最新人教版高中数学选修2-2第一章《导数在研究函数中的应用》教材梳理
高中数学 第一章 导数及其应用章末归纳总结课件 新人教A版选修2-2
• [例4] 已知函数f(x)=ax3+bx2+cx在点x0 处取得极小值-4,使其导函数f′(x)>0的x 的取值范围为(1,3).
• (1)求f(x)的解析式及f(x)的极大值;
• (2)当x∈[2,3]时,求g(x)=f′(x)+6(m-2)x 的最大值.
• [解析] (1)由题意知f′(x)=3ax2+2bx+c • =3a(x-1)(x-3)(a<0), • ∴在(-∞,1)上f′(x)<0,f(x)是减函数, • 在(1,3)上f′(x)>0,f(x)是增函数, • 在(3,+∞)上f′(x)<0,f(x)是减函数. • 因此f(x)在x0=1处取极小值-4,在x=3处
• 特别要注意写单调区间时,区间之间用 “和”或“,”隔开,绝对不能用“∪” 连接.
• 2.如果函数y=f(x)在区间(a,b)的导数 f′(x)>0总成立,则该函数在(a,b)上单调递 增;f′(x)<0总成立,则该函数在(a,b)上单 调递减,求函数的单调区间转化为解不等 式f′(x)>0或f′(x)<0.
[解析] (1)a=-1 时,f(x)=lnx+x+2x-1,x∈(0,
+∞).
f′(x)=x2+xx2-2,x∈(0,+∞),
因此 f′(2)=1,
即曲线 y=f(x)在点(2,f(2))处的切线斜率为 1.
又 f(2)=ln2+2, 所以 y=f(x)在(2,f(2))处的切线方程应为 y-(ln2+ 2)=x-2,即 x-y+ln2=0. (2)因为 f(x)=lnx-ax+1-x a-1, 所以 f′(x)=1x-a+a-x2 1=-ax2-xx+2 1-a x∈(0, +∞).
函数 y=f(x)的导函数 f′(x),就是当 Δx→0 时,函数的
高中数学选修2-2(人教B版)第一章导数及其应用1.2知识点总结含同步练习题及答案
′
解:(1)y ′ = (e3x+2 ) = e3x+2 ⋅ (3x + 2)′ = 3e3x+2 ; (2)y ′ = (ln(2x − 1))′ =
1 2 . ⋅ (2x − 1)′ = 2x − 1 2x − 1
2.利用导数求函数的切线方程 描述: 利用导数求函数的切线方程 步骤一:求出函数 y = f (x) 在点 x0 处的导数 f ′ (x0 ) ; 步骤二:根据直线方程的点斜式,得到切线方程为 y − f (x0 ) = f ′ (x0 )(x − x0 ). 例题: 求曲线 y = ex + 1 在 (0, 2) 处的切线方程. 解:因为 y = ex + 1,所以 y ′ = ex ,故曲线 y = ex + 1在 (0, 2)处的切线斜率为
解:(1)因为 y =
所以在点 P 处的切线的斜率等于 4 .所以在点 P 处的切线方程是
y−
即
8 = 4(x − 2), 3
12x − 3y − 16 = 0.
(2)设切点为 (x 0 , y 0 ),则由(1)知切线的斜率 k = x2 ,切线方程为 y − y 0 = x2 (x − x 0 ) . 0 0 又切线过点 P (2,
8 1 ) 且 (x0 , y 0 ) 在曲线 y = x3 上,所以 3 3 ⎧ ⎪ 8 − y = x2 (2 − x0 ), 0 0 ⎨3 1 ⎪ ⎩ y = x3 , ⎪ 0 3 0 − 3x2 + 4 = 0, x3 0 0
整理得
即
(x0 − 2)2 (x0 + 1) = 0.
最新人教版高中数学选修2-2第一章《导数及其应用》教学设计
教学设计第一章导数及其应用复习课本章知识网络知识点精析(一)求函数的导数1.导数的基本概念、变化率;2.记住基本初等函数的导数公式;3.记住导数的四则运算法则;4.理解复合函数的求导,即[f(φ(x))]′=f′(φ(x))φ′(x).(二)导数的应用1.求函数的单调区间与极值步骤:①求出函数的定义域,求导数;②求出导数为0的点或导数不存在点;③列表讨论;④总结.2.求函数的最大值与最小值①闭区间[a,b]上连续函数f(x)一定能取到最大值与最小值,且最大值点与最小值点一定包含在区间内部导数值为0的点或内部导数不存在点或端点之中.②实际应用问题的最大与最小值.设所求的量为y,设与y有关量为x,建立y=f(x),x∈D,求f(x)的最大值或最小值.注意:若f(x0)为唯一极值,若f(x0)为极大值,则f(x0)为最大值;若f(x0)为极小值,则f(x0)为最小值.3.关于证明题(1)证明方程根的存在性;(2)证明不等式.(三)定积分1.定积分的概念(四个步骤、本质)(求曲边梯形的面积、变速直线运动的路程).2.微积分基本定理:一般地,如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),b f(x)dx=F(b)-F(a).那么⎠⎛a这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式.3.应用定积分求面积的基本步骤和注意事项.整体设计教材分析导数是高中数学新教材中新增的知识之一,体现了现代数学思想,在研究函数的性质时,有独到之处.纵观近几年各地的新课程试卷,内容主要是与单调性、最值、切线这三方面有关.作为新教材的新增内容,复习中注重导数在解决科技、经济、社会中的某些实际问题中的应用.课时分配2课时.第1课时教学目标知识与技能目标1.复习巩固导数与积分的基础知识,理清知识网络.2.理解和掌握导数与积分及其有关概念,会求一些实际问题的最大值与最小值.过程与方法目标提高学生综合、灵活运用导数的知识解决有关函数问题的能力,注意数形结合、分类讨论、函数等思想的应用.情感、态度与价值观在解决问题的过程中,培养学生独立思考问题、解决问题的能力,增强其学习积极性和提高其数学交流能力.重点难点重点:掌握导数与积分及其有关概念,巩固导数与积分的基础知识. 难点:运用导数的知识解决有关函数问题.教学过程提出问题请同学们解答下列问题:1.函数f(x)的图象是折线段ABC ,其中A 、B 、C 的坐标分别为(0,4)、(2,0)、(6,4),则f(f(0))=________,0lim x ∆→f (1+Δx )-f (1)Δx=__________.2.函数f(x)=13x 3-x 2-3x +6的单调递增区间为__________单调递减区间为__________.3.函数y =x 4-4x +3在区间[-2,3]上的最小值为( ) A .72 B .36 C .12 D .0 答案:1.2 -2基础知识聚焦:函数在某一点处的导数的定义为f ′(x 0)=0lim x ∆→f (x 0+Δx )-f (x 0)Δx及其变形,特别注意函数值的增量与自变量的增量.f ′(x 0)的几何意义表示曲线在点(x 0,f(x 0))处的切线的斜率.2.(-∞,-1),(3,+∞) (-1,3)评析:函数的单调递增区间是两个区间(-∞,-1),(3,+∞),但是不能写成(-∞,-1)∪(3,+∞).有关函数单调区间的合并主要依据是函数f(x)在(a ,b)内单调递增,在(b ,c)内单调递增,又知函数在x =b 处连续,因此f(x)在(a ,c)内单调递增.3.D 解析:y ′=4x 3-4,令y ′=0,即4x 3-4=0,所以x =1. 当x<1时,y ′<0;当x>1时,y ′>0.所以y 极小值=y|x =1=0,而端点的函数值y|x =-2=27,y|x =3=72,因此y min =0. 基础知识聚焦:考查利用导数求最值.典型示例类型一 导数的概念例1(1)用导数的定义求函数f(x)=1x在x =1处的导数; (2)用导数的定义求函数f(x)=1x +2的导数.思路分析:用导数的定义求导数时,先求平均变化率,再求极限. 解:(1)Δy Δx =f (1+Δx )-f (1)Δx =11+Δx -1Δx=1-1+Δx Δx 1+Δx=1-(1+Δx )Δx 1+Δx (1+1+Δx )=-ΔxΔx (1+Δx +1+Δx )=-11+Δx +1+Δx,所以f ′(1)=0lim x ∆→ ΔyΔx =0lim x ∆→-11+Δx +1+Δx=-12.(2)Δy Δx =f (x +Δx )-f (x )Δx =1x +2+Δx -1x +2Δx =(x +2)-(x +2+Δx )Δx (x +2)(x +2+Δx ) =-1(x +2)(x +2+Δx ),所以f ′(x)=0lim x ∆→ Δy Δx =0lim x ∆→ -1(x +2)(x +2+Δx )=-1(x +2)2.点评:(1)用导数定义求函数的导数,必须把分式Δy Δx 中的分母Δx 这一因子约掉才能求出极限,所以目标就是分子中出现Δx ,从而对分子、分母约分.(2)第(1)小题中用到的技巧是“分子有理化”,“有理化”是处理根式问题常用的方法. (3)注意在某点处的导数与导数定义式的区别.变式练习:设函数f(x)在x 0处可导,则下列极限等于f ′(x 0)的是( ) A. 0lim x ∆→f (x 0-Δx )-f (x 0)Δx B. 0lim x ∆→ f (x 0+3Δx )-f (x 0)ΔxC. 0lim x ∆→f (x 0)-f (x 0+Δx )Δx D. 0lim x ∆→ f (x 0)-f (x 0-Δx )Δx答案:D类型二 导数的基本运算例2求导:(1)y =(x +1)(x 2+2x);(2)y =cos(2x 2+1);(3)y =sinxx. 思路分析:运用求导公式及导数运算法则求导.解:(1)y ′=3x 2+6x +2;(2)y ′=-4xsin(2x 2+1);(3)y ′=xcosx -sinxx 2. 点评:要熟记常见函数的求导公式及导数运算法则.在求复合函数的导数时,关键是分清函数的复合关系,逐步求导直到最后,把中间变量转变为自变量的函数.变式练习:求y =sin 2(3x +1)的导数.解:y ′=[sin 2(3x +1)]′=2sin(3x +1)[sin(3x +1)]′=2sin(3x +1)cos(3x +1)(3x +1)′=6sin(3x +1)cos(3x +1)=3sin(6x +2). 类型三 导数的几何意义例3若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为…( ) A .4x -y -3=0 B .x +4y -5=0 C .4x -y +3=0 D .x +4y +3=0 思路分析:导数值对应函数在该点处的切线斜率.解析:设与直线x +4y -8=0垂直的直线l 为4x -y +m =0,即y =x 4在某一点的导数为4,而y ′=4x 3,所以y =x 4在(1,1)处的导数为4,此点的切线方程为4x -y -3=0,故选A.答案:A点评:有关导数几何意义的题目一般有两类:一类是求曲线的切线方程,这类题目要注意审好题,看到底是“在某点处的切线”还是“过某点的切线”;第二类是已知曲线的切线求字母参数.变式练习:过点(-1,0)作抛物线y =x 2+x +1的切线,则其中一条切线为( ) A .2x +y +2=0 B .3x -y +3=0 C .x +y +1=0 D .x -y +1=0解析:y ′=2x +1,设切点坐标为(x 0,y 0),则切线的斜率为2x 0+1,且y 0=x 20+x 0+1,于是切线方程为y -x 20-x 0-1=(2x 0+1)(x -x 0).因为点(-1,0)在切线上,可解得x 0=0或x 0=-2,代入可验证知D 正确,选D.答案:D类型四 定积分的计算 例4计算下列定积分的值.(1)∫3-1(4x -x 2)dx ;(2)∫21(x -1)5dx ;(3)∫π20(x +sinx)dx. 解:(1)∫3-1(4x -x 2)dx =(2x 2-x 33)|3-1=(2×32-333)-[2×(-1)2-(-1)33]=203;(2)因为[16(x -1)6]′=(x -1)5,所以∫21(x -1)5dx =16(x -1)6|21=16; (3)∫π20(x +sinx)dx =(x 22-cosx)|π20=[(π2)22-cos π2]-(0-1)=π28+1.变式练习:求∫π2-π2cos 2xdx 的值.解:∫π2-π2cos 2xdx =∫π2-π21+cos2x 2dx =x 2|π2-π2+14sin2x|π2-π2=π2.类型五 求函数的极值与最值例5f(x)=x 3-3x 2+2在区间[-1,1]上的最大值是( ) A .-2 B .0 C .2 D .4思路分析:本题考查求函数最值,可用导数法先求其极值,再与端点值进行比较. 解析:f ′(x)=3x 2-6x =3x(x -2),令f ′(x)=0,可得x =0或x =2(x =2舍去).当-1≤x<0时,f ′(x)>0;当0<x ≤1时,f ′(x)<0,所以当x =0时,f(x)取得极大值为2.又f(-1)=-2,f(1)=0,所以f(x)在[-1,1]上的最大值为2.选C. 答案:C点评:此题较为基础,求完极值点,要注意与题目已知区间结合起来综合考虑问题. 变式练习:a 为何值时,函数f(x)=asinx +13sin3x 在x =π3处具有极值?是极大值还是极小值?试求此极值.解:a =2,极大值为f(π3)= 3.类型六 求函数的单调区间例6设函数f(x)=-13x 3+2ax 2-3a 2x +b,0<a<1.求函数f(x)的单调区间.思路分析:本题考查用导数法求单调区间,需注意参数a ,有时候需要对其进行讨论. 解:f ′(x)=-x 2+4ax -3a 2=-(x -3a)(x -a), 令f ′(x)=0,得x 1=a ,x 2=3a.列表如下:∴f(x)在(a,3a)上单调递增,在(-∞,a)、(3a ,+∞)上单调递减.点评:本题考查内容为利用导数求单调区间.但涉及到参数问题,参数讨论是难点.本题在0<a<1这个条件下降低了难度,若去掉此条件,难度会加大.变式练习:已知函数f(x)=x 2+alnx.(1)当a =-2时,求函数f(x)的单调区间和极值;(2)若函数g(x)=f(x)+2x在[1,+∞)上是增函数,求实数a 的取值范围.解:(1)函数f(x)的定义域为(0,+∞),当a =-2时,f ′(x)=2x -2x =2(x +1)(x -1)x .当x 变化时,f ′(x),f(x)的变化情况如下:由上表可知,函数f(x)的单调递减区间是(0,1);单调递增区间是(1,+∞); 极小值是f(1)=1.(2)由g(x)=x 2+alnx +2x ,得g ′(x)=2x +a x -2x 2.又函数g(x)=x 2+alnx +2x 在[1,+∞)上是单调增函数,则g ′(x)≥0在[1,+∞)上恒成立,即不等式2x -2x 2+ax ≥0在[1,+∞)上恒成立,也即a ≥2x -2x 2在[1,+∞)上恒成立,又φ(x)=2x -2x 2在[1,+∞)上为减函数,所以[φ(x)]max =φ(1)=0,因此a ≥0.拓展实例:设函数f(x)=2x 3-3(a -1)x 2+1,其中a ≥1. (1)求f(x)的单调区间; (2)讨论f(x)的极值.思路分析:f(x)的单调性取决于f ′(x)的正负,而函数的极值取决于导数值为零的点的两侧的点对应的导数值的符号,即导数值为零的点两侧函数的单调性.解:由已知,得f ′(x)=6x[x -(a -1)],令f ′(x)=0,解得x 1=0,x 2=a -1. (1)当a =1时,f ′(x)=6x 2,f(x)在(-∞,+∞)上单调递增;当a>1时,f ′(x)=6x[x -(a -1)],f ′(x),f(x)随x 的变化情况如下表:从上表可知,函数f(x)在(-∞,0)上单调递增;在(0,a -1)上单调递减;在(a -1,+∞)上单调递增.(2)由(1)知,当a =1时,函数f(x)没有极值;当a>1时,函数f(x)在x =0处取得极大值1;在x =a -1处取得极小值1-(a -1)3. 点评:本小题主要考查利用导数研究函数的极值的基础知识,以及运用数学知识解决问题的能力.变练演编已知f(x)=23x 3-2ax 2-3x(a ∈R ),(1)若f(x)在区间(-1,1)上为减函数,求实数a 的范围; (2)试讨论y =f(x)在区间(-1,1)内极值点的个数.思路分析:(1)已知函数在(-1,1)上单调递减,一般转化为f ′(x)≤0在(-1,1)上恒成立.(2)讨论y =f(x)在区间(-1,1)内极值点的个数,即讨论f ′(x)=0在(-1,1)内变号零点的个数.解:(1)f ′(x)=2x 2-4ax -3,因为f(x)在区间(-1,1)上为减函数,所以f ′(x)≤0在(-1,1)上恒成立,即f ′(x)的最大值小于等于零.只需要满足⎩⎪⎨⎪⎧ f ′(-1)≤0,f ′(1)≤0,即⎩⎪⎨⎪⎧4a -1≤0,-4a -1≤0,所以-14≤a ≤14.(2)方法一:(数形结合法)要讨论y =f(x)在区间(-1,1)内极值点的个数,即讨论f ′(x)=0在(-1,1)内变号零点的个数.f ′(x)=2x 2-4ax -3.若⎩⎪⎨⎪⎧f ′(-1)≤0,f ′(1)≤0时,即-14≤a ≤14时,f(x)在区间(-1,1)上为减函数,无极值点.若⎩⎪⎨⎪⎧f ′(-1)>0,f ′(1)>0时,即⎩⎨⎧a>14,a<-14,此时不成立.若f ′(-1)f ′(1)<0,即(4a -1)(-4a -1)<0,a<-14或a>14时,函数有一个极值点.综上:当a<-14或a>14时,函数有一个极值点;当-14≤a ≤14时,函数无极值点.方法二:(分离参数法)f ′(x)=2x 2-4ax -3,令f ′(x)=0,所以4ax =2x 2-3.因为x =0不可能为方程的根,所以a =2x 2-34x =12x -34x .设g(x)=12x -34x ,则g ′(x)=12+34x 2>0恒成立,所以g(x)在(-1,0)和(0,1)上均为增函数.所以g(x)的值域为(-∞,-14)∪(14,+∞).故当a ∈(-∞,-14)∪(14,+∞)时,函数有一个极值点;当a ∈[-14,14]时,函数无极值点.点评:1.第(1)问中,f ′(x)<0和f ′(x)≤0都不是函数y =f(x)在(-1,1)上为减函数的充要条件,但只要函数不是常数函数,则f ′(x)≤0就是充要条件,故用f ′(x)≤0.2.第(2)问中,求极值点的个数转化为求方程解的个数,研究根的分布问题时,“数形结合法”与“分离参数法”是常用的两种方法.变式练习:上题的第(1)问中,若将区间(-1,1)改为[-1,1]呢?再将其改为(1,3)呢? 解:函数y =f(x)在(-1,1)上为减函数和[-1,1]上为减函数没有区别,故-14≤a ≤14.若将(-1,1)改为(1,3)时,还可以用分离参数法.解法如下:令f ′(x)≤0,所以4ax ≥2x 2-3.因为x ∈(1,3),所以a ≥2x 2-34x =12x -34x .由(2)知函数g(x)=12x -34x 在(1,3)上为增函数,故只需a ≥g(3),所以a ≥54.点评:解决不等式恒成立问题可以用“数形结合法”和“分离参数法”,对这两种方法的选择应按照先“分离参数法”后“数形结合法”的原则.如果“分离参数”时不好分离,可用“数形结合法”.如原题中区间为(-1,1)时,“数形结合法”要分三种情况讨论,不如用“分离参数法”简洁.达标检测1.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为( ) A.94e 2 B .2e 2 C .e 2D.e 222.设函数f(x)=ax 2+c(a ≠0),若∫10f(x)dx =f(x 0),0≤x 0≤1,则x 0的值为__________. 答案:1.D 解析:y ′=e x ,曲线在点(2,e 2)处的切线斜率为e 2,因此切线方程为y -e 2=e 2(x -2),则切线与坐标轴交点为A(1,0),B(0,-e 2).所以S △AOB =12×1×e 2=e 22.2.33 解析:∫10f(x)dx =∫10(ax 2+c)dx =(13ax 3+cx)|10=a 3+c.而f(x 0)=ax 20+c ,所以ax 20+c =a 3+c.又0≤x 0≤1,所以x 0=33. 课堂小结1.知识收获:导数作为工具研究函数的相关问题的方法,以及定积分的简单运算. 2.方法收获:数形结合、分类讨论的方法.3.思维收获:数形结合思想、分类讨论思想以及将代数式子视为函数的意识和转化化归的思想.让学生自己小结,这是一个多维整合的过程,是一个高层次的自我认识过程.设计意图布置作业课本本章复习参考题A 组第6、7、16题.补充练习1.函数f(x)=ax 3-x 在(-∞,+∞)内是减函数,则( ) A .a<1 B .a<13C .a<0D .a ≤02.已知f(x)为偶函数,且∫60f(x)dx =8,则∫6-6f(x)dx 等于( )A .0B .4C .8D .163.函数y =lnx -x 在x ∈(0,e]上的最大值为__________. 答案:1.D 2.D 3.-1 拓展练习4.已知函数f(x)=ax 3+bx 2-3x 在x =±1处取得极值. (1)求函数f(x)的解析式;(2)求证:对于区间[-1,1]上任意两个自变量的值x 1,x 2,都有f(x 1)-f(x 2)≤4; (3)若过点A(1,m)(m ≠-2)可作曲线y =f(x)的三条切线,求实数m 的取值范围. 思路分析:本小题主要考查应用导数研究函数的极值,利用导数为工具解决函数与不等式的有关综合问题,运用导数的几何意义来解决函数与解析几何的综合问题,这是高考的热点问题.解:(1)f ′(x)=3ax 2+2bx -3,依题意,得f ′(1)=f ′(-1)=0,即⎩⎪⎨⎪⎧3a +2b -3=0,3a -2b -3=0,解得a =1,b =0.∴f(x)=x 3-3x. (2)证明:∵f(x)=x 3-3x ,∴f ′(x)=3x 2-3=3(x +1)(x -1).当-1<x<1时,f ′(x)<0,故f(x)在区间[-1,1]上为减函数,f(x)max =f(-1)=2,f(x) min=f(1)=-2.∵对于区间[-1,1]上任意两个自变量的值x 1,x 2,都有|f(x 1)-f(x 2)|≤|f(x)max -f(x)min |,∴|f(x 1)-f(x 2)|≤|f(x)max -f(x)min |≤2-(-2)=4.(3)f ′(x)=3x 2-3=3(x +1)(x -1),∵曲线方程为y =x 3-3x ,m ≠-2,∴点A(1,m)不在曲线上.设切点为M(x 0,y 0),则点M 的坐标满足y 0=x 30-3x 0.∵f ′(x 0)=3(x 20-1),故切线的斜率为3(x 20-1)=x 30-3x 0-m x 0-1, 整理得2x 30-3x 20+m +3=0. ∵过点A(1,m)可作曲线的三条切线,∴关于x 0的方程2x 30-3x 20+m +3=0有三个实根.设g(x 0)=2x 30-3x 20+m +3,则g ′(x 0)=6x 20-6x 0,由g ′(x 0)=0,得x 0=0或x 0=1.∴函数g(x 0)=2x 30-3x 20+m +3的极值点为x 0=0,x 0=1.∴关于x 0的方程2x 30-3x 20+m +3=0有三个实根的充要条件是g(1)g(0)<0,即(m +3)(m +2)<0,解得-3<m<-2.故所求实数a 的取值范围是(-3,-2).点评:总的说来,对于这部分知识的复习,要认识到新课程中增加了导数内容,增添了一部分的变量数学,在复习中要明确导数作为一种工具在研究函数的变化率,解决函数的单调性、极值等问题的作用.要全面复习,抓住导数基础知识.注意考题的难度逐年增大,要有意识地与解析几何(特别是切线,最值)、函数的单调性、函数的极值、最值、二次函数、方程、不等式、代数式的证明等知识进行交汇、综合训练,特别是精选一些以导数为工具分析和解决一些函数问题、切线问题进行训练.设计说明本节在设计过程中,注重了两点:一是体现学生的主体地位,注重引导学生思考,让学生学会学习;二是构建知识体系,形成知识网络,总结解题规律、方法,使学生能够见题想法,见题有法,能够做到一题多解,触类旁通.备课资料设a ∈R ,若函数f(x)=e ax +3x ,x ∈R 有大于零的极值点,则( )A .a>-3B .a<-3C .a>-13D .a<-13解析:f ′(x)=3+ae ax ,若函数在x ∈R 上有大于零的极值点,即f ′(x)=3+ae ax =0有正根.当有f ′(x)=3+ae ax =0成立时,显然有a<0,此时x =1a ln(-3a).由x>0,我们就能得到参数a 的范围为a<-3.答案:B点评:本题考查导数、函数、方程的有关知识,考查等价转化、分类讨论的数学思想以及分析问题、解决问题的能力,是试卷中一道以能力考查为主的试题.解决本题的关键是用a表示出x,通过x>0建立关于参数a的不等式,这也是解决参数取值范围问题的一个通用方法,值得仔细体会.(设计者:李锋)第2课时教学目标知识与技能目标1.在复习巩固导数基础知识的基础上,进一步理解利用导数解决函数单调性、极值、最值等问题的处理方法.2.提高学生转化化归意识,体会导数在解决实际问题中的作用.过程与方法目标掌握利用导数解决问题的方法、规律,深化学生对导数知识的理解及把握.情感、态度与价值观培养学生的观察、分析问题的能力,以及转化、化归的数学思想,让学生学会用数学方法认识世界、改造世界.重点难点重点:巩固常见导数题型,并培养学生解决实际问题的能力.难点:运用导数知识解决有关问题的方法.教学过程典型示例类型一求函数的导数例1函数y=x3lnx+2x+cos2x-3e+sinπ的导数为________.思路分析:本题考查函数求导公式及导数运算法则,且搞清变量是x,一般在不做任何说明的情况下,将x视为变量.答案:y′=3x2lnx+x2+2x ln2-2sin2x点评:本题一方面考查了导数求导公式及导数运算法则,另一方面学生容易出现诸如“(sinπ)′=cosπ”的错误,因此本题有助于帮助学生克服思维定势.变式练习1.函数y=e x+x2cosx+lnx的导数为__________.2.下列函数求导运算正确的是()A .(x +1x )′=1+1x 2B .(log 2x)′=1xln2C .(3x )′=3x log 3eD .(x 2sinx)′=2xcosx答案:1.y ′=e x +2xcosx -x 2sinx +1x2.B 类型二 用导数研究函数的性质(单调性、极值和最值)例2设函数f(x)=ln(2x +3)+x 2,(1)讨论f(x)的单调性;(2)求f(x)在区间[-34,14]上的最大值和最小值. 思路分析:f(x)的单调性取决于f ′(x)的正负,而函数的最值取决于函数的极值以及端点函数值的大小.解:f(x)的定义域为(-32,+∞). (1)f ′(x)=22x +3+2x =4x 2+6x +22x +3=2(2x +1)(x +1)2x +3. 当-32<x<-1时,f ′(x)>0;当-1<x<-12时,f ′(x)<0;当x>-12时,f ′(x)>0. 从而,f(x)在区间(-32,-1),(-12,+∞)上单调递增,在区间(-1,-12)上单调递减. (2)由(1)知f(x)在区间[-34,14]上的最小值为f(-12)=ln2+14. 又f(-34)-f(14)=ln 32+916-ln 72-116=ln 37+12=12(1-ln 499)<0. 所以f(x)在区间[-34,14]上的最大值为f(14)=116+ln 72. 点评:(1)对数形式的函数求导一定要注意定义域;(2)注意求闭区间上函数最值的基本方法.变式练习:设函数f(x)=x 3-3ax +b(a ≠0).(1)若曲线y =f(x)在点(2,f(x))处与直线y =8相切,求a ,b 的值;(2)求函数f(x)的单调区间与极值点.思路分析:本题主要考查利用导数研究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题的能力.解:(1)f ′(x)=3x 2-3a ,∵曲线y =f(x)在点(2,f(x))处与直线y =8相切,∴⎩⎪⎨⎪⎧ f ′(2)=0,f (2)=8,即⎩⎪⎨⎪⎧3(4-a )=0,8-6a +b =8.∴a =4,b =24.(2)∵f ′(x)=3(x 2-a)(a ≠0),当a<0时,f ′(x)>0,函数f(x)在(-∞,+∞)上单调递增,此时函数f(x)没有极值点; 当a>0时,由f ′(x)=0,得x =±a.当x ∈(-∞,-a)时,f ′(x)>0,函数f(x)单调递增,当x ∈(-a ,a)时,f ′(x)<0,函数f(x)单调递减,当x ∈(a ,+∞)时,f ′(x)>0,函数f(x)单调递增.∴此时x =-a 是函数f(x)的极大值点,x =a 是函数f(x)的极小值点.类型三 不等式证明例3当x>0时,证明不等式e x >1+x +12x 2成立. 思路分析:在高中数学学习过程中,我们常遇到一些不等式的证明,看似简单,但却无从下手,很难找到切入点,几种常用的证法都一一尝试,却很难奏效.这时我们不妨变换一下思维角度,从所证不等式的结构和特点出发,结合自己已有知识,构造一个新的函数,再借助导数确定函数的单调性,利用单调性实现问题的转化,从而使不等式得到证明.用导数方法证明不等式,其步骤一般是:构造可导函数——研究单调性或最值——得出不等关系——整理得出结论.证明:设f(x)=e x -1-x -12x 2,则f ′(x)=e x -1-x. 令g(x)=e x -1-x ,则g ′(x)=e x -1.当x>0时,g ′(x)=e x -1>0.∴g(x)在(0,+∞)上单调递增,而g(0)=0.∴g(x)>g(0)=0.∴g(x)>0在(0,+∞)上恒成立,即f ′(x)>0在(0,+∞)上恒成立.∴f(x)在(0,+∞)上单调递增.又f(0)=0,∴e x -1-x -12x 2>0,即x>0时,e x >1+x +12x 2成立. 点评:利用导数知识证明不等式是导数应用的一个重要方面,也成为命题的一个新热点,其关键是构造合适的函数,通过构造函数转化为研究这个函数的单调性和区间端点值或最值问题,其实质就是利用求导的方法研究函数的单调性,通过单调性证明不等式.变式练习:利用导数证明不等式lnx +1≤x 恒成立.解:设函数f(x)=lnx +1-x(x>0),则f ′(x)=1x-1,则0<x<1时,f ′(x)>0;当x>1时,f ′(x)<0,故f(x)在(0,1)上为增函数,在(1,+∞)上为减函数,故f(x)≤f(1)=0,即lnx +1-x ≤0,即lnx +1≤x.点评:一般地,证明f(x)<g(x),x ∈(a ,b),可以构造函数F(x)=f(x)-g(x),如果F ′(x)<0,则F(x)在(a ,b)上是减函数,同时若F(a)≤0,由减函数的定义可知,x ∈(a ,b)时,有F(x)<0,即证明了f(x)<g(x).类型四 微积分基本定理及其应用例4(1)求∫21(1x+x +e x +cosx)dx 的值;(2)求∫2-24-x 2dx. 思路分析:(1)本题考查微积分基本定理,需结合导数公式记忆该定理.(2)本题若用微积分基本定理,不易求解,可考虑几何意义,即半径为2的半圆面积.解:(1)∫21(1x +x +e x +cosx)dx =(lnx +x 22+e x +sinx)|21=ln2+32+e 2-e +sin2-sin1. 点评:求导问题和求微积分问题可以看做互逆的两个过程,因此须牢记求导公式.(2)∫2-24-x 2dx =2π. 点评:对于某些比较难求的积分,可考虑其几何意义,数形结合.变式练习:1.求∫a -aa 2-x 2dx 的值,其中a>0. 2.求由y =1x,y =1,y =2,x =0所围成的图形的面积. 3.物体A 以速度v =6t +1在一直线上运动,同时物体B 在A 的正前方2米处以v =6t 的速度运动,两物体速度方向相同,两物体何时相遇?相遇处与物体A 的出发地距离是多少?答案:1.∫a -a a 2-x 2dx 几何意义为半径为a 的半圆的面积,故其值为πa 22. 2.本题以y 为变量较好,故面积S =∫211ydy =lny|21=ln2-ln1=ln2. 3.解:设在时刻t 0时相遇,则由题意,知∫t 00(6t +1)dt =2+∫t 006tdt ,∴(3t 2+t)|t 00=2+3t 2|t 00.∴3t 2+t =2+3t 2.∴t =2.相遇处与物体A 的出发地距离是s =∫20(6t +1)dt =(3t 2+t)|20=14(米).类型五 导数在实际问题中的应用例5某工厂生产某种产品,已知该产品的月生产量x(吨)与每吨产品的价格p(元/吨)之间的关系式为p =24 200-15x 2,且生产x 吨的成本为R =50 000+200x(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入—成本)思路分析:建立利润函数,利用导数求其最值.解:每月生产x 吨时的利润为f(x)=(24 200-15x 2)x -(50 000+200x) =-15x 3+24 000x -50 000(x ≥0). 由f ′(x)=-35x 2+24 000=0,解得x 1=200,x 2=-200(舍去). 因为f(x)在[0,+∞)内只有一个点x =200使f ′(x)=0,故它就是最大值点,且最大值为f(200)=-15×(200)3+24 000×200-50 000=3 150 000(元). 答:每月生产200吨产品时利润达到最大,最大利润为315万元.点评:此题考查导数的实际应用,注意建立数学模型,将实际问题化为数学问题,最后一定要还原为实际问题来作答.变式练习:某厂生产某种产品的固定成本(固定投入)为2 500元.已知每生产x 件这样的产品需要再增加可变成本C(x)=200x +136x 3(元),若生产出的产品都能以每件500元售出,要使利润最大,该厂应生产多少件这样的产品?最大利润是多少?解:设生产x 件产品的利润为L(x)元,则L(x)=500x -2 500-C(x)=300x -136x 3-2 500(x 为正整数). ∴L ′(x)=300-112x 2. 令L ′(x)=0,得到x =60(x =-60舍去).当0≤x<60时,L ′(x)>0;当x>60时,L ′(x)<0.∴x =60是L(x)的唯一极大值点.故[L(x)]max =L(60)=9 500.因此,要使利润最大,该厂应生产60件这种产品,最大利润为9 500元.拓展实例1.已知函数f(x)=sin2x -acos2x 的图象关于直线x =π8对称,则a 的值为…( ) A .1 B .0C .-1D .1或-1思路分析:此题方法较多,可以利用定义f(π8+x)=f(π8-x)求解,也可以利用特殊值求解.例如用f(0)=f(π4)求解,若能抓住此类三角函数在对称轴处取到极值,则可利用该点处导数值为零解决.解析:f ′(x)=2cos2x +2asin2x ,因为函数图象关于直线x =π8对称,故f ′(π8)=0,代入得cos π4+asin π4=0,所以a =-1. 答案:C2.已知函数f(x)=sin(2x +π6),求函数的单调递增区间. 解:∵f(x)=sin(2x +π6),∴f ′(x)=2cos(2x +π6). 令f ′(x)>0,得2kπ-π2<2x +π6<2kπ+π2,k ∈Z . 解得kπ-π3<x<kπ+π6,k ∈Z ,∴函数的单调递增区间为[kπ-π3,kπ+π6],k ∈Z . 变练演编1.已知f(x)=xlnx +e x ,则下列关系正确的是( )A .f ′(x)=1+e xB .f ′(1)=1+eC .f(1)>f(2)D .f ′(1)>f ′(2)2.对R 上可导的任意函数f(x),若满足(x -1)f ′(x)≥0,则必有( )A .f(0)+f(2)<2f(1)B .f(0)+f(2)≤2f(1)C .f(0)+f(2)≥2f(1)D .f(0)+f(2)>2f(1)3.已知函数f(x)=f ′(π4)cosx +sinx ,则f(π4)的值为__________. 4.求∫20(4-x 2+|x -1|)dx 的值.5.某单位用2 160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2 000平方米的楼房.经测算,如果将楼房建为x(x ≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积) 6.设函数f(x)=ax 3+bx 2-3a 2x +1(a ,b ∈R )在x =x 1,x =x 2处取得极值,且|x 1-x 2|=2.(1)若a =1,求b 的值,并求f(x)的单调区间;(2)若a>0,求b 的取值范围.答案:1.B 2.C 3.1 4.π+1.5.解:设楼房每平方米的平均综合费用为f(x)元,则f(x)=(560+48x)+2 160×10 0002 000x =560+48x +10 800x(x ≥10,x ∈Z *). f ′(x)=48-10 800x 2,令f ′(x)=0,得x =15. 当x>15时,f ′(x)>0;当0<x<15时,f ′(x)<0.因此,当x =15时,f(x)取最小值f(15)=2 000.答:为了楼房每平方米的平均综合费用最少,该楼房应建为15层.6.解:f ′(x)=3ax 2+2bx -3a 2.①(1)当a =1时,f ′(x)=3x 2+2bx -3.由题意知x 1,x 2为方程3x 2+2bx -3=0的两根,所以|x 1-x 2|=4b 2+363. 由|x 1-x 2|=2,得b =0.从而f(x)=x 3-3x +1,f ′(x)=3x 2-3=3(x +1)(x -1).当x ∈(-1,1)时,f ′(x)<0;当x ∈(-∞,-1)∪(1,+∞)时,f ′(x)>0.故f(x)在(-1,1)上单调递减,在(-∞,-1),(1,+∞)上单调递增.(2)由①式及题意知x 1,x 2为方程3ax 2+2bx -3a 2=0的两根,所以|x 1-x 2|=4b 2+36a 33a. 从而|x 1-x 2|=2=9a 2(1-a),由上式及题设知0<a ≤1.考虑g(a)=9a 2-9a 3,g ′(a)=18a -27a 2=-27a(a -23). 故g(a)在(0,23)内单调递增,在(23,1)内单调递减,从而g(a)在(0,1]上的极大值为g(23)=43. 又g(a)在(0,1]上只有一个极值,所以g(23)=43为g(a)在(0,1]上的最大值,且最小值为g(1)=0.所以b 2∈[0,43],即b 的取值范围为[-233,233]. 达标检测1.函数y =x 3+x 的递增区间是( )A .(0,+∞)B .(-∞,1)C .(-∞,+∞)D .(1,+∞)2.f(x)=ax 3+3x 2+2,若f ′(-1)=4,则a 的值等于( )A.193B.163C.133D.1033.当x ≠0时,有不等式( )A .e x <1+xB .当x>0时,e x <1+x ;当x<0时,e x >1+xC .e x >1+xD .当x<0时,e x <1+x ;当x>0时,e x >1+x4.已知f(x)=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值范围为…( )A .-1<a<2B .-3<a<6C .a<-1或a>2D .a<-3或a>65.函数y =x 3+x 2-5x -5的单调递增区间是__________.6.若函数y =-43x 3+bx 有三个单调区间,则b 的取值范围是__________. 7.已知函数f(x)=13x 3+a 2x 2+ax +b ,当x =-1时,函数f(x)的极值为-712,则f(2)=__________.答案:1.C 2.D 3.C 4.D 5.(-∞,-53),(1,+∞) 6.(0,+∞) 7.53课堂小结1.知识收获:导数在解决函数极值与最值、不等式证明以及在解决实际问题中的应用.2.方法收获:转化化归的思想方法.3.思维收获:分类讨论思想以及转化化归的思想.设计意图注重基础,由学生总结导数常见题型,培养学生的总结能力以及对知识的梳理能力,这样可以帮助学生尽快建立完整的知识体系.布置作业1.已知函数f(x)=x 3+mx 2+nx -2的图象过点(-1,-6),且函数g(x)=f ′(x)+6x 的图象关于y 轴对称.(1)求m ,n 的值及函数y =f(x)的单调区间;(2)若a>0,求函数y =f(x)在区间(a -1,a +1)内的极值.2.设函数f(x)=x 3+ax 2+bx 在点x =1处有极值-2,(1)求常数a ,b 的值;(2)求曲线f(x)与x 轴所围成图形的面积.答案:1.解:(1)由函数f(x)的图象过点(-1,-6),得m -n =-3.①由f(x)=x 3+ mx 2+nx -2,得f ′(x)=3x 2+2mx +n ,则g(x)=f ′(x)+6x =3x 2+(2m +6)x +n.而g(x)图象关于y 轴对称,所以-2m +62×3=0.所以m =-3.代入①得n =0, 于是f ′(x)=3x 2-6x =3x(x -2).由f ′(x)>0,得x>2或x<0.故f(x)的单调递增区间是(-∞,0),(2,+∞);由f ′(x)<0,得0<x<2,故f(x)的单调递减区间是(0,2).(2)由(1)得f ′(x)=3x(x -2).令f ′(x)=0,得x =0或x =2.当x 变化时,f ′(x),f(x)的变化情况如下表:由此可得:当0<a<1时,f(x)在(a -1,a +1)内有极大值f(0)=-2,无极小值;当a =1时,f(x)在(a -1,a +1)内无极值;当1<a<3时,f(x)在(a -1,a +1)内有极小值f(2)=-6,无极大值;当a ≥3时,f(x)在(a -1,a +1)内无极值.综上得:当0<a<1时,f(x)有极大值-2,无极小值;当1<a<3时,f(x)有极小值-6.2.解:(1)a =0,b =-3.(2)92. 补充练习1.已知f(x)=2x 3-6x 2+a(a 是常数)在[-2,2]上有最大值3,那么在[-2,2]上f(x)的最小值是( )A .-5B .-11C .-37D .-292.设函数f(x)=x 3+bx 2+cx(x ∈R ),已知g(x)=f(x)-f ′(x)是奇函数,(1)求b 、c 的值;(2)求f(x)在点x 0=1处的切线方程;(3)求g(x)的单调区间与极值.3.若1 N 的力能使弹簧伸长2 cm ,要使弹簧伸长10 cm ,需作多少功?答案:1.C 2.(1)b =3,c =0;(2)y =9x -5;(3)单调增区间(-∞,-2),(0,+∞),单调减区间(-2,0);极大值f(-2)=42,极小值f(2)=-4 2.3.0.25 J.拓展练习4.以长为10的线段为直径作半圆,求它的内接矩形面积的最大值.解:如图所示,设AB =2x ,∴BC =52-x 2=25-x 2.∴面积S(x)=2x 25-x 2(0<x<5).S ′(x)=225-x 2-2x 225-x 2=2(25-2x 2)25-x 2, 令S ′(x)=0,解得x =522(x =-522舍去). 当x ∈(0,522)时,S ′(x)>0;当x ∈(522,5)时,S ′(x)<0, ∴在x =522时,S(x)取得极大值,也是最大值S(522)=25. 因此当x =522时,它的内接矩形面积最大,最大值为25. 设计说明导数是高等数学最为基础的内容,是中学必选的重要知识之一.由于导数应用的广泛性,可为解决所学过的函数问题提供更有效的工具或更一般性的方法,导数方法与初等方法相比,对技巧性的要求有所降低,因此运用导数方法可以简捷地解决相关问题.可以说导数的加入使函数这部分内容更加充实,也显得更加重要.但本部分也是难点,因此设计时尽可能地以小见大,从基础题入手,使学生循序渐近地掌握好本章内容.备课资料已知m ,n 是正整数,且1<m<n ,证明(1+m)n >(1+n)m .分析:要证(1+m)n >(1+n)m 成立,只要证ln(1+m)n >ln(1+n)m ,即要证1m ln(1+m)>1nln(1+n)成立.因为m<n ,所以,设函数f(x)=1xln(1+x),只要证f(x)在[2,+∞)上是减函数即可.证明:设函数f(x)=1x ln(1+x),则f ′(x)=-1x 2ln(1+x)+1x ·11+x, 即f ′(x)=1x 2[x 1+x -ln(1+x)],因为x ≥2,0<x 1+x<1,ln(1+x)≥ln3>1, 所以f ′(x)<0.所以f(x)在[2,+∞)内是减函数,而m<n ,所以f(m)>f(n),即1m ln(1+m)>1nln(1+n),从而有(1+m)n >(1+n)m . 评注:这类非明显一元函数式的不等式证明问题,首先变换成某一个一元函数式分别在两个不同点处的函数值的大小比较问题,只要将这个函数式找到了,通过设函数,求导判断它的单调性,就可以解决不等式证明问题.难点在于找这个一元函数式,这就是“构造函数法”.通过这类数学方法的练习,对提高学生分析问题、解决问题的能力是有很大好处的,这也是进一步学习高等数学所需要的.(设计者:李宾)。
(人教版)高中数学选修2-2课件:第1章导数及其应用1.1.1、2
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(4)在公式ΔΔxy=fxx22--fx1x1=fx1+ΔΔxx-fx1中,当 x1 取定 值,Δx 取不同的数值时,函数的平均变化率是不同的;当 Δx 取定值,x1 取不同的数值时,函数的平均变化率也是不同的.特 别地,当函数 f(x)为常数函数时,Δy=0,则ΔΔyx=0.
平均变化率为
fx2-fx1
___x_2_-__x1___
②曲线割线的 斜率
刻画函数值在
区间 [x_1_,__x_2_]_
上变化的快慢
函数 y=f(x)在 x=x0 处 ①瞬时速度:物
刻画函数值在
的瞬时变化率是 lim
体在某一时刻
ΔΔyx=Δ_lix_m→_0_f__x_0+__Δ_ΔΔ_xxx_→-_0_f_x_0
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(3)在 x=2 处取自变量的增量 Δx,得一区间[2,2+Δx]. ∴Δy=f(2+Δx)-f(2)=2(2+Δx)2+1-(2·22+1)=2(Δx)2+ 8Δx. ∴ΔΔyx=2Δx+8,当 Δx→0 时,ΔΔxy→8.
为 g×2+12g×0.1=4210g.
(4)由(2)得物体在 t=2 s 时的瞬时速度为 g×2=2g.
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
求函数f(x)在某点处的导数
已知f(x)=x2+3. (1)求f(x)在x=1处的导数; (2)求f(x)在x=a处的导数.
最新人教版高中数学选修2-2第一章《导数及其应用》本章综述
第一章导数及其应用本章综述本章内容共分为四大节.第一大节是导数.第二大节是导数的运算,主要介绍了基本初等函数的导数公式,导数的四则运算法则.第三大节是导数的应用,主要是利用导数判断函数的单调性,求函数的极值和最值问题,利用函数解实际问题和物理问题.第四大节是定积分和微积分的基本定理,主要介绍利用定积分求曲线围成的平面图形的面积.导数是微积分的核心概念之一,它是研究函数的单调性,函数的极值与最大,最小值,曲线的凹凸性,函数图形的描绘,曲线的曲率,方程的近似解等问题的最一般,最有效的工具;定积分是微积分的另一个核心概念,它在几何学上的应用有:计算平面图形的面积,体积以及平面曲线的弧长等;在物理学上它可计算变力沿直线所做的功,水压力,引力等一些重要的物理量.实际上,微积分在物理、化学、生物、天文、地理以及经济等各种科学领域中都有广泛而重要的作用,它是大学数学课程中极其重要又非常基础的一部分内容.导数来源于实践,又应用于实践.如现实生活中的瞬时速度,膨胀率,增长率问题等等,都充分反映了导数的思想.利用导数还可以解决现实生活中的最优化问题,由于其应用广泛,所以其地位在中学数学中极其重要.因此,导数及其应用已成为近几年高考的热点.导数概念的核心是变化率,学习导数应从物理和几何两方面去理解导数的意义;必须熟记常数与基本初等函数的导数;正确地运用和、差、积、商及复合函数的求导法则,就可以求出一切初等函数的导数;学会利用导数解决速度、加速度、函数的单调性、极值、最值等问题的解法,并会利用其解决实际问题.学习导数时要借助于实例,沿着从平均速度、瞬时速度到函数瞬时变化率的线索,认识和理解导数的概念;通过例题,体会利用导数的定义求导数的方法;借助于图形去认识和理解导数的几何意义,以及用导数的几何意义去解决问题;结合图形去认识和理解导数在研究函数性质中的应用;借助图形了解定积分的思想方法等.学习本章时要注意导数与导函数的区别,以及圆的切线、圆锥曲线与函数切线的区别.同时,还应明确平均变化率与瞬时变化率的区别与联系.。
新人教A版高中数学(选修2-2)1.3《导数在研究函数中的应用》
求可导函数f(x)单调区间的步骤:
(1)求f’(x)
(2)解不等式f’(x)>0(或f’(x)<0) (3)确认并指出递增区间(或递减区间)
练习 P26 1
1.判断下列函数的单调性, 并求出单调区间:
1.判断下列函数的单调性, 并求出单调区间:
注意:应正确理解 “ 某个区间 ” 的含义,它 必是定义域内的某个区间。
随时间t 的增加而增加, 即h(t)是增函数.相应 地,
②从最高点到入水,运动员离水面的高度h随时间t的 增加而减少,即h(t)是减函数.相应地,
ቤተ መጻሕፍቲ ባይዱ
观察下面一些函数的图象, 探讨函数的单调性与其导函 数正负的关系.
y y=x y
y = x2 y
y=
x3
y
O
x x O
O
x
O
x
结论
在某个区间(a,b)内,如果 在这个区间内单调递增; 如果 那么函数 在这个区间内单调递减. ,那么函数 ,
(1)求f’(x)
(2)确认f’(x)在(a,b)内的符号 (3)作出结论
例 求证函数f(x)=2x3-6x2+7在(0,2)内是减函数
补充结论
1. 对x∈(a,b),如果f/(x)≥0,但f/(x)不恒 为0,则f(x)在区间(a,b)上是增函数; 2. 对x∈(a,b),如果f/(x)≤0,但f/(x)不恒 为0,则f(x)在区间(a,b)上是减函数;
可知 可知
y
在此区间内 在此区
综上, 函数 图象 的大致形状如右图所示.
O
1
4
x
练习 P26 2
2.函数 的图象如图所示, 试画出导函数 图象的大致形状
最新人教版高中数学选修2-2第一章《导数在研究函数中的应用》目标导引
1.3 导数在研究函数中的应用一览众山小学心目标1.借助图象理解运用导数的符号判断函数增减性的方法,并能写出函数的单调区间; 理解函数极值、极大值、极小值的意义.2.掌握利用导数判别可导函数极值的方法;掌握利用导数求函数在给定区间上的最大值、最小值的方法;会利用导数求有关实际问题的最值;学会将实际问题转化为数学问题的方法.3.通过研究函数与导数间的关系,体会知识间的相互联系和运动变化的观点,提高理性思维能力.学法指导学习利用导数判断函数的单调性之前,可先复习增函数、减函数的定义及证明函数的增减性的定义法,然后结合图象理解导数的几何意义,并能从函数图象上看出导数的符号与增减性的关系.极值只反映函数的局部性质,是函数值在某个小范围内比较的结果,因此若极大值、极小值存在,可以不止一个,极大值不一定大于极小值;不可导的函数也可以有极值.可导函数极值点的导数一定为0,但导数为0的点不一定是极值点.求可导函数的极值时,首先要确定函数的定义域,其次用导数为0的点顺次将定义域区间分成若干个小开区间,并列表判定.如果可导函数在区间[a,b ]上只有一个导数为0的点,且在这个点有极值,则该极值就是函数在[a,b ]上的最值.诱学导入材料:在数学1中,我们知道,一般地,设函数y=f(x)的定义域为A,区间M ⊆A.在区间M 上任取两个值x 1,x 2,当改变量Δx=x 2-x 1>0时,若有Δy=f(x 2)-f(x 1)>0,那么就称函数y=f(x)在区间M 上是增函数;当改变量Δx=x 2-x 1>0时,有Δy=f(x 2)-f(x 1)<0,那么就称函数y=f(x)在区间M 上是减函数.如果一个函数在某个区间M 上是增函数或是减函数,就说这个函数在这个区间上具有单调性.问题:思考在某个区间上函数y=f(x)的平均变化率的几何意义与其导数的正负有什么关系? 导入:在区间(a,b)上,任取A(x 1,f(x 1))和B(x 2,f(x 2))两点,则函数f(x)的平均变化率为x y ∆∆=1212)()(x x x f x f --,其几何意义为直线AB 的斜率.若f(x)在区间(a,b)上是增函数,则其斜率为正,其导数为正.若f(x)在区间(a,b)上是减函数,则其斜率为负,其导数为负.本节我们将利用导数的知识进一步研究函数的单调性问题.。
高中数学选修2-2第一章第三节《导数在研究函数中的应用》全套教案
导数在函数中的应用1.3.1《函数的单调性与导数》【教法分析】(1)教法:采用启发式教学,以教师为主导、学生为主体。
强调数形结合思想、转化思想的应用。
同时给予数学学科基础知识较为薄弱,对数学学习有一定的困难学生激励性评价调动参与的积极性,“面向全体学生”等教学思想,贯穿于课堂教学之中。
(2)学法:探究与合作学习想结合。
教学手段:借助多媒体,制作课件,通过视频和几何画板演示提高课堂效率和学生学习兴趣。
【教学目标】1.知识与技能目标结合学生学过的大量实例,借助这些函数的图象,让学生通过观察----探讨----归纳----结论,得出函数单调性与导数的正负关系。
2.过程与方法目标运用导数这个工具研究函数的单调性,求单调区间。
体会用导数解决函数单调性时的有效性、优越性。
3.情感与价值观目标培养学生的观察、比较、分析、概括的能力,从中体会数形结合思想、转化思想。
【教学重点难点】教学重点:函数单调性与其导函数的正负关系;判断函数单调性,求单调区间。
教学难点:函数单调性与其导函数的正负关系的探究过程。
【学前准备】:多媒体,预习例题提出问题1:通过观察,找到h(t)的两个单调区间,探究在这两个单调区间上导数分别有么特征。
提出问题2:上例得出的结果是不是具有一般性?探讨:下列函数的单调性与其导函数正负的关系。
1.3.2函数的极值与导数【教学目标】【教学目标】1.理解极大值、极小值的概念;2.能够运用判别极大值、极小值的方法来求函数的极值;3.掌握求可导函数的极值的步骤;【教学重点】极大、极小值的概念和判别方法,以及求可导函数的极值的步骤。
【教学难点】对极大、极小值概念的理解及求可导函数的极值的步骤。
【学前准备】:多媒体,预习例题当,或时,; 当,或时, 试画出函数图像的大致形状。
解:当时,,可知在此区间内单调递增;当,或时,;可知在此区间内单调递减;当,或时,,这两点比较特殊,我们把它称为“临界点”。
综上,函数图像的大致形状如图3.3-4所示。
最新人教版高中数学选修2-2第一章《导数的实际应用》知识讲解
数学人教B 选修2-2第一章1.3.3 导数的实际应用1.学会解决实际问题的基本方法,注意首先通过分析、思考、总结、联想,建立问题涉及的变量之间的函数关系式,然后根据实际意义确定定义域.2.学会利用导数求解实际问题,感受导数在解决实际问题中的作用.求实际问题中的最值的主要步骤(1)列出实际问题的数学模型,写出实际问题中变量之间的函数关系y =f (x ); (2)求函数的导数f ′(x ),解方程________;(3)比较函数在区间______和使f ′(x )=0的点的取值大小,最大(小)者为最大(小)值.(1)求实际问题的最大(小)值时,一定要从问题的实际意义去考虑,不符合实际意义的理论值应舍去;(2)在实际问题中,有时会遇到函数在区间内只有一个点使f ′(x )=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值;(3)在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系式给予表示,还应确定函数关系式中自变量的定义区间.【做一做1-1】内接于半径为R 的半圆的周长最大的矩形的边长为( ).A .R 2和32RB .55R 和455RC .45R 和75R D .以上都不对【做一做1-2】面积为S 的所有矩形中,其周长最小的是________.如何求解实际应用题?剖析:解应用题首先要在阅读材料、理解题意的基础上把实际问题抽象成数学问题.就是从实际问题出发,抽象概括,利用数学知识建立相应的数学模型;再利用数学知识对数学模型进行分析、研究,得到数学结论;然后再把数学结论返回到实际问题中进行检验,其思路如下:(1)审题:阅读理解文字表达的题意,分清条件和结论,找出问题的主要关系; (2)建模:将文字语言转化成数学语言,利用数学知识建立相应的数学模型; (3)解模:把数学问题化归为常规问题,选择合适的数学方法求解;(4)对结果进行验证评估,定性、定量分析,作出正确的判断,确定其答案.值得注意的是:在实际问题中,有时会遇到函数在定义区间内只有一个点使f ′(x )=0的情形,如果函数在这个点有极大(小)值,那么不与端点值比较也可以知道这就是最大(小)值.这里所说的也适用于开区间或无穷区间.题型一 利用导数求实际问题的最小值【例题1】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值. 分析:根据题设条件构造函数关系,再应用导数求最值.反思:解答一道应用题重点要过三关:事理关(需要读懂题意,知道讲的是什么事件);文理关(需要把实际问题的文字语言转化为数学的符号语言,用数学式子表达数学关系);数理关(要求学生有对数学知识的检索能力,认定或构建相应的数学模型,完成由实际问题向数学问题的转化,进而借助数学知识进行解答).对于这类问题,往往因忽视了数学语言和普通语言的转换,从而造成了解决应用问题的最大思维障碍.题型二 利用导数求实际问题的最大值【例题2】如图所示,有一块半椭圆形钢板,其长半轴长为2r ,短半轴长为r ,计划将此钢板切割成等腰梯形的形状,下底AB 是半椭圆的短轴,上底CD 的端点在椭圆上,记CD =2x ,梯形面积为S .(1)求面积S 以x 为自变量的函数关系式,并写出其定义域; (2)求面积S 的最大值.分析:建立坐标系,求出椭圆方程,表示出梯形的面积,应用导数求最值.反思:本题的关键是建立直角坐标系,得到椭圆方程x 2r 2+y 24r 2=1(y ≥0),进而得到梯形面积S =2(x +r )·r 2-x 2.利用导数法解决实际问题,当遇到在定义区间内只有一个点使f ′(x )=0的情形时,若函数在这一点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.题型三 易错辨析 易错点:在运用导数解决实际问题的过程中,常常因为忽略实际问题中函数的定义域而造成结果求解错误.解决问题的主要措施为:在准确理解题意的基础上,正确建模,在实际问题的定义域范围内求出问题的最优解.【例题3】某厂生产一种机器,其固定成本(即固定投入)为0.5万元.但每生产100台,需要增加可变成本(即另增加投入)0.25万元.市场对此产品的年需求量为500台,销售收入(单位:万元)函数为R (x )=5x -12x 2(0≤x ≤5),其中x 是产品售出的数量(单位:百台).(1)把利润表示为年产量的函数;(2)年产量是多少时,工厂所得利润最大?错解:(1)y =R (x )-C (x )=⎝⎛⎭⎫5x -12x 2-(0.5+0.25x )=-12x 2+194x -12(0≤x ≤5). (2)y ′=-x +194,令y ′=0,得x =194=4.75,∴4.75必为最大值点.∴年产量为475台时,工厂利润最大.1将8分为两数之和,使其立方之和为最小,则分法为( ). A .2和6 B .4和4C .3和5D .以上都不对2用边长为48 cm 的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒,当所做的铁盒容积最大时,在四角截去的正方形的边长为( ).A .6 cmB .8 cmC .10 cmD .12 cm3某车间要靠墙壁盖一间长方形小屋,现有砖只够砌20 m 长的墙壁,则应围成长为________ m ,宽为________ m 的长方形才能使小屋面积最大.4做一个容积为256的方底无盖水箱,当它的高为________时,最省材料. 答案: 基础知识·梳理(2)f ′(x )=0 (3)端点 【做一做1-1】B 设矩形的一边长为x ,则另一边长为2R 2-x 2,周长l =2x +4R 2-x 2(0<x <R ),∴l ′=2-4x R 2-x 2,令l ′=0,得x 1=55R ,x 2=-55R (舍去),当0<x <55R 时,l ′>0;当55R <x <R 时,l ′<0,所以当x =55R 时,l 取最大值,即矩形周长最大时边长为55R 和455R .【做一做1-2】以S 为边长的正方形 设矩形的一边长为x ,则另一边长为Sx ,周长f (x )=2⎝⎛⎭⎫x +S x ,f ′(x )=2⎝⎛⎭⎫1-Sx 2,令f ′(x )=0,得x =S ,易知当x =S 时,f (x )有极小值,也就是最小值. 典型例题·领悟【例题1】解:(1)设隔热层厚度为x cm ,由题设,每年能源消耗费用为C (x )=k3x +5,又C (0)=8,∴k =40,因此C (x )=403x +5,而建造费用C 1(x )=6x ,从而隔热层建造费用与20年的能源消耗费用之和为f (x )=20C (x )+C 1(x )=20×403x +5+6x =8003x +5+6x (0≤x ≤10)(2)f ′(x )=6- 2 400(3x +5)2,令f ′(x )=0,即 2 400(3x +5)2=6,得x 1=5,x 2=-253(舍去),当0<x <5时,f ′(x )<0,当5<x <10时,f ′(x )>0,故5是f (x )的最小值点,对应的最小值为f (5)=6×5+80015+5=70,即当隔热层修建5 cm 厚时,总费用达到最小值70万元.【例题2】解:(1)依题意,以AB 所在的直线为x 轴,AB 的中点O 为原点建立直角坐标系(如图所示),则点C 的横坐标为x ,点C 的纵坐标y 满足方程x 2r 2+y 24r 2=1(y ≥0),即y =2r 2-x 2(0<x <r ).S =12(2x +2r )·2r 2-x 2=2(x +r )·r 2-x 2, 其定义域为{x |0<x <r }.(2)记f (x )=4(x +r )2(r 2-x 2),0<x <r , 则f ′(x )=8(x +r )2(r -2x ). 令f ′(x )=0,得x =12r .因为当0<x <r2时,f ′(x )>0;当r2<x <r 时,f ′(x )<0, 所以f (12r )是f (x )的最大值.因此,当x =12r 时,S 也取得最大值,最大值为f (12r )=332r 2. 故梯形面积S 的最大值为332r 2.【例题3】错因分析:实际问题中,该厂生产的产品数量不一定在500台之内(含500台),应有x >5的情况,错解忽视了此种情况,就出现了错误.正解:(1)利润y =R (x )-C (x )=⎩⎨⎧⎝⎛⎭⎫5x -x 22-(0.5+0.25x )(0≤x ≤5),⎝⎛⎭⎫5×5-522-(0.5+0.25x )(x >5),=⎩⎪⎨⎪⎧-12x 2+4.75x -0.5(0≤x ≤5),12-0.25x (x >5).(2)0≤x ≤5时,y =-12x 2+4.75x -0.5,∴当x =4.75时,y max ≈10.78(万元);当x >5时,y =12-0.25x <12-0.25×5=10.75(万元). ∴年产量是475台时,工厂所得利润最大. 随堂练习·巩固1.B 设其中一个数为x ,则另一个数为8-x ,y =x 3+(8-x )3,0≤x ≤8,y ′=3x 2-3(8-x )2,令y ′=0即3x 2-3(8-x )2=0,得x =4.当0≤x <4时,y ′<0;当4<x ≤8时,y ′>0.所以当x =4时,y 最小.2.B 设截去的小正方形的边长为x cm ,铁盒的容积为V cm 3,由题意,得V =x (48-2x )2(0<x <24),V ′=12(24-x )(8-x ).令V ′=0,则在区间(0,24)内有解x =8,故当x =8时,V 有最大值.3.10 5 设长为x m ,宽为y m ,则x +2y =20,y =10-x 2.S =x ·y =x ⎝⎛⎭⎫10-x 2=10x -x 22,S ′=10-x ,令S ′=0,得x =10,∴x =10,y =5.4.4 设方底无盖水箱的底面边长为a ,高为h ,则V =a 2h =256,即h =256a 2.用料最省,即表面积最小.S 表=S 底+S 侧=a 2+4ah =a 2+4a 256a 2=a 2+1 024a .S ′=2a -1 024a2.令S ′=0,得2a -1 024a 2=0,解得a =8,此时h =25664=4.。
高中数学说课稿:选修2-2 1.1 导数在研究函数中的应用
《导数在研究函数中的应用》说课稿
我说课的课题是《普通高中课程标准实验教科书》选修2-2第一章《导数在研究函数中的应用》第一小节——函数的单调性与导数。
我将从下面几个方面阐述我对这节课的理解和教学设计:
教材分析、教法分析、学法指导、教学过程、板书设计、教学反思
一、教材分析
1地位和作用
本节的教学内容属导数的应用,是在学生学习了导数的概念、计算、几何意义的基础上学习的内容,学好它既可加深对导数的理解,又可为后面研究函数的极值、最值及函数的其他相关问题打好基础。
另外,由于学生在高一已经掌握了函数单调性的定义,并能用定义判定在给定区间上函数的单调性。
通过本节课的学习,应使学生体验到,用导数判断单调性要比用定义判断简捷得多,充分展示了利用导数解决函数问题的优越性。
2 教学目标
知识与技能目标:
(1)结合实例,借助几何直观探索并感受函数的单调性与导数的关系。
(2)尝试利用导数求简单函数的单调区间。
(3)能由导数信息绘制函数的大致图象。
过程与方法目标:
(1)通过具体函数单调性与其导数的正负关系,归纳概括出一般函数单调性的判断方法。
(2)通过实验操作、直观感知,结合函数图象,初步尝试从导数的角度解释函数在某一范围内增减的变化。
(3)培养学生的观察、比较、分析概括的能力,体会数形结合、特殊到一般的数学思想。
情感、态度与价值观目标:。
选修2-2第一章导数及其应用归纳整合
边梯形面积的区别.
网络构建
专题归纳
解读高考
专题一 应用导数解决与切线相关的问题 根据导数的几何意义,导数就是相应切线的斜率,从而就可 以应用导数解决一些与切线相关的问题.
网络构建
专题归纳
解读高考
【例 1】 设函数 f(x)=4x2-ln x+2,求曲线 y=f(x)在点(1,f(1)) 处的切线方程. 1 解 f′(x)=8x- x. 所以在点(1,f(1))处切线的斜率 k=f′(1)=7, 又 f(1)=4+2=6, 所以切点的坐标为(1,6), 所以切线的方程为 y-6=7(x-1),即 y=7x-1.
(2)求函数最值的步骤
一般地,求函数y =f(x) 在[a ,b] 上最大值与最小值的步骤如下: ①求函数y=f(x)在(a,b)内的极值; ②将函数y=f(x)的各极值与端点处的函数值 f(a),f(b)比较,其 中最大的一个是最大值,最小的一个是最小值.
网络构建
专题归纳
解读高考
7.应用导数解决实际问题,关键在于建立恰当的数学模型(函数 关系),如果函数在区间内只有一个点x0,使f′(x0)=0,则f(x0)是 函数的最值.
为增(或减)函数的充分条件.
网络构建
专题归纳
解读高考
5.利用导数研究函数的极值要注意 (1) 极值是一个局部概念,是仅对某一点的左右两侧领域而言 的.
(2) 连续函数f(x) 在其定义域上的极值点可能不止一个,也可能
没有极值点,函数的极大值与极小值没有必然的大小联系,函 数的一个极小值也不一定比它的一个极大值小. (3)可导函数的极值点一定是导数为零的点,但函数的导数为零 的点,不一定是该函数的极值点.因此导数为零的点仅是该点
3.利用基本初等函数的求导公式和四则运算法则求导数,熟记基
高中数学选修2-2主要内容
〔2〕 x
x x0 ,当 x 0 时, x
x0 ,所以
f (x0 )
lim
x0
f
(x) f (x0 ) x x0
当点 Pn 沿着曲线无限接近点 P 即Δx→0 时,割线 PPn 趋近于确定的位置,这个确定位置
的直线 PT 称为曲线在点 P 处的切线.
1.3 导数在研究函数中的应用 在某个区间 (a ,b) 内,如果 f ' (x) 0 ,那么函数 y f (x) 在这个区间内单调递增;如果
f ' (x) 0 ,那么函数 y f (x) 在这个区间内单调递减.
特别的,如果 f ' (x) 0 ,那么函数 y f (x) 在这个区间内是常函数.
新疆 王新敞
奎屯
⑷极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最 值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值. 利用导数求函数的最值步骤:
由上面函数 f (x) 的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值
进行比较,就可以得出函数的最值了.
时, y x
f (xo x) x
f (xo ) 无限趋近于一个固定的常数 A,则称 f (x) 在 x xo 处可导,并
称 A 为 f (x) 在 x xo 处的导数,记作 f ' ( xo ) 或 f ' ( x) |xxo ,
函数 y=f<x>在 x=x0 处的瞬时变化率是:
我们称它为函数 y f (x) 在 x x0 出的导数,记作 f ' (x0 ) 或 y' |xx0 ,即
最新人教版高中数学选修2-2第一章导数及其应用整合1
随堂练习 S 高考真题
UITANG LIANXI
专题五
2 (3)设切点为(x0,y0),则切线的斜率 k=������0 =4,
∴x0=± 2.∴切点为(2,4)或 -2,- .
3
4
∴斜率为 4 的曲线的切线方程为 y-4=4(x-2)和 y+ =4(x+2),
3
4
即 4x-y-4=0 和 12x-3y+20=0.
3 3 1 4
∴ 在点 P(2,4)处的切线的斜率 k=y'|x=2=4. ∴ 曲线在点 P(2,4)处的切线方程为 y-4=4(x-2), 即 4x-y-4=0.
-4-
1.1 DNA重组技术的基本工具
专题一 专题二 专题三 专题四
首 页
重点难点 基础知识 J知识网络 Z 专题归纳
ICHU ZHISHI
∴(x0+1)(x0-2)2=0,解得 x0=-1 或 x0=2, 故所求的切线方程为 4x-y-4=0 或 x-y+2=0.
-5-
1.1 DNA重组技术的基本工具
专题一 专题二 专题三 专题四
首 页
重点难点 基础知识 J知识网络 Z 专题归纳
ICHU ZHISHI
HONGDIAN NANDIAN
ICHU ZHISHI
HONGDIAN NANDIAN
随堂练习 S 高考真题
UITANG LIANXI
专题五
专题一 导数的几何意义与曲线的切线方程 利用导数的几何意义求切线方程时关键是搞清所给的点是 不是切点,常见的类型有两种:一类是求“在某点处的切线方程”, 则此点一定为切点,先求导,再求斜率代入直线方程即可得;另一 类是求“过某点的切线方程”,这种类型中的点不一定是切点,可 先设切点为 Q(x1,y1),则切线方程为 y-y1=f'(x1)(x-x1),再由切线过 点 P(x0,y0)得 y0-y1=f'(x1)(x0-x1).① 又 y1=f(x1),② 由①②求出 x1,y1 的值,即求出了过点 P(x0,y0)的切线方程.
高中数学选修2-2(人教A版)第一章导数及其应用1.1知识点总结含同步练习及答案
导数的几何意义当点趋近于点时,割线
趋近于确定的位置,这个确定位置的直线 P n P (,f ()) x 0x 0 P P n P P
).
.
.
.
高考不提分,赔付1万元,关注快乐学了解详情。
解析:图像中每点的斜率均表示这一时刻的速度.
答案:解析:4. 如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记 时刻五角星露出水面部分的图形面积为
,则导函数 的图象大致为
.
A .
B .
C
.D .
A
导函数 为单位时间内五角星出水的面积率,由图可知当一个角出来时,面积率由 开始,逐渐增多,当一个角
都出完了,则面积率一下由最大开始减小,当出最后两个角时,面积率会先增加,然后减小到 .
t S (t )(S (0)=0)y =(t )S ′()y =(t )S ′0。
人教课标版高中数学选修2-2:《导数在研究函数中的应用(第2课时)》教案-新版
第一章 导数及其应用 1.3 导数在研究函数中的应用第二课时一、教学目标 1.核心素养通过学习导数在研究函数中的应用, 提升运算求解、推理论证能力、体会丰富的数学思想. 2.学习目标结合函数的图象,了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值,以及函数在给定区间上的最大值、最小值(其中多项式函数不超过三次). (1)探索函数极值的定义和求法 (2)运用极值,逆向思考求参数 (3)极值和最值的关系,求函数的最值 3.学习重点利用导数求函数的极大值、极小值,以及函数在给定区间上的最大值与最小值. 4.学习难点函数在某点取得极值的必要条件与充分条件以及利用导数研究函数的综合应用.二、教学设计 (一)课前设计 1.预习任务 任务1阅读教材P26-P31,思考:极值的概念是什么?极值在图象上有什么特征?极值与最值是什么关系? 任务2整理求函数极值的一般步骤任务3思考:导数值为0是函数()y f x =在这点取极值的什么条件?2.预习自测1.设函数()x f x xe =,则( ) A.1x =为()f x 的极大值点B.1x =为()f x 的极小值点C.1x =-为()f x 的极大值点D.1x =-为()f x 的极小值点解:D2.函数f (x )=x 3+3x 2+3x -a 的极值点的个数为( )A.2B.1C.0D.由a 确定 解:C3.函数f (x )=x +2cos x 在区间⎣⎢⎡⎦⎥⎤-π2,0上的最小值是( )A.-π2B.2C.π6+ 3D.π3+1 解:A(二)课堂设计 1.知识回顾(1)函数f (x )在点x 0处的导数0'()f x 的几何意义是在曲线y =f (x )上点00(,)P x y 处的切线的斜率.相应的,切线方程为000'()()y y f x x x -=-. (2)利用导数求函数的单调区间的步骤是什么? 1.确定函数)(x f 的定义域;2.求)(x f ',令()0f x '=,解此方程,求出它在定义域内的一切实根.3.把函数)(x f 的间断点(即)(x f 的无定义的点)的横坐标和上面的各实根按由小到大的顺序排列起来然后用这些点把函数)(x f 的定义域分成若干个小区间.4.确定)(x f '在各小开区间内的符号,根据)(x f '的正负判定函数)(x f 在各个相应小区间的增减性. 2.问题探究问题探究一 ●活动一 数形结合,探寻定义请运用导数研究3()3f x x x =-的单调性,并作出其图象.观察图象上1x =-和1x =这两个特殊的位置,思考它们具有什么特征?()y f x =在x a =处的函数值()f a 比它在x a =附近其他点的函数值都小,我们就把a 叫做函数()y f x =的极小值点,()f a 叫做函数()y f x =的极小值;函数()y f x =在x b =处的函数值()f b 比它在x b =附近其他点的函数值都大,我们就把b 叫做函数()y f x =的极大值点,()f b 叫做函数()y f x =的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.需要注意的是:极值点是函数取得极值时自变量的值,是一个实数,不是一个点.从导数的角度看,如果x a =是极小值点,则()0f a '=,而且在x a =附近的左侧导数小于0,右侧导数大于0;类似地,如果x b =是极大值点,则()0f b '=,而且在点x b =附近的左侧导数大于0,右侧导数小于0,极值点在导数上有明显的特征,我们可以借助这一点来寻找函数的极值点.例1.函数()f x 的导函数()f x '的图象如图所示,则( )A.12x =为()f x 的极大值点 B.2x =-为()f x 的极大值点 C.2x =为()f x 的极大值点 D.0x =为()f x 的极小值点 【知识点:极值的定义】 详解:A 通过观察,12x =左侧导数为正,右侧为负,1'()02f =,所以12x =为()f x 的极大值点.点拨:极值点在导数图象上具体表现为“变号零点”,判断极值点时一定要高度关注左右两边的符号.●活动二 归纳总结,探寻方法例2.设2e ()1xf x ax=+,其中a 为正实数.(1)当43a =时,求()f x 的极值点;(2)若()f x 为R 上的单调函数,求a 的取值范围.【知识点:极值的定义和求法,二次不等式恒成立问题】 详解:22'2222e (1)2e 12()e (1)(1)x x x ax ax ax ax f x ax ax +-+-==++(1)当a 43=时,22248133()e 4(1)3x x xf x x +-'=+,由()0f x '=得24830x x -+=解得1213,22x x == 由()0f x '>得13x x <>或,由()0f x '<得13x <<,当x 变化时()f x '与()f x 相应变化如下表:所以,12x =是函数()f x 的极大值点,22x =是函数()f x 的极小值点. (2)因为()f x 为R 上的单调函数,而a 为正实数,故()f x 为R 上的单调递增函数,()0f x '∴≥恒成立,即2210ax ax -+≥在R 上恒成立,因此2440a a ∆=-≤,结合0a >解得01a <≤.点拨:依据极值的概念可知:可导函数()y f x =在点a 处取得极值的充要条件是()0f a '=,且在a 的左侧与右侧,()f x '的符号不同,所以需要对两边的符号加以说明,而列表是最清晰的表达方式.●活动三 总结提升求函数极值的一般步骤是什么? (1)求函数的定义域;(2)求导函数()f x ',并求出()0f x '=在定义域内的全部实根; (3)判断()0f x '=的每一个实根左、右两侧的导函数符号:①如果在一个实根左侧附近为正,右侧附近为负,那么函数)(x f y =这个实根处取得极大值; ②如果在一个实根的左侧为负,右侧为正,那么函数)(x f y =在这个实根处取得极小值. 问题探究二 已知极值求参数. ●活动一 抓住特征,逆向思考例3.若函数f (x )=x 2+ax +1在x =1处取得极值,则a =________________.【知识点:函数在某点取得极值的条件】详解:3 22222(1)()2'()(1)(1)x x x a x x af x x x +-++-==++,'(1)03f a =⇒=,回代检验,x =1处导数两端异号,所以在x =1处取得极值,3a =点拨:函数在极值点处的导数为0,但导数值为0的点不一定是函数的极值点. 也就是说, 函数()y f x =在某点的导数值为0是函数()y f x =在这点取极值的必要而不充分条件,通过将'(1)0f =求出的值作回代检验是必须的.例4.设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点.(1)试确定常数a 和b 的值;(2)试判断x =1,x =2是函数f (x )的极大值点还是极小值点,并说明理由. 【知识点:函数在某点取得极值的条件】 详解:(1)f ′(x )=ax +2bx +1, ∴⎩⎪⎨⎪⎧f =a +2b +1=0f =a2+4b +1=0.解得a =-23,b =-16,回代检验,符合要求,所以a =-23,b =-16, (2)f ′(x )=-23x +(-x3)+1=-x -x -3x .函数定义域为(0,+∞),列表∴x =1是f (点拨:答题时注意区分是“极值点”还是“极值”,极值意指函数值,极值点意指x 的值.问题探究三 利用极值求最值 ●活动一 结合图象,辨清原理结合3()3f x x x =-的图象,试求其在[2,2]x ∈-上的最小值,你发现什么结论? 1.函数()f x 在闭区间上的最值有什么结论?般地,如果在区间[,]a b 上函数()y f x =的图象是一条连续不断的曲线,那么它必有最大值和最小值.此时,函数的最大值和最小值必在极值处或区间的端点处取得. 2.求函数()y f x =在[,]a b 上的最大值与最小值的步骤是什么? (1)求函数()y f x =在区间(,)a b 内的极值;(2)将函数()y f x =各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.例5.函数y =x 33+x 2-3x -4在[0,2]上的最小值是( )A.-173B.-103C.-4D.-643 【知识点:利用导数求闭区间上函数的最值】 详解:A点拨:极值是一个局部概念,是比较极值点附近的函数值得出的,因此端点绝对不是极值点,但最值是一个整体概念,是比较某个区间内的所有函数值得出的;在函数的定义域内可以有许多个极大值和极小值,但若有最大值与最小值,则最大值与最小值具有唯一性;函数的极小值不一定小于极大值,但最大值一定比最小值大.例6.已知函数21()ln 2f x x a x =+.(1)当1a =-时,求函数f (x )在21[,]e e上的最大、最小值;(2)当1a =时,求证:1x >时,32()3f x x <. 【知识点:利用导数求闭区间上函数的最值】解:(1)当1a =-时,21()ln 2f x x x =-,于是2(1)(1)1()x x x f x x x +--'==,令()0f x '=,可得:1x = 当11x e≤<时,()0f x '<;当1x e <≤时,()0f x '>所以()f x 在1[,1)e上单调递减,在(1,]e 上单调递增,于是min 1()(1)2f x f ==,又211()12f e e =+,221()22f e e =-,所以22max 1()()22f x f e e ==-. (2)当1a =时,21()ln 2f x x x =+设F (x )=12x 2+ln x -23x 3,则F ′(x )=x +1x -2x 22(1)(12)x x x x-++=. 因为x >1,所以F ′(x )<0.所以函数F (x )在区间(1,+∞)上单调递减, 又F (1)=-16<0,所以,在区间(1,+∞)上F (x )<0,即32()3f x x <.点拨:若连续函数()f x 在开区间内只有唯一一个极值点,则这个极值点一定就是最值点.3.课堂总结 【知识梳理】1.极值点和极值的概念:设函数()y f x =在x a =处的函数值()f a 比它在x a =附近其他点的函数值都小,我们就把a 叫做函数()y f x =的极小值点,()f a 叫做函数()y f x =的极小值;函数()y f x =在x b =处的函数值()f b 比它在x b =附近其他点的函数值都大,我们就把b 叫做函数()y f x =的极大值点,()f b 叫做函数()y f x =的极大值.2.求函数极值的一般步骤: (1)求函数的定义域;(2)求导函数()f x ',并求出()0f x '=在定义域内的全部实根; (3)判断()0f x '=的每一个实根左、右两侧的导函数符号:①如果在一个实根左侧附近为正,右侧附近为负,那么函数)(x f y =这个实根处取得极大值; ②如果在一个实根的左侧为负,右侧为正,那么函数)(x f y =在这个实根处取得极小值 3.求函数()y f x =在[,]a b 上的最大值与最小值的步骤: (1)求函数()y f x =在区间(,)a b 内的极值;(2)将函数()y f x =各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值. 【重难点突破】(1)可导函数在极值点处的导数为0,但导数值为0的点不一定是函数的极值点. 也就是说, 函数()y f x =在某点的导数值为0是函数()y f x =在这点取极值的必要而不充分条件.(2)可导函数()y f x =在点a 处取得极值的充要条件是()0f a '=,且在a 的左侧与右侧,()f x '的符号异号.因此,若函数()f x 在某个区间内有极值,则在这个区间内()f x 一定不是单调函数.也就是说在某个区间内的单调函数没有极值.(2)在函数的定义域内可以有许多个极大值和极小值,但若有最大值与最小值,则最大值与最小值具有唯一性;函数的极小值不一定小于极大值,但最大值一定比最小值大.4.随堂检测1.函数2()e x f x x -=的极大值为__________________. 【知识点:利用导数研究函数的极值】 解:24e2.当函数y =x ·2x 取极小值时,x =( )A.1ln2B.-1ln2 C.-ln2 D.ln2 【知识点:利用导数研究函数的极值】解:B 由y =x ·2x ,得y ′=2x +x ·2x ·ln22(1ln 2)x x =+⋅.3.若f (x )=2x 3-6x 2+m 在[-2,2]上有最大值3,则f (x )在[-2,2]上的最小值为______________. 【知识点:利用导数求闭区间上函数的最值】 解:-374.已知f (x )=2x 3-6x 2+3,对任意的x ∈[-2,2]都有f (x )≤a ,则a 的取值范围为________. 【知识点:利用导数求闭区间上函数的最值,恒成立问题】解:由f ′(x )=6x 2-12x =0,得x =0,或x =2,又f (-2)=-37,f (0)=3,f (2)=-5, ∴f (x )max =3,又f (x )≤a ,∴a ≥3,答案:[3,+∞)5.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m 、n ∈[-1,1],则f (m )+f ′(n )的最小值是( ) A.-13B.-15C.10D.15【知识点:函数在某点取得极值的条件】解:求导得f ′(x )=-3x 2+2ax ,由函数f (x )在x =2处取得极值知f ′(2)=0,即-3×4+2a ×2=0,∴a =3.由此可得f (x )=-x 3+3x 2-4,f ′(x )=-3x 2+6x ,易知f (x )在(-1,0)上单调递减,在(0,1)上单调递增,∴当m ∈[-1,1]时,f (m )min =f (0)=-4.又f ′(x )=-3x 2+6x 的图象开口向下,且对称轴为x =1,∴当n ∈[-1,1]时,f ′(n )min =f ′(-1)=-9.故f (m )+f ′(n )的最小值为-13. (三)课后作业 基础型 自主突破1.函数f (x )=x e -x ,x ∈[0,4]的最大值是( )A.0B.1eC.4e 4D.2e 2【知识点:利用导数求闭区间上函数的最值】 解:Bf ′(x )=e -x -x ·e -x =e -x (1-x ), 令f ′(x )=0,∴x =1.又f (0)=0,f (4)=4e 4,f (1)=e -1=1e ,∴f (1)为最大值.2.已知f (x )=12x 2-cos x ,x ∈[-1,1],则导函数f ′(x )是( ) A.仅有最小值的奇函数B.既有最大值,又有最小值的偶函数C.仅有最大值的偶函数D.既有最大值,又有最小值的奇函数【知识点:利用导数求闭区间上函数的最值】解:D f ′(x )=x +sin x ,显然f ′(x )是奇函数,令h (x )=f ′(x ),则h (x )=x +sin x ,求导得h ′(x )=1+cos x .当x ∈[-1,1]时,h ′(x )>0,所以h (x )在[-1,1]上单调递增,有最大值和最小值.所以f ′(x )是既有最大值又有最小值的奇函数.3.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为( ) A.0≤a <1B.0<a <1C.-1<a <1D.0<a <12【知识点:利用导数求闭区间上函数的最值】 解:B ∵y ′=3x 2-3a ,令y ′=0,可得:a =x 2. 又∵x ∈(0,1),∴0<a <1.4.已知f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值范围为( ) A.-1<a <2 B.-3<a <0 C.a <-1或a >2 D.a <-3或a >6 【知识点:函数在某点取得极值的条件】 解:D5.若f (x )=x sin x +cos x ,则f (3),f ⎝ ⎛⎭⎪⎫π2,f (2)的大小关系为______________.【知识点:利用导数研究函数的单调性】解:(3)(2)()2f f f π<<6.已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为________.【知识点:利用导数求闭区间上函数的最值】 解:-37 能力型 师生共研7.若函数f (x )=x 3-6bx +3b 在(0,1)内有极小值,则实数b 的取值范围是( ) A.(0,1) B.(-∞,1) C.(0,+∞) D.(0,12) 【知识点:函数在某点取得极值的条件】解:D f ′(x )=3x 2-6b ,∵f (x )在(0,1)内有极小值,∴在(0,1)内存在点x 0,使得在(0,x 0)内f ′(x )<0,在(x 0,1)内f ′(x )>0,由f ′(x )=0得,x 2=2b >0,∴⎩⎨⎧b >02b <1,∴0<b <12.8.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |取到最小时t 的值为________.【知识点:利用导数求函数的最值】解:22 当x =t 时,f (t )=t 2,g (t )=ln t ,∴y =|MN |=t 2-ln t (t >0).所以y ′=2t -1t =2t 2-1t .当0<t <22时,y ′<0;当t >22时,y ′>0.∴y =|MN |=t 2-ln t 在t =22时有最小值.9.设f (x )、g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,()()()()0f x g x f x g x ''+>,且g (-3)=0,则不等式f (x )g (x )<0的解集是( )A.(3,0)(3,)-+∞B.(3,0)(0,3)-C.(,3)(3,)-∞-+∞D.(,3)(0,3)-∞- 【知识点:构造新函数,数学思想:数形结合】解:D ∵[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x ),∴当x <0时,[f (x )g (x )]′>0,∴f (x )g (x )在(-∞,0)上是增函数.又g (-3)=0,∴f (-3)g (-3)=0.又∵f (x )、g (x )分别是定义在R 上的奇函数和偶函数,∴f (x )g (x )在R 上是奇函数,其图象关于原点对称.∴x ∈(-∞,-3)时,f (x )g (x )<0,当x >0且x ∈(0,3)时,f (x )g (x )<0.10.设函数2()(0)f x ax bx k k =++>在0x =处取得极值,且曲线()y f x =在点(1,(1))f 处的切线垂直于直线210x y ++=.(1)求,a b 的值;(2)若函数e ()()xg x f x =,讨论()g x 的单调性.【知识点:利用导数研究曲线上某点切线方程,函数在某点取得极值的条件,利用导数研究函数的单调性】解:(1)因2()(0),()2f x a x b x k k f x a x b '=++>=+故,又()f x 在x=0处取得极限值,故()0,f x '=从而0b =.由曲线y=()f x 在(1,f (1))处的切线与直线210x y -+=相互垂直可知该切线斜率为2,即(1)2,1f a ='=从而.(2)由(1)知,2()(0)xe g x k x k =>+,则222(2)()(0)()x e x x k g x k x k -+'=>+,令2()0,20g x x x k '=-+=有①当440,k '∆=-<即当k>1时,g (x)>0在R 上恒成立,故函数g(x)在R 上为增函数; ②当440,k ∆=-=即当k=1时,222(1)()0(0)()x e x g x x x k -'=≥≠+,故K=1时,g (x )在R 上为增函数;③440,k ∆=->即当0<k<1时,方程220x x k -+=有两个不相等实根1211x x ==当(,1()0,(),1x g x g x '∈-∞>-∞是故在(上为增函数当1x ∈(时,()0,g x '<故()1g x 在(上为减函数1x ∈∞(+)时,()0,g x '>故()1g x ∞在(+)上为增函数.探究型 多维突破11.设函数f (x )=e x -k2x 2-x .(1)若k =0,求f (x )的最小值;(2)若k =1,讨论函数f (x )的单调性.【知识点:利用导数求函数的最值,利用导数研究函数的单调性】 解:(1)k =0时,f (x )=e x -x ,f ′(x )=e x -1.当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0. 所以f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. 故f (x )的最小值为f (0)=1.(2)若k =1,则f (x )=e x-12x 2-x ,定义域为R .∴f ′(x )=e x -x -1,令g (x )=e x -x -1,则g ′(x )=e x -1, 由g ′(x )≥0得x ≥0,所以g (x )在[0,+∞)上单调递增, 由g ′(x )<0得x <0,所以g (x )在(-∞,0)上单调递减. ∴g (x )min =g (0)=0,即f ′(x )min =0,故f ′(x )≥0. 所以f (x )在R 上单调递增. 12.设函数()2ln xf x x x=+(1)x >.(1)求()f x 的单调性;(2)若函数()()g x f x m =-在(1,]e 上有两个零点,求m 的取值范围 (其中e 为自然对数的底数) . 【知识点:零点个数的判定,利用导数研究函数的单调性】解:(1) 由题知:()f x 的定义域为(1,)+∞,且222ln 12(ln )ln 1()2(ln )(ln )x x x f x x x -+-'=+=令()0f x '=,得22(ln )ln 10x x +-=,解得:1ln 2x =或ln 1x =-(舍),于是x =当1x <()0f x '<;x >()0f x '>.所以()f x 的单调递减区间为,()f x 的单调递增区间为)+∞.(2)由于函数()()g x f x m =-在(1,]e 上有两个零点,故()f x m =在(1,]e 上有两个不同的根,由(1)知:()f x 在上单调递减,]e 上单调递增,于是(1,]x e ∈时,min ()f x f ==又()3f e e = ,当(1,]x e ∈,且1x →时,()f x →+∞,故3m e ≤.即实数m 的取值范围为]e . 自助餐1.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A.1个B.2个C.3个D.4个【知识点:函数在某点取得极值的条件】 解:A2.函数f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是( ) A.-2B.0C.2D.4【知识点:利用导数求函数的最值】 解:C3.已知函数f (x )=x 3-px 2-qx 的图象与x 轴相切于(1,0),则()f x 极小值为( ) A.0 B.-427 C.-527 D.1 【知识点:利用导数研究函数的极值】解:A f ′(x )=3x 2-2px -q ,由题知f ′(1)=3-2p -q =0.又f (1)=1-p -q =0,解得p =2,q =-1.∴f (x )=x 3-2x 2+x ,f ′(x )=3x 2-4x +1.由f ′(x )=3x 2-4x +1=0,解得x =1或x =13.经检验知x =1是函数的极小值点.∴f (x )极小值=f (1)=0.4.设a ∈R ,若函数y =e ax +3x ,x ∈R 有大于零的极值点,则( ) A.a >-3 B.a <-3 C.a >-13 D.a <-13 【知识点:函数在某点取得极值的条件】解:B y ′=a e ax +3,由条件知,方程a e ax +3=0有大于零的实数根,∴0<-3a <1,∴a <-3. 5.已知a ≤1-x x +ln x 对任意x ∈⎣⎢⎡⎦⎥⎤12,2恒成立,则a 的最大值为( )A.0B.1C.2D.3 【知识点:利用导数求函数的最值】 解:A6.设函数y =f (x )在(0,+∞)内有定义,对于给定的正数K ,定义函数(),()(),()K f x f x Kf x K f x K≤⎧=⎨>⎩,若函数ln 1()xx f x e+=,恒有()()K f x f x =,则( ) A.K 的最大值为1e B.K 的最小值为1e C.K 的最大值为2 D.K 的最小值为2 【知识点:利用导数求函数的最值】解:B 由f (x )=ln x +1e x ,令f ′(x )=1(ln 1)0xx x e-+=,得x =1. 当x ∈(0,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )<0,所以f (x )=ln x +1e x 在x =1时取得最大值1e, 而f (x )≤K 恒成立,所以1e ≤K ,故K 的最小值为1e ,选B.7.设函数f (x )=x ·(x -c )2在x =2处有极大值,则c =________________. 【知识点:函数在某点取得极值的条件】 解:68.函数f (x )=x 2+a ln(1+x )有两个极值点x 1,x 2,且x 1<x 2,则a 的取值范围为____________. 【知识点:函数在某点取得极值的条件,根分布问题】解:102a << f (x )的定义域为(-1,+∞),f ′(x )=2x +a 1+x =2x 2+2x +a 1+x (x >-1),由题意知2x 2+2x +a =0在(-1,+∞)上有两个不等实根x 1,x 2且x 1<x 2, 令g (x )=2x 2+2x +a (x >-1),利用根的分布可解得102a <<9.已知函数f (x )=x 2+2x ,g (x )=(12)x -m .若∀x 1∈[1,2],∃x 2∈[-1,1]使f (x 1)≥g (x 2),则实数m 的取值范围是_____.【知识点:利用导数求函数的最值】解:[-52,+∞) 要使∀x 1∈[1,2],∃x 2∈[-1,1],使f (x 1)≥g (x 2),只需f (x )=x 2+2x 在[1,2]上的最小值大于等于g (x )=(12)x-m 在[-1,1]上的最小值.10.设函数f (x )=x 3-3ax +b (a ≠0).(1)若曲线y =f (x )在点(2,f (2))处与直线y =8相切,求a ,b 的值;(2)求函数f (x )的单调区间与极值点.【知识点:函数在某点取得极值的条件,利用导数研究函数的单调性】解:(1)由已知可得f ′(x )=3x 2-3a .因为曲线y =f (x )在点(2,f (2))处与直线y =8相切,所以(2)0(2)8f f '=⎧⎨=⎩,即3(4)0868a a b -=⎧⎨-+=⎩,解得a =4,b =24.(2)f ′(x )=3(x 2-a )(a ≠0).当0a ≤时,f ′(x )≥0,故函数f (x )在R 上单调递增,此时f (x )没有极值点. 当a >0时,由f ′(x )=0,得x =±a .当x ∈(-∞,-a )时,f ′(x )>0,函数f (x )单调递增; 当x ∈(-a ,a )时,f ′(x )<0,函数f (x )单调递减; 当x ∈(a ,+∞)时,f ′(x )>0,函数f (x )单调递增.此时x =-a 是f (x )的极大值点,x =a 是f (x )的极小值点.11.设函数f (x )=x +ax 2+b ln x ,曲线y =f (x )过P (1,0),且在P 点处的切线斜率为2. (1)求a ,b 的值; (2)证明:f (x )≤2x -2.【知识点:利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,利用导数求函数的最值】12.已知函数f (x )=ln(1+x )-mx .(1)求函数f (x )的极值;(2)求证:ln 21221n n n +++>+++ (n ∈N *).【知识点:利用导数研究函数的极值,利用导数研究函数的单调性,不等式放缩】 解:(1)由题知:()f x 的定义域为(1,)-+∞,且f ′(x )=11+x-m (x >-1). 当m ≤0时,f ′(x )>0恒成立,则f (x )为(-1,+∞)上的增函数,所以f (x )没有极值. 当m >0时,由f ′(x )>0,得111x m -<<-;由f ′(x )<0,得11x m>-. 所以f (x )在⎝ ⎛⎦⎥⎤-1,1m -1上单调递增,在⎣⎢⎡⎭⎪⎫1m -1,+∞上单调递减. 故当x =1m -1时,f (x )有极大值f ⎝ ⎛⎭⎪⎫1m -1=m -1-ln m ,但无极小值.(2)证明:取m =1,由(1)知f (x )=ln(1+x )-x 在(0,+∞)上单调递减, 所以f (x )<f (0)=0.即ln(1+x )<x (x >0).令x =1k (k >0),得ln(1+1k )<1k ,即ln k +1k <1k ,分别取k =n +1,n +2,…,21n +,n ∈N *, 可得1111221n n n +++>+++ln n +2n +1+ln n +3n +2+…+ln 2n +22n +1=ln 2n +2n +1=ln2. 即111ln 21221n n n +++>+++(n ∈N *)成立.。
最新人教版高中数学选修2-2第一章《导数及其应用》知识讲解
数学人教B 选修2-2第一章导数及其应用知识建构专题应用专题一 用导数的定义解题对于导数的定义,必须明确定义中包含的基本内容和Δx →0的方式,掌握用定义求导数的步骤以及用定义求导数的一些简单变形.应用若函数y =f (x )在点x 0处可导,则lim h →0f (x 0+h )-f (x 0-h )h =________.专题二 切线问题求切线实际考查的是导数的几何意义,这类问题可以是以小题也可以是以大题形式出现,有时以求函数的导数、导数的应用以及函数的其他知识等综合题形式出现,这时多为中档题.应用已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.(1)求直线l 2的方程;(2)求由直线l 1,l 2和x 轴所围成的三角形的面积.提示:(1)求曲线上某点处的切线的步骤:先求曲线在这点处的导数,这点对应的导数值即为过此点切线的斜率,再由点斜式写出直线方程.(2)求面积用S =12ah 即可完成.专题三 函数的单调性与极值、最大(小)值 (1)求可导函数f (x )单调区间的步骤: ①求f ′(x );②解不等式f ′(x )>0(或f ′(x )<0); ③确认并指出函数的单调区间.(2)求可导函数f (x )在区间[a ,b ]上最大(小)值的步骤: ①求出f (x )在区间(a ,b )内的极值;②将f (x )在区间(a ,b )内的极值与f (a )、f (b )比较,确定f (x )的最大值与最小值.应用1设a 为实数,函数f (x )=e x -2x +2a ,x ∈R .(1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1,且x >0时,e x >x 2-2ax +1. 提示:先求导,利用导函数求解与证明.应用2设函数f (x )=ln x +ln(2-x )+ax (a >0). (1)当a =1时,求f (x )的单调区间;(2)若f (x )在区间(0,1]上的最大值为12,求a 的值.专题四 用定积分求平面图形的面积用定积分求平面图形的面积是定积分的一个重要应用,几种典型的平面图形的面积计算如下:设由一条曲线y =f (x )和直线x =a ,x =b (a <b )及y =0所围成的平面图形的面积为S .(1)如图①所示,f (x )>0,ba⎰f (x )d x >0,所以S =ba⎰f (x )d x .(2)如图②所示,f (x )<0,ba ⎰f (x )d x <0,所以S =()d baf x x ⎰=-b a⎰f (x )d x .(3)如图③所示,当a ≤x ≤c 时,f (x )≤0,ca ⎰f (x )d x <0;当c ≤x ≤b 时,f (x )≥0,bc⎰f (x )d x >0,所以S =()d caf x x ⎰+bc⎰f (x )d x =-ca⎰f (x )d x+bc⎰f (x )d x .由两条曲线f (x )和g (x ),直线x =a ,x =b (a <b )所围成的平面图形的面积为S .如图④所示,f (x )>g (x ),则S =ba⎰[f (x )-g (x )]d x .解题步骤如下:(1)画出图形;(2)确定图形范围,通过解方程组求出交点的横坐标,定出积分上、下限;(3)确定被积函数,特别要注意分清被积函数的位置;(4)写出平面图形面积的定积分表达式;(5)运用微积分基本定理公式计算定积分,求出平面图形的面积.应用计算由曲线y =x 2-2x +3与直线y =x +3所围成的图形的面积. 提示:先将图形面积借助于定积分表示出来,然后再求解. 真题放送1.(2011·福建高考卷)1⎰(e x +2x )d x 等于( ).A .1B .e -1C .eD .e +1 2.(2010·山东高考卷)由曲线y =x 2,y =x 3围成的封闭图形面积为( ).A .112B .14C .13D .7123.(2010·江西高考卷)在等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),则f ′(0)=( ).A .26B .29C .212D .215 4.(2010·江西高考卷)如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t 时刻五角星露出水面部分的图形面积为S (t )(S (0)=0),则导函数y =S ′(t )的图象大致为( ).5.(2011·陕西高考卷)设f (x )=2lg , 0,3d ,0,ax x x t t x >⎧⎪⎨+≤⎪⎩⎰若f (f (1))=1,则a =__________.6.(2011·陕西高考卷)如图,从点P 1(0,0)作x 轴的垂线交曲线y =e x 于点Q 1(0,1),曲线在Q 1点处的切线与x 轴交于点P 2.再从P 2作x 轴的垂线交曲线于点Q 2,依次重复上述过程得到一系列点:P 1,Q 1;P 2,Q 2;…;P n ,Q n ,记P k 点的坐标为(x k,0)(k =1,2,…,n ).(1)试求x k 与x k -1的关系(2≤k ≤n ); (2)求|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |.7.(2011·安徽高考卷)设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围. 答案: 专题应用 专题一应用:2f ′(x 0) 原式=lim h →0f (x 0+h )-f (x 0)+f (x 0)-f (x 0-h )h=lim h →0f (x 0+h )-f (x 0)h +lim -h →0f (x 0-h )-f (x 0)-h=f ′(x 0)+f ′(x 0)=2f ′(x 0). 专题二应用:解:(1)由已知得y ′=2x +1,由于曲线过点(1,0), 所以y ′|x =1=3.所以直线l 1的方程为y =3x -3.设直线l 2过曲线y =x 2+x -2上的点B (b ,b 2+b -2),则l 2的方程为y =(2b +1)x -b 2-2.因为l 1⊥l 2,所以2b +1=-13,b =-23.所以直线l 2的方程为y =-13x -229.(2)解方程组⎩⎪⎨⎪⎧y =3x -3,y =-13x -229,得⎩⎨⎧x =16,y =-52,所以直线l 1和l 2的交点坐标为⎝⎛⎭⎫16,-52. l 1,l 2与x 轴交点的坐标分别为(1,0),⎝⎛⎭⎫-223,0, 所以所求三角形的面积为S =12×⎝⎛⎭⎫1+223×⎪⎪⎪⎪-52=12512. 专题三应用1:(1)解:由f (x )=e x -2x +2a ,x R ,知f ′(x )=e x -2,x R .令f故f f (x )在x =ln 2处取得极小值,极小值为f (ln 2)=e ln 2-2ln 2+2a =2(1-ln 2+a ).(2)证明:设g (x )=e x -x 2+2ax -1,x R , 于是g ′(x )=e x -2x +2a ,x R .由(1)知当a >ln 2-1时,g ′(x )的最小值为g ′(ln 2)=2(1-ln 2+a )>0. 于是对任意x R ,都有g ′(x )>0,所以g (x )在R 内单调递增, 于是当a >ln 2-1时,对任意x (0,+∞),都有g (x )>g (0), 而g (0)=0,从而对任意x (0,+∞),g (x )>0. 即e x -x 2+2ax -1>0,故e x >x 2-2ax +1. 应用2:解:函数f (x )的定义域为(0,2), f ′(x )=1x -12-x+a .(1)当a =1时,f ′(x )=-x 2+2x (2-x ),所以f (x )的单调增区间为(0,2),单调减区间为(2,2),(2)当x (0,1]时,f ′(x )=2-2xx (2-x )+a >0,所以f (x )在区间(0,1]上单调递增,故f (x )在区间(0,1]上的最大值为f (1)=a ,因此a =12.专题四 应用:解:先画出草图,如图所示:由⎩⎪⎨⎪⎧y =x +3,y =x 2-2x +3. 解得x 1=0,x 2=3,从而所求图形的面积为S =⎠⎛03(x +3)d x -⎠⎛03(x 2-2x +3)d x =⎠⎛03[(x +3)-(x 2-2x +3)]d x =⎠⎛03(-x 2+3x )d x ,因为⎝⎛⎭⎫-13x 3+32x 2′=-x 2+3x , 所以S =⎝⎛⎭⎫-13x 3+32x 2|30=92. 真题放送1.C ∵被积函数e x +2x 的原函数为e x +x 2,∴∫10(e x +2x )d x =(e x +x 2)|10=(e 1+12)-(e 0+0)=e. 2.A 封闭图形面积为 ⎠⎛01(x 2-x 3)d x =⎝⎛⎭⎫13x 3-14x 4|10=112.3.C 函数f (x )的展开式中含x 项的系数为a 1a 2…a 8=(a 1·a 8)4=84=212,而f ′(0)=a 1a 2…a 8=212.4.A 当五角星匀速地升出水面时,五角星露出水面的面积S (t )单调递增,则S ′(t )>0,导函数的图象要在x 轴上方,排除选项B ;当露出部分到达图中的点B 和点C 之间时,S (t )增长速度变缓,S ′(t )图象要下降,排除选项C ;当露出部分在B 点上下一瞬间时,S (t )突然变大,此时在点B 处的S ′(t )不存在,排除选项D ,而选项A 符合条件,故选A.5.1 ∵1>0,∴f (1)=lg 1=0,∴f (f (1))=f (0).又∵0≤0.∴f (f (1))=f (0)=0+⎠⎛0a3t 2d t =t 3|a 0=a 3=1,∴a =1.6.解:(1)设P k -1(x k -1,0),由y ′=e x ,得曲线在Q k -1(x k -1,e x k -1)点处的切线方程为y -e x k -1=e x k -1(x -x k -1),令y =0,得x k =x k -1-1(2≤k ≤n ).(2)由x 1=0,x k -x k -1=-1,得x k =-(k -1),所以|P k Q k |=e x k =e -(k -1),于是S n =|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |=1+e -1+e -2+…+e -(n -1)=1-e -n 1-e -1=e -e 1-n e -1. 7.解:对f (x )求导得f ′(x )=e x 1+ax 2-2ax (1+ax 2)2.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12.结合①,可知所以x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号.结合①与条件a >0,知ax 2-2ax +1≥0在R 上恒成立,因此Δ=4a 2-4a =4a (a -1)≤0,由此并结合a >0,知0<a ≤1.。
最新人教版高中数学选修2-2第一章《导数及其应用》本章概览2
第一章导数及其应用
本章概览
内容提要
本章主要学习导数的概念、导数的几何意义、导数的运算、导数在研究函数中的应用、生活中的优化问题、定积分的概念、微积分基本定理以及定积分的简单应用等知识.
导数与微积分是中学选修内容中的重要知识,它与高等数学有较为密切的联系,也是进一步学习的必备基础知识.
导数的学习,为我们解决所学过的有关函数问题提供了一般性的方法,它的应用相当广泛,涉及代数、几何、物理以及生活实际等多个领域,运用它可以解决一些实际问题导数的概念、求导公式与法则是本章学习的重点,将实际问题转化成求解最大(小)值的数学模型,应用导数知识去解决它是本章学习之难点这也是提高分析问题、解决问题能力及学好数学的关键
学法指导
导数与定积分有着丰富的背景和广泛的应用
应多结合实例,通过实例去理解导数与定积分的有关概念以及导数与积分的内在联系深入理解和正确运用导数的概念、求导公式与法则是本章学习的基础,能对简单的初等函数进行求导是本章学习的重点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
庖丁巧解牛知识·巧学一、函数的单调性与导数1.利用导数的符号判断函数的增减性一般地,设函数y=f(x)在某个区间(a,b)内可导,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减.要点提示若在某个区间上有有限个f′(x)=0,在其余点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似).那就说在区间内f′(x)>0是f(x)在此区间上为增函数的充分而不必要条件.2.利用导数判断数单调性的步骤(1)确定f(x)的定义域.(2)求导数f′(x).(3)由f′(x)>0(或f′(x)<0)解出相应的x的范围.当f′(x)>0时,f(x)在相应区间上是增函数;当f′(x)<0时,f(x)在相应区间上是减函数.深化升华①在利用导数讨论函数的单调区间时,首先要确定函数的定义域,只有在定义域内,通过讨论导数的符号,才能判断函数的单调区间.②在对函数划分单调区间时,除了必须确定使导数等于零的点外,还要注意在定义域内不连续的点和不可导的点.③如果一个函数具有相同单调性的单调区间不止一个,这些单调区间不能用“∪”连接,而只能用“逗号”或“和”字分开.二、函数的极值与导数1.函数的极值已知函数f(x),设x0是定义域内任一点,如果对x0附近的所有点x,都有f(x)<f(x0),则称函数f(x)在点x0处取极大值,记作y极大=f(x0),并把x0称为函数f(x)的一个极大值点;如果在x0附近都有f(x)>f(x0),则称函数f(x)在点x0处取极小值,记作y极小=f(x0),并把x0称为函数f(x)的一个极小值点.疑点突破极值是一个新的概念,是研究函数在某一个很小区域上的性质时给出的一个概念,在理解极值时要注意以下几点:①极值点x0是区间[a,b]内部的点,不会是端点a、b.②若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝对不是单调函数,即在区间上单调的函数没有极值.③根据函数的极值可知函数的极大值f(x0)比在点x0附近的点的函数值都大,在函数的图象上表现为极大值对应的点是局部的“高峰”;函数的极小值f(x0)比在点x0附近的点的函数值都小,在函数的图象上表现为极小值对应的点是局部的“低谷”.一个函数在其定义域内可以有许多极小值和极大值,在某一点处的极小值也可能大于另一个点处的极大值,极大值与极小值没有必然的联系,即极小值不一定比极大值小,极大值不一定比极小值大.④函数f(x)在[a,b]上有极值的话,它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点.一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值、极小值点是交替出现的.⑤可导函数的极值点必须为导数是0的点,但导数为0的点不一定是极值点;不可导的点可能是极值点,也可能不是极值点.例如:导数为0的点是极值点:y=x2,y′(0)=0,x=0是极值点;导数为0的点不是极值点:y=x3,y′(0)=0,x=0不是极值点;不可导点是极值点:y=|sinx|,x=0点处y不可导,是极小值点;不可导点不是极值点:y=31x ,x=0点处y 不可导,不是极值点.2.函数极值的判定设函数f(x)在x 0处连续,判别f(x 0)是极大(小)值的方法如下:(1)如果在x 0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x 0)是极大值; (2)如果在x 0附近的左侧f′(x)<0,右侧f′(x )>0,那么f(x 0)是极小值; (3)如果在x 0的两侧f′(x)的符号相同,则x 0不是极值点. 3.求可导函数极值的步骤 (1)求导数f′(x).(2)求方程f′(x)=0的所有实数根.(3)考察在每个根x 0附近,从左到右,导函数f′(x)的符号如何变化.如果f′(x)的符号由正变负,则f(x 0)是极大值;如果由负变正,则f(x 0)是极小值.误区警示 ①可导函数的极值点是导数为零的点,但是导数为零的点不一定是极值点,即点x 0是可导函数f(x)的极值是f′(x 0)=0的充分但不必要条件,如f(x)=x 3,有f′(0)=0,但x=0不是极值点.②可导函数f(x)在点x 0处取得极值的充要条件是f′(x 0)=0,且在x 0左侧和右侧,f′(x)的符号不同. 二、函数的最大(小)值与导数 1.函数的最大值与最小值函数f(x)在闭区间[a,b ]上的图象是一条连续不间断的曲线,则该函数在[a,b ]上一定能够取得最大值与最小值,函数的最值必在极值点或区间端点处取得.辨析比较 ①函数的极值表示函数在某一点附近的情况,是在局部上对函数值的比较;函数的最值是表示函数在整个定义区间上的情况,是对整个区间上的函数值的比较.②函数f(x)在一个闭区间上的最大值或最小值只能各有一个;而极大值或极小值可能多于一个,也可能没有,如常数函数无极大值,也无极小值. 2.求函数y=f(x)在[a,b ]上的最值的步骤 ①求f(x)在开区间(a,b)内所有使f′(x)=0的点;②计算函数f(x)在区间内使f′(x)=0的所有点和端点处的函数值,其中最大的一个为最大值,最小的一个为最小值.要点提示 ①求函数的最值与求函数的极值不同的是,在求可导函数的最值时,不需对各导数为0的点讨论其是极大值还是极小值,只需将导数为零的点和端点的函数值进行比较即可.②可利用函数的单调性求f(x)在区间上的最值:若f(x)在区间[a,b ]上单调递增,则f(x)的最大值为f(b),最小值为f(a);若f(x)在区间[a,b ]上单调递减,则f(x)的最大值为f(a),最小值为f(b). 问题·探究问题1 若y=f(x)在(a,b)内对任何x,都有f′(x)>0,则f(x)在(a,b)内为增函数,对吗?反之如何? 思路:按照导数的符号与函数的单调性的关系便可求解.探究:当f′(x)>0,则f(x)在(a,b)内为增函数是正确的;反之不一定是正确的,例如y=x 3在x ∈R 上恒为增函数,但f′(x)=3x 2≥0.问题2 若函数f(x)在x 0处取得极值,则f(x)在x 0处一定可导吗? 思路:按照函数的导数与函数的极值的关系分析易知.探究:不一定,例如f(x)=|x|在x=0处取得极小值,但f(x)=|x|在x=0处不可导. 问题3 函数的极值与最值是同一个概念吗?为什么?思路:函数f(x)在一个闭区间上的最大值或最小值只能各有一个,而极大值或极小值可能多于一个,也可能没有.探究:函数的最值与极值不是同一个概念:若函数在闭区间[a,b ]内有多个极值时,则最值由极值与端点处的函数值比较得到;若在闭区间内为单值函数,则极值点就是最值点. 典题·热题例1求函数f(x)=x 4-2x 2+3的单调递增区间. 思路分析:先求f′(x),若f′(x)>0,则f(x)单调递增. 解:f′(x)=4x 3-4x,令f′(x)>0,∴4x 3-4x>0.解之,得-1<x<0或x>1. ∴f(x)的单调递增区间是(-1,0)和(1,+∞).误区警示 单调区间(-1,0)与(1,+∞)只能用和、或连接,不能使用并集符号. 例2证明f(x)=x1在(0,+∞)上是减函数. 思路分析:可采用定义法和求导法两种方法来解题,体会求导法在解决函数单调性问题上的优越性.证明:法一:任取两个数x 1,x 2∈(0,+∞),设x 1<x 2,则 f(x 1)-f(x 2)=11x -21x =2112x x x x -,∵x 1>0,x 2>0且x 1<x 2,∴f(x 1)-f(x 2)>0.∴f(x 1)>f(x 2).∴f(x)在(0,+∞)上是减函数. 法二:f′(x)=21x -, ∵x>0,∴f′(x)<0.∴f(x)在(0,+∞)上是减函数.辨析比较 比较一下两种方法,用求导证明更简捷一些.如果是更复杂的函数,用导数的符号判断函数的单调性更能显示出它的优越性.例3(2005湖北高考)已知向量a =(x 2,x+1),b =(1-x,t).若函数f(x)=a ·b 在区间(-1,1)上是增函数,求t 的取值范围.思路分析:本题体现了高考重视对新增内容的考查以及常在知识交汇处设计问题的思想.利用向量的数量积运算求出f(x),利用导数与函数单调性的关系,将问题转化为不等式恒成立的问题,然后用函数的思想方法求解.解:法一:由题意得f(x)=x 2(1-x)+t(x+1)=-x 3+x 2+tx+t, 则f′(x)=-3x 2+2x+t.若f(x)在(-1,1)上是增函数,则在(-1,1)上可设f′(x)≥0. ∴f′(x)≥0⇔t≥3x 2-2x 在区间(-1,1)上恒成立. 考虑函数g(x)=3x 2-2x,由于g(x)的图象是对称轴为x=31,开口向上的抛物线,故t≥3x 2-2x 在区间(-1,1)上恒成立⇔t≥g(-1),即t≥5.而t≥5时,f′(x)在(-1,1)上满足f′(x)>0,即f(x)在(-1,1)上是增函数. ∴t 的取值范围是t≥5.法二:由题意得f(x)=x 2(1-x)+t(x+1)=-x 3+x 2+tx+t, 则f′(x)=-3x 2+2x+t.若f(x)在(-1,1)上是增函数,则在(-1,1)上可设f′(x)≥0. ∵f′(x)的图象是开口向下的抛物线,∴当且仅当f′(1)=t+1≥0,且f′(1)=t -5≥0时,f′(x)在(-1,1)上满足f′(x)>0,即f(x)在(-1,1)上是增函数.∴t 的取值范围是t≥5.深化升华 本题主要考查平面向量数量积的计算方法,利用导数研究函数的单调性等知识,要学会恒成立问题的解法.例4判断函数y=|ax-b|(a>0)在其定义域内是否存在极值. 思路分析:易知y=|ax-b|≥0,在x=ab处不可导,因此可用极值的定义判断. 解:在x=a b 附近有f(x)>f(ab ), ∴由极值的定义,知f(x)在x=a b 处取得极小值f(ab)=0.误区警示 ①解答此题时常有如下错误:当x>a b 时,y′=a;当x<ab时,y′=-a,即函数f(x)在x=ab处不可导,因此无极值. ②函数在某一点处不可导,不能直接断定函数在该点处没有极值.此时应考查函数的具体特征,利用极值的定义来判断函数是否存在极值. 例5如果函数f(x)=ax 5-bx 3+c(a≠0)在x=±1时有极值,极大值为4,极小值为0,试求a,b,c 的值. 思路分析:可通过求导确定可疑点,注意利用已知极值点x=±1所确定的相关等式,在判断y′的符号时,必须对a 进行分类讨论.解:y′=5ax 4-3bx 2,令y′=0,即5ax 4-3bx 2=0,x 2(5ax 2-3b)=0, ∵x=±1是极值点, ∴5a(±1)2-3b=0.又x 2>0,∴可疑点为x=0,±1. 若a>0,y′=5ax 2(x 2-1).当x 变化时,y′与y 的变化情况如下表:X (-∞,1) -1 (-1,0) 0 (0,1) 1 (1,+∞) y′ + 0 - 0 - 0 + Y ↗ 极大值 ↘ 无极值 ↘ 极小值 ↗ ∴当x=-1时,f(x)有极大值; 当x=1时,f(x)有极小值.∴⎪⎩⎪⎨⎧===⇒⎪⎪⎩⎪⎪⎨⎧++==⇒⎪⎩⎪⎨⎧==+-=++-,2,5,335213504c b a ab a bc b a c b a c b a 若a<0,同理可得a=-3,b=-5,c=2.方法归纳 从逆向思维出发,运用待定系数法,实现由已知向未知的转化,转化过程中通过列表形象直观地解决待定系数问题.例6确定函数y=31x 32)1(x -的单调区间,并求出它们的极值.思路分析:先由f′(x)=0找到极值点,极值点把定义域分成几个区间;再根据f′(x)的正负去判断各区间上函数的单调性.解:y′=31·3132313231313232)1(331])1(2)1[(31)1(132)1(1x x x x x x x x x x x --=---=-∙--(x≠0,x≠1).显然x=0或x=1时,导函数不存在,再由y′=0得x=31,故有可疑点:x=0,x=31,x=1,列表如下: x (-∞,0) 0 (0,31) 31 (31,1) 1 (1,+∞) f′(x) + 不存在 + 0- 不存在 + f(x)↗↗343↘↗故函数的单调增区间为(-∞,31]与(1,+∞);单调递减区间为[31,1]. 函数在x=31处取得极大值343;在x=1处取得极小值0.方法归纳 在求极值中,为判断方程f′(x)=0的根的左右两边值的符号,可用列表的方法,用方程f′(x)=0的根,以及不可导点,顺次将函数的定义域分成若干个小开区间,并列成表格.本例进一步说明:函数导数不存在的点也可能是极值点. 例7(2005北京高考)已知函数f(x)=-x 3+3x 2+9x+a. (1)求f(x)的单调递减区间;(2)若f(x)在区间[-2,2]上的最大值是20,求它在该区间上的最小值. 思路分析:本题主要考查利用导数求函数的单调区间、最值的方法.对于(1)先求出f′(x),解不等式f′(x)<0即可.(2)由f(x)的最大值为20,求出a,进而求出最小值. 解:(1)f′(x)=-3x 2+6x+9.令f′(x)<0,解得x<-1或x>3. ∴函数f(x)的单调递减区间为(-∞,-1),(3,+∞).(2)∵f(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a, ∴f(2)>f(-2).∵在(-1,3)上f′(x)>0,∴f(x)在[-1,2]上单调递增. 又由于f(x)在[-2,-1]上单调递减,∴f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值. 于是有22+a=20,解得a=-2. ∴f(x)=-x 3+3x 2+9x-2. ∴f(-1)=1+3-9-2=-7,即函数f(x)在区间[-2,2]上的最小值为-7.深化升华 本题考查多项式的导数公式及运用导数求函数的单调区间和函数最值的方法,做题时注意应先比较f(-2)和f(2)的大小,然后判定哪个是最大值从而求出a.例8(2005天津高考)已知m ∈R ,设命题P:x 1和x 2是方程x 2-ax-2=0的两个实根,不等式|m 2-5m-3|≥|x 1-x 2|对任意实数a ∈[-1,1]恒成立;命题Q:函数f(x)=x 3+mx 2+(m+34)x+6在(-∞,+∞)上有极值.求使P 正确且Q 正确的m 的取值范围.思路分析:P:本题主要考查集合的运算、绝对值不等式、应用导数研究函数的单调性及极值等基础知识.将方程的根与不等式联系起来,通过解绝对值不等式求出m 的范围,Q:利用导数、根的判别式,求出m 的取值范围,然后求P,Q 的交集.解:(1)由题设x 1和x 2是方程x 2-ax-2=0的两个实根,得x 1+x 2=a 且x 1x 2=-2,∴|x 1-x 2|=84)(221221+=-+a x x x x .当a ∈[-1,1]时,a 2+8的最大值为9,即|x 1-x 2|≤3.由题意,不等式|m 2-5m-3|≥|x 1-x 2|对任意实数a ∈[-1,1]恒成立的m 的解集等于不等式|m 2-5m-3|≥3的解集,由此不等式得m 2-5m-3≤-3①或m 2-5m-3≥3②. 不等式①的解集为0≤m≤5,不等式②的解集为m≤-1或m≥6.因此,当m≤-1或0≤m≤5或m≥6时,P 是正确的. (2)对函数f(x)=x 3+mx 2+(m+34)x+6求导,得f′(x)=3x 2+2mx+m+34. 令f′(x)=0,即3x 2+2mx+m+34=0. 此一元二次方程的判别式Δ=4m 2-12(m+34)=4m 2-12m-16. 若Δ=0,则f′(x)=0有两个相等的实根x 0,且f′(x)的符号如下:x (-∞,x 0) x 0 (x 0,+∞) f′(x) + 0 +因此,f(x 0)不是函数的极值.若Δ>0,则f′(x)=0有两个不相等的实根x 1和x 2(x 1<x 2),且f′(x)的符号如下:X (-∞,x 1) x 1 (x 1,x 2) x 2 (x 2,+∞) f′(x) + 0 - 0 + 因此,函数f(x)在x=x 1处取得极大值,在x=x 2处取得极小值. 综上所述,当且仅当Δ>0时,函数f(x)在(-∞,+∞)上有极值. 由Δ=4m 2-12m-16>0得m<-1或m>4, 因此,当m<-1或m>4时,Q 是正确的.综上,使P 正确且Q 正确的实数m 的取值范围为(-∞,-1)∪(4,5]∪[6,+∞).例9(2005山东高考)已知x=1是函数f(x)=mx 3-3(m+1)x 2+nx+1的一个极值点,其中m,n ∈R ,m≠0.(1)求m 与n 的关系表达式; (2)求f(x)的单调区间.思路分析:本题注重对导数的应用与数学思想的考查.(1)由f′(1)=0确定m 与n 的关系.(2)由f′(x)>0,f′(x)<0确定f(x)的单调区间. 解:(1)f′(x)=3mx 2-6(m+1)x+n,∵x=1是f(x)的一个极值点,∴f′(1)=0,即3m-6(m+1)+n=0. ∴n=3m+6.(2)由(1),知f′(x)=3mx 2-6(m+1)x+3m+6=3m(x-1)[x-(1+m2)]. ①当m<0时,有1>1+m 2,当x 变化时,f(x)与f′(x)的变化如下表: x (-∞,1+m 2) 1+m 2 (1+m2,1)1 (1,+∞) f′(x)<0>0<0f(x) 单调递减 极小值 单调递增 极大值 单调递减由上表知,当m<0时,f(x)在(-∞,1+m 2)上单调递减,在(1+m2,1)上单调递增,在(1,+∞)上单调递减.②当m>0时,有1<1+m2,当x 变化时,f(x)与f′(x)的变化如下表: x (-∞,1) 1(1,1+m2) 1+m2 (1+m2,+∞) f′(x) >0 0 <0 0 >0 f(x)单调递增 极大值单调递减极小值 单调递增由上表知,当m>0时,f(x)在(-∞,1)上单调递增,在(1,1+m 2)上单调递减,在(1+m2,+∞)单调递增. 深化升华 解决本题关键在于准确地求出m 与n 的关系式,以及借助二次函数解决恒成立问题.。