湖南省师大附中2012届高三第一次月考(数学理)

合集下载

湖南师大附中高三月考试卷(六)数学(理科)

湖南师大附中高三月考试卷(六)数学(理科)

炎德•英才大联考湖南师大附中高三月考试卷(六)数学(理科)本试题卷包括选择题、填空题和解答题三部分,共5页。

时量120分钟。

满分150分。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数A. —1B. 1C. —iD. i2. 给出下列四个命题:①命题“若X2= 1,则x= 1”的否命题为:“若:x2 = 1,则”;②命题“”的否定是“”;③命题"若:x=y,则”的逆否命题为真命题;④“x=—1”是“的必要不充分条件.其中真命题的个数是A. 1个B. 2个C. 3个D. 4个3. 已知抛物线顶点在原点,焦点为双曲线:=1的右焦点,则此抛物线的方程是A..B.C. D.4. 已知某几何体的三视图如图所示,若该几何体的体积为24,则正视图中a的值为A. 8B. 6C. 4D. 25. 若函数/(X)=|x|x(x-b)在区间[0,2]上是减函数,则实数b的取值范围是A.—B.C. D.6. 一个算法的程序框图如下图所示,若执行该程序输出的结果为,则判断框中应填入的条件是A. B.C. D.7. 在中,三内角A、B、C的对边分别是a、b、C,若,则角A的值为A. 30°B. 60°C. 120°D. 150°8. 已知函数对任意自然数x,y均满足:,且,则等于A. B.C. 1005D. 1004二、填空题:本大题共7小题,每小题S分,共35分,把答案填在答题卡中对应题号后的横线上.9. 已知向量a和b的夹角为120°,,且,则= ____ .10. 已知点A,B,C为同一个球面上三点,且,若球心O到平面ABC的距离为2,直线AO与平面ABC成30°角,则球O的表面积等于_____________________________.11. 若的展开式中X3的系数与常数项相等,则a=______________12. 若直线.绕其与X轴的交点逆时针旋转90°后恰与曲线M:为参数)相切,则c的值为______________.13. 若是函数的两个零点,则的值为_____________________14. 已知,且,则的最小值是_______.15. 设,其中或1(),并记.对于给定的,构造无穷数列如下:(1) 若,则=_______ (用数字作答);(2) 给定一个正整数m,若,则满足(,且)的n的最小值为_______.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16. (本小题满分12分)已知函数和.(1) 设是的一个极大值点,是的一个极小值点,求的最小值;(2) 若,求的值.17. (本小题满分12分)如图,在四边形ABCD中,对角线于O,且.沿BD将翻折成,使平面平面.点P、Q分别在BC、CD上,沿PQ将翻折,能使点C与点A1重合,点F为PQ与AC的交点.(1) 求证:直线PQ丄平面;(2)求面与面所成二面角的余弦值.18.(本小题满分12分)某工厂有120名工人,其年龄都在20〜60岁之间,各年龄段人数按[20,30),[30,40),[40,50),[50,60]分组,其频率分布直方图如下图所示.工厂为了开发新产品,引进了新的生产设备,要求每个工人都要参加A、B两项培训,培训结束后进行结业考试,已知各年龄段两项培训结业考试成绩优秀的人数如下表所示.假设两项培训是相互的,结业考试也互不影响.年龄分组A项培训成绩优秀人数B项培训成绩优秀人数[20,30) 27 16[30,40) 28 :18[40,50) 16 9[50,60] 6 4(1)若用分层抽样法从全厂工人中抽取一个容量为40的样本,求各年龄段应分别抽取的人数,并估计全厂工人的平均年龄;(2)随机从年龄段[20,30)和[40,50)中各抽取1人,设这两人中A、B两项培训结业考试成绩都优秀的人数为X,求X的分布列和数学期望19.(本小题满分13分)如图,在一条河流的上、下游分别有甲、乙两家化工厂,其中甲厂每天向河道内排放污水2万m3,每天流过甲厂的河水流量是500万m3 (含甲厂排放的污水);乙厂每天向河道内排放污水1.4万m3,每天流过乙厂的河水流量是700万m3(含乙广排放的污水).由于两厂之间有一条支流的作用,使得甲厂排放的污水在流到乙厂时;有20¾可自然净化.假设工厂排放的污水能迅速与河水混合,且甲厂上游及支流均无污水排放.}(1) 求河流在经过乙厂后污水含量的百分比约是多少?(精确到0.01%)(2) 根据环保要求,整个河流中污水含量不能超过0.2%,为此,甲、乙两家工厂都必须各自处理一部分污水.已知甲厂处理污水的成本是1000元/万m3,乙厂处理污水的成本是800元/万m3,求甲、乙两厂每天应分别处理多少万m3污水,才能使两厂处理污水的总费用最小?最小总费用是多少元?20. (本小题满分13分)已知点P是圆上一动点,点P在y轴上的射影为Q,设满足条件(为非零常数)的点M的轨迹为曲线C.(1) 求曲线C的方程;(2) 若存在过点N()的直线l与曲线C相交于A、B两点,且(O为坐标原点),求A的取值范围.21. (本小题满分13分)已知函数,数列的首项为m(m为大于1的常数),且(1) 设,求函数的单调区间;(2) 求证:;(3) 若当^ ^时,恒成立,求m的取值范围.。

湖南师大附中2025届高三月考数学(三)试卷及答案

湖南师大附中2025届高三月考数学(三)试卷及答案

大联考湖南师大附中2025届高三月考试卷(三)数学时量:120分钟满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}0,1,2,3的真子集个数是()A .7B .8C .15D .162.“11x -<”是“240x x -<”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知角α的终边上有一点P 的坐标是)4,3(a a ,其中0a ≠,则sin2α=()A .43B .725C .2425D .2425-4.设向量a,b 满足+=-=a b a b ,则⋅a b 等于()A .B .2C .5D .85.若无论θ为何值,直线sin cos 10y x θθ⋅+⋅+=与双曲线2215x y m -=总有公共点,则m的取值范围是()A.1m ≥B .01m <≤C .05m <<,且1m ≠D .1m ≥,且5m ≠6.已知函数()2f x 的图象关于原点对称,且满足()()130f x f x ++-=,且当()2,4x ∈时,()()12log 2f x x m =--+,若()()2025112f f -=-,则m 等于()A .13B .23C .23-D .13-7.已知正三棱台111ABC A B C -所有顶点均在半径为5的半球球面上,且AB =11A B =()A .1B .4C .7D .1或78.北宋数学家沈括博学多才、善于观察.据说有一天,他走进一家酒馆,看见一层层垒起的酒坛,不禁想到:“怎么求这些酒坛的总数呢?”经过反复尝试,沈括提出对于上底有ab 个,下底有cd 个,共n 层的堆积物(如图所示),可以用公式()()()2266n nS b d a b d c c a ⎡⎤=++++-⎣⎦求出物体的总数,这就是所谓的“隙积术”,相当于求数列()()(),11,2ab a b a +++.()()()2,,11b a n b n cd ++-+-= 的和.若由小球堆成的上述垛积共7层,小球总个数为238,则该垛积最上层的小球个数为()A .2B .6C .12D .20二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若()202422024012202412x a a x a x a x +=++++ ,则下列正确的是()A .02024a =B .20240120243a a a +++= C .012320241a a a a a -+-++= D .12320242320242024a a a a -+--=- 10.对于函数()sin cos f x x x =+和()sin cos 22g x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭,下列说法中正确的有()A .()f x 与()g x 有相同的零点B .()f x 与()g x 有相同的最大值点C .()f x 与()g x 有相同的最小正周期D .()f x 与()g x 的图象有相同的对称轴11.过点()0,2P 的直线与抛物线2:4C x y =交于()()1122,,,A x y B x y 两点,抛物线C 在点A 处的切线与直线2y =-交于点N ,作NM AP ⊥交AB 于点M ,则()A .5OA OB ⋅=-B .直线MN 恒过定点C .点M 的轨迹方程是()()22110y x y -+=≠D .AB MN选择题答题卡题号1234567891011得分答案三、填空题:本题共3小题,每小题5分,共15分.12.已知复数12,z z 的模长为1,且21111z z +=,则12z z +=_____.13.在ABC 中,角,,A B C 所对的边分别为,,a b c 已知5,4a b ==,()31cos 32A B -=,则sin B =_____.14.若正实数1x 是函数()2e e x f x x x =--的一个零点,2x 是函数()g x =()()3e ln 1e x x ---的一个大于e 的零点,则()122e ex x -的值为_____.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)现有某企业计划用10年的时间进行技术革新,有两种方案:贷款利润A 方案一次性向银行贷款10万元第1年利润1万元,以后每年比前一年增加25%的利润B 方案每年初向银行贷款1万元第1年利润1万元,以后每年比前一年增加利润3000元两方案使用期都是10年,贷款10年后一次性还本付息(年末结息),若银行贷款利息均按10%的复利计算.(1)计算10年后,A 方案到期一次性需要付银行多少本息?(2)试比较A B 、两方案的优劣.(结果精确到万元,参考数据:10101.1 2.594,1.259.313≈≈)如图,四棱锥P ABCD -中,底面ABCD 为等腰梯形,22AD AB BC ==2=.点P 在底面的射影点Q 在线段AC 上.(1)在图中过A 作平面PCD 的垂线段,H 为垂足,并给出严谨的作图过程;(2)若2PA PD ==.求平面PAB 与平面PCD 所成锐二面角的余弦值.已知函数()()e sin cos ,x f x x x f x =+-'为()f x 的导数.(1)证明:当0x ≥时,()2f x '≥;(2)设()()21g x f x x =--,证明:()g x 有且仅有2个零点.在平面直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b +=>>的两个焦点为12,F F P、为椭圆C 上一动点,设12F PF ∠θ=,当23πθ=时,12F PF ∆.(1)求椭圆C 的标准方程.(2)过点()0,2B 的直线l 与椭圆交于不同的两点(M N M 、在,B N 之间),若Q 为椭圆C上一点,且OQ OM ON =+,①求OBM OBNSS ∆∆的取值范围;②求四边形OMQN 的面积.飞行棋是大家熟悉的棋类游戏,玩家通过投掷骰子来决定飞机起飞与飞行的步数.当且仅当玩家投掷出6点时,飞机才能起飞.并且掷得6点的游戏者可以连续投掷骰子,直至显示点数不是6点.飞机起飞后,飞行步数即骰子向上的点数.(1)求甲玩家第一轮投掷中,投掷次数X 的均值()()1(k E X kP k ∞===∑()1lim n n k kP k ∞→=⎫⎛⎫⎪ ⎪⎝⎭⎭∑;(2)对于两个离散型随机变量,ξη,我们将其可能出现的结果作为一个有序数对,类似于离散型随机变量的分布列,我们可以用如下表格来表示这个有序数对的概率分布:(记()()()()()(1211,,mni i i j j j i j i p x p x p x y p y p y p x ξη========∑∑,)j y .)ξη1x 2x ...n X 1y ()11,p x y ()21,p x y ...()1,n p x y ()21p y 2y ()12,p x y ()22,p x y ...()2,n p x y ()22p y ...⋯⋯...⋯...my ()1,m p x y ()2,m p x y ...(),n m p x y ()2m p y ()11p x ()12p x ...()1n p x 1若已知i x ξ=,则事件{}j y η=的条件概率为{}j i P y x ηξ===∣{}{}()()1,,j i i j i i P y x p x y P x p x ηξξ====.可以发现i x ηξ=∣依然是一个随机变量,可以对其求期望{}{}()111mi j j i j i E x y P y x p x ηξηξ===⋅===∑∣∣.()1,mj i j j y p x y =∑(i )上述期望依旧是一个随机变量(ξ取值不同时,期望也不同),不妨记为{}E ηξ∣,求{}E E ηξ⎡⎤⎣⎦∣;(ii )若修改游戏规则,需连续掷出两次6点飞机才能起飞,记0ξ=表示“甲第一次未能掷出6点”,1ξ=表示“甲第一次掷出6点且第二次未能掷出6点”,2ξ=表示“甲第一次第二次均掷出6点”,η为甲首次使得飞机起飞时抛掷骰子的次数,求E η.炎德・英才大联考湖南师大附中2025届高三月考试卷(三)数学参考答案题号1234567891011答案C A C B B D A B BC ACD BC一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.C 【解析】集合{}0,1,2,3共有42115-=(个)真子集.故选C .2.A 【解析】解不等式240x x -<,得04x <<,解不等式11x -<,得02x <<,所以“11x -<”是“240x x -<”的充分不必要条件.3.C 【解析】根据三角函数的概念,2442sin cos 2tan 24tan ,sin23311tan 25y a x a αααααα======+,故选C .4.B 【解析】()()()22111911244⎡⎤⋅=+--=-=⎣⎦a b a b a b .5.B 【解析】易得原点到直线的距离1d ==,故直线为单位圆的切线,由于直线与双曲线2215x y m -=总有公共点,所以点()1,0±必在双曲线内或双曲线上,则01m <≤.6.D 【解析】依题意函数()f x 的图象关于原点对称,所以()f x 为奇函数,因为()()()133f x f x f x +=--=-,故函数()f x 的周期为4,则()()20251f f =,而()()11f f -=-,所以由()()2025112f f -=-可得()113f =,而()()13f f =-,所以()121log 323m --=,解得13m =-.7.A 【解析】上下底面所在外接圆的半径分别为123,4r r ==,过点112,,,A A O O 的截面如图:22222121534,543,1OO OO h OO OO =-==-∴=-=,故选A .8.B 【解析】由题意,得6,6c a d b =+=+,则由()()()772223866b d a b d c c a ⎡⎤++++-=⎣⎦得()()7[26212(6b b a b b a ++++++6)]()762386a a ++-=,整理得()321ab a b ++=,所以773aba b +=-<.因为,a b 为正整数,所以3ab =或6.因此有6,3a b ab +=⎧⎨=⎩或5,6.a b ab +=⎧⎨=⎩而63a b ab +=⎧⎨=⎩无整数解,因此6ab =.故选B .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.BC 【解析】对于A :令0x =,则01a =,故A 错误;对于B :令1x =,则20240120243a a a +++= ,故B 正确;对于C :令1x =-,则012320241a a a a a -+-++= ,故C 正确;对于D ,由()202422024012202412x a a x a x a x +=++++ ,两边同时求导得()20232202312320242024212232024x a a x a x a x ⨯⨯+=++++ ,令1x =-,则12320242320244048a a a a -++-=- ,故D 错误.故选BC .10.ACD 【解析】()()32sin ,2sin 2sin 4244f x x g x x x ππππ⎛⎫⎛⎫⎛⎫=+=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令()0f x =,则,4x k k ππ=-+∈Z ;令()0g x =,则3,4x k k ππ=+∈Z ,两个函数的零点是相同的,故选项A 正确.()f x 的最大值点是()2,,4k k g x ππ+∈Z 的最大值点是32,4k k ππ-+∈Z ,两个函数的最大值虽然是相同的,但最大值点是不同的,故选项B 不正确.由正弦型函数的最小正周期为2πω可知()f x 与()g x 有相同的最小正周期2π,故选项C 正确.曲线()y f x =的对称轴为,4x k k ππ=+∈Z ,曲线()y g x =的对称轴为5,4x k k ππ=+∈Z ,两个函数的图象有相同的对称轴,故选项D 正确.故选ACD.设直线AB 的方程为2y tx =+(斜率显然存在),221212,,,44x x A x B x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,联立22,4,y tx x y =+⎧⎨=⎩消去x 整理可得2480x tx --=,由韦达定理得12124,8x x t x x +==-,A .22121212124,84444x x y y OA OB x x y y =⋅=⋅=+=-+=- ,故A 错误;B .抛物线C 在点A 处的切线为21124x x x y ⎛⎫=+ ⎪⎝⎭,当2y =-时,11121244282222x x x x x t x x =-=-=+=-,即()2,2N t -,直线MN 的方程为()122y x t t +=--,整理得xy t=-,直线MN 恒过定点(0,0),故B 正确;C .由选项B 可得点M 在以线段OP 为直径的圆上,点O 除外,故点M 的轨迹方程是()()22110y x y -+=≠,故C 正确;D.222t MN +==,AB =则()2221412222t AB MNt +⎫==+,,m m =≥则12ABm MN m ⎛⎫=- ⎪⎝⎭,设()1,f m m m m =-≥,则()2110f m m=+>',当m ≥,()f m 单调递增,所以()min f m f==,故D 错误.故选BC .三、填空题:本题共3小题,每小题5分,共15分.12.1【解析】设()()12i ,,i ,z a b a b z c d c d =+∈=+∈R R ,因为21111z z +=,所以2122111z zz z z z +=.因为11221,1z z z z ==,所以121z z +=,所以()()i i i 1a b c d a c b d -+-=+-+=,所以1,0a c b d +=+=,所以()()12i 1z z a c b d +=+++=.13.74【解析】在ABC 中,因为a b >,所以A B >.又()31cos 32A B -=,可知A B-为锐角且()sin 32A B -=.由正弦定理,sin 5sin 4A aB b ==,于是()()()5sin sin sin sin cos cos sin 4B A A B B A B B A B B ⎡⎤==-+=-+-⎣⎦.将()cos A B -及()sin AB -的值代入可得3sin B B =,平方得2229sin 7cos 77sin B B B ==-,故7sin 4B =.14.e 【解析】依题意得,1211e e 0x x x --=,即()()12311122e e ,0,e ln 1e 0x x x x x x -=>---=,即()()3222e ln 1e ,e x x x --=>,()()()131122e e e e ln 1x x x x x ∴-==--,()()()()()()211ln 111112212e e ln 1e ,e e ln 1e e x x x x x x x x -+++⎡⎤∴-=--∴-=--⎣⎦,又22ln 1,ln 10,x x >->∴ 同构函数:()()1e e ,0x F x x x +=->,则()()312ln 1e F x F x =-=,又()()111e e e e e 1e x x x x F x x x +++=-+=-+',00,e e 1,e 10x x x >∴>=∴-> ,又()()1e 0,0,x x F x F x +>'>∴单调递增,()()()3122212222e ln 1e e ln 1,e e e ex x x x x x ---∴=-∴===.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.【解析】(1)A 方案到期时银行贷款本息为()1010110%26⨯+≈(万元).……(3分)(2)A 方案10年共获利:()()1091.2511125%125%33.31.251-+++++=≈- (万元),……(5分)到期时银行贷款本息为()1010110%25.9⨯+≈(万元),所以A 方案净收益为:33.325.97-≈(万元),……(7分)B 方案10年共获利:()()101010.31 1.3190.310123.52⨯-⨯++++⨯=⨯+= (万元),……(9分)到期时银行贷款本息为()()()()101091.11.11110%110%110%17.51.11-++++++=≈- (万元),……(11分)所以B 方案净收益为:23.517.56-≈(万元),……(12分)由比较知A 方案比B 方案更优.……(13分)16.【解析】(1)连接PQ ,有PQ ⊥平面ABCD ,所以PQ CD ⊥.在ACD 中,2222cos 54cos AC AD CD AD CD ADC ADC ∠∠=+-⋅⋅=-.同理,在ABC 中,有222cos AC ABC ∠=-.又因为180ABC ADC ∠∠+= ,所以()1cos ,0,1802ADC ADC ∠∠=∈ ,所以60ADC ∠= ,3AC =故222AC CD AD +=,即AC CD ⊥.又因为,,PQ AC Q PQ AC ⋂=⊂平面PAC ,所以CD ⊥平面PAC .CD ⊂平面PCD ,所以平面PCD ⊥平面PAC .……(5分)过A 作AH 垂直PC 于点H ,因为平面PCD ⊥平面PAC ,平面PCD ⋂平面PAC PC =,且AH ⊂平面PAC ,有AH ⊥平面PCD .……(7分)(2)依题意,22AQ PA PQ DQ =-=.故Q 为,AC BD 的交点,且2AQ ADCQ BC==.所以2222326,333AQ AC PQ PA AQ ===-.过C 作直线PQ 的平行线l ,则,,l AC CD 两两垂直,以C 为原点建立如图所示空间直角坐标系,则:()()36131,0,0,0,,0,3,0,,,03322D P A B ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以()326232613261,0,0,0,,0,,,,,3333263CD CP AP BP ⎛⎛⎛===-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .设平面PCD 的法向量为(),,x y z =m ,则()0,0,3CD x CP y ⎧⋅==⎪⎨⋅=+=⎪⎩m m取()0,=-m .同理,平面PAB的法向量)1=-n ,1cos<,3⋅>==m n m n m n ……(14分)故所求锐二面角余弦值为13.……(15分)17.【解析】(1)由()e cos sin x f x x x =++',设()e cos sin x h x x x =++,则()e sin cos x h x x x '=-+,当0x ≥时,设()()e 1,sin x p x x q x x x =--=-,()()e 10,1cos 0x p x q x x ''=-≥=-≥ ,()p x ∴和()q x 在[)0,∞+上单调递增,()()()()00,00p x p q x q ∴≥=≥=,∴当0x ≥时,e 1,sin x x x x ≥+≥,则()()()e sin cos 1sin cos sin 1cos 0x h x x x x x x x x x '=-+≥+-+=-++≥,∴函数()e cos sin x h x x x =++在[)0,∞+上单调递增,()()02h x h ∴≥=,即当0x ≥时,()2f x '≥.……(7分)(2)由已知得()e sin cos 21x g x x x x =+---.①当0x ≥时,()()()e cos sin 220,x g x x x f x g x ≥''=++-=-∴ 在[)0,∞+上单调递增,又()()010,e 20g g πππ=-<=->∴ 由零点存在定理可知,()g x 在[)0,∞+上仅有一个零点.……(10分)②当0x <时,设()()2sin cos 0e x x xm x x --=<,则()()2sin 10exx m x '-=≤,()m x ∴在(),0∞-上单调递减,()()01m x m ∴>=,()e cos sin 20,e cos sin 20x x x x g x x x '∴++-<∴=++-<,()g x ∴在(),0∞-上单调递减,又()()010,e 20g g πππ-=-<-=+> ,∴由零点存在定理可知()g x 在(),0∞-上仅有一个零点,综上所述,()g x 有且仅有2个零点.……(15分)18.【解析】(1)设()00,,P x y c 为椭圆C 的焦半距,12122F PF p S c y ∆=⋅⋅,00y b <≤ ,当0y b =时,12F PF S 最大,此时()0,P b 或()0,P b -,不妨设()0,P b ,当23πθ=时,得213OPF OPF π∠∠==,所以c =,又因为12F PF S bc ∆==,所以1,b c ==从而2,a =∴椭圆C 的标准方程为2214x y +=.……(3分)(2)由题意,直线l 的斜率显然存在.设()()1122: 2.,,,l y kx M x y N x y =+.……(4分)1112OBM S OB x x ∆∴=⋅=,同理,2OBN S x ∆=.12OBM OBN S xS x ∆∆∴= (6))联立()22222,141612044y kx k x kx x y =+⎧⇒+++=⎨+=⎩,……(8分)()()()22223164121416430,4k k k k ∴∆=-⨯⨯+=->∴>.……(9分)又121212221612,0,,1414k x x x x x x k k-+==>∴++ 同号.()()2222122121212216641421231414k x x x x k k x x x x kk-⎛⎫ ⎪++⎝⎭∴===+++.()22212122364641616,4,,42143331434x x k k x x k k ⎛⎫>∴=∈∴<++< ⎪⎛⎫+⎝⎭+ ⎪⎝⎭ .令()120x x λλ=≠,则116423λλ<++<,解得()()11,11,3,,11,333OBM OBN S S λ∆∆⎛⎫⎛⎫∈∴∈ ⎪ ⎪⎝⎭⎝⎭ .……(12分)(3)()1212,,OQ OM ON Q x x y y =+∴++.且四边形OMQN 为平行四边形.由(2)知()12121222164,41414k x x y y k x x k k-+=∴+=++=++,22164,1414kQ k k -⎛⎫∴ ⎪++⎝⎭.而Q 在椭圆C 上,2222164441414k k k -⎛⎫⎛⎫∴+⨯= ⎪ ⎪++⎝⎭⎝⎭.化简得2154k =.……(14分)∴线段161219357115224MN ==⋅+,……(15分)O到直线MN的距离d == (16))OMQN 574S MN d ∴=⋅=四边形.……(17分)19.【解析】(1)()115,1,2,3,66k P X k k -⎛⎫==⨯= ⎪⎝⎭ ,所以()()215111,1,2,3,,5126666nk n k k k P X k k kP k n =⎛⎫⋅====⨯+⨯+⨯ ⎪⎝⎭∑ ,记211112666n n S n =⨯+⨯++⨯ ,则2311111126666n n S n +=⨯+⨯++⨯ .作差得:1211111511111111661666666556616nn n n n n n S n n ++⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++-⨯=-⨯=-+ ⎪⎪⎝⎭⎝⎭- ,所以()16111661,555566556n nn n n k n S kP k S n =⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⋅-+==-+⎢⎥ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∑.故()()()116616lim lim 5565nn n n k k E X kP k kP k n ∞∞∞→→==⎡⎤⎛⎫⎛⎫⎛⎫===-+=⎢⎥ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∑∑.……(6分)(2)(i ){}E ηξ∣所有可能的取值为:{},1,2,,i E x i n ηξ== ∣.且对应的概率{}{}()()()1,1,2,,i i i p E E x p x p x i n ηξηξξ====== ∣∣.所以{}{}()()()()()111111111,,,nnmn m i i j i j i j i j i i j i j i E E E x p x y p x y p x y p x y p x ηξηξ=====⎛⎫⎡⎤==⋅=⋅= ⎪⎣⎦ ⎪⎝⎭∑∑∑∑∑∣∣又()()()()21111111,,,nmmnmn mj i j j i j j i j j j i j j i j i j y p x y y p x y y p x y y p y E η=======⎛⎫⋅=⋅==⋅= ⎪⎝⎭∑∑∑∑∑∑∑,所以{}E E E ηξη⎡⎤=⎣⎦∣.……(12分)(ii ){}{}{}12355101,;12,;22,63636E E p E E p E p ηξηηξηη==+===+====∣∣,{}()()5513542122636363636E E E E E ηηξηηη⎡⎤==++++⨯=+⎣⎦∣,故42E η=.……(17分)。

2024-2025学年湖南师范大学附属中学高三上学期月考(一)历史试题及答案

2024-2025学年湖南师范大学附属中学高三上学期月考(一)历史试题及答案

大联考湖南师大附中2025届高三月考试卷(一)历史时量:75分钟满分:100分第I卷选择题(共48分)一、选择题(本大题共16小题,每小题3分,共48分。

在每小题列出的四个选项中,只有一项是符合题意的)1.岭南石峡遗址已发掘64座大小不一的墓葬,出土遗物三千余件。

有出七成套的木作工具石锛和石凿,数百件实战用的石镞、石钺;还有礼器如琮、璧等,玉琮与良渚一带相近。

据此可推断,该遗址A.已出现掌握贵重礼器的祭司阶层B.处于石器时代向国家迈进的阶段C.有直接或间接远距离的商品交换D.农业生产水平得到一定程度发展2.图1、2所示文物均被学界命名为“蜻蜓眼玻璃器”。

据此可知图1古埃及玻璃器(前+4世纪)图2曾侯乙墓玻璃器(战国)A.社会分工发生了进一步细化B.战国手工制造水平超过古埃及C.玻璃器的生产中心发生转移D.玻璃器是中外文明交流的物证3.《史记·儒林列传》记载,“家人子”(宫侍女)出身的窦太后喜好黄老之学,召辕固生问老子书,辕固生答“家人言耳”太后大怒,命他去刺野猪,幸得景帝帮助才脱困。

这一记载最能印证汉初A.无为而治思想发生动摇B.弃道崇儒思想开始抬头C.社会等级意识仍然强烈D.皇权独尊遭受外戚挑战4.王莽改制,根据周朝办法造大钱,后又相继发行契刀、错刀、宝货等货币,民间仍用五铢钱。

王莽下诏:“敢非井田、挟五铢钱者为惑众,投诸四裔以御魑魅。

”可见当时A.制度变革获得法律保障B.币制由复杂走向简单C.托古改制重视民众基础D.政府的货币信用不足5.《公羊传》记载:“桓何以贵?母贵也。

母贵则子何以贵?子以母贵,母以子贵。

”然而汉武帝却在立幼子为太子后杀其生母,北魏时期道武帝将子贵母死立为定制。

这一转变的目的在于A.提高三纲五常的地位B.促进华夏认同C.推动少数民族封建化D.加强集权统治6.唐太宗审查《氏族志》时,认为山东崔氏“世代衰微,全无冠盖”,不配第一等。

他指示“不须论数世以前,止取今日官爵高下作等级”,新修订的《氏族志》以皇族为首,外戚次之,崔干被降为第三等。

湖南师大附中2012届高三第三次月考

湖南师大附中2012届高三第三次月考

湖南师大附中2012届高三第三次月考教学参考0328 2023湖南师大附中2012届高三第三次月考语文本试卷共7道大题,21道小题(2道选做题任选1题)。

时量150分钟,满分150分一、语言文字运用(12分,每小题3分)1. 下列词语中加点的字,读音全都正确的一组是A. 择菜zhái阴霾mái绮丽yǐ斗转参横shēnB.体己tī福祉zhǐ轻佻tiāo佶屈聱牙jíC.拘泥nì联袂mâi整饬chì同仇敌忾kàiD.啁啾zhōu空白kînɡ侪辈chái风雪载途zǎi1. B/A绮丽qǐ C拘泥nì D风雪载途zài2. 下列各句中,加点的词语使用不恰当的一句是A.备受关注的2012年国家公务员招录考试已经开始报名。

据悉,昨天网上报名不很拥堵,抢着在第一天“出手”的考生并不是太多。

B.《帝国的惆怅》中,打通文史关节,勾兑世事人情,静观辅以动察,仰视继之俯瞰,使自己的见解,踩在宽广而坚实的地基上。

C.政府应改变中小企业融资难的局面,让它们有能力实现自身升级转型,避免出现中小企业“倒闭潮”,而伤及经济稳固增长的肌体。

D. 峨嵋山气吐如兰、秀甲天下,作为武林翘楚之一,峨嵋风骨不逊于少林、武当,不少影视作品演绎出了峨眉不可言说的神秘色彩。

2.C/稳固:安稳巩固,不易变动,多形容建筑物或者政权。

可改用“稳健”,表现出经济增长稳定而有力。

A拥堵:拥挤,堵塞。

常用来指由于车辆多、秩序乱或道路狭窄等造成车辆拥挤、道路拥塞。

这里指由于服务器繁忙而造成网络不通畅。

B勾兑:本指把不同的酒适量混合,并添加调味酒,进行配制。

这里指写作时以历史事实为基础,适当穿插一些相关的世态人情以增强作品的表现力。

D演绎:有展现、表现的意思,可用于描述影视作品。

3.下列各句中,没有语病的一项是A.大雪使铁路运输压力骤增,执勤民警启动恶劣天气应急预案,延长执勤时间和力度,维护旅客乘车秩序,保障了春运高峰平稳度过。

12.杂数列

12.杂数列

1. (浙江省杭州市2012届高三第二次教学质量检测数学(理)试题2012.4)数列21111231{},2,()(*),555,5n n n n n n n a a a a n N S a a a a -+=+=∈=++++ 中则65n n nS a n-= .12. (浙江省名校新高考研究联盟2012届高三第二次联考试题数学文)在数列{}n a 中,11=a ,n n n a a 21=+*()n N ∈,则数列{}n a 的通项=n a .1222 2n nn n a n -⎧⎪=⎨⎪⎩是奇数是偶数3. (浙江省宁波市鄞州区2012届高三5月适应性考试题数学文) 已知数列{}n a ,对任意的,p q N *∈满足p q p q a a a +=⋅,且11a =-,那么9a 等于 . -14. (浙江省五校2012届高三第二次联考试题word 版数学(文)试题)已知数列{}n a ,22n a n n λ=-+,若该数列是递减数列,则实数λ的取值范围是( )DA. (],3-∞B. (],4-∞C. (),5-∞D. (),6-∞5. (宁夏银川一中2012届高三第三次模拟考试 数学(理))已知有穷数列A :na a a ,,,21⋅⋅⋅(N n n ∈≥,2).定义如下操作过程T :从A 中任取两项j i a a ,,将ji j i a a a a ++1的值添在A的最后,然后删除j i a a ,,这样得到一系列1-n 项的新数列A 1 (约定:一个数也视作数列);对A 1的所有可能结果重复操作过程T 又得到一系列2-n 项的新数列A 2,如此经过k 次操作后得到的新数列记作A k . 设A :31,21,43,75-,则A 3的可能结果是A.34 B. 12C. 13D. 0【答案】A6. (辽宁省大连市庄河六高中2011-2012学年高二下学期期中考试试题(数学理))在数列{}n a 中,若11a =,1130n n n n a a a a --+-=,(2,n n N *≥∈),则 n a =A.213n + B. 23n + C. 121n - D. 132n - 【答案】D重庆市2012(春)高三考前模拟测试数学试题(理科)7.若数列1221{}:1,2,(3),n n n n a a a a a a n --===≥满足则2012a 的值为 CA .1B .12C .2D .22012玉溪一中高2013届下学期期中考试高二数学(文理科) 3.数列}{n a 的前n 项和,2n S n =则5a 的值是A. 9B. 10 C 16 D. 25 A甘肃兰州一中11-12学年度下学期高一期中考试14. 观察下列等式:332333233332123,1236,123410+=++=+++=根据以上规 律:第5个等式为____________________________________________________________. 【答案】333333212345621+++++=江西省重点中学盟校2012届高三第二次联考试卷理科数学 13、下表给出一个“直角三角形数阵”41 41,21163,83,43 ……满足每一列成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i 行第j 列的数为83),,,(a N j i j i a ij 则+∈≥等于 .【答案】21江西师大附中2012届高三第三次模拟考试 数学理 10.对数列{}n a ,如果*k ∃∈N 及12,,,k λλλ∈R ,使1122n k n k n k k n a a a a λλλ++-+-=+++ 成立,其中*n ∈N ,则称{}n a 为k 阶递归数列.给出下列三个结论:① 若{}n a 是等比数列,则{}n a 为1阶递归数列;② 若{}n a 是等差数列,则{}n a 为2阶递归数列;③ 若数列{}n a 的通项公式为2n a n =,则{}n a 为3阶递归数列. 其中正确结论的个数是( ) A .0 B .1 C .2 D .3 【答案】C上海市浦东新区2012届高三第三次模拟考试(2012浦东三模)理科数学8.数列{}n a 的前n 项和为n S ,若点(,)n n S (*n N ∈)在函数2log (1)y x =+的反函数的图像上,则n a =________. 【答案】12n -上海市徐汇区2012届高三第二次模拟 数学理 8、已知数列{}n a 的前n 项和21n n S a =-,则数列{}n a 的通项公式为n a = .*()n N ∈8.12n -南师大附中2011届高三第四次模拟考试14.已知数列{}n a 的各项均为正整数,对于⋅⋅⋅=,3,2,1n ,有1352n n n ka a a ++⎧⎪=⎨⎪⎩n n 1n a a k a +为奇数为偶数,是使为奇数的正整数,若存在*m ∈N ,当n m >且na 为奇数时,n a 恒为常数p ,则p 的值为___1或5___.山东省菏泽学院附中2012届高三下学期5月高考冲刺试题(数学理)B9.已知“整数对”按如下规律排成一列:()1,1,()1,2,()2,1,()1,3,()2,2,()3,1,()1,4,()2,3,()3,2,()4,1,……,则第60个数对是 ( )A .()7,5B . ()5,7C .()2,10D .()10,1山东省菏泽学院附中2012届高三下学期5月高考冲刺试题(数学文)A10.删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列,这个新数列的第2003项是 ( ) A .2048 B .2049 C .2050 D .2051 9.(2012浙江冲刺卷B 理科)如果有穷数列)(,...,,*21N n a a a n ∈满足条件:,,...,,1121a a a a a a n n n ===-即1+-=i n i a a ,),...,2,1(n i =我们称其为“对称数列”.例如:数列1,2,3,3,2,1 和数列1,2,3,4,3,2,1都为“对称数列”.已知数列}{n b 是项数不超过),1(2*N m m m ∈>的“对称数列”,并使得122,...,2,2,1-m 依次为该数列中连续的前m 项,则数列}{n b 的前2009项和2009S 所有可能的取值的序号为 ①122009-②)12(22009-③1223201021--⋅--m m ④122200921---+m mA .①②③B . ②③④C .①②④D . ①③④ 【答案】C10.(2012届安徽省淮北市第二次模拟文科)设函数xxx f -+=1lo g 21)(2,定义121()()()n n S f f f n n n -=++ ,其中,2,≥∈+n N n ,则=n S ( ) A .(1)2n n - B .21log (1)2n n --- C .12n - D .21log (1)2n n -+-【答案】C17.(2012上海市嘉定、黄浦区第二次模拟理科)已知△ABC 的三边分别是a b c 、、,且a b c ≤≤(*a b c ∈N 、、),若当b n =(*n ∈N )时,记满足条件的所有三角形的个数为n a ,则数列{}n a 的通项公式…………………( )A .21n a n =-B .(1)2n n n a +=C .21n a n =+D .n a n = 【答案】B6、(2012天津市高考压轴卷理科)设x 、a 1、a 2、y 成等差数列,x 、b 1、b 2、y 成等比数列,则21212(a a )b b +的取值范围是A 、[4,+∞)B 、(0][4,+,-∞∞ )C 、[0,4]D 、(4)[4,,-∞-+∞ )【答案】B(2012河北广宗中学第二次模拟考试数 学 试 题(理)) 20.(14分)设集合W 由满足下列两个条件的数列{}n a 构成: ①212n n n a a a +++<; ②存在实数M ,使n a M ≤.(n 为正整数)(I )在只有5项的有限数列{}n a ,{}n b 中,其中123451,2,3,4,5a a a a a =====; 123451,4,5,4,1b b b b b =====;试判断数列{},{}n n a b 是否为集合W 的元素;(II )设{}n c 是各项为正的等比数列,n S 是其前n 项和,314c =,374S =, 证明数列{}n S W ∈;并写出M 的取值范围;(III )设数列{},n d W ∈且对满足条件的M 的最小值0M ,都有()*n n d M n ≠∈N . 求证:数列{}n d 单调递增. 【解析】 (I )对于数列{}n a ,取13222a a a +==,显然不满足集合W 的条件,① 故{}n a 不是集合W 中的元素,对于数列{}n b ,当{1,2,3,4,5}n ∈时,不仅有13232b b b +=<,24342b bb +=<,33432b b b +=<,而且有5n b ≤,显然满足集合W 的条件①②, 故{}n b 是集合W 中的元素.(II )∵{}n c 是各项为正数的等比数列,n S 是其前n 项和,3317,,44c S ==设其公比为0q >, ∴333274c c c q q ++=,整理得2610q q --=. ∴12q =,∴1111,2n n c c -==,1122n n S -=-对于*n ∀∈N ,有222111222222n n n n n n S S S ++++=--<-=,且2n S <,故{}n S W ∈,且[)2,M ∈+∞(III )证明:(反证)若数列{}n d 非单调递增,则一定存在正整数k , 使1k k d d +≥,易证于任意的n k ≥,都有1k k d d +≥,证明如下: 假设()n m m k =≥时,1k k d d +≥当1n m =+时,由212m m m d d d +++<,212m m m d d d ++<-.而12111(2)0m m m m m m m d d d d d d d +++++->--=-≥ 所以12,m m d d ++>所以对于任意的n k ≥,都有1m m d d +≥.显然12,,,k d d d 这k 项中有一定存在一个最大值,不妨记为0n d ; 所以0*()n n d d n ∈N ≥,从而00n d M =与这题矛盾.所以假设不成立, 故命题得证.C7. (莱芜一中50级4月自主检测数学试题文科)已知数列}{n a 满足a 1=1,且1n n a a +=1n n+,则2012a =( ) A.2010 B.2011 C.2012 D.2013安徽省芜湖一中2012届高三下学期第六次模拟考试数学(理)试卷14. 已知数列{}n a 满足:*1log (2) ()n n a n n N +=+∈,定义使123k a a a a ⋅⋅⋅⋅…为整数的数* ()k k N ∈叫做幸运数,则[]1,2012内所有的幸运数之和为____________. 【答案】20261. (甘肃省西北师大附中2012年高三第一次诊断考试试卷数学(理科))6. 已知正项数列{}n a 中,11=a ,22=a ,222112(2)n n n a a a n +-=+≥,则6a 等于【答案】D17、莆田一中2012届高三第五次月考数学(文)试题 (本小题满分12分)数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n = ,,,),且123a a a ,,成公比不为1的等比数列。

考点03简单的逻辑联结词、全称量词与存在量词(教师版) 新课标

考点03简单的逻辑联结词、全称量词与存在量词(教师版) 新课标

2013年新课标数学40个考点总动员 考点03 简单的逻辑联结词、全称量词与存在量词(教师版)热点一 简单的逻辑联结词1.(2012年高考(山东文))设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x = 的图象关于直线2x π=对称.则下列判断正确的是 ( )A .p 为真B .q ⌝为假C .p q ∧为假D .p q ∨为真【方法总结】1.“p ∨q ”、“p ∧q ”、“¬q”形式命题真假的判断步骤:(1)确定命题的构成形式;(2)判断其中命题p 、q 的真假;(3)确定“p ∨q ”、“p ∧q ”、“¬q”形式命题的真假.2. 正确理解逻辑联结词“或”、“且”、“非”的含义是关键,解题时应根据组成各个复合命题的语句中所出现的逻辑联结词进行命题结构与真假的判断.其步骤为:①确定复合命题的构成形式;②判断其中简单命题的真假;③判断复合命题的真假. 热点二 全称量词与存在量词2.(2012年高考(辽宁理))已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1)(x 2-x 1)≥0,则⌝p 是(A) ∃x 1,x 2∈R ,(f (x 2)-f (x 1)(x 2-x 1)≤0 (B) ∀x 1,x 2∈R ,(f (x 2)-f (x 1)(x 2-x 1)≤0 (C) ∃x 1,x 2∈R ,(f (x 2)-f (x 1)(x 2-x 1)<0 (D) ∀x 1,x 2∈R ,(f (x 2)-f (x 1)(x 2-x 1)<03.(2012年高考(湖北理))命题“0x ∃∈R Q ð,30x ∈Q ”的否定是A .0x ∃∉R Q ð,30x ∈QB .0x ∃∈R Q ð,30x ∉QC .x ∀∉R Q ð,3x ∈QD .x ∀∈R Q ð,3x ∉Q【答案】D【解析】本题主要考察常用逻辑用语,考察对命题的否定和否命题的区别.根据对命题的否定知,是把谓词取否定,然后把结论否定。

(优辅资源)湖南师大附中高三月考试卷(六)(教师版)数学(理)Word版含解析

(优辅资源)湖南师大附中高三月考试卷(六)(教师版)数学(理)Word版含解析

湖南师大附中2018届高三月考试卷(六)数 学(理科)命题人:吴锦坤 张汝波 审题人:黄祖军本试题卷包括选择题、填空题和解答题三部分,共10页.时量120分钟.满分150分.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题的四个选项中,只有一项是符合题目要求的.(1)已知集合A ={x |x 2+x -2≤0,x ∈Z },B ={a ,1},A ∩B =B ,则实数a 等于(D) (A)-2 (B)-1 (C)-1或0 (D)-2或-1或0(2)设p :ln(2x -1)≤0,q :(x -a )[x -(a +1)]≤0,若q 是p 的必要而不充分条件,则实数a 的取值范围是(A)(A)⎣⎡⎦⎤0,12 (B)⎝⎛⎭⎫0,12 (C)(-∞,0]∪⎣⎡⎭⎫12,+∞ (D)(-∞,0)∪⎝⎛⎭⎫12,+∞ 【解析】由p 得: 12<x ≤1 ,由q 得:a ≤x ≤a +1,又q 是p 的必要而不充分条件,所以a ≤12且a +1≥1,∴0≤a ≤12. (3)某学校的两个班共有100名学生,一次考试后数学成绩ξ(ξ∈N )服从正态分布N (100,102),已知P (90≤ξ≤100)=0.3,估计该班学生数学成绩在110分以上的人数为(A)(A)20 (B)10 (C)14 (D)21【解析】由题意知,P (ξ>110)=1-2P (90≤ξ≤100)2=0.2,∴该班学生数学成绩在110分以上的人数为0.2×100=20.(4)某几何体的三视图如图所示,则其体积为(C) (A)83 (B)2 (C)43 (D)23【解析】该几何体是:在棱长为2的正方体中,连接相邻面的中心,以这些线段为棱的一个正八面体.可将它分割为两个四棱锥,棱锥的底面为正方形且边长为2,高为正方体边长的一半,∴V =2×13(2)2×1=43.(5)我国古代数学著作《九章算术》有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问,米几何?”如图是解决该问题的程序框图,执行该程序框图,若输出的S =2.5 (单位:升),则输入k 的值为(D)(A)4.5 (B)6 (C)7.5 (D)10【解析】模拟程序的运行,可得n =1,S =k , 满足条件n <4,执行循环体,n =2,S =k -k 2=k2,满足条件n <4,执行循环体, n =3,S =k 2-k 23=k3,满足条件n <4,执行循环体, n =4,S =k 3-k 34=k4,此时,不满足条件n <4,退出循环,输出S 的值为k4,根据题意可得:k4=2.5,计算得出:k =10.所以D 选项是正确的.(6)将函数f ()x =cosωx 2⎝⎛⎭⎫2sin ωx 2-23cos ωx 2+3,()ω>0的图像向左平移π3ω个单位,得到函数y =g ()x 的图像,若y =g ()x 在⎣⎡⎦⎤0,π4上为增函数,则ω的最大值为(B)(A)1 (B)2 (C)3 (D)4【解析】由题意,f ()x =2sin ⎝⎛⎭⎫ωx -π3()ω>0,先利用图像变换求出g ()x 的解析式:g ()x =f ⎝ ⎛⎭⎪⎫x +π3ω=2sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x +π3ω-π3,即g ()x =2sin ωx ,其图像可视为y =sin x 仅仅通过放缩而得到的图像.若ω最大,则要求周期T 取最小,由⎣⎡⎦⎤0,π4为增函数可得:x =π4应恰好为g ()x 的第一个正的最大值点,∴π4ω=π2ω=2.(7)已知x ,y 满足约束条件⎩⎨⎧x -2y -2≤0,2x -y +2≥0,x +y -2≤0,若ax +y 取得最大值的最优解不唯一,则实数a 的值为(C)(A)12或-1 (B)2或12(C)-2或1 (D)2或-1【解析】由题中约束条件作可行域如右图所示:令z =ax +y ,化为y =-ax +z ,即直线y =-ax +z 的纵截距取得最大值时的最优解不唯一.当-a >2时,直线y =-ax +z 经过点A (-2,-2)时纵截距最大,此时最优解仅有一个,故不符合题意;当-a =2时,直线y =-ax +z 与y =2x +2重合时纵截距最大,此时最优解不唯一,故符合题意;当-1<-a <2时,直线y =-ax +z 经过点B (0,2)时纵截距最大,此时最优解仅有一个,故不符合题意;当-a =-1时,直线y =-ax +z 与y =-x +2重合时纵截距最大,此时最优解不唯一,故符合题意;当-a <-1时,直线y =-ax +z 经过点C (2,0)时纵截距最大,此时最优解仅有一个,故不符合题意.综上,当a =-2或a =1时最优解不唯一,符合题意.故本题正确答案为C.(8)若直线ax +by -2=0(a >0,b >0)始终平分圆x 2+y 2-2x -2y =2的周长,则12a +1b 的最小值为(D)(A)3-224 (B)3-222(C)3+222 (D)3+224【解析】直线平分圆周,则直线过圆心f (1,1),所以有a +b =2,12a +1b =12(a +b )⎝⎛⎭⎫12a +1b=12⎝⎛⎭⎫32+b 2a +a b ≥12⎝⎛⎭⎫32+2b 2a ·a b =3+224(当且仅当b =2a 时取“=”),故选D. (9)把7个字符a ,a ,a ,b ,b ,α,β排成一排,要求三个“a ”两两不相邻,且两个“b ”也不相邻,则这样的排法共有(B)(A)144种 (B)96种 (C)30种 (D)12种【解析】先排列b ,b ,α,β,若α,β不相邻,有A 22C 23种,若α,β相邻,有A 33种,共有6+6=12种,从所形成的5个空中选3个插入a ,a ,a ,共有12C 35=120种,若b ,b 相邻时,从所形成的4个空中选3个插入a ,a ,a ,共有6C 34=24,故三个“a ”两两不相邻,且两个“b ”也不相邻,这样的排法共有120-24=96种.(10)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,椭圆C 上的两点A 、B 关于原点对称,且满足F A →·FB →=0,|FB |≤|F A |≤2|FB |,则椭圆C 的离心率的取值范围是(A)(A)⎣⎡⎦⎤22,53 (B)⎣⎡⎭⎫53,1 (C)⎣⎡⎦⎤22,3-1 (D)[3-1,1) 【解析】作出椭圆左焦点F ′,由椭圆的对称性可知,四边形AFBF ′为平行四边形,又F A →·FB →=0,即F A ⊥FB ,故平行四边形AFBF ′为矩形,所以|AB |=|FF ′|=2c .设AF ′=n ,AF =m ,则在直角三角形ABF 中m +n =2a ,m 2+n 2=4c 2 ①,得mn =2b 2 ②,①÷②得m n +n m =2c 2b 2,令m n =t ,得t +1t =2c 2b2.又由|FB |≤|F A |≤2|FB |得m n =t ∈[1,2],∴t +1t =2c 2b2∈⎣⎡⎦⎤2,52,故离心率的取值范围是⎣⎡⎦⎤22,53.(11)在△ABC 中,AB =2m ,AC =2n ,BC =210,AB +AC =8,E ,F ,G 分别为AB ,BC ,AC 三边中点,将△BEF ,△AEG ,△GCF 分别沿EF 、EG 、GF 向上折起,使A 、B 、C 重合,记为S ,则三棱锥S -EFG 的外接球面积最小为(D)(A)292π (B)233π (C)14π (D)9π【解析】根据题意,三棱锥S -EFG 的对棱分别相等,将三棱锥S -EFG 补充成长方体, 则对角线长分别为m ,n ,10, 设长方体的长宽高分别为x ,y ,z,则x 2+y 2=m ,y 2+z 2=10,x 2+z 2=n ,∴x 2+y 2+z 2=5+m +n2,∴三棱锥S -EFG 的外接球直径的平方为5+m +n2,而m +n =4,m +n 2≥⎝ ⎛⎭⎪⎫m +n 22=4,∴5+m +n2≥9, ∴三棱锥S -EFG 的外接球面积最小为4π·94=9π,所以D 选项是正确的.(12)已知函数f (x )=⎩⎪⎨⎪⎧-32x +1,x ≥0,e -x -1,x <0,若x 1<x 2且f (x 1)=f (x 2),则x 2-x 1的取值范围是(B)(A)⎝⎛⎦⎤23,ln 2 (B)⎝⎛⎦⎤23,ln 32+13 (C)⎣⎡⎦⎤ln 2,ln 32+13 (D)⎝⎛⎭⎫ln 2,ln 32+13【解答】作出函数f (x )=⎩⎪⎨⎪⎧-32x +1,x ≥0,e -x -1,x <0的图像如右,由x 1<x 2,且f (x 1)=f (x 2),可得0≤x 2<23,-32x 2+1=e -x 1-1,即为-x 1=ln ⎝⎛⎭⎫-32x 2+2, 可得x 2-x 1=x 2+ln ⎝⎛⎭⎫-32x 2+2,令g (x 2)=x 2+ln ⎝⎛⎭⎫-32x 2+2,0≤x 2<23, g ′(x 2)=1+-32-32x 2+2=3x 2-13x 2-4.当0≤x 2<13时,g ′(x 2)>0,g (x 2)递增;当13<x 2<23时,g ′(x 2)<0,g (x 2)递减.则g (x 2)在x 2=13处取得极大值,也为最大值ln 32+13,g (0)=ln 2,g ⎝⎛⎭⎫23=23,由23<ln 2,可得x 2-x 1的范围是⎝⎛⎦⎤23,ln 32+13.故选B. 第Ⅱ卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答.二、填空题,本大题共4小题,每小题5分,共20分. (13)将八进制数705(8)化为三进制的数是__121210(3)__.【解析】705(8)=7×82+0×8+5×80=453, 根据除k 取余法可得453=121210(3).(14)计算:2cos 10°-23cos (-100°)1-sin 10°=.(15)已知P 是双曲线x 216-y 28=1右支上一点,F 1,F 2分别是双曲线的左、右焦点,O 为坐标原点,点M ,N 满足F 1P →=λPM →()λ>0,PN →=μ⎝ ⎛⎭⎪⎫PM →|PM →|+PF 2→|PF 2→|,PN →·F 2N →=0.若|PF 2→|=3,则以O 为圆心,ON 为半径的圆的面积为__49π__.【解析】由PN →=μ⎝ ⎛⎭⎪⎫PM →|PM →|+PF 2→|PF 2→|知PN 是∠MPF 2的角平分线,又PN →·F 2N →=0,故延长F 2N 交PM 于K ,则PN 是△PF 2K 的角平分线又是高线,故△PF 2K 是等腰三角形,|PK |=|PF 2|=3,因为|PF 2→|=3,故|PF 1→|=11,故|F 1K →|=14,注意到N 还是F 2K 的中点,所以ON 是△F 1F 2K 的中位线,|ON →|=12|F 1K →|=7,所以以O 为圆心,ON 为半径的圆的面积为49π.(16)如图,在△ABC 中,BE 平分∠ABC ,sin ∠ABE =33,AB =2,点D 在线段AC 上,且AD →=2DC →,BD =433,则BE =56__.【解析】由条件得cos ∠ABC =13,sin ∠ABC =223.在△ABC 中,设BC =a ,AC =3b ,则9b 2=a 2+4-43a ①.因为∠ADB 与∠CDB 互补,所以cos ∠ADB =-cos ∠CDB ,4b 2+163-41633b =-b 2+163-a 2833b ,所以3b 2-a 2=-6 ②,联立①②解得a =3,b =1,所以AC =3,BC =3. S △ABC =12·AC ·AB sin A =12×3×2×223=22,S △ABE =12·BE ·BA sin ∠EBA =12×2×BE ×33=33BE .S △BCE =12·BE ·BC sin ∠EBC =12×3×BE ×33=32BE .由S △ABC =S △ABE +S △BCE ,得22=33BE +32BE ,∴BE =456.70分,解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)设数列{a n }满足a 2n =a n +1a n -1+λ(a 2-a 1)2,其中n ≥2,且n ∈N ,λ为常数.(Ⅰ)若{a n }是等差数列,且公差d ≠0,求λ的值;(Ⅱ)若a 1=1,a 2=2,a 3=4,且数列{b n }满足a n ·b n =n -7对任意的n ∈N *都成立. ①求数列{}b n 的前n 项之和S n ;②若m ·a n ≥n -7对任意的n ∈N *都成立,求m 的最小值.【解析】(Ⅰ)由题意,可得a 2n =(a n +d )(a n -d )+λd 2,(2分)化简得(λ-1)d 2=0,又d ≠0,所以λ=1.(3分)(Ⅱ)①将a 1=1,a 2=2,a 3=4代入条件,可得4=1×4+λ,解得λ=0,(4分) 所以a 2n =a n +1a n -1,则数列{}a n 是首项为1,公比q =2的等比数列,所以a n =2n -1,从而b n =n -72n -1,(6分)所以S n =-620+-521+-422+…+n -72n -1,12S n =-621+-522+-423+…+n -72n , 两式相减得:12S n =-620+121+122+…+12n -1-n -72n =-5+5-n 2n ;所以S n =-10+5-n2n -1.(8分)②m ·2n -1≥n -7,所以m ≥n -72n -1对任意n ∈N *都成立.由b n =n -72n -1,则b n +1-b n =n -62n -n -72n -1=8-n2n ,所以当n >8时,b n +1<b n ; 当n =8时,b 9=b 8; 当n <8时,b n +1>b n . 所以b n 的最大值为b 9=b 8=1128,所以m 的最小值为1128.(12分) (18)(本小题满分12分)阿尔法狗(AlphaGo)是第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能程序,由谷歌(Google)公司的团队开发.其主要工作原理是“深度学习”.2017年5月,在中国乌镇围棋峰会上,它与排名世界第一的世界围棋冠军柯洁对战,以3比0的总比分获胜.围棋界公认阿尔法围棋的棋力已经超过人类职业围棋顶尖水平.为了激发广大中学生对人工智能的兴趣,某市教育局组织了一次全市中学生“人工智能”软件设计竞赛,从参加比赛的学生中随机抽取了30名学生,并把他们的比赛成绩按五个等级进行了统计,得到如下数据表:(Ⅰ)根据上面的统计数据,试估计从本市参加比赛的学生中任意抽取一人,其成绩等级为“A 或B ”的概率;(Ⅱ)根据(Ⅰ)的结论,若从该地区参加比赛的学生(参赛人数很多)中任选3人,记X 表示抽到成绩等级为“A 或B ”的学生人数,求X 的分布列及其数学期望EX ;(Ⅲ)从这30名学生中,随机选取2人,求“这两个人的成绩之差大于1分”的概率. 【解析】(Ⅰ)根据统计数据可知,从本地区参加比赛的30名中学生中任意抽取一人,其成绩等级为“A 或B ”的概率为:430+630=13,(2分)即从本地区参加比赛的学生中任意抽取一人,其成绩等级为“A 或B ”的概率为13.(3分)(Ⅱ)由题意知随机变量X 可取0,1,2,3,则X ~B ⎝⎛⎭⎫3,13. P (x =k )=C k 3⎝⎛⎭⎫13k ⎝⎛⎭⎫233-k(k =0,1,2,3),(5分)所以X 的分布列为:(6分)则E (x )=3×13=1,所求期望值为1.(7分)(Ⅲ)设事件M :从这30名学生中,随机选取2人,这两个人的成绩之差大于1分. 设从这30名学生中,随机选取2人,记两个人的成绩分别为m ,n , 则基本事件的总数为C 230,不妨设m >n ,当m =5时,n =3,2,1,基本事件的个数为C 14(C 110+C 17+C 13); 当m =4时,n =2,1,基本事件的个数为C 16(C 17+C 13); 当m =3时,m =1,基本事件的个数为C 110C 13;P (M )=3487.(12分)(19)(本小题满分12分)如图,在四棱锥A -EFCB 中,△AEF 为等边三角形,平面AEF ⊥平面EFCB ,EF ∥BC ,BC =4,EF =2a ,∠EBC =∠FCB =60°,O 为EF 的中点.(Ⅰ)求二面角F -AE -B 的余弦值;(Ⅱ)若点M 为线段AC 上异于点A 的一点,BE ⊥OM ,求a 的值. 【解析】(Ⅰ)因为△AEF 是等边三角形,O 为EF 的中点,所以AO ⊥EF , 又因为平面AEF ⊥平面EFCB ,平面AEF ∩平面EFCB =EF , AO平面AEF ,所以AO ⊥平面EFCB ,取BC 的中点G ,连结OG ,由题设知四边形EFCB 是等腰梯形,所以OG ⊥EF , 由AO ⊥平面EFCB ,又GO平面EFCB ,所以AO ⊥GO ,建立如图所示空间直角坐标系,则E ()a ,0,0,A ()0,0,3a ,B ()2,3()2-a ,0,EA →=()-a ,0,3a , BE →=()a -2,3()a -2,0,设平面AEB 的法向量为n =()x ,y ,z , 则⎩⎪⎨⎪⎧n ·EA →=0,n ·BE →=0,即⎩⎨⎧-ax +3az =0,()a -2x +3()a -2y =0.令z =1,则x =3,y =-1,于是n =()3,-1,1,又平面AEF 的一个法向量为p =()0,1,0,设二面角F -AE -B 为θ,所以cos θ=cos 〈n ,p 〉=n ·p |n ||p |=-55.(6分) (Ⅱ)由(Ⅰ)知AO ⊥平面EFCB ,又BE 平面EFCB ,所以AO ⊥BE ,又OM ⊥BE ,AO ∩OM =O ,所以BE ⊥平面AOC ,所以BE ⊥OC ,即BE →·OC →=0,因为BE →=()a -2,3()a -2,0,OC →=()-2,3()2-a ,0, 所以BE →·OC →=-2()a -2-3()a -22, 由BE →·OC →=0及0<a <2,解得a =43.(12分)(20)(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(3,0),A 为椭圆C 的右顶点,以A 为圆心的圆与直线y =b ax 相交于P ,Q 两点,且AP →·AQ →=0,OP →=3OQ →.(Ⅰ)求椭圆C 的标准方程和圆A 的方程;(Ⅱ)不过原点的直线l 与椭圆C 相交于M ,N 两点,设直线OM ,直线l ,直线ON 的斜率分别为k 1,k ,k 2,且k 1,k ,k 2成等比数列.①求k 的值;②是否存在直线l 使得满足OD →=λOM →+μON →(λ2+μ2=1,λ·μ≠0)的点D 在椭圆C 上?若存在,求出直线l 的方程;若不存在,请说明理由.【解析】(Ⅰ)如图,设T 为线段PQ 的中点,连接AT , 则AT ⊥PQ ,∵AP →·AQ →=0, 即AP ⊥AQ , 则|AT |=12|PQ |,又OP →=3OQ →,则|OT |=|PQ |, ∴|AT ||OT |=12,即b a =12, 由已知c =3,则a 2=4,b 2=1, 故椭圆C 的方程为x 24+y 2=1;(2分)又|AT |2+|OT |2=4,则|AT |2+4|AT |2=4|AT |=255,r =|AP |=2105, 故圆A 的方程为(x -2)2+y 2=85.(4分)(Ⅱ)①设直线l 的方程为y =kx +m (m ≠0),M (x 1,y 1),N (x 2,y 2), 由⎩⎪⎨⎪⎧x 24+y 2=1y =kx +m (1+4k 2)x 2+8kmx +4(m 2-1)=0,(5分) 则x 1+x 2=-8km 1+4k 2,x 1x 2=4(m 2-1)1+4k 2,(6分)由已知k 2=k 1k 2=y 1y 2x 1x 2=(kx 1+m )(kx 2+m )x 1x 2=k 2+km (x 1+x 2)+m2x 1x 2,(7分)则km (x 1+x 2)+m 2=0,即-8k 2m 21+4k2+m 2=0k 2=14k =±12.(8分)②假设存在直线l 满足题设条件,且设D (x 0,y 0), 由OD →=λOM →+μON →,得x 0=λx 1+μx 2,y 0=λy 1+μy 2, 代入椭圆方程得:(λx 1+μx 2)24+(λy 1+μy 2)2=1,即:λ2⎝⎛⎭⎫x 214+y 21+μ2⎝⎛⎭⎫x 224+y 22+λμx 1x 22+2λμy 1y 2=1,则x 1x 2+4y 1y 2=0,即x 1x 2+4(kx 1+m )(kx 2+m )=0, 则(1+4k 2)x 1x 2+4km (x 1+x 2)+4m 2=0, 所以(1+4k 2)·4(m 2-1)1+4k 2-32k 2m 21+4k2+4m 2=0, 化简得:2m 2=1+4k 2,而k 2=14,则m =±1,(11分)此时,点M ,N 中有一点在椭圆的上顶点(或下顶点),与k 1,k ,k 2成等比数列相矛盾, 故这样的直线不存在.(12分) (21)(本小题满分12分)已知函数f (x )=a x +x 2-x ln a (a >0,a ≠1). (Ⅰ)讨论函数f (x )的单调性;(Ⅱ)若存在x 1,x 2∈[-1,1],使得|f (x 1)-f (x 2)|≥e -1(e 为自然对数的底数),求a 的取值范围.【解析】(Ⅰ)f ′(x )=a x ln a +2x -ln a =2x +(a x -1)ln a ,(1分) 当a >1时,ln a >0,x ∈(0,+∞),f ′(x )>0,f (x )单调递增, x ∈(-∞,0),f ′(x )<0,f (x )单调递减;(2分) 当0<a <1时,ln a <0,x ∈(0,+∞),f ′(x )>0,f (x )单调递增, x ∈(-∞,0),f ′(x )<0,f (x )单调递减.(3分)综上:x ∈(0,+∞)时,f (x )单调递增,x ∈(-∞,0)时,f (x )单调递减.(4分)(Ⅱ)不等式等价于:|f (x 1)-f (x 2)|max ≥e -1, 即f (x )max -f (x )min ≥e -1,(5分)由(Ⅰ)知,函数的最小值为f (0)=1,f (x )max =max {}f (-1),f (1), 而f (1)-f (-1)=(a +1-ln a )-⎝⎛⎭⎫1a +1+ln a =a -1a -2ln a , 设g (a )=a -1a -2ln a ,则g ′(a )=1+1a 2-2a =⎝⎛⎭⎫1-1a 2>0,所以g (a )=a -1a -2ln a 在(0,+∞)单调递增,而g (1)=0,故a >1时,g (a )>0,即f (1)>f (-1);(7分) 0<a <1时,g (a )<0,即f (1)<f (-1).(8分) 所以当a >1时,原不等式即为:f (1)-f (0)≥e -1a -ln a ≥e -1,设h (a )=a -ln a (a >1),h ′(a )=1-1a =a -1a >0,故函数h (a )单调递增,又h (e)=e -1,则a ≥e ;(10分)当0<a <1时,原不等式即为:f (-1)-f (0)≥e -11a+ln a ≥e -1, 设m (a )=1a +ln a (0<a <1),m ′(a )=-1a 2+1a =a -1a 2<0,故函数m (a )单调递减,又m ⎝⎛⎭⎫1e =e -1,则0<a ≤1e.(11分) 综上,所求a 的取值范围是⎝⎛⎦⎤0,1e ∪[e ,+∞).(12分) 请考生在第(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题计分. (22)(本小题满分10分)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-t ,y =2+t (t 为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C :ρ=42cos ⎝⎛⎭⎫θ-π4.(Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程;(Ⅱ)设曲线C 与直线l 的交点为A ,B, Q 是曲线上的动点,求△ABQ 面积的最大值.【解析】(Ⅰ)由⎩⎪⎨⎪⎧x =3-t ,y =2+t 消去t 得x +y -5=0,所以直线l 的普通方程为x +y -5=0.由ρ=42cos ⎝⎛⎭⎫θ-π4=4cos θ+4sin θ,得ρ2=4ρcos θ+4ρsin θ.将ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y 代入上式,得x 2+y 2=4x +4y ,即(x -2)2+(y -2)2=8.所以曲线C 的直角坐标方程为(x -2)2+(y -2)2=8.(5分)(Ⅱ)由(Ⅰ)知,曲线C 是以(2,2)为圆心,22为半径的圆,直线l 过定点P (3,2),P 在圆内,将直线的参数方程代入圆的普通方程,得2t 2-2t -7=0,t 1+t 2=1,t 1·t 2=-72.所以|AB |=|t 1-t 2|=15,又因为圆心到直线的距离d =|2+2-5|2=22,故△ABQ 面积的最大值为S △ABQ =12×15×⎝⎛⎭⎫22+22=5304.(10分)(23)(本小题满分10分) 已知函数f (x )=|2x +1|+|2x -1|. (Ⅰ)求f (x )的值域;(Ⅱ)若对任意实数a 和b ,|2a +b |+|a |-12|a +b |·f (x )≥0,求实数x 的取值范围.【解析】(Ⅰ)∵f (x )=⎩⎪⎨⎪⎧-4x ,x ≤-12,2,-12<x <12,4x ,x ≥12,∴f (x )≥2.∴f (x )的值域为[2,+∞).(5分)(Ⅱ)当a +b =0,即a =-b 时,|2a +b |+|a |-12|a +b |f (x )≥0可化为2|b |-0·f (x )≥0,即2|b |≥0恒成立,∴x ∈R .当a +b ≠0时,∵|2a +b |+|a |=|2a +b |+|-a |≥|(2a +b )-a |=|a +b |, 当且仅当(2a +b )(-a )≥0,即(2a +b )a ≤0时,等号成立, 即当(2a +b )a ≤0时,|2a +b |+|a ||a +b |=1.∴|2a +b |+|a ||a +b |的最小值等于1.∵|2a +b |+|a |-12|a +b |·f (x )≥0|2a +b |+|a ||a +b |≥12f (x ),∴12f (x )≤1,即f (x )≤2. 由(Ⅰ)知f (x )≥2,∴f (x )=2.当且仅当-12≤x ≤12时,f (x )=2.综上所述,实数x 的取值范围是⎣⎡⎦⎤-12,12.(10分)。

2022届湖南师范大学附属中学高三上学期月考(一)数学(含答案)

2022届湖南师范大学附属中学高三上学期月考(一)数学(含答案)

湖南师大附中2022届高三月考试卷(一)数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页。

时量120分钟。

满分150分得分:_____第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,0,1A =-,101x B x x ⎧+⎫=≤⎨⎬-⎩⎭,则A B =( ) A.{}0B.{}1,0-C.{}0,1D.{}1,0,1-2.已知i 是虚数单位,则化简20201i 1i +⎛⎫⎪-⎝⎭的结果为( )A.iB.i -C.1-D.1 3.已知向量()1,2a =-,()1,b m =,则“12m <”是“,a b 为钝角”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 4.设函数()1ln1xf x x x+=-,则函数()f x 的图象可能为( ) A. B.C.D.5.直线l 过抛物线24y x =的焦点F 且与抛物线交于A ,B 两点,若线段AF ,BF 的长分别为m ,n ,则4m n +的最小值是( ) A.10 B.9 C.8D.76.已知函数()12log ,0,1,0,3xx a x x f x >⎧⎪⎪=⎨⎛⎫⎪⋅≤ ⎪⎪⎝⎭⎩若关于x 的方程()0f f x =⎡⎤⎣⎦有且只有一个实数根,则实数a 的取值范围是( ) A.()(),00,1-∞B.()(),01,-∞+∞C.(),0-∞D.()()0,11,+∞7.在《爸爸去哪儿》第二季第四期中,假如村长给6位“萌娃”布置一项到A 、B 、C 三个位置搜寻空投食物的任务,每两位“萌娃”搜寻一个位置.考虑到位置远近及年龄大小,Grace 不去较远的A 位置,多多不去较近的C 位置,则不同的搜寻安排方案有( ) A.20种B.40种C.42种D.48种8.如图,1F ,2F 是双曲线l :22221x y a b-=(0a >,0b >)的左、右焦点,过1F 的直线与双曲线左、右两支分别交于点P ,Q .若115FQ F P =,M 为PQ 的中点,且12FQ F M ⊥,则双曲线的离心率为( )D.2二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求全部选对的得5分,有选错的得0分,部分选对的得3分.9.在“新冠肺炎”疫情期间,各口罩企业都加大了生产力度,如图是2020年第一季度A 、B 、C 、D 、E 五个企业的生产量情况,下列叙述正确的是( )A.2020年第一季度生产量增速由高到低排位第5的是A 企业B.2020年第一季度生产总量和增速由高到低排位均居同一位次的企业只有一个C.2019年同期C 企业的生产总量不超过2000万只D.与2019年同期相比,各企业2020年第一季度的生产总量都实现了增长10.在等差数列{}n a 中,100a <,110a >,且1110a a >,则使{}n a 的前n 项和0n S <成立的自然数n 可能为( ) A.17 B.18C.19D.2011.已知函数()()sin x f x ωϕ=+(0ω>,02πϕ<<),满足()203f x f x π⎛⎫-+-= ⎪⎝⎭,()3f x f x π⎛⎫+=- ⎪⎝⎭,且()f x 在()0,π上有且仅有7个零点,下述结论正确的是( )A.6πϕ=B.5ω=C.()f x 在()0,π上有且仅有4个极大值点D.()f x 在0,42π⎛⎫⎪⎝⎭上单调递增 12.已知实数a ,b ,c 满足2e 111a a cb d --==-,其中e 是自然对数的底数,那么()()22a cb d -+-的值可能是( )A.8B.6C.10D.7第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13.()()101011x x --+的展开式中x 最高次项的系数为______.(用数字)14.设α满足3sin 4α=,则()22sin sin 2sin2πααα++=_____. 15.已知正方形ABCD 边长为1,E ,F 分别是线段BC ,CD 上的动点,则22EF EA AF ⋅+的最小值是______.16.如图,已知ABC △是边长为1的等边三角形,D 是AB 边上异于端点的一个动点,DE BC ⊥于点E ,将BDE △沿DE 翻折至DE B '△的位置,其中B DE A '--为直二面角,则四棱雉B ADEC '-体积的最大值为_____.四、解答题:本题共6小题,共70分。

考点06指数函数、对数函数、幂函数、二次函数(教师版) 新课标

考点06指数函数、对数函数、幂函数、二次函数(教师版) 新课标

2013年新课标数学40个考点总动员 考点06 指数函数、对数函数、幂函数、二次函数(教师版)热点一 指数函数、对数函数2.(2012年高考(安徽文))设集合{3213}A x x =-≤-≤,集合B 是函数lg(1)y x =-的定义域;则A B =( )A .(1,2)B .[1,2]C .[,)12D .(,]12【答案】D【解析】{3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]B A B =+∞⇒= 3.(2012年高考(新课标理))设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则PQ 最小值为 ( )A .1ln 2-B ln 2)-C .1ln 2+D ln 2)+4.(2012年高考(山东文))若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-在[0,)+∞上是增函数,则a =____.5.(2012年高考(北京文))已知函数()lg f x x =,若()1f ab =,22()()f a f b +=_________.【答案】2【解析】()lg ,()1f x x f ab == ,lg()1ab ∴=,2222()()lg lg 2lg()2f a f b a b ab ∴+=+==.6.(2012年高考(上海理))已知函数||)(a x e x f -=(a 为常数).若)(x f 在区间[1,+∞)上是增函数,则a 的取值范围是_________ .7.(2012年高考(上海文))已知函数)1lg()(+=x x f . (1)若1)()21(0<--<x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.【解析】(1)由22010x x ->⎧⎨+>⎩,得11x -<<,由220lg(22)lg(1)lg11x x x x -<--+=<+,得221101xx -<<+……….3分因为10x +>,所以2112210(1),33x x x x +<-<+∴-<<, 由112133x x -<<⎧⎪⎨-<<⎪⎩,得2133x -<<……………………………………….6分【方法总结】热点二 幂函数、二次函数7.(2012年高考(福建文))已知关于x 的不等式220x ax a -+>在R 上恒成立,则实数a 的取值范围是_________. 【答案】(0,8)【解析】因为不等式恒成立,所以0∆<,即 2420a a -⋅<,所以08a <<.8.(2012年高考(北京文))已知()(2)(3)f x m x m x m =-++,()22xg x =-.若,()0x R f x ∀∈<或()0g x <,则m 的取值范围是________.【答案】(4,0)-9.(2012年高考(山东理))设函数21(),()(,,0)f x g x ax bx a b R a x==+∈≠,若()y f x =的图象与()y g x =图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是( )A .当0a <时,12120,0x x y y +<+>B .当0a <时,12120,0x x y y +>+<C .当0a >时,12120,0x x y y +<+<D .当0a >时,12120,0x x y y +>+>10.(2012年高考(福建理))对于实数a 和b ,定义运算“﹡”:22,*,a ab a b b ab ⎧-⎪=⎨⎪-⎩a ba b≤>,设()(21)*(1)f x x x =--,且关于x 的方程为()()f x m m R =∈恰有三个互不相等的实数根123,,x x x ,则123x x x 的取值范围是_________________.11.(2012年高考(北京理))已知()(2)(3)f x m x m x m =-++,()22xg x =-.若同时满足条件:①,()0x R f x ∀∈<或()0g x <;②(,4)x ∃∈-∞- ,()()0f x g x <. 则m 的取值范围是________.40m -<<,又由于条件2的限制,可分析得出(,4),()x f x ∃∈-∞-恒负,因此就需要在这个范围内()g x 有取得正数的可能,即4-应该比12,x x 两个根中较小的大,当(1,0)m ∈-时,34m --<-,解得交集为空,舍去.当1m =-时,两个根同为24->-,也舍去,当(4,1)m ∈--时,242m m <-⇒<-,综上所述(4,2)m ∈--.【方法总结】【考点剖析】 一.明确要求二.命题方向1.指数函数的概念、图象与性质是近几年高考的热点.2.通过具体问题考查指数函数的图象与性质,或利用指数函数的图象与性质解决一些实际问题是重点,也是难点,同时考查分类讨论思想和数形结合思想.3.高考考查的热点是对数式的运算和对数函数的图象、性质的综合应用,同时考查分类讨论、数形结合、函数与方程思想.4.关于幂函数常以5种幂函数为载体,考查幂函数的概念、图象与性质,多以小题形式出现,属容易题.5.二次函数的图象及性质是近几年高考的热点;用三个“二次”间的联系解决问题是重点,也是难点.6.题型以选择题和填空题为主,若与其他知识点交汇,则以解答题的形式出现. 三.规律总结 1.指数规律总结两个防范(1)指数函数的单调性是由底数a 的大小决定的,因此解题时通常对底数a 按:0<a <1和a >1进行分类讨论.(2)换元时注意换元后“新元”的范围. 三个关键点画指数函数y =a x(a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝ ⎛⎭⎪⎫-1,1a .2.对数函数规律总结三个关键点画对数函数的图象应抓住三个关键点:(a,1),(1,0),⎝ ⎛⎭⎪⎫1a,-1.四种方法对数值的大小比较方法(1)化同底后利用函数的单调性.(2)作差或作商法.(3)利用中间量(0或1).(4)化同真数后利用图象比较. 3.幂函数的规律总结 五个代表函数y =x ,y =x 2,y =x 3,y =x 12,y =x -1可做为研究和学习幂函数图象和性质的代表. 两种方法【基础练习】1.(教材习题改编)已知a =log 0.70.8,b =log 1.10.9,c =1.10.9,则a ,b ,c 的大小关系是( ). A .a <b <c B .a <c <b C .b <a <c D .c <a <b【答案】 C【解析】 将三个数都和中间量1相比较:0<a =log 0.70.8<1,b =log 1.10.9<0,c =1.10.9>1.2.(经典习题)若函数f (x )=12x +1,则该函数在(-∞,+∞)上是( ).A .单调递减无最小值B .单调递减有最小值C .单调递增无最大值D .单调递增有最大值3.(教材例题改编)如图中曲线是幂函数y =x n在第一象限的图象.已知n 取±2,±124.(经典习题)若函数f (x )=(x +a )(bx +2a )(常数a 、b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________. 答案 -2x 2+4解析 f (x )=bx 2+(ab +2a )x +2a 2由已知条件ab +2a =0,又f (x )的值域为(-∞,4],则⎩⎪⎨⎪⎧a ≠0,b =-2,2a 2=4.因此f (x )=-2x 2+4.5.(经典习题)已知a =5log 23.4,b =5log 43.6,c =⎝ ⎛⎭⎪⎫15log 30.3,则( ).A .a >b >cB .b >a >cC .a >c >bD .c >a >b【名校模拟】 一.基础扎实1. (北京市西城区2012届高三4月第一次模拟考试试题理)若2log 3a =,3log 2b =,4log 6c =,则下列结论正确的是( )(A )b a c <<(B )a b c << (C )c b a <<(D )b c a << 【答案】D【解析】32log (1,)a =∈+∞,23log (0,1)b =∈,26664221log log log (1,)2c ====∈+∞ 而3622log log >,∴a>c>b ∴故选D2. (浙江省杭州学军中学2012届高三第二次月考理)设()()13.0log ,3.0,2223.0>+===x x c b a x ,则c b a ,,的大小关系是( )A .c b a <<B .c a b <<C .a b c <<D .a c b <<4.(山东省济南市2012届高三3月(二模)月考文)若a >b >0,则下列不等式不.成立的是A. a b +<B. 1122a b >C. ln a >ln bD. 0.30.3a b<【解析】A 根据指数幂函数、对数函数、指数函数性质可知选项B 、C 、D 中的表达式成立,不成立即为选项A 中的表达式。

湖南省师大附中2012届高三月考(四)数学文科试题及答案

湖南省师大附中2012届高三月考(四)数学文科试题及答案

湖南省师大附中2012届高三月考(四)数学试卷(文科)分值:150分 时量:120分钟 考试日期:2012-02-04一、选择题:本大题共8个小题,每小题5分,共40分.1.已知集合{1,2},{1},A B A B ==⋃则集合的子集个数为( )A .1B .2C .3D .42.过点(1,2)与圆221x y +=相切的直线方程是( ) A .1x =B .3450x y -+=C .34501x y x -+==或D .54301x y x -+==或3.某校高中年级开设了丰富多彩的校本课程,甲、乙两班各随机抽取了5名学生 的学分,用茎叶图表示(如右图),s 1,s 2分别表示甲、乙两班各自5名学生学分的 标准方差,则它们的大小关系是( )A .12s s <B .12s s ≤C .12s s >D .12s s ≥4.已知定义在R 上的奇函数()(2)(),(6)f xf x f x f +=-满足则的值为( )A .—1B .0C .1D .45.在△ABC 中,已知B =30 ,150b c ==,那么这个三角形是( ) A .等边三角形 B .直角三角形C .等腰三角形D .等腰三角形或直角三角形6.设变量x ,y 满足约束条件14,242x y x y z x y y -≥-⎧⎪+≤=+⎨⎪≥⎩则目标函数的最大值为( )A .10B .12C .13D .147.已知F 是双曲线22221(0)3x ya aa-=>的右焦点,O 为坐标原点,设P 是双曲线C 上一点,则∠POF 的大小不可能是( ) A .20°B .40°C .80°D .160°8.已知函数2()21f x x mx =-++,若0x R ∃∈,使得1[1,2]x ∀∈都有10()()f x f x <,则实数m 的取值范围是( )A .(,1)-∞B .(1,2)C .(2,)+∞D .(,1)(2,)-∞+∞二、填空题:本大题共8个小题,考生作答7个小题,每小题5分,共35分,把答案填写在题中的横线上.(一)选做题(请在第9、10两题中任选一题作答,如果全做,则按前一题记分)9.(优选法)在调试某设备的线路设计中,要选一个电阻,调试者手中只有阻值分别为0.7KΩ,1.1KΩ,1.9K Ω,2.0KΩ,3.5KΩ,4.5KΩ,5.5KΩ七种阻值不等的定值电阻,他用分数法进行优法进行优选试验时,依次将电阻值从小到大安排序号,则第1个试点的电阻的阻值是.10.(坐标系与参数方程)已知曲线C1的参数方程为2c o s()sinxyααα=⎧⎨=⎩为参数,曲线C2的极坐标方程c o s()4πρθ-=则曲线C1与曲线C2的交点个数有个.(二)必做题(11〜16题)11.计算:2310i i i i++++=(i表示虚数单位)12.在一个直径为6的球内随机取一点,则这个点到球心的距离小于1的概率为.13.一个正三棱柱的侧棱长和底面边长相等,体积为它的三视图中的俯视图如图所示,左视图是一个矩形,则这个矩形的面积是.14.已在()1,()xf x e ax f x=--若在定义域R内单调递增,则a的取值范围是.15.,90,60,,()||||AC AB Rt ABC C BAC AC P BP PC AP mAC ABλ∆∠=∠====+中点满足若,则λ的值为.16.已知数列{}21(1,2,3,)n na a n n=-=的通项,现将其中所有的完全平方数(即正整数的平方)抽出按从小到大的顺序排列成一个新的数列{}nb.(1)若k mb a=,则正整数m关于正整数k的函数表达式为m= ;(2)记{},nn nnSS a nnb是数列的前项和则能取到的最大值等于.三、解答题:本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知{}na是公差不为零的等差数列,11,a=且139,,a a a成等比数列.(1)求数列{}na的通项公式;(2)求数列{2}n a的前n项和nS.“根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒 精浓度在20—80mg /100ml (不含80)之间,属于酒后驾车,血液酒精浓度在 80mg /100ml (含80)以上时,属醉酒驾车”.2011年8月15日晚8时开始某 市交警一队在该市一交通岗前设点对过往的车辆进行抽查,经过两个小 时共查出酒后驾车者60名,图甲是用酒精测试仪对这60名酒后驾车者 血液中酒精浓度进行检测后依所得结果画出的频率分布直方图.(1)求这60名酒后驾车者中属醉酒驾车的人数;(图甲中每组包括左端点,不包括右端点);(2)统计方法中,同一组数据常用该组区间的中点值作为代表,图乙的程序框图是对这60名酒后驾车者血液的酒精浓度做进一步的统计,求出图乙输出的S 值,并说明S 的统计意义;(图乙中数据m 与f ,分别表示图甲中各组的组中值及频率);(3)本次行动中,吴、李两位先生都被酒精测试仪测得酒精浓度在70mg /100ml (含70)以上,但他俩坚称没喝那么多,是测试仪不准,交警大队陈队长决定在被酒精测试仪测得酒精浓度在70mg /100ml (含70)以上的酒后驾车者中随机抽出2人抽血检验,求吴、李两位先生至少有1人被抽中的概率.19.(本小题满分12分)如图,在△ABC 中,∠ABC 00折起,使∠BDC =600.(1)证明:平面ADB ⊥平面(2)设E 为BC 的中点,求异面直线AE 与DB 所成角的大小.农户计划将已有的一块半径为100米的土地(如图所示)重新规划,拟将 面积相等的两个△AOD 与△BOC 置为普通花草地,△COD 置为特级花草 地,O 为半圆圆心,∠COB =θ,据市场调查,特级花草市场销售价变化不大, 普通花草市场销售价变化较大,以往经验显示:特级花草地每平方米年利润 为a 元,普通花草地每平方米年利润为sin a θ元.(1)分别写出△BOC 、△AOD 、△COD 的面积关于θ的函数关系;(2)写出农户年总利润()f θ关于θ的函数关系,当θ为何值时,年总利润()f θ最大.21.(本小题满分13分)已知中心在坐标原点,焦点在坐标轴上的椭圆G 与x 轴交于A 、C 两点,与y 轴交于B 、D 两点,且A 点的坐标为(—2,0),四边形ABCD 的面积为4.(1)求椭圆G 的方程;(2)过x 轴上一点M (1,0)作一条不垂直于y 轴的直线l ,交椭圆G 于E 、F 点,是否存在直线l ,使得△AEF 的说明理由.22.(本小题满分13分)已知函数()[,]f x a b 的图象在上连续不断,1()min{()|,[,]}f x f t a t x x a b =≤≤∈,2()max{()|,[,]}f x f t a t x x a b =≤≤∈,其中min{()|}f x x D ∈表示函数()f x 在D 上的最小值,max{()|}f x x D ∈表示函数()f x 在D 上的最大值.若存在最小正整数k ,使21()()()f x f x k x a -<-对任意的[,]x a b ∈成立,则称函数()[,]f x a b 为上的“k 阶收缩函数”. (1)若12()cos ,[0,],(),()f x x x f x f x π=∈试写出的表达式;(2)已知函数2(),[1,4],()[1,4]f x x x f x =∈--试判断是否为上的“k 阶收缩函数”,如果是,求出对应的k ,如果不是,请说明理由.(3)已知320,()3[0,]b f x x x b >=-+函数是上的“2阶收缩函数”,求b 的取值范围.湖南师大附中2012届高三月考(四)参考答案一、选择题:D C A B;D C C D8.【解】因为max ()(),f x f m =若0x R ∃∈,使得1[1,2]x ∀∈都有10()()f x f x <,即11[1,2],()()x f m f x ∀∈>恒成立.故[1,2]m ∉,所以m 的取值范围是(,1)(2,)-∞+∞ ,选D.二、填空题:9. 3.5K Ω; 10. 2 ; 11.1i -+; 12.127; 13.; 14.(,0]-∞; 15. 2 ;16.(1)2221k k -+; (2) 1 .15. 【解】在,Rt ABC ∆易求得6BC =,因为()||||ACABAP m AC AB =+,故P 在B A C ∠的平分线上,又BP PC λ= ,故P 在线段B C 上,所以P 是B A C ∠的平分线与B C 的交点,在Rt AC P ∆中,由30,PAC AC ∠== ,可求得2,P C =又6BC =,故2BP PC =,故2λ=.16.【解】(1)列举发现2(21)n b n =-,所以22(21)2(221)1k b k k k =-=-+-,则2221m k k =-+; (2)由22111(21)44n nS nnb n n n n ==≤-+-,当且仅当1n =时,n nS nb 取最大值1.三、解答题17.【解】(1)由题设知公差0d ≠,由11391,,,a a a a =成等比数列,得121812d d ad++=+,……………………4分解得1,0d d ==(舍) …………………………………………………………………………………6分故{}n a 的通项公式1(1)1n a n n =+-⨯=……………………………………………………………8分 (2)由(1)知22na n =,由等比数列前n 和公式得,2312(12)22222212nnn n S +-=++++==-- …… …12分18.【解】(1)0.00510603⨯⨯=,属醉酒驾车的共有3人. ………………………………………………4分 (2)(250.025350.015450.020S =⨯+⨯+⨯ 550.015650.010750.010+⨯+⨯+⨯850.005)1047+⨯⨯=S 的统计意义是这60名酒后驾车者血液平均 酒精浓度在47mg/100ml. ………………8分 (3)被洒精测试仪测得酒精浓度在70 mg/100 ml(含70)以上的酒后驾车共有9人,不妨设编号分别为1(吴),2(李),3,4,5,6,7,8,9,则随机抽出2人共有36种情况,如右表,显然,由表格统计可知,事件A={吴、李两位先生至少有1人被抽中}发生的有15种情况,所以由古典概型知: 155()3612P A ==…………………………………………………………………………………………12分19.【解】(1)证明:因为折起前AD 是B C 边上的高, 所以当ABD ∆折起后,,A D D C A D D B ⊥⊥, 又BD DC D = ,所以AD ⊥平面B D C ,又AD ⊂平面ABD ,所以平面ABD ⊥平面B D C .…………5分. (2)取C D 的中点F ,连接EF AF D E 、、,则E F B D ,所以AEF ∠为异面直线AE 与BD 所成的角(或其补角), ………7分 设2DB =,则1,6,3EF AD DC DF ====. 由120BDC ∠= ,E F B D ,所以60DFE ∠=在,D FE ∆中2222cos 6013DE DF EF DF EF =+-⨯= ,…………………………………………9分 又R t A D E ∆中,5AE ==,在Rt AD F ∆中,AF =在AEF ∆中,2221cos 22AE EF AFAEF AE EF+-∠==⋅, ……………………………………………………11分所以异面直线AE 与BD 所成的角为60.分 20.【解】(1)4110sin (0),5000sin (0)222BO C AO D S S θθθθ∆∆ππ=⨯⨯<<=<<4110s i n (2)5000s i n 2(0)22O C D S θθθ∆π=⨯⨯π-=<<…………4分 (2)4411()sin 210sin 10sin 222f a a θθθθ=⨯⨯⨯⨯+⨯⨯⨯ …………………………………………7分42110(sin sin 2)((0,))22a θθθπ=+∈…………………………………………………………8分从而41)4()102f a θθπ+-=………………………………………………………………10分故242θππ-=,即38θπ=时,()f θ取最大值.从而当38θπ=时,年总利润()f θ最大.21.【解】(1)因为A 点坐标为(2,0)-,故4A C =, 又因为四边形ABC D 为菱形,故其面积为14,2AC BD =⨯⨯故2BD =.所以椭圆G 是焦点在x 轴上的椭圆,且长半轴长为2,短半轴长为1. 所以椭圆G 的方程为2214xy +=……………………………………………………………………………3分(2)因为直线l 不垂直y 轴,故设直线l 的方程为1x my =+,由22114x my x y =+⎧⎪⎨+=⎪⎩得,22(4)230m y my ++-= ………………………………………………………4分 所以22412(4)0m m ∆=++>恒成立. …………………………………………………………………5分 设1122(,),()E x y F x ,y ,则12122223,44m y y y y m m +=-=-++…………………………………………6分所以211||||2AEF S AM y y ∆=⨯-==4m ==+4m =+得4272040m m ++=,解得207m =<(舍去)所以不存在直线l ,使得△AEF.22.【解】(1)由于函数cos y x =在区间[0,]π上单调递减,所以1()min{()|0,[0,]}cos ([0,])f x f t t x x x x =≤≤∈π=∈π2()max{()|0,[0,]}cos 01f x f t t x x =≤≤∈π==…………………………………………………4分(2)由于函数2()f x x =在区间[1,0]-上递减,在区间[0,2]上递增;所以21[1,)()m in{()|1,[1,4]}0[0,4]x x f x f t t x x x ⎧∈-0=-≤≤∈-=⎨∈⎩221[1,1)()m i n {()|1,[1,4]}[1,4]x f x f t t x x x x ∈-⎧=-≤≤∈-=⎨∈⎩也所以,22121[1,0)()()1[0,1)[1,4]x x f x f x x xx ⎧-∈-⎪-=∈⎨⎪∈⎩……………………………………………………………6分 ①当[1,0)x ∈-时,若21(1)x k x -≤+恒成立,则1k x ≥-,所以2k ≥; ②当[0,1)x ∈时,若1(1)k x ≤+恒成立,则11k x ≥+,所以k ≥1③当[1,4]x ∈时,若2(1)x k x ≤+恒成立,则21(1)211xk x x x ≥=++-++,令1[2,5]t x =+∈,易知函数1()2g t t t=+-在区间[2,5]上递增,16()5f t =,所以165k ≥综上①②③可知,16,5k ≥又*k N ∈,所以4k ≥;即存在最小正整数4k =使得()f x 是[1,4]-上的“4阶收缩函数”.……………………………………8分(3)2()363(2)f x x x x x '=-+=--,令()0,f x '=得0x =或2x =;所以当02x <<时,()0f x '>,函数()f x 递增,当2x >时,()0f x '<,函数()f x 递减;于是函数在[0,)x ∈+∞上有最大值(2)4f =,且当x →+∞时,2()(3)f x x x =-→-∞,即没有最小值; 且当()0f x =时,0x =,或3x =,草图如右,………………………………………9分 (Ⅰ)当02b <≤时,()f x 在区间[0,]b 上递增,因此,3221()()3,()(0)0f x f x x x f x f ==-+==,因为32()3f x x x =-+是[0,]b 上的“2阶收缩函数”,所以,3221()()32(0)f x f x x x x -=-+≤-对[0,]x b ∈恒成立…………①且存在[0,]x b ∈时,3221()()3(0)f x f x x x x -=-+>1⨯-成立……② 由①式解得01x ≤≤或2x ≥,显然此时要求01b <≤由②式得2(31)0(0{|0,22x x x x x x x x -+<⇔--<⇔<22x <<在[0,]x b ∈上有解,这要求22b <≤ 综上可知,此时b的取值范围为2;…………………………………………………………11分(Ⅱ)当23b <≤时,显然由函数()f x 草图可知,21()(2)4,()(0)0f x f f x f ====,此时,由题知21()()42(0)f x f x x -=≤-对[0,]x b ∈恒成立,要求2x ≥, 显然当1x =[0,]b ∈时,上式就不成立.故舍去;(Ⅲ)当3b >时,同理(Ⅱ),21()()4()2f x f x f b x -=-≤对[0,]x b ∈恒成立,此时()0f b <当2[0,]x b =∈时,代入上式4()22()0f b f b -≤⨯⇔≥与()0f b <矛盾,舍去; 综上(Ⅰ)(Ⅱ)(Ⅲ)可知,所求b12b <≤.…………………………………………13分。

湖南省师大附中2014届高三物理上学期第一次月考试题(含解析)新人教版

湖南省师大附中2014届高三物理上学期第一次月考试题(含解析)新人教版

湖南师大附中2014届高三第一次月考物理试题(考试范围:运动学、相互作用、牛顿运动定律)本试题卷分选择题和非选择题两部分,时量90分钟,满分110分。

第Ⅰ卷选择题(共48分)一、选择题(本大题共l2小题,每小题4分,满分48分。

有的小题只有一个选项符合题意,有的小题有几选项符合题意,请将符合题意的选项的序号填入答题表格中)1.一个作自由落体运动的物体,从开始运动起通过连续三段距离的时间分别是t、2t、3t,这三段距离之比为A.1:23:33B.1:22:33C.1:2:3 D.1:3:5 2.物体静止于倾角为θ的斜面上,当斜面倾角θ缓缓减小时,物体所受力的变化情况是A.重力、支持力、静摩擦力均增大B.重力不变,支持力减小,静摩擦力不变C.重力不变,支持力、静摩擦力增大D.重力不变,支持力增大,静摩擦力减小3.物体在几个共点力作用下处于平衡状态,当其中的一个力撤掉后(其它的力不变),物体的运动情况是A.一定做匀加速直线运动B.一定做匀变速曲线运动C.可能做匀速运动D.可能做曲线运动4.运动的升降机的顶板上有一个螺丝脱落到它的地板上,当升降机的运动分别处于加速上升、匀速上升、匀速下降和加速下降这四种情况下,螺丝从脱落到落到地板上的时间分别为t1、t2、t3和t4,比较这四种情况下的落地时间,正确的表达式是A.t1<t2<t3<t4 B.t1<t2=t3<t4 C.t1=t2=t3=t4 D.t1>t2>t3>t4 5.如图所示,倾角为θ的斜面体C置于水平面上,B置于斜面上,通过细绳跨过光滑的定滑轮与A相连接,连接B的一段绳与斜面平行,C处于静止状态,B沿斜面匀速上滑,在A落地前,下列说法中正确的是A.B受到C的摩擦力一定不为零B.C受到水平面的摩擦力一定为零C.为论B、C间摩擦力大小、方向如何,水平面对C的摩擦力方向一定水平向左D.水平面对C的支持力与A、B、C的总重力大小相等6.一步行者以 6.0m/s2的速度跑去追赶被红灯阻停的公共汽车,在跑到距离公共汽车25m 处时,绿灯亮了,汽车以1.0m/s2的加速度匀加速启动前进,则A.人能追上公共汽车,追赶过程中人跑了36mB.人不能追上公共汽车,人、车最近距离是7mC.人能追上公共汽车,追上车前人共跑了43mD.人不能追上公共汽车,且车子开动后人和车相距越来越远7.如图所示,质量分别为m1=2kg,m2=3kg的两个物体置于光滑的水平面上,中间用一轻弹簧秤连接。

【名师解析】湖南省师大附中2015届高三第一次月考数学理试题 Word版含解析

【名师解析】湖南省师大附中2015届高三第一次月考数学理试题 Word版含解析

【试卷综评】本试卷试题主要注重基本知识、基本能力、基本方法等当面的考察,覆盖面广,注重数学思想方法的简单应用,试题有新意,符合课改和教改方向,能有效地测评学生,有利于学生自我评价,有利于指导学生的学习,既重视双基能力培养,侧重学生自主探究能力,分析问题和解决问题的能力,突出应用,同时对观察与猜想、阅读与思考等方面的考查。

本试题卷包括选择题、填空题和解答题三部分,共6页。

时量120分钟。

满分150分。

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 【题文】1.已知集合M ={ |x x 2-2x<0},N ={ |x x<a},若M ⊆N ,则实数a 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .(-∞,0) D .(-∞,0] 【知识点】子集的运算.A1【答案解析】A 解析:因为{}2M {|x 2x 0}|02x x x <=<<=-,N ={ |x x<a},M ⊆N , 所以2a ³,故选A.【思路点拨】先化简集合M ,再利用M ⊆N 即可. 【题文】2.下列四个命题p 1:∃x ∈(0,+∞),⎝⎛⎭⎫12x< ⎝ ⎛⎭⎪⎫13xp 2:∃x ∈(0,1),log 12x>log 13x p 3:∀x ∈(0,+∞),⎝⎛⎭⎫12x>log 12x p 4:∀x ∈⎝⎛⎭⎫0,13,⎝⎛⎭⎫12x<log 13x 其中的真命题是( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4【知识点】命题的真假判断与应用.A2x的图象如p 2:作出对数函数y 1=12log x ,y 2=13log x 的图象,由图象知:∃x ∈(0,1),使命题p 2正确.p 3:作出函数y 1=12log x ,y 2=(12)x的图象,由图象知命题p 3不正确.13x >1,(12)x <1,所以恒有13log x >(12)x 成立,所以命题P 4正确. 故选D .【思路点拨】分别根据全称命题和特称命题判断真假的方法去判断四个命题.p 1可利用两个指数函数的图象进行判断.p 2可以利用对数的图象来判断.p 3可以利用对数和指数函数的图象来判断.p 4:利用指数函数和对数函数的图象来判断. 【题文】3.在如右图所示的程序框图中输入10,结果会输出( )A .10B .11C .512D .1 024【知识点】程序框图.L1【答案解析】D 解析:根据题意,模拟程序框图的运行过程,如下; n=3,s=1,k=1,k≤n ,是,s=1×2=2; k=2,k≤n ,是,s=2×2=4= 22; k=3,k≤n ,是,s=4×2=8= 32; …k=11,k≤n ,否,输出s= 102. 故选:D .【思路点拨】由题意,模拟程序框图的运行过程,即可得出正确的答案. 【题文】4.将函数f(x)=sin x +cos x 的图象向左平移φ(φ>0)个单位长度,所得图象关于原点对称,则φ的最小值为( )A .-π4 B.π4 C.3π4 D.5π4【知识点】函数y=Asin (ωx+φ)的图象变换.C4【答案解析】C 解析:化简得sin cos 4y x x x p骣琪=++琪桫,根据图象平移规律可得平移后函数4y x pf 骣琪++琪桫,又所得函数图象关于原点对称,(k ∈Z ),【思路点拨】化简得sin cos sin 4y x x x p骣琪=++琪桫,根据图象平移规律可得平移后函数4y x pf 骣琪++琪桫,又所得函数图象关于原点对称解得f 【题文】5.若实数x ,y 满足条件⎩⎪⎨⎪⎧y ≥2||x -1y ≤x +1,则z =x +3y 的最大值为( )A .9B .11C .12D .16【知识点】简单线性规划.E5【答案解析】B 解析:作出不等式组对应的平面区域如图:x 13y x -=由 211y x y x ì=-ïí=+ïî得23x y ì=ïí=ïî,即C (2,3),此时z=x+3y=2+3×3=11, 故选:B .【思路点拨】作出不等式组对应的平面区域,利用z 的几何意义,利用利用数形结合即可得到结论.【题文】6.不全相等的五个数a 、b 、c 、m 、n 具有关系如下:a 、b 、c 成等比数列,a 、m 、b 和b 、n 、c 都成等差数列,则a m +cn =( )A .-2B .0C .2D .不能确定 【知识点】等差、等边数列.D2 D3【答案解析】C 解析:不妨令1,2,4,a b c ===则3,32m n ==,代入可得2a c m n +=,故选C.【思路点拨】不妨令1,2,4,a b c ===则3,32m n ==,代入可得结果. 【题文】7.已知边长为1的正方形ABCD 位于第一象限,且顶点A 、D 分别在x 、y 的正半轴上(含原点)滑动,则OB →·OC →的最大值是( ) A .1 B.22C .2 D. 5 【知识点】平面向量数量积坐标表示的应用.F3同理可求得C (sinθ,cosθ+sinθ),即OC →=(sinθ,cosθ+sinθ),∴OB →·OC →=(cosθ+sinθ,cosθ)•(sinθ,cosθ+sinθ)=1+sin2θ,故OB →·OC →的最大值是2,故答案是 2.【思路点拨】令∠OAD=θ,由边长为1的正方形ABCD 的顶点A 、D 分别在x 轴、y 轴正半轴上,可得出B ,C 的坐标,由此可以表示出两个向量,算出它们的内积即可.【题文】8.一个四面体的三视图如图所示,则该四面体的表面积为( )A.34 B.32C. 3 D .2 3【知识点】三视图.G2【答案解析】D 解析:如图所示,四面体为棱长为2的正四面体,214sin 602S =创?.【思路点拨】根据题意转化为正方体内的正四面体,可知其棱长再求面积即可.【题文】9.若曲线C 1:x 2+y 2-2x =0与曲线C 2:y(y -mx -m)=0有4个不同的交点,则实数m 的取值范围是( )A.⎝⎛⎭⎫-33,33 B.⎝⎛⎭⎫-33,0∪⎝⎛⎭⎫0,33 C.⎣⎡⎦⎤-33,33 D.⎝⎛⎭⎫-∞,-33∪⎝⎛⎭⎫33,+∞【知识点】圆的一般方程;圆方程的综合应用.H3 H4【答案解析】B 解析:曲线C 1:(x -1)2+y 2=1,图象为圆心为(1,0),半径为1的圆;曲线C 2:y =0,或者y -mx -m =0,直线y -mx -m =0恒过定点(-1,0),即曲线C 2图象为x 轴与恒过定点(-1,0)的两条直线.作图分析:k 1=tan 30°=33,k 2=-tan 30°=-33, 又直线l 1(或直线l 2)、x 轴与圆共有四个不同的交点,结合图形可知m =k ∈⎝⎛⎭⎫-33,0∪⎝⎛⎭⎫0,33. 【思路点拨】由题意可知曲线C 1:x 2+y 2-2x=0表示一个圆,曲线C 2:y (y-mx-m )=0表示两条直线y=0和y-mx-m=0,把圆的方程化为标准方程后找出圆心与半径,由图象可知此圆与y=0有两交点,由两曲线要有4个交点可知,圆与y-mx-m=0要有2个交点,根据直线y-mx-m=0过定点,先求出直线与圆相切时m 的值,然后根据图象即可写出满足题意的m 的范围. 【题文】10.已知集合A ={}x |x =a 0+a 1×3+a 2×32+a 3×33,其中a i∈{}0,1,2()i =0,1,2,3且a 3≠0,则A 中所有元素之和等于( )A .3 240B .3 120C .2 997D .2 889 【知识点】数列的求和;分类计数原理.J1 D4【答案解析】D 解析:由题意可知,a 0,a 1,a 2各有3种取法(均可取0,1,2),a 3有2种取法(可取1,2),由分步计数原理可得共有3×3×3×2种方法,∴当a 0取0,1,2时,a 1,a 2各有3种取法,a 3有2种取法,共有3×3×2=18种方法,即集合A 中含有a 0项的所有数的和为(0+1+2)×18; 同理可得集合A 中含有a 1项的所有数的和为(3×0+3×1+3×2)×18;集合A 中含有a 2项的所有数的和为(32×0+32×1+32×2)×18; 集合A 中含有a 3项的所有数的和为(33×1+33×2)×27; 由分类计数原理得集合A 中所有元素之和: S =(0+1+2)×18+(3×0+3×1+3×2)×18+(32×0+32×1+32×2)×18+(33×1+33×2)×27=18(3+9+27)+81×27=702+2 187=2 889.故选D. 【思路点拨】由题意可知a 0,a 1,a 2各有3种取法(均可取0,1,2),a 3有2种取法,利用数列求和即可求得A 中所有元素之和.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡中对应题号后的横线上.【题文】11.在△ABC 中,a =15,b =10,∠A =60°,则cos B =____.【知识点】正弦定理.C8【答案解析】3解析:∵在△ABC 中,a=15,b=10,A=60°,由正弦定理可得01510sin60sin B =B ,故答案【思路点拨】先利用正弦定理求得sinB ,再利用平方关系解得c o s B 即可.【题文】12.如右图,椭圆x 216+y 212=1的长轴为A 1A 2,短轴为B 1B 2,将坐标平面沿y 轴折成一个二面角,使点A 2在平面B 1A 1B 2上的射影恰好是该椭圆的左焦点,则此二面角的大小为____.【知识点】椭圆的应用;与二面角有关的立体几何综合题.H5 G11【思路点拨】连接A 1 O 根据椭圆的性质可知A 1 O ⊥y 轴,A 2 O ⊥y 轴,推断出∠A 1 O A 2为所求的二面角,利用椭圆的方程求得a 和c ,即|A 1 O |和| O F|的值,进而在Rt △A 1 O A 2中利用求得cos ∠A 1 O A 2进而求得∠A 1 O A 2. 【题文】13.若f(x)+⎠⎛01f(x)dx =x ,则f(x)=__ _.【知识点】定积分.B13【答案解析】x -14 解析:因为⎠⎛01f(x)dx 是个常数,不妨设为m ,所以f(x)=x -m ,其原函数F(x)=12x 2-mx +C(C 为常数),所以可得方程m =12-m ,解得m =14.故f(x)=x -14.【思路点拨】根据已知条件设f(x)=x -m 代入求出m 即可.【题文】14.在函数f(x)=aln x +(x +1)2()x>0的图象上任取两个不同的点P(x 1,y 1)、Q(x 2,y 2),总能使得f(x 1)-f(x 2)≥4(x 1-x 2),则实数a 的取值范围为__. 【知识点】函数的性质及应用;导数的概念及应用.B12【答案解析】⎣⎡⎭⎫12,+∞ 解析:由题意f′(x)≥4对任意x>0恒成立,也就是 a≥()2x (1-x )max =12. 【思路点拨】由题意f ′(x)≥4对任意x>0恒成立, 由此构造关于a 的不等式,可得实数a 的取值范围.【题文】15.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,图中的实心点的个数1、5、12、22、…,被称为五角形数,其中第1个五角形数记作a 1=1,第2个五角形数记作a 2=5,第3个五角形数记作a 3=12,第4个五角形数记作a 4=22,……,若按此规律继续下去,则a 5=____,若a n =145,则n =___.【知识点】归纳推理.M1三、解答题:本大题共6个小题,共75分.解答应写出文字说明、证明过程或演算步骤. 【题文】16.(本题满分12分) 设f(x)=sin ⎝ ⎛⎭⎪⎫π4x -π6-2cos 2π8x +1.(1)求f(x)的最小正周期;(2)若函数y =f(x)与y =g(x)的图象关于直线x =1对称,求当x ∈⎣⎡⎦⎤0,43时y =g(x)的最大值. 【知识点】两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的定义域和值域.C3 C5【答案解析】(1) 8 (2)32解析:(1)f(x)=sin π4xcos π6-cos π4xsin π6-cos π4x =32sin π4x -32cos π4x =3sin ⎝⎛⎭⎫π4x -π3,故f(x)的最小正周期为T =2ππ4=8. (6分)(2)法一:在y =g(x)的图象上任取一点(x ,g(x)),它关于x =1的对称点为(2-x ,g(x)). 由题设条件,点(2-x ,g(x))在y =f(x)的图象上,从而g(x)=f(2-x)=3sin ⎣⎡⎦⎤π4(2-x )-π3 =3sin ⎣⎡⎦⎤π2-π4x -π3=3cos ⎝⎛⎭⎫π4x +π3, 当0≤x≤43时,π3≤π4x +π3≤2π3 ,因此y =g(x)在区间⎣⎡⎦⎤0,43 上的最大值为y max =3cos π3=32.(12分)法二: 因区间⎣⎡⎦⎤0,43关于x =1的对称区间为⎣⎡⎦⎤23,2, 且y =g(x)与y =f(x)的图象关于直线x =1对称,故y =g(x)在区间⎣⎡⎦⎤0,43上的最大值为y =f(x)在区间⎣⎡⎦⎤23,2上的最大值. 由(1)知f(x)=3sin ⎝⎛⎫π4x -π3.当23≤x≤2时,-π6≤π4x -π3≤π6. 因此y =g(x)在区间⎣⎡⎦⎤0,43上的最大值为y max =3sin π6=32.(12分) 【思路点拨】(1)f (x )解析式第一项利用两角和与差的正弦函数公式化简,整理后再利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式即可求出f (x )的最小正周期;(2)在y=g (x )的图象上任取一点(x ,g (x )),根据f (x )与g (x )关于直线x=1对称,表示出此点的对称点,根据题意得到对称点在f (x )上,代入列出关系式,整理后根据余弦函数的定义域与值域即可确定出g (x )的最大值. 【题文】17.(本题满分12分)某电视台拟举行由选手报名参加的比赛类型的娱乐节目,选手进入正赛前需通过海选,参加海选的选手可以参加A 、B 、C 三个测试项目,只需通过一项测试即可停止测试,通过海选.若通过海选的人数超过预定正赛参赛人数,则优先考虑参加海选测试次数少的选手进入正赛.甲选手通过项目A 、B 、C 测试的概率为分别为15、13、12, 且通过各次测试的事件相互独立.(1)若甲选手先测试A 项目,再测试B 项目,后测试C 项目,求他通过海选的概率;若改变测试顺序,对他通过海选的概率是否有影响?说明理由;(2)若甲选手按某种顺序参加海选测试,第一项能通过的概率为p 1,第二项能通过的概率为p 2,第三项能通过的概率为p 3,设他通过海选时参加测试的次数为ξ,求ξ的分布列和期望(用p 1、p 2、p 3表示);并说明甲选手按怎样的测试顺序更有利于他进入正赛.【知识点】离散型随机变量的期望与方差;相互独立事件的概率乘法公式;离散型随机变量及其分布列.K5 K6【答案解析】(1) 即无论按什么顺序,其能通过海选的概率均为1115 (2) 按C→B→A 的顺序参加测试更有利于进入正赛.解析:(1)依题意,甲选手不能通过海选的概率为⎝⎛⎭⎫1-15⎝⎛⎭⎫1-13⎝⎛⎭⎫ 1-12=415, 故甲选手能通过海选的概率为1-⎝⎛⎭⎫1-15⎝⎛⎭⎫1-13⎝⎛⎭⎫ 1-12=1115.(3分) 若改变测试顺序对他通过海选的概率没有影响,因为无论按什么顺序,其不能通过的概率均为⎝⎛⎭⎫1-15⎝⎛⎭⎫1-13⎝⎛⎭⎫ 1-12=415, 即无论按什么顺序,其能通过海选的概率均为1115.(5分)(2)依题意,ξ的所有可能取值为1、2、3.P(ξ=1)=p 1,P(ξ=2)=(1-p 1)p 2,P(ξ=3)=(1-p 1)(1-p 2)p 3. 故ξ的分布列为(8分)Eξ=p 1+2(1-p 1)p 2+3(1-p 1)(1-p 2)p 3(10分)分别计算当甲选手按C→B→A ,C→A→B ,B→A→C ,B→C→A ,A→B→C ,A→C→B 的顺序参加测试时,Eξ的值,得甲选手按C→B→A 的顺序参加测试时,Eξ最小,因为参加测试的次数少的选手优先进入正赛,故该选手选择将自己的优势项目放在前面,即按C→B→A 的顺序参加测试更有利于进入正赛.(12分)【思路点拨】(1)求出甲同学不能通过海选的概率,利用对立事件的概率公式,可求甲同学能通过海选的概率;若改变测试顺序,对他通过海选的概没有影响,因为无论按什么顺序,甲同学不能通过海选的概率不变;(2)ξ的可能取值为1,2,3,求出相应概率,可得分布列与期望;利用参加海选测试次数少的选手进入正赛,可得结论. 【题文】18.(本题满分12分)如图,△ABC 的外接圆⊙O 的半径为5,CE 垂直于⊙O 所在的平面,BD ∥CE ,CE =4,BC =6,且BD =1,cos ∠ADB =101101. (1)求证:平面AEC ⊥平面BCED ;(2)试问线段DE 上是否存在点M ,使得直线AM 与平面ACE 所成角的正弦值为22121?若存在,确定点M 的位置;若不存在,请说明理由.【知识点】直线与平面所成的角;平面与平面垂直的判定.G10【答案解析】(1)见解析 (2) 存在点M ,且DM →=13DE →时,直线AM 与平面ACE 所成角的正弦值为22121.解析:(1)证明:∵BD ⊥平面ABC ∴BD ⊥AB ,又因为 BD =1,cos ∠ADB =101101. 故AD =101,AB =10=直径长,(3分)∴AC ⊥BC.又因为EC ⊥平面ABC ,所以EC ⊥BC.∵AC∩EC =C ,∴BC ⊥平面ACE ,又BC ⊂平面BCED , ∴平面AEC ⊥平面BCED.(6分)(2)法一:存在,如图,以C 为原点,直线CA 为x 轴,直线CB 为y 轴,直线CE 为z 轴建立空间直角坐标系,则有点的坐标,A(8,0,0),B(0,6,0),D(0,6,1),E(0,0,4). 则AD →=(-8,6,1),DE →=(0,-6,3),设DM →=λDE →=λ(0,-6,3)=(0,-6λ,3λ),0<λ<1 故AM →=AD →+DM →=(-8, 6-6λ,1+3λ) 由(1)易得平面ACE 的法向量为CB →=(0,6,0), 设直线AM 与平面ACE 所成角为θ,则sin θ=|AM →·CB →||AM →|·|CB →|=36-36λ64+36(1-λ)2+(1+3λ)2·6=22121,解得λ=13.(10分) 所以存在点M ,且DM →=13DE →时,直线AM 与平面ACE 所成角的正弦值为22121. (12分)法二:(几何法)如图,作MN ⊥CE 交CE 于N ,连接AN ,则MN ⊥平面AEC ,故直线AM 与平面ACE 所成的角为∠MAN ,且MN ⊥AN ,NC ⊥AC.设MN =2x ,由直线AM 与平面ACE 所成角的正弦值为22121,得AM =21x ,所以AN =17x.另一方面,作DK ∥MN ∥BC ,得EN =x ,NC =4-x 而AC =8,故Rt △ANC 中,由AN 2=AC 2+NC 2 得17x 2=64+(4-x)2,∴x =2,∴MN =4,EM =2 5所以存在点M ,且EM =25时,直线AM 与平面ACE 所成角的正弦值为22121. (12分)【题文】19.(本题满分13分)等比数列{a n }中的前三项a 1、a 2、a 3分别是下面数阵中第一、二、三行中的某三个数,且三个数不在同一列.⎝⎛⎭⎪⎪⎫5436108201216 (1)求此数列{a n }的通项公式;(2)若数列{b n }满足b n =3a n -()-1nlg a n ,求数列{b n }的前n 项和S n . 【知识点】数列的求和;等比数列的性质.D3 D4【答案解析】(1) a n =3·2n-1(2) S n=⎩⎨⎧9(2n-1)-n2lg 2,n 为偶数,9(2n-1)+n -12lg 2+lg 3,n 为奇数.解析:(1)经检验,当a 1=5或4时,不可能得到符合题中要求的等比数列;故有a 1=3,a 2=6,a 3=12,等比数列公比q =2,所以a n =3·2n -1.(5分)(2)由a n =3·2n -1得b n =3a n -()-1nlg a n =9×2n -1-(-1)n []lg 3+(n -1)lg 2.所以S n =9(1+2+…+2n -1)-⎣⎡⎦⎤()-1+()-12+…+()-1n (lg 3-lg 2) -[]-1+2-3+…+(-1)nn lg 2(9分)n 为偶数时,S n =9×1-2n 1-2-n 2lg 2=9(2n -1)-n2lg 2.n 为奇数时,S n =9×1-2n 1-2+(lg 3-lg 2)-⎝⎛⎭⎫n -12-n lg 2=9(2n -1)+n -12lg 2+lg 3.所以, S n=⎩⎨⎧9(2n -1)-n2lg 2,n 为偶数,9(2n-1)+n -12lg 2+lg 3,n 为奇数.(13分)【思路点拨】(1)先检验再利用等比数列的通项公式即可;(2)分情况讨论即可. 【题文】20.(本题满分13分)已知圆C :(x -1)2+(y -1)2=2经过椭圆Γ∶x 2a 2+y 2b2=1(a>b>0)的右焦点F 和上顶点B.(1)求椭圆Γ的方程;(2)如图,过原点O 的射线l 与椭圆Γ在第一象限的交点为Q ,与圆C 的交点为P ,M 为OP 的中点, 求OM →·OQ →的最大值.【知识点】直线与圆锥曲线的综合问题.H8 【答案解析】(1) x 28+y 24=1. (2) 2 3.解析:(1)在C :(x -1)2+(y -1)2=2中,令y =0得F(2,0),即c =2,令x =0,得B(0,2),b =2, 由a 2=b 2+c 2=8,∴椭圆Γ:x 28+y 24=1.(4分)(2)法一:依题意射线l 的斜率存在,设l :y =kx(x>0,k>0),设P(x 1,kx 1),Q(x 2,kx 2) 由⎩⎪⎨⎪⎧y =kx x 28+y 24=1得:(1+2k 2)x 2=8,∴x 2=221+2k 2.(6分) 由⎩⎪⎨⎪⎧y =kx (x -1)2+(y -1)2=2得:(1+k 2)x 2-(2+2k)x =0,∴x 1=2+2k 1+k 2, ∴OM →·OQ →=⎝⎛⎭⎫x 12,kx 12·(x 2,kx 2)=12(x 1x 2+k 2x 1x 2)=221+k 1+2k 2(k>0). (9分)=22(1+k )21+2k 2=22k 2+2k +11+2k 2.设φ(k)=k 2+2k +11+2k 2,φ′(k)=-4k 2-2k +2(1+2k 2)2,令φ′(k)=-4k 2-2k +2(1+2k 2)2>0,得-1<k<12. 又k>0,∴φ(k)在⎝⎛⎭⎫0,12上单调递增,在⎝⎛⎭⎫12,+∞上单调递减. ∴当k =12时,φ(k)max =φ⎝⎛⎭⎫12=32,即OM →·OQ →的最大值为2 3.(13分) 法二:依题意射线l 的斜率存在,设l :y =kx(x>0,k>0),设P(x 1,kx 1), Q(x 2,kx 2) 由⎩⎪⎨⎪⎧y =kx x 28+y 24=1得:(1+2k 2)x 2=8,∴x 2=221+2k 2.(6分) OM →·OQ →=(OC →+CM →)·OQ →=OC →·OQ →=(1,1)·(x 2,kx 2)=(1+k)x 2=221+k1+2k 2(k>0)(9分)=22(1+k )21+2k 2.设t =1+k(t>1),则(1+k )21+2k 2=t 22t 2-4t +3=12-4⎝⎛⎭⎫1t +3⎝⎛⎭⎫1t 2=13⎣⎡⎦⎤⎝⎛⎭⎫1t -232+23≤32.当且仅当1t =23时,(OM →·OQ →)max =2 3.(13分)【思路点拨】(1) 在圆(x-1)2+(y-1)2=2中,令y=0,得F (2,0),令x=0,得B (0,2),由此能求出椭圆方程. (2) 依题意射线l 的斜率存在,设l :y =kx(x>0,k>0),设P(x 1,kx 1),Q(x 2,kx 2) ,把直线与椭圆方程联立,利用根与系数的关系代入,再结合基本不等式即可.【题文】21.(本题满分13分)已知函数f(x)=e x -ax 2-2x -1(x ∈R ). (1)当a =0时,求f(x)的单调区间; (2)求证:对任意实数a<0,有f(x)>a 2-a +1a.【知识点】利用导数求函数的单调区间;利用导数结合函数的单调性证明不等式.B3 B12 【答案解析】(1) (-∞,ln 2)是f(x)的单调减区间,(ln 2,+∞)是f(x)的单调增区间. (2)见解析。

2024-2025学年湖南师范大学附属中学高三上学期月考(一)数学试题及答案

2024-2025学年湖南师范大学附属中学高三上学期月考(一)数学试题及答案

大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1. 已知{}()260,{lg 10}A x x xB x x =+-≤=-<∣∣,则A B = ( )A. {}32x x -≤≤∣ B. {32}xx -≤<∣C. {12}xx <≤∣ D. {12}xx <<∣2. 若复数z 满足()1i 3i z +=-+(i 是虚数单位),则z 等于( )A.B.54C.D.3. 已知平面向量()()5,0,2,1a b ==- ,则向量a b + 在向量b 上投影向量为( )A. ()6,3- B. ()4,2- C. ()2,1- D. ()5,04. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( )A. 21B. 19C. 12D. 425. 某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nμσ~,记()()p k P k X k μσμσ=-≤≤+,则()()0.750.547,10.683p p ≈≈.A 136人B. 272人C. 328人D. 820人6. 已知()π5,0,,cos ,tan tan 426αβαβαβ⎛⎫∈-=⋅= ⎪⎝⎭,则αβ+=( )A.π6 B.π4C.π3D.2π37. 已知12,F F 是双曲线22221(0)x y a b a b-=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条的.渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是( )A. ⎛ ⎝B. ⎛ ⎝C. (D. (8. 已知函数()220log 0x a x f x x x ⎧⋅≤=⎨>⎩,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是( )A. ()0,1 B. ()(),00,1-∞⋃ C. [)1,+∞ D. ()()0,11,+∞ 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D -中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A. E F M P ,,,四点共面B. 平面PEF 被正方体截得的截面是等腰梯形C. //EF 平面PMND. 平面MEF ⊥平面PMN10. 已知函数()5π24f x x ⎛⎫=+ ⎪⎝⎭,则( )A. ()f x 的一个对称中心为3π,08⎛⎫ ⎪⎝⎭B. ()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象C. ()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递增D. 若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m ⎛⎤∈⎥⎝⎦11. 已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++-=,则()A. ()f x 的图象关于点()2,1对称B. ()f x 是以8为周期的周期函数C. ()20240g =D.20241(42)2025k f k =-=∑三、填空题:本题共3小题,每小题5分,共15分.12. 6(31)x y +-的展开式中2x y 的系数为______.13. 已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x '->,且()10f =,则不等式()0f x >的解集为__________.14. 已知点C 为扇形AOB 弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λμλμ=+∈,则λμ+的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=.(1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB ==CD 的长.16. 已知1ex =为函数()ln af x x x =的极值点.(1)求a 的值;(2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x -≥,求k 的取值范围.17. 已知四棱锥P ABCD -中,平面PAB ⊥底面,ABCD AD∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥====为AB 的中点,F 为棱PC 上异于,P C 的点.的(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD18. 在平面直角坐标系xOy 中,抛物线21:2(0)C y px p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r -+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值;(2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.19. 龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况.销售量千张经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t =======∑∑∑(1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ;(3)记(2)中所得概率n P 的值构成数列{}()N n P n *∈.①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε-<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛..参考公式:()()()1122211ˆˆ,n ni i i ii in ni ii ix x y y x y nx ya y bxx x x nx====---==---∑∑∑∑.大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1. 已知{}()260,{lg 10}A x x xB x x =+-≤=-<∣∣,则A B = ( )A. {}32x x -≤≤∣ B. {32}xx -≤<∣C. {12}xx <≤∣ D. {12}xx <<∣【答案】D 【解析】【分析】通过解一元二次不等式和对数函数的定义域,求出集合,A B ,再求交集.【详解】集合{}()32,{lg 10}{12}A x x B x x x x =-≤≤=-<=<<∣∣∣,则{12}A B xx ⋂=<<∣,故选:D .2. 若复数z 满足()1i 3i z +=-+(i 是虚数单位),则z 等于( )A.B.54C.D.【答案】C 【解析】【分析】由复数的除法运算计算可得12i z =-+,再由模长公式即可得出结果.【详解】依题意()1i 3i z +=-+可得()()()()3i 1i 3i 24i12i 1i 1i 1i 2z -+--+-+====-+++-,所以z ==.故选:C3. 已知平面向量()()5,0,2,1a b ==- ,则向量a b +在向量b 上的投影向量为( )A. ()6,3- B. ()4,2- C. ()2,1- D. ()5,0【答案】A 【解析】【分析】根据投影向量的计算公式即可求解.【详解】()()7,1,15,a b a b b b +=-+⋅=== 所以向量a b +在向量b 上的投影向量为()()236,3||a b b b b b +⋅==- .故选:A4. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( )A. 21 B. 19C. 12D. 42【答案】A 【解析】【分析】根据等差数列的性质,即可求解公差和首项,进而由求和公式求解.【详解】{}n a 是等差数列,396214a a a ∴+==,即67a =,所以67769,a a a a ==故公差76162,53d a a a a d =-=∴=-=-,()767732212S ⨯∴=⨯-+⨯=,故选:A5. 某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nμσ~,记()()p k P k X k μσμσ=-≤≤+,则()()0.750.547,10.683p p ≈≈.A. 136人B. 272人C. 328人D. 820人【答案】B 【解析】【分析】首先求出平均数,即可得到学生的数学成绩2~(73.5,22)X N ,再根据所给条件求出(5790)P X ≤≤,即可求出(90)P X ≥,即可估计人数.【详解】由题得0.4915073.5,22μσ=⨯==,()()(),0.750.547p k P k X k p μσμσ=-≤≤+≈ ,()5790P X ∴≤≤()0.750.547p =≈,()()900.510.5470.2265P X ≥=⨯-=,∴该校及格人数为0.22651200272⨯≈(人),故选:B .6. 已知()π5,0,,cos ,tan tan 426αβαβαβ⎛⎫∈-=⋅= ⎪⎝⎭,则αβ+=( )A.π6 B.π4C.π3D.2π3【答案】D 【解析】【分析】利用两角差的余弦定理和同角三角函数的基本关系建立等式求解,再由两角和的余弦公式求解即可.【详解】由已知可得5cos cos sin sin 6sin sin 4cos cos αβαβαβαβ⎧⋅+⋅=⎪⎪⎨⋅⎪=⋅⎪⎩,解得1cos cos 62sin sin 3αβαβ⎧⋅=⎪⎪⎨⎪⋅=⎪⎩,,()1cos cos cos sin sin 2αβαβαβ∴+=⋅-⋅=-,π,0,2αβ⎛⎫∈ ⎪⎝⎭,()0,παβ∴+∈,2π,3αβ∴+=,故选:D .7. 已知12,F F 是双曲线22221(0)x y a b a b-=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是( )A. ⎛ ⎝B. ⎛ ⎝C. (D. (【答案】B 【解析】【分析】根据双曲线以及圆的方程可求得弦长AB =,再根据不等式123AB F F >整理可得2259c a <,即可求得双曲线的离心率的取值范围.【详解】设以()2,0F c 为圆心,a 为半径的圆与双曲线的一条渐近线0bx ay -=交于,A B 两点,则2F 到渐近线0bx ay -=的距离d b ==,所以AB =,因为123AB F F >,所以32c ⨯>,可得2222299a b c a b ->=+,即22224555a b c a >=-,可得2259c a <,所以2295c a <,所以e <,又1e >,所以双曲线的离心率的取值范围是⎛ ⎝.故选:B8. 已知函数()220log 0x a x f x x x ⎧⋅≤=⎨>⎩,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是( )A. ()0,1 B. ()(),00,1-∞⋃ C. [)1,+∞ D. ()()0,11,+∞ 【答案】C 【解析】【分析】利用换元法设()u f x =,则方程等价为()0f u =,根据指数函数和对数函数图象和性质求出1u =,利用数形结合进行求解即可.【详解】令()u f x =,则()0f u =.①当0a =时,若()0,0u f u ≤=;若0u >,由()2log 0f u u ==,得1u =.所以由()()0ff x =可得()0f x ≤或()1f x =.如图所示,满足()0f x ≤的x 有无数个,方程()1f x =只有一个解,不满足题意;②当0a ≠时,若0≤u ,则()20uf u a =⋅≠;若0u >,由()2log 0f u u ==,得1u =.所以由()()0ff x =可得()1f x =,当0x >时,由()2log 1f x x ==,可得2x =,因为关于x 的方程()()0f f x =有且仅有两个实数根,则方程()1f x =在(,0∞-]上有且仅有一个实数根,若0a >且()(]0,20,xx f x a a ≤=⋅∈,故1a ≥;若0a <且()0,20xx f x a ≤=⋅<,不满足题意.综上所述,实数a 的取值范围是[)1,+∞,故选:C .二、多选题:本题共36分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D -中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A. E F M P ,,,四点共面B. 平面PEF 被正方体截得的截面是等腰梯形C. //EF 平面PMND. 平面MEF ⊥平面PMN【答案】BD 【解析】【分析】可得过,,E F M 三点的平面为一个正六边形,判断A ;分别连接,E F 和1,B C ,截面1C BEF 是等腰梯形,判断B ;分别取11,BB CC 的中点,G Q ,易证EF 显然不平行平面QGMN ,可判断C ;EM ⊥平面PMN ,可判断D.【详解】对于A :如图经过,,E F M 三点的平面为一个正六边形EFMHQK ,点P 在平面外,,,,E F M P ∴四点不共面,∴选项A 错误;对于B :分别连接,E F 和1,B C ,则平面PEF 即平面1C BEF ,截面1C BEF 是等腰梯形,∴选项B 正确;对于C :分别取11,BB CC 的中点,G Q ,则平面PMN 即为平面QGMN ,由正六边形EFMHQK ,可知HQ EF ,所以MQ 不平行于EF ,又,EF MQ ⊂平面EFMHQK ,所以EF MQ W = ,所以EF I 平面QGMN W =,所以EF 不平行于平面PMN ,故选项C 错误;对于D :因为,AEM BMG 是等腰三角形,45AME BMG ∴∠=∠=︒,90EMG ∴∠=︒,EMMG ∴⊥,,M N 是,AB CD 的中点,易证MN AD ∥,由正方体可得AD ⊥平面11ABB A ,MN ∴⊥平面11ABB A ,又ME ⊂平面11ABB A ,EM MN ∴⊥,,MG MN ⊂ 平面PMN ,EM ∴⊥平面GMN ,EM ⊂ 平面MEF ,∴平面MEF ⊥平面,PMN 故选项D 正确.故选:BD .10. 已知函数()5π24f x x ⎛⎫=+ ⎪⎝⎭,则( )A. ()f x 的一个对称中心为3π,08⎛⎫ ⎪⎝⎭B. ()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象C. ()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递增D. 若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m ⎛⎤∈ ⎥⎝⎦【答案】BD 【解析】【分析】代入即可验证A ,根据平移可得函数图象,即可由正弦型函数的奇偶性求解B ,利用整体法即可判断C ,由5πcos 24x ⎛⎫+= ⎪⎝⎭求解所以根,即可求解D.【详解】对于A ,由35π3π2π0848f ⎛⎫⎛⎫=+⨯=≠⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B ,()f x 的图象向右平移3π8个单位长度后得:3π3π5ππ228842y f x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,为奇函数,故B 正确;对于C ,当5π7π,88x ⎡⎤∈⎢⎥⎣⎦时,则5π5π2,3π42x ⎡⎤+∈⎢⎥⎣⎦,由余弦函数单调性知,()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递减,故C 错误;对于D ,由()1f x =,得5πcos 24x ⎛⎫+= ⎪⎝⎭ππ4x k =+或ππ,2k k +∈Z ,()y f x =在区间()0,m 上与1y =有且只有6个交点,其横坐标从小到大依次为:ππ5π3π9π5π,,,,,424242,而第7个交点的横坐标为13π4,5π13π24m ∴<≤,故D 正确.故选:BD11. 已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++-=,则( )A. ()f x 的图象关于点()2,1对称B. ()f x 是以8为周期的周期函数C. ()20240g =D.20241(42)2025k f k =-=∑【答案】ABC 【解析】【分析】根据函数奇偶性以及所满足的表达式构造方程组可得()()222f x f x ++-=,即可判断A 正确;利用对称中心表达式进行化简计算可得B 正确,可判断()g x 也是以8为周期的周期函数,即C 正确;根据周期性以及()()42f x f x ++=计算可得20241(42)2024k f k =-=∑,可得D 错误.【详解】由题意()()()(),f x f x g x g x -=-=-,且()()()00,21g f x g x =++-=,即()()21f x g x +-=①,用x -替换()()21f x g x ++-=中的x ,得()()21f x g x -+=②,由①+②得()()222f x f x ++-=所以()f x 的图象关于点(2,1)对称,且()21f =,故A 正确;由()()222f x f x ++-=,可得()()()()()42,422f x f x f x f x f x ++-=+=--=-,所以()()()()82422f x f x f x f x ⎡⎤+=-+=--=⎣⎦,所以()f x 是以8为周期的周期函数,故B 正确;由①知()()21g x f x =+-,则()()()()882121g x f x f x g x +=++-=+-=,故()()8g x g x +=,因此()g x 也是以8为周期的周期函数,所以()()202400g g ==,C 正确;又因为()()42f x f x ++-=,所以()()42f x f x ++=,令2x =,则有()()262f f +=,令10x =,则有()()10142,f f +=…,令8090x =,则有()()809080942f f +=,所以1012(2)(6)(10)(14)(8090)(8094)2222024f f f f f f ++++++=+++=个所以20241(42)(2)(6)(10)(14)(8090)(8094)2024k f k f f f f f f =-=++++++=∑ ,故D 错误.故选:ABC【点睛】方法点睛:求解函数奇偶性、对称性、周期性等函数性质综合问题时,经常利用其中两个性质推得第三个性质特征,再进行相关计算.三、填空题:本题共3小题,每小题5分,共15分.12. 6(31)x y +-的展开式中2x y 的系数为______.【答案】180-【解析】【分析】根据题意,由条件可得展开式中2x y 的系数为213643C C (1)⋅-,化简即可得到结果.【详解】在6(31)x y +-的展开式中,由()2213264C C 3(1)180x y x y ⋅⋅-=-,得2x y 的系数为180-.故答案为:180-.13. 已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x '->,且()10f =,则不等式()0f x >的解集为__________.【答案】()()1,01,-⋃+∞【解析】【分析】根据函数奇偶性并求导可得()()f x f x ''-=,因此可得()()2f x f x '>,可构造函数()()2xf x h x =e并求得其单调性即可得()f x 在()1,+∞上大于零,在()0,1上小于零,即可得出结论.【详解】因为()f x 为奇函数,定义域为R ,所以()()f x f x -=-,两边同时求导可得()()f x f x ''--=-,即()()f x f x ''-=且()00f =,又因为当0x >时,()()2f x f x '->,所以()()2f x f x '>.构造函数()()2x f x h x =e ,则()()()22xf x f x h x '-'=e,所以当0x >时,()()0,h x h x '>在()0,∞+上单调递增,又因为()10f =,所以()()10,h h x =在()1,+∞上大于零,在()0,1上小于零,又因为2e 0x >,所以()f x 在()1,+∞上大于零,在()0,1上小于零,因为()f x 为奇函数,所以()f x 在(),1∞--上小于零,在()1,0-上大于零,综上所述,()0f x >的解集为()()1,01,-⋃+∞.故答案为:()()1,01,-⋃+∞14. 已知点C 为扇形AOB 的弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λμλμ=+∈,则λμ+的取值范围是__________.【答案】⎡⎢⎣【解析】【分析】建系设点的坐标,再结合向量关系表示λμ+,最后应用三角恒等变换及三角函数值域求范围即可.【详解】方法一:设圆O 的半径为1,由已知可设OB 为x 轴的正半轴,O 为坐标原点,过O 点作x 轴垂线为y 轴建立直角坐标系,其中()()1,1,0,cos ,sin 2A B C θθ⎛ ⎝,其中π,0,3BOC θθ⎡⎤∠=∈⎢⎥⎣⎦,由(),R OC OA OB λμλμ=+∈,即()()1cos ,sin 1,02θθλμ⎛=+⎝,整理得1cos sin 2λμθθ+==,解得cos λμθ==,则ππcos cos ,0,33λμθθθθθ⎛⎫⎡⎤+==+=+∈ ⎪⎢⎥⎝⎭⎣⎦,ππ2ππ,,sin 3333θθ⎤⎡⎤⎛⎫+∈+∈⎥⎪⎢⎥⎣⎦⎝⎭⎦所以λμ⎡+∈⎢⎣.方法二:设k λμ+=,如图,当C 位于点A 或点B 时,,,A B C 三点共线,所以1k λμ=+=;当点C 运动到AB的中点时,k λμ=+==,所以λμ⎡+∈⎢⎣故答案为:⎡⎢⎣四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=.(1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB ==CD 的长.【答案】(1)2π3C = (2)3CD =【解析】【分析】(1)利用正弦定理及两角和的正弦定理整理得到()2cos 1sin 0C B +=,再利用三角形的内角及正弦函数的性质即可求解;(2)利用正弦定理得出3b a =,再由余弦定理求出4a =,12b =,再根据三角形的面积建立等式求解.【小问1详解】由22cos a b c B +=,根据正弦定理可得2sin sin 2sin cos A B C B +=,则()2sin sin 2sin cos B C B C B ++=,所以2sin cos 2cos sin sin 2sin cos B C B C B C B ++=,整理得()2cos 1sin 0C B +=,因为,B C 均为三角形内角,所以(),0,π,sin 0B C B ∈≠,因此1cos 2C =-,所以2π3C =.【小问2详解】因为CD 是角C的平分线,AD DB ==所以在ACD 和BCD △中,由正弦定理可得,,ππsin sin sin sin 33AD CD BD CDA B ==,因此sin 3sin B ADA BD==,即sin 3sin B A =,所以3b a =,又由余弦定理可得2222cos c a b ab C =+-,即222293a a a =++,解得4a =,所以12b =.又ABC ACD BCD S S S =+△△△,即111sin sin sin 222ab ACB b CD ACD a CD BCD ∠∠∠=⋅⋅+⋅⋅,即4816CD =,所以3CD =.16. 已知1ex =为函数()ln af x x x =的极值点.(1)求a 的值;(2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x -≥,求k 的取值范围.【答案】(1)1a = (2)(]()10,-∞-+∞ ,【解析】【分析】(1)直接根据极值点求出a 的值;(2)先由(1)求出()f x 的最小值,由题意可得是求()g x 的最小值,小于等于()f x 的最小值,对()g x 求导,判断由最小值时的k 的范围,再求出最小值与()f x 最小值的关系式,进而求出k 的范围.【小问1详解】()()111ln ln 1a a f x ax x x x a x xα--=='+⋅+,由1111ln 10e e e a f a -⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪⎪⎝⎭⎝⎭'⎭⎝,得1a =,当1a =时,()ln 1f x x ='+,函数()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e∞⎛⎫+ ⎪⎝⎭上单调递增,所以1ex =为函数()ln af x x x =的极小值点,所以1a =.【小问2详解】由(1)知min 11()e e f x f ⎛⎫==- ⎪⎝⎭.函数()g x 的导函数()()1exg x k x -=-'①若0k >,对()1210,,x x k ∞∀∈+∃=-,使得()()12111e 1e k g x g f x k ⎛⎫=-=-<-<-≤ ⎪⎝⎭,即()()120f x g x -≥,符合题意.②若()0,0k g x ==,取11ex =,对2x ∀∈R ,有()()120f x g x -<,不符合题意.③若0k <,当1x <时,()()0,g x g x '<在(),1∞-上单调递减;当1x >时,()()0,g x g x '>在(1,+∞)上单调递增,所以()min ()1ek g x g ==,若对()120,,x x ∞∀∈+∃∈R ,使得()()120f x g x -≥,只需min min ()()g x f x ≤,即1e ek ≤-,解得1k ≤-.综上所述,k 的取值范围为(](),10,∞∞--⋃+.17. 已知四棱锥P ABCD -中,平面PAB ⊥底面,ABCD AD ∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥====为AB 的中点,F 为棱PC 上异于,P C 的点.(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD【答案】(1)证明见解析(2)F 位于棱PC 靠近P 的三等分点【解析】【分析】(1)连接,,PE EC EC 交BD 于点G ,利用面面垂直的性质定理和三角形全等,即可得证;(2)取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立,利用线面角公式代入即可求解.小问1详解】如图,连接,,PE EC EC 交BD 于点G .因为E 为AB 的中点,PA PB =,所以PE AB ⊥.因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面,ABCD AB PE =⊂平面PAB ,所以PE ⊥平面ABCD ,因为BD ⊂平面ABCD ,所以BD ⊥.因为ABD BCE ≅ ,所以CEB BDA ∠∠=,所以90CEB ABD ∠∠+= ,所以BD EC ⊥,因为,,PE EC E PE EC ⋂=⊂平面PEC ,所以BD ⊥平面PEC .因为EF ⊂平面PEC ,所以BD EF ⊥.【小问2详解】如图,取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立空间直角坐标系,【设2AB =,则2,1,BC AD PA PB ====则()()()()0,0,1,1,2,0,1,1,0,0,0,0P C D E -,设(),,,(01)F x y z PF PC λλ=<<,所以()(),,11,2,1x y z λ-=-,所以,2,1x y z λλλ===-,即(),2,1F λλλ-.则()()()2,1,0,1,2,1,,2,1DC PC EF λλλ==-=-,设平面PCD 的法向量为(),,m a b c =,则00DC m PC m ⎧⋅=⎪⎨⋅=⎪⎩,,即2020a b a b c +=⎧⎨+-=⎩,,取()1,2,3m =--,设EF 与平面PCD 所成的角为θ,由cos θ=sin θ=.所以sin cos ,m EF m EF m EF θ⋅====整理得2620λλ-=,因为01λ<<,所以13λ=,即13PF PC = ,故当F 位于棱PC 靠近P 的三等分点时,EF 与平面PCD18. 在平面直角坐标系xOy 中,抛物线21:2(0)C y px p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r -+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ长度的最小值;(2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.【答案】(1(2)证明见解析【解析】【分析】(1)根据椭圆的短轴可得抛物线方程2y x =,进而根据两点斜率公式,结合三角形的三边关系,即可由二次函数的性质求解,(2)根据两点坐标可得直线,MN DM 的直线方程,由直线与圆相切可得,a b 是方程()()()2222124240r x r x r -+-+-=的两个解,即可利用韦达定理代入化简求解定点.【小问1详解】由题意得椭圆的方程:221116y x +=,所以短半轴14b =所以112242p b ==⨯=,所以抛物线1C 的方程是2y x =.设点()2,P t t ,则111222PQ PE ≥-=-=≥,所以当232ι=时,线段PQ.【小问2详解】()1,D t 是抛物线1C 上位于第一象限的点,21t ∴=,且()0,1,1t D >∴设()()22,,,M a a N b b ,则:直线()222:b a MN y a x a b a --=--,即()21y a x a a b-=-+,即()0x a b y ab -++=.直线()21:111a DM y x a --=--,即()10x a y a -++=.由直线DMr =,即()()()2222124240r a r a r -+-+-=..同理,由直线DN 与圆相切得()()()2222124240r b r b r -+-+-=.所以,a b 是方程()()()2222124240r x r x r -+-+-=的两个解,22224224,11r r a b ab r r --∴+==--代入方程()0x a b y ab -++=得()()222440x y r x y +++---=,220,440,x y x y ++=⎧∴⎨++=⎩解得0,1.x y =⎧⎨=-⎩∴直线MN 恒过定点()0,1-.【点睛】圆锥曲线中定点问题的两种解法(1)引进参数法:先引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:先根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.技巧:若直线方程为()00y y k x x -=-,则直线过定点()00,x y ;若直线方程为y kx b =+ (b 为定值),则直线过定点()0,.b 19. 龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况.日期t 12345678910销售量千张 1.9 1.98 2.2 2.36 2.43259 2.682.76 2.70.4经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t =======∑∑∑.(1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;..(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ;(3)记(2)中所得概率n P 的值构成数列{}()Nn P n *∈.①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε-<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛.参考公式: ()()()1122211ˆˆ,n ni i i i i i n n ii i i x x y y x y nx y ay bx x x x nx ====---==---∑∑∑∑.【答案】(1)673220710001200y t =+ (2)433774n n P ⎛⎫=+⋅- ⎪⎝⎭(3)①最大值为1316,最小值为14;②证明见解析【解析】【分析】(1)计算出新数据的相关数值,代入公式求出 ,ab 的值,进而得到y 关于t 的回归方程;(2)由题意可知1213,(3)44n n n P P P n --=+≥,其中12113,416P P ==,构造等比数列,再利用等比数列的通项公式求解;(3)①分n 为偶数和n 为奇数两种情况讨论,结合指数函数的单调性求解;②利用数列收敛的定义,准确推理、运算,即可得证.【小问1详解】解:剔除第10天的数据,可得 2.2100.4 2.49y ⨯-==新,12345678959t ++++++++==新,则9922111119.73100.4114,73,38510285i i i i t y t ==⎛⎫⎛⎫=-⨯==-= ⎪ ⎪⎝⎭⎝⎭∑∑新新,所以912922119114,7395 2.4673ˆ2859560009i i i i t y t y b t t ==⎛⎫- ⎪-⨯⨯⎝⎭===-⨯⎛⎫- ⎪⎝⎭∑∑新新新新新,可得6732207ˆ 2.4560001200a =-⨯=,所以6732207ˆ60001200y t =+.【小问2详解】解:由题意知1213,(3)44n n n P P P n --=+≥,其中12111313,444416P P ==⨯+=,所以11233,(3)44n n n n P P P P n ---+=+≥,又由2131331141644P P +=+⨯=,所以134n n P P -⎧⎫+⎨⎬⎩⎭是首项为1的常数列,所以131,(2)4n n P P n -+=≥所以1434(2)747n n P P n --=--≥,又因为1414974728P -=-=-,所以数列47n P ⎧⎫-⎨⎬⎩⎭是首项为928-,公比为34-的等比数列,故143)74n n P --=-,所以1934433(()2847774n n n P -=--+=+-.【小问3详解】解:①当n 为偶数时,19344334()(28477747n n n P -=--+=+⋅>单调递减,最大值为21316P =;当n 为奇数时,19344334()(28477747n n n P -=--+=-⋅<单调递增,最小值为114P =,综上可得,数列{}n P 的最大值为1316,最小值为14.②证明:对任意0ε>总存在正整数0347[log ()]13N ε=+,其中 []x 表示取整函数,当 347[log ()]13n ε>+时,347log ()34333333()()()7747474n n n P εε-=⋅-=⋅<⋅=,所以数列{}n P 收敛.【点睛】知识方法点拨:与新定义有关的问题的求解策略:1、通过给出一个新的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;2、遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.方法点拨:与数列有关的问题的求解策略:3、若新定义与数列有关,可得利用数列的递推关系式,结合数列的相关知识进行求解,多通过构造的分法转化为等差、等比数列问题求解,求解过程灵活运用数列的性质,准确应用相关的数列知识.。

2024届湖南师范大学附属中学高三上学期月考卷(四)数学及答案

2024届湖南师范大学附属中学高三上学期月考卷(四)数学及答案

湖南师大附中2024届高三月考试卷(四)数学审题人:高三备课组时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数12i z =+,其中i 为虚数单位,则复数2z 在复平面内对应的点的坐标为( )A.(4,5)- B.(4,3)C.(3,4)- D.(5,4))2.若随机事件A ,B 满足1()3P A =,1()2P B =,3()4P A B = ,则(|)P A B =( )A.29B.23C.14D.168.设{}n a 是公比不为1的无穷等比数列,则“{}n a 为递减数列”是“存在正整数0N ,当0n N >时,1n a <”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.设0,2πα⎛⎫∈ ⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭,且1tan tan cos αβα+=,则( )A.22παβ+=B.22παβ-=C.22πβα-=D.22πβα+=5.若52345012345(12)(1)(1)(1)(1)(1)x a a x a x a x a x a x -=+-+-+-+-+-,则下列结论中正确的是( )A.01a = B.480a =C.50123453a a a a a a +++++= D.()()10024135134a a a a a a -++++=6.函数1()2cos[(2023)]|1|f x x x π=++-在区间[3,5]-上所有零点的和等于( )A.2B.4C.6D.87.点M 是椭圆22221x y a b+=(0a b >>)上的点,以M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M 与y 轴相交于P ,Q ,若PQM △是钝角三角形,则椭圆离心率的取值范围是()A.(0,2B.⎛ ⎝C.⎫⎪⎪⎭D.(2-8.已知函数22,0,()4|1|4,0,x x f x x x ⎧=⎨-++<⎩…若存在唯一的整数x ,使得()10f x x a -<-成立,则所有满足条件的整数a 的取值集合为( )A.{2,1,0,1}-- B.{2,1,0}-- C.{1,0,1}- D.{2,1}-二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分、9.已.知双曲线C过点且渐近线为y x =,则下列结论正确的是( )A.C 的方程为2213x y -= B.CC.曲线2e1x y -=-经过C 的一个焦点D.直线10x --=与C 有两个公共点10.已知向量a ,b满足|2|||a b a += ,20a b a ⋅+= 且||2a = ,则( )A.||8b = B.0a b += C.|2|6a b -=D.4a b ⋅= 11.如图、正方体1111ABCD A B C D -的棱长为2,点M 是其侧面11ADD A 上的一个动点(含边界),点P 是线段1CC 上的动点,则下列结论正确的是()A.存在点P ,M ,使得二面角M DC P --大小为23πB.存在点P ,M ,使得平面11B D M 与平面PBD 平行C.当P 为棱1CC的中点且PM =时,则点M 的轨迹长度为23πD.当M 为1A D 中点时,四棱锥M ABCD -12.若存在实常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b +…和()G x kx b +…恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”.已知函数2()f x x =(x ∈R ),1()g x x=(0x <),()2eln h x x =(e 2.718≈),则下列选项正确的是( )A.()()()m x f x g x =-在x ⎛⎫∈ ⎪⎝⎭时单调递增B.()f x 和()g x 之间存在“隔离直线”,且b 的最小值为–4C.()f x 和()g x 之间存在“隔离直线”,且k 的取值范围是[4,1]-D.()f x 和()h x之间存在唯一的“隔离直线”ey =-三、填空题:本题共4小题,每小题5分,共20分.13.已知函数()y f x =的图象在点(1,(1))M f 处的切线方程是122y x =+,则(1)(1)f f +'=___________.14.如图,由3个全等的钝角三角形与中间一个小等边三角形DEF 拼成的一个较大的等边三角形ABC ,若3AF =,sin ACF ∠=,则DEF △的面积为___________.15.已知数列{}n a 的首项132a =,且满足1323n n n a a a +=+.若123111181n a a a a ++++< ,则n 的最大值为___________.16.在棱长为3的正方体1111ABCD A B C D -中,点E 满足112A E EB =,点F 在平面1BC D 内,则|1||A F EF +的最小值为___________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知函数2()2cos 2xf x x m ωω=++(0ω>)的最小值为–2.(1)求函数()f x 的最大值;(2)把函数()y f x =的图象向右平移6πω个单位长度,可得函数()y g x =的图象,且函数()y g x =在0,8π⎡⎤⎢⎥⎣⎦上单调递增,求ω的最大值.18.(12分)为了丰富在校学生的课余生活,某校举办了一次趣味运动会活动,学校设置项目A “毛毛虫旱地龙舟”和项目B “袋鼠接力跳”.甲、乙两班每班分成两组,每组参加一个项目,进行班级对抗赛.第一个比赛项目A 采取五局三胜制(即有一方先胜3局即获胜,比赛结束);第二个比赛项目B 采取领先3局者获胜。

20.三角函数的化简求值

20.三角函数的化简求值

1.广东省2012年高考数学考前十五天每天一练(4) 已知tan 2θ=,则22sin sin cos 2cos θθθθ+-=(D ) A . 43-B .54C .34-D .452.陕西省西工大附中2011届高三第八次适应性训练数学(文) 观察下列几个三角恒等式:①tan10tan 20tan 20tan 60tan 60tan101++= ; ②tan13tan35tan35tan 42tan 42tan131++= ; ③tan 5tan100tan100tan(15)+-tan(15)tan 51+-=;一般地,若tan ,tan ,tan αβγ都有意义,你从这三个恒等式中猜想得到的一个结论为 .【答案】90,tan tan tan tan tan tan 1αβγαββγγα++=++=当时3.陕西省咸阳市2012届高三上学期高考模拟考试(文科数学) sin 330 的值是( )A .12 B. 12- C. D. 【答案】B4.2012北京宏志中学高考模拟训练-数学理cos300= ( )(A)-12 (C)12【答案】C5.2012北京宏志中学高考模拟训练-数学理 已知2sin 3α=,则cos(2)πα-= ( )(A ) (B )19-6..山东省烟台市2012届高三五月份适应性练习 数学文(二)(2012烟台二模)22sin(250)cos 70cos 155sin 25-︒︒︒-︒的值为A .B .一12C .12D 【答案】C7.山东省烟台市2012届高三五月份适应性练习 数学文(三)已知倾斜角为α的直线的值为则平行与直线α2tan 022,y x l =+- A.54 B.34 C.43 D.32 【答案】A4.(福建省厦门市2012年高中毕业班适应性考试)已知a ∈(3,2ππ),且cos 5α=-,则tan α DA .43B .一43C .-2D .22.(2011年江苏海安高级中学高考数学热身试卷)已知tan 2α=,则s i n ()c o s ()s i n ()c o s ()παπααα++--+-= . 【答案】1贵州省五校联盟2012届高三年级第三次联考试题)10.如果33sin cos cos sin θθθθ->-,且()0,2θπ∈,那么角θ的取值范围是( )A .0,4π⎛⎫ ⎪⎝⎭B .3,24ππ⎛⎫ ⎪⎝⎭ C .5,44ππ⎛⎫ ⎪⎝⎭ D . 5,24ππ⎛⎫⎪⎝⎭C(贵州省五校联盟2012届高三第四次联考试卷) 5.已知πα<<0,21cos sin =+αα ,则α2cos 的值为 ( ) A.4- B.47 C.47± D.43- A(贵州省2012届高三年级五校第四次联考理) 13.函数sin y x x =-的最大值是 . 2(贵州省2012届高三年级五校第四次联考文) 4. 若4cos ,,0,52παα⎛⎫=∈- ⎪⎝⎭则tan 4πα⎛⎫+= ⎪⎝⎭( )A .17 B .7 C .177或D .177-或-A洋浦中学2012届高三第一次月考数学理科试题13.已知函数22()1xf x x =+,则11(1)(2)(3)()()23f f f f f ++++= .25冀州市中学2012年高三密卷(一)6. 已知角α2的顶点在原点, 始边与x 轴非负半轴重合, 终边过⎪⎪⎭⎫⎝⎛-23,21, )[πα2,02∈ 则 =αtan ( )A. 3-B. 3C. 33D. 33±B冀州中学高三文科数学联排试题 10.已知sin θ+cos θ=15,θ∈(0,π),则tan θ的值为 A . 43- B .34- C .43或43- D .43-或34-A河北省南宫中学2012届高三8月月考数学(文) 6.已知2tan =α,则ααcos sian 的值为( )A.21B.32C.52D.1C冀州中学第三次模拟考试文科数学试题13. 已知2()4f x x x =-,则(sin )f x 的最小值为 -32012年普通高考理科数学仿真试题(三) 12.定义一种运算:⎩⎨⎧≤=⊗a b b a a b a ,,,令()()45sin cos 2⊗+=x x x f ,且⎥⎦⎤⎢⎣⎡∈2,0πx ,则函数⎪⎭⎫⎝⎛-2πx f 的最大值是 A.45B.1C.—1D.45-【答案】A2012年普通高考理科数学仿真试题(四) 17.(本小题满分12分)已知函数()().1cos 2267sin 2R x x x x f ∈-+⎪⎭⎫⎝⎛-=π (I )求函数()x f 的周期及单调递增区间;>b.(II )在△ABC 中,三内角A ,B ,C 的对边分别为a,b,c,已知点⎪⎭⎫ ⎝⎛21,A 经过函数()x f 的图象,b,a,c 成等差数列,且9=⋅AC AB ,求a 的值. 【答案】9(广东省韶关市2012届第二次调研考试).已知A 是单位圆上的点,且点A 在第二象限,点B 是此圆与x 轴正半轴的交点,记AOB α∠=, 若点A 的纵坐标为35.则sin α=35_____________; tan(2)πα-=___247____________. 5(广东省深圳市2012高三二模文). tan 2012︒∈A. (0,3B. (3C. (1,3--D. (3- 【答案】B16(上海市财大附中2012届第二学期高三数学测验卷理)对任意的实数α、β,下列等式恒成立的是( ) AA ()()2sin cos sin sin αβαβαβ⋅=++-B .()()2cos sin sin cos αβαβαβ⋅=++-C .cos cos 2sinsin22αβαβαβ+-+=⋅ D .cos cos 2coscos22αβαβαβ+--=⋅17.(上海市财大附中2012届第二学期高三数学测验卷文)已知πα<<0,21cos sin =+αα ,则α2cos 的值为( ) A A .47- B .47 C .47± D .43-3.广东省中山市2012届高三期末试题数学文 已知233sin 2sin ,(,),52cos πθθθπθ=-∈且则的值等于 A .23 B .43 C .—23 D .—43AB7. 广东实验中学2011届高三考前 已知24sin 225α=-, (,0)4πα∈-,则s i n c o s αα+=A .15-B .51 C .75- D .5716. 北海市合浦县教育局教研室2011-2012学年高一下学期期中考试数学试题 已知函数R x x x x f ∈-=,cos sin 3)(,若1)(≥x f ,则x 的取值范围是 ⎭⎬⎫⎩⎨⎧∈+≤≤+z k k x k x ,232ππππ 15. 北海市合浦县教育局教研室2011-2012学年高一下学期期中考试数学试题若⎪⎩⎪⎨⎧>-≤=)0(21)0(6sin )(x x x x x f π,则=)]1([f f 21- 。

湖南师大附中2014届高三月考试卷(七)理科数学

湖南师大附中2014届高三月考试卷(七)理科数学

湖南师大附中2014届高三月考试卷(七)数学(理科)总分:150分 时量:120分钟一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案填在答题卡中对应位置.1.已知i 为虚数单位,则31ii-=+( )A. 12i +B. 1i +C. 1i -D. 12i - 2.在ABC ∆中,若2cos a b C =,则ABC ∆是( )A. 锐角三角形B. 等腰三角形C. 钝角三角形D. 直角三角形 3.如下图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是( )4.已知,x y 满足,2,y x x y x a ≥⎧⎪+≤⎨⎪≥⎩目标函数2z x y =+的最大值为M ,最小值为N ,且4M N =,则a 的值是( ) A. 13B. 14C. 15D. 165.若不等式[(1)]lg 0a n a a --<对任意正整数n 恒成立,则实数a 的取值范围是( )A. 1a >B. 102a <<C. 102a <<或1a >D. 103a <<或1a >6.右图是某同学为求1007个偶数:2,4,6,…,2014的平均数而设计的程序框图的部分内容,则在该程序框图中的空白判断框和处理框 中应填入的内容依次是( )A. 1007?1007x i x >=B. 1007?1007xi x ≥=C. 1007?1007x i x <=D. 1007?1007xi x ≤=7.已知22()|1|f x x x kx =-++,若关于x 的方程()0f x =在(0,2)上有 两个不相等的实根,则k 的取值范围是( )A. (1,0)-B. 7(,)2-+∞C. 7(,)(1,)2-∞--+∞D. 7(,1)2--A 正视图侧视图B C D8.已知在等差数列{}n a 中,201320140,,d a a >是方程2350x x --=的两个根,那么使得前n 项和n S 为负值的最大的n 的值是( )A. 2013B. 2014C. 4025D. 40269.设,P Q是双曲线22x y -=上关于原点O 对称的两点,将坐标平面沿双曲线的一条渐近线l 折成直二面角,则折叠后线段PQ 长的最小值为( )A.B.C. D. 410.已知满足条件221x y +≤的点(,)x y 构成的平面区域的面积为1S ,满足条件22[][]1x y +≤点(,)x y 构成的平面区域的面积为2S (其中[][]x y 、分别表示不大于,x y 的最大整数),则点12(,)S S 一定在( )A. 直线0x y -=上B. 直线210x y --=右下方的区域内C. 直线80x y +-=左下方的区域内D. 直线20x y -+=左上方的区域内二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分,把答案填在答题卡中对应题号后的横线上. (一)选做题(请考生在11、12、13三题中任选两题作答,如果全做,则按前两题记分)11.(极坐标与参数方程)在直角坐标系xOy 中,直线l 的参数方程为,(1x t t y kt =⎧⎨=+⎩为参数),以O 为原点,Ox 轴为极轴,单位长度不变,建立极坐标系,曲线C 的极坐标方程为: 2sin 4cos ρθθ=,若直线l 和曲线C 相切,则实数k 的值为 .12.(几何证明选讲:2012•佛山一模)如图,P 为圆O 外一点,由P引圆O 的切线PA 与圆O 切于A 点,引圆O 的割线PB 与圆O 交于C 点.已知,2,1AB AC PA PC ⊥==,则圆O 的面积为 . 13.(不等式选讲)若不等式|1|22a x y z -≥++,对满足2221x y z ++= 的一切实数,,x y z 恒成立,则实数a 的取值范围是 . (二)必做题(14 ~16题)14.如图所示,在一个边长为1的正方形AOBC 内,曲线2y x =和曲线y (阴影部分),向正方形AOBC 内 随机投一点(该点落在正方形AOBC 内任何一点是等可能的), 则所投的点落在叶形图内部的概率是 .15.在ABC ∆中有如下结论:“若点M 为ABC ∆的重心,则MA MB MC ++=0”,设,,a b c 分别为ABC ∆的内角,,A B C 的对边,点M 为ABC ∆的重心.如果aMA bMB cMC +=0,则内角A 的大小为 ;若3a =,则ABC ∆的面积为 .16.(03 年全国卷)设数列{}n a 是集合{22|0s t s t +≤<,且,}s t Z ∈中所有的数从小到大排列成的数列,即1233,5,6,a a a === 4569,10,12,a a a === ,将数列{}n a 各项按照“上小下大,左小右大”的原则写成如右的三角形数表:(1)这个三角形数表的第四行各数从左到右依次为 ; (2)100a = .B CP三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知向量(2cos ,cos ),,2cos )x x x x ==a b ,函数()3f x =⋅+a b .(Ⅰ)当(0,)2x π∈时,求函数()f x 的值域;(Ⅱ)若28()5f x =,且5(,)612x ππ∈,求cos(2)12x π-的值.18.(本小题满分12分)某高中社团进行社会实践,对[25,55]岁的人群随机抽取n 人进行了一次是否开通“ 微博”的调查,若开通“微博”的称为“时尚族”,否则称为“非时尚族”.通过调查分别得到如图1所(Ⅱ)从[40,45)和[45,50)岁年龄段的“时尚族”中采用分层抽样法抽取18人参加网络时尚达人大赛,其中选取3人作为邻队,若选取的3名领队年龄在[40,45)岁的人数为X ,求X 的分布列和期望()E X .19.(本小题满分12分)(2013·盐城三模)如图,三棱锥P ABC -中,已知PA ⊥平面,ABCABC ∆是边长为2的正三角形,,D E 分别为,PB PC 中点. (Ⅰ)若2,PA =求直线AE 与PB 所成角的余弦值; (Ⅱ)若平面ADE ⊥平面PBC ,求PA 的长.AD CB EP20.(本小题满分13分)由于澳大利亚只有一些袋类低级动物,兔子在这里称王称霸,无限制地繁殖,并与牛羊争草吃,使得全澳牧业损失掺重.澳大利亚政府为维持生态平衡,需从宏观上考察兔子的再生能力及捕杀强度对免子总量的影响,用n x 表示兔子在第*()n n N ∈年年初的总量,且10x >,不考虑其它因素,设在第n 年内兔子的繁殖量及被捕杀量都与n x 成正比,死亡量与2n x 成正比,这些比例系数依次为正常数,,.a b c (Ⅰ)求1n x +与n x 的关系式;(Ⅱ)若2,1a c ==,为保证对任意1(0,2)x ∈,都有*0,n x n N >∈,则捕杀强度b 的最大允许值是多少?证明你的结论. 21.(本小题满分13分) 如图,HIJK 是边长为2的正方形纸片,沿某动直线l 为折痕 将正方形在其下方的部分向上翻折后点I 都落在边HK 上,记为I ',折痕l 与HI 交于点E ,点M 满足关系式EM EI EI '=+ .若以 I 为原点,IJ 所在直线为x 轴建立平面直角坐标系(如图).(Ⅰ)求点M 的轨迹C 的方程;(Ⅱ)若将轨迹C 的方程中的x 的范围扩充为全体实数R ,得到曲线L 的方程,再将曲线L 的图象先向下平移一个单位,然后沿直线y x =轴翻折,最后每个点的横坐标伸长为原来的两倍(纵坐标不变)得到曲线D 的图象,设Q 为曲线D 上的一个动点,点B C 、在y 轴上,若QBC ∆为圆22(1)1x y ++=的外切三角形,求QBC ∆面积的最小值.22.(本小题满分13分)已知函数3(),()2,x x f x e e g x x ax a -=+=+为实常数. (Ⅰ)求()f x 在区间[1,ln 2]-上的最大值;(Ⅱ)当1a =-时,证明:0x R ∃∈,使得()y f x =和()y g x =的图象在0x x =处的切线互相平行; (Ⅲ)若对任意x R ∈不等式()'()f x g x ≥恒成立,求a 的取值范围.参考答案一、选择题D B C B C ;A D C D B 二、填空题11. 1. 12.94π. 13.4a ≥或2a ≤-. 14.13. 15.6π. 16.(1)17,18,20,24;(2)16640.三、解答题17.【解】(Ⅰ)由已知2()22cos 32cos24f x x x x x =++=++ 2sin(2)46x π=++…………………………………………………3分当(0,)2x π∈时,72(,)666x πππ+∈,故1sin(2)(,1]62x π+∈-.故函数()f x 的值域为(3,6]………………………………………………………………6分(Ⅱ)由28()5f x =,得282sin(2)465x π++=,即4sin(2)65x π+=. 因为5(,)612x ππ∈,则2(,)62x πππ+∈,所以3cos(2)5x π+=-…………………………8分故cos(2)cos[(2)]cos(2)sin(212646x x x x πππππ-=+-=+++=………12分 18.【解】(Ⅰ)依题分布直方图知第二组的频率为 21(0.040.040.030.020.0f =-++++⨯= 所以第二组的高为220.065f h ==,频率分布直方 图如右所示:又结合表(1)知第一组的人数为1202000.6=,又10.0450.2f =⨯=,所以样本容量为1200n f == 又第二组的人数有221000300n f =⨯=,故1950.65300p ==……………………………4分同理第四组人数有41000(0.035)150n =⨯⨯=人,故1500.460a =⨯=………………5分 (Ⅱ)因为[40,45)岁和[45,50)岁年龄段的“时尚族”的人数比值为60:302:1=,所以采用分层抽样法抽取18人,[40,45)岁中有12人,[45,50)岁中有6人,…………6分 故随机变量X 服从超几何分布.X 的所有可能值为0,1,2,3.且0312********1818515(0),(1),20468C C C C P X P X C C ====== 21301261263318183355(2),(3),68204C C C C P X P X C C ====== 所以随机变量X 的分布列为 所以数学期望5153355()012322046868205E X =⨯+⨯+⨯+⨯=…………………………………………12分 19.【解】(Ⅰ)如图,取AC 中点F ,连接BF ,则BF AC ⊥,以A 为坐标原点,过A 且与FB 平行的直线为x 轴,AC 为y 轴, AP 为z 轴,建立空间直角坐标系 (2)则(0,0,0),(0,2,0),(0,0,2),(0,1,1)A B C P E ,从而有 ,1,2),(0,1,1)P B A E =-=,设直线AE 与PB 所成的角为 θ,则||1cos 4||||PB AE PB AE θ⋅==⨯,即直线AE 与PB 所成角的余 弦值为14.……………………………………………………6分(Ⅱ)设0PA a =>,则(0,0,)P a ,从而),PB a =-(0,2,)P C a =- ,设平面PBC 的法向量为1(,,)x y z =n ,则110,0PB PC ⋅=⋅=n n,即有 0,20y az y az +-=-=⎪⎩令2z =时,则,3x y a ==.所以1,,2)3a =n ………………8分又因为,D E 分别是,PB PC 的中点,所以1,),(0,1,),222a aD E 则1,),(0,1,).222a aAD AE == 设平面ADE 的法向量为2(,,)x y z =n ,则220,0AD AE ⋅=⋅=n n ,有10,220,2ax y z a y z ++=⎨⎪+=⎪⎩,令2z =时,有,x y a ==-,故2(,,2)a =-n ……………………………………………………………………10分 又因为平面ADE ⊥平面PBC ,所以12120()()220a a ⊥⇔⋅=⇔⨯+⨯-+⨯=n n n n解得a =,即PA =分20.【解】(Ⅰ)从第n 年初到第1n +年初,兔子的繁殖量为n ax ,被捕杀量为n bx ,死亡量为2n cx ,因此2*1,n n n n nx x ax bx cx n N +-=--∈,即*1(1),n n n x x a b cx n N +=+--∈,……………4分 (Ⅱ)当2,1a c ==时,则*1(3),n n n x x b x n N +=--∈,若b 的值使得0n x >,则只需30n b x -->对*n N ∈恒成立,即03n x b <<-,于是令1n =时,必有103x b <<-也成立.而1(0,2)x ∈,于是23b ≤-,即(0,1]b ∈.由此猜想b 的最大允许值是1.……………………………………………………………8分 下面用数学归纳法证明,当1(0,2),1x b ∈=时,都有(0,2)n x ∈ ①当1n =时,结论显然成立;②假设当*(,1)n k k N k =∈≥时,结论成立,即有(0,2)k x ∈,则当1n k =+时,由*1(3),n n n x x b x n N +=--∈得,212(2)()12k k k k k x x x x x ++-=-≤=(当1k x =时取到“=”)所以1(0,1](0,2)k x +∈⊆,即当1n k =+时,结论也成立.综上①②可知对一切*n N ∈,都有(0,2)n x ∈.故捕杀强度b 的最大允许值为1.………………………………………………………13分 21.【解】(Ⅰ)设(,)M x y ,由题可知(0,0)I ,设(0,),(0,2)E t t ∈,(,2)I s ',连结II EJ A ''= ,则,(,1)2s II EJ A ''⊥,又(,2),II s '= (,1)2s E A t =- ,所以22202s t +-=,即244s t =-………3分 又EM EI EI '=+ 得,,2x s y t =⎧⎨=-⎩代入上式得214x y =-+, 又因为点I 都落在边HK 上,故0,2]x s =∈[,即21,024x y x =-+≤≤…………………5分(Ⅱ)依题意曲线D 的方程是22(0)y x x =-≤………………………………………………6分(参考:22222121244424y=x ,x x y x y y y x y x =-+=-=-=-⇔=-沿直线向下平移横坐标伸长为原来个单位的倍纵坐标不变轴翻折 )设200000(,),0,2Q x y x y x <=-,显然直线,QB QC 的斜率都存在,记(0,),(0,),B b C c b c ≠,又设直线00:,y b QB y kx b k x -=+=,1=, 即2210b kb --=,也所以200210y bb b x ---=, 可化为2000(2)20x b y b x +--=. 显然同理可得2000(2)20xc y c x +--=,所以,b c 是2000(2)20x x y x x +--=两根,且200044(2)y x x ∆=++=故00002,22y x b c bc x x -+==++,所以002|||||2|x b c x -=+, 所以20001||||2|2|QBCx S BC x x ∆=⨯=+,又注意到,B C 在原点两侧,故0002x bc x =-<+, 即020x +<,于是20001||||22QBCx S BC x x ∆=⨯=-+,令0(2)m x =-+,则0m >, 于是2(2)44QBC m S m m m∆--==++≥8(当2m =,即04x =-时取到等号).所以QBC ∆面积的最小值为8.…………………………………………………………13分 22.【解】(Ⅰ)21(1)(1)()'x x x xxx xe e ef x e e e e --+-=-==, 显然当(0,)x ∈+∞时,'()0,()f x f x >递增;当(,0)x ∈-∞时,'()f x 所以()f x 在区间[1,ln 2]-上的最大值为(1),(ln 2)f f - 因为1(1)(1)(ln 2)f e f f e -=+=>,所以()f x 在区间[1,ln 2]-上的最大值为1(1)f e e-=+.(Ⅱ)当1a =-时,2(),'()23'x x f x e e g x x -=-=-, 依题意0x R ∃∈,使得00'()'(),f x g x =且00()()f x g x ≠, 令2()'()'()32x x h x f x g x e e x -=-=-+- (结合函数2,32x x y e e y x -=-=-+草图如右)由1(0)20,(1)10h h e e=-<=-+>,所以0(0,1)x ∃∈,使得000()0'()'()h x f x g x =⇔=.又当(0,1)x ∈时,()2x x f x e e -=+≥=,而3()2,(0,1)g x x x x =-+∈,由222'()233()3(3g x x x x x =-=--=-可知,当)x ∈时,'()0g x >,当(3x ∈时,'()0g x <,所以当x =时,()g x 有极大值,也是最大值,此时2()(2))23g x g ≤-<所以当(0,1)x ∈时,()()g x f x <恒成立,即00()()f x g x ≠.所以当1a =-时,0x R ∃∈,使得()y f x =和()y g x =的图象在0x x =处的切线互相平行. (Ⅲ)令2()()()23'x x F x f x g x e e ax -=-=+--,显然()F x 为R 上偶函数,故()'()f x g x ≥恒成立()0F x ⇔≥对[0,)x ∈+∞恒成立. 又因为(0)0F =,可知此时函数min ()0F x =.则又'()()6,0x x F x e e ax x -=--≥,注意到000x x e e e e ---≥-=,所以 ①当0a ≤时,'()0F x ≥,则()F x 在[0,)+∞上递增,符合题意; ②当0a >时,()6"x x F x e e a -=+-,注意到2x x e e -+≥,所以1)当103a <≤时,则"()0,'()F x F x ≥在[0,)+∞上递增,于是'()'(0)0F x F ≥=, 也所以()F x 在[0,)+∞上递增,符合题意;……………………………………………11分2)当13a >时,令"()0F x =的零点为0x t =>,易知函数"()F x 为增函数(其导函数在[0,)+∞上恒大于0),故可知当[0,)x t ∈时,"()0F x <,也所以'()F x 在[0,)t 上递减,故有 ()'(0)0'F x F ≤=,从而()F x 在[0,)t 上递减,于是出现()(0)0F x F <=,这与min ()0F x =矛盾!舍去;综上可知a 的取值范围为1(,]3-∞为所求.………………………………………………13分。

湖南师大附中2012-2013学年高三第一次月考数学试卷(文科)

湖南师大附中2012-2013学年高三第一次月考数学试卷(文科)

2012-2013学年湖南师大附中高三第一次月考数学试卷(文科)参考答案与试题解析一、选择题:本大题共9小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.﹣ ﹣﹣﹣=2.(5分)(2012•北京模拟)当a=3时,下面的程序段输出的结果是( ) IF a <10 THEN y=2+a ELSE y=a*a4.(5分)设函数,且函数f (x )为偶函数,则g (﹣2)=( )解:∵6.(5分)函数,g (x )=3x﹣1,则不等式f[g (x )]≥0的解集为( )①②,解得7.(5分)点,则x 2+y 2的取值范围是( )解:约束条件==,的取值范围∠ADC=30°,则斜坡AD 的长为( )C |AC|=|AC|====|AD|=a 半;如果它是奇数,则将它乘3再加1,不断重复这样的运算,经过有限步后,一定可以得到1.如初始正整数为6,按照上述变换规则,得到一个数列:6,3,10,5,16,8,4,2,1.现在请你研究:如果对正10.(5分)(2012•湖北)设△ABC 的内角A ,B ,C ,所对的边分别是a ,b ,c .若(a+b ﹣c )(a+b+c )=ab ,则角C=.cosC==C=.故答案为:11.(5分)(2012•上海)已知y=f (x )+x 2是奇函数,且f (1)=1,若g (x )=f (x )+2,则g (﹣1)=13.(5分)已知函数f (x )=x 2+ax+b ﹣3,f (x )的图象恒过点(2,0),则a 2+b 2的最小值为 .a++,﹣,﹣时,的最小值为.故答案为:.14.(5分)(2012•黑龙江)已知向量夹角为45°,且,则= 3.解:∵,=1∴=|2|====解得3下列关于函数f (x )的命题; ①函数f (x )的值域为[1,2];②函数f (x )在[0,2]上是减函数;③如果当x ∈[﹣1,t ]时,f (x )的最大值是2,那么t 的最大值为4; ④当1<a <2时,函数y=f (x )﹣a 有4个零点. 其中真命题为 ② (填写序号)16.(12分)已知函数f (x )=cos 2x ﹣sin 2x+2sinxcosx (1)求f (x )的最小正周期和单调递增区间; (2)求f (x )在[﹣,]上的值域.=cos2x+sin2x=sin 2x+﹣≤2x+≤+﹣≤+﹣])∵﹣,∴﹣≤2x+≤,∴≤2x+,]1111(1)证明:BC⊥AC1;(2)求直线AB与平面A1BC所成角的正弦值.AM=2,,所成角的正弦值为18.(12分)已知数列{a n}是等差数列,Sn是其前n项的和,且a3=5,S3=9(1)求首项a1和公差d;(2)若存在数列{b n},使a1b 1+a2b2+L+a n b n=5+(2n﹣3)2n+1对任意正整数n都成立,求数列{b n}的前n)由题意可得,解得==1+万件,则可获利﹣lnx+万美元,受美联货币政策影响,美元贬值,获利将因美元贬值而损失mx万美元,其中m为该时段美元的贬值指数,且m∈(0,1).(1)若美元贬值指数m=,为使得企业生产获利随x的增加而增长,该企业生产数量应在什么范围?(2)若因运输等其他方面的影响,使得企业生产x万件产品需增加生产成本万美元,已知该企业生产能力为x∈[4,10],试问美元贬值指数m在什么范围内取值才能使得该企业生产每件产品获得的平均利润m=,则企业获得利润是lnx+﹣时,都有﹣+﹣,﹣+﹣,则﹣+﹣﹣+﹣上的最小值为≤与椭圆相交于不同的两点代入椭圆,可得与椭圆相交于不同的两点﹣,= =+==x+﹣x+x+x+x+﹣+≥=,≥,∴。

2025届上师大附中高三数学上学期10月考试卷一附答案解析

2025届上师大附中高三数学上学期10月考试卷一附答案解析

2025届上师大附中高三10月月考数学试卷一一、填空题(1-6每题4分,7-12每题5分,共54分)1.函数()f x =的定义域为__.【答案】(0,1].【解析】【分析】由函数有意义需要的条件,求解函数定义域【详解】函数的意义,有0110x x≠⎧⎪⎨-≥⎪⎩,解得01x <≤,即函数()f x =定义域为(0,1].故答案为:(0,1]2. 已知0a >=________.【答案】34a 【解析】【分析】根式形式化为分数指数幂形式再由指数运算化简即可.1113322224a a a a ⎛⎫⎛⎫=⋅== ⎪ ⎪⎝⎭⎝⎭.故答案为:34a .3. 已知幂函数()f x 的图象经过点13,9⎛⎫ ⎪⎝⎭,求(3)f -=_________.【答案】19【解析】【分析】设幂函数为(),R f x x αα=∈,根据题意求得2α=-,得到2()f x x -=,代入即可求解.【详解】设幂函数为(),R f x x αα=∈,因为幂函数()f x 的图象经过点13,9⎛⎫ ⎪⎝⎭,可得139α=,解得2α=-,即2()f x x -=,所以21(3)(3)9f --=-=.故答案为:19.4. 若1sin 3α=,则cos(2)πα-=____.【答案】79-【解析】【分析】原式利用诱导公式化简后,再利用二倍角的余弦函数公式变形,将sin α的值代入计算即可求出值.【详解】因为1sin 3α=,所以()2227cos(2)cos 212sin12sin 199παααα-=-=--=-+=-+=-.故答案为: 79-5. 已知集合{|3sin ,}M y y x x =∈=R ,{|||}N x x a =<,若M N ⊆,则实数a 的取值范围是___________.【答案】(3,)+∞【解析】【分析】先求出集合M ,N ,再由M N ⊆可求出实数a 的取值范围【详解】解:由题意得{}{|3sin ,}33M y y x x y y ===-≤∈≤R ,{}{|||}N x x a x a x a =<=-<<,因为M N ⊆,所以3a >,故答案为:(3,)+∞6. 设a ,b ∈R .已知关于x 的不等式250ax x b -+>的解集为21,34⎛⎫-⎪⎝⎭,则不等式250ax x b ++<的解集为__________.【答案】12,,43⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭【解析】【分析】先由不等式250ax x b -+>的解集为21,34⎛⎫- ⎪⎝⎭求出实数a ,b 的值,再求不等式250ax x b ++<的解集.【详解】∵不等式250ax x b -+>的解集为21,34⎛⎫- ⎪⎝⎭,∴方程250ax x b -+=的两根分别为123x =-,214x =,且0a <∴由韦达定理可知,1212215342134x x a b x x a ⎧+=-+=⎪⎪⎨⎛⎫⎪=-⨯= ⎪⎪⎝⎭⎩解得122a b =-⎧⎨=⎩,∴将a ,b 代入不等式250ax x b ++<得212520x x -++<,即212520x x -->()()32410x x ⇔-+>∴不等式250ax x b ++<的解集为12,,43⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.故答案为:12,,43⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.7. 已知锐角α的顶点为原点,始边为x 轴的正半轴,将α的终边绕原点逆时针旋转π6后交单位圆于点1,3P y ⎛⎫- ⎪⎝⎭,则sin α的值为________.【解析】【分析】先求得ππcos ,sin 66αα⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,然后利用三角恒等变换的知识求得sin α【详解】由于1,3P y ⎛⎫- ⎪⎝⎭在单位圆上,所以222181,39y y ⎛⎫-+== ⎪⎝⎭,由于α是锐角,所以289y y =⇒=13P ⎛- ⎝,所以π1πcos ,sin 636αα⎛⎫⎛⎫+=-+= ⎪ ⎪⎝⎭⎝⎭所以ππππππsin sin sin cos cos sin 666666αααα⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1132=⨯=.8. 已知()()()()1f x x x a x b =+++.若()y f x =为奇函数,则()0f '=__________.【答案】1-【解析】【分析】根据题意,求得()3f x x x =-,得到()231f x x ='-,即可求解.【详解】由函数()()()()321(1)()f x x x a x b x a b x a b ab x ab =+++=+++++++,可得()32(1)()f x x a b x a b ab x ab -=-+++-+++因为函数()f x 为R 上的奇函数,可得()()f x f x -=-,即3232(1)()(1)()x a b x a b ab x ab x a b x a b ab x ab -+++-+++=--++-++-,所以100a b ab ++=⎧⎨=⎩,解得01a b =⎧⎨=-⎩或10=-⎧⎨=⎩a b ,所以()3f x x x =-,可得()231f x x ='-,所以()01f '=-.故答案为:1-.9. 如图,某同学为测量鹳雀楼的高度MN ,在鹳雀楼的正东方向找到一座建筑物AB ,高约为37m ,在地面上点C 处(,,B C N 三点共线)测得建筑物顶部A ,鹳雀楼顶部M 的仰角分别为30o 和45 ,在A 处测得楼顶部M 的仰角为15 ,则鹳雀楼的高度约为___________m .【答案】74【解析】【分析】根据题意在Rt △ABC 中求出AC ,在△MCA 中利用正弦定理求出MC ,然后在Rt △MNC 中可求得结果.【详解】在Rt △ABC 中,274AC AB ==,在△MCA 中,105MCA ︒∠=,45MAC ︒∠=,则18030AMC MCA MAC ︒︒∠=-∠-∠=,由正弦定理得sin sin MC AC MAC AMC=∠∠,即74sin 45sin 30MC ︒︒=,解得MC =,在Rt △MNC中,74m MN ==.故答案:7410. 对于函数()f x 和()g x ,设(){}|0x f x α∈=,(){}|0x g x β∈=,若存在α,β,使得1αβ-<,则称()f x 与()g x 互为“零点相邻函数”.若函数()1e 2x f x x -=+-与()21g x x ax =-+互为“零点相邻函数”,则实数a 的取值范围是______.【答案】[2,)+∞【解析】【分析】由题知函数()f x 有唯一零点1,进而得210x ax -+=在(0,2)上有解,再根据二次函数零点分布求解即可.【详解】因为1()e 2-=+-x f x x ,所以()f x 在R 上为增函数,又0(1)e 120f =+-=,所以()f x 有唯一零点为1,令()g x 的零点为0x ,依题意知0||11x -<,即002x <<,即函数()g x 在(0,2)上有零点,令()0g x =,则210x ax -+=(0,2)上有解,即1x a x +=在(0,2)上有解,因为12x x +≥=,当且仅当1x x =,即1x =时,取等号,所以2a ≥,故答案为:[2,)+∞.为为在11. 若函数()y f x =的图像上存在不同的两点M (x 1,y 1)和N (x 2,y 2),满足1212x x y y +≥()y f x =具有性质P ,给出下列函数:①()sin f x x =;②()x f x e =;③1(),(0,)f x x x x=+∈+∞;④()||1f x x =+.其中其有性质p 的函数为________(填上所有正确序号).【答案】①②【解析】【分析】利用数量积性质得出过点O 的直线与函数图像存在至少两个不同的交点,结合函数图象可得.【详解】1212||||cos ,,|||OM ON x x y y OM ON OM ON OM ON ⋅=+=〈〉==所以1212cos ,1x x y y OM ON +≥⇔〈〉≥ ,即cos ,1OM ON 〈〉=± .即O ,M ,N 三点共线,即过点O 的直线与函数图像存在至少两个不同的交点,由图可知,①②符合.故答案为:①②12. 已知函数()ln 1f x b x =--,若关于x 的方程()0f x =在2e,e ⎡⎤⎣⎦上有解,则22a b +的最小值为______.【答案】29e 【解析】【分析】设函数()f x 在2e,e ⎡⎤⎣⎦上的零点为m ,则由ln 10b m +--=,则(),P a b 在直线:ln 10l x y m +--=上,则22a b +可看作是O 到直线l 的距离的平方,利用导数求出其最小值即可得到答案【详解】解:设函数()f x 在2e,e ⎡⎤⎣⎦上的零点为m ,则ln 10b m --=,所以点(),P a b 在直线ln 10l x y m +--=上,设O 为坐标原点,则222||a b OP +=,其最小值就是O 到直线l 的距离的平方,,2e,eméùÎêúëû,设t⎤=⎦,设()2ln1tg tt+=,则()()212lntg t tt-⎤'=≤∈⎦,所以()g t在⎤⎦上单调递减,所以()()min3eeg t g==,3e≥即2229ea b+≥,所以22a b+的最小值为29e,故答案为:29e二、选择题(13-14每题4分,15-16每题5分,共18分)13. 已知a b∈R,且0ab≠,则“22a b>”是“11a b<”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】D【解析】【分析】结合指数函数单调性,根据充分必要条件的定义分别进行判断即可.【详解】22a b a b>⇔>Q,当0a b>>时,11a b<不成立,当11a b<<时,a b>不成立.所以a b>是11a b<的既不充分也不必要条件,即22a b>是11a b<的既不充分也不必要条件.故选:D.14. 设函数()sinf x x=,若对于任意5π2π,63α⎡⎤∈--⎢⎥⎣⎦,在区间[0,]m上总存在唯一确定的β,使得()()0f fαβ+=,则m的值可能是()A.π6B.π3C.2π3D.5π6【答案】B【解析】的【分析】由等量关系找α与β的关系,由α的范围求出sin β的范围,从而得出m 的值.【详解】∵()()0f f αβ+=,∴sin sin 0αβ+=,即()sin sin sin βαα=-=-,∵5π2π,63α⎡⎤∈--⎢⎥⎣⎦,即2π5π,36α⎡⎤-∈⎢⎥⎣⎦,∴()1sin sin 2βα⎡=-∈⎢⎣,又∵[]0,m β∈,∴π3m =故选:B15. 已知在ABC V 中,0P 是边AB 上一定点,满足023P B AB = ,且对于边AB 上任意一点P ,都有00PB PC P B P C ⋅≥⋅ ,则ABC V 是( )A. 钝角三角形B. 直角三角形C. 锐角三角形D. 无法确定【答案】A【解析】【分析】取BC 的中点D ,DC 的中点E ,连接0P D ,AE ,根据向量的线性运算计算向量00,P B P C 并计算00P B P C ⋅ ,同理计算PB PC ⋅ ,根据不等关系可得出对于边AB 上任意一点P 都有0PD P D ≥ ,从而确定0P D AB ⊥,从而得到结果.【详解】取BC 的中点D ,DC 的中点E ,连接0P D ,AE (如图所示),则()()0000P B P C P D DB P D DC ⋅=+⋅+ ()()22000P D DB P D DB P D DB =+⋅-=- ,同理22PB PC PD DB ⋅=- ,因为00PB PC P B P C ⋅≥⋅ ,所以22220PD DB P D DB -≥- ,即220PD P D ≥ ,所以对于边AB 上任意一点P 都有0PD P D ≥ ,因此0P D AB ⊥,又023P B AB = ,D 为BC 中点,E 为DC 中点,所以023P B BD AB BE ==,所以0//P D AE ,即90BAE ∠=︒,所以90BAC ∠>︒,即ABC V 为钝角三角形.故选:A .16. 设函数,()2,2x x P f x x x M x∈⎧⎪=⎨+∈⎪⎩其中,P M 是实数集R 的两个非空子集,又规定(){(),},(){(),}A P y y f x x P A M y y f x x M ==∈==∈∣∣,有下列命题:①对任意满足P M ⋃=R 的集合P 和M ,都有()()A P A M ⋃=R ;②对任意满足P M ⋃≠R 的集合P 和M ,都有()()A P A M ⋃≠R ,则对于两个命题真假判断正确的是( )A. ①和②都是真命题B. ①和②都是假命题C. ①是真命题,②是假命题D. ①是假命题,②是真命题【答案】B【解析】【分析】根据集合的新定义对两个命题进行分析,从而确定正确答案.【详解】对于①可举反例,(,0],(0,)P M =-∞=+∞此时()()()()(),0,2,,A P A M A P A M ∞∞⎤⎡=-=+⋃≠⎦⎣R ,故①是假命题;对于②,可举反例(,4],(4)P M =-∞=++∞,此时()(,4],()(4,),()()R A P A M A P A M =-∞=+∞= ,故②是假命题;故选:B【点睛】解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.三、解答题(共5题,满分78分)17. 已知向量3sin ,,(cos ,1)4a x b x ⎛⎫==- ⎪⎝⎭ .(1)当a b∥时,求tan 2x 的值;(2)设函数()2()f x a b b =+⋅ ,且π0,2x ⎛⎫∈ ⎪⎝⎭,求()f x 的值域.【答案】(1)247- (2)1322⎛⎤+ ⎥⎝⎦【解析】【分析】(1)根据向量平行列出等式,计算tan x 的值,二倍角公式即可计算tan 2x ;(2)计算()f x ,并用辅助角公式化简,根据角的范围可求出值域.【小问1详解】因为a b∥,所以3sin cos 4x x -=,因为cos 0x ≠,所以3tan 4x =-,所以22tan 24tan 21tan 7x x x ==--.【小问2详解】213π3()2()2sin cos 2cos sin 2cos 222242f x a b b x x x x x x ⎛⎫=+⋅=++=++=++ ⎪⎝⎭ ,因为π0,2x ⎛⎫∈ ⎪⎝⎭,所以ππ5π2,444x ⎛⎫+∈ ⎪⎝⎭,所以πsin 24x ⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,所以()f x的值域为1322⎛⎤ ⎥⎝⎦.18. 已知函数()22x x a f x =+其中a 为实常数.(1)若()07f =,解关于x 的方程()5f x =;(2)判断函数()f x 的奇偶性,并说明理由.【答案】(1)1x =或2log 3(2)答案见解析【解析】【分析】(1)因为()22x x a f x =+,()07f =,可得6a =,故6()22x x f x =+,因为()5f x =,即6252x x+=,通过换元法,即可求得答案;(2)因为函数定义域为R ,分别讨论()f x 为奇函数和()f x 为偶函数,即可求得答案.【详解】(1) ()22x xa f x =+,∴()07f =,即17a +=解得:6a =可得:6()22x xf x =+ ()5f x =∴6252x x+=令2x t =(0t >)∴65t t+=,即:2560t t -+=解得:12t =或23t =即:122x =,223x =∴11x =或22log 3x =.(2)函数定义域为R ,①当()f x 为奇函数时,根据奇函数性质()()f x f x -=-可得2222x x x x a a --⎛⎫+=-+ ⎪⎝⎭恒成立即1(1)202x x a ⎛⎫+⋅+= ⎪⎝⎭恒成立,∴1a =-.②当()f x 为偶函数时,根据偶函数性质()()f x f x -=可得2222x x x x a a --+=+恒成立即1(1)202x x a ⎛⎫-⋅-= ⎪⎝⎭恒成立,∴1a =.③当1a ≠±时,函数为非奇非偶函数.【点睛】本题主要考查了解指数方程和根据奇偶性求参数,解题关键是掌握指数方程的解法和奇偶函数的定义,考查了分析能力和计算能力,属于中档题.19. 某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金y (万元)随投资收益x (万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.(1)若建立函数()f x 模型制定奖励方案,试用数学语言表述公司对奖励函数()f x 模型的基本要求;(2)现有两个奖励函数模型:①()2150x f x =+;②()ln 2f x x =-;问这两个函数模型是否符合公司要求,并说明理由?【答案】(1)答案见解析(2)()2150x f x =+不符合公司要求,()ln 2f x x =-符合公司要求,理由见解析【解析】【分析】(1)根据题意,用数学语言依次写出函数()f x 的要求即可;(2)判断两个函数模型的单调性,并判断()9f x ≤,()5x f x ≤是否成立得解.【小问1详解】设奖励函数模型为()y f x =,则公司对奖励函数模型基本要求是:当[]10,1000x ∈时,()f x 是严格增函数,()9f x ≤恒成立,()5x f x ≤恒成立.【小问2详解】①对于函数模型()2150x f x =+,易知当[]10,1000x ∈时,()f x 为增函数,且()()max 26100093f x f ==<,所以()9f x ≤恒成立,但是()101005f ->,不满足()5x f x ≤恒成立,所以()2150x f x =+不符合公司要求;②对于函数模型()ln 2f x x =-,的当[]10,1000x ∈时,()10f x x'=>,所以()f x 为增函数,且()max f x f =()100023ln109=-+<,所以()9f x ≤恒成立,令()()ln 255x x g x f x x =-=--,则()1105g x x '=-<,所以()()10ln1040g x g =-<≤,所以()5x f x ≤恒成立,所以()ln 2f x x =-符合公司要求.20. 已知函数()y f x =的定义域为区间D ,若对于给定的非零实数m ,存在0x ,使得()()00f f x x m =+,则称函数()y f x =在区间D 上具有性质()P m .(1)判断函数()2f x x =在区间[]1,1-上是否具有性质12P ⎛⎫ ⎪⎝⎭,并说明理由;(2)若函数()sin f x x =在区间()()0,0>n n 上具有性质4P π⎛⎫⎪⎝⎭,求n 的取值范围;(3)已知函数()y f x =的图像是连续不断的曲线,且()()02f f =,求证:函数()y f x =在区间[]0,2上具有性质13P ⎛⎫ ⎪⎝⎭.【答案】(1)具有性质12P ⎛⎫ ⎪⎝⎭,理由见解析 (2)5,8π⎛⎫+∞ ⎪⎝⎭(3)证明见解析【解析】【分析】(1)由题可得220012x x ⎛⎫=+ ⎪⎝⎭,则014x =-,结合条件即得;(2)由00sin sin 4x x π⎛⎫=+⎪⎝⎭,解得038x k ππ=+,()()050,N 48x k n k πππ+=+∈∈,可得58n π>,即得;(3)设()()13g x f x f x ⎛⎫=-+ ⎪⎝⎭,50,3x ⎡⎤∈⎢⎥⎣⎦,可得()()()1150200333k g g g g f f -⎛⎫⎛⎫⎛⎫++⋅⋅⋅++⋅⋅⋅+=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当()0g 、13g ⎛⎫ ⎪⎝⎭、⋅⋅⋅、13k g -⎛⎫ ⎪⎝⎭、⋅⋅⋅、53g ⎛⎫ ⎪⎝⎭中有一个为0时,可得111333i i f f --⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,{}1,2,3,,6i ∈⋅⋅⋅,即证;当()0g 、13g ⎛⎫ ⎪⎝⎭、⋅⋅⋅、13n g -⎛⎫ ⎪⎝⎭、⋅⋅⋅、53g ⎛⎫ ⎪⎝⎭中均不为0时,由于其和为0,则其中必存在正数和负数,不妨设103i g -⎛⎫> ⎪⎝⎭,103j g -⎛⎫< ⎪⎝⎭,结合条件可知,存在0x ,()()000103g x f x f x ⎛⎫=-+= ⎪⎝⎭,即证.【小问1详解】函数()2f x x =在[]1,1-上具有性质12P ⎛⎫⎪⎝⎭.若220012x x ⎛⎫=+ ⎪⎝⎭,则014x =-,因为[]11,14-∈-,且[]1111,1424-+=∈-,所以函数()2f x x =在[]1,1-上具有性质12P ⎛⎫⎪⎝⎭.【小问2详解】解法1:由题意,存在()00,x n ∈,使得00sin sin 4x x π⎛⎫=+ ⎪⎝⎭,得0024x x k ππ+=+(舍)或0024x k x πππ+=+-()k ∈Z ,则得038x k ππ=+.因为0308x k ππ=+>,所以k ∈N .又因为()030,8x k n ππ=+∈且()()050,48x k n k πππ+=+∈∈N ,所以58n π>,即所求n 的取值范围是5,8π⎛⎫+∞ ⎪⎝⎭.解法2:当02n π<≤时,函数()sin f x x =,()0,x n ∈是增函数,所以不符合题意;当2n π>时,因为直线2x π=是函数()sin f x x =的一条对称轴,而函数()sin f x x =在区间()()0,0>n n 上具有性质4P π⎛⎫ ⎪⎝⎭,所以224n ππ⎛⎫-> ⎪⎝⎭,解得58n π>,即所求n 的取值范围是5,8π⎛⎫+∞ ⎪⎝⎭.【小问3详解】设()()13g x f x f x ⎛⎫=-+ ⎪⎝⎭,50,3x ⎡⎤∈⎢⎥⎣⎦.则有()()1003g f f ⎛⎫=- ⎪⎝⎭,112333g f f ⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()22133g f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,⋅⋅⋅,11333k k k g f f --⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,⋅⋅⋅,()55233g f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭{}()1,2,3,,6k ∈⋅⋅⋅.以上各式相加得()()()115020333k g g g g f f -⎛⎫⎛⎫⎛⎫++⋅⋅⋅++⋅⋅⋅+=- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭即()11500333k g g g g -⎛⎫⎛⎫⎛⎫++⋅⋅⋅++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,(ⅰ)当()0g 、13g ⎛⎫ ⎪⎝⎭、⋅⋅⋅、13k g -⎛⎫ ⎪⎝⎭、⋅⋅⋅、53g ⎛⎫ ⎪⎝⎭中有一个为0时,不妨设103i g -⎛⎫= ⎪⎝⎭,{}1,2,3,,6i ∈⋅⋅⋅,即110333i i i g f f --⎛⎫⎛⎫⎛⎫=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即111333i i f f --⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,{}1,2,3,,6i ∈⋅⋅⋅,所以函数()y f x =在区间[]0,2上具有性质13P ⎛⎫⎪⎝⎭.(ⅱ)当()0g 、13g ⎛⎫ ⎪⎝⎭、⋅⋅⋅、13n g -⎛⎫ ⎪⎝⎭、⋅⋅⋅、53g ⎛⎫ ⎪⎝⎭中均不为0时,由于其和为0,则其中必存在正数和负数,不妨设103i g -⎛⎫>⎪⎝⎭,103j g -⎛⎫< ⎪⎝⎭,其中i j ≠,{}1,2,3,,6i j ∈⋅⋅⋅、.由于函数()y g x =的图像是连续不断的曲线,所以当i j <时,至少存在一个实数011,33i j x --⎛⎫∈ ⎪⎝⎭(当i j >时,至少存在一个实数011,33j i x --⎛⎫∈ ⎪⎝⎭),其中{}1,2,3,,6i j ∈⋅⋅⋅、,使得()00g x =,即()()000103g x f x f x ⎛⎫=-+= ⎪⎝⎭,即存在0x ,使得()0013f x f x ⎛⎫=+ ⎪⎝⎭,所以函数()y f x =在区间[]0,2上也具有性质13P ⎛⎫⎪⎝⎭.综上,函数()y f x =在区间[]0,2上具有性质13P ⎛⎫⎪⎝⎭.21. 已知函数()e (,1),()(,)k x f x x k k g x cx m c m =∈≥=+∈N R ,其中e 是自然对数的底数.(1)当1k =时,若曲线()y f x =在1x =处的切线恰好是直线()y g x =,求c 和m 的值;(2)当1k =,e m =-时,关于x 的方程()()f x g x =有正实数根,求c 的取值范围:(3)当2,1k m ==-时,关于x 的不等式2()e ()f x ax bx g x -≥+≥对于任意[1,)x ∈+∞恒成立(其中,a b ∈R ),当c 取得最大值时,求a 的最小值.【答案】(1)2e,e c m ==-(2)[2e,)+∞(3)1【解析】【分析】(1)利用导数求得()f x 在1x =处的切线方程,通过对比系数求得,c m .(2)由()()f x g x =分离c ,利用构造函数法,结合导数来求得c 的取值范围.(3)由恒成立的不等式得到e 1e xc x x-≤-恒成立,利用构造函数法,结合导数来求得c 的最大值,进而求得a 的最小值,并利用构造函数法,结合导数来判断a 的最小值符合题意.【小问1详解】当1k =时,()e x f x x =,所以()(1)e x f x x '=+,由(1)e,(1)2e f f '==,得曲线()y f x =在1x =处的切线方程为e 2e(1)y x -=-,即2e e y x =-,由题意,2e,e c m ==-.【小问2详解】当1k =,e m =-时,()e ,()e x f x x g x cx ==-,由题意,方程e e x x cx =-在(0,)+∞上有解,即e e x c x =+在(0,)+∞上有解,令e ()e (0)x h x x x =+>,则2e e ()x h x x'=-,由()0h x '=得1x =,()h x '在()0,∞+上严格递增,所以:当(0,1)x ∈时,()0h x '<,所以()h x 严格递减,当(1,)x ∈+∞时,()0h x '>,所以()h x 严格递增,所以min ()(1)2e h x h ==,又x →+∞时,()h x →+∞,所以()h x 的值域为[2e,)+∞,所以c 的取值范围为[2e,)+∞.【小问3详解】当2,1k m ==-时,2()e ,()1x f x x g x cx ==-,由题意,对于任意2[1,),()e ()x f x ax bx g x ∈+∞-≥+≥恒成立,即:22e e 1x x ax bx cx -≥+≥-(*)恒成立,那么,2e 1x x cx ≥-恒成立,所以e 1e xc x x-≤-恒成立,令e 1()e (1)x x x x x ϕ-=-≥,则2e 1()(1)e 0x x x x ϕ-'=++>在[1,)+∞上恒成立,所以()ϕx 在[1,)+∞上严格递增,所以min ()(1)1x ϕϕ==,从而1c ≤,即c 的最大值为1,1c =时,取1x =代入(*)式,得00a b ≥+≥,所以=-b a ,所以21ax ax x -≥-在[1,)+∞上恒成立,得1a ≥,即a 的最小值为1,当1a =时,记()222()()e e e (1)x F x f x x x x x x x =---=--+≥,则()2()2e 21x F x x x x '=+-+,设()()()()222e 21,42e 2x x x x x u u x x x x '+-+=++-=,因为()u x '在[1,)+∞上严格递增,所以()()17e 20u x u ''≥=->,所以()F x '在[1,)+∞上严格递增,所以()(1)3e 10F x F ''≥=->,所以()F x 在[1,)+∞上严格递增,所以()(1)0F x F ≥=,从而对于任意2[1,),()e ()x f x ax bx g x ∈+∞-≥+≥恒成立,综上,a 的最小值为1.【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题,注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南师大附中2012届高三上学期第一次月考试题(数
学理)
本试卷包括选择题、填空题和解答题三部分,时量120分钟。

满分150分。

一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一
项是符合题目要求的。

1.已知集合=⋂>=<--=-B A x B x x x A x 则},12|{},032|{12 ( ) 2.下列命题错误的是
( )
A .对于命题p :若y x xy ,,0则=中至少有一个为零,则p ⌝是:若y x xy ,,0则≠都不为零
B .对于命题01,:,01,:22≥++∈∀⌝<++∈∃x x R x p x x R x p 均有是则使得
C .命题“若0>m ,则方程02
=-+m x x 有实根”的逆否命题为“若方程02
=-+m x x 无实根,则0≤m ”
D .“1=x ”是“0232
=+-x x ”的充分不必要条件
3.设向量b a ,满足:b a b a a b a 与则,0)(,2||,1||=+⋅==的夹角是
( )
A .︒30
B .︒60
C .︒90
D .︒120
4.一个多面体的三视图分别是正方形、等腰三角形和矩形,其尺寸如图,则该多面体的体积
为( )
A .48cm 3
B .24 cm 3
C .32 cm 3
D .28 cm 3
5.已知)(x f 是定义在R 上的周期函数,其最小正周期为2,且当)1,1[-∈x 时,||)(x x f =,
则函数)(x f y =的图象与函数x y 4log =的图象的交点个数为
( )
A .3
B .4
C .6
D .8
6.已知定义域为R 的函数),8()(+∞在x f 上为减函数,且函数)8(+=x f y 为偶函数,则( )
A .)7()6(f f >
B .)9()6(f f >
C .)9()7(f f >
D .)10()7(f f >
7.]2,1[],2,1[),0(2)(,2)(012-∈∃-∈∀>+=-=x x a ax x g x x x f 对,使)()(01x f x g =,
则a 的取值范围是
( )
A . ]21,0(
B .]3,2
1[
C .),3[+∞
D .]3,0(
8.给出下列命题: ①存在实数x ,使得3
cos sin π
=+x x ;
②函数x y 2sin =的图象向右平移4π个单位,得到)4
2sin(π
+=x y 的图象; ③函数)2
7
32sin(
π-=x y 是偶函数; ④已知βα,是锐角三角形ABC 的两个内角,则βαcos sin >。

其中正确的命题的个数为
( ) A .1个 B .2个 C .3个 D .4个
二、填空题:本大题共8个小题,考生作答7小题,每小题5分,共35分。

把答案填在答题
卡中对应题号后的横线上。

(一)必做题(9—13题)
9.已知复数)(,)2()232(22R m i m m m m z ∈-++-+=为纯虚数,则=m 。

10.已知函数)(log 2
2
1a ax x y +-=在区间]2,(-∞上是增函数,则实数a 的取值范围
是 。

11.已知)(x f 是定义在R 上的函数,给出下列两个命题: .4),(),()(:212121=+≠=x x x x x f x f p 则若
.0)
()(),(],2,(,:2
1212121>--≠-∞∈x x x f x f x x x x q 则

则使命题“q p 且”为真命题的函数)(x f 可以是 。

12.随机地向区域⎪⎩

⎨⎧≥≥≤≤2040x y x y 内投点,点落在区域的每个位置是等可能的,则坐标原点与该
点连线的倾斜角不大于3
π
的概率是 。

13







3
2
31,0,4||||,22+=
=⋅=+若向量且满足,则||的最大值是 。

(二)选做题(14—16题,考生只能选做两题,三题全答的,只计算第14、15题的得分) 14.如图,CD 是圆O 的切线,切点为C ,点B 在圆O 上,
︒=∠=30,2BCD BC ,则圆O 的面积为 。

15.若曲线t t y t x (122⎩⎨
⎧+-=+=为参数)与曲线θθ
θ
(sin 3cos 31⎩⎨⎧=+-=y x 为参数)
相交于A ,B 两点,则|AB|= 。

16.若不等式1|2||1
|+->+
a x
x 对于一切非零实数x 均成立,则实数a 的取值范围是 。

三、解答题:本大题共6小题,共75分。

解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)
已知函数.,12cos 3)4
(
sin 2)(2
R x x x x f ∈--+=π
(1)求函数)(x f 的单调递增区间;
(2)在ABC ∆中,角A 、B 、C 的对边分别是c b a ,,,且满足C b B c a cos cos )2(=-,
求函数)(A f 的取值范围。

18.(本小题满分12分) 甲、乙两人进行围棋比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对
方多2分或打满6局时停止,设甲在每局中获胜的概率为)2
1
(>p p ,且各局胜负相互独立,已知第二局比赛结束时比赛停止的概率为.9
5 (1)求p 的值;
(2)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列和数学期望E ξ。

如图,PAB ∆是边长为2的正三角形,四边形ABCD 为矩形,平面⊥PAB 平面ABCD ,设
.a BC =
(1)若2=
a ,求直线PC 与平面ABCD 所成的角;
(2)设M 为AD 的中点,求当a 为何值时,CM PM ⊥?
20.(本小题满分13分) 某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a 元
(53≤≤a )的管理费,预计当每件产品的售价为x 元(9≤x ≤11)时,一年的销售量
为2)12(x -万件。

(1)求分公司一年的利润L (万元)与每件产品的售价x 的函数关系式;
(2)当每件产品的售价为多少元时,分公司一年的利润L 最大,并求出L 的最大值)(a Q 。

21.(本小题满分13分)
已知数列}{n a 满足:.,2
3,3*11N n a a a a n
n n ∈-=
=+ (1)证明:数列}2
1
{
--n n a a 为等比数列,并求数列}{n a 的通项公式; (2)设)2(1-=+n n n a a b ,数列}{n b 的前n 项和为n S ,求证:2<n S ; (3)设12
),2(+-=n n n n c c a n c 求的最大值。

已知函数.)1()1ln()(x a e a x f x +-+=
(1)已知)(x f 满足下面两个条件,求a 的取值范围。

①在)1,(-∞上存在极值,
②对于任意的R c R ∈∈,θ直线02s i n :=++c y x l θ都不是函数
)),1()((+∞∈=x x f y 图象的切线;
(2)若点))(,()),(,()),(,(332211x f x C x f x B x f x A 从左到右依次是函数)(x f y =图象上
三点,且ABC a x x x ∆>+=,0,2312时当能否是等腰三角形?若能,求ABC ∆面积的最大值;若不能,请说明理由。

版权所有:中华资源库。

相关文档
最新文档