次函数(一)一、选择题1.如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x 分,离出发地的距离为y 千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x 分,桶内的水量为y 升;③矩形ABCD 中,AB=4,BC=3,动点P 从点A 出发,依次沿对角线AC 、边CD 、边DA 运动至点A 停止,设点P 的运动路程为x ,当点P 与点A 不重合时,y=S △ABP ;当点P 与点A 重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为A .0B .1C .2D .32.某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y 与时间x 的关系的大致图象是A .B .C .D .3.对于点A (x 1,y 1),B (x 2,y 2),定义一种运算:()()1212A B x x y y ⊕=+++.例如,A (-5,4),B (2,﹣3),()()A B 52432⊕=-++-=-.若互不重合的四点C ,D ,E ,F ,满足C D D E E F F D ⊕=⊕=⊕=⊕,则C ,D ,E ,F 四点【 】A .在同一条直线上B .在同一条抛物线上C .在同一反比例函数图象上D .是同一个正方形的四个顶点4.甲、乙两辆摩托车同时从相距20km 的A ,B 两地出发,相向而行.图中l 1,l 2分别表示甲、乙两辆摩托车到A 地的距离s (km )与行驶时间t (h )的函数关系.则下列说法错误的是A. 乙摩托车的速度较快B. 经过0.3小时甲摩托车行驶到A ,B 两地的中点C. 经过0.25小时两摩托车相遇D. 当乙摩托车到达A 地时,甲摩托车距离A 5.把直线y x 3=-+向上平移m m 的取值范围是A .1<m <7B .3<m <4C .m >1D .m <46.如图1,在矩形ABCD 中,动点E 从点B 出发,沿BADC 方向运动至点C 处停止,设点E 运动的路程为x ,△BCE 的面积为y ,如果y 关于x 的函数图象如图2所示,则当x=7时,点E 应运动到A .点C 处B .点D 处C .点B 处D .点A 处7.已知函数y kx b =+的图象如图所示,则一元二次方程2x x k 10++-=根的存在情况是A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定8.某仓库调拨一批物资,调进物资共用8小时,调进物资4小时后同时开始调出物资(调进与调出的速度保持不变).该仓库库存物资m (吨)与时间t (小时)之间的函数关系如图所示.则这批物资从开始调进到全部调出所需要的时间是A 、8.4小时B 、8.6小时C 、 8.8小时D 、9小时9.“中国好声音”全国巡演重庆站在奥体中心举行,童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利回到家。
人教版苏科版初中数学一次函数(经典例题含答案)
一、函数(一)函数的概念及表示方法(本组12分,共4小题,每题3分一次函数答案)例1.下列各图能表示y 是x 的函数是(D)A.B.C.D.例1.变式1.已知等腰三角形的周长为10cm ,将底边长y cm 表示为腰长x cm 的关系式是102y x =-,则其自变量x 的取值范围是(B )A.05x <<B.2.55<C.一切实数D.0x >例1.变式2.函数的自变量x 的取值范围是(A )A.02x x ≥≠且B.0x ≥C.2x ≠D.2x >例1.变式3.一根80厘米的弹簧,一端固定,如果另一端挂上物体,那么在正常情况下物体的质量每增加1千克可使弹簧增长2厘米.(1)填写下表所挂物体的质量(千克)1234…弹簧的总长度(厘米)82848688…(2)写出弹簧总长度y (厘米)与所挂物体的质量x (千克)之间的数量关系.y =80+2x (x ≥0)(3)若在这根弹簧上挂上某一物体后,弹簧总长为96厘米,求所挂物体的质量?8千克二、一次函数与正比例函数(一)一次函数(本组12分,共4小题,每题3分)例2.下列函数y x π=;32y x =-;3y x =;22y x =-,其中一次函数共有(C )A.1个B.2个C.3个D.4个例2.变式1.直线21y x =-一定经过点(D )A.(1,0)B.(1,2)C.(0,2)D.(0,﹣1)例2.变式2.如果()2322my m x -=-+是一次函数,那么m 的值是(B)A.2B.﹣2C.±2D.例2.变式3.若函数()2321a y a x a -=-++是一次函数,则a =-3.2y x =-(二)正比例函数(本组12分,共4小题,每题3分)例3.下列y 关于x 的函数中,是正比例函数的为(C )A.2y x =B.2y x=C.2x y =D.12x y +=例3.变式1.若函数()211y k x k =++-是正比例函数,则k 的值为(B )A.0B.1C.±1D.﹣1例3.变式2.已知正比例函数()12y m x =-的图象经过第二、第四象限,则m 的取值范围是(A)A.12m >B.12m <C.0m <D.0m >例3.变式3.已知y 与1x +成正比例,当1x =时,3y =,求y 与x 的函数关系式.解:由题意,设y =k (x +1),把x =1,y =3代入,得2k =3,∴k =∴y 与x 的函数关系式为.(三)根据条件写出简单的一次函数关系式(本组12分,共4小题,每题3分)例4.十堰市五堰商场为了增加销售额,推出“五月销售大酬宾”活动,其活动内容为:“凡五月份在该商场一次性购物超过50元以上者,超过50元的部分按9折优惠”.在大酬宾活动中,李明到该商场为单位购买单价为30元的办公用品x 件(x >2),则应付货款y (元)与商品件数x 的函数关系式是(B )A.()272y x x =>B.()2752y x x =+>C.()27502y x x =+>D.()27452y x x =+>例4.变式1.某油箱容量为60L 的汽车,加满汽油后行驶了100km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,邮箱中剩油量为y L ,则y 与x 之间的函数解析式和自变量取值范围分别是(D )A.()0.120y x x =>B.()600.120y x x =->C.()0.120500y x x =≤≤D.()600.120500y xx =-≤≤例4.变式2.李老师开车从甲地到相距240千米的乙地,如果邮箱剩余油量y (升)与行驶里程x (千米)之间是一次函数关系,其图象如图所示,那么到达乙地时邮箱剩余油量是20升.例4.变式3.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.(1)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式:①当用水量小于或等于3000吨时_____________;y=0.5x②当用水量大于3000吨时_____________.y=0.8x-900(2)某月该单位用水3200吨,水费是_1660_____元;若用水2800吨,水费__1400___元.(3)若某月该单位缴纳水费1540元,则该单位用水多少吨?该单位用水3050吨.三、一次函数的图象(一)函数的图象(本组12分,共4小题,每题3分)例5.如图所示,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积y与容器内水深x间的函数关系的图象可能是(A)A.CD.例5.变式1.如图,李老师骑自行车上班,最初以某一速度匀速行进,路途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出他行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是(C)A.B.C.D.例5.变式2.下列各情景分别可以用哪一幅图来近似的刻画?正确的顺序是(C)①汽车紧急刹车(速度与时间的关系)②人的身高变化(身高与年龄的关系)③跳高运动员跳跃横杆(高度与时间的关系)④一面冉冉上升的红旗(高度与时间的关系)水深xA.abcd B.dabc C.dbca D.cabd例5.变式3.点P(x,y)在第一象限内,且6x y+=,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是(C)(二)正比例函数图象的特点(本组12分,共4小题,每题3分)例6.正比例函数()1=-的图象经过一、三象限,则m的取值范围是(B)y m xA.1m<D.1m≥m>C.1m=B.1例6.变式1.正比例函数3=-的图象经过原点及第二、四象限,y随x的增大而减小.y x例6.变式2.已知正比例函数的图象经过点(1,-2),其函数关系式为y=-2x.=的图象l是第一、三象限的角平分线.例6.变式3.如图,在平面直角坐标系中,函数y x实验与探究:由图观察易知A(0,2)关于直线l的对称点A'的坐标为(2,0),请在图中分别标明B (5,3)、C(-2,5)关于直线l的对称点B'、C'的位置,并写出它们的坐标:B'、C';B′(3,5),C′(5,-2),归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(m,n)关于第一、三象限的角平分线l的对称点P'的坐标为.(n,m)(三)一次函数图象的特点(本组12分,共4小题,每题3分)例7.已知一次函数y x b=+的图象经过一、二、三象限,则b的值可以是(D)A.-2B.-1C.0D.2例7.变式1.若一次函数y ax b=+的图象经过第一、二、四象限,则下列不等式中总是成立的是(C)a b+>D、a+b>0A、b<0B、a-b>0C、20例7.变式2.设点A(﹣1,a)和点B(4,b)在直线y x m=-+上,则a与b的大小关系是(B)A.a b<D.无法确定>C.a b=B.a b例7.变式3.已知k>0,b>0,则直线y kx b=+不经过第(D)象限.A.一B.二C.三D.四四、一次函数的应用(一)确定一次函数表达式(本组12分,共4小题,每题3分)例8.一次函数()()=-+-的图象经过点(-1,-4),则m的值为(B).232y m x mA.-3B.3C.1D.-1例8.变式1.一次函数4=+的图象经过点A(﹣3,﹣2).y kx(1)求这个一次函数的关系式;(2)判断点B(﹣5,3)是否在这个函数的图象上.(1)将点A(﹣3,﹣2)代入一次函数y=kx+4,得:﹣3k+4=﹣2,解得k=2.所以这个一次函数的关系式为y=2x+4.(2)把x=﹣5代入y=2x+4中,得y=﹣6≠3,所以B(﹣5,3)不在这个函数图象上.例8.变式2.把函数y=3x+2的图象沿着x轴向右平移一个单位,得到的函数关系式是(A)A.31=+D.35=+y xy xy xy x=+B.31=-C.33例8.变式3.如图,已知直线3y kx =-经过点M ,求此直线与x 轴,y 轴的交点坐标.由图象可知,点M (-2,1)在直线y =kx -3上,∴-2k -3=1解得:k =-2∴直线的解析式为y =-2x -3.令y =0,可得x =-32.∴直线与x 轴的交点坐标为(-32,0).令x =0,可得y -3.∴直线与y 轴的交点坐标为(0,-3).(二)两个一次函数图象在同一坐标系中的应用(本组12分,共4小题,每题3分)例9.如图,一次函数13y x =+与2y ax b =+的图象相交于点P (1,4),则关于x 的不等式3x ax b+≤+的解集是(D)A 、4x ≥B 、4x ≤C 、1x ≥D 、1x ≤例9.变式1.如图,直线11y k x a =+与22y k x b =+的交点坐标为(1,2),则使12y y <的x 的取值范围为(C )A.1x >B.2x >C.1x <D.2x <例9.变式2.如图,表示甲骑电动自行车和乙驾驶汽车匀速行驶90km 的过程中,行驶的路程y(km)与经过的时间x (h)之间的函数关系.请根据图象填空:出发早,早了时,先到达,先到小时,电动自行车的速度为km/h,汽车的速度为km/h.甲2乙21890例9.变式3.两个受力面积分别为A S (2m ),B S (2m )(A S ,B S 为常数)的物体A,B 所受压强P(帕)与压力F(牛)的函数关系图象分别是射线A l ,B l ,如图所示,则(C )A.S A =S BB.S A >S BC.S A <S BD.S A ≤S B(四)一次函数与三角形面积有关的计算(本组12分,共4小题,每题3分)例10.直线35y x =-+与x 轴交点的坐标是.(53,0)例10.变式1.如图,已知直线53y x =-求此直线与x 轴,y 轴的交点坐标.(35,0);(0,-3).例10.变式2.直线332y x =-+与x 轴、y 轴所围成的三角形的面积为(A)A.3B.6C.34D.32例10.变式3.如图:直线y kx b =+与坐标轴交于两点,A (4,0)、B (0,3),点C 为AB 中点.(1)求直线y kx b =+的解析式;(2)求△AOC 的面积.(1)将A (4,0)、B (0,3)分别代入解析式y =kx +b 得,,解得,故直线y =kx +b 的解析式y =﹣x +3.111433222AOC AOB S S ∆∆==⨯⨯⨯=。
(必考题)初中八年级数学下册第十九章《一次函数》经典习题(含答案解析)
一、选择题1.若一次函数y kx b =+(k b ,都是常数)的图象经过第一、二、四象限,则一次函数y bx k =+的图象大致是( )A .B .C .D .B解析:B【分析】根据一次函数y kx b =+图像在坐标平面的位置,可先确定,k b 的取值范围,在根据,k b 的取值范围确定一次函数y bx k =+图像在坐标平面的位置,即可求解.【详解】根据一次函数y kx b =+经过一、二、四象限,则函数值y 随x 的增大而减小,可得0k <;图像与y 轴的正半轴相交则0b >,因而一次函数y bx k =+的一次项系数0b >,y 随x 的增大而增大,经过一三象限,常数0k <,则函数与y 轴的负半轴,因而一定经过一、三、四象限,故选:B .【点睛】本题考查了一次函数的图像与系数的关系,解题关键是根据已知函数图像的位置确定,k b 的取值范围.2.已知点()1,4P 在直线2y kx k =-上,则k 的值为( )A .43B .43-C .4D .4-D解析:D【分析】根据一次函数图象上的点的坐标特征,将P (1,4)代入反比例函数的解析式2y kx k =-,然后解关于k 的方程即可.【详解】解:∵点P (1,4)在反比例函数2y kx k =-的图象上,∴4=k-2k ,解得,k=-4.故选:D .【点睛】本题考查了一次函数图象上点的坐标特征,图象上的点的坐标适合解析式是解题的关键. 3.如图,已知在平面直角坐标系xOy 中.以(О为圆心,适当长为半径作圆弧,与x 轴交于点A ,与y 轴交于点,B 再分别以A B 、为圆心.大于12AB 长为半径作圆弧,两条圆弧在第四象限交于点C .以下四组x 与y 的对应值中,能够使得点(),1P x y -在射线OC 上的是( )A .2和1-B .2和2-C .2和2D .2和3A解析:A【分析】 根据题意可得OC 的解析式为y=-x ,再由各选项的数字得到点P 的坐标,代入解析式即可得出结论.【详解】解:由作图可知,OC 为第四象限角的平分线,故可得直线OC 的解析式为y=-x ,A 、当x=2,y=-1时,P (2,-2),代入y=-x ,可知点P 在射线OC 上,故A 符合题意;B 、当x=2,y=-2时,P (2,-3),代入y=-x ,可知点P 不在射线OC 上,故B 不符合题意;C 、当x=2,y=2时,P (2,1),代入y=-x ,可知点P 不在射线OC 上,故C 不符合题意; D/当x=2,y=3时,P (2,2),代入y=-x ,可知点P 不在射线OC 上,故D 不符合题意; 故选:A .【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,正确的理解题意是解题的关键.4.将直线2y x =-向下平移后得到直线l ,若直线l 经过点(),a b ,且27a b +=-,则直线l 的解析式为( )A .22y x =--B .22y x =-+C .27y x =--D .27y x =-+C解析:C【分析】可设直线l 的解析式为y=-2x+c ,由题意可得关于a 、b 、c 的一个方程组,通过方程组消去a 、b 后可以得到c 的值,从而得到直线l 的解析式.【详解】解:设直线l 的解析式为y=-2x+c ,则由题意可得: 227a c b a b -+=⎧⎨+=-⎩①②, ①+②可得:b+c=b-7,∴c=-7,∴直线l 的解析式为y=-2x-7,故选C .【点睛】本题考查用待定系数法求一次函数的解析式,设定一次函数解析式后再由题意得到含有待定系数的方程或方程组并由方程或方程组得到待定系数的值是解题关键.5.如图,在平面直角坐标系中点A 的坐标为()0,6,点B 的坐标为3,52⎛⎫-⎪⎝⎭,将AOB 沿x 轴向左平移得到A O B ''',若点B '的坐标为19,52⎛⎫-⎪⎝⎭,点A '落在直线y kx =上,则k 的值为( )A .43-B .34-C .34D .611-B 解析:B【分析】确定向左平移的距离为319()822---=,确定点A '的坐标为(-8,6),将其代入y=kx中,得k=6(8)-=34-. 【详解】 ∵点B 的坐标为3,52⎛⎫-⎪⎝⎭,将AOB 沿x 轴向左平移得到A O B ''',且点B '的坐标为19,52⎛⎫- ⎪⎝⎭, ∴向左平移的距离为319()822---=, ∵点A 的坐标为()0,6,∴点A '的坐标为(-8,6),∵点A '落在直线y kx =,∴6= -8k ,解得k=34-, 故选:B. .【点睛】本题考查了平移的基本规律,正比例函数解析式的确定,熟记平移的规律是解题的关键. 6.已知直线()1:0l y kx b k =+≠与直线()2:30l y mx m =-<在第三象限交于点M ,若直线1l 与x 轴的交点为()10B ,,则k 的取值范围是( ) A .33k -<<B .03k <<C .04k <<D .30k -<<B解析:B【分析】 由直线1l 与x 轴的交点为()10B ,可得直线1l 轴的表达式为y =kx−k ,则1l 与y 轴交点(0,−k ),再由直线()2:30l y mx m =-<在第三象限交于点M 得出(0,−k )在原点和点(0,−3)之间,即可求解.【详解】解:∵直线()1:0l y kx b k =+≠与x 轴的交点为B (1,0),∴k +b =0,则b =−k ,∴y =kx−k ,直线()2:30l y mx m =-<与y 轴的交点坐标为(0,−3),则1l 与y 轴交点(0,−k )在原点和点(0,−3)之间,即:−3<−k <0,解得:0<k <3,故选:B .【点睛】本题考查了一次函数与一元一次不等式,解题的关键是掌握一次函数的图象与性质并能利用数形结合的思想确定1l 与y 轴交点位置.7.下列关于一次函数25y x =-+的说法,错误的是( )A .函数图象与y 轴的交点()0,5B .当x 值增大时,y 随着x 的增大而减小C .当 5y >时,0x < D .图象经过第一、二、三象限D 解析:D【分析】根据一次函数的性质,依次分析各个选项,选出错误的选项即可.【详解】A 选项:25y x =-+,当0x =时5y =,则一次函数与y 轴交于()0,5,A 正确,故不符合题意;B 选项:25y x =-+,斜率2k =-,则0k <,y 随x 增大而减小,B 正确,故不符合题意;C 选项:25y x =-+,5y >即255x -+>,解得0x <,C 正确,故不符合题意;D 选项:25y x =-+,与y 轴交于()0,5,与x 轴交于5,02⎛⎫ ⎪⎝⎭,则图象过一、二、四象限,D 错误,故符合题意.故选:D .【点睛】本题考查一次函数的性质,属于基础题,熟练掌握一次函数的性质是解决本题的关键. 8.函数2y x=+()P x,y 一定在第( )象限 A .第一象限B .第二象限C .第三象限D .第四象限B解析:B【分析】由二次根式和分式有意义的条件,得到0x <,然后判断得到0y >,即可得到答案.【详解】解:根据题意,则∵00x x -≥⎧⎪⎨-≠⎪⎩,解得:0x <, ∴20x >,10x >-, ∴210y x x=+>-, ∴点(,)P x y 一定在第二象限;故选:B .【点睛】本题考查了二次根式和分式有意义的条件,以及判断点所在的象限,解题的关键是熟练掌握所学的知识进行解题.9.在某大国的技术封锁下,华为公司凭借自身强大的创造力和凝聚力,华为概念指数从年初至今涨幅连连翻倍,比如硕贝德股票涨幅接近200%(如图AB 段),小丽在图片中建立了坐标系,将AB 段看作一次函数y kx b =+图象的一部分,则k ,b 的取值范围是( )A .0k >,0b <B .0k >,0b >C .0k <,0b <D .0k <,0b >A解析:A【分析】 根据题意和题目中函数图象,可以延长,得到该函数图象经过的象限,从而可以得到k 、b 的正负情况,本题得以解决.【详解】解:由图象可得,该函数经过第一、三、四象限,0k ∴>,0b <,故选:A .【点睛】本题考查了一次函数的应用,一次函数的图象与系数的关系,解答本题的关键是明确题意,利用数形结合思想解答.10.已知,整数x 满足1266,1,24x y x y x -≤≤=+=-+,对任意一个x ,p 都取12,y y 中的大值,则p 的最小值是( )A .4B .1C .2D .-5C解析:C【分析】先画出两个函数的图象,然后联立解析式即可求出两个函数的交点坐标,然后根据图象对x 分类讨论,分别求出对应p 的取值范围,即可求出p 的最小值.【详解】 11y x =+,224y x =-+的图象如图所示联立124y x y x =+⎧⎨=-+⎩,解得:12x y =⎧⎨=⎩∴直线11y x =+与直线224y x =-+的交点坐标为(1,2),∵对任意一个x ,p 都取1,y 2y 中的较大值由图象可知:当61x -≤<时,1y <2y ,2y >2∴此时p=2y >2;当x=1时,1y =2y =2,∴此时p=1y =2y =2;当16x <≤时,1y >2y ,1y >2∴此时p=1y >2.综上所述:p≥2∴p 的最小值是2.故选:C .【点睛】此题考查的是画一次函数的图象、求两个一次函数的交点坐标和比较函数值的大小,掌握一次函数的图象的画法、联立函数解析式求交点坐标、根据图象比较函数值大小是解决此题的关键.二、填空题11.如图,一次函数y ax b =+与y cx d =+的图象交于点P .下列结论中,所有正确结论的序号是_________.①0b <;②0ac <;③当1x >时,ax b cx d +>+;④a b c d +=+;⑤c d >.②④⑤【分析】仔细观察图象:①根据一次函数y =ax +b 图象从左向右变化趋势及与y 轴交点即可判断ab 的正负;②根据一次函数y =cx +d 图象从左向右变化趋势及与y 轴交点可判断cd 的正负即可得出结论;③以解析:②④⑤【分析】仔细观察图象:①根据一次函数y =ax +b 图象从左向右变化趋势及与y 轴交点即可判断a 、b 的正负;②根据一次函数y =cx +d 图象从左向右变化趋势及与y 轴交点可判断c 、d 的正负,即可得出结论;③以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;④由两个一次函数图象的交点坐标的横坐标为1可得出结论;⑤由一次函数y =cx +d 图象与x 轴的交点坐标为(d c -,0),可得d c->-1,解此不等式即可作出判断. 【详解】解:①由图象可得:一次函数y =ax +b 图象经过一、二、四象限,∴a <0,b >0,故①错误;②由图象可得:一次函数y =cx +d 图象经过一、二、三象限,∴c >0,d >0,∴ac <0,故②正确;③由图象可得:当x >1时,一次函数y =ax +b 图象在y =cx +d 的图象下方, ∴ax +b <cx +d ,故③错误;④∵一次函数y=ax+b与y=cx+d的图象的交点P的横坐标为1,∴a+b=c+d,故④正确;⑤∵一次函数y=cx+d图象与x轴的交点坐标为(dc-,0),且dc->-1,c>0,∴c>d.故⑤正确.故答案为:②④⑤.【点睛】本题考查了一次函数的图象与性质、一次函数与一元一次不等式,掌握一次函数的图象与性质并利用数形结合的思想是解题的关键.12.某生物小组观察一植物生长,得到植物高度y(位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行x轴)请你算一下,该植物的最大高度是________厘米.16【分析】根据平行线间的距离相等可知50天后植物的高度不变也就是停止长高设直线AC的解析式为y=kx+b(k≠0)然后利用待定系数法求出直线AC的解析式再把x=50代入进行计算即可得解【详解】设直解析:16【分析】根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高,设直线AC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线AC的解析式,再把x=50代入进行计算即可得解.【详解】设直线AC的解析式为y=kx+b(k≠0),∵经过点A(0,6),B(30,12),∴63012 bk b=⎧⎨+=⎩,解得156kb⎧=⎪⎨⎪=⎩.所以,直线AC的解析式为165y x=+(0≤x≤50),当x=50时,15065y =⨯+=16cm . 答:该植物最高长16cm .【点睛】 本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.13.已知一次函数y kx b =+的图象与直线1y x =-+平行,且经过点(8,2),那么b 的值是________.10【分析】根据两条直线平行比例系数k 相同求出k=-1把点代入即可求b 【详解】解:因为一次函数的图象与直线平行所以k=-1把点代入得解得b=10故答案为:10【点睛】本题考查了一次函数图象互相平行时解析:10【分析】根据两条直线平行,比例系数k 相同,求出k=-1,把点(8,2)代入即可求b .【详解】解:因为一次函数y kx b =+的图象与直线1y x =-+平行,所以k=-1,把点(8,2)代入y x b =-+,得28b =-+,解得,b=10,故答案为:10.【点睛】本题考查了一次函数图象互相平行时,比例系数的关系和待定系数法求解析式,解题关键是知道两条直线平行时比例系数k 相同.14.在平面直角坐标系中,直线6y kx =+与x 轴交于点A ,与y 轴交于点B ,若AOB 的面积为12,则k 的值为_________.或【分析】求出AB 点坐标在Rt △AOB 中利用面积构造方程即可解得k 值【详解】由直线与y 轴于B 则则∴直线与x 轴于A 令则∴∴∴∴∴解得:由k≠0符合题意则k 的值为或故答案为:或【点睛】本题主要考查了一次 解析:32-或32【分析】 求出A 、B 点坐标,在Rt △AOB 中,利用面积构造方程即可解得k 值.【详解】由直线6y kx =+与y 轴于B ,则0x =,则6y =,∴(0,6)B ,直线6y kx =+与x 轴于A ,令0y =,则60kx +=,6x k=-, ∴6,0A k ⎛⎫- ⎪⎝⎭, ∴6OA k =-,6OB =, ∴1122AOB S OA OB =⋅=△, ∴64k -=, ∴64k-=±, 解得:132k =-,232k =, 由k≠0,符合题意, 则k 的值为32-或32. 故答案为:32-或32. 【点睛】本题主要考查了一次函数问题,掌握图象上点的坐标特征以及利用面积构造方程,会解方程是解题关键.15.已知y =kx+b ,当﹣1≤x≤4时,3≤y≤6,则k ,b 的值分别是_____.k=b=或k=b=【分析】分 k >0和 k <0两种情况结合一次函数的增减性可得到关于 k b 的方程组求解即可【详解】解:当 k >0时此函数是增函数∵当﹣1≤x≤4时3≤y≤6∴当x =﹣1时解析:k =35,b =185或k =35-,b=275. 【分析】分 k >0和 k <0两种情况,结合一次函数的增减性,可得到关于 k 、 b 的方程组,求解即可.【详解】解:当 k >0时,此函数是增函数,∵当﹣1≤x≤4时,3≤y≤6,∴当x =﹣1时,y =3;当x =4时,y =6,∴346k b k b -+=⎧⎨+=⎩ ,解得35185k b ⎧=⎪⎪⎨⎪=⎪⎩; 当k <0时,此函数是减函数,∵当﹣1≤x≤4时,3≤y≤6,∴当x =﹣1时,y =6;当x =4时,y =3,∴643k b k b -+=⎧⎨+=⎩,解得35275k b ⎧=-⎪⎪⎨⎪=⎪⎩, 故答案为:k =35,b =185或k =35-,b=275. 【点睛】本题考查一次函数知识,涉及一次函数的增减性以及求一次函数解析式,属于基础题,熟练掌握一次函数的增减性以及解析式的求法是解决此题的关键.16.已知直线y =x+b 和y =ax ﹣3交于点P (2,1),则关于x 的方程x+b =ax ﹣3的解为________.x =2【分析】交点坐标同时满足两个函数的解析式而所求的方程组正好是由两个函数的解析式所构成因此两函数的交点坐标即为方程组的解【详解】∵直线y =x+b 和y =ax ﹣3交于点P (21)∴当x =2时x+b =解析:x =2【分析】交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】∵直线y =x+b 和y =ax ﹣3交于点P (2,1),∴当x =2时,x+b =ax ﹣3=1,∴关于x 的方程x+b =ax ﹣3的解为x =2.故答案为:x =2.【点睛】本题考查了一次函数与二元一次方程(组):熟练掌握交点坐标同时满足两个函数的解析式是解题关键.17.一次函数2y x b =+的图象过点()0,2,将函数2y x b =+的图象向下平移5个单位长度,所得图象的函数表达式为______.【分析】根据待定系数法求得b 然后根据函数图象平移的法则上加下减就可以求出平移以后函数的解析式【详解】解:∵一次函数y=2x+b 的图象过点(02)∴b=2∴一次函数为y=2x+2将函数y=2x+2的图解析:23y x =-【分析】根据待定系数法求得b,然后根据函数图象平移的法则“上加下减”,就可以求出平移以后函数的解析式.【详解】解:∵一次函数y=2x+b的图象过点(0,2),∴b=2,∴一次函数为y=2x+2,将函数y=2x+2的图象向下平移5个单位长度,所得函数的解析式为y=2x+2-5,即y=2x-3.故答案为:y=2x-3.【点睛】本题考查了一次函数图象与几何变换,利用函数图象平移的规律是解题关键,注意求直线平移后的解析式时要注意平移时k的值不变.18.已知一次函数y=2x+b的图象经过点A(2,y1)和B(﹣1,y2),则y1_____y2(填“>”、“<”或“=”).>【分析】由k=2>0利用一次函数的性质可得出y随x的增大而增大结合2>﹣1即可得出y1>y2【详解】解:∵k=2>0∴y随x的增大而增大又∵2>﹣1∴y1>y2故答案为:>【点睛】本题考查一次函数解析:>【分析】由k=2>0,利用一次函数的性质可得出y随x的增大而增大,结合2>﹣1即可得出y1>y2.【详解】解:∵k=2>0,∴y随x的增大而增大,又∵2>﹣1,∴y1>y2.故答案为:>.【点睛】本题考查一次函数的增减性,根据比例系数k的正负,判断y随x的变化规律是解题关键.,且y随x的增大而减小,则这个一次函数的解19.已知一个一次函数的图象过点(1,2)析式为__________.(只要写出一个)y=-x+1(答案不唯一)【分析】设一次函数的解析式为y=kx+b根据一次函数的性质得k<0取k=-1然后把(-12)代入y=-x+b 可求出b【详解】解:设一次函数的解析式为y=kx+b∵y随x的增解析:y=-x+1.(答案不唯一)【分析】设一次函数的解析式为y=kx+b,根据一次函数的性质得k<0,取k=-1,然后把(-1,2)代入y=-x+b可求出b.【详解】解:设一次函数的解析式为y=kx+b,∵y随x的增大而减小,∴k可取-1,把(-1,2)代入y=-x+b得1+b=2,解得b=1,∴满足条件的解析式可为y=-x+1.故答案为y=-x+1.(答案不唯一)【点睛】本题考查了一次函数y=kx+b的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.20.平面直角坐标系中,点A坐标为(),将点A沿x轴向左平移a个单位后恰好落在正比例函数y=-的图象上,则a的值为__________.【分析】根据点的平移规律可得平移后点的坐标是(2-a3)代入计算即可【详解】解:∵A坐标为(23)∴将点A沿x轴向左平移a个单位后得到的点的坐标是(2-a3)∵恰好落在正比例函数的图象上∴解得:a=【分析】根据点的平移规律可得平移后点的坐标是,3),代入y=-计算即可.【详解】解:∵A坐标为3),∴将点A沿x轴向左平移a个单位后得到的点的坐标是-a,3),∵恰好落在正比例函数y=-的图象上,∴)3-=,a解得:.【点睛】此题主要考查了正比例函数图象上点的坐标特点,以及点的平移规律,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加..三、解答题21.设一次函数y1=kx﹣2k(k是常数,且k≠0).(1)若函数y1的图象经过点(﹣1,5),求函数y1的表达式.(2)已知点P(x1,m)和Q(﹣3,n)在函数y1的图象上,若m>n,求x1的取值范围.(3)若一次函数y2=ax+b(a≠0)的图象与y1的图象始终经过同一定点,探究实数a,b满足的关系式.解析:(1)151033y x =-+;(2)当k <0时,x 1<﹣3;当k >0时,x 1>﹣3;(3)2a +b =0.【分析】(1)将点(﹣1,5)代入y 1=kx ﹣2k ,求得k 值,即可得出函数解析式;(2)根据一次函数的性质,由k 值判断函数自变量的大小,即可得出结论;(3)根据一次函数y 1=kx ﹣2k 得y 1=k (x ﹣2),可得函数图象经过的定点为(2,0),再将定点坐标代入y 2=ax+b 即可求出实数a ,b 满足的关系式.【详解】解:(1)∵函数y 1的图象经过点(﹣1,5),∴5=﹣k ﹣2k ,解得k =53-, 函数y 1的表达式151033y x =-+; (2)当k <0时,若m >n ,则x 1<﹣3;当k >0时,若m >n ,则x 1>﹣3;(3)∵y 1=kx ﹣2k =k (x ﹣2),∴函数y 1的图象经过定点(2,0),当y 2=ax +b 经过(2,0)时,0=2a +b ,即2a +b =0.【点睛】本题考查了一次函数图象与性质,掌握一次函数的图象与性质并能准确理解题意进行解答是解题的关键.22.如图,顶点M 在y 轴上的抛物线2=y ax c +与直线1y x =+相交于,A B 两点,且点A 在x 轴上,点B 的横坐标为2,连接,AM BM ,(1)求抛物线对应的函数表达式;(2)判断ABM ⊿的形状,并说明理由;(3)若将(1)中的抛物线沿y 轴上下平移,则如何平移才能使平移后的抛物线过点(2,3)--?解析:(1)21y x =-;(2)△ABM 为直角三角形,见解析;(3)向下平移6个单位过点(-2,-3)【分析】(1)将y=0,x=2,分别代入直线解析式求出x 、y 的值,即求得点A 、B 的坐标,再利用待定系数法即可求解抛物线解析式;(2)令x=0,代入抛物线解析式求得M 坐标,利用两点间的距离公式求得AB 、AM 、BM ,再利用勾股定理的逆定理即可判定△ABM 为直角三角形;(3)设抛物线2=1y x -平移后的解析式为y=x 2-1+m ,将点(-2,-3)代入上式,得到关于m 的方程,解方程即可得出结论.【详解】(1)当y=0时,有x+1=0,则x=-1.∴A (-1,0),当x=2时,y=2+1=3,∴B (2,3),将A ,B 两点代入2=y ax c +中,得0=34a c a c +⎧⎨=+⎩,解得=11a c ⎧⎨=-⎩, ∴抛物线的解析式为2=1y x -.(2)三角形ABM 为直角三角形,理由如下:在抛物线中,当x=0时,y=-1,∴M (0,-1),又∵A (-1,0),B (2,3), ∴=32AB ,=2AM =25BM ,又∵22220AM AB BM +==,∴三角形ABM 为直角三角形.(3)设抛物线2=1y x -沿y 轴平移后的解析式为2=1y x m -+,将点(-2,-3)代入上式,得m=-6,则向下平移6个单位过点(-2,-3).【点睛】本题考查待定系数法求解析式,一次函数图象上的坐标特征、两点间的距离公式及勾股定理的逆定理,解题的关键是(1)求出A 、B 的坐标,(2)求出求得AB 、AM 、BM 的长,(3)正确写出平移后的抛物线解析式,难度适中.23.甲、乙两人计划8:00一起从学校出发,乘坐班车去博物馆参观,乙乘坐班车准时出发,但甲临时有事没赶上班车,8:45甲沿相同的路线自行驾车前往,结果比乙早1小时到达.甲、乙两人离学校的距离y (千米)与甲出发时间x (小时)的函数关系如图所示.(1)求甲、乙两人的速度.(2)求OC 和BD 的函数关系式.(3)求学校和博物馆之间的距离.解析:(1)甲、乙的速度分别是80千米/小时,40千米/小时;(2)OC 的函数关系式为:80y x =,BD 的函数关系式为:4030y x =+;(3)140千米.【分析】(1)根据函数图像,甲0.75小时行驶60千米,计算得出甲的速度;结合题意,乙行驶60千米时,所用总时间为:(0.750.75)+小时,计算得出乙的速度.(2)观察函数图像,根据A 点坐标,计算得出OC 的函数解析式;根据题意得出A 、B 两点的坐标,用待定系数法求出BD 的函数解析式.(3)设甲行驶时间为x 小时,根据甲乙两人行驶路程相等,列出一元一次方程,计算得出行驶时间,根据“路程=速度×时间”计算得出学校和博物馆之间的距离.【详解】解:(1)甲的速度:600.7580÷=(千米/小时),从8:00到8:45经过0.75小时,乙的速度为:60(0.750.75)40÷+=(千米/小时),甲、乙的速度分别是80千米/小时,40千米/小时.(2)∵根据题意得:A 点坐标为(0.75,60),当乙运动了45分钟后即0.75小时,距离学校:400.7530⨯=(千米),∴B 点坐标为(0,30).∵设直线OC 的函数关系式为1y k x =,将点A 代入得:1600.75k =,解得:180k =,∴直线OC 的函数关系式为80y x =,∵设BD 的函数关系式为2y k x b =+,将A 、B 两点的坐标值代入得:220.7560030k b k b +=⎧⎨⨯+=⎩,解得:24030k b =⎧⎨=⎩, ∴直线BD 的函数关系式为:4030y x =+.(3)∵设甲的行驶时间为x 小时,则乙所用的时间为:0.751 1.75x x ++=+(小时),列方程为:()8040 1.75x x =+ 解得:74x =, 7801404⨯=(千米). ∴学校和博物馆之间的距离是140千米.【点睛】本题考查一次函数的实际应用,从函数图像中获取相关信息是解题关键.24.如图,A ,B ,C 为三个超市,在A 通往C 的道路(粗实线部分)上有一D 点,D 与B 有道路(细实线部分)相通,A 与D ,D 与C ,D 与B 之间的路程分别为25km ,10km ,5km ,现计划在A 通往C 的道路上建一个配货中心H ,每天有一辆货车只为这三个超市送货,该货车每天从H 出发,单独为A 送货1次,为B 送货1次,为C 送货2次,货车每次仅能给一家超市送货,每次送货后均返回配货中心H ,设H 到A 的路程为km x ,这辆货车每天行驶的路程为km y .(1)用含的代数式填空:当025x ≤≤时:货车从H 到A 往返1次的路程为2km x ,①货车从H 到B 往返1次的路程为_______km .②货车从H 到C 往返2次的路程为_______km ,当2535x <≤时,这辆货车每天行驶的路程y =__________.(2)求y 与x 之间的关系式;(3)配货中心H 建在哪段,这辆货车每天行驶的路程最短?最短路程是多少?(直接写出结果,不必写出解答过程)解析:(1)①602x -;②1404x -;100;(2)2004(025)100(2535)x x y x -≤≤⎧=⎨<≤⎩;(3)建在CD 段,100km .【分析】(1)根据当0≤x ≤25时,结合图象分别得出货车从H 到A ,B ,C 的距离,进而得出y 与x 的函数关系,再利用当25<x ≤35时,分别得出从H 到A ,B ,C 的距离,即可得出y =100;(2)利用(1)的结论可得y 与x 的函数关系;(3)根据一次函数的性质解答即可.【详解】解:(1)①如图1,当025x ≤≤时,货车从H 到A 往返1次路程为22km AH S x =货车从H 到B 往返1次的路程为:()22(255)HD DB S S x +=-+2(30)x =-602x =-;②货车从H 到C 往返2次的路程为:()44(2510)DH CD S S x +=-+4(35)x =-1404x =-,如图2,25DH S x =-,25,10(25)35DH CH S x S x x =-=--=-,∴2535x <≤时,货车从H 到A 往返1次路程为:2x ,货车从H 到B 往返1次的路程为:2(525)240x x +-=-,货车从H 到C 往返2次的路程为:4(35)1404x x -=-,∴这辆货车每天行驶的路程为:22401404100km y x x x =+-+-=.(2)由(1)可得:025x ≤≤时,26021404y x x x =+-+-2004x =-,2535x <≤时,100y =,∴2004(025)100(2535)x x y x -≤≤⎧=⎨<≤⎩. (3)由②得,025x ≤≤时,4200y x =-+,2535x <≤时,100y =,如图所示,由图象可知,配货中心建在CD 段时,这辆货车每天行驶的路程最短为100km .【点睛】此题主要考查了一次函数的应用,利用已知分别表示出从P 到A ,B ,C ,D 距离是解题关键.25.地表以下岩层的温度()y ℃随着所处深度() km x 的变化而变化,在某个地点y 与x 之间满足如下关系: 深度() km x1 2 3 4 温度()y ℃ 55 90 125 160 y x (2)当8x =时,求出相应的y 值.(3)若岩层的温度是510℃,求相应的深度是多少?解析:(1)3520y x =+;(2)300;(3)相应的深度是14km .【分析】(1)根据图表可知,深度每增加1km ,温度增加35℃,据此直接直接写出y 与x 之间的关系式即可;(2)根据(1)所得关系式,令x=8,求得y 的值即可;(3)根据(1)所得关系式,令y=510,求得x 的值即可.【详解】(1)由图表可知,深度每增加1km ,温度增加35℃,5535(1)y x ∴=+-553535x =+-3520x =+,即y 与x 之间的关系式为:3520y x =+;(2)由3520y x =+令8x =时,则35820300y =⨯+=;(3)由3520y x =+令510y =时,则3520510x +=,解得14x =故相应的深度是14km .【点睛】本题主要考查一次函数的应用,明确题意、正确列出函数解析式成为解答本题的关键. 26.小东从A 地出发以某一速度向B 地走去,同时小明从B 地出发以另一速度向A 地走去,1y ,2y 分别表示小东、小明离B 地的距离()y km 与所用时间()x h 的关系,如图所示,根据图象提供的信息,回答下列问题:(1)试用文字说明交点P 所表示的实际意义;(2)求1y 与x 的函数关系式;(3)求小明到达A 地所需的时间.解析:(1)交点P 表示小东和小明出发2.5小时在距离B 地7.5km 处相遇;(2)1520y x =-+;(3)263h 【分析】(1)根据相遇问题的等量关系结合函数图象的表示的量,可知点P 横纵坐标表示两人相遇时的时间和两人离B 地的距离;(2)代入两个已知点坐标列出方程组,用待定系数法求出解析式即可;(3)根据时间等于路程除以速度,用小明走的路程除以小明走的速度即可得到结果.【详解】解:(1)交点P 表示小东和小明出发2.5小时在距离B 地7.5km 处相遇.(2)设1y 与x 的函数关系式为1y kx b =+(k ,b 为常数,且0k ≠),因为函数图象经过点()020,,()40,,所以20b =,①40k b +=,②解得5k =- 所以1y 与x 的函数关系式为1520y x =-+.(3)小明的速度为()7.5 2.53/km h ÷=,小明到达A 地所需的时间为()220363h ÷=. 【点睛】本题考查一次函数的应用、待定系数法求解析式和读懂函数图象的能力,熟练运用相遇问题的数量关系解决相关问题是解题的关键.27.某水果生产基地销售苹果,提供以下两种购买方式供客户选择:方式1:若客户缴纳1200元会费加盟为生产基地合作单位,则苹果成交价为3元/千克. 方式2:若客户购买数量达到或超过1500千克,则成交价为3.5元/千克;若客户购买数量不足1500千克,则成交价为4元/千克.设客户购买苹果数量为x (千克),所需费用为y (元)﹒(1)若客户按方式1购买,请写出y (元)与x (千克)之间的函数表达式.(备注:按方式1购买苹果所需费用=生产基地合作单位会费+苹果成交总价)(2)如果购买数量超过1500千克,请说明客户选择哪种购买方式更省钱.解析:(1)12003y x =+;(2)当15002400x <<时,选择方案二省钱;当 2400x =时,两种方案费用一样;当2400x >时,选择方案一省钱.【分析】(1)根据题意即可得出y (元)与x (千克)之间的函数表达式;(2)设方式2购买时所需费用记作y 2元,求出y 2与x (千克)之间的函数表达式,结合(1)的结论解答即可;【详解】解:(1)根据题意得:12003y x =+.(2)方案一:112003y x =+,方案二:2 3.5y x =,当12y y >,12003 3.5,x x +>2400,x <当12,12003 3.5y y x x =+=,2400,x =当12,12003 3.5y y x x <+>2400,x >∴当15002400x <<时,选择方案二省钱;当2400x =时,两种方案费用一样;当2400x >时,选择方案一省钱.【点睛】此题主要考查一次函数的应用;得到两种方案总付费的等量关系是解决本题的关键. 28.已知一次函数3y kx =-的图象经过点()2,1A .。
一次函数练习题及答案
一次函数练习题及答案本文将为大家提供一系列有关一次函数的练习题,同时附带相应的答案。
一次函数,也叫线性函数,是初中数学中的重要知识点之一。
希望通过这些练习题的训练,大家能够更好地掌握一次函数的概念、性质和解题方法。
一、选择题1.已知函数y=3x+2,则它的斜率是多少?– A. 2– B. 3– C. -2– D. -3答案:B2.若一次函数图像上两点的坐标分别为(1,4)和(3,y),则y的值是多少?– A. 10– B. 12– C. 14– D. 16答案:D3.已知函数经过点(−2,1)和(4,y),则y的值是多少?– A. -5– B. 0– C. 3– D. 6答案:C二、填空题1.若一次函数y=kx+3经过点(2,5),则k的值为 \\\_。
答案:12.一次函数y=−2x+b经过点(3,−1),则b的值为 \\\_。
答案:53.若一次函数图像上两点的坐标分别为(1,y1)和(2,y2),则$\\frac{{y_1}}{{y_2}}$ 的值为 \\\_。
答案:$\\frac{1}{2}$三、计算题1.求函数y=2x−1和y=x+3的交点坐标。
解:将两个方程联立起来,得到方程组:$$ \\begin{cases} y = 2x - 1\\\\ y = x + 3\\\\ \\end{cases} $$解方程组可得:$$ x + 3 = 2x - 1 \\\\ \\Rightarrow x = 4 $$将x=4代入其中一个方程,得到y=8−1=7。
因此,交点坐标为(4,7)。
2.已知函数y=3x+b经过点(2,−1),求b的值。
解:代入点(2,−1),得到方程 $-1 = 3 \\cdot 2 + b$,解方程可得b=−7。
3.一辆汽车以匀速行驶,开车起点距离目的地 600 公里。
如果行驶 4小时后,已行驶距离为 320 公里,求每小时行驶的公里数。
解:设每小时行驶的公里数为x,根据题意可得方程 $\\frac{320}{4} = x$,解方程可得x=80。
苏科版八年级上册第6章一次函数知识点与典型例题及练习
一次函数知识要点与典型例题一、函数函数定义的:一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数. 如果当x=a 时y=b ,那么b 叫做当自变量的值为a 时的函数值.变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
例:1.在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______.2.在圆的周长公式C=2πr 中,变量是________,常量是_________.函数概念注意(一)、注意理解“在一个变化过程中,有两个变量”自变量 因变量 例、在函数关系式中,自变量为________,常量为________,当x=3时,函数值y 为________.(二)、注意理解“x的每一个确定的值”自变量x 的取值不能使对应关系无意义,如y =11-x ,x 的取值不能为1;(三)、注意理解“x的每一个确定的值,y 都有唯一确定的值与其对应” 例: y = ±x, y______ x 的函数 (填 “是”或“不是”) (四)、注意正确判断“谁是谁的函数”通常,函数因变量写在等号左边。
例、下列等式中,y 是x 的函数的是( )A 、B 、C 、D 、(五)、注意正确确定“自变量的取值范围” 1、自变量的取值必须使含自变量的代数式有意义 (1)整式型:其自变量的取值范围是全体实数.例、函数y=3x+1,y=x 2+x -4中自变量x 的取值范围是______. (2)分式型:其自变量的取值范围是使得分母不为零的实数.例、函数y=12-x 中变量x 的取值范围是______.(3)二次根式型:其自变量的取值范围是使得被开方式为非负数的实数.例、函数y=1-x 中自变量x 的取值范围是______.(4)复合型:即自变量同时含有上述两种或三种情况时,自变量的取值范围是它们的公共解.例、函数y=32--x x 中自变量x 的取值范围是______.函数的三要素:自变量的取值范围、函数的取值范围和两个变量的对应关系【例题】:1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .B .C .D .2.函数y =x 的取值范围是___________.3.已知函数221+-=x y ,当11≤<-x 时,y 的取值范围是 ( ) A.2325≤<-y B.2523<<y C.2523<≤y D.2523≤<y2、自变量的取值必须使实际问题有意义例、1、一个正方形的边长为3cm ,它的各边长减少xcm 后,所得新正方形的周长为ycm.则y 与x 的关系式为______, 自变量x 的取值范围是______ 0 < x < 3.2、.如果一个等腰三角形的周长为30,则底边长y 与腰长x 之间成一函数关系,y 与x 的关系式为______,自变量x 的取值范围是_________函数的图像一般分为三步:①列表;②描点;③连线.函数的表示方法函数有三种表示方法:(1)列表法;(2)图象法;(3)表达式法(也称关系式或解析式).二、一次函数的概念若两个变量x ,y 间的关系式可以表示成y = kx + b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量,y 为因变量).特别地,当b = 0时,关系式变为y = kx ,称y 是x 的正比例函数. 〖注意〗:(1)一次函数y = kx + b (k ≠0)特征:① k ≠0 ②x 指数为1 ③ b 取任意实数(2)正比例函数y = kx (k ≠0)特征:①k ≠0 ② x 次数是1 ③常数项b = 0.(3)正比例函数是一次函数的特殊形式.【例题】:1.若函数()2322my m x -=-+是一次函数,则m=_______。
初二数学一次函数基础练习及常考题和中等题含解析
初中数学一次函数基础练习与常考题和中等题(含解析)一.选择题(共13小题)1.下列函数是一次函数的是()A.﹣x2+y=0 B.y=4x2﹣1 C.y= D.y=3x2.下列说法中错误的是()A.一次函数是正比例函数B.函数y=|x|+3不是一次函数C.正比例函数是一次函数D.在y=kx+b(k、b都是不为零的常数)中,y﹣b与x成正比例3.下列函数关系中,一定是一次函数的是()A.y=x﹣1B.y=﹣x2C.y=3x﹣2 D.y=kx4.下列说法中,正确的个数是()(1)正比例函数一定是一次函数;(2)一次函数一定是正比例函数;(3)速度一定,路程s是时间t的一次函数;(4)圆的面积是圆的半径r的正比例函数.A.1个 B.2个 C.3个 D.4个5.下列函数中,是一次函数的个数为()A.3个 B.1个 C.4个 D.2个6.若函数y=(m﹣5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m的值为()A.m>﹣B.m>5 C.m=﹣D.m=57.若函数是正比例函数,则m的值是()A.2 B.﹣2 C.±2 D.18.函数kx﹣y=2中,y随x的增大而减小,则它的图象是下图中的()A.B.C.D.9.由A(3,2),B(﹣1,﹣3)两点确定的直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.函数y=﹣mx(m>0)的图象是()A.B.C.D.=kx+k在同一坐标系中的位置可能是图()11.直线与直线y2A.B.C.D.12.已知一次函数y=(k﹣2)x+k+1的图象不过第三象限,则k的取值围是()A.k>2B.k<2C.﹣1≤k≤2 D.﹣1≤k<213.若ab<0,bc<0,则直线ax+by=c不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限14.当k=时,y=(k+1)+k是一次函数;当m=时,y=(m﹣1)是正比例函数.15.已知正比例函数y=(m﹣1)的图象在第二、四象限,则m的值为,函数的解析式为.16.根据一次函数y=﹣3x﹣6的图象,当函数值大于零时,x的围是.17.已知一次函数y=﹣2x+3中,自变量取值围是﹣3≤x≤8,则当x=时,y有最大值.18.函数y=﹣2x+4的图象经过象限,它与两坐标轴围成的三角形面积为,周长为.19.正比例函数的图象一定经过点.20.若一次函数y=ax+1﹣a中,它的图象经过一、二、三象限,则|a﹣1|+=.21.一次函数y=kx+b的图象如图所示,则k0.22.若abc<0,且函数y=的图象不经过第四象限,则点(a+b,c)所在象限为第象限.23.若三点(1,0),(2,P),(0,﹣1)在一条直线上,则P的值为.24.已知a、b都是常数,一次函数y=(m﹣2)x+(m+3)经过点(,),则这个一次函数的解析式为.25.已知+(b﹣2)2=0,则函数y=(b+3)x﹣a+1﹣2ab+b2是什么函数?当x=﹣时,函数值y是多少?26.已知函数y=﹣2x﹣6.(1)求当x=﹣4时,y的值,当y=﹣2时,x的值.(2)画出函数图象.(3)如果y的取值围﹣4≤y≤2,求x的取值围.27.在同一坐标系中作出,y=2x+1,y=3x的图象.28.(1)判断下列各点是否在直线y=2x+6上.(是的打“√”,不是的打“×”)(﹣5,﹣4),;(﹣7,20),;(,1),;(,),.(2)这条直线与x轴的交点坐标是,与y轴的交点坐标是.29.求直线2x+y+1=0关于x轴成轴对称的图形的解析式.30.已知点Q与P(2,3)关于x轴对称,一个一次函数的图象经过点Q,且与y轴的交点M与原点距离为5,求这个一次函数的解析式.31.已知点B(3,4)在直线y=﹣2x+b上,试判断点P(2,6)是否在图象上.32.已知一个一次函数y=kx+b,当x=3时,y=﹣2;当x=2时,y=﹣3,求这个一次函数的解析式.求:(1)k和b的值;(2)当x=﹣3时,y的值.33.已知△ABC,∠BAC=90°,AB=AC=4,BD是AC边上的中线,分别以AC、AB 所在直线为x轴,y轴建立直角坐标系(如图)(1)求直线BD的函数关系式.(2)直线BD上是否存在点M,使AM=AC?若存在,求点M的坐标;若不存在,说明理由.34.如图,已知点A(2,4),B(﹣2,2),C(4,0),求△ABC的面积.35.如图,已知直线y=2x+4与x轴交于点A,与y轴交于点B,直线AB上有一点Q在第一象限且到y轴的距离为2.(1)求点A、B、Q的坐标,(2)若点P在坐x轴上,且PO=24,求△APQ的面积.36.如图,一次函数y=﹣x+3的图象分别与x轴、y轴交于点A、B,以线段AB 为边在第一象限作等腰Rt△ABC,∠BAC=90∘,求:(1)A、B、C三点的坐标.(2)四边形AOBC的面积.37.若直线分别交x轴、y轴于A、B两点,点P是该直线上的一点,PC ⊥x轴,C为垂足.(1)求△AOB的面积.(2)如果四边形PCOB的面积等△AOB的面积的一半,求出此时点P的坐标.38.已知,直线与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限作等腰Rt△ABC,∠BAC=90°.且点P(1,a)为坐标系中的一个动点.;(1)求三角形ABC的面积S△ABC(2)请说明不论a取任何实数,三角形BOP的面积是一个常数;(3)要使得△ABC和△ABP的面积相等,数a的值.39.如图所示,正方形OABC的顶点为O(0,0),A(1,0),B(1,1),C(0,1).(1)判断直线y=﹣2x+与正方形OABC是否有交点,并求交点坐标.(2)将直线y=﹣2x+进行平移,平移后恰好能把正方形OABC分为面积相等的两部分,请求出平移后的直线解析式.40.如图一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,求直线AB 的一次函数解析式及△AOC的面积.初中数学一次函数基础练习与常考题和中等题(含解析)参考答案与试题解析一.选择题(共13小题)1.下列函数是一次函数的是()A.﹣x2+y=0 B.y=4x2﹣1 C.y= D.y=3x【分析】根据一次函数的定义求解.【解答】解:A、由﹣x2+y=0,可得y=x2,自变量次数不为1,故不是一次函数,错误;B、自变量次数不为1,故不是一次函数,错误;C、自变量次数不为1,故不是一次函数,错误;D、正确.故选D.【点评】在函数y=kx+b中,当k、b为常数,k≠0,且自变量x的次数为1时,该函数为一次函数.该函数是否为一次函数与b的取值无关.2.下列说法中错误的是()A.一次函数是正比例函数B.函数y=|x|+3不是一次函数C.正比例函数是一次函数D.在y=kx+b(k、b都是不为零的常数)中,y﹣b与x成正比例【分析】根据一次函数和正比例函数的定义,以及二者之间的关系对选项一一进行分析.【解答】解:A、当b=0时,一次函数图象变为正比例函数,正比例函数是特殊的一次函数.故此选项错误.B、函数y=|x|+3不符合一次函数的定义.故此选项正确.C、正比例函数是特殊的一次函数.故此选项正确.D、在y=kx+b(k、b都是不为零的常数)中,y﹣b与x成正比例,符合正比例函数定义.故此选项正确.故选A.【点评】本题主要考查了一次函数的定义,一次函数和正比例函数的关系:正比例函数是特殊的一次函数.3.下列函数关系中,一定是一次函数的是()A.y=x﹣1B.y=﹣x2C.y=3x﹣2 D.y=kx【分析】根据一次函数的定义条件解答.【解答】解:A、自变量次数不为1,故不是一次函数;B、自变量次数不为1,故不是一次函数,C、是一次函数;D、当k=0时不是函数.故选C.【点评】解题关键是掌握一次函数的定义条件:k、b为常数,k≠0,自变量次数为1.4.下列说法中,正确的个数是()(1)正比例函数一定是一次函数;(2)一次函数一定是正比例函数;(3)速度一定,路程s是时间t的一次函数;(4)圆的面积是圆的半径r的正比例函数.A.1个 B.2个 C.3个 D.4个【分析】利用正比例函数和一次函数的定义逐一判断后即可得到答案.【解答】解:(1)正比例函数一定是一次函数,正确;(2)一次函数一定是正比例函数,错误;(3)速度一定,路程s是时间t的关系式为:s=vt,是一次函数,正确;(4)圆的面积是圆的半径r的平方的正比例函数,故错误,故选B.【点评】本题考查了一次函数和正比例函数的定义,属于基础题,比较容易掌握.5.下列函数中,是一次函数的个数为()A.3个 B.1个 C.4个 D.2个【分析】根据一次函数的定义求解.【解答】解:由一次函数的定义知,(1)(2)是正比例函数,也是一次函数;(3)自变量次数为﹣1,不是一次函数;(4)是一次函数;(5)自变量最高次数为2,不是一次函数.故选A.【点评】解题关键是掌握一次函数y=kx+b的定义条件:k、b为常数,k≠0,自变量次数为1.注意正比例函数是特殊的一次函数.6.若函数y=(m﹣5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m的值为()A.m>﹣B.m>5 C.m=﹣D.m=5【分析】根据正比例函数的定义可得:m﹣5≠0,4m+1=0,再解不等式和方程即可.【解答】解:∵函数y=(m﹣5)x+(4m+1)x2(m为常数)中的y与x成正比例,∴m﹣5≠0,4m+1=0,解得:m=﹣.故选:C.【点评】此题主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.7.若函数是正比例函数,则m的值是()A.2 B.﹣2 C.±2 D.1【分析】根据正比例函数的定义,令2m2﹣7=1,且m+2≠0求出即可.【解答】解:∵函数是正比例函数,∴2m2﹣7=1,且m+2≠0,∴m2﹣4=0,且m+2≠0,∴(m+2)(m﹣2)=0,且m+2≠0,∴m﹣2=0,解得:m=2.故选:A.【点评】本题主要考查了正比例函数的定义,关键是掌握①正比例系数≠0,②自变量次数=1.8.函数kx﹣y=2中,y随x的增大而减小,则它的图象是下图中的()A.B.C.D.【分析】将原式转化为一次函数的形式,根据一次函数的性质即可作出判断.【解答】解:整理为y=kx﹣2∵y随x的增大而减小∴k<0又因为图象过2,4,3象限故选D.【点评】主要考查了一次函数的图象性质,一次函数的图象是一条直线,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.9.由A(3,2),B(﹣1,﹣3)两点确定的直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】在平面直角坐标系中画出经过此两点的直线,即可判断出不经过的象限.【解答】解:如图所示:,由图象可知不经过第二象限.【点评】考查了一次函数的图象,可用图象法表示的题用图象法比较简便.10.函数y=﹣mx(m>0)的图象是()A.B.C.D.【分析】根据m>0判断出﹣m的符号,再根据一次函数图象的特点解答即可.【解答】解:因为m>0,则﹣m<0,所以y随x的增大而减小,y=﹣mx的图象经过二、四象限.故选A.【点评】本题考查了正比例函数的图象的性质:k<0,正比例函数的图象过原点、第二、四象限;k>0,正比例函数的图象过原点、第一、三象限.11.直线与直线y=kx+k在同一坐标系中的位置可能是图()2A.B.C.D.【分析】根据题意,联立两直线的方程可得,,解可得,x=﹣2,即两直线的交点的横坐标为﹣2,且两直线的斜率同号,即倾斜方向一致,分析选项,可得答案.【解答】解:根据题意,联立两直线的方程可得,,解可得,x=﹣2,即两直线的交点的横坐标为﹣2,且两直线的斜率同号,即倾斜方向一致,分析选项,D符合;故选D.【点评】本题考查一次函数的解析式,要求学生会根据一次函数的解析式,分析判断函数的图象的性质.12.已知一次函数y=(k﹣2)x+k+1的图象不过第三象限,则k的取值围是()A.k>2B.k<2C.﹣1≤k≤2 D.﹣1≤k<2【分析】若函数y=kx+b的图象不过第三象限,则此函数的k<0,b≥0,据此求解.【解答】解:∵一次函数y=(k﹣2)x+k+1的图象不过第三象限,∴k﹣2<0,k+1≥0解得:﹣1≤k<2,故选D.【点评】考查了一次函数的图象与系数的关系,一次函数的图象经过第几象限,取决于x的系数是大于0或是小于0.13.若ab<0,bc<0,则直线ax+by=c不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】要求直线ax+by=c不经过的象限,需先将直线改写成一次函数的一般形式即为y=﹣x+,再根据有理数的乘除法法则及不等式的性质分别判断﹣,的符号,然后根据一次函数图象与系数的关系,判断直线y=﹣x+经过的象限,从而得出直线ax+by=c不经过的象限.【解答】解:直线ax+by=c即直线y=﹣x+.∵ab<0,∴a与b符号不同,∴<0,∴﹣>0,∵bc<0,∴b与c符号不同,∴<0,∴直线y=﹣x+经过第一、三、四象限,即直线ax+by=c不经过第二象限.故选B.【点评】本题综合考查了有理数的乘除法法则、不等式的性质及一次函数图象与系数的关系,难度中等.用到的知识点:两数相乘,异号得负;两数相除,异号得负;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;一次函数y=kx+b经过的象限由k、b的值共同确定:①k>0,b>0⇔y=kx+b的图象在一、二、三象限;②k>0,b<0⇔y=kx+b的图象在一、三、四象限;③k<0,b>0⇔y=kx+b的图象在一、二、四象限;④k<0,b<0⇔y=kx+b的图象在二、三、四象限.二.填空题(共11小题)14.当k= 1 时,y=(k+1)+k是一次函数;当m= ﹣1 时,y=(m﹣1)是正比例函数.【分析】(1)根据一次函数的定义得k2=1,k+1≠0,即可求得k的值;(2)根据正比例函数的定义得m2=1,m﹣1≠0时原函数是正比例函数,可求出m的值.【解答】解:(1)根据题意得:k2=1,k+1≠0,解得k=1;(2)根据题意得:m2=1,m﹣1≠0,解得m=﹣1,故答案为:1;﹣1.【点评】本题主要考查了一次函数以及正比例函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1;正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.15.已知正比例函数y=(m﹣1)的图象在第二、四象限,则m的值为﹣2 ,函数的解析式为y=﹣3x .【分析】根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量次数为1,即可列出有关m的方程,解出即可得出答案.【解答】解:根据正比例函数的定义可得:5﹣m2=1,解得:m=±2,又该正比例函数的图象在第二、四象限,∴m﹣1<0,m<1,∴m=﹣2,y=﹣3x.故答案为:﹣2,y=﹣3x,【点评】本题主要考查了正比例函数的定义,难度不大,注意基础概念的掌握.16.根据一次函数y=﹣3x﹣6的图象,当函数值大于零时,x的围是x<﹣2 .【分析】根据题意画出一次函数y=﹣3x﹣6的图象,再根据函数图象直接解答即可.【解答】解:由函数y=﹣3x﹣6可知,此函数与两坐标轴的交点分别为(0,﹣6)、(﹣2,0),由函数图象可知,当函数值大于零时,x的围是x<﹣2.【点评】本题比较简单,考查的是用数形结合的方法求函数自变量的取值围,根据题意正确画出函数的图象是解答此题的关键.17.已知一次函数y=﹣2x+3中,自变量取值围是﹣3≤x≤8,则当x= ﹣3 时,y有最大值9 .【分析】先根据一次函数的系数判断出函数的增减性,再根据其取值围解答即可.【解答】解:∵一次函数y=﹣2x+3中,k=﹣2<0,∴y随x的增大而减小,∵自变量取值围是﹣3≤x≤8,∴当x=﹣3时,y最大=(﹣2)×(﹣3)+3=9.故答案为:﹣3,9.【点评】本题考查的是一次函数的性质,及一次函数y=kx+b(k≠0)中,当k<0时,y随x的增大而减小.18.函数y=﹣2x+4的图象经过第一、二、四象限,它与两坐标轴围成的三角形面积为 4 ,周长为6+2.【分析】根据一次函数的性质可判断直线y=﹣2x+4经过第一、二、四象限;再确定直线y=﹣2x+4与坐标轴的交点坐标,利用勾股定理计算出两交点之间的距离,然后计算三角形的面积和周长.【解答】解:∵k=﹣2,b=4,∴直线y=﹣2x+4经过第一、二、四象限;直线y=﹣2x+4与x轴的交点坐标为(2,0),与y轴的交点坐标为(0,4),∴两交点之间的距离==2,∴三角形面积=×2×4=4,周长=2+4+2=6+2.故答案为第一、二、四;4;6+2.【点评】本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;直线与y轴的交点坐标为(0,b).19.正比例函数的图象一定经过点原点.【分析】由于正比例函数的一般形式为y=kx,所以当x=0时,y=0,由此即可确定正比例函数的图象一定经过什么点.【解答】解:∵正比例函数的一般形式为y=kx,∴当x=0时,y=0,∴正比例函数的图象一定经过原点.【点评】此题比较简单,主要考查了正比例函数图象的性质:如何正比例函数的图象一定经过原点.20.若一次函数y=ax+1﹣a中,它的图象经过一、二、三象限,则|a﹣1|+= 1 .【分析】根据一次函数的图象所经过的象限求得a的取值围,然后根据a的取值围去绝对值、化简二次根式.【解答】解:∵一次函数y=ax+1﹣a中,它的图象经过一、二、三象限,∴,解得,0<a<1,则|a﹣1|+=1﹣a+a=1,故答案是:1.【点评】本题主要考查一次函数图象在坐标平面的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.21.一次函数y=kx+b的图象如图所示,则k>0.【分析】由图意得y随x的增大而增大,那么自变量系数应大于0.【解答】解:由图意得y随x的增大而增大,则k>0.故答案为:>.【点评】本题考查一次函数的图象性质:y随x的增大而增大,比例系数大于0.22.若abc<0,且函数y=的图象不经过第四象限,则点(a+b,c)所在象限为第四象限.【分析】先根据函数y=的图象不经过第四象限判断出a、b,c的符号,进而可得出结论.【解答】解:∵函数y=的图象不经过第四象限,∴>0,﹣>0,∵abc<0,∴a、c异号,a、b异号,∴当a>0,b>0,c<0时,a+b>0,∴点(a+b,c)在第四象限;当a<0,b<0,c>0时,a+b<0,与abc<0矛盾,不合题意.故答案为:四.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数的图象与系数的关系是解答此题的关键.23.若三点(1,0),(2,P),(0,﹣1)在一条直线上,则P的值为 1 .【分析】先设出一次函数的解析式,把点(1,0),(0,﹣1)代入求出函数解析式,再把(2,p)代入求出p的值即可.【解答】解:过点(1,0),(0,﹣1)的直线解析式为:y=kx+b(k≠0),∴,解得,∴此直线的解析式为y=x﹣1,把点(2,p)代入得,p=2﹣1=1.故答案是:1.【点评】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.24.已知a、b都是常数,一次函数y=(m﹣2)x+(m+3)经过点(,),则这个一次函数的解析式为y=﹣5x .【分析】根据非负数的性质列式求出a=b,从而得到经过的点的坐标为(0,0),再把点的坐标代入函数解析式求出m的值,即可得解.【解答】解:根据非负数的性质得,a﹣b≥0且b﹣a≥0,解得a≥b且b≥a,所以,a=b,所以,点(,)为(0,0),代入一次函数y=(m﹣2)x+(m+3)得,m+3=0,解得m=﹣3,所以,m﹣2=﹣3﹣2=﹣5,因此,这个一次函数的解析式为y=﹣5x.故答案为:y=﹣5x.【点评】本题考查了一次函数图象上点的坐标特征,根据非负数的性质求出a=b,从而得到经过的点的坐标是(0,0)是解题的关键.三.解答题(共16小题)25.已知+(b﹣2)2=0,则函数y=(b+3)x﹣a+1﹣2ab+b2是什么函数?当x=﹣时,函数值y是多少?【分析】先根据非负数的性质求出ab的值,再把ab的值代入函数解析式即可判断出函数的种类,再把x的值代入求解即可.【解答】解:因为+(b﹣2)2=0,所以a=﹣1,b=2.所以y=(2+3)x﹣(﹣1)+1﹣2×(﹣1)×2+22,即y=5x+9,所以函数y=(b+3)x﹣a+1﹣2ab+b2是一次函数,当x=﹣时,y=5×(﹣)+9=.【点评】本题考查的是一次函数的定义,要根据非负数的性质解答,初中非负数有三种:绝对值,偶次方,二次根式.一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.26.已知函数y=﹣2x﹣6.(1)求当x=﹣4时,y的值,当y=﹣2时,x的值.(2)画出函数图象.(3)如果y的取值围﹣4≤y≤2,求x的取值围.【分析】(1)直接将x=﹣4,y=﹣2分别代入函数方程式,即可求得y和x的值;(2)由(1)可知函数图象过(﹣4,2)、(﹣2,﹣2),两点确定一条直线,由此可画出函数的图象;(3)由y=﹣2x﹣6,﹣4≤y≤2,可得出﹣4≤﹣2x﹣6≤2,解之即可求出x的取值围.【解答】解:(1)当x=﹣4时,y=2;当y=﹣2时,x=﹣2;(2)由(1)可知函数图象过(﹣4,2)、(﹣2,﹣2),由此可画出函数的图象,如下图所示:(3)∵y=﹣2x﹣6,﹣4≤y≤2∴﹣4≤﹣2x﹣6≤22≤﹣2x≤8﹣4≤x≤﹣1.【点评】本题考查了一次函数图象的画法以及一次函数的性质.27.在同一坐标系中作出,y=2x+1,y=3x的图象.【分析】根据函数图象的画法:描点、连线分别画出两个一次函数的图象.【解答】解:函数y=2x+1经过点(0,1)、(﹣,0);函数y=3x经过(0,0)点,斜率为3.作图如下:【点评】本题主要考查了一次函数的图象,考查了函数图象的画法:列表、描点、连线.28.(1)判断下列各点是否在直线y=2x+6上.(是的打“√”,不是的打“×”)(﹣5,﹣4),√;(﹣7,20),×;(,1),×;(,),√.(2)这条直线与x轴的交点坐标是(﹣3,0),与y轴的交点坐标是(0,6).【分析】(1)先将各点的横坐标代入y=2x+6,分别计算出对应的y值,再与各点的纵坐标比较,如果相等,则该点在直线y=2x+6上;否则,就不在直线y=2x+6上;(2)x轴上的点,纵坐标为0,将y=0代入y=2x+6,解出x的值即可;y轴上的点,横坐标为0,将x=0代入y=2x+6,解出y的值即可.【解答】解:(1)把x=﹣5代入y=2x+6,得y=2×(﹣5)+6=﹣4,则(﹣5,﹣4)在直线y=2x+6上;把x=﹣7代入y=2x+6,得y=2×(﹣7)+6=﹣8≠20,则(﹣7,20)不在直线y=2x+6上;把x=﹣代入y=2x+6,得y=2×(﹣)+6=﹣1≠1,则(﹣,1)不在直线y=2x+6上;把x=代入y=2x+6,得y=2×+6=7,则(,7)在直线y=2x+6上;(2)当y=0时,0=2x+6,解得x=﹣3;故直线y=2x+6与x轴交点的坐标为(﹣3,0);当x=0时,y=0+6=6;故直线y=2x+6与x轴交点的坐标为(0,6).故答案是:√,×,×,√;(﹣3,0),(0,6).【点评】本题考查了一次函数图象上点的坐标特征.函数图象上的点,必满足函数的解析式,反之,也成立;x轴上的点,纵坐标为0;y轴上的点,横坐标为0.29.求直线2x+y+1=0关于x轴成轴对称的图形的解析式.【分析】先求出所求直线上的两个点,然后代入所设的解析式,再通过解方程组求出系数的值,再代入解析式即可.【解答】解:设所求的直线解析式为.y=kx+b(k≠0),∵2x+y+1=0,∴y=﹣2x﹣1当y=0时,x=﹣,即图象过对称轴上(﹣,0)点,显然这一点也在y=kx+b 上.在2x+y+1=0上任取一点P,如x=2时,y=﹣5,则可以知道P点关于x轴对称点的坐标p(2,5).∴(﹣,0)(2,5)都在所求的直线上,∴∴∴所求直线的解析式为y=2x+1.【点评】本题重在考查利用待定系数法求函数的解析式,并与一次函数的性质及解方程组结合起来,综合性强,有一定的难度.30.已知点Q与P(2,3)关于x轴对称,一个一次函数的图象经过点Q,且与y轴的交点M与原点距离为5,求这个一次函数的解析式.【分析】求出Q点的坐标,根据待定系数法即可求得函数的解析式.【解答】解:∵Q与P(2,3)关于x轴对称,∴Q点的坐标为(2,﹣3);设一次函数的解析式为:y=kx+b(k≠0),∵函数与y轴的交点M与原点距离为5,∴b=±5.函数的图象经过点Q,故2k+b=﹣3.当b=5时,2k+5=﹣3,解得:k=﹣4;当b=﹣5时,2k﹣5=﹣3.解得:k=1;故一次函数解析式为y=﹣4x+5或y=x﹣5.【点评】本题要注意利用一次函数的特点设出解析式,再根据已知条件列出方程,求出未知数.31.已知点B(3,4)在直线y=﹣2x+b上,试判断点P(2,6)是否在图象上.【分析】先把已知点B(3,4)代入一次函数解析式求出b的值,进而求出函数的解析式,再把点P(2,6)代入解析式即可.【解答】解:把点B(3,4)代入直线y=﹣2x+b得4=﹣2×3+b,解得:b=10,故一次函数的解析式为:y=﹣2x+10.把点P(2,6)代入得:6=﹣2×2+10=6,故点P(2,6)在函数图象上.【点评】本题考查的是用待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,比较简单.32.已知一个一次函数y=kx+b,当x=3时,y=﹣2;当x=2时,y=﹣3,求这个一次函数的解析式.求:(1)k和b的值;(2)当x=﹣3时,y的值.【分析】根据题意设出一次函数的解析式,把已知条件代入,求出未知数的值,即可求出函数的解析式.【解答】解:(1)设该一次函数的解析式为y=kx+b,把当x=3时,y=﹣2;当x=2时,y=﹣3代入得,解得:,故此函数的解析式为y=x﹣5.(2)把x=﹣3代入得:y=﹣3﹣5=﹣8.【点评】此题考查的是用待定系数法求一次函数的解析式,比较简单.33.已知△ABC,∠BAC=90°,AB=AC=4,BD是AC边上的中线,分别以AC、AB 所在直线为x轴,y轴建立直角坐标系(如图)(1)求直线BD的函数关系式.(2)直线BD上是否存在点M,使AM=AC?若存在,求点M的坐标;若不存在,说明理由.【分析】(1)设出一次函数的一般形式,求出B、D两点坐标,代入求得直线BD 的函数关系式;(2)直线BD上存在点M,使AM=AC,①点M和点B重合;②点M和点B不重合,设M的坐标为(a,﹣2a+4),利用勾股定理求得AM的长,建立方程,求出问题的解.【解答】解:(1)设直线BD的函数关系式为y=kx+b,因为AB=AC=4,BD是AC边上的中线,所以点B、D坐标分别为(0,4)(2,0)代入:y=kx+b,得:y=﹣2x+4;(2)存在点M,使AM=AC,①点M和点B重合,所以点M为(0,4);②点M和点B不重合,如图,连接AM,过M作MN⊥y轴于点N.令点M的坐标为(a,﹣2a+4),由AM=,AM=AC可知=4,解得a1=0,a2=,所以点M1、M2为(0,4)、(,),综上可知点M的坐标为M1(0,4)、M2(,).【点评】此题考查用待定系数法求一次函数,利用勾股定理解决点的存在性,渗透数形结合的思想.34.如图,已知点A(2,4),B(﹣2,2),C(4,0),求△ABC的面积.【分析】先利用待定系数法求直线AB的解析式,再确定直线AB与x轴的交点D的坐标,然后根据三角形面积公式和以S△ABC =S△ACD﹣S△BDC进行计算.【解答】解:设直线AB的解析式为y=kx+b,把A(2,4)、B(﹣2,2)代入得,解得.所以直线AB的解析式为y=x+3,当y=0时,y=x+3=0,解得x=﹣6,则D点坐标为(﹣6,0),所以S△ABC =S△ACD﹣S△BDC=×(4+6)×4﹣×(4+6)×2=10.【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.35.(2016春•南江县校级月考)如图,已知直线y=2x+4与x轴交于点A,与y 轴交于点B,直线AB上有一点Q在第一象限且到y轴的距离为2.(1)求点A、B、Q的坐标,(2)若点P在坐x轴上,且PO=24,求△APQ的面积.【分析】(1)首先求出A,B点坐标,再利用直线AB上有一点Q在第一象限且到y轴的距离为2,得出点Q的横坐标为2,即可得出Q点坐标;(2)根据当点P在x轴的正半轴上时,当点P′在x轴的负半轴上时分别求出即可.【解答】解:(1)∵直线y=2x+4与x轴交于点A,与y轴交于点B,∴y=0时,x=﹣2,x=0时,y=4,故A(﹣2,0),B(0,4),由直线AB上有一点Q在第一象限且到y轴的距离为2.得点Q的横坐标为2,此时y=4+4=8,所以:Q(2,8);(2)由A(﹣2,0)得OA=2由Q(2,8)可得△APQ中AP边上的高为8,当点P在x轴的正半轴上时,AP=OA+PO=2+24=26,=×26×8=104;S△APQ当点P′在x轴的负半轴上时,AP′=P′O﹣OA=24﹣2=22,=×22×8=88.S△AP′Q【点评】此题主要考查了一次函数图象上点的特征以及三角形面积求法等知识,利用分类讨论得出是解题关键.36.(2016秋•沭阳县月考)如图,一次函数y=﹣x+3的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限作等腰Rt△ABC,∠BAC=90∘,求:(1)A、B、C三点的坐标.(2)四边形AOBC的面积.【分析】(1)分别将x=0、y=0代入一次函数解析式求出与之对应的y、x的值,由此即可得出点B、A的坐标,进而得出AO、BO的长度,再由△ABC为等腰直角三角形结合角的计算即可得出∠ABO=∠CAD、AC=AB,利用AAS即可证出△AOB ≌△CDA,根据边与边之间的关系即可得出点C的坐标;(2)利用勾股定理可求出AB的长度,由S四边形AOBC =S△AOB+S△ABC结合三角形的面积公式即可得出结论.【解答】解:(1)当x=0时,y=3,∴点B(0,3);当y=﹣x+3=0时,x=4,∴点A(4,0),∴AO=4,BO=3.∵△ABC为等腰直角三角形,∴AC=AB,∠BAC=90°.过点C作CD⊥x轴于点D,如图所示.∵∠BAO+∠BAC+∠CAD=180°,∠ABO+∠BAO=90°,∴∠ABO=∠CAD.在△AOB和△CDA中,,∴△AOB≌△CDA(AAS),∴CD=AO=4,DA=OB=3,∴OD=AO+DA=7.∴点C的坐标为(7,4).(2)在Rt△AOB中,AO=4,BO=3,∠AOB=90°,∴AB==5.S四边形AOBC =S△AOB+S△ABC=AO•BO+AB•AC=×4×3+×5×5=.【点评】本题考查了一次函数图象上点的坐标特征、全等三角形的判定与性质以及等腰直角三角形,解题的关键:(1)利用AAS证出△AOB≌△CDA;(2)将四边形AOBC分成两个直角三角形.37.(2016春•校级月考)若直线分别交x轴、y轴于A、B两点,点P 是该直线上的一点,PC⊥x轴,C为垂足.(1)求△AOB的面积.(2)如果四边形PCOB的面积等△AOB的面积的一半,求出此时点P的坐标.【分析】(1)根据直线的解析式求得与坐标轴的交点,然后根据三角形面积公式求得即可;(2)设P(m,m+2),根据梯形的面积公式列出方程解方程即可求得.。
初中数学一次函数知识点总复习附答案解析(1)
初中数学一次函数知识点总复习附答案解析(1)一、选择题1.一次函数y=x-b的图像,沿着过点(1,0)且垂直于x轴的直线翻折后经过点(4,1),则b的值为()A.-5 B.5 C.-3 D.3【答案】C【解析】【分析】先根据一次函数沿着过点(1,0)且垂直于x轴的直线翻折后经过点(4,1)求出函数经过的点,再用待定系数法求解即可.【详解】解:∵过点(1,0)且垂直于x轴的直线为x=1,∴根据题意,y=x-b的图像关于直线x=1的对称点是(4,1),∴y=x-b的图像过点(﹣2,1),∴把点(﹣2,1)代入一次函数得到:12b=--,∴b=﹣3,故C为答案.【点睛】本题主要考查了与一次函数图像有关的知识点,求出从沿某直线翻折后经过的点求函数图像经过哪个点是解题的关键,并掌握用待定系数法求解.2.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为( )A.33元B.36元C.40元D.42元【答案】C【解析】分析:待定系数法求出当x≥12时y关于x的函数解析式,再求出x=22时y的值即可.详解:当行驶里程x ⩾12时,设y=kx+b ,将(8,12)、(11,18)代入,得:8121118k b k b +=⎧⎨+=⎩, 解得:24k b =⎧⎨=-⎩, ∴y=2x −4,当x=22时,y=2×22−4=40,∴当小明某次打车行驶里程为22千米,则他的打车费用为40元.故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.3.一次函数y kx b =+是(,k b 是常数,0k ≠)的图像如图所示,则不等式0kx b +<的解集是( )A .0x >B .0x <C .2x >D .2x <【答案】C【解析】【分析】 根据一次函数的图象看出:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),得到当x >2时,y<0,即可得到答案.【详解】解:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),当x >2时,y<0.故答案为:x >2.故选:C.【点睛】本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键.4.已知过点()2?3,-的直线()0y ax b a =+≠不经过第一象限.设s a 2b =+,则s 的取值范围是( )A .352s -≤≤-B .362s -<≤-C .362s -≤≤-D .372s -<≤- 【答案】B【解析】 试题分析:∵过点()2?3,-的直线()0y ax b a =+≠不经过第一象限, ∴0{023a b a b <≤+=-.∴23b a =--. ∵s a 2b =+,∴4636s a a a =--=--.由230b a =--≤得399333662222a a a ≥-⇒-≤⇒--≤-=-,即32s ≤-. 由0a <得3036066a a ->⇒-->-=-,即6s >-. ∴s 的取值范围是362s -<≤-. 故选B.考点:1.一次函数图象与系数的关系;2.直线上点的坐标与方程的关系;3.不等式的性质.5.某一次函数的图象经过点()1,2,且y 随x 的增大而减小,则这个函数的表达式可能是( )A .24y x =+B .24y x =-+C .31y x =+D .31y x -=-【答案】B【解析】【分析】设一次函数关系式为y kx b =+,把(1,2)代入可得k+b=2,根据y 随x 的增大而减小可得k <0,对各选项逐一判断即可得答案.【详解】设一次函数关系式为y kx b =+,∵图象经过点()1,2, 2k b ∴+=;∵y 随x 增大而减小,∴k 0<,A.2>0,故该选项不符合题意,B.-2<0,-2+4=2,故该选项符合题意,C.3>0,故该选项不符合题意,D.∵31y x -=-,∴y=-3x+1,-3+1=-2,故该选项不符合题意,故选:B .【点睛】本题考查一次函数的性质及一次函数图象上的点的坐标特征,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.6.下列关于一次函数()0,0y kx b k b =+<>的说法,错误的是( )A .图象经过第一、二、四象限B .y 随x 的增大而减小C .图象与y 轴交于点()0,bD .当b x k >-时,0y > 【答案】D【解析】【分析】由k 0<,0b >可知图象经过第一、二、四象限;由k 0<,可得y 随x 的增大而减小;图象与y 轴的交点为()0,b ;当b x k >-时,0y <; 【详解】∵()0,0y kx b k b =+<>,∴图象经过第一、二、四象限,A 正确;∵k 0<,∴y 随x 的增大而减小,B 正确;令0x =时,y b =,∴图象与y 轴的交点为()0,b ,∴C 正确;令0y =时,b x k =-, 当b x k>-时,0y <; D 不正确;故选:D .【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数解析式y kx b =+中,k 与b 对函数图象的影响是解题的关键.7.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.8.已知直线3y mx =+经过点(2,0),则关于x 的不等式 30mx +>的解集是( ) A .2x >B .2x <C .2x ≥D .2x ≤【答案】B【解析】【分析】求出m 的值,可得该一次函数y 随x 增大而减小,再根据与x 轴的交点坐标可得不等式解集.【详解】解:把(2,0)代入3y mx =+得:023m =+, 解得:32m =-, ∴一次函数3y mx =+中y 随x 增大而减小, ∵一次函数3y mx =+与x 轴的交点为(2,0),∴不等式 30mx +>的解集是:2x <,故选:B .【点睛】本题考查了待定系数法的应用,一次函数与不等式的关系,判断出函数的增减性是解题的关键.9.如图,在矩形AOBC 中,A (–2,0),B (0,1).若正比例函数y=kx 的图象经过点C ,则k 的值为( )A .–12B .12C .–2D .2【答案】A【解析】【分析】根据已知可得点C 的坐标为(-2,1),把点C 坐标代入正比例函数解析式即可求得k.【详解】∵A(-2,0),B(0,1),∴OA=2,OB=1,∵四边形OACB 是矩形,∴BC=OA=2,AC=OB=1,∵点C 在第二象限,∴C 点坐标为(-2,1),∵正比例函数y =kx 的图像经过点C ,∴-2k=1,∴k=-12, 故选A.【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C 的坐标是解题的关键.10.超市有A ,B 两种型号的瓶子,其容量和价格如表,小张买瓶子用来分装15升油(瓶子都装满,且无剩油);当日促销活动:购买A 型瓶3个或以上,一次性返还现金5元,设购买A 型瓶x (个),所需总费用为y (元),则下列说法不一定成立的是( )A .购买B 型瓶的个数是253x ⎛⎫- ⎪⎝⎭为正整数时的值 B .购买A 型瓶最多为6个C .y 与x 之间的函数关系式为30y x =+D .小张买瓶子的最少费用是28元 【答案】C【解析】【分析】设购买A 型瓶x 个,B(253x -)个,由题意列出算式解出个选项即可判断. 【详解】设购买A 型瓶x 个, ∵买瓶子用来分装15升油,瓶子都装满,且无剩油,∴购买B 型瓶的个数是1522533x x -=-, ∵瓶子的个数为自然数,∴x=0时, 253x -=5; x=3时, 253x -=3; x=6时, 253x -=1; ∴购买B 型瓶的个数是(253x -)为正整数时的值,故A 成立; 由上可知,购买A 型瓶的个数为0个或3个或6个,所以购买A 型瓶的个数最多为6,故B 成立;设购买A 型瓶x 个,所需总费用为y 元,则购买B 型瓶的个数是(253x -)个, ④当0≤x<3时,y=5x+6×(253x -)=x+30, ∴k=1>0,∴y 随x 的增大而增大,∴当x=0时,y有最小值,最小值为30元;②当x≥3时,y=5x+6×(253x)-5=x+25,∵.k=1>0随x的增大而增大,∴当x=3时,y有最小值,最小值为28元;综合①②可得,购买盒子所需要最少费用为28元.故C不成立,D成立故选:C.【点睛】本题考查一次函数的应用,关键在于读懂题意找出关系式.11.一次函数y1=kx+1﹣2k(k≠0)的图象记作G1,一次函数y2=2x+3(﹣1<x<2)的图象记作G2,对于这两个图象,有以下几种说法:①当G1与G2有公共点时,y1随x增大而减小;②当G1与G2没有公共点时,y1随x增大而增大;③当k=2时,G1与G2平行,且平行线之间的距离为.下列选项中,描述准确的是()A.①②正确,③错误B.①③正确,②错误C.②③正确,①错误D.①②③都正确【答案】D【解析】【分析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答.【详解】解:一次函数y2=2x+3(﹣1<x<2)的函数值随x的增大而增大,如图所示,N(﹣1,2),Q(2,7)为G2的两个临界点,易知一次函数y 1=kx+1﹣2k (k≠0)的图象过定点M (2,1),直线MN 与直线MQ 为G 1与G 2有公共点的两条临界直线,从而当G 1与G 2有公共点时,y 1随x 增大而减小;故①正确;当G 1与G 2没有公共点时,分三种情况:一是直线MN ,但此时k =0,不符合要求;二是直线MQ ,但此时k 不存在,与一次函数定义不符,故MQ 不符合题意; 三是当k >0时,此时y 1随x 增大而增大,符合题意,故②正确;当k =2时,G 1与G 2平行正确,过点M 作MP ⊥NQ ,则MN =3,由y 2=2x+3,且MN ∥x 轴,可知,tan ∠PNM =2,∴PM =2PN ,由勾股定理得:PN 2+PM 2=MN 2∴(2PN )2+(PN )2=9,∴PN =, ∴PM =.故③正确.综上,故选:D .【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大.12.如图,已知直线1y x b =+与21y kx =-相交于点P ,点P 的横坐标为1-,则关于x 的不等式1x b kx +≤-的解集在数轴上表示正确的是( ).A .B .C .D .【答案】D【解析】试题解析:当x >-1时,x+b >kx-1,即不等式x+b >kx-1的解集为x >-1.故选A .考点:一次函数与一元一次不等式.13.函数12y x =-与23y ax =+的图像相交于点(),2A m ,则( )A .1a =B .2a =C .1a =-D .2a =-【答案】A【解析】【分析】将点(),2A m 代入12y x =-,求出m ,得到A 点坐标,再把A 点坐标代入23y ax =+,即可求出a 的值.【详解】解:Q 函数12y x =-过点(),2A m , 22m ∴-=,解得:1m =-,()1,2A ∴-,Q 函数23y ax =+的图象过点A ,32a ∴-+=,解得:1a =.故选:A .【点睛】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了一次函数图象上点的坐标特征.14.已知一次函数21,y x =-+当0x ≤时, y 的取值范围为( )A .1y ≤B .0y ≥C .0y ≤D .1y ≥【答案】D【解析】【分析】根据不等式的性质进行计算可以求得y 的取值范围.【详解】解:∵0x ≤∴2x -0≥ 21x -+1≥故选:D.【点睛】此题主要考查一次函数的图象与性质,既可以根据函数的图象与性质,也可以根据不等式的性质求解,灵活选择简便方法是解题关键.15.在平面直角坐标系中,直线:1m y x =+与y 轴交于点A ,如图所示,依次正方形1M ,正方形2M ,……,正方形n M ,且正方形的一条边在直线m 上,一个顶点x 轴上,则正方形n M 的面积是( )A .222n -B .212n -C .22nD .212n +【答案】B【解析】【分析】由一次函数1y x =+,得出点A 的坐标为(0,1),求出正方形M 1的边长,即可求出正方形M 1的面积,同理求出正方形M 2的面积,即可推出正方形n M 的面积.【详解】一次函数1y x =+,令x=0,则y=1,∴点A 的坐标为(0,1),∴OA=1,∴正方形M 122112+=∴正方形M 1的面积222=,∴正方形M 1()()22222⨯=,∴正方形M 2222222+=, ∴正方形M 2的面积=3222282==,同理可得正方形M 3的面积=5322=,则正方形n M 的面积是212n -,故选B.【点睛】本题考查一次函数图象上点的坐标特征、规律型,解答本题的关键是明确题意,发现题目中面积之间的关系,运用数形结合思想解答.16.对于一次函数24y x =-+,下列结论正确的是( )A .函数值随自变量的增大而增大B .函数的图象不经过第一象限C .函数的图象向下平移4个单位长度得2y x =-的图象D .函数的图象与x 轴的交点坐标是()0,4【答案】C【解析】【分析】根据一次函数的系数结合一次函数的性质,即可得知A 、B 选项不正确,代入y=0求出与之对应的x 值,即可得出D 不正确,根据平移的规律求得平移后的解析式,即可判断C 正确,此题得解.【详解】解:A 、∵k=-2<0,∴一次函数中y 随x 的增大而减小,故 A 不正确;B 、∵k=-2<0,b=4>0,∴一次函数的图象经过第一、二、四象限,故B 不正确;C 、根据平移的规律,函数的图象向下平移4个单位长度得到的函数解析式为y=-2x+4-4,即y=-2x ,故C 正确;D 、令y=-2x+4中y=0,则x=2,∴一次函数的图象与x 轴的交点坐标是(2,0)故D 不正确.故选:C .【点睛】此题考查一次函数的图象以及一次函数的性质,解题的关键是逐条分析四个选项.本题属于基础题,难度不大,解决该题时,熟悉一次函数的性质、一次函数图象上点的坐标特征以及一次函数图象与系数的关系是解题的关键.17.如图,一次函数y kx b =+的图象经过点03()4)3(A B -,,,,则关于x 的不等式3 0kx b ++<的解集为( )A .4x >B .4x <C .3x >D .3x <【答案】A【解析】【分析】由30kx b ++<即y<-3,根据图象即可得到答案.【详解】∵y kx b =+,30kx b ++<,∴kx+b<-3即y<-3,∵一次函数y kx b =+的图象经过点B(4,-3),∴当x=4时y=-3,由图象得y 随x 的增大而减小,当4x >时,y<-3,故选:A.【点睛】此题考查一次函数的性质,一次函数与不等式,正确理解函数的性质、会观察图象是解题的关键.18.若实数a 、b 、c 满足a+b+c=0,且a <b <c ,则函数y=ax+c 的图象可能是( ) A . B . C . D .【答案】A【解析】【分析】∵a+b+c=0,且a <b <c ,∴a <0,c >0,(b 的正负情况不能确定也无需确定). a <0,则函数y=ax+c 图象经过第二四象限,c >0,则函数y=ax+c 的图象与y 轴正半轴相交,观察各选项,只有A 选项符合.故选A.【详解】请在此输入详解!19.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x =的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.20.如图,已知一次函数2y kx =+的图象与x 轴,y 轴分别交于点,A B ,与正比例函数13y x =交于点C ,已知点C 的横坐标为2,下列结论:①关于x 的方程20kx +=的解为3x =;②对于直线2y kx =+,当3x <时,0y >;③直线2y kx =+中,2k =-;④方程组302y x y kx -=⎧⎨-=⎩的解为223x y =⎧⎪⎨=⎪⎩.其中正确的有( )个 A .1B .2C .3D .4【答案】C【解析】【分析】 把正比例函数与一次函数的交点坐标求出,根据正比例函数与一次函数的交点先把一次函数的解析式求解出来,再分别验证即可得到答案.【详解】解:∵一次函数2y kx =+与正比例函数13y x =交于点C ,且C 的横坐标为2, ∴纵坐标:1122333y x ==⨯=, ∴把C 点左边代入一次函数得到:2223k =⨯+, ∴23k =-,22,3C ⎛⎫ ⎪⎝⎭①∵23k =-,∴22023kx x +==-+, ∴3x =,故正确; ②∵23k =-, ∴直线223y x =-+, 当3x <时,0y >,故正确; ③直线2y kx =+中,23k =-,故错误; ④30223y x y x -=⎧⎪⎨⎛⎫--= ⎪⎪⎝⎭⎩, 解得223x y =⎧⎪⎨=⎪⎩,故正确; 故有①②④三个正确;故答案为C.【点睛】本题主要考查了一次函数与正比例函数的综合应用,能正确用待定系数法求解未知量是解题的关键,再解题的过程中,要利用好已知信息,比如函数图像,很多时候都可以方便解题;。
最新初中数学一次函数知识点训练含答案(2)
最新初中数学一次函数知识点训练含答案(2)一、选择题1.一次函数y=(m ﹣2)x n ﹣1+3是关于x 的一次函数,则m ,n 的值为( ) A .m≠2,n=2B .m=2,n=2C .m≠2,n=1D .m=2,n=1【答案】A【解析】【分析】直接利用一次函数的定义分析得出答案.【详解】解:∵一次函数y=(m-2)x n-1+3是关于x 的一次函数,∴n-1=1,m-2≠0,解得:n=2,m≠2.故选A .【点睛】此题主要考查了一次函数的定义,正确把握系数和次数是解题关键.2.一次函数y kx b =+是(,k b 是常数,0k ≠)的图像如图所示,则不等式0kx b +<的解集是( )A .0x >B .0x <C .2x >D .2x <【答案】C【解析】【分析】 根据一次函数的图象看出:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),得到当x >2时,y<0,即可得到答案.【详解】解:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0), 当x >2时,y<0.故答案为:x >2.故选:C.【点睛】本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键.3.一次函数y=ax+b与反比例函数a byx-=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.【答案】C【解析】【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=a bx-的图象过二、四象限,所以此选项不正确;C. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a b x-的图象过一、三象限, 所以此选项正确; D. 由一次函数图象过二、四象限,得a<0,交y 轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a 、b 的大小4.平面直角坐标系中,点(0,0)O 、(2,0)A 、(,2)B b b -+,当45ABO ∠<︒时,b 的取值范围为( )A .0b <B .2b <C .02b <<D .0b <或2b >【答案】D【解析】【分析】根据点B 的坐标特征得到点B 在直线y=-x+2上,由于直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图,易得∠AQO=45°,⊙P 与直线y=-x+2只有一个交点,根据圆外角的性质得到点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,所以b <0或b >2.【详解】解∵B 点坐标为(b ,-b+2),∴点B 在直线y=-x+2上,直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图, ∵A (2,0),∴∠AQO=45°,∴点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,∴b 的取值范围为b <0或b >2.故选D .【点睛】本题考查了一函数图象上点的坐标特征:一次函数y=kx+b ,(k≠0,且k ,b 为常数)的图象是一条直线.它与x 轴的交点坐标是(b k-,0);与y 轴的交点坐标是(0,b ).直线上任意一点的坐标都满足函数关系式y=kx+b .5.某一次函数的图象经过点()1,2,且y 随x 的增大而减小,则这个函数的表达式可能是( )A .24y x =+B .24y x =-+C .31y x =+D .31y x -=-【答案】B【解析】【分析】设一次函数关系式为y kx b =+,把(1,2)代入可得k+b=2,根据y 随x 的增大而减小可得k <0,对各选项逐一判断即可得答案.【详解】设一次函数关系式为y kx b =+,∵图象经过点()1,2, 2k b ∴+=;∵y 随x 增大而减小,∴k 0<,A.2>0,故该选项不符合题意,B.-2<0,-2+4=2,故该选项符合题意,C.3>0,故该选项不符合题意,D.∵31y x -=-,∴y=-3x+1,-3+1=-2,故该选项不符合题意,故选:B .【点睛】本题考查一次函数的性质及一次函数图象上的点的坐标特征,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.6.下列关于一次函数()0,0y kx b k b =+<>的说法,错误的是( )A .图象经过第一、二、四象限B .y 随x 的增大而减小C .图象与y 轴交于点()0,bD .当b x k >-时,0y > 【答案】D【解析】【分析】由k 0<,0b >可知图象经过第一、二、四象限;由k 0<,可得y 随x 的增大而减小;图象与y 轴的交点为()0,b ;当b x k >-时,0y <; 【详解】∵()0,0y kx b k b =+<>,∴图象经过第一、二、四象限,A 正确;∵k 0<,∴y 随x 的增大而减小,B 正确;令0x =时,y b =,∴图象与y 轴的交点为()0,b ,∴C 正确;令0y =时,b x k =-, 当b x k>-时,0y <; D 不正确;故选:D .【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数解析式y kx b =+中,k 与b 对函数图象的影响是解题的关键.7.已知直线3y mx =+经过点(2,0),则关于x 的不等式 30mx +>的解集是( ) A .2x >B .2x <C .2x ≥D .2x ≤【答案】B【解析】【分析】求出m 的值,可得该一次函数y 随x 增大而减小,再根据与x 轴的交点坐标可得不等式解集.【详解】解:把(2,0)代入3y mx =+得:023m =+, 解得:32m =-, ∴一次函数3y mx =+中y 随x 增大而减小, ∵一次函数3y mx =+与x 轴的交点为(2,0),∴不等式 30mx +>的解集是:2x <,故选:B .【点睛】本题考查了待定系数法的应用,一次函数与不等式的关系,判断出函数的增减性是解题的关键.8.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2>B .x 3>C .3x 2<D .x 3<【答案】C【解析】【分析】【详解】解:∵函数y=2x 和y=ax+4的图象相交于点A (m ,3),∴3=2m ,解得m=32. ∴点A 的坐标是(32,3). ∵当3x 2<时,y=2x 的图象在y=ax+4的图象的下方,∴不等式2x<ax+4的解集为3x2 <.故选C.9.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为( )A.33元B.36元C.40元D.42元【答案】C【解析】分析:待定系数法求出当x≥12时y关于x的函数解析式,再求出x=22时y的值即可.详解:当行驶里程x⩾12时,设y=kx+b,将(8,12)、(11,18)代入,得:812 1118k bk b+=⎧⎨+=⎩,解得:24kb=⎧⎨=-⎩,∴y=2x−4,当x=22时,y=2×22−4=40,∴当小明某次打车行驶里程为22千米,则他的打车费用为40元.故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.10.如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的1l,2l分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系.以下结论正确的是( )A .甲的速度为20km/hB .甲和乙同时出发C .甲出发1.4h 时与乙相遇D .乙出发3.5h 时到达A 地【答案】C【解析】【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h 时到达A 地.【详解】解:A .甲的速度为:60÷2=30,故A 错误;B .根据图象即可得出甲比乙早出发0.5小时,故B 错误;C .设1l 对应的函数解析式为111y k x b =+,所以:1116020b k b =⎧⎨+=⎩, 解得113060k b =-⎧⎨=⎩ 即1l 对应的函数解析式为13060y x =-+;设2l 对应的函数解析式为222y k x b =+,所以:22220.503.560k b k b +=⎧⎨+=⎩, 解得 222010k b =⎧⎨=-⎩ 即2l 对应的函数解析式为22010y x =-,所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意; D .根据图形即可得出乙出发3h 时到达A 地,故D 错误.故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.11.已知一次函数y =kx+k ,其在直角坐标系中的图象大体是( )A .B .C .D .【答案】A【解析】【分析】函数的解析式可化为y =k (x +1),易得其图象与x 轴的交点为(﹣1,0),观察图形即可得出答案.【详解】函数的解析式可化为y =k (x +1),即函数图象与x 轴的交点为(﹣1,0),观察四个选项可得:A 符合.故选A .【点睛】本题考查了一次函数的图象,要求学生掌握通过解析判断其图象与坐标轴的交点位置、坐标.12.已知正比例函数0()y mx m =≠中,y 随x 的增大而减小,那么一次函数y mx m =-的图象大致是如图中的( )A .B .C .D .【答案】D【解析】【分析】=-由y随x的增大而减小即可得出m<0,再由m<0、−m>0即可得出一次函数y mx m的图象经过第一、二、四象限,对照四个选项即可得出结论.【详解】解:∵正比例函数y=mx(m≠0)中,y随x的增大而减小,∴m<0,∴−m>0,∴一次函数y=mx−m的图象经过第一、二、四象限.故选:D.【点睛】本题考查了一次函数的图象、正比例函数的性质以及一次函数图象与系数的关系,熟练掌握“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.13.如图1,在Rt△ABC中,∠ACB=90°,点P以每秒1cm的速度从点A出发,沿折线AC -CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长是()A.1.5cm B.1.2cm C.1.8cm D.2cm【答案】B【解析】【分析】【详解】由图2知,点P在AC、CB上的运动时间时间分别是3秒和4秒,∵点P的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt△ABC中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C作CH⊥AB于点H,则易得△ABC∽△ACH.∴CH ACBC AB=,即AC BC3412CH CHAB 55⋅⨯=⇒==.∴如图,点E(3,125),F(7,0).设直线EF的解析式为y kx b=+,则123k b{507k b=+=+,解得:3k5{21b5=-=.∴直线EF的解析式为321y x55=-+.∴当x5=时,()3216PD y5 1.2cm555==-⨯+==.故选B.14.一次函数y=3x+b和y=ax-3的图象如图所示,其交点为P(-2,-5),则不等式3x +b>ax-3的解集在数轴上表示正确的是( )A.B.C.D.【答案】A【解析】【分析】直接根据两函数图象的交点求出不等式的解集,再在数轴上表示出来即可.【详解】解:∵由函数图象可知,当x>-2时,一次函数y=3x+b的图象在函数y=ax-3的图象的上方,∴不等式3x+b>ax-3的解集为:x>-2,在数轴上表示为:故选:A.【点睛】本题考查的是一次函数与一元一次不等式,能利用函数图象求出不等式的解集是解答此题的关键.15.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个B.3个C.4个D.5个【答案】B【解析】【分析】根据图形给出的信息求出两车的出发时间,速度等即可解答.【详解】解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.②慢车0时出发,快车2时出发,故正确.③快车4个小时走了276km,可求出速度为69km/h,错误.④慢车6个小时走了276km,可求出速度为46km/h,正确.⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.⑥快车2时出发,14时到达,用了12小时,错误.故答案选B.【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.16.某班同学在研究弹簧的长度跟外力的变化关系时,实验记录得到相应的数据如下表: 砝码的质量x/g 0 50 100 150 200 250 300 400 500 指针位置y/cm2 345677.57.57.5则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .【答案】B 【解析】 【分析】通过(0,2)和(100,4)利用待定系数法求出一次函数的解析式,再对比图象中的折点即可选出答案. 【详解】解:由题干内容可得,一次函数过点(0,2)和(100,4).设一次函数解析式为y=k x +b ,代入点(0,2)和点(100,4)可解得,k=0.02,b=2.则一次函数解析式为y=0.02x +2.显然当y=7.5时,x =275,故选B. 【点睛】此题主要考查函数的图象和性质,利用待定系数法求一次函数解析式.17.已知一次函数21,y x =-+当0x ≤时, y 的取值范围为( ) A .1y ≤ B .0y ≥C .0y ≤D .1y ≥【答案】D 【解析】 【分析】根据不等式的性质进行计算可以求得y 的取值范围. 【详解】 解:∵0x ≤ ∴2x -0≥21x -+1≥ 故选:D.【点睛】此题主要考查一次函数的图象与性质,既可以根据函数的图象与性质,也可以根据不等式的性质求解,灵活选择简便方法是解题关键.18.在平面直角坐标系中,直线:1m y x =+与y 轴交于点A ,如图所示,依次正方形1M ,正方形2M ,……,正方形n M ,且正方形的一条边在直线m 上,一个顶点x 轴上,则正方形n M 的面积是( )A .222n -B .212n -C .22nD .212n +【答案】B 【解析】 【分析】由一次函数1y x =+,得出点A 的坐标为(0,1),求出正方形M 1的边长,即可求出正方形M 1的面积,同理求出正方形M 2的面积,即可推出正方形n M 的面积. 【详解】一次函数1y x =+,令x=0,则y=1, ∴点A 的坐标为(0,1), ∴OA=1,∴正方形M 122112+=∴正方形M 1的面积222=, ∴正方形M 1()()22222⨯=,∴正方形M 2222222+=, ∴正方形M 2的面积=3222282==, 同理可得正方形M 3的面积=5322=, 则正方形n M 的面积是212n -,故选B. 【点睛】本题考查一次函数图象上点的坐标特征、规律型,解答本题的关键是明确题意,发现题目中面积之间的关系,运用数形结合思想解答.19.已知直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于不等式12k x b k x +>的解集为( )A .1x <B .1x >C .2x >D .0x <【答案】A 【解析】 【分析】根据函数图象可知直线l 1:y=k 1x+b 与直线l 2:y=k 2x 的交点是(1,2),从而可以求得不等式12k x b k x +>的解集. 【详解】 由图象可得,12k x b k x +>的解集为x <1,故选:A . 【点睛】此题考查一次函数与一元一次不等式的关系,解题的关键是明确题意,利用数形结合的思想解答问题.20.某生物小组观察一植物生长,得到的植物高度y (单位:厘米)与观察时间x (单位:天)的关系,并画出如图所示的图象(AC 是线段,直线CD 平行于x 轴).下列说法正确的是( ).①从开始观察时起,50天后该植物停止长高;②直线AC 的函数表达式为165y x =+; ③第40天,该植物的高度为14厘米; ④该植物最高为15厘米.A .①②③B .②④C .②③D .①②③④【答案】A 【解析】【分析】①根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高;②设直线AC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线AC线段的解析式,③把x=40代入②的结论进行计算即可得解;④把x=50代入②的结论进行计算即可得解.【详解】解:∵CD∥x轴,∴从第50天开始植物的高度不变,故①的说法正确;设直线AC的解析式为y=kx+b(k≠0),∵经过点A(0,6),B(30,12),∴30126k bb+=⎧⎨=⎩,解得:156kb⎧=⎪⎨⎪=⎩,∴直线AC的解析式为165y x=+(0≤x≤50),故②的结论正确;当x=40时,1406145y=⨯+=,即第40天,该植物的高度为14厘米;故③的说法正确;当x=50时,1506165y=⨯+=,即第50天,该植物的高度为16厘米;故④的说法错误.综上所述,正确的是①②③.故选:A.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.。
人教版初中八年级数学下册第十九章《一次函数》知识点复习(含答案解析)
一、选择题1.如图,平面直角坐标系中,一次函数333=-+y x 分别交x 轴、y 轴于A 、B 两点.若C 是x 轴上的动点,则2BC AC +的最小值( )A .236+B .6C .33+D .42.一次函数y=-3x-2的图象和性质,表述正确的是( ) A .y 随x 的增大而增大 B .函数图象不经过第一象限 C .在y 轴上的截距为2D .与x 轴交于点(-2,0)3.已知函数(0)y kx k =≠中y 随x 的增大而减小,则一次函数23y kx k =+的图象大致是( )A .B .C .D .4.下列图象中,不表示y 是x 的函数的是( )A .B .C.D.,两地相距240千米.早上9点甲车从A地出发去B地,20分钟后,乙车从5.已知A BB地出发去A地.两车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示,则下列描述不正确的是()A.甲车的速度是60千米/小时B.乙车的速度是90千米/小时C.甲车与乙车在早上10点相遇D.乙车在12:00到达A地6.若直线y=kx+b经过第一、二、四象限,则函数y=bx-k的大致图像是()A.B.C.D.7.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()A.B.C .D .8.若关于x 、y 的二元一次方程组42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩的解为非负数,且a 使得一次函数(1)3y a x a =++-图象不过第四象限,那么所有符合条件的整数a 的个数是( )A .2B .3C .4D .59.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算( )A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定10.函数211+2y x=的图象如图所示,若点()111,P x y ,()222,P x y 是该函数图象上的任意两点,下列结论中错误的是( )A .10x ≠ ,20x ≠B .112y >,212y > C .若12y y =,则12||||x x = D .若12y y <,则12x x <11.下列图象中,不可能是关于x 的一次函数y =px ﹣(p ﹣3)的图象的是( )A .B .C .D .12.某一次函数的图象经过点()1,2,且y 随x 的增大而增大,则这个函数的表达式可能是( ) A .24y x =+B .31y x =-C .31y x =-+D .24y x =-+13.A ,B 两地相距30km ,甲乙两人沿同一条路线从A 地到B 地.如图,反映的是两人行进路程()y km 与行进时间t(h)之间的关系,①甲始终是匀速行进,乙的行进不是匀速的;②乙用了5个小时到达目的地;③乙比甲迟出发0.5小时;④甲在出发5小时后被乙追上.以上说法正确的个数有( )A .1个B .2个C .3个D .4个14.直线1y x 42=-与x 轴、y 轴分别相交于A ,B 两点,若点()1,2M m m +-在AOB 内部,则m 的取值范围为( )A .1433m <<B .17m -<<C .703m <<D .1123m <<15.弹簧挂上物体后伸长,已知一弹簧的长度y (cm )与所挂物体的质量m (kg )之间的关系如下表: 所挂物体的质量m/kg 0 1 2 3 4 5 弹簧的长度y/cm 1012.51517.52022.5A .在没挂物体时,弹簧的长度为10cmB .弹簧的长度随所挂物体的质量的变化而变化,弹簧的长度是自变量,所挂物体的质量是因变量C .弹簧的长度y (cm )与所挂物体的质量m (kg )之间的关系可用关系式y =2.5m +10来表示D .在弹簧能承受的范围内,当所挂物体的质量为4kg 时,弹簧的长度为20cm参考答案二、填空题16.如图,在平面直角坐标系中,过点C (0,6)的直线AC 与直线OA 相交于点A (4,2),动点M 在直线AC 上,且△OMC 的面积是△OAC 的面积的14,则点M 的坐标为_____.17.如图1,在△ABC 中,AB >AC,D 是边BC 上一动点,设B,D 两点之间的距离为x,A,D 两点之间的距离为y ,表示y 与x 的函数关系的图象如图2所示.则线段AC 的长为_____,线段AB 的长为______.18.已知一次函数y kx b =+与y mx n =+的图象如图所示.(1)写出关于x ,y 的方程组y kx by mx n=+⎧⎨=+⎩的解为________.(2)若0kx b mx n <+<+,写出x 的取值范围________.19.已知 12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当x=1时,y=-1,当x=3时,y=5,求y 与x 之间的函数关系式_______________.20.某生物小组观察一植物生长,得到植物高度y (位:厘米)与观察时间x (单位:天)的关系,并画出如图所示的图象(AC 是线段,直线CD 平行x 轴)请你算一下,该植物的最大高度是________厘米.21.如图,在平面直角坐标系中,(0,2)A ,(4,2)B ,点P 是x 轴上任意一点,当PA PB 有最小值时,P 点的坐标为________.22.正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2、…,按如图所示的方式放置.点A 1、A 2、A 3、…,和点C 1、C 2、C 3,…,分别在直线y =kx +b (k>0)和x 轴上,已知点B 1(1,1),B 2(3,2),则点B 2021的坐标是_________________.23.王阿姨从家出发,去超市交水电费.返回途中,遇到邻居交谈了一会儿再回到家,如图所示的图像是王阿姨离开家的时间t (分)和离家距离S (米)的函数图像.则王阿姨在整个过程中走得最快的速度是______米/分.24.在平面直角坐标系中,直线2y x =+和直线2y x b =-+的交点的横坐标为m .若13m -≤<,则实数b 的取值范围为____.25.在平面直角坐标系中,一次函数4y x =+的图象分别与x 轴,y 轴交于点A ,B ,点P 在一次函数 y x =的图象上,则当ABP ∆为直角三角形时,点P 的坐标是___________.26.如图,在ABC 中90ACB ∠=︒,AC BC =,BC 与y 轴交于D 点,点C 的坐标为()2,0-,点A 的坐标为()6,3-,则D 点的坐标是__________.三、解答题27.已知直线l 1:y =kx+b 经过点A (12,2)和点B (2,5). (1)求直线l 1的表达式;(2)求直线l 1与坐标轴的交点坐标.28.已知如图,直线113:4l y x m =-+与y 轴交于A(0,6),直线22:1l y kx =+分别与x 轴交于点B(-2,0),与y 轴交于点C .两条直线相交于点D ,连接AB .求:(1)直线12l l 、的解析式; (2)求△ABD 的面积;(3)在x 轴上是否存在一点P ,使得43ABP ABD S S =△△,若存在,求出点P 的坐标;若不存在,说明理由.29.已知一次函数3y kx =+与x 轴交于点()2,0A ,与y 轴交于点B .(1)求一次函数的表达式及点B 的坐标; (2)画出函数3y kx =+的图象;(3)过点B 作直线BP 与x 轴交于点P ,且2OP OA =,求ABP △的面积. 30.如图,直线EF 与x 轴、y 轴分别交于点E (-8,0),F (0,6).(1)求直线EF 的函数表达式;(2)若点A 的坐标为(-6,0),点P (m ,n )在线段EF 上(不与点E 重合) ①求△OPA 的面积S 与m 的函数表达式; ②求当△OPA 的面积为9时,点P 的坐标;③求当△OPA 的面积与△OPF 的面积相等时,点P 的坐标.参考答案。
初二数学一次函数(含答案)
一次函数例题精讲一、函数的相关概念1.常量与变量在某一变化过程中,可以取不同数值的量叫做变量,取值始终保持不变的量叫做常量.如在圆的面积公式2πS R =中,π是常数,是一个常量,而S 随R 的变化而变化,所以S 、R 是变量. 2.自变量、因变量与函数在某一变化过程中,有两个量,例如x 和y ,对于x 的每一个值,y 都有唯一的值与之对应,其中x 是自变量,y 是因变量,此时也称y 是x 的函数.函数不是数,它是指在一个变化过程中两个变量之间的关系,函数本质就是变量间的对应关系. 注意:⑴对于每一个给定的x 值,y 有一个唯一确定的值与之对应,否则y 就不是x 的函数.例如2y x =就不是函数,因为当4x =时,2y =±,即y 有两个值与x 对应.⑵对于每一个给定的y 值,x 可以有一个值与之对应,也可以有多个值与之对应.例如在函数2(3)y x =-中,2x =时,1y =;4x =时,1y =.二、函数自变量的取值范围函数自变量的取值范围是指是函数有意义的自变量的取值的全体.求自变量的取值范围通常从两方面考虑,一是要使函数的解析式有意义;二是符合客观实际.在初中阶段,自变量的取值范围考虑下面几个方面: ⑴整式:自变量的取值范围是任意实数.⑵分式:自变量的取值范围是使分母不为零的任意实数. ⑶根式:当根指数为偶数时,被开方数为非负数. ⑷零次幂或负整数次幂:使底数不为零的实数.注意:在一个函数关系式中,同时有各种代数式,函数自变量的取值范围是各种代数式中自变量取值范围的公共部分.在实际问题中,自变量的取值范围应该符合实际意义,通常往往取非负数,整数之类.三、函数的表示方法1.函数的三种表示方法:⑴列表法:通过列表表示函数的方法.⑵解析法:用数学式子表示函数的方法叫做解析法.譬如:30S t =,2S R π=. ⑶图象法:用图象直观、形象地表示一个函数的方法. 2.对函数的关系式(即解析式)的理解:⑴函数关系式是等式.例如4y x =就是一个函数关系式. ⑵函数关系式中指明了那个是自变量,哪个是函数.通常等式右边代数式中的变量是自变量,等式左边的一个字母表示函数.例如:y =x 是自变量,y 是x 的函数.⑶函数关系式在书写时有顺序性.例如:31y x =-+是表示y 是x 的函数,若写成13yx -=就表示x 是y 的函数.求y 与x 的函数关系时, 必须是只用变量x 的代数式表示y ,得到的等式右边只含x 的代数式.四、函数的图象1.函数图象的概念:对于一个函数,如果把自变量x 和函数y 的每对值分别作为点的横坐标与纵坐标,在平面直角坐标系内描出相应的点,这些点所组成的图形,就是函数的图象. 2.函数图象的画法⑴列表; ⑵描点; ⑶连线. 3.函数解析式与函数图象的关系:由函数图象的定义可知,图象上任意一点(),P x y 中的x ,y 都是解析式方程的一个解.反之,以解析式方程的任意一个解为坐标的点一定在函数的图象上.判断一个点是否在函数图象上的方法是:将这个点的坐标值代入函数的j 解析式,如果满足函数解析式,这个店就在函数的图象上,否则就不在这个函数的图象上.板块一、函数及其自变量取值范围【例1】 下列关系式中不是函数关系的是( )A.y =0x >)B.y x =(0x >)C.y =0x >)D.y =(x <【答案】A【例2】 在函数y =中,自变量x 的值取值范围是( )A.3x <-B.3x ≤-C.3x ≤D.3x >【答案】D【例3】 函数y 的自变量的取值范围是( )A.22x -<≤B.22x -≤≤C.2x ≤且2x ≠D.22x -<<【答案】A【例4】 求下列各函数中自变量x 的取值范围;⑴y =y;⑶0y x =;⑷y =+【答案】⑴32x ≤且1x ≠-;⑵1x ≥且x ≠40x -≤<或04x <≤;⑷102x ≤<或122x <≤【例5】 等腰三角形的周长为30,写出它的底边长y 与腰长x 之间的函数关系,并写出自变量的取值范围?【答案】⑴302y x =-,由三角形的三边关系可得:2x y >,0x >,0y >,可得15152x <<. 【例6】 如图,周长为24的凸五边形ABCDE 被对角线BE 分为等腰ABE ∆及矩形BCDE ,AE DE =,设AB 的长为x ,CD 的长为y ,求y 与x 之间的函数关系式,写出自变量的取值范围.【答案】244y x =-,在ABE ∆中,2244x x >-, 所以4x >,故46x <<.【例7】 小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( ) A .12分钟 B .15分钟 C .25分钟 D .27分钟【答案】B【例8】 李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。
初中数学一次函数知识点总复习含答案(1)
初中数学一次函数知识点总复习含答案(1)一、选择题1.若A (x 1,y 1)、B (x 2,y 2)是一次函数y=ax+x-2图像上的不同的两点,记()()1212m x x y y =--,则当m <0时,a 的取值范围是( )A .a <0B .a >0C .a <-1D .a >-1 【答案】C【解析】【分析】【详解】∵A (x 1,y 1)、B (x 2,y 2)是一次函数2(1)2y ax x a x =+-=+-图象上的不同的两点,()()12120m x x y y =--<,∴该函数图象是y 随x 的增大而减小,∴a+1<0,解得a<-1,故选C.【点睛】此题考查了一次函数图象上点的坐标特征,要根据函数的增减性进行推理,是一道基础题.2.如图,已知一次函数22y x =-+的图象与坐标轴分别交于A 、B 两点,⊙O 的半径为1,P 是线段AB 上的一个点,过点P 作⊙O 的切线PM ,切点为M ,则PM 的最小值为( )A .2B 2C 5D 3【答案】D 【解析】【分析】【详解】 解:连结OM 、OP ,作OH ⊥AB 于H ,如图,先利用坐标轴上点的坐标特征: 当x=0时,y=﹣22,则A (0,2),当y=0时,﹣2=0,解得2,则B (2,0),所以△OAB为等腰直角三角形,则AB=2OA=4,OH=12AB=2,根据切线的性质由PM为切线,得到OM⊥PM,利用勾股定理得到PM=22OP OM-=21OP-,当OP的长最小时,PM的长最小,而OP=OH=2时,OP的长最小,所以PM的最小值为2213-=.故选D.【点睛】本题考查切线的性质;一次函数图象上点的坐标特征.3.一次函数y=kx+b(k<0,b>0)的图象可能是()A. B. C.D.【答案】C【解析】【分析】根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限.【详解】∵k<0,∴一次函数y=kx+b的图象经过第二、四象限.又∵b>0时,∴一次函数y=kx+b的图象与y轴交与正半轴.综上所述,该一次函数图象经过第一象限.故答案为:C.【点睛】考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.4.某班同学从学校出发去太阳岛春游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.大客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的107继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是1km/min;③a=15;④当小轿车驶到景点入口时,大客车还需要10分钟才能到达景点入口.A.1个B.2个C.3个D.4个【答案】D【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可知,学校到景点的路程为40km,故①正确,小轿车的速度是:40÷(60﹣20)=1km/min,故②正确,a=1×(35﹣20)=15,故③正确,大客车的速度为:15÷30=0.5km/min,当小轿车驶到景点入口时,大客车还需要:(40﹣15)÷10(0.5)7﹣(40﹣15)÷1=10分钟才能达到景点入口,故④正确,故选D.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.5.如图,直线y=-x+m与直线y=nx+5n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+5n>0的整数解为()A.-5,-4,-3 B.-4,-3 C.-4,-3,-2 D.-3,-2【答案】B【解析】【分析】根据一次函数图像与不等式的性质即可求解.【详解】直线y=nx+5n中,令y=0,得x=-5∵两函数的交点横坐标为-2,∴关于x的不等式-x+m>nx+5n>0的解集为-5<x<-2故整数解为-4,-3,故选B.【点睛】此题主要考查一次函数与不等式的关系,解题的关键是熟知一次函数的图像与性质.6.如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的1l,2l分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系.以下结论正确的是( )A .甲的速度为20km/hB .甲和乙同时出发C .甲出发1.4h 时与乙相遇D .乙出发3.5h 时到达A 地【答案】C【解析】【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h 时到达A 地.【详解】解:A .甲的速度为:60÷2=30,故A 错误;B .根据图象即可得出甲比乙早出发0.5小时,故B 错误;C .设1l 对应的函数解析式为111y k x b =+,所以:1116020b k b =⎧⎨+=⎩, 解得113060k b =-⎧⎨=⎩ 即1l 对应的函数解析式为13060y x =-+;设2l 对应的函数解析式为222y k x b =+,所以:22220.503.560k b k b +=⎧⎨+=⎩, 解得 222010k b =⎧⎨=-⎩ 即2l 对应的函数解析式为22010y x =-,所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意; D .根据图形即可得出乙出发3h 时到达A 地,故D 错误.故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.7.一次函数y mx n =-+的图象经过第二、三、四象限,则化简22()m n n -+所得的结果是( )A .mB .m -C .2m n -D .2m n -【答案】D【解析】【分析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0,∴22()m n n -+=|m ﹣n |+|n |=m ﹣n ﹣n=m ﹣2n ,故选D .【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.8.已知正比例函数0()y mx m =≠中,y 随x 的增大而减小,那么一次函数y mx m =-的图象大致是如图中的( )A .B .C .D .【答案】D【解析】【分析】由y 随x 的增大而减小即可得出m <0,再由m <0、−m >0即可得出一次函数y mx m =-的图象经过第一、二、四象限,对照四个选项即可得出结论.解:∵正比例函数y =mx (m≠0)中,y 随x 的增大而减小,∴m <0,∴−m >0,∴一次函数y =mx−m 的图象经过第一、二、四象限.故选:D .【点睛】本题考查了一次函数的图象、正比例函数的性质以及一次函数图象与系数的关系,熟练掌握“k <0,b >0⇔y =kx +b 的图象在一、二、四象限”是解题的关键.9.将直线21y x =+向下平移n 个单位长度得到新直线21y x =-,则n 的值为( ) A .2-B .1-C .1D .2 【答案】D【解析】【分析】直接根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知:直线y=2x+1向下平移n 个单位长度,得到新的直线的解析式是y=2x+1-n ,则1-n=-1,解得n=2.故选:D .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.10.一次函数 y = mx +1m -的图像过点(0,2),且 y 随 x 的增大而增大,则 m 的值为( )A .-1B .3C .1D .- 1 或 3【答案】B【解析】【分析】先根据函数的增减性判断出m 的符号,再把点(0,2)代入求出m 的值即可.【详解】∵一次函数y=mx+|m-1|中y 随x 的增大而增大,∵一次函数y=mx+|m-1|的图象过点(0,2),∴当x=0时,|m-1|=2,解得m1=3,m2=-1<0(舍去).故选B.【点睛】本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣212a+=﹣a﹣12,纵坐标为:y=()()224214a a a--+=﹣2a﹣14,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+34,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.12.一次函数y=3x+b和y=ax-3的图象如图所示,其交点为P(-2,-5),则不等式3x +b>ax-3的解集在数轴上表示正确的是( )A.B.C.D.【答案】A【解析】【分析】直接根据两函数图象的交点求出不等式的解集,再在数轴上表示出来即可.【详解】解:∵由函数图象可知,当x>-2时,一次函数y=3x+b的图象在函数y=ax-3的图象的上方,∴不等式3x+b>ax-3的解集为:x>-2,在数轴上表示为:故选:A.【点睛】本题考查的是一次函数与一元一次不等式,能利用函数图象求出不等式的解集是解答此题的关键.13.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个B.3个C.4个D.5个【答案】B【解析】【分析】根据图形给出的信息求出两车的出发时间,速度等即可解答.【详解】解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.②慢车0时出发,快车2时出发,故正确.③快车4个小时走了276km ,可求出速度为69km/h ,错误. ④慢车6个小时走了276km ,可求出速度为46km/h ,正确. ⑤慢车走了18个小时,速度为46km/h ,可得A,B 距离为828km ,正确. ⑥快车2时出发,14时到达,用了12小时,错误.故答案选B .【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.14.如图,已知直线1y x b =+与21y kx =-相交于点P ,点P 的横坐标为1-,则关于x 的不等式1x b kx +≤-的解集在数轴上表示正确的是( ).A .B .C .D .【答案】D【解析】 试题解析:当x >-1时,x+b >kx-1,即不等式x+b >kx-1的解集为x >-1.故选A .考点:一次函数与一元一次不等式.15.对于一次函数24y x =-+,下列结论正确的是( )A .函数值随自变量的增大而增大B .函数的图象不经过第一象限C .函数的图象向下平移4个单位长度得2y x =-的图象D .函数的图象与x 轴的交点坐标是()0,4【答案】C【解析】【分析】根据一次函数的系数结合一次函数的性质,即可得知A 、B 选项不正确,代入y=0求出与之对应的x 值,即可得出D 不正确,根据平移的规律求得平移后的解析式,即可判断C 正确,此题得解.【详解】解:A 、∵k=-2<0,∴一次函数中y 随x 的增大而减小,故 A 不正确;B 、∵k=-2<0,b=4>0,∴一次函数的图象经过第一、二、四象限,故B 不正确;C 、根据平移的规律,函数的图象向下平移4个单位长度得到的函数解析式为y=-2x+4-4,即y=-2x ,故C 正确;D 、令y=-2x+4中y=0,则x=2,∴一次函数的图象与x 轴的交点坐标是(2,0)故D 不正确.故选:C .【点睛】此题考查一次函数的图象以及一次函数的性质,解题的关键是逐条分析四个选项.本题属于基础题,难度不大,解决该题时,熟悉一次函数的性质、一次函数图象上点的坐标特征以及一次函数图象与系数的关系是解题的关键.16.下列函数:①y x =;②4z y =;③4y x =,④21y x =+其中一次函数的个数是( )A .1B .2C .3D .4 【答案】C【解析】【分析】根据一次函数的定义条件进行逐一分析即可.【详解】①y=x 是一次函数,故①符合题意; ②4z y =是一次函数,故②符合题意; ③4y x=自变量次数不为1,故不是一次函数,故③不符合题意; ④y=2x+1是一次函数,故④符合题意.综上所述,是一次函数的个数有3个,故选:C .【点睛】此题考查了一次函数的定义,解题关键在于掌握一次函数y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为1.17.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A .B .C .D .【答案】C【解析】【分析】根据函数图象易知k 0<,可得32k 0-+<,所以函数图象沿y 轴向下平移可得.【详解】解:根据函数图象易知k 0<,∴32k 0-+<,故选:C .【点睛】此题主要考查一次函数的性质与图象,正确理解一次函数的性质与图象是解题关键.18.如图在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB ∆沿射线AO 平移,平移后点A '的横坐标为43,则点B '的坐标为( )A .(2)-B .-C .(6,2)-D .2)-【答案】D【解析】【分析】 先根据已知条件求出点A 、B 的坐标,再求出直线OA 的解析式,继而得出点A '的纵坐标,找出点A 平移至点A '的规律,即可求出点B '的坐标.【详解】解:∵三角形OAB 是等边三角形,且边长为4∴(2),(0,4)A B -设直线OA 的解析式为y kx =,将点A 坐标代入,解得:3k =-即直线OA 的解析式为:3y x =-将点A '的横坐标为4y =-即点A '的坐标为4)-∵点A 向右平移6个单位得到点A '∴B '的坐标为(046)2)+-=-.故选:D .【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.19.若一次函数y=kx+b 的图象经过一、二、四象限,则一次函数y=-bx+k 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】【分析】根据一次函数y=kx+b 图象在坐标平面内的位置关系先确定k ,b 的取值范围,再根据k ,b 的取值范围确定一次函数y=-bx+k 图象在坐标平面内的位置关系,从而求解.【详解】解:一次函数y=kx+b 过一、二、四象限,则函数值y 随x 的增大而减小,因而k <0;图象与y 轴的正半轴相交则b >0,因而一次函数y=-bx+k 的一次项系数-b <0,y 随x 的增大而减小,经过二四象限,常数项k<0,则函数与y轴负半轴相交,因而一定经过二三四象限,因而函数不经过第一象限.故选:A.【点睛】本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y 随x的增大而增大⇔k>0;一次函数y=kx+b图象与y轴的正半轴相交⇔b>0,一次函数y=kx+b图象与y轴的负半轴相交⇔b<0,一次函数y=kx+b图象过原点⇔b=0.20.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(12,12m),则不等式组mx﹣2<kx+1<mx的解集为()A.x>12B.12<x<32C.x<32D.0<x<32【答案】B 【解析】【分析】由mx﹣2<(m﹣2)x+1,即可得到x<32;由(m﹣2)x+1<mx,即可得到x>12,进而得出不等式组mx﹣2<kx+1<mx的解集为12<x<32.【详解】把(12,12m)代入y1=kx+1,可得1 2m=12k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<32;当kx+1<mx时,(m﹣2)x+1<mx,解得x>12,∴不等式组mx﹣2<kx+1<mx的解集为12<x<32,故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.。
《常考题》初中八年级数学下册第十九章《一次函数》经典练习题(含答案解析)
一、选择题1.已知函数(0)y kx k =≠中y 随x 的增大而减小,则一次函数23y kx k =+的图象大致是( )A .B .C .D .2.如图①,在长方形MNPQ 中,动点R 从点N 出发,沿着N P Q M →→→方向运动至点M 处停止.设点R 运动的路程为,x MNR ∆的面积为y ,如果y 关于x 的函数图象如图②所示,那么下列说法错误的是( )A .5MN =B .长方形MNPQ 的周长是18C .当6x =时,10y =D .当8y =时,10x =3.如图1,四边形ABCD 是轴对称图形,对角线AC ,BD 所在直线都是其对称轴,且AC ,BD 相交于点E .动点P 从四边形ABCD 的某个顶点出发,沿图1中的线段匀速运动.设点P 运动的时间为x ,线段EP 的长为y ,图2是y 与x 的函数关系的大致图象,则点P 的运动路径可能是( )A .CB A E →→→B .CDE A →→→ C .A E C B →→→ D .A E D C →→→4.如图,在平面直角坐标系中,点()2,A m 在第一象限,若点A 关于x 轴的对称点B 在直线1y x =-+上,则m 的值为( )A .-1B .1C .2D .3 5.已知一次函数2y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()2,4-B .()2,4--C .()2,4D .()0,46.已知直线()1:0l y kx b k =+≠与直线()2:30l y mx m =-<在第三象限交于点M ,若直线1l 与x 轴的交点为()10B ,,则k 的取值范围是( ) A .33k -<< B .03k <<C .04k <<D .30k -<< 7.如图,已知△ABC 为等边三角形,AB=2,点D 为边AB 上一点,过点D 作DE ∥AC ,交BC 于E 点;过E 点作EF ⊥DE ,交AB 的延长线于F 点.设AD=x ,△DEF 的面积为y ,则能大致反映y 与x 函数关系的图象是( )A .B .C .D . 8.下列关于一次函数25y x =-+的说法,错误的是( )A .函数图象与y 轴的交点()0,5B .当x 值增大时,y 随着x 的增大而减小C .当 5y >时,0x < D .图象经过第一、二、三象限 9.火车匀速通过隧道时,火车在隧道内的长度y (米)与火车行驶时间x (秒)之间的关系用图像描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )A .①②③B .①②④C .③④D .①③④ 10.若点(-2,y 1),(3,y 2)都在函数y =-2x +b 的图像上,则y 1与y 2的大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .无法确定 11.下列图象中,不可能是关于x 的一次函数y =px ﹣(p ﹣3)的图象的是( ) A . B . C . D . 12.已知:将直线21y x =-向左平移2个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( )A .经过第一、二、三象限B .与x 轴交于()1,0-C .与y 轴交于()0,1D .y 随x 的增大而减小 13.关于函数(3)y k x k =-+,给出下列结论:①当3k ≠时,此函数是一次函数;②无论k 取什么值,函数图象必经过点(1,3)-;③若图象经过二、三、四象限,则k 的取值范围是0k <;④若函数图象与x 轴的交点始终在正半轴,则k 的取值范围是03k <<.其中正确结论的序号是( )A .①②③B .①③④C .②③④D .①②③④ 14.A ,B 两地相距30km ,甲乙两人沿同一条路线从A 地到B 地.如图,反映的是两人行进路程()y km 与行进时间t(h)之间的关系,①甲始终是匀速行进,乙的行进不是匀速的;②乙用了5个小时到达目的地;③乙比甲迟出发0.5小时;④甲在出发5小时后被乙追上.以上说法正确的个数有( )A .1个B .2个C .3个D .4个 15.直线1y x 42=-与x 轴、y 轴分别相交于A ,B 两点,若点()1,2M m m +-在AOB 内部,则m 的取值范围为( )A .1433m <<B .17m -<<C .703m <<D .1123m << 二、填空题16.函数21x y x =-中自变量x 的取值范围是________. 17.如图在平面直角坐标系中,平行四边形ABCD 的对角线交于点E ,//CD x 轴,若AC BD =,6CD =,AED 的面积为6,点A 为(2,)n ,BD 所在直线的解析式为1(0)y kx k k =++≠,则AC 所在直线的解析式为________.18.如图,直线l 是一次函数y kx b =+的图象,若点()4,A m 在直线l 上,则m 的值是____.19.已知y =kx+b ,当﹣1≤x≤4时,3≤y≤6,则k ,b 的值分别是_____.20.如图,已知A(8,0),点P 为y 轴上的一动点,线段PA 绕着点P 按逆时针方向旋转90°至线段PB 位置,连接AB 、OB ,则OB +BA 的最小值是__________.21.如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等份,分点分别为1231,,,,n P P P P -,过每个分点作x 轴的垂线分别交直线AB 于点1231,,,,n T T T T -,用1231,,,,n S S S S -分别表示11212121Rt ,Rt ,,Rt n n n T OP T PP T P P ---△△△的面积,则当n=4时,121n S S S -+++=_______;当n=2020时,1231n S S S S -++++=______.22.如图,直线y =﹣43x +8与x 轴、y 轴分别交于点A 、B ,∠BAO 的角平分线与y 轴交于点M ,则OM 的长为_____.23.如图,在平面直角坐标系中,直线l :y =x +2交x 轴于点A ,交y 轴于点A 1,点A 2,A 3...在直线l 上,点B 1,B 2,B 3..在x 轴的正半轴上,若△A 1OB 1,△A 2B 1B 2,△A 3B 2B 3...,依次均为等腰直角三角形,直角顶点都在x 轴上,则第2021个等腰直角三角形A 2021B 2020B 2021顶点B 2021的横坐标为__________.24.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为()6,8,点D 是OA 的中点,点E 在线段AB 上,当CDE ∆的周长最小时,点E 的坐标是_______.25.如图,经过点B (﹣4,0)的直线y =kx +b 与直线y =mx 相交于点A (﹣2,﹣4),则关于x 不等式mx <kx +b <0的解集为______.26.在学校,每一位同学都对应着一个学籍号,在数学中也有一些对应.现定义一种对应关系f ,使得数对(),x y 和数z 是对应的,此时把这种关系记作:(),f x y z =.对于任意的数m ,n (m n >),对应关系f 由如表给出: (),x y(),n n (),m n (),n m (),f x y n m n - m n + 如:1,2213f =+=,2,1211f =-=,1,11f --=-,则使等式()12,32f x x +=成立的x 的值是___________. 三、解答题27.某校服生产厂家计划在年底推出两款新校服A 和B 共80套,预计前期投入资金不少于20900元,但不超过20960元,且所投入资金全部用于两种校服的研制,其成本和售价如表:A B 成本价(元/套)250 280 售价(元/套) 300 340(1)该厂家有几种生产新校服的方案可供选择?(2)该厂家要想获得最大的利润,最大利润为多少?(3)经市场调查,年底前每套B 款校服售价不会改变,而每套A 款校服的售价将会提高m 元()0m >,且所生产的两种校服都可以售完,该厂家又该如何安排生产校服才能获得最大利润呢?28.如图,直线6y kx =+与x 轴、y 轴分别相交于点E 、F ,点E 的坐标为()8,0-,点A 的坐标为()6,0-,点(),P x y 是第二象限内的直线上的一个动点.(1)求k 的值.(2)在点P 的运动过程中,写出OPA 的面积S 与x 的函数表达式,并写出自变量x 的取值范围.(3)已知()0,2Q -,当点P 运动到什么位置时,直线PQ 将四边形EPOQ 分成两部分,面积比为1:2,请直接写出P 点坐标.29.如图,正比例函数3y x =-与一次函数y kx b =+相交于点(),3A a -,并且一次函数y kx b =+经过x 轴上的点0()6,B -.(1)求一次函数y kx b =+的表达式;(2结合函数图像,求关于x ,y 的二元一次方程组30x y kx y b +=⎧⎨-=-⎩的解; (3)结合函数图像,求关于x 的不等式(3)0k x b ++≥的解集.30.某水果生产基地销售苹果,提供以下两种购买方式供客户选择:方式1:若客户缴纳1200元会费加盟为生产基地合作单位,则苹果成交价为3元/千克. 方式2:若客户购买数量达到或超过1500千克,则成交价为3.5元/千克;若客户购买数量不足1500千克,则成交价为4元/千克.设客户购买苹果数量为x (千克),所需费用为y (元)﹒(1)若客户按方式1购买,请写出y (元)与x (千克)之间的函数表达式.(备注:按方式1购买苹果所需费用=生产基地合作单位会费+苹果成交总价)(2)如果购买数量超过1500千克,请说明客户选择哪种购买方式更省钱.。
一次函数练习题与答案
一次函数练习题与答案一次函数练习题与答案一次函数是初中数学中的重要知识点,也是解决实际问题中常用的数学模型。
它的一般形式为y=ax+b,其中a和b为常数,x为自变量,y为因变量。
一次函数的图像是一条直线,具有许多有趣的性质和应用。
下面,我们将通过一些练习题来加深对一次函数的理解,并给出详细的答案解析。
练习题1:已知一次函数y=2x+1,求当x=3时的函数值。
解析:将x=3代入函数中,得到y=2×3+1=7。
所以当x=3时,函数值为7。
练习题2:已知一次函数y=-3x+5,求使得函数值等于0的x的值。
解析:当函数值等于0时,即-3x+5=0。
解这个方程得到x=5/3。
所以使得函数值等于0的x的值为5/3。
练习题3:已知一次函数y=4x-2和y=-2x+6,求它们的交点坐标。
解析:当两个函数的函数值相等时,即4x-2=-2x+6。
解这个方程得到x=1。
将x=1代入其中一个函数中,得到y=4×1-2=2。
所以它们的交点坐标为(1, 2)。
练习题4:已知一次函数的图像通过点(2, 3)和(-1, 1),求这个函数的解析式。
解析:设这个函数的解析式为y=ax+b。
将点(2, 3)代入函数中,得到3=2a+b;将点(-1, 1)代入函数中,得到1=-a+b。
解这个方程组,得到a=2,b=-1。
所以这个函数的解析式为y=2x-1。
练习题5:已知一次函数的图像与x轴交于点(3, 0),求这个函数的解析式。
解析:当函数与x轴交于点(3, 0)时,即y=a×3+b=0。
解这个方程得到a=-b/3。
所以这个函数的解析式为y=(-b/3)x+b。
通过以上练习题,我们可以看到一次函数的一些基本特点和求解方法。
一次函数的图像是一条直线,它的斜率决定了直线的倾斜程度。
当斜率为正数时,直线向上倾斜;当斜率为负数时,直线向下倾斜;当斜率为零时,直线平行于x 轴。
截距则决定了直线与y轴的交点。
一次函数的应用非常广泛,可以用来解决许多实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学一次函数知识点训练及答案一、选择题1.如图:图中的两条射线分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑了12米;④8秒钟后,甲超过了乙其中正确的说法是()A.①②B.②③④C.②③D.①③④【答案】B【解析】【分析】根据函数图象上特殊点的坐标和实际意义即可作出判断.【详解】根据函数图象的意义,①已知甲的速度比乙快,故射线OB表示甲的路程与时间的函数关系;错误;②甲的速度为:64÷8=8米/秒,乙的速度为:52÷8=6.5米/秒,故甲的速度比乙快1.5米/秒,正确;③甲让乙先跑了12米,正确;④8秒钟后,甲超过了乙,正确;故选B.【点睛】正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到随着自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.2.如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A .﹣5B .32C .52D .7【答案】C【解析】【分析】 把(-2,0)和(0,1)代入y=kx+b ,求出解析式,再将A (3,m )代入,可求得m.【详解】把(-2,0)和(0,1)代入y=kx+b ,得201k b b -+=⎧⎨=⎩, 解得121k b ⎧=⎪⎨⎪=⎩ 所以,一次函数解析式y=12x+1, 再将A (3,m )代入,得 m=12×3+1=52. 故选C.【点睛】 本题考核知识点:考查了待定系数法求一次函数的解析式,根据解析式再求函数值.3.已知过点()2?3,-的直线()0y ax b a =+≠不经过第一象限.设s a 2b =+,则s 的取值范围是( )A .352s -≤≤-B .362s -<≤-C .362s -≤≤-D .372s -<≤- 【答案】B【解析】 试题分析:∵过点()2?3,-的直线()0y ax b a =+≠不经过第一象限, ∴0{023a b a b <≤+=-.∴23b a =--. ∵s a 2b =+,∴4636s a a a =--=--.由230b a =--≤得399333662222a a a ≥-⇒-≤⇒--≤-=-,即32s ≤-. 由0a <得3036066a a ->⇒-->-=-,即6s >-.∴s 的取值范围是362s -<≤-. 故选B.考点:1.一次函数图象与系数的关系;2.直线上点的坐标与方程的关系;3.不等式的性质.4.如图,函数4y x =-和y kx b =+的图象相交于点()8A m-,,则关于x 的不等式()40k x b ++>的解集为( )A .2x >B .02x <<C .8x >-D .2x <【答案】A【解析】【分析】 直接利用函数图象上点的坐标特征得出m 的值,再利用函数图象得出答案即可.【详解】解:∵函数y =−4x 和y =kx +b 的图象相交于点A (m ,−8),∴−8=−4m ,解得:m =2,故A 点坐标为(2,−8),∵kx +b >−4x 时,(k +4)x +b >0,则关于x 的不等式(k +4)x +b >0的解集为:x >2.故选:A .【点睛】此题主要考查了一次函数与一元一次不等式,正确利用函数图象分析是解题关键.5.平面直角坐标系中,点(0,0)O 、(2,0)A 、(,2)B b b -+,当45ABO ∠<︒时,b 的取值范围为( )A .0b <B .2b <C .02b <<D .0b <或2b >【解析】【分析】根据点B 的坐标特征得到点B 在直线y=-x+2上,由于直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图,易得∠AQO=45°,⊙P 与直线y=-x+2只有一个交点,根据圆外角的性质得到点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,所以b <0或b >2.【详解】解∵B 点坐标为(b ,-b+2),∴点B 在直线y=-x+2上,直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图, ∵A (2,0),∴∠AQO=45°,∴点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,∴b 的取值范围为b <0或b >2.故选D .【点睛】本题考查了一函数图象上点的坐标特征:一次函数y=kx+b ,(k≠0,且k ,b 为常数)的图象是一条直线.它与x 轴的交点坐标是(b k-,0);与y 轴的交点坐标是(0,b ).直线上任意一点的坐标都满足函数关系式y=kx+b .6.下列函数中,y 随x 的增大而增大的函数是( )A .2y x =-B .21y x =-+C .2y x =-D .2y x =-- 【答案】C【解析】【分析】根据一次函数的性质对各选项进行逐一分析即可.∵y=-2x 中k=-2<0,∴y 随x 的增大而减小,故A 选项错误;∵y=-2x+1中k=-2<0,∴y 随x 的增大而减小,故B 选项错误;∵y=x-2中k=1>0,∴y 随x 的增大而增大,故C 选项正确;∵y=-x-2中k=-1<0,∴y 随x 的增大而减小,故D 选项错误.故选C .【点睛】本题考查的是一次函数的性质,一次函数y=kx+b (k≠0)中,当k >0时y 随x 的增大而增大;k<0时y 随x 的增大而减小;熟练掌握一次函数的性质是解答此题的关键.7.在同一平面直角坐标系中的图像如图所示,则关于21k x k x b <+的不等式的解为( ).A .1x >-B .2x <-C .1x <-D .无法确定【答案】C【解析】【分析】 求关于x 的不等式12k x b k x +>的解集就是求:能使函数1y k x b =+的图象在函数2y k x =的上边的自变量的取值范围.【详解】解:能使函数1y k x b =+的图象在函数2y k x =的上边时的自变量的取值范围是1x <-. 故关于x 的不等式12k x b k x +>的解集为:1x <-.故选:C .【点睛】本题考查了一次函数与一元一次不等式的关系,从函数的角度看,就是寻求使一次函数y ax b =+的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的集合.利用数形结合是解题的关键.8.若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( ) A .2B .8C .﹣2D .﹣8【答案】A【解析】试题分析:设正比例函数解析式为:y=kx ,将点A (3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.考点:一次函数图象上点的坐标特征.9.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为( )A.33元B.36元C.40元D.42元【答案】C【解析】分析:待定系数法求出当x≥12时y关于x的函数解析式,再求出x=22时y的值即可.详解:当行驶里程x⩾12时,设y=kx+b,将(8,12)、(11,18)代入,得:812 1118k bk b+=⎧⎨+=⎩,解得:24kb=⎧⎨=-⎩,∴y=2x−4,当x=22时,y=2×22−4=40,∴当小明某次打车行驶里程为22千米,则他的打车费用为40元.故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.10.如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为()A.x>﹣2 B.x<﹣2 C.x>4 D.x<4【答案】A【解析】【分析】求不等式kx+b>4的解集就是求函数值大于4时,自变量的取值范围,观察图象即可得.【详解】由图象可以看出,直线y=4上方函数图象所对应自变量的取值为x>-2,∴不等式kx+b>4的解集是x>-2,故选A.【点睛】本题考查了一次函数与一元一次不等式;观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.也考查了数形结合的思想.11.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣212a+=﹣a﹣12,纵坐标为:y=()()224214a a a--+=﹣2a﹣14,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+34,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.12.如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的1l,2l分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系.以下结论正确的是( )A .甲的速度为20km/hB .甲和乙同时出发C .甲出发1.4h 时与乙相遇D .乙出发3.5h 时到达A 地【答案】C【解析】【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h 时到达A 地.【详解】解:A .甲的速度为:60÷2=30,故A 错误;B .根据图象即可得出甲比乙早出发0.5小时,故B 错误;C .设1l 对应的函数解析式为111y k x b =+,所以:1116020b k b =⎧⎨+=⎩, 解得113060k b =-⎧⎨=⎩ 即1l 对应的函数解析式为13060y x =-+;设2l 对应的函数解析式为222y k x b =+,所以:22220.503.560k b k b +=⎧⎨+=⎩, 解得 222010k b =⎧⎨=-⎩ 即2l 对应的函数解析式为22010y x =-,所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意; D .根据图形即可得出乙出发3h 时到达A 地,故D 错误.故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.13.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧总长y(cm)与所挂重物x(kg)之间的关系式为()A.y=0.5x+12 B.y=x+10.5 C.y=0.5x+10 D.y=x+12【答案】A【解析】分析:由上表可知12.5-12=0.5,13-12.5=0.5,13.5-13=0.5,14-13.5=0.5,14.5-14=0.5,15-14.5=0.5,0.5为常量,12也为常量.故弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式.详解:由表可知:常量为0.5;所以,弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式为y=0.5x+12.故选A.点睛:本题考查了函数关系,关键在于根据图表信息列出等式,然后变形为函数的形式.m-的图像过点(0,2),且 y 随 x 的增大而增大,则 m 的值为14.一次函数 y = mx +1()A.-1 B.3 C.1 D.- 1 或 3【答案】B【解析】【分析】先根据函数的增减性判断出m的符号,再把点(0,2)代入求出m的值即可.【详解】∵一次函数y=mx+|m-1|中y随x的增大而增大,∴m>0.∵一次函数y=mx+|m-1|的图象过点(0,2),∴当x=0时,|m-1|=2,解得m1=3,m2=-1<0(舍去).故选B.【点睛】本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个B.3个C.4个D.5个【答案】B【解析】【分析】根据图形给出的信息求出两车的出发时间,速度等即可解答.【详解】解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.②慢车0时出发,快车2时出发,故正确.③快车4个小时走了276km,可求出速度为69km/h,错误.④慢车6个小时走了276km,可求出速度为46km/h,正确.⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.⑥快车2时出发,14时到达,用了12小时,错误.故答案选B.【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.16.关于一次函数y=3x+m﹣2的图象与性质,下列说法中不正确的是()A.y随x的增大而增大B.当m≠2时,该图象与函数y=3x的图象是两条平行线C.若图象不经过第四象限,则m>2D.不论m取何值,图象都经过第一、三象限【答案】C【解析】【分析】根据一次函数的增减性判断A;根据两条直线平行时,k值相同而b值不相同判断B;根据一次函数图象与系数的关系判断C、D.【详解】A 、一次函数y=3x+m ﹣2中,∵k=3>0,∴y 随x 的增大而增大,故本选项正确;B 、当m≠2时,m ﹣2≠0,一次函数y=3x+m ﹣2与y=3x 的图象是两条平行线,故本选项正确;C 、若图象不经过第四象限,则经过第一、三象限或第一、二、三象限,所以m ﹣2≥0,即m≥2,故本选项错误;D 、一次函数y=3x+m ﹣2中,∵k=3>0,∴不论m 取何值,图象都经过第一、三象限,故本选项正确.故选:C .【点睛】本题考查了两条直线的平行问题:若直线y 1=k 1x+b 1与直线y 2=k 2x+b 2平行,那么k 1=k 2,b 1≠b 2.也考查了一次函数的增减性以及一次函数图象与系数的关系.17.如图,一次函数y kx b =+的图象经过点03()4)3(A B -,,,,则关于x 的不等式3 0kx b ++<的解集为( )A .4x >B .4x <C .3x >D .3x <【答案】A【解析】【分析】 由30kx b ++<即y<-3,根据图象即可得到答案.【详解】∵y kx b =+,30kx b ++<,∴kx+b<-3即y<-3,∵一次函数y kx b =+的图象经过点B(4,-3),∴当x=4时y=-3,由图象得y 随x 的增大而减小,当4x >时,y<-3,故选:A.【点睛】此题考查一次函数的性质,一次函数与不等式,正确理解函数的性质、会观察图象是解题的关键.18.已知一次函数y =kx+k ,其在直角坐标系中的图象大体是( )A .B .C .D .【答案】A【解析】【分析】函数的解析式可化为y =k (x +1),易得其图象与x 轴的交点为(﹣1,0),观察图形即可得出答案.【详解】函数的解析式可化为y =k (x +1),即函数图象与x 轴的交点为(﹣1,0),观察四个选项可得:A 符合.故选A .【点睛】本题考查了一次函数的图象,要求学生掌握通过解析判断其图象与坐标轴的交点位置、坐标.19.如图,平面直角坐标系中,ABC ∆的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线12y x b =+与ABC ∆有交点时,b 的取值范围是( )A .11b -≤≤B .112b -≤≤ C .1122b -≤≤ D .112b -≤≤【答案】B【解析】【分析】将A(1,1),B(3,1),C(2,2)的坐标分别代入直线y=12x+b中求得b的值,再根据一次函数的增减性即可得到b的取值范围.【详解】解:直线y=12x+b经过点B时,将B(3,1)代入直线y=12x+b中,可得32+b=1,解得b=-12;直线y=12x+b经过点A时:将A(1,1)代入直线y=12x+b中,可得12+b=1,解得b=12;直线y=12x+b经过点C时:将C(2,2)代入直线y=12x+b中,可得1+b=2,解得b=1.故b的取值范围是-12≤b≤1.故选B.【点睛】考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.20.已知点(k,b)为第二象限内的点,则一次函数y kx b=-+的图象大致是( ) A.B.C.D.【答案】D【解析】【分析】根据已知条件“点(k,b)为第二象限内的点”推知k、b的符号,由它们的符号可以得到一次函数y=-kx+b的图象所经过的象限.【详解】解:∵点(k,b)为第二象限内的点,∴k<0,b>0,∴-k>0.∴一次函数y=-kx+b的图象经过第一、二、三象限,观察选项,D选项符合题意.故选:D.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b <0时,直线与y轴负半轴相交.。