[K12学习]2019届高考数学一轮复习 第五篇 数列 第4节 数列求和及综合应用训练 理 新人教版

合集下载

2019-2020年高考数学一轮复习第五章数列5.4数列求和学案含解析

2019-2020年高考数学一轮复习第五章数列5.4数列求和学案含解析

2019-2020年高考数学一轮复习第五章数列5.4数列求和学案含解析【考纲传真】1.熟练掌握等差、等比数列的前n 项和公式.2.掌握非等差、等比数列求和的几种常见方法.3.能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题. 【知识扫描】知识点 数列求和的常见方法1.公式法;直接利用等差数列、等比数列的前n 项和公式求和 (1)等差数列的前n 项和公式:S n =n a 1+a n 2=na 1+n n -2d .(2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1-q n1-q ,q ≠1.2.倒序相加法;如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的.3.错位相减法;如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法.4.裂项相消法;(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(2)裂项时常用的三种变形: ①1n n +=1n -1n +1; ②1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1;③1n +n +1=n +1-n .5.分组求和法;一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.6.并项求和法;一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.1.必会结论;常用求和公式1+2+…+n =n n +212+22+…+n 2=n n +n +613+23+…+n 3=⎣⎢⎡⎦⎥⎤n n +222.(字母)时,应对其公比是否为1进行讨论.(2)在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n,an +1的式子应进行合并.(3)在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项. 【学情自测】1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( ) (2)当n ≥2时,1n 2-1=12⎝ ⎛⎭⎪⎫1n -1-1n +1.( )(3)求S n =a +2a 2+3a 3+…+na n之和时只要把上式等号两边同时乘以a 即可根据错位相减 法求得.( )(4)如果数列{a n }是周期为k (k 为大于1的正整数)的周期数列,那么S km =mS k .( ) 2.数列{a n }中,a n =1nn +,若{a n }的前n 项和为2 0152 016,则项数为( )A .2 014B .2 015C .2 016D .2 0173.设{a n }是公差不为0的等差数列,a 1=2且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n =( )A.n 2+7n4B.n 2+5n3C.2n 2+3n 4D .n 2+n4.若S n =1-2+3-4+…+(-1)n -1·n ,则S 2 016=________.5.(xx·安徽高考)数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N *.(1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)设b n =3n·a n ,求数列{b n }的前n 项和S n .参考答案1.【答案】 (1)√ (2)√ (3)× (4)√2.【解析】 a n =1n n +=1n -1n +1, S n =a 1+a 2+…+a n =⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=⎝ ⎛⎭⎪⎫1-1n +1=n n +1. 令nn +1=2 0152 016,得n =2 015. 【答案】 B3.【解析】 设等差数列公差为d ,则a 1=2.a 3=2+2d ,a 6=2+5d . 又∵a 1,a 3,a 6成等比数列,∴a 23=a 1·a 6. 即(2+2d )2=2(2+5d ),整理得2d 2-d =0. ∵d ≠0,∴d =12.∴S n =na 1+nn -2d =n 24+74n .【答案】 A4.【解析】 S 2 016=1-2+3-4+5-6+…+2 015-2 016=(-1)×1 008=-1 008. 【答案】 -1 0085.【解】 (1)证明:由已知可得a n +1n +1=a n n +1,即a n +1n +1-a nn=1, 所以⎩⎨⎧⎭⎬⎫a n n 是以a 11=1为首项,1为公差的等差数列.(2)由(1)得a n n=1+(n -1)·1=n ,所以a n =n 2. 从而b n =n ·3n.S n =1×31+2×32+3×33+…+n ·3n ,①3S n =1×32+2×33+…+(n -1)·3n +n ·3n +1,②①-②得,-2S n =31+32+…+3n -n ·3n +1=-3n1-3-n ·3n +1=-2nn +1-32,所以S n =n -n +1+34.2019-2020年高考数学一轮复习第五章数列5.4数列求和练习含解析时间:50分钟 总分:70分班级: 姓名:一、 选择题(共6小题,每题5分,共30分)1.已知等差数列{a n }的前n 项和为S n ,S 5=-20,则-6a 4+3a 5=( ) A.-20 B.4 C.12 D.20【答案】C【解析】 因为S 5=-20,所以S 5=5a 3=-20,∴a 3=-4,∴-6a 4+3a 5=-6(a 1+3d )+3(a 1+4d )=-3(a 1+2d )=-3a 3=12.2.(xx·大纲全国)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( )A.100101 B.99101 C.99100 D.101100【答案】A【解析】 由S 5=5a 3及S 5=15得a 3=3,∴d =a 5-a 35-3=1,a 1=1,∴a n =n ,1a n a n +1=1n (n +1)=1n -1n +1,所以数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和T 100=1-12+12-13+…+1100-1101=1-1101=100101,故选A.3.数列{a n }满足:a 1 =1,且对任意的m ,n ∈N *都有:a m +n =a m +a n +mn ,则1a 1+1a 2+1a 3+…+1a 2 008=( )A.2 0072 008B.2 0071 004 C.2 0082 009 D.4 0162 009【答案】D【解析】法一 因为a n +m =a n +a m +mn ,则可得a 1=1,a 2=3,a 3=6,a 4=10,则可猜得数列的通项a n =n (n +1)2,∴1a n=2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,∴1a 1+1a 2+1a 3+…+1a 2 008= 2⎝ ⎛⎭⎪⎫1-12+12-13+…+12 008-12 009=2⎝ ⎛⎭⎪⎫1-12 009=4 0162 009.故选D. 法二 令m =1,得a n +1=a 1+a n +n =1+a n +n ,∴a n +1-a n =n +1,用叠加法:a n =a 1+(a 2-a 1)+…+(a n -a n -1)=1+2+…+n =n (n +1)2,所以1a n=2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1.于是1a 1+1a 2+…+1a 2 008=2⎝ ⎛⎭⎪⎫1-12+2⎝ ⎛⎭⎪⎫12-13+…+2⎝ ⎛⎭⎪⎫12 008-12 009=2⎝⎛⎭⎪⎫1-12 009=4 0162 009,故选D. 4.设a 1,a 2,…,a 50是以-1,0,1这三个整数中取值的数列,若a 1+a 2+…+a 50=9且(a 1+1)2+(a 2+1)2+…+(a 50+1)2=107,则a 1,a 2,…,a 50当中取零的项共有( ) A.11个 B.12个 C.15个 D.25个【答案】A【解析】 (a 1+1)2+(a 2+1)2+…+(a 50+1)2=a 21+a 22+…+a 250+2(a 1+a 2+…+a 50)+50=107,∴a 21+a 22+…+a 250=39,∴a 1,a 2,…,a 50中取零的项应为50-39=11(个),故选A.5.中,a 1=1,a 2=2,且a n +2-a n =1+(-1)n(n ∈N +),则S 100=( ) A.1 300 B. 2 600 C.0 D.2 602【答案】B【解析】原问题可转化为当n 为奇数时,a n +2-a n =0;当n 为偶数时,a n +2-a n =2.进而转化为当n 为奇数时,为常数列{1};当n 为偶数时,为首项为2,公差为2的等差数列.所以S 100=S 奇+S 偶=50×1+(50×2+50×492×2)=2 600.6.已知定义在R 上的函数f (x )、g (x )满足f (x )g (x )=a x ,且f ′(x )g (x )<f (x )g ′(x ),f (1)g (1)+f (-1)g (-1)=52,若有穷数列⎩⎨⎧⎭⎬⎫f (n )g (n )(n ∈N *)的前n 项和等于3132,则n =( )A.5B.6C.7D.8【答案】A 【解析】令h (x )=f (x )g (x )=a x ,∵h ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2<0, ∴h (x )在R 上为减函数,∴0<a <1.由题知,a 1+a -1=52,解得a =12或a =2(舍去),∴f (n )g (n )=⎝ ⎛⎭⎪⎫12n,∴有穷数列⎩⎨⎧⎭⎬⎫f (n )g (n )的前n 项和S n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1-⎝ ⎛⎭⎪⎫12n =3132,∴n =5.二、填空题(共4小题,每题5分,共20分)7.已知实数a 1,a 2,a 3,a 4构成公差不为零的等差数列,且a 1,a 3,a 4构成等比数列,则此等比数列的公比等于________. 【答案】 12【解析】设公差为d ,公比为q .则a 23=a 1·a 4,即(a 1+2d )2=a 1(a 1+3d ),解得a 1=-4d ,所以q =a 3a 1=a 1+2d a 1=12.8.(xx·辽宁14)已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________. 【答案】63【解析】 因为x 2-5x +4=0的两根为1和4,又数列{a n }是递增数列,所以a 1=1,a 3=4,所以q =2.所以S 6=1·(1-26)1-2=63.9.已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使得S n >0的n 的最大值为________. 【答案】19 【解析】 由a 11a 10<-1得a 11+a 10a 10<0,由它们的前几项和S n 有最大值,可得公差d <0, ∴a 10>0,a 10+a 11<0,a 11<0,∴a 1+a 19=2a 10>0,a 1+a 20=a 10+a 11<0,使得S n >0的n 的最大值为19,10.已知向量a =(2,-n ),b =(S n ,n +1),n ∈N *,其中S n 是数列{a n }的前n 项和,若a⊥b ,则数列⎩⎨⎧⎭⎬⎫a n a n +1a n +4的最大项的值为________. 【答案】19【解析】 依题意得a·b =0,即2S n =n (n +1),S n =n (n +1)2.当n ≥2时,a n =S n -S n -1=n (n +1)2-n (n -1)2=n ;又a 1=1,因此a n =n ,a n a n +1a n +4=n (n +1)(n +4)=n n 2+5n +4=1n +4n+5≤19,当且仅当n =4n,n ∈N *,即n =2时取等号,因此数列⎩⎨⎧⎭⎬⎫a n a n +1a n +4的最大项的值是19.三、解答题(共2小题,每题10分,共20分)11.(xx·天津18)已知数列{a n }满足a n +2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求q 的值和{a n }的通项公式;(2)设b n =log 2a 2n a 2n -1,n ∈N *,求数列{b n }的前n 项和.【答案】见解析【解析】 (1)由已知,有(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4), 即a 4-a 2=a 5-a 3,所以a 2(q -1)=a 3(q -1),又因为q ≠1, 故a 3=a 2=2,由a 3=a 1q ,得q =2.当n =2k -1(k ∈N *)时,a n =a 2k -1=2k -1=2n -12;当n =2k (k ∈N *)时,a n =a 2k=2k=2n2.所以,{a n}的通项公式为a n=⎩⎪⎨⎪⎧2n -12,n 为奇数,2n 2,n 为偶数.(2)由(1)得b n =log 2a 2n a 2n -1=n 2n -1,n ∈N *.设{b n }的前n 项和为S n ,则S n =1×120+2×121+3×122+…+(n -1)×12n -2+n ×12n -1,12S n =1×121+2×122+3×123+…+(n -1)×12n -1+n ×12n . 上述两式相减得:12S n =1+12+122+…+12n -1-n 2n =1-12n1-12-n 2n =2-22n -n2n ,整理得,S n =4-n +22n -1,n ∈N *.所以,数列{b n }的前n 项和为4-n +22n -1,n ∈N *.12.设函数f (x )=23+1x (x >0),数列{a n }满足a 1=1,a n =f ⎝ ⎛⎭⎪⎫1a n -1,n ∈N *,且n ≥2.(1)求数列{a n }的通项公式; (2)对n ∈N *,设S n =1a 1a 2+1a 2a 3+1a 3a 4+…+1a n a n +1,若S n ≥3t 恒成立,求实数t 的取值范围.【答案】见解析【解析】 (1)由a n =f ⎝ ⎛⎭⎪⎫1a n -1得a n -a n -1=23,n ∈N *,n ≥2,所以{a n }是等差数列,又因为a 1=1,所以a n =1+(n -1)×23=2n +13.(2)由a n =2n +13得a n +1=2n +33.所以1a n a n +1=9(2n +1)(2n +3)=92⎝ ⎛⎭⎪⎫12n +1-12n +3.∴S n =1a 1a 2+1a 2a 3+1a 3a 4+…+1a n a n +1=92⎣⎢⎡13-15+15-17+17-19+…⎦⎥⎤+12n +1-12n +3=92⎝ ⎛⎭⎪⎫13-12n +3=3n 2n +3.由S n ≥3t 得t ≤n 2n +3,又⎩⎨⎧⎭⎬⎫n 2n +3递增,所以n =1时,n 2n +3有最小值为15,所以t ≤15.即t 的取值范围为.。

高考数学一轮总复习 第5章 数列 第4节 数列求和课件 理 新人教版

高考数学一轮总复习 第5章 数列 第4节 数列求和课件 理 新人教版

2.若等比数列{an}满足 a1+a4=10,a2+a5=20,则{an}的前 n 项和 Sn=________.
解析:由题意 a2+a5=q(a1+a4),得 20=q×10,故 q=2, 代入 a1+a4=a1+a1q3=10,得 9a1=10,即 a1=190. 故 Sn=19011--22n=190(2n-1). 答案:190(2n-1)
(2015·湖北高考)设等差数列{an}的公差为 d,前 n 项和为 Sn,等 比数列{bn}的公比为 q.已知 b1=a1,b2=2,q=d,S10=100. (1)求数列{an},{bn}的通项公式; (2)当 d>1 时,记 cn=abnn,求数列{cn}的前 n 项和 Tn.
解析
[由题悟法]
bn=3
an+1 2
,求数列an+2 1·bn的前
n
项和
Sn.
an+1
解:由(1)可得 bn=3 2 =3n,
所以an+2 1·bn=n·3n,
[即时应用]
已知等比数列{an}中,首项 a1=3,公比 q>1,且 3(an+2 +an)-10an+1=0(n∈N*). (1)求数列{an}的通项公式; (2)设bn+13an是首项为 1,公差为 2 的等差数列,求数列 {bn}的通项公式和前 n 项和 Sn.
解析
考点三 错位相减法求和 重点保分型考点——师生共研 [典例引领]
(3)错位相减法:如果一个数列的各项是由一个等差数列和 一个等比数列的对应项之积构成的,那么求这个数列 的前 n 项和即可用错位相减法求解.
(4)倒序相加法:如果一个数列{an}与首末两端等“距离” 的两项的和相等或等于同一个常数,那么求这个数列 的前 n 项和即可用倒序相加法求解.

2019届高考数学一轮复习第五章数列第四节数列求和课件

2019届高考数学一轮复习第五章数列第四节数列求和课件

2.已知等差数列{an}的前 n 项和为 Sn,a5=5,S5=15,则数
1 列a a 的前 n n+1
100 项和为( 99 B. 101 101 D. 100
)
100 A. 101 99 C. 100
解析:设等差数列{an}的首项为 a1,公差为 d. ∵a5=5,S5=15, a1+4d=5, ∴ 5×5-1 5a1+ d=15, 2 ∴an=a1+(n-1)d=n. 1 1 1 1 ∴ = =n- , anan+1 nn+1 n+ 1
n
k=1
1 =__________. Sk
解析:设等差数列{an}的首项为a1,公差为d,依题意,
a1+2d=3, 4a1+6d=10,

a1+2d=3, 2a1+3d=5,
解得
a1=1, d=1,
所以Sn=
n 1 nn+1 1 1 1 1 ,因此 S =2 1-2+2-3+…+n 2 k= 1 k
解析:(1)设等比数列{bn}的公比为q, b3 9 则q= = =3, b2 3 b2 所以b1= =1,b4=b3q=27, q 所以bn=3n 1(n∈N*).

设等差数列{an}的公差为d. 因为a1=b1=1,a14=b4=27,
解析:设 Sn=1+2x+3x2+…+nxn 1,①

则 xSn=x+2x2+3x3+…+nxn,② ①-②得:(1-x)Sn=1+x+x2+…+xn 1-nxn

1-xn = -nxn, 1-x 1-xn nxn ∴Sn= - . 1-x2 1-x
4.(2017· 高考全国卷Ⅱ)等差数列{an}的前n项和为Sn,a3=3, S4=10,则

2019版高考数学一轮复习第5章数列5.4数列求和习题课件文

2019版高考数学一轮复习第5章数列5.4数列求和习题课件文
2a1+22-2 1d=10, 5a1+55-2 1d=55, 得ad1==43,, 所以 an=a1+(n-1)d=4n-1,则 an+100+ an-98=2an+1=8n+6.故选 A.
2.已知等差数列{an}的前 n 项和为 Sn,且满足S33-S22= 1,则数列{an}的公差是( )
∵672×3=2016,∴S2016=672S3=6720.
B级 三、解答题 15.已知 Sn 是数列{an}的前 n 项和,且满足 Sn-2an=n -4. (1)证明:{Sn-n+2}为等比数列; (2)求数列{Sn}的前 n 项和 Tn.
解 (1)证明:由题意知 Sn-2(Sn-Sn-1)=n-4(n≥2), 即 Sn=2Sn-1-n+4,
∴S3=a1+a1+2 1+3a12+1=3a1+1=10,解得 a1=3, 此时数列{an}为 3,2,5,3,2,5,….当 a1 为偶数时,a2=3a1-1, 此时 a2 为奇数,则 a3=a2+2 1=3a1-21+1=32a1,∴S3=a1 +3a1-1+32a1=121a1-1=10,解得 a1=2,此时数列{an}为 2,5,3,2,5,3,….上述三种情况中,数列{an}均为周期数列.
10.(2017·江西九校联考)已知数列{an}是等比数列,数
列{bn}是等差数列,若 a1·a6·a11=3 3,b1+b6+b11=7π,则
tan1b-3+a4b·a98的值是(
)
A.1
2 B. 2
C.-
2 2
D.- 3
解析 {an}是等比数列,{bn}是等差数列,且 a1·a6·a11 =3 3,b1+b6+b11=7π,∴a36=( 3)3,3b6=7π,∴a6= 3, b6=73π,∴tan1b-3+a4b·a98=tan12-b6a26=tan1-2× 733π2=tan-73π= tan-2π-π3=-tanπ3=- 3.故选 D.

2019年高考数学一轮复习第5章数列第4节数列求和学案理北师大版

2019年高考数学一轮复习第5章数列第4节数列求和学案理北师大版

第四节 数列求和[考纲传真] (教师用书独具)1.掌握等差、等比数列的前n 项和公式.2.掌握特殊的非等差、等比数列的几种常见的求和方法.(对应学生用书第87页)[基础知识填充]1.公式法(1)等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d ;(2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1.2.几种数列求和的常用方法(1)分组求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和而后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.裂项时常用的三种变形: ①1n (n +1)=1n -1n +1;②1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1;③1n +n +1=n +1-n .(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.(5)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)nf (n )类型,可采用两项合并求解. 例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( ) (2)当n ≥2时,1n 2-1=12⎝ ⎛⎭⎪⎫1n -1-1n +1.( )(3)求S n =a +2a 2+3a 3+…+na n之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )(4)如果数列{a n }是周期为k (k 为大于1的正整数)的周期数列,那么S km =mS k .( ) [答案] (1)√ (2)√ (3)× (4)√2.(教材改编)数列{a n }的前n 项和为S n ,若a n =1n (n +1),则S 5等于( )A .1 B.56 C.16D .130B [∵a n =1n (n +1)=1n -1n +1,∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=56.]3.数列{a n }的通项公式是a n =1n +n +1,前n 项和为9,则n 等于( ) A .9 B .99 C .10D .100B [∵a n =1n +n +1=n +1-n ,∴S n =a 1+a 2+…+a n =(n +1-n )+(n -n -1)+…+(3-2)+(2-1)=n +1-1,令n +1-1=9,得n =99,故选B.]4.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=________.9 [S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.]5.若数列{a n }的通项公式为a n =2n+2n -1,则数列{a n }的前n 项和S n =__________.2n +1-2+n 2[S n =2(1-2n)1-2+n (1+2n -1)2=2n +1-2+n 2.](对应学生用书第87页)(2016·北京高考)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和. [解] (1)设等比数列{b n }的公比为q ,则q =b 3b 2=93=3,所以b 1=b 2q=1,b 4=b 3q =27,所以b n =3n -1(n =1,2,3,…).设等差数列{a n }的公差为d . 因为a 1=b 1=1,a 14=b 4=27, 所以1+13d =27,即d =2. 所以a n =2n -1(n =1,2,3,…). (2)由(1)知a n =2n -1,b n =3n -1.因此c n =a n +b n =2n -1+3n -1.从而数列{c n }的前n 项和S n =1+3+…+(2n -1)+1+3+…+3n -1=n (1+2n -1)2+1-3n1-3=n 2+3n-12.n n 1345(1)求数列{a n }的通项公式; (2)令b n =(-1)n -1a n ,求数列{b n }的前2n 项和T 2n .[解] (1)设等差数列{a n }的公差为d , 由S 3+S 4=S 5可得a 1+a 2+a 3=a 5,即3a 2=a 5, ∴3(1+d )=1+4d ,解得d =2. ∴a n =1+(n -1)×2=2n -1.(2)由(1)可得b n =(-1)n -1·(2n -1).∴T 2n =1-3+5-7+…+(2n -3)-(2n -1) =(-2)×n =-2n .(2017·全国卷Ⅲ)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n . (1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和. [解] (1)因为a 1+3a 2+…+(2n -1)a n =2n ,故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1),两式相减得(2n -1)a n =2, 所以a n =22n -1(n ≥2).又由题设可得a 1=2,满足上式, 所以{a n }的通项公式为a n =22n -1. (2)记⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和为S n . 由(1)知a n 2n +1=2(2n +1)(2n -1)=12n -1-12n +1,则S n =11-13+13-15+…+12n -1-12n +1=2n 2n +1.[规律方法] 利用裂项相消法求和的注意事项抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2. [跟踪训练] (2017·石家庄一模)已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100.(1)求数列{a n }的通项公式;(2)若b n =1a n a n +1,求数列{b n }的前n 项和.【导学号:79140181】[解] (1)由已知得⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100,解得⎩⎪⎨⎪⎧a 1=1,d =2,所以数列{a n }的通项公式为a n =1+2(n -1)=2n -1. (2)b n =1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以T n =12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.(2017·山东高考)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .[解] (1)设{a n }的公比为q , 由题意知a 1(1+q )=6,a 21q =a 1q 2,又a n >0,由以上两式联立方程组解得a 1=2,q =2, 所以a n =2n.(2)由题意知S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1,又S 2n +1=b n b n +1,b n +1≠0, 所以b n =2n +1.令c n =b n a n ,则c n =2n +12n .因此T n =c 1+c 2+…+c n=32+522+723+…+2n -12n -1+2n +12n ,又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减得12T n =32+⎝ ⎛⎭⎪⎫12+122+…+12n -1-2n +12n +1,所以T n =5-2n +52n .错位相减法求和的适用范围是等差数列,错位相减法求和的注意事项①在写出““S n -qS n n m -1S m =0,S m +2=14(m ≥2,且m ∈N +).【导学号:79140182】(1)求m 的值;(2)若数列{b n }满足a n2=log 2b n (n ∈N +),求数列{(a n +6)·b n }的前n 项和.[解] (1)由已知得a m =S m -S m -1=4, 且a m +1+a m +2=S m +2-S m =14,设数列{a n }的公差为d ,则2a m +3d =14, ∴d =2.由S m =0,得ma 1+m (m -1)2×2=0,即a 1=1-m ,∴a m =a 1+(m -1)×2=m -1=4, ∴m =5.(2)由(1)知a 1=-4,d =2,∴a n =2n -6, ∴n -3=log 2b n ,得b n =2n -3.∴(a n +6)·b n =2n ×2n -3=n ×2n -2.设数列{(a n +6)·b n }的前n 项和为T n , ∴T n =1×2-1+2×20+…+(n -1)×2n -3+n ×2n -2, ①2T n =1×20+2×21+…+(n -1)×2n -2+n ×2n -1, ②①-②,得-T n =2-1+20+…+2n -2-n ×2n -1=2-1(1-2n)1-2-n ×2n -1=2n -1-12-n ×2n -1, ∴T n =(n -1)·2n -1+12(n ∈N +).。

届高考数学一轮总复习 第5章 数列 第4节 数列求和课件 理 新人教版

届高考数学一轮总复习 第5章 数列 第4节 数列求和课件 理 新人教版

[即时应用]
(2015·青岛一模)等差数列{an}中,a2+a3+a4=15,a5=9. (1)求数列{an}的通项公式;
解:设数列{an}的公差为 d,首项为 a1, 由题意得3aa1+1+46d= d=9, 15, 解得ad1==21., 所以数列{an}的通项公式为 an=2n-1.
(2)设
2.若等比数列{an}满足 a1+a4=10,a2+a5=20,则{an}的前 n 项和 Sn=________.
解析:由题意 a2+a5=q(a1+a4),得 20=q×10,故 q=2, 代入 a1+a4=a1+a1q3=10,得 9a1=10,即 a1=190. 故 Sn=19011--22n=190(2n-1). 答案:190(2n-1)
=3+2n-2 1·3n+1, 所以 Sn=3+2n-4 1·3n+1.
考点四 裂项相消法求和 常考常新型考点——多角探明 [命题分析]
把数列的通项拆成两项之差,在求和时中间的一些项可以相 互抵消,从而求得其和.
裂项相消法求和是历年高考的重点,命题角度凸显灵活多 变,在解题中要善于利用裂项相消的基本思想,变换数列 an 的 通项公式,达到求解目的.
推导方法:乘公比,错位相减法.
(3)一些常见的数列的前 n 项和:
nn+1 ①1+2+3+…+n=_____2____; ②2+4+6+…+2n= n(n+1) ; ③1+3+5+…+2n-1= n2
2.几种数列求和的常用方法
(1)分组求和法:一个数列的通项公式是由若干个等差或等比
或可求和的数列组成的,Байду номын сангаас求和时可用分组求和法,分别求
(3)错位相减法:如果一个数列的各项是由一个等差数列和 一个等比数列的对应项之积构成的,那么求这个数列 的前 n 项和即可用错位相减法求解.

2019年高考数学一轮复习 第5章 数列 第4节 数列求和课件 理 北师大版.pptx

2019年高考数学一轮复习 第5章 数列 第4节 数列求和课件 理 北师大版.pptx

)
A.1
B.56
C.61
D.310
B [∵an=nn1+1=1n-n+1 1,
∴S5=a1+a2+…+a5=1-21+21-31+…-16=56.]
3.数列{an}的通项公式是 an=
1 n+
n+1,前
n
项和为
9,则
n
等于(
)
A.9
B.99
C.10
D.100
B
[∵an=
1 n+
n+1=
n+1-
n,∴Sn=a1+a2+…+an=(
)
(3)求 Sn=a+2a2+3a3+…+nan 之和时只要把上式等号两边同时乘以 a 即可 根据错位相减法求得.( ) (4)如果数列{an}是周期为 k(k 为大于 1 的正整数)的周期数列,那么 Skm= mSk.( )
[答案] (1)√ (2)√ (3)× (4)√
2.(教材改编)数列{an}的前 n 项和为 Sn,若 an=nn1+1,则 S5 等于(
(2)由(1)知 an=2n-1,bn=3n-1. 因此 cn=an+bn=2n-1+3n-1. 从而数列{cn}的前 n 项和 Sn=1+3+…+(2n-1)+1+3+…+3n-1 =n1+22n-1+11--33n=n2+3n-2 1.
[规律方法] 分组转化法求和的常见类型 (1)若 an =bn±cn,且{bn},{cn}为等差或等比数列,则可采用分组求和法求{an} 的前 n 项和. (2)通项公式为 an=bcnn,,nn为为偶奇数数, 的数列,其中数列{bn},{cn}是等比数列或 等差数列,可采用分组求和法求和. 易错警示:注意在含有字母的数列中对字母的分类讨论.
Sn=na12+an= na1+nn2-1d

高考数学一轮复习 第5篇 第4节 数列求和课件 文 新人教版

高考数学一轮复习 第5篇 第4节 数列求和课件 文 新人教版

等比数列或等差数列,可采用分组求和法求和.
即时突破 1 (2013 包头模拟)已知数列{xn}的首项 x1=3,通项
xn=2 p+nq(n∈N ,p,q 为常数),且 x1,x4,x5 成等差数列.求: (1)p,q 的值; (2)数列{xn}前 n 项和 Sn. 解:(1)由 x1=3,得 2p+q=3, 4 5 又因为 x4=2 p+4q,x5=2 p+5q,且 x1+x5=2x4, 5 5 即 3+2 p+5q=2 p+8q,解得 p=1,q=1. (2)由(1),知 xn=2n+n, 所以 Sn=(2+2 +…+2 )+(1+2+…+n)=2 -2+
2 n-1
反思归纳
分组转化法求和的解题策略:
(1)数列求和应从通项入手,通过对通项变形,转化为等差数 列或等比数列或可求前 n 项和的数列求和. (2)分组转化法求和的常见类型 ①若 an=bn±cn,且{bn},{cn}为等差或等比数列,可采用分组 求和法求{an}的前 n 项和.
bn , n为奇数, ②通项公式为 an= 的数列,其中数列{bn},{cn}是 cn , n为偶数
100 1 100 2
2
=5050, 故选 C.
4.设数列{an}的通项公式为 an=2 ,令 bn=nan,则数列{bn}的 前 n 项和 Sn 为 . 2n-1 解析:由 bn=nan=n·2 知 Sn=1·2+2·23+3·25+…+n·22n-1, ① 从而 2 ·Sn=1·2 +2·2 +3·2 +…+n·2 ①-②得(1-22)·Sn =2+2 +2 +…+2

2019届高考数学一轮复习第五篇数列第4节数列求和及综合应用训练理新人教版

2019届高考数学一轮复习第五篇数列第4节数列求和及综合应用训练理新人教版

第4节数列求和及综合应用基础巩固(时间:30分钟)1.已知数列{a n}的通项公式是a n=2n-3()n,则其前20项和为( C )(A)380- (1-) (B)400- (1-)(C)420- (1-) (D)440- (1-)解析:设数列{a n}的前n项和为S n,则S20=a1+a2+…+a20=2(1+2+…+20)-3(++…+)=2×-3×=420- (1-).故选C.2.数列{a n}的通项公式为a n=(-1)n-1·(4n-3),则它的前100项之和S100等于( B )(A)200 (B)-200 (C)400 (D)-400解析:S100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]+[-3-(-3)-3+…-(-3)]=4×(-50)=-200.故选B.3.(2017·全国Ⅲ卷)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为( A )(A)-24 (B)-3 (C)3 (D)8解析:由a2,a3,a6成等比数列且a1=1得(1+2d)2=(1+d)(1+5d).因为d≠0,所以d=-2,所以S6=6×1+×(-2)=-24.故选A.4.(2017·安阳一模)已知数列{a n}的前n项和S n=2n-1,则数列{log2 a n}的前10项和等于( C )(A)1 023 (B)55 (C)45 (D)35解析:数列{a n}的前n项和S n=2n-1,可得a1=S1=2-1=1;当n≥2时,a n=S n-S n-1=2n-1-(2n-1-1)=2n-1,对n=1也成立.所以a n=2n-1(n∈N*)log2a n=log22n-1=n-1,则数列{log2a n}的前10项和等于0+1+2+…+9=×(1+9)×9=45.故选C.5.(2017·湖南模拟)已知数列{a n}的前n项和S n满足S n=n2(n∈N*),记数列{}的前n 项和为T n,则T2 017等于( B )(A)(B)(C)(D)解析:当n=1时,a1=S1=1;当n≥2时,a n=S n-S n-1=n2- (n-1)2=2n-1,当n=1时适合上式,所以a n=2n-1.(n∈N*).所以== (-),数列{}的前n项和为T n= (1-+-+…+-)= (1-).则T2 017= (1-)=.故选B.6.(2016·湖北三校联考)已知等比数列{a n}的各项都为正数,且当n≥3时,a4=1,则数列lg a1,2lg a2,22lg a3,23lg a4,…,2n-1lg a n,…的前n项和S n等于( C )(A)n·2n (B)(n-1)·2n-1-1(C)(n-1)·2n+1 (D)2n+1解析:因为等比数列{a n}的各项都为正数,且当n≥3时,a4a2n-4=102n,所以=102n,即a n=10n,所以2n-1lg a n=2n-1lg 10n=n·2n-1,所以S n=1+2×2+3×22+…+n×2n-1,①2S n=1×2+2×22+3×23+…+n·2n,②所以①-②得-S n=1+2+22+…+2n-1-n·2n=2n-1-n·2n=(1-n)·2n-1,所以S n=(n-1)·2n+1.选C.7.(2017·郴州二模)已知等比数列{a n}的前n项和S n=2n-a,则++…+等于(D)(A)(2n-1)2(B) (2n-1)(C)4n-1 (D) (4n-1)解析:因为S n=2n-a,所以a1=2-a,a1+a2=4-a,a1+a2+a3=8-a,解得a1=2-a,a2=2,a3=4,因为数列{a n}是等比数列,所以22=4(2-a),解得a=1.所以公比q=2,a n=2n-1,=22n-2=4n-1.则++…+== (4n-1).故选D.8.(2016·广东汕尾调研)已知数列{a n}为等比数列,a1=3,a4=81,若数列{b n}满足b n=(n+1)log3a n,则{}的前n项和S n=.解析:由题知a n=3n,所以b n=n(n+1),= -,所以S n=(1-)+(-)+…+(-)=1-=.答案:9.(2017·合肥二模)等比数列{a n}满足a n>0,且a2a8=4,则log2 a1+log2 a2+log2 a3+…+log2 a9=.解析:根据题意,等比数列{a n}的各项都是正数,a1·a9=a2·a8=a3·a7=a4·a6==4,则a5=2,则log2 a1+log2 a2+…+log2 a9=log2(a1·a2·…·a9)=log2(29)=9,答案:9能力提升(时间:15分钟)10.已知数列{a n}满足a n+1-a n=2,a1=-5,则|a1|+|a2|+…+|a6|等于(C)(A)9 (B)15 (C)18 (D)30解析:因为a n+1-a n=2,a1=-5,所以数列{a n}是公差为2的等差数列.所以a n=-5+2(n-1)=2n-7.数列{a n}的前n项和S n==n2-6n.令a n=2n-7≥0,解得n≥.所以n≤3时,|a n|=-a n.n≥4时,|a n|=a n.则|a1|+|a2|+…+|a6|=-a1-a2-a3+a4+a5+a6=S6-2S3=62-6×6-2(32-6×3)=18.故选C.11.(2017·安徽宿州一模)设数列{a n}的前n项和为S n,已知a2=2,a n+2+(-1)n-1a n=1,则S40等于(C)(A)260 (B)250 (C)240 (D)230解析:由a n+2+(-1)n-1a n=1,当n为奇数时,有a n+2+a n=1,当n为偶数时,a n+2-a n=1,所以数列{a n}的偶数项构成以2为首项,以1为公差的等差数列,则S40=(a1+a3+a5+a7+…+a39)+(a2+a4+…+a40)=10×1+20×2+×1=240.故选C.12.(2017·淮北二模)已知数列{b n}是等比数列,b n=,a1=1, a3=3,c n=(a n+1)·b n,那么数列{c n}的前n项和S n=.解析:设等比数列{b n}的公比为q,由题意得===q,即a n+1-a n=log2 q.所以{a n}为等差数列,又d==1,a1=1.所以a n=1+n-1=n,b n=2n-1.所以c n=(a n+1)·b n=(n+1)·2n-1.所以数列{c n}的前n项和S n=2×1+3×2+4×22+…+(n+1)·2n-1.①2S n=2×2+3×22+…+n·2n-1+(n+1)·2n,②①-②得-S n=2+2+22+23+…+2n-1-(n+1)·2n=1+-(n+1)·2n=-n·2n,所以S n=n·2n.答案:n·2n13.已知等差数列{a n}前三项的和为-3,前三项的积为8.(1)求等差数列{a n}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|a n|}的前n项和.解:(1)设等差数列{a n}的公差为d,则a2=a1+d,a3=a1+2d,由题意得解得或所以由等差数列通项公式可得a n=2-3(n-1)=-3n+5,或a n=-4+3(n-1)=3n-7.故a n=-3n+5,或a n=3n-7.(2)当a n=-3n+5时,a2,a3,a1分别为-1,-4,2,不成等比数列;当a n=3n-7时,a2,a3,a1分别为-1,2,-4,成等比数列,满足条件.故|a n|=|3n-7|=记数列{|a n|}的前n项和为S n.当n=1时,S1=|a1|=4;当n=2时,S2=|a1|+|a2|=5;当n≥3时,S n=S2+|a3|+|a4|+…+|a n|=5+(3×3-7)+(3×4-7)+…+(3n-7)=5+=n2-n+10.当n=2时,满足此式.综上,S n=14.(2017·衡水一模)已知数列{a n}的前n项和为S n,a1=2,且满足a n+1=S n+2n+1(n∈N*).(1)证明数列{}为等差数列;(2)求S1+S2+…+S n.(1)证明:由S n+1-S n=a n+1得S n+1-S n=S n+2n+1,即S n+1-2S n=2n+1,整理得-=1,因为n=1时,==1,所以数列{}是以1为首项,1为公差的等差数列.(2)解:由(1)可知,=1+n-1=n,即S n=n·2n,令T n=S1+S2+…+S n,T n=1·2+2·22+…+n·2n,①2T n=1·22+…+(n-1)·2n+n·2n+1,②①-②,得-T n=2+22+…+2n-n·2n+1,整理得T n=2+(n-1)·2n+1.15.(2017·江西鹰潭二模)已知数列{a n}与{b n},若a1=3且对任意正整数n满足a n+1-a n=2,数列{b n}的前n项和S n=n2+a n.(1)求数列{a n},{b n}的通项公式;(2)求数列{}的前n项和T n.解:(1)由题意知数列{a n}是公差为2的等差数列,又因为a1=3,所以a n=3+2(n-1)=2n+1.数列{b n}的前n项和S n=n2+a n=n2+2n+1=(n+1)2,当n=1时,b1=S1=4;当n≥2时,b n=S n-S n-1=(n2+2n+1)-[(n-1)2+2(n-1)+1]=2n+1.上式对b1=4不成立.所以数列{b n}的通项公式为b n=(2)n=1时,T1==,n≥2时,== (-),所以T n=+ (-+-+…+-)=+=. n=1仍然适合上式.综上,T n=.。

2019版高考数学一轮复习第五章数列第4讲数列的求和配套课件理

2019版高考数学一轮复习第五章数列第4讲数列的求和配套课件理

n 项和为 Sn,
2 1 1 an 由(1)知, = = - . 2n+1 2n+12n-1 2n-1 2n+1 1 1 1 1 1 1 2n 则 Sn=1-3+3-5+…+ - = . 2n-1 2n+1 2n+1
【规律方法】在应用裂项相消法时,要注意消项的规律具 有对称性,即前面剩多少项则后面也剩多少项.几 na1 , q 1 个可以直 n a1 1 q a1 an q 1 q 1 q , q 1.接求和的 数列
裂项相消 有时把一个 数列的通项 公式分成两 项 差 的 形 式,相加过 程消去中间 项,只剩下 有限项再求 和
(2)由(1)知,an=2n-1,bn=3n-1. 因此cn=an+bn=2n-1+3n-1. 从而数列{cn}的前n项和
Sn=1+3+…+(2n-1)+1+3+…+3n-1
n1+2n-1 1-3n = + 2 1-3
n 3 -1 2 =n + 2 .
【规律方法】若一个数列是由等比数列和等差数列组成, 则求和时,可采用分组求和,即先分别求和,再将各部分合并.
【互动探究】 1.(2015年福建)在等差数列{an}中,a2=4,a4+a7=15. (1)求数列{an}的通项公式;
(2)设 bn= 2an 2 +n,求 b1+b2+b3+…+b10 的值.
解:(1)设等差数列{an}的公差为 d,
a1+d=4, 由已知,得 a1+3d+a1+6d=15, a1=3, 解得 d=1.
n
解析:设等差数列{an}的首项为 a1,公差为 d, a1+2d=3, a1=1, 依题意有 解得 4×3 d=1. 4a1+ 2 d=10,
16 , 3.若数列{an}满足a1=1,an+1=2an(n∈N*),则a5=_____ 255 前 8 项的和 S8=________. (用数字作答)

2019届高考数学一轮复习第五章数列第4讲数列求和课件文

2019届高考数学一轮复习第五章数列第4讲数列求和课件文

2.数列2×1 4,4×1 6,6×1 8,…,2n(21n+2),…的前 n 项 n
和为___4_(__n_+__1_)______.
[解析] 因为 an=2n(21n+2)=14n1-n+1 1,
则 Sn=141-12+12-13+…+n1-n+1 1
=141-n+1 1=4(nn+1).
已知数列{an}的前 n 项和 Sn=3n2+8n,{bn} 是等差数列,且 an=bn+bn+1. (1)求数列{bn}的通项公式; (2)令 cn=((abn+n+12))n+n 1.求数列{cn}的前 n 项和 Tn. [解] (1)由题意知当 n≥2 时,an=Sn-Sn-1=6n+5, 当 n=1 时,a1=S1=11,所以 an=6n+5. 设数列{bn}的公差为 d, 由a1=b1+b2,
3.等比数列{an}的首项为 a,公比为 q,Sn 为其前 n 项的和, 求 S1+S2+…+Sn. [解] 当 q=1 时,an=a,Sn=na, 所以 S1+S2+…+Sn=(1+2+…+n)a=n(n2+1)a. 当 q≠1 时, 因为 Sn=a(11--qqn),所以 S1+S2+…+Sn
Tn=11-12+12-13+13-14+…+n1-n+1 1=1-n+1 1=
n n+1.
利用裂项相消法求和时,应注意抵消后并不一定只剩下第一 项和最后一项,也有可能前面剩两项,后面也剩两项,再就 是将通项公式裂项后,有时候需要调整前面的系数,使裂开 的两项之差和系数之积与原通项公式相等.
Sn 为数列{an}的前 n 项和.已知 an>0,a2n+ 2an=4Sn+3. (1)求{an}的通项公式; (2)设 bn=ana1n+1,求数列{bn}的前 n 项和.
[解] (1)由 a2n+2an=4Sn+3,① 可知 an2+1+2an+1=4Sn+1+3.② ②-①,得 a2n+1-a2n+2(an+1-an)=4an+1, 即 2(an+1+an)=a2n+1-a2n=(an+1+an)(an+1-an). 由 an>0,得 an+1-an=2. 又 a21+2a1=4a1+3,解得 a1=-1(舍去)或 a1=3. 所以{an}是首项为 3,公差为 2 的等差数列,通项公式为 an=2n+1,n∈N*.

高考数学一轮复习第五章数列5.4数列求和理

高考数学一轮复习第五章数列5.4数列求和理

答 2 案(1 : 1 2 1 2 1 3 1 3 1 4 1 1 0 1 1 1 ) 1 2 1 0 .
20
11
考向一 裂项相消法求和
【典例1】(2015·全国卷Ⅰ)Sn为数列{an}的前n项和. 已知an>0,an2+2an=4Sn+3. (1)求{an}的通项公式. (2)设bn= ,求数列{bn}的前n项和.
Sn,若an=
,则S5等于 ( )
1
n n 1
A .1 B .5 C .1 D .1 6 6 3 0
【解析】选B. annn11n nn1 1nn 1n1 1,
所以S5=a1+a2+a3+a4+a5
1 1 1 1 1 1 223 56
5. 6
2.(必修5P61习题2.5A组T4(3)改编)1+2x+3x2+…+nxn-1
A.n(n1) C. n(n1)
2
B.n(n1) D.n(n1)
2
【解析】选A.因为d=2,a2,a4,a8成等比数列,所以 a42=a2a8,即(a2+2d)2=a2(a2+6d),解得a2=4,所以 a1=2. 所以利用等差数列的求和公式可求得Sn=n(n+1).
4.(2016·唐山模拟)(2-3×5-1)+(4-3×5-2)+…+(2n-
2 (2)1+3+5+7+…+2n-1=__.
n2 (3)2+4+6+8+…+2n=____.
(4)12+22+…+n2= n2+n
.

2019高考数学一轮复习(文理通用)课件:第5章 数列 第4讲

2019高考数学一轮复习(文理通用)课件:第5章 数列 第4讲

(3)等比数列的前 n 项和公式: na1,q=1, a 1-qn 1 Sn=a1-anq 1-q =_________________ ,q≠1. 1-q 注意等比数列公比 q 的取值情况,要分 q=1,q≠1.
• 2.分组求和法 • 一个数列是由若干个等差数列或等比数列 或可求和的数列组成,则求和时可用分组 求和法,分别求和后相加减.如若一个数 列的奇数项成等差数列,偶数项成等比数
b3 9 [ 解析] (1)等比数列{bn}的公比 q=b =3=3,
2
b2 所以 b1= q =1,b4=b3q=27. 设等差数列{an}的公差为 d, 因为 a1=b1=1,a14=b4=27, 所以 1+13d=27,即 d=2, 所以 an=2n-1(n=1,2,3,„).
1 1 3 n 4.(教材改编题)Sn=2+2+8+„+2n等于 导学号 58532837 ( B ) 2n-n-1 A. 2n 2n+1-n-2 B. 2n 2n-n+1 C. 2n 2n+1-n+2 D. 2n
1 2 3 n [ 解析] 由 Sn=2+22+23+„+2n① n-1 n 1 1 2 得2Sn=22+23+„+ 2n + n+1② 2 ①-②得, 1 1n [1 - 2n+1-n-2 2 2 ] n 1 1 1 1 1 n . 2Sn=2+22+23+„+2n-2n+1,= 1 -2n+1,∴Sn= 2n 1-2
3.(2017· 东北三省四市二模)已知数列{an}满足 an+1-an=2,a1=-5,则|a1| +|a2|+„+|a6|= 导学号 58532836 ( C ) A.9 B.15 C.18 D.30
• [解析] 由题意知{an}是以2为公差的等差 数列,又a1=-5,所以|a1|+|a2|+„+ |a6|=|-5|+|-3|+|-1|+1+3+5=5+3 +1+1+3+5=18.故选C.

高考数学一轮知能训练 第五章 数列 第4讲 数列的求和(含解析)-人教版高三全册数学试题

高考数学一轮知能训练 第五章 数列 第4讲 数列的求和(含解析)-人教版高三全册数学试题

第4讲 数列的求和1.已知数列{a n }的前n 项和为S n ,且满足a 1=1,a n +a n +1=2n +1,则S 20172017=( )A .1009B .1008C .2D .12.已知数列{a n }:12,13+23,14+24+34,15+25+35+45,…,若b n =1a n a n +1,那么数列{b n }前n 项的和为( )A .4⎝⎛⎭⎪⎫1-1n +1 B .4⎝ ⎛⎭⎪⎫12-1n +1C .1-1n +1 D.12-1n +13.已知数列{a n }的前n 项和S n =n 2-6n ,则数列{|a n |}的前n 项和T n 等于( ) A .6n -n 2B .n 2-6n +18C.⎩⎪⎨⎪⎧6n -n 2,1≤n ≤3,n 2-6n +18,n >3 D.⎩⎪⎨⎪⎧6n -n 2,1≤n ≤3,n 2-6n ,n >34.已知数列{a n }满足:a n +1=a n -a n -1(n ≥2,n ∈N *),a 1=1,a 2=2,S n 为数列{a n }的前n 项和,则S 2018=( )A .3B .2C .1D .05.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,数列{a n }的“差数列”的通项公式为a n +1-a n =2n,则数列{a n }的前n 项和S n =( )A .2B .2nC .2n +1-2 D .2n -1-26.(多选)已知数列{a n }满足a 1=1,a n +1=a n2+3a n(n ∈N *),则下列结论正确的有( )A.⎩⎨⎧⎭⎬⎫1a n+3为等比数列 B .{a n }的通项公式为a n =12n +1-3C .{a n }为递增数列D.⎩⎨⎧⎭⎬⎫1a n 的前n 项和T n =2n +2-3n -4 7.在数列{a n }中,a 1=1,a n +2+(-1)na n =1,记S n 是数列{a n }的前n 项和,则S 60=________. 8.(2017年新课标Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则11nk kS=∑=________.9.(2019年新课标Ⅱ)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和.10.已知数列{a n }的前n 项和S n =2n +1+n -2. (1)求数列{a n }的通项公式; (2)设b n =log 2(a n -1),求T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1.11.(2018年某某)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1-b n )a n }的前n 项和为2n 2+n .(1)求q 的值;(2)求数列{b n }的通项公式.12.(2018年某某)设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N *),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6.(1)求{a n }和{b n }的通项公式;(2)设数列{S n }的前n 项和为T n (n ∈N *), ⅰ)求T n ;ⅱ)证明:21()(1)(2)nk k k k T b b k k +=+++∑=2n +2n +2-2(n ∈N *).第4讲 数列的求和1.A 解析:S 2017=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2016+a 2017) =(2×0+1)+(2×2+1)+(2×4+1)+…+(2×2016+1) =1+2×2016+1×10092=2017×1009, ∴S 20172017=1009.故选A. 2.A 解析:∵a n =1+2+3+…+nn +1=n n +12n +1=n 2,∴b n =1a n a n +1=4n n +1=4⎝ ⎛⎭⎪⎫1n -1n +1. ∴S n =4⎝⎛⎭⎪⎫1-1n +1. 3.C 解析:∵由S n =n 2-6n 得{a n }是等差数列, 且首项为-5,公差为2. ∴a n =-5+(n -1)×2=2n -7. ∴n ≤3时,a n <0;n >3时,a n >0.∴T n =⎩⎪⎨⎪⎧6n -n 2,1≤n ≤3,n 2-6n +18,n >3.4.A 解析:∵a n +1=a n -a n -1,a 1=1,a 2=2,∴a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1,a 8=2,…,故数列{a n }是周期为6的周期数列,且每连续6项的和为0.故S 2018=336×0+a 2017+a 2018=a 1+a 2=3.5.C 解析:∵a n +1-a n =2n,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n,∴S n =2-2n +11-2=2n +1-2.6.ABD7.480 解析:∵a n +2+(-1)na n =1,∴a 3-a 1=1,a 5-a 3=1,a 7-a 5=1,…,且a 4+a 2=1,a 6+a 4=1,a 8+a 6=1,…. ∴{a 2n -1}为等差数列,且a 2n -1=1+(n -1)×1=n ,即a 1=1,a 3=2,a 5=3,a 7=4,…. ∴S 4=a 1+a 2+a 3+a 4=1+1+2=4,S 8-S 4=a 5+a 6+a 7+a 8=3+4+1=8,S 12-S 8=a 9+a 10+a 11+a 12=5+6+1=12,….∴该数列构成以4为首项,4为公差的等差数列. ∴S 60=4×15+15×142×4=480.8.2nn +1解析:设等差数列{a n }的首项为a 1,公差为d , 依题意有⎩⎪⎨⎪⎧a 1+2d =3,4a 1+4×32d =10.解得⎩⎪⎨⎪⎧a 1=1,d =1.数列{a n }的前n 项和为S n =na 1+n n -12d =n n +12,1S k =2kk +1=2⎝ ⎛⎭⎪⎫1k -1k +1,则11nk kS =∑=2⎝ ⎛1-12+12-⎭⎪⎫13+13-14+…+1n -1n +1=2nn +1. 9.解:(1)设{a n }的公比为q ,由题设得 2q 2=4q +16,即q 2-2q -8=0. 解得q =-2(舍去)或q =4. 因此{a n }的通项公式为a n =2×4n -1=22n -1.(2)由(1)得b n =(2n -1)log 22=2n -1, ∴数列{}b n 的前n 项和为1+3+…+2n -1=n 2.10.解:(1)由⎩⎪⎨⎪⎧S n =2n +1+n -2,S n -1=2n+n -1-2,得a n =2n+1(n ≥2).当n =1时,a 1=S 1=3, 综上所述,a n =2n+1.(2)由b n =log 2(a n -1)=log 22n=n .T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=11×2+12×3+13×4+…+1nn +1=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=n n +1. 11.解:(1)由a 4+2是a 3,a 5的等差中项,得a 3+a 5=2a 4+4,∴a 3+a 4+a 5=3a 4+4=28,解得a 4=8.由a 3+a 5=20,得8⎝⎛⎭⎪⎫q +1q =20,∵q >1,∴q =2.(2)设=(b n +1-b n )a n ,数列{}前n 项和为S n .由=⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.解得=4n -1.由(1)可知a n =2n -1,∴b n +1-b n =(4n -1)·⎝ ⎛⎭⎪⎫12n -1,故b n -b n -1=(4n -5)·⎝ ⎛⎭⎪⎫12n -2,n ≥2,b n -b 1=(b n -b n -1)+(b n -1-b n -2)+…+(b 3-b 2)+(b 2-b 1)=(4n -5)·⎝ ⎛⎭⎪⎫12n -2+(4n -9)·⎝ ⎛⎭⎪⎫12n -3+…+7·12+3.设T n =3+7·12+11·⎝ ⎛⎭⎪⎫122+…+(4n -5)·⎝ ⎛⎭⎪⎫12n -2,n ≥2,12T n =3·12+7·⎝ ⎛⎭⎪⎫122+…+(4n -9)·⎝ ⎛⎭⎪⎫12n -2+(4n -5)·⎝ ⎛⎭⎪⎫12n -1,∴12T n =3+4·12+4·⎝ ⎛⎭⎪⎫122+…+4·⎝ ⎛⎭⎪⎫12n -2-(4n -5)·⎝ ⎛⎭⎪⎫12n -1, 因此T n =14-(4n +3)·⎝ ⎛⎭⎪⎫12n -2,n ≥2,又b 1=1,∴b n =15-(4n +3)·⎝ ⎛⎭⎪⎫12n -2.12.(1)解:设等比数列{a n }的公比为q . 由a 1=1,a 3=a 2+2,可得q 2-q -2=0. ∵q >0,可得q =2,故a n =2n -1.设等差数列{b n }的公差为d , 由a 4=b 3+b 5,可得b 1+3d =4.由a 5=b 4+2b 6, 可得3b 1+13d =16, 从而b 1=1,d =1,故b n =n . ∴数列{a n }的通项公式为a n =2n -1,数列{b n }的通项公式为b n =n .(2)ⅰ)解:由(1),有S n =1-2n1-2=2n-1,故T n =1(n k =∑2k-1)=12nk =∑k-n =2×1-2n1-2-n =2n +1-n -2.ⅱ)证明:∵T k +b k +2b kk +1k +2=2k +1-k -2+k +2kk +1k +2=k ·2k +1k +1k +2=2k +2k +2-2k +1k +1, ∴1nk =∑T k +b k +2b k k +1k +2=⎝ ⎛⎭⎪⎫233-222+⎝ ⎛⎭⎪⎫244-233+…+⎝ ⎛⎭⎪⎫2n +2n +2-2n +1n +1=2n +2n +2-2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4节数列求和及综合应用基础巩固(时间:30分钟)1.已知数列{a n}的通项公式是a n=2n-3()n,则其前20项和为( C )(A)380- (1-) (B)400- (1-)(C)420- (1-) (D)440- (1-)解析:设数列{a n}的前n项和为S n,则S20=a1+a2+…+a20=2(1+2+…+20)-3(++…+)=2×-3×=420- (1-).故选C.2.数列{a n}的通项公式为a n=(-1)n-1·(4n-3),则它的前100项之和S100等于( B )(A)200 (B)-200 (C)400 (D)-400解析:S100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]+[-3-(-3)-3+…-(-3)]=4×(-50)=-200.故选B.3.(2017·全国Ⅲ卷)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为( A )(A)-24 (B)-3 (C)3 (D)8解析:由a2,a3,a6成等比数列且a1=1得(1+2d)2=(1+d)(1+5d).因为d≠0,所以d=-2,所以S6=6×1+×(-2)=-24.故选A.4.(2017·安阳一模)已知数列{a n}的前n项和S n=2n-1,则数列{log2 a n}的前10项和等于( C )(A)1 023 (B)55 (C)45 (D)35解析:数列{a n}的前n项和S n=2n-1,可得a1=S1=2-1=1;当n≥2时,a n=S n-S n-1=2n-1-(2n-1-1)=2n-1,对n=1也成立.所以a n=2n-1(n∈N*)log2a n=log22n-1=n-1,则数列{log2a n}的前10项和等于0+1+2+…+9=×(1+9)×9=45.故选C.5.(2017·湖南模拟)已知数列{a n}的前n项和S n满足S n=n2(n∈N*),记数列{}的前n 项和为T n,则T2 017等于( B )(A)(B)(C)(D)解析:当n=1时,a1=S1=1;当n≥2时,a n=S n-S n-1=n2- (n-1)2=2n-1,当n=1时适合上式,所以a n=2n-1.(n∈N*).所以== (-),数列{}的前n项和为T n= (1-+-+…+-)= (1-).则T2 017= (1-)=.故选B.6.(2016·湖北三校联考)已知等比数列{a n}的各项都为正数,且当n≥3时,a4=1,则数列lg a1,2lg a2,22lg a3,23lg a4,…,2n-1lg a n,…的前n项和S n等于( C )(A)n·2n (B)(n-1)·2n-1-1(C)(n-1)·2n+1 (D)2n+1解析:因为等比数列{a n}的各项都为正数,且当n≥3时,a4a2n-4=102n,所以=102n,即a n=10n,所以2n-1lg a n=2n-1lg 10n=n·2n-1,所以S n=1+2×2+3×22+…+n×2n-1,①2S n=1×2+2×22+3×23+…+n·2n,②所以①-②得-S n=1+2+22+…+2n-1-n·2n=2n-1-n·2n=(1-n)·2n-1,所以S n=(n-1)·2n+1.选C.7.(2017·郴州二模)已知等比数列{a n}的前n项和S n=2n-a,则++…+等于( D )(A)(2n-1)2(B) (2n-1)(C)4n-1 (D) (4n-1)解析:因为S n=2n-a,所以a1=2-a,a1+a2=4-a,a1+a2+a3=8-a,解得a1=2-a,a2=2,a3=4,因为数列{a n}是等比数列,所以22=4(2-a),解得a=1.所以公比q=2,a n=2n-1,=22n-2=4n-1.则++…+== (4n-1).故选D.8.(2016·广东汕尾调研)已知数列{a n}为等比数列,a1=3,a4=81,若数列{b n}满足b n=(n+1)log3a n,则{}的前n项和S n= .解析:由题知a n=3n,所以b n=n(n+1),= -,所以S n=(1-)+(-)+…+(-)=1-=.答案:9.(2017·合肥二模)等比数列{a n}满足a n>0,且a2a8=4,则log2 a1+log2 a2+log2 a3+…+log2 a9= .解析:根据题意,等比数列{a n}的各项都是正数,a1·a9=a2·a8=a3·a7=a4·a6==4,则a5=2,则log2 a1+log2 a2+…+log2 a9=log2(a1·a2·…·a9)=log2(29)=9,答案:9能力提升(时间:15分钟)10.已知数列{a n}满足a n+1-a n=2,a1=-5,则|a1|+|a2|+…+|a6|等于( C )(A)9 (B)15 (C)18 (D)30解析:因为a n+1-a n=2,a1=-5,所以数列{a n}是公差为2的等差数列.所以a n=-5+2(n-1)=2n-7.数列{a n}的前n项和S n==n2-6n.令a n=2n-7≥0,解得n≥.所以n≤3时,|a n|=-a n.n≥4时,|a n|=a n.则|a1|+|a2|+…+|a6|=-a1-a2-a3+a4+a5+a6=S6-2S3=62-6×6-2(32-6×3)=18.故选C.11.(2017·安徽宿州一模)设数列{a n}的前n项和为S n,已知a2=2,a n+2+(-1)n-1a n=1,则S40等于( C )(A)260 (B)250 (C)240 (D)230解析:由a n+2+(-1)n-1a n=1,当n为奇数时,有a n+2+a n=1,当n为偶数时,a n+2-a n=1,所以数列{a n}的偶数项构成以2为首项,以1为公差的等差数列,则S40=(a1+a3+a5+a7+…+a39)+(a2+a4+…+a40)=10×1+20×2+×1=240.故选C.12.(2017·淮北二模)已知数列{b n}是等比数列,b n=,a1=1, a3=3,c n=(a n+1)·b n,那么数列{c n}的前n项和S n= .解析:设等比数列{b n}的公比为q,由题意得===q,即a n+1-a n=log2 q.所以{a n}为等差数列,又d==1,a1=1.所以a n=1+n-1=n,b n=2n-1.所以c n=(a n+1)·b n=(n+1)·2n-1.所以数列{c n}的前n项和S n=2×1+3×2+4×22+…+(n+1)·2n-1.①2S n=2×2+3×22+…+n·2n-1+(n+1)·2n,②①-②得-S n=2+2+22+23+…+2n-1-(n+1)·2n=1+-(n+1)·2n=-n·2n,所以S n=n·2n.答案:n·2n13.已知等差数列{a n}前三项的和为-3,前三项的积为8.(1)求等差数列{a n}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|a n|}的前n项和.解:(1)设等差数列{a n}的公差为d,则a2=a1+d,a3=a1+2d,由题意得解得或所以由等差数列通项公式可得a n=2-3(n-1)=-3n+5,或a n=-4+3(n-1)=3n-7.故a n=-3n+5,或a n=3n-7.(2)当a n=-3n+5时,a2,a3,a1分别为-1,-4,2,不成等比数列;当a n=3n-7时,a2,a3,a1分别为-1,2,-4,成等比数列,满足条件.故|a n|=|3n-7|=记数列{|a n|}的前n项和为S n.当n=1时,S1=|a1|=4;当n=2时,S2=|a1|+|a2|=5;当n≥3时,S n=S2+|a3|+|a4|+…+|a n|=5+(3×3-7)+(3×4-7)+…+(3n-7)=5+=n2-n+10.当n=2时,满足此式.综上,S n=14.(2017·衡水一模)已知数列{a n}的前n项和为S n,a1=2,且满足a n+1=S n+2n+1(n∈N*).(1)证明数列{}为等差数列;(2)求S1+S2+…+S n.(1)证明:由S n+1-S n=a n+1得S n+1-S n=S n+2n+1,即S n+1-2S n=2n+1,整理得-=1,因为n=1时,==1,所以数列{}是以1为首项,1为公差的等差数列.(2)解:由(1)可知,=1+n-1=n,即S n=n·2n,令T n=S1+S2+…+S n,T n=1·2+2·22+…+n·2n,①2T n=1·22+…+(n-1)·2n+n·2n+1,②①-②,得-T n=2+22+…+2n-n·2n+1,整理得T n=2+(n-1)·2n+1.15.(2017·江西鹰潭二模)已知数列{a n}与{b n},若a1=3且对任意正整数n满足a n+1-a n=2,数列{b n}的前n项和S n=n2+a n.(1)求数列{a n},{b n}的通项公式;(2)求数列{}的前n项和T n.解:(1)由题意知数列{a n}是公差为2的等差数列,又因为a1=3,所以a n=3+2(n-1)=2n+1.数列{b n}的前n项和S n=n2+a n=n2+2n+1=(n+1)2,当n=1时,b1=S1=4;当n≥2时,b n=S n-S n-1=(n2+2n+1)-[(n-1)2+2(n-1)+1]=2n+1.上式对b1=4不成立.所以数列{b n}的通项公式为b n=(2)n=1时,T1==,n≥2时,== (-),所以T n=+ (-+-+…+-)=+=. n=1仍然适合上式.综上,T n=.。

相关文档
最新文档