2019年广东省揭阳市高考数学二模试卷(文科)(解析版)
2019年4月广东省揭阳市高2019届高2016级高考二模文科数学试题参考答案
5 揭阳市2019年高考二模数学(文科)试题参考答案 第1页(共5页)揭阳市2019高考二模数学 (文科)参考答案及评分说明一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.解析:11.由题意可知0312cos 60,,2a cPFx a c -∠=∴=+解得23c e a ==. 12.22()()f x x x ax b =-++的图像关于直线1x =-对称,且2x 重根0,所以2x ax b ++重根2-,22()(2)f x x x ∴=-+,所以()f x 的最大值是0.【或由对称性可知(2)(0)f f -=,得24a b =+,由题意可知'(1)0f -=,得324a b =+,解得4a b ==,得22()(2)f x x x =-+,可知()0f x ≤,所以()f x 的最大值是0.】15.显然球心O 在平面ABCD 的射影为正方形ABCD 的中心M,21,AC OM ===所以四棱锥S ABCD -的高的最大值为3,此时四棱锥S ABCD -体积的为21363⨯⨯=16.因为△ABD 为等边三角形.所以ADB ∠=60°, ADC ∠=120°.在△ADC 中,AC =,由余弦定理得:2222cos AC CD AD CD AD ADC =+-⋅⋅∠,2212CD AD CD AD =++⋅≥2CD AD CD AD ⋅+⋅,即4AD CD ⋅≤故1=sin 24S AD CD ADC AD CD ⋅⋅∠=⋅≤当且仅当=AD CD 时△ACD 面积S5 揭阳市2019年高考二模数学(文科)试题参考答案 第2页(共5页)PNM EF C 1B 1D 1A 1DCBA17.解:(1)由139,,a a a 成等比数列,可得2111(2)(8)a d a a d +=+且0d ≠,化简得1a d =---------------------------------------3分 由410S =可得1235a d +=由上解得11a d ==,1(1)1n a n n ∴=+-⋅=---------------------------------------------------6分 (2)由(1)知(1)2n n n S +=,------------------------------------------------------------------------------7分 12112()(1)1n S n n n n ==-++------------------------------------------------------------------------9分 ∴121111111122(1)2()2()2222311n S S S n n n +++=⋅-+⋅-++⋅-=-<++------------12分18.解:(1)设N 为11A B 的中点,连结MN,AN 、AC 、CM,则四边形MNAC 为所作图形;-------------------------------------2分易知MN 11//A C (或//EF ),四边形MNAC 为梯形,且12MN AC ==,-------------3分过M 作MP ⊥AC 于点P ,可得MC ==2ACMNPC -=得MP =分 所以梯形MNAC 的面积=12⨯+-----------------------------6分(2)证法1:在长方体中1111ABCD A B C D -,设11D B 交EF 于Q,连接DQ,则Q 为EF 的中点并且为11D B 的四等点,如图,114D Q =⨯=分由DE DF =得DQ EF ⊥,又1EF BB ⊥,EF ∴⊥平面11BB D D ,1EF D B ∴⊥-------------------------------------------------------------------10分 1111,2D Q D D D D DB ==11,D QD BD D ∴∠=∠111190QD B D QD DD B BD Q ∴∠+∠=∠+∠=︒, 1DQ DB ∴⊥1D B ∴⊥平面DEF --------------------------------------------------------------------------12分【证法2:设11D B 交EF 于Q,连接DQ,则Q 为EF 的中点,且为11D B 的四等分点,114D Q =⨯分BDB 1D 1Q5 揭阳市2019年高考二模数学(文科)试题参考答案 第3页(共5页)Q PNMEFC 1B 1D 1A 1DCBA由11111BB A B C D ⊥平面可知1BB EF ⊥, 又11B D EF ⊥,1111BB B D B =,EF ∴⊥平面11BB D D ,1EF D B ∴⊥---------------10分由11112D Q D D D D DB ==得11tan tan QDD D BD ∠=∠, 得11QDD D BD ∠=∠,1190QDB D BD QDB QDD ∴∠+∠=∠+∠=︒,1DQ D B ∴⊥,又DQEF Q =,1D B ∴⊥平面DEF ---------------------------------------------------------------12分】【其它解法请参照给分】19.解:(1)设1122(,),(,),M x y N x y 对24x y =求导得:=2xy ',------------------------------------1分故抛物线C 在点M 和N 处切线的斜率分别为12x 和22x ,又切线垂直, 12122x x ∴⋅=-,即124x x ⋅=-,----------------------------------------------------------------------------3分 把2440.y kx m C x kx m =+--=代入的方程得124.x x m ∴=--------------------------------5分故 1.m =---------------------------------------------------------------------------------------------------------6分(2)解:设()11,Mx y ,()22,N x y ,由抛物线定义可知11MFy =+,21NF y =+---------------8分由(1)和2m =知12128,4x x x x k =-+=所以()()()()()212121212113339MF NF y y kx kx k x x k x x ⋅=++=++=+++=249k +------11分所以当0k=时, MF NF ⋅取得最小值,且最小值为9.-----------------------------------------------------12分20.解:(1)每天包裹数量的平均数为0.1500.11500.52500.23500.1450260⨯+⨯+⨯+⨯+⨯=;--------------------------------------------2分【或:由图可知每天揽50、150、250、350、450件的天数分别为6、6、30、12、6,所以每天包裹数量的平均数为1(506150625030350124506)26060⨯⨯+⨯+⨯+⨯+⨯=】 设中位数为x ,易知(200,300)x ∈,则0.00110020.005(200)0.5x ⨯⨯+⨯-=,解得x =260. 所以公司每天包裹的平均数和中位数都为260件.-----------------------------------------4分 (2)由(1)可知平均每天的揽件数为260,利润为260531001000⨯-⨯=(元),所以该公司平均每天的利润有1000元.-------------------------------------------------7分5 揭阳市2019年高考二模数学(文科)试题参考答案 第4页(共5页)(3)设四件礼物分为二个包裹E 、F,因为礼物A 、C 、D 共重0.9 1.8 2.5 5.2++=(千克), 礼物B 、C 、D 共重1.3 1.8 2.5 5.6++=(千克),都超过5千克,------------------8分 故E 和F 的重量数分别有1.8 4.7和,2.5 4.0和,2.2 4.3和,2.7 3.8和,3.1 3.4和共5种, 对应的快递费分别为45、45、50,45,50(单位:元)------------------------------10分 故所求概率为35.----------------------------------------------------------------------------------12分 21.解:(Ⅰ)'()x af x x-=,----------------------------------------------------------------1分 当0a ≤时,'()0f x >,函数()f x 在定义域上递增,不满足条件; 当0a >时,函数()f x 在(0,)a 上递减,在(,)a +∞上递增,故()f x 在x a =取得极小值0,()ln 10f a a a a ∴=--=,-------------------------3分 令()ln 1p a a a a =--,()ln p a a '=-,所以()p a 在(0,1)单调递增, 在(1,)+∞单调递减,故()(1)0p a p ≤=,()0f a ∴=的解为1a =,故1a =.----------------------------------------------------------------------------------------------6分 (2)证法1:由222()11222t t t a a af e t e at t e t at >⇔-->⇔->+,---------------------7分 1a ≤,所以只需证当0t >时,2112t e t t ->+恒成立.----------------------------------9分令21()1,()1,2tt g t e t t g t e t '=---=-- 由(1)可知ln 10x x --≥,令t x e =得10te t --≥---------------------------------------11分∴ ()g t 在(0,)+∞上递增,故()(0)0g t g >=,所以命题得证.-------------------------12分【证法2:222()110222t t t a a af e t e at t e t at >⇔-->⇔--->, 设2()12t ag t e t at =---(0t >),则'()t g t e at a =--,则''()t g t e a =-,又01t e e >=,1a ≤,得''()0g t >, 所以'()g t 单调递增,得'()(0)10g t g a >=-≥, 所以()g t 单调递增,得()(0)0g t g >=,得证.】22.解:(1)因为cos x ρθ=,sin y ρθ=,---------------------------------------------------1分5 揭阳市2019年高考二模数学(文科)试题参考答案 第5页(共5页)所以1C的极坐标方程为sin 0-=θθ,即3=πθ()R ρ∈,------------------3分2C 的极坐标方程为22cos 4sin 0--=ρρθρθ.----------------------------------------4分即2cos 4sin 0--=ρθθ------------------------------------------------------------------------5分 (2)3=πθ代入2cos 4sin 0--=ρθθ,解得11=+ρ-----------------------7分6=πθ代入2cos 4sin 0--=ρθθ,解得22=+ρ---------------------------------8分故OAB ∆的面积为((12sin 21264⨯+⨯+⨯=+π.------------------------10分 23.解:(1)1,0,0x y x y +=>>且0152522212x x y x y x x <<⎧⎪∴++-≤⇔⎨-+-≤⎪⎩-------------------------------------------2分 010111121()21222x x x x x x x <<<<⎧⎧⎪⎪⇔⇔⎨⎨-≤+-+≤-≤+⎪⎪⎩⎩ 解得116x ≤<,所以不等式的解集为1[,1)6-----------------------------------5分 (2)解法1:1,x y +=且0,0x y >>, 2222222211()()(1)(1)x y x x y y x y x y +-+-∴--=⋅ 222222xy y xy x x y ++=⋅222222()()y y x x x x y y =++225x yy x=++59≥=.-------9分 当且仅当12x y ==时,取“=”.----------------------------------------------------10分 【解法2:1,x y +=且0,0x y >>,2222221111(1)(1)x y x y x y--∴--=⋅-------------------------------------------------------------------------6分 22(1)(1)(1)(1)x x y y x y +-+-=⋅22(1)(1)x y y x x y ++=⋅1x y xyxy +++=--------------------------------8分 21xy =+2219()2x y ≥+=+ 当且仅当12x y ==时,取“=”.---------------------------------------10分】。
2019广东二模文数答案
2019年普通高等学校招生全国统一考试广东省文科数学模拟试卷(二)参考答案及评分标准评分标准:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题不给中间分.1.D2.C3.D4.B5.C6.A7.A8.A9.C 10.B 11.C 12.B13.3 14.43 15.34 16.4017.解:(1)由余弦定理得AB 2=BC 2+AC 2-2BC×AC×cos C , ............................................................................................. 1分 代入数据整理得BC 2+3BC-40=0,.................................................................................................................................. 3分 解得BC=5(BC=-8舍去). ............................................................................................................................................... 5分(2)由cos A=√3sin B 及C=120°,得cos(60°-B )=√3sin B , .................................................................................................................................................. 6分 展开得12cos B+√32sin B-√3sin B=0, ............................................................................................................................... 7分 即√32sin B=12cos B ,tan B=sinB cosB =√33, ................................................................................................................................. 8分 所以B=30°. ..................................................................................................................................................................... 9分 从而A=60°-B=30°,即A=B=30°,所以BC=AC=3. ............................................................................................................................................................ 10分 故△ABC 的面积为12×3×3×sin 120°=9√34. .................................................................................................................. 12分 评分细则:第(1)问中,只要由余弦定理得到BC=5,就给5分;第(2)问中,cos(60°-B )=√3sin B 是关键,得到B=30°或A=30°,就给3分.18.解:(1)填写列联表如下:性别入围人数 未入围人数 总计 男生24 76 100 女生20 80100总计 44 156 200......................................................................................................................................................................................... 4分因为K 2的观测值k=200×(24×80-76×20)2100×100×44×156=200429<2.706, ............................................................................................... 6分 所以没有90%以上的把握认为脑力测试后是否为“入围学生”与性别有关. .............................................................. 7分(2)(ⅰ)这11名学生中,被抽到的女生人数为20×1144=5. ............................................................................................... 9分(ⅱ)因为入围的分数不低于120分,且每个女生的测试分数各不相同,每个人的分数都是整数,所以这11名学生中女生的平均分的最小值为120+121+122+123+1245=122. ......................................................... 12分 评分细则:第(1)问计算得到K 2的观测值k=200429即可得1分.19.(1)证明:如图,连接BC 1. ............................................................................................................................................. 1分 在三棱柱ABC-A 1B 1C 1中,E 为AC 1的中点. ................................................................................................................... 2分 又因为F 为AB 的中点,所以EF ∥BC 1. ................................................................................................................................................................ 3分 又EF ⊄平面BCC 1B 1,BC 1⊂平面BCC 1B 1,所以EF ∥平面BCC 1B 1. ................................................................................................................................................. 5分(2)解:因为AC ⊥AB ,AA 1⊥AC ,AA 1∩AB=A ,所以AC ⊥平面ABB 1A 1, ............................................................................ 7分 又AC=4,E 为A 1C 的中点,所以E 到平面ABB 1A 1的距离为12×4=2. ............................................................................ 9分 因为△AB 1F 的面积为12×2×6=6, ................................................................................................................................. 10分 所以V B 1-AEF =V E -AB 1F =13×2×6=4. .............................................................................................................................. 12分 评分细则:第(1)问中,先证面面平行,再证线面平行,也是常见的方法,阅卷时应同样给分.20.(1)证明:设A (x 1,y 1),B (x 2,y 2),联立{y =kx +1,x 2=4y,得x 2-4kx-4=0, ............................................................................... 1分 则x 1x 2=-4, ....................................................................................................................................................................... 2分 所以y 1y 2=(x 1x 2)216=1, ...................................................................................................................................................... 3分 从而OA ⃗⃗⃗⃗⃗ ·OB⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=-3<0, ...................................................................................................................................... 4分 则∠AOB 为钝角,故△AOB 为钝角三角形. ................................................................................................................... 5分(2)解:由(1)知,x 1+x 2=4k ,y 1+y 2=k (x 1+x 2)+2=4k 2+2, ....................................................................................................... 6分 则|AB|=y 1+y 2+p=4k 2+4. ................................................................................................................................................. 7分 由x 2=4y ,得y=x 24,y'=x 2,设P (x 0,y 0),则12x 0=k ,x 0=2k ,y 0=k 2,则点P 到直线y=kx+1的距离d=√k 2+1. ................................................................................................................ 9分 从而△PAB 的面积S=12d|AB|=2(k 2+1)√k 2+1=16, ................................................................................................ 10分 解得k=±√3, ................................................................................................................................................................. 11分 故直线l 的方程为y=±√3x-3. ..................................................................................................................................... 12分 评分细则: 第(1)问中,得到x 1x 2,y 1y 2的值分别给1分;若只是得到其中一个,且得到OA ⃗⃗⃗⃗⃗ ·OB⃗⃗⃗⃗⃗ =-3<0 ,可以共给3分. 21.(1)解:当a=-4时,f (x )=12x 2+3x-4ln x ,定义域为(0,+∞). .............................................................................................. 1分f'(x )=x+3-4x =x 2+3x -4x =(x -1)(x+4)x . .................................................................................................................................. 2分 当x>1时,f'(x )>0,f (x )单调递增,则f (x )的单调递增区间为(1,+∞); ................................................................................ 3分 当0<x<1时,f'(x )<0,f (x )单调递减, 则f (x )的单调递减区间为(0,1). .............................................................................. 4分(2)证明:f'(x )=x 2-(a+1)x+a x =(x -1)(x -a)x, ........................................................................................................................... 5分 g'(x )=3x 2+2bx-(2b+4)+1x =(x -1)[3x 2+(2b+3)x -1]x . .......................................................................................................... 6分 令p (x )=3x 2+(2b+3)x-1.因为a ∈(1,2],所以f (x )的极小值点为a ,则g (x )的极小值点为a , ................................................................................. 8分 所以p (a )=0,即3a 2+(2b+3)a-1=0,即b=1-3a 2-3a 2a, ......................................................................................................... 9分 此时g (x )的极大值为g (1)=1+b-(2b+4)=-3-b=-3-1-3a 2-3a 2a =32a-12a -32. ......................................................................... 10分 因为a ∈(1,2],所以32a-12a -32≤32×2-12×2-32=54. .................................................................................................................. 11分 故g (x )的极大值不大于54. ............................................................................................................................................. 12分评分细则:第(1)问中,计算导数时未因式分解不扣分;第(2)问中,计算g (x )的导数时未因式分解扣1分.22.解:(1)由ρ2-4ρcos θ-6ρsin θ+12=0,得x 2+y 2-4x-6y+12=0, ........................................................................................ 3分 即(x-2)2+(y-3)2=1,此即为曲线C 的直角坐标方程. ...................................................................................................... 4分(2)由(1)可设P 的坐标为(2+cos α,3+sin α),0≤α<2π, .................................................................................................... 6分 则|PM|=3+sin α, ............................................................................................................................................................. 7分 又直线ρcos θ=-1的直角坐标方程为x=-1,所以|PN|=2+cos α+1=3+cos α. ..................................................................................................................................... 8分 所以|PM|+|PN|=6+√2sin (α+π4), .............................................................................................................................. 9分 故当α=π4时,|PM|+|PN|取得最大值,且最大值为6+√2. ............................................................................................ 10分评分细则:第(2)问中,亦可设P 的坐标为(2+sin α,3+cos α),|PM|=3+cos α,|PN|=3+sin α,各给1分.23.解:(1)由f (x )<0,得|x +1|+|2-x |<4. ....................................................................................................................... 1分 当x<-1时,-x-1+2-x<4,解得-32<x<-1; ............................................................................................................................ 2分 当-1≤x ≤2时,x+1+2-x=3<4恒成立,则-1≤x ≤2; ............................................................................................................... 3分 当x>2时,x+1+x-2<4,解得2<x<52. ............................................................................................................................... 4分 故f (x )<0的解集为(-32,52). ........................................................................................................................................... 5分(2)因为f (x )=|x +1|+|2-x |-k ≥|x+1+2-x|-k=3-k , ........................................................................................................ 6分 所以f (x )的最小值为3-k. ................................................................................................................................................ 7分 因为不等式f (x )≥√k +3对x ∈R 恒成立,所以3-k ≥√k +3, k+3≥0,所以{3-k ≥0,(3-k)2≥k +3,................................................................................................................................................. 9分 解得-3≤k ≤1,则k 的取值范围为[-3,1]. .......................................................................................................................... 10分 评分细则:第(1)问中,先将f (x )化为三段的分段函数,得3分,再得出不等式的解集,得2分;第(2)问中,未写3-k ≥0,扣1分.。
广东省揭阳市2019届高三文数高考二模试卷
第1页,总20页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………广东省揭阳市2019届高三文数高考二模试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共12题)1. 已知集合 ,,则 ( )A .B .C .D .2. 复数 的共轭复数的虚部为( )A .B .C .D .3. 已知双曲线 的一条渐近线方程为,则 的值为( )A .B .C .D .4. 通过随机询问50名性别不同的大学生是否爱好某项运动,得到如下的列联表,由得参照附表,得到的正确结论是( )爱好 不爱好 合计 男生 20 5 25 女生 10 15 25 合计 30 20 50 p (K 2≥k ) 0.010 0.005 0.001 k6.6357.87910.828答案第2页,总20页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A . 有99.5%以上的把握认为“爱好该项运动与性别有关”B . 有99.5%以上的把握认为“爱好该项运动与性别无关”C . 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D . 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”5. 某公司2018年在各个项目中总投资500万元,下图是几类项目的投资占比情况,已知在1万元以上的项目投资中,少于3万元的项目投资占,那么不少于3万元的项目投资共有( )A . 56万元B . 万元C .万元 D .万元6. 已知 ,若 是第二象限角,则 的值为( )A .B .C .D .7. 已知 是平面,是直线,则下列命题中不正确的是( )A . 若 ∥ ,则B . 若 ∥,则 ∥ C . 若,则 ∥ D . 若,则8. 已知函数 则 的是( )A .B .C .D .9. 我国古代数学专著《九章算术》中有一个“两鼠穿墙题”,其内容为: “今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半。
2019年广东省高考数学二模试卷(文科)及答案及解析
集合A={x|-1vxv6},集合B={x|x2<4},那么An (?R B)=()10.函数一的局部图象不可能为〔〕B.C.D.阿基米德〔公元前287年-公元前212年〕不仅是著名的物理学家,也是著名的数学家,他利用椭圆的面积除以圆周率等于椭圆的长半轴与短半轴的乘积.假设椭圆圆的离心率为一,面积为12 g那么椭圆C的方程为〔A. ——8.函数f 〔x〕在〔-8, +8〕单调递增,且为奇函数. f 〔1〕 =2, f 〔2〕 =3,那么满足-3<f 〔x-3〕 v 2的x的取值范围是〔〕A. -B. —C. -或D.—或二、填空题〔本大题共4小题,共20.0分〕13 .假设函数 f 〔x〕 =log2 〔x+a〕的零点为-2,贝u a=.14 .假设x, y满足约束条件,那么-的最大值为 .15 .在四^^锥P-ABCD中,PA与矩形ABCD所在平面垂直,AB=3 , AD= 一,PA= 一,那么直线PC与平面PAD所成角的正切值为.16 .在数歹U{a n}中,a n+1=2 〔a n-n+3〕 , a1二-1 ,假设数列{a n-pn+q〕为等比数列,其中p, q为常数,那么a p+q=.三、解做题〔本大题共7小题,共82.0分〕1. 2021年广东省高考数学二模试卷〔文科〕、选择题〔本大题共12小题,共60.0分〕设i为虚数单位,那么复数z=i 〔2-i〕的共轲复数A. B. C. D.A. B. C. D.9.某轮胎公司的质检部要对一批轮胎的宽度〔单位:mm〕进行质检,假设从这批轮胎中随机选取3个,至少轮胎的宽度在195西内,那么称这批轮胎根本合格.这批轮胎的宽度分别为195, 196, 190, 194, 200,那批轮胎根本合格的概率为〔〕A.-B.-C.一D.-3.4.5.6.A. B. C.在样本的频率直方图中,共有9个小长方形,假设中间一个长方形的面积等于其他样本容量为200,那么中间一组的频数为〔A. B. C. 40 设向量与向量垂直,且=〔2, k〕 , =〔6, 4〕,那么以下以下与向量+A. B. C. 设S n为等差数列{a n}的前n项和,假设公差d=1, S9-S4=10,那么S17=〔〕A. 34 B. 36 C. 68某几何体的三视图如下图,三个视图都是半径相等的扇形,假设该几何体的外表积为,那么其体积为〔A.一D.8个小长方形面积的和的且D. 50共线的是〔D.D. 7211.假设函数f 〔x〕 =x3-ke x在〔0, +°°〕上单调递减,那么k的取值范围为〔〕A. B. — C. — D. -12.直线x=2a与双曲线C:——〔a>0, b>0〕的一条渐近线交于点P,双曲线C的左、右焦点分F I, F2,且cos/PF2F I=L,那么双曲线C的离心率为〔〕2.7. “逼近法〞得到C的对称轴为坐标轴,焦点在y轴上,且椭C. 一一 D.——19 .如图,在三棱柱 ABC-A 1B 1C 1 中,AA I 1^面 A 1B 1C 1, AC^AB, AC=AB=4, AA 1=6,点 E, F 分别为CA I 与AB 的中点.(1)证实:EF /平面 BCC I B I . (2)求三棱锥B I -AEF 的体积.18 .?最强大脑?是江苏卫视推出的大型科学竞技真人秀节目.节目筹备组透露挑选选手的方式:不但要对选手的空间感知、照相式记忆水平进行考核,而且要让选手经过名校最权威的脑力测试, 120分以上才有时机入围.某重点高校准备调查脑力测试成绩是否与性别有关,在该高校随机抽取男、女学生各 100名,然后对这200名学生进行脑力测试.规定:分数不小于 120分为“入围学生〞,分数小于 120分为“未入围学生〞.男生入围24人,女生未入围 80人.(1)根据题意,填写下面的 2X2列联表,并根据列联表判断是否有90%以上的把握认为脑力测试后是否为“入围学生〞与性别有关.20 .在平面直角坐标系 xOy 中,直线y=kx+1与抛物线C: x 2=4y 交于A, B 两点.(1)证实:AAOB 为钝角三角形.(2)假设直线l 与直线AB 平行,直线l 与抛物线C 相切,切点为P,且4PAB 的面积为16,求直线l 的方程.(2)用分层抽样的方法从“入围学生〞中随机抽取 11名学生. (i )求这11名学生中女生的人数;(ii )假设抽取的女生的脑力测试分数各不相同(每个人的分数都是整数),求这 11名学生中女生测试分数的平 均分的最小值.附:K 2= ,其中 n=a+b+c+d.2 .、P (K 淞)0.10 0.05 0.025 0.010 0.005 0.001 k 02.7063.8415.0246.6357.87910.82821 .函数 f (x) =-x 2- (a+1) x+alnx.(1)当a=-4时,求f (x)的单调区间; (2)aC (1, 2],bCR,函数g (x)=x 3+bx 2- (2b+4) x+lnx,假设f (x)的极小值点与g(x)的极小值点相等,证实:g (x)的极大值不大于-.17.在 AABC 中,AC=3, C=120 °, (1)假设AB=7,求BC 边的长; (2)假设 cosA= "sinB,求 BBC 的面积.22 .在平面直角坐标系xOy中,以坐标原点O为极点,x轴为正半轴建立极坐标系,曲线C的极坐标方程为2 , p-4P cos-6)p sin 0 +12=0(1)求曲线C的直角坐标方程;(2)过曲线C上一动点P分别作极轴、直线pcosdl的垂线,垂足分别为M, N,求|PM|+|PN|的最大值.23 .设函数 f (x) =|x+1|+|2-x|-k.(1)当k=4时,求不等式f (x) <0的解集;(2)假设不等式对xCR恒成立,求k的取值范围.答案和解析1.【答案】D 【解析】解:,z=i 2-i)=1+2i, 5 L 2i .应选:D.直接利用复数代数形式的乘除运算化简得答案. 此题考查复数代数形式的乘除运算,考查复数的根本概念,是根底题.2 .【答案】C 【解析】解:B={x|x2<4}={x|-2 <x<2}, 那么?R B={x|x>或xV2}, MAA ?R B)={x|2 «6}, 应选:C.求出集合B的等价条件,结合补集交集的定义进行求解即可. 此题主要考查集合的根本运算,求出集合的等价条件以及利用交集补集的定义是解决此题的关键.3 .【答案】D 【解析】解:而羊本的频率直方图中,共有9个小长方形, 中间一个长方形的面积等于其他8个小长方形面积的和的;,且样本容量为200,设其他8组的频率数和为m,那么由题意得:m+ ;m=200, 解得m=150, 1••中间一组的频数为>' =50.应选:D.设其他8组的频率数和为m,那么由题意得:m+1 m=200,由此能求出中间一组的频数. 此题考查频数的求法,考查频率分布直方图的性质等根底知识,考查运算求解水平,是根底题.4 .【答案】B【解析】解:••江_ 1;「于石=12+加=11 ;. k=-3;.不R⑴;•二1 -;• • -16, -2)与/十方共线.应选:B.根据1 _1_ &即可得出H —u ,从而得出k=-3,从而可求出b,1),从而可找出与%共线的向量.考查向量垂直的充要条件,向量坐标的加法和数量积的运算,共线向量根本定理.5 .【答案】C【解析】解:电数列{a n}是等差数列,且S9-S4=10,所以10=5司+ 36d-6d) =5 a1+6d)=5a7,所以为=2,所以a9=a7+2d=2+2=4,_ 川+鹏T E 2的__ __ _S17=——=— j =1709=17X4=68.应选:C.数列{a n}是等差数列,S9-S4=10=5a1+ 36d-6d)=5 a1+6d)=5a7,所以a7=2,所以a9=a7+2d=2+2=4, S17 = 一=—x 17=~ x17=17a9,将叱代入可得S17.此题考查了等差数列的前n项和公式,通项公式,属于根底题.6 .【答案】A【解析】解:将三视图复原可知该几何体为球体的〔,S=3X : +i:1+ 1=’尸,fl 4 -L r=收,几何体的体积为:1 x ; Rd V-J4=理^ .应选:A.首先把几何体的三视图进行转换,进一步利用外表积公式的应用求出结果.此题考查的知识要点:三视图和几何体的转换,几何体的体积公式和面积公式的应用,主要考查学生的运算水平和转化水平,属于根底题型.7 .【答案】A【解析】'口加T解:攫S意可得:<,解得a=4, b=3,[/=庐+C3由于椭圆的焦点坐标在y轴上,所以椭圆方程为:[十]=1 . I T.J应选:A.利用条件列出方程组,求出a, b,即可得到椭圆方程.此题考查椭圆飞简单性质的应用,考查转化思想以及计算水平.8 .【答案】A【解析】解:・.f幻是奇函数,且10=2, f 2)=3,・ f -2)=-3,那么不等式-3<f X-3) <2 等价为f -2) <f X-3) <f 1),, f X)是增函数,.-2<x-3< 1 得1<x<4,即x的取值范围是0,4),应选:A.根据函数奇偶性和单调性的性质将不等式进行转化求解即可.此题主要考查不等式的求解,结合函数奇偶性和单调性的性质进行转化是解决此题的关键.9 .【答案】C【解析】解:牍胎公司的质检部要对一批轮胎的宽度举位:mm)进行质检, 从这批轮胎中随机选取3个,至少有2个轮胎的宽度在195战内,那么称这批轮胎根本合格. 这批轮胎的宽度分别为195, 196, 190, 194, 200,根本领件总数n=C2 =10,至少有2个轮胎的宽度在195战内包含的根本领件个数m= 卜曰=7,••这批轮胎根本合格的概率为p=:'=' .应选:C.根本领件总数n=U =10,至少有2个轮胎的宽度在195^内包含的根本领件个数m=C*1|+U[ =7,由此能求出这批轮胎根本合格的概率.此题考查概率的求法,考查古典概型、排列组合等根底知识,考查运算求解水平,是根底题.10 .【答案】B【解析】解:A.由图象知函数的周期T=2兀,那么:=2冗得必=1,此时f X)=2sin X-「)=-2cosx为偶函数,对应图象为A,故A图象可能4 肝"jT 心1T "jT 2 万.‘TFB.由图象知函数的周期T=“ --§) = 3 = J ,艮心=;一得⑴=±,3开 4 k 开了 _荒当⑴=3寸,止出寸f x)=2sin 3x-r ) f (M )=2sin 3X石x )=2sin h为2,即B图象不可能, "J' ■J I I ■I. —.一开.1-T ITT T [K ............. 当⑴=3时,此时f x)=2sin -3x+fj ) ,f & )=2sin -3X t1 +. )=-2sin h片2,即B 图象不可能,27r LC,由图象知函数的周期T=40那么/ =4冗得w =i ,当⑴二;时,止惧寸f x)=2sin ; x-© =-2sin; x, f (TT) =-2sin, =-1,即此时C图象不可能,.. 1 - 一- l L _ ___ ______ _ ___当⑴二,.时,止时f x)=2sin Q x-施=2sin., x, f(施=2sin? =-1,即此时C图象可能,3n!卜丁37T 3zr ?灯D.由图象知函数的周期~T =s - s = ■,即1= q那么,=冗得⑴=2丁■, ■此时f x)=2sin 2x-1 ) f (s )=2sin 2X S -1)=2sin, =2,即D 图象可能,综上不可能的图象是B,应选:B.根据三角函数的图象判断周期性性以及对称轴是否对应即可得到结论. 此题主要考查三角函数图象的识别和判断,利用周期性求出⑴以及利用特殊值进行验证是解决此题的关键.注意此题的⑴有可能是复数.11 .【答案】C【解析】解:,.函数f X)=x3-ke x在0,+°°)」单调递减,. f 'X)=3x2-ke x&0在0, +00)上恒成立,「k三丁在0,+00)上包成立,令g x)=£,x>0,El . I :"(2 J')贝u仪])=———,当0Vx<2时,g' x)电此时g x)单调递增,x>2时,g' x) <0, g K)单调递减故当x=2时,g x)取得最大值g 2)=,那么k±X ,应选:C.令f'x)&姓0,十°°)上包成立得k1各在0,+8)上恒成立,求出右侧函数的最大值即可得出k的范围. 此题考查了导数与函数单调性的关系,函数包成立问题,属于中档题.12 .【答案】B【解析】解:双峻C的左、右焦点分别为F1 -c,0) ,F2 C 0) cos ZPF2F1=-I L,J可得sin/P F2F1=yL = '即有直线PF2的斜率为tanZPF2F1=vL^ ,由直线x=2a与双曲线C:=-5=i a>0, b>0)的一条渐近线y=" x交于点P, fj* i)" 41可得P 2a, 2b),可得十一=V L5 , zn —c即有4b2=15 4a2-4ac+c2)=4 C2-a2),化为11c2-60ac+64c2=0,由e=-可得11e2-60e+64=O,解得e=:或e=4,由2a-c>0,可得c<2a,即e<2,可得e=4舍去.应选:B.设出双曲线的焦点,求得一条渐近线方程可得P的坐标,求得苜线PF2的斜率,由两点的斜率公式和离心率公式,可得所求值.此题考查双曲线的方程和性质,主要是渐近线方程和离心率的求法,考查方程思想和运算水平,属于中档题.13 .【答案】3【解析】解:根岫意,假设函数f x)=log2 x+a)的零点为-2,那么f (2)=log2 a-2)=0,即a-2=1,解可得a=3,故答案为:3根据题意,由函数零点的定义可得f⑵=log2 a-2) =0,解可得a的值,即可得答案.此题考查函数的零点,关键是掌握函数零点的定义,属于根底题.14 .【答案】一【解析】解:设z=7 ,那么k得几何意义为过原点得直线得斜率,作出不等式组对应得平面区域如图:那么由图象可知OA的斜率最大,由{2工"I.,解得A 3,4),那么OA得斜率k=;,那么:的最大值为:. 41 I J 故答案为::.设z=£,作出不等式组对应得平面区域,利用z得几何意义即可得到结论. 此题主要考查直线斜率的计算,以及线性规划得应用,根据z的几何意义,利用数形结合是解决此题的关键.15 .【答案】一【解析】解:•・在四棱锥P-ABCD中,PA与矩形ABCD所在平面垂直,, CD^AD , CD1PA,.ADA PA=A, .CD"面PAD, ・•.£PD是直线PC与平面PAD所成角, .AB=3 , AD= PA=、'lii , .•直线PC与平面PAD所成角的正切值:.―CD ? :? tan/CPD=P0=^MB=4 ・故答案为::.推导出CDSD, CD1PA,从而CD」平面PAD,进而/CPD是直线PC与平面PAD所成角,由此能求出直线PC与平面PAD所成角的正切值.此题考查线面角的正切值的求法,考查空间中线线、线面、面面间的位置关系等根底知识,考查推理推论证水平、运算求解水平,是中档题.16 .【答案】-2【解析】解:数歹Sn}中,*+1=2 a-n+3)向=-1 , 假设数列{a n-pn+q)为等比数列,所以:a n+1-p n+1)+q=2 a n-pn+q)解得:p=2, q=2,故:数列a n-pn+q}是以-1+2-2=-1为首项,2为公比的等比数列.所以:&-如+£=(-1同一,整理得:通第-4加2 .故:a p+q=a4=-8+8-2=-2,故答案为:-2首先求出数列的通项公式,进一步求出结果.此题考查的知识要点:数列的通项公式的求法及应用,主要考察学生的运算水平和转换水平,属于根底题型.17 .【答案】解:(1)由余弦定理得AB2= BC2+ AC2-2 BC XAC Xcos C,代入数据整理得BC2+3BC-40=0 ,解得BC=5 (BC=-8舍去).(2)由cos A= "sin B 及C=120 °,得cos (60 -B) = ~sin B,展开得cos B+—sin B- sin B=0,即一sin B=cos B, tan B= =—,所以B=30°.从而A=60°-B=30° ,即A=B=30° ,所以BC=AC=3.故AABC的面积为-q>3 xsin120 =—.【解析】1)直接利用余弦定理和一元二次方程的解的应用求出结果.2)利用三角函数关系式的变换和三角形的面积公式的应用求出结果.此题考查的知识要点:三角函数关系式的变换,正弦定理余弦定理和三角形面积的应用,主要考察学生的运算水平和转换水平,属于根底题型.18.【答案】解:〔1〕填写列联表如下:性别入围人数未入围人数总计男生2476100女生2080100总计44156200…〔4分〕由于K2的观测值k= ------------------------- =一<2.706,…〔6分〕所以没有90%以上的把握认为脑力测试后是否为“入围学生〞与性别有关•••〔7分〕〔2〕〔i 〕这11名学生中,被抽到的女生人数为20J=5…〔9分〕〔ii〕由于入围的分数不低于120分,且每个女生的测试分数各不相同,每个人的分数都是整数, 所以这11名学生中女生的平均分的最小值为-X 〔120+121 + 122+123+124 〕=122…〔12分〕【解析】1〕甘题意填写列联表,计算观测值,对照临界值得出结论;2〕〔 i 〕根据国抽样原理计算被抽到的女生人数;〔ii〕题意计算所求平均分的最小值.此题考查了列联表与独立性检验的应用问题,也考查了分层抽样原理与平均数的计算问题,是根底题.19 .【答案】〔1〕证实:如图,连接BC1. 〔1分〕在三^^柱ABC-A1B1C1中,E为AC1的中点.〔2分〕又由于F为AB的中点,所以EF/BC1. 〔3 分〕又EF?平面BCC1B1, BC1?平面BCC I B I,所以EF /狂面BCC I B I.〔5分〕〔或先证面面平行,再证线面平行,也是常见的方法,阅卷时应同样给分.〕〔2〕解:由于ACSB, AA I^AC,AA I AAB=A,所以ACL平面ABB I A I, E到平面ABB I A I的距离为:-X4=2. 〔9分〕由于AAB I F的面积为:-X2X6=6, 〔10分〕1〕连接BC1.证实EF/BC1,然后证实EF怦■面BCC1B1.2〕说明AC1:平面ABB 1A1,求出E到平面ABB 1A l的距离,通过心=k』M 求解体积即可.此题考查直线与平面平行的判断定理以及性质定理的应用,几何体的体积的求法,考查空间想象水平以及计算水平.20 .【答案】〔1〕证实:设 A 〔XI, y1〕,B〔X2, V公,联立,得x2-4kx-4=0, 〔1 分〕贝U X1X2=-4, 〔 2 分〕所以y1y2= ------- =1 , 〔3 分〕从而? =X1X2+y1y2=-3 v 0, 〔4 分〕那么/AOB为钝角,故AAOB为钝角三角形.〔5分〕〔得到X1X2, y〔y2的值分别给〔1分〕;假设只是得到其中一个,且得到? =-3<0,可以共给〔3分〕〕.〔2〕解:由〔1〕知,X〔+X2=4k, y〔+y2=k〔X1+X2〕+2=4k2+2, 〔6分〕那么1AB i=y〔+ y2+p=4k2+4. 〔7 分〕由x2=4y,得yj, y'—,设P 〔小,V0〕,那么x0=2k, y0=k2,那么点P到直线y= kx+1的距离d=——= .〔9分〕从而^PAB 的面积S=d|AB|=2 〔k2+1〕=16, 〔10 分〕解得k=± -, 〔11分〕故直线l的方程为y=±-X-3.〔12分〕【解析】1〕设AX1,y1〕,B X2,y2〕,联立{得x2-4kx-4=0,利用韦达定理以及向量的数量积证实AAOB为钝角三角形.2〕求川AB|=y1+y2+p=4k2+4,结合函数的导数,利用斜率关系,求出点P到直线y=kx+1的距离,写出|AB|,禾1」用/TAB的面积,转化求解即可.此题考查直线与抛物线的位置关系的综合应用,函数的导数的应用,考查转化思想以及计算水平.221 .【答案】〔1〕解:当a=-4 时,f 〔X〕 =x2+3x-4ln X,定义域为〔0, +8〕.f' 〔X〕=X+3--= ------------ .当X>1时,f〔X〕>0, f〔X〕单调递增,那么f〔X〕的单调递增区间为〔1, +8〕;当0VXV 1时,f〔X〕V 0, f〔X〕单调递减,那么f〔X〕的单调递减区间为〔0,1〕.〔7分〕E为A1C的中点,所以=-X2>6=4. 〔12 分〕(2)证实:f' (x) =: g' (x) =3x2+2bx- (2b+4) +- -------------------------------------令p (x) =3x2+(2b+3) x-1 . 由于aC (1, 2],所以f (x)的极小值点为a,那么g (x)的极小值点为a, 所以p (a) =0,即3a2+ (2b+3) a-1=0,即b= ---------------------- ,此时g (x)的极大值为g (1) =1 + b- (2b+4) =-3-b=-3- -------------------- =-a ------ . 由于aC (1, 2],所以-a-—w--=一.故g (x)的极大值不大于【解析】1)当a=-4时,f x)=x2+3x-4ln x ,定义域为0,+°°) f x) =x+3-1 =©匚见匚电.即可得出单调区间.2)f x)=" - , g' x)=3x2+2bx- 2b+4)+; ="-1". +忸令「x)=3x2+ 2b+3)x-1 .由aC Q,2],可得f x)的极小直点为a,那么g K)的极小直点为a,可得p a)=.,b=—',止时g K)的极大值为g Q=1+b- 2b+4)代入利用函数的单调性即可得出. 此题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、转化方法,考查了推理水平与计算水平,属于难题.2 2 2 22 .【答案】解:(1)由p-4 P cos-60p sin 0 +12 =0 x+y-4x-6y+12=0 ,即(x-2) 2+(y-3) 2=1,此即为曲线C的直角坐标方程.(2)由(1)可设P的坐标为(2+cosa, 3+sin加,0<(<2兀,贝U|PM|=3+sin 乌又直线p cos 51的直角坐标方程为x=-1, 所以|PN|=2+cos a +1=3+cosa 所以|PM|+|PN|=6+ -sin ( a 卡),故当时,|PM|+|PN|取得最大值为6+ 一. 【解析】1)由p2-4pcos61P sin 9 +12 =0x2+y2-4x-6y+12=0 ,即*2)2+ y-3)2=1,此即为曲线C 的直角坐标方程.2)由10 □段P的坐标为2+cos% 3+sin & 0&嚏2兀,求出|PM|和|PN|后相加,用三角函数的性质求得最大值.此题考查了简单曲线的极坐标方程,属中档题.23 .【答案】解:(1) k=4 时,函数 f (x) =|x+1|+|2-x|-4,不等式 f (x) v 0化为|x+1|+|2-x|<4,当xv-1时,不等式化为-x-1+2-x<4,解得〜vxv-1,当-1虫W2时,不等式化为x+1+2-x=3<4恒成立,那么-1<x<2,当x>2时,不等式化为x+1 + x-2<4,解得2vxv—,综上所述,不等式f (x) <0的解集为(-,-);⑵由于 f (x) =|x+1|+|2-x|-k>x+1+2-x|-k=3-k,所以f (x)的最小值为3-k;又不等式对x CR恒成立,所以3-k> ,所以,解得k<l,所以k的取值范围是(-00, 1].【解析】1)k=4时,利用分类讨论思想求出不等式f x) <0的解集,再求它们的并集;2)利邢色对值不等式的性质求出f K)的最/」信,再把不等式门© > 尔!化为3-k浮工转,求出不等式的解集即可.此题考查了不等式包成立应用问题,也考查了含有绝对值的不等式解法与应用问题,是中档题.。
广东省揭阳市2019届高三上学期期末学业水平调研数学(文)试题及精品解析
C. {0,2,3}
D. {0,1,2,3}
【解析】解: ∵ ������ = { ‒ 1,0,1,2,3},������ = { ‒ 1,1}; ∴ ∁������������ = {0,2,3}. 故选:C. 进行补集的运算即可. 考查列举法的定义,以及补集的运算.
2.
复数
������ = 1 ‒ ������ + 2 + ������
故选:B.
������与������的夹角为锐角
⃗
⃗
⇒⃗ ⋅ ⃗ ≥ 0
������ ������
,反之不成立,夹角可能为0.即可判断出结论.
本题考查了向量的夹角、数量积运算性质、简易逻辑,考查了推理能力与计算能力,属于基础题.
4.
已知函数������(������) = 2
������2 ‒ ������
2
的虚部是( )
A. 3
【答案】B 【解析】解:
2
B. 2
C. 2i
D. 3i
∵ ������ = 1 ‒ ������ + 2 + ������ = (1 ‒ ������)(1 + ������) + 2 + ������ = 1 + ������ + 2 + ������ = 3 + 2������
A. 充分不必要条件 C. 充要条件
【答案】B
B. 必要不充分条件 D. 既不充分也不必要条件
⃗ ⃗ ⇒⃗ ⋅ ⃗ ≥ 0 【解析】解:������与������的夹角为锐角 ������ ������ ,反之不成立,夹角可能为 0. ⃗⋅⃗≥0 ⃗ ⃗ ∴ “������ ������ ”是“������与������的夹角为锐角”的必要不充分条件.
广东省揭阳市高考数学二模试卷(文科)
广东省揭阳市高考数学二模试卷(文科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019高三上·长治月考) 已知复数满是且,则的值为()A . 2B . -2或2C . 3.D . -3或32. (2分)已知全集U=R,集合A=,,则()A . (0,1]B .C .D . (0,1)3. (2分)某学习小组共12人,其中有五名是“三好学生”,现从该小组中任选5人参加竞赛,用表示这5人中“三好学生”的人数,则下列概率中等于的是()A .B .C .D .4. (2分)等差数列{}中,,则前10项和()A . 5B . 25C . 50D . 1005. (2分) (2018高二下·河池月考) 设,函数的导函数是,且是奇函数.若曲线的一条切线的斜率是,则切点的横坐标为()A .B .C .D .6. (2分) (2018·凯里模拟) 已知抛物线的焦点是椭圆()的一个焦点,且该抛物线的准线与椭圆相交于、两点,若是正三角形,则椭圆的离心率为()A .B .C .D .7. (2分) (2017高二上·海淀期中) 如图,四面体的三条棱,,两两垂直,,,为四面体外一点,给出下列命题.①不存在点,使四面体有三个面是直角三角形;②不存在点,使四面体是正三棱锥;③存在点,使与垂直并且相等;④存在无数个点,使点在四面体的外接球面上.其中真命题的序号是().A . ①②B . ②③C . ③D . ③④8. (2分)某程序框图如图所示,该程序运行后输出的k的值是()A . 4B . 5C . 6D . 79. (2分)已知,函数在上单调递减,则取值范围是()A .B .C .D .10. (2分)设函数有三个零点x1、x2、x3,且x1<x2<x3则下列结论正确的是()A .B .C .D .11. (2分)如图是一个几何体的三视图,则该几何体任意两个顶点间距离的最大值是()A . 3B . 3C . 4D . 512. (2分)(2019高一上·嘉善月考) 设的最小值为 ,的最大值为 .若函数 , ,则()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2017高一上·南通开学考) 已知向量 =(k,3), =(1,4), =(2,1),且,则实数k=________.14. (1分) (2015高三上·青岛期末) 已知O是坐标原点,点A的坐标为(2,1),若点B(x,y)为平面区域上的一个动点,则z= 的最大值是________.15. (1分)设正项数列{an}的前n项和Sn满足6Sn=an+12﹣9n(n∈N*),且a2 , a3 , a5构成等比数列,则数列{an}的通项公式为 an=________.16. (1分)(2018·中原模拟) 已知双曲线的左、右焦点分别为,点,以为直径的圆与直线的交点为,且点在线段上,若,则双曲线的离心率为________.三、解答题 (共7题;共60分)17. (10分) (2016高三上·无锡期中) 在△ABC 中,角A,B,C 所对的边分别为a,b,c,已知bsinA= acosB.(1)求角B 的值;(2)若cosAsinC= ,求角A的值.18. (10分) (2017高二上·河南月考) 如图,在四棱锥中,平面,底面是菱形.(1)求证:平面;(2)若,求与平面所成角的正弦值.19. (5分)有甲、乙两个班,进行数学考试,按学生考试及格与不及格统计成绩后,得到如下的列联表.能否在犯错误的概率不超过0.01的前提下认为成绩及格与班级有关系?不及格及格总计甲班103545乙班73845总计177390依据表P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001 k0.4550.708 1.323 2.072 2.706 3.841 5.024 6.6357.87910.82820. (10分)(2016·深圳模拟) 过抛物线C:y2=2px(p>0)的焦点F的直线交抛物线于A,B两点,且A,B两点的纵坐标之积为﹣4.(1)求抛物线C的方程;(2)已知点D的坐标为(4,0),若过D和B两点的直线交抛物线C的准线于P点,求证:直线AP与x轴交于一定点.21. (10分) (2018高二上·沭阳月考) 已知函数,(1)当时,求函数的极值;(2)求函数的单调区间。
广东省揭阳市2019-2020学年第二次高考模拟考试数学试卷含解析
广东省揭阳市2019-2020学年第二次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.3481(3)(2)x x x+-展开式中x 2的系数为( ) A .-1280 B .4864 C .-4864 D .1280【答案】A 【解析】 【分析】根据二项式展开式的公式得到具体为:()23174268811322x C x C x x ⎡⎤⎡⎤⎛⎫⎛⎫-+⋅-⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎢⎥⎣⎦化简求值即可.【详解】根据二项式的展开式得到可以第一个括号里出33x 项,第二个括号里出1x项,或者第一个括号里出4x ,第二个括号里出21x ,具体为:()23174268811322x C x C x x ⎡⎤⎡⎤⎛⎫⎛⎫-+⋅-⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎢⎥⎣⎦化简得到-1280 x 2 故得到答案为:A. 【点睛】求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项.可依据条件写出第1r +项,再由特定项的特点求出r 值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第1r +项,由特定项得出r 值,最后求出其参数.2.执行如图所示的程序框图,则输出S 的值为( )A .16B .48C .96D .128【解析】 【分析】列出每一次循环,直到计数变量i 满足3i >退出循环. 【详解】第一次循环:12(11)4,2S i =+==;第二次循环:242(12)16,3S i =++==; 第三次循环:3162(13)48,4S i =++==,退出循环,输出的S 为48. 故选:B. 【点睛】本题考查由程序框图求输出的结果,要注意在哪一步退出循环,是一道容易题.3.在很多地铁的车厢里,顶部的扶手是一根漂亮的弯管,如下图所示.将弯管形状近似地看成是圆弧,已知弯管向外的最大突出(图中CD )有15cm ,跨接了6个坐位的宽度(AB ),每个座位宽度为43cm ,估计弯管的长度,下面的结果中最接近真实值的是( )A .250cmB .260cmC .295cmD .305cm【答案】B 【解析】 【分析】»AB 为弯管,AB 为6个座位的宽度,利用勾股定理求出弧AB 所在圆的半径为r ,从而可得弧所对的圆心角,再利用弧长公式即可求解. 【详解】如图所示,»AB 为弯管,AB 为6个座位的宽度,则643258AB cm =⨯=设弧AB 所在圆的半径为r ,则222()r r CD AC =-+22(15)129r =-+解得562r cm ≈129sin 0.23562AOD ∠=≈ 可以近似地认为sin x x ≈,即0.23AOD ∠≈ 于是0.46AOB ∠≈,»AB 长5620.46258.5≈⨯≈所以260cm 是最接近的,其中选项A 的长度比AB 还小,不可能, 因此只能选B ,260或者由cos 0.97x ≈,sin 20.4526x x π≈⇒<所以弧长5622946π<⨯≈.故选:B 【点睛】本题考查了弧长公式,需熟记公式,考查了学生的分析问题的能力,属于基础题. 4.已知复数z 满足0z z -=,且9z z ⋅=,则z =( ) A .3 B .3iC .3±D .3i ±【答案】C 【解析】 【分析】设z a bi =+,则z a bi =-,利用0z z -=和9z z ⋅=求得a ,b 即可. 【详解】设z a bi =+,则z a bi =-,因为0z z -=,则()()20a bi a bi bi +--==,所以0b =, 又9z z ⋅=,即29a =,所以3a =±, 所以3z =±, 故选:C 【点睛】本题考查复数的乘法法则的应用,考查共轭复数的应用.5.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是()注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A.互联网行业从业人员中90后占一半以上B.互联网行业中从事技术岗位的人数超过总人数的20%C.互联网行业中从事运营岗位的人数90后比80前多D.互联网行业中从事技术岗位的人数90后比80后多【答案】D【解析】【分析】根据两个图形的数据进行观察比较,即可判断各选项的真假.【详解】在A中,由整个互联网行业从业者年龄分别饼状图得到互联网行业从业人员中90后占56%,所以是正确的;在B中,由整个互联网行业从业者年龄分别饼状图,90后从事互联网行业岗位分布条形图得到:56%39.6%22.176%20%⨯=>,互联网行业从业技术岗位的人数超过总人数的20%,所以是正确的;在C中,由整个互联网行业从业者年龄分别饼状图,90后从事互联网行业岗位分别条形图得到:13.7%39.6%9.52%3%⨯=>,互联网行业从事运营岗位的人数90后比80后多,所以是正确的;在D中,互联网行业中从事技术岗位的人数90后所占比例为56%39.6%22.176%41%⨯=<,所以不能判断互联网行业中从事技术岗位的人数90后比80后多.故选:D.【点睛】本题主要考查了命题的真假判定,以及统计图表中饼状图和条形图的性质等基础知识的应用,着重考查了推理与运算能力,属于基础题.6.一个算法的程序框图如图所示,若该程序输出的结果是34,则判断框中应填入的条件是()A .5?i >B .5?i <C .4?i >D .4?i <【答案】D 【解析】 【分析】首先判断循环结构类型,得到判断框内的语句性质,然后对循环体进行分析,找出循环规律,判断输出结果与循环次数以及i 的关系,最终得出选项. 【详解】经判断此循环为“直到型”结构,判断框为跳出循环的语句,第一次循环:110112122S i =+==+=⨯,; 第二次循环:1122132233S i =+==+=⨯,; 第三次循环:2133143344S i =+==+=⨯,, 此时退出循环,根据判断框内为跳出循环的语句,4i ∴<?,故选D . 【点睛】题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.7.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A .18B .17C .16D .15【答案】D 【解析】 【分析】 【详解】试题分析:如图所示,截去部分是正方体的一个角,其体积是正方体体积的16,剩余部分体积是正方体体积的56,所以截去部分体积与剩余部分体积的比值为,故选D. 考点:本题主要考查三视图及几何体体积的计算.8.已知等差数列{}n a 的前n 项和为n S ,且2550S =,则1115a a +=( ) A .4 B .8C .16D .2【答案】A 【解析】 【分析】利用等差的求和公式和等差数列的性质即可求得. 【详解】()1252512511152550442a a S a a a a +==⇒+=⇒+=.故选:A . 【点睛】本题考查等差数列的求和公式和等差数列的性质,考查基本量的计算,难度容易.9.空气质量指数AQI 是反映空气状况的指数,AQI 指数值趋小,表明空气质量越好,下图是某市10月1日-20日AQI指数变化趋势,下列叙述错误的是()A.这20天中AQI指数值的中位数略高于100B.这20天中的中度污染及以上(AQI指数>150)的天数占1 4C.该市10月的前半个月的空气质量越来越好D.总体来说,该市10月上旬的空气质量比中旬的空气质量好【答案】C【解析】【分析】结合题意,根据题目中的20天的AQI指数值,判断选项中的命题是否正确.【详解】对于A,由图可知20天的AQI指数值中有10个低于100,10个高于100,其中第10个接近100,第11个高于100,所以中位数略高于100,故A正确.对于B,由图可知20天的AQI指数值中高于150的天数为5,即占总天数的14,故B正确.对于C,由图可知该市10月的前4天的空气质量越来越好,从第5天到第15天空气质量越来越差,故C错误.对于D,由图可知该市10月上旬大部分指数在100以下,中旬大部分指数在100以上,所以该市10月上旬的空气质量比中旬的空气质量好,故D正确.故选:C【点睛】本题考查了对折线图数据的分析,读懂题意是解题关键,并能运用所学知识对命题进行判断,本题较为基础.10.已知双曲线22122:1x yCa b-=与双曲线222:14yC x-=没有公共点,则双曲线1C的离心率的取值范围是( )A .(B .)+∞C .(D .)+∞【答案】C 【解析】 【分析】先求得2C 的渐近线方程,根据12,C C 没有公共点,判断出1C 渐近线斜率的取值范围,由此求得1C 离心率的取值范围. 【详解】双曲线222:14y C x -=的渐近线方程为2y x =±,由于双曲线22122:1x y C a b -=与双曲线222:14y C x -=没有公共点,所以双曲线1C 的渐近线的斜率2b a ≤,所以双曲线1C 的离心率(e =.故选:C 【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的取值范围的求法,属于基础题. 11.定义在R 上的奇函数()f x 满足()()330f x f x --+-=,若()11f =,()22f =-,则()()()()1232020f f f f ++++=L ( )A .1-B .0C .1D .2【答案】C 【解析】 【分析】首先判断出()f x 是周期为6的周期函数,由此求得所求表达式的值. 【详解】由已知()f x 为奇函数,得()()f x f x -=-, 而()()330f x f x --+-=, 所以()()33f x f x -=+, 所以()()6f x f x =+,即()f x 的周期为6.由于()11f =,()22f =-,()00f =, 所以()()()()33330f f f f =-=-⇒=,()()()4222f f f =-=-=,()()()5111f f f =-=-=-, ()()600f f ==.所以()()()()()()1234560f f f f f f +++++=, 又202063364=⨯+,所以()()()()1232020f f f f ++++=L ()()()()12341f f f f +++=. 故选:C 【点睛】本小题主要考查函数的奇偶性和周期性,属于基础题.12.设()y f x =是定义域为R 的偶函数,且在[)0,+∞单调递增,0.22log 0.3,log 0.3a b ==,则( ) A .()()(0)f a b f ab f +>> B .()(0)()f a b f f ab +>> C .()()(0)f ab f a b f >+> D .()(0)()f ab f f a b >>+【答案】C 【解析】 【分析】根据偶函数的性质,比较+,a b ab 即可. 【详解】解:0.22lg0.3lg0.3+log 0.3log 0.3+lg0.2lg 2a b =+=55lg 0.3lglg 0.3lg 22lg5lg 2lg5lg 2⨯⨯==--⨯⨯ ()0.22lg 0.3lg 0.3log 0.3log 0.3lg 0.2lg 2lg 0.3lg 0.3lg 0.3lg 0.3lg 5lg 2lg 5lg 2lg 0.3lg 0.3lg 5lg 210lg 0.3lg3lg 5lg 2ab =⨯=⨯-⨯⨯==⨯⨯-⨯-=⨯⨯=-⨯显然510lglg 23<,所以+a b ab < ()y f x =是定义域为R 的偶函数,且在[)0,+∞单调递增,所以()()(0)f ab f a b f >+> 故选:C 【点睛】本题考查对数的运算及偶函数的性质,是基础题. 二、填空题:本题共4小题,每小题5分,共20分。
2019届广东省揭阳市高三学业水平考试数学(文)试题Word版含解析
2019届广东省揭阳市高三学业水平考试数学(文)试题一、单选题1.已知集合,,则( )A.B.C.D.【答案】C【解析】根据补集的概念,求得集合在集合范围内的补集.【详解】在集合中,集合没有的元素是,故.故选C.【点睛】本小题主要考查集合补集的概念及运算,考查全集的概念,属于基础题.2.复数的虚部是( )A.3 B.2 C.D.【答案】B【解析】用复数除法运算和加法运算,求得的标准形式,由此求得虚部.【详解】依题意,故虚部为,所以选B.【点睛】本小题主要考查复数除法运算,考查复数的加法以及复数虚部的概念,属于基础题.3.“”是“与的夹角为锐角”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】将两个条件相互推导,根据能否推导的情况,确定正确的选项.【详解】当时,的夹角为直角,故“”不能推出“与的夹角为锐角”.当“与的夹角为锐角”时,,即能推出“”.综上所述,“”是“与的夹角为锐角”的必要不充分条件.【点睛】本小题主要考查充分、必要条件的判断,属于基础题.解题的方法是将两个条件相互推导,再根据充要条件的概念得出正确选项.4.已知函数,,则( )A.1 B.C.D.【答案】D【解析】利用求得的值,即求得函数的解析式,由此来求的值.【详解】依题意,故,解得.故,所以.故选D.【点睛】本小题主要考查函数解析式的求法——待定系数法,考查函数求值,属于基础题.5.记等比数列的前项和为,已知,且公比,则=( )A.-2 B.2 C.-8 D.-2或-8【答案】C【解析】利用基本元的思想,将已知条件转化为的形式,解方程组求得的值,进而求得的值.【详解】依题意,解得,故,故选C.【点睛】本小题主要考查利用基本元的思想求等比数列的基本量、通项公式和前项和.基本元的思想是在等比数列中有个基本量,利用等比数列的通项公式或前项和公式,结合已知条件列出方程组,通过解方程组即可求得数列,进而求得数列其它的一些量的值.6.若点在抛物线上,记抛物线的焦点为,则直线的斜率为( )A.B.C.D.【答案】C【解析】将点的坐标代入抛物线方程,求得的值,由此求得抛物线焦点的坐标,根据两点求斜率的公式求得直线的斜率.【详解】将坐标代入抛物线方程得,故焦点坐标,直线的斜率为,故选C.【点睛】本小题主要考查待定系数法求抛物线的方程,考查抛物线的几何性质,考查已知两点坐标求直线斜率的公式.属于基础题.7.已知,且,则=( )A.B.C.D.2【答案】B【解析】先求得的范围,用二倍角公式以及同角三角函数的基本关系式化简已知条件,由此求得的值.【详解】由于,所以,故.所以,即,即,故.故选B.【点睛】本小题主要考查二倍角公式以及同角三角函数的基本关系式,属于基础题.8.如图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.则下列结论中表述不正确的是( )A.从2000年至2016年,该地区环境基础设施投资额逐年增加;B.2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;C.2012年该地区基础设施的投资额比2004年的投资额翻了两番;D.为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t的值依次为)建立了投资额y与时间变量t的线性回归模型,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.【答案】D【解析】根据图像所给的数据,对四个选项逐一进行分析排除,由此得到表述不正确的选项.【详解】对于选项,由图像可知,投资额逐年增加是正确的.对于选项,投资总额为亿元,小于年的亿元,故描述正确.年的投资额为亿,翻两翻得到,故描述正确.对于选项,令代入回归直线方程得亿元,故选项描述不正确.所以本题选D.【点睛】本小题主要考查图表分析能力,考查利用回归直线方程进行预测的方法,属于基础题.9.函数的图象大致为( )A.B.C.D.【答案】A【解析】分别令,根据的函数值,对选项进行排除,由此得出正确选项.【详解】由四个选项的图像可知,令,,由此排除C选项.令,,由此排除B选项.由于,排除D选项.故本小题选A.【点睛】本小题主要考查函数图像的判断,考查利用特殊点排除的方法,属于基础题.10.若满足约束条件,则的最小值为( )A.-1 B.-2 C.1 D.2【答案】A【解析】画出可行域,通过向下平移基准直线到可行域边界的位置,由此求得目标函数的最小值.【详解】画出可行域如下图所示,由图可知,目标函数在点处取得最小值,且最大值为.故选A .【点睛】本小题主要考查利用线性规划求线性目标函数的最大值.这种类型题目的主要思路是:首先根据题目所给的约束条件,画图可行域;其次是求得线性目标函数的基准函数;接着画出基准函数对应的基准直线;然后通过平移基准直线到可行域边界的位置;最后求出所求的最值.属于基础题.11.某几何体示意图的三视图如图示,已知其主视图的周长为8,则该几何体侧面积的最大值为( )A.B.C.D.【答案】C【解析】由三视图得到几何体为圆锥,设出圆锥的底面半径和母线长,根据主视图的周长得到一个等量关系,然后利用基本不等式求得侧面积的最大值.【详解】由三视图知,该几何体为圆锥,设底面的半径为r,母线的长为,则,又S侧=(当且仅当时“=”成立).故选C.【点睛】本小题主要考查由三视图还原为原图,考查圆锥的侧面积计算公式,考查利用基本不等式求最值,属于基础题.12.已知函数,其中是自然对数的底,若,则实数的取值范围是( )A.B.C.D.【答案】D【解析】首先对函数求导,然后利用基本不等式证得,利用函数奇偶性的定义判断函数为奇函数,在结合奇偶性以及单调性化简,得到关于的一元二次不等式,由此求得的取值范围.【详解】由,知在R上单调递增,且,即函数为奇函数,故,解得.故选D.【点睛】本小题主要考查函数导数与单调性,考查利用基本不等式求最小值,考查函数的奇偶性,属于中档题.二、填空题13.已知向量、,若,则_____;【答案】【解析】由于两个向量垂直,数量积为零,由此列方程,解方程求得的值,进而求得.【详解】由于,故,故.【点睛】本小题主要考查平面向量垂直的坐标表示,考查平面向量模的运算,属于基础题.14.已知双曲线的一条渐近线方程为,则该双曲线的离心率为____;【答案】2【解析】根据渐近线方程求得的值,根据离心率的公式求得双曲线的离心率.【详解】由于双曲线的一条渐近线为,故.所以双曲线离心率.【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的求法,属于基础题.15.如图,圆柱O1 O2 内接于球O,且圆柱的高等于球O的半径,则从球O内任取一点,此点取自圆柱O1 O2 的概率为_________;【答案】【解析】设出球的半径,利用勾股定理求得圆柱的底面半径,分别计算圆柱和球的体积,然后利用几何概型的概率计算公式,求得所求的概率.【详解】设球的半径为,依题意可知,圆柱底面半径,故圆柱的体积为,而球的体积为,故所求概率为.【点睛】本小题主要考查有关球的内接几何体的问题,考查体积型的集合概型概率计算,属于基础题.对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间).有关球内接几何体的问题,主要是构造直角三角形,利用勾股定理来计算长度.16.已知数列满足,,则数列中最大项的值为______.【答案】【解析】先将转化为,证得是等差数列,由此求得的通项公式,进而求得的通项公式.计算的值,利用数列的单调性求得的最大项.【详解】由得,即数列是公差为8的等差数列,故,所以,当时;当时,,数列递减,故最大项的值为.【点睛】本小题主要考查已知递推公式求数列的通项公式,考查等差数列的定义以及通项公式,考查数列的单调性以及最值,属于中档题.解题的突破口在于将题目所给的递推公式,转化为等差数列的形式,根据等差数列的通项公式间接求得的通项公式.数列的最大值一般是利用数列的单调性来求.三、解答题17.在中,内角、、所对的边分别是、、,且,(1)求;(2)当函数取得最大值时,试判断的形状.【答案】(1)(2)直角三角形【解析】(1)利用正弦定理化简已知条件得到,由此求得.(2)化简,故时取得最大值,此时三角形为直角三角形.【详解】解:(1)由正弦定理得,又,∴,即,∵∴.(2)∵∴,∴∵,∴当时,函数取得最大值,∴是直角三角形.【点睛】本题主要考查利用正弦定理进行边角互化,考查三角恒等变换,考查三角函数最值等知识.属于中档题18.如图,在三棱锥P-ABC中,正三角形PAC所在平面与等腰三角形ABC所在平面互相垂直,AB=BC,O 是AC中点,OH⊥PC于H.(1)证明:PC⊥平面BOH;(2)若,求三棱锥A-BOH的体积.【答案】(1)详见解析(2)【解析】(1)先证明平面,得到,结合已知,证得平面.(2)将所求转化为,利用(1)的结论得到三棱锥的高为,由此计算得三棱锥的体积.【详解】解:(1)∵AB=BC,O是AC中点,∴BO⊥AC,又平面PAC⊥平面ABC,且平面ABC,平面PAC∩平面ABC=AC,∴BO⊥平面PAC,∴BO⊥PC,又OH⊥PC,BO∩OH=O,∴PC⊥平面BOH;(2)∵△HAO与△HOC面积相等,∴,∵BO⊥平面PAC,∴,∵,∠HOC=30°∴,∴,∴,即.【点睛】本题主要考查线面垂直的证明,考查三棱锥体积的求法,属于中档题.19.某公司培训员工某项技能,培训有如下两种方式,方式一:周一到周五每天培训1小时,周日测试;方式二:周六一天培训4小时,周日测试.公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如下表:(1)用方式一与方式二进行培训,分别估计员工受训的平均时间(精确到0.1),并据此判断哪种培训方式效率更高?(2)在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.【答案】(1)方式一(2)【解析】(1)用总的受训时间除以,得到平均受训时间.由此判断出方式一效率更高.(2)利用分层抽样的知识,计算得来自甲组人,乙组人.再利用列举法求得“从这人中随机抽取人,求这人中至少有人来自甲组的概率”.【详解】解:(1)设甲乙两组员工受训的平均时间分别为、,则(小时)(小时)据此可估计用方式一与方式二培训,员工受训的平均时间分别为10小时和10.9小时,因,据此可判断培训方式一比方式二效率更高;(2)从第三周培训后达标的员工中采用分层抽样的方法抽取6人,则这6人中来自甲组的人数为:,来自乙组的人数为:,记来自甲组的2人为:;来自乙组的4人为:,则从这6人中随机抽取2人的不同方法数有:,,,,共15种,其中至少有1人来自甲组的有:,共9种,故所求的概率.【点睛】本题主要考查平均数的计算,考查分层抽样,考查古典概型的计算方法,属于中档题.20.设椭圆的右顶点为A,下顶点为B,过A、O、B(O为坐标原点)三点的圆的圆心坐标为.(1)求椭圆的方程;(2)已知点M在x轴正半轴上,过点B作BM的垂线与椭圆交于另一点N,若∠BMN=60°,求点M的坐标.【答案】(1)(2)【解析】(1)根据直径所对圆周角为直角可知为直径,根据圆心坐标求得的值进而求得椭圆的方程.(2)由(1)求得点的坐标,设出直线的方程,同时得到直线的方程.联立直线的方程和椭圆方程,解出点的坐标,由此求得的表达式.通过直线的方程求得点的坐标,进而求得的表达式,利用得到,由此列方程解得的值,从而求得点的坐标.【详解】解:(1)依题意知,,∵△AOB为直角三角形,∴过A、O、B三点的圆的圆心为斜边AB的中点,∴,即,∴椭圆的方程为.(2)由(1)知,依题意知直线BN的斜率存在且小于0,设直线BN的方程为,则直线BM的方程为:,由消去y得,解得:,,∴∴,在中,令得,即∴,在Rt△MBN中,∵∠BMN=60°,∴,即,整理得,解得,∵,∴,∴点M的坐标为.【点睛】本题主要考查圆的几何性质,考查椭圆的标准方程的求法,考查直线和椭圆的位置关系,属于较难的题目.圆的几何性质主要考查了直径所对的圆周角是直角.直线和椭圆的位置关系,主要是联立直线方程和椭圆方程,解出直线和椭圆交点的坐标.两条斜率存在的直线相互垂直时,斜率乘积为,这个必须熟记.21.已知函数.(1)求函数的单调递减区间;(2)求实数的值,使得是函数唯一的极值点.【答案】(1)(2)-1【解析】(1)对函数求导并因式分解后,令导数小于零求得函数的单调递减区间.(2)先求出的表达式并因式分解得到,注意到,令通过的导数结合“是函数唯一的极值点”,对分成两类进行讨论,【详解】解:(1),令,得或,由得,而不等式组的解集为∴函数的单调递减区间为;(2)依题意得,显然,记,,则,当时,;当时,;由题意知,为使是函数唯一的极值点,则必须在上恒成立;只须,因,①当时,,即函数在上单调递增,而,与题意不符;②当时,由,得,即在上单调递减,由,得,即在上单调递增,故,若,则,符合题意;若,则,不合题意;综上所述,.【或由,及,得,∴,解得.】【点睛】本小题主要考查利用导数求函数的单调递减区间,考查利用导数求解有关函数极值点的问题,综合性较强,属于难题.利用导数求函数的单调区间,要对函数求导然后因式分解,得到的式子往往是一次函数、二次函数,或者类似二次函数的因式,可以类比二次函数的图像得到函数的单调区间.22.已知曲线C的参数方程为(t为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,过极点的两射线、相互垂直,与曲线C分别相交于A、B两点(不同于点O),且的倾斜角为锐角. (1)求曲线C和射线的极坐标方程;(2)求△OAB的面积的最小值,并求此时的值.【答案】(1)C的极坐标方程为,[或];的极坐标方程为;(2)16,【解析】(1)消去参数,求得曲线的普通方程,再转为极坐标方程.射线过原点,根据角度直接写出的极坐标方程.(2)利用极坐标方程求得的表达式,求得三角形面积的表达式,利用三角函数的的最值求得三角形面积的最小值,同时求得的值.【详解】解:(1)由曲线C的参数方程,得普通方程为,由,,得,所以曲线C的极坐标方程为,[或]的极坐标方程为;(2)依题意设,则由(1)可得,同理得,即,∴∵∴,∴,△OAB的面积的最小值为16,此时,得,∴.【点睛】本小题主要考查参数方程转化为极坐标方程,考查利用极坐标求三角形的面积,考查三角函数求最值,属于中档题.23.已知函数.(1)当时,求不等式的解集;(2)当时,不等式恒成立,求的取值范围.【答案】(1)(2)【解析】(1)当时,利用零点分段法去绝对值,解一元一次不等式求得不等式的解集.(2)当时,对函数去绝对值后,构造一次函数,一次函数恒大于或等于零,则需区间端点的函数值为非负数,由此列不等式组,解不等式组求得的取值范围.【详解】解:(1)①当时,,解得,②当时,,解得,③当时,解得,综上知,不等式的解集为.(2)当时,,设,则,恒成立,只需,即,解得【点睛】本小题主要考查利用零点分段法解含有两个绝对值的不等式,考查化归与转化的数学思想方法,属于中档题.。
2019年广东省揭阳市高考数学二模试卷(文科)(解析版)
2019年广东省揭阳市高考数学二模试卷(文科)一、选择题(本大题共12小题,共60.0分)1. 已知集合M ={x |-1<x <1}, ,则M ∩N =( )A.B.C.D.2. 复数的共轭复数的虚部为( )A.B.C.D.3. 已知双曲线mx 2+y 2=1的一条渐近线方程为2x +y =0,则m 的值为( )A.B.C.D.4.由K 2=得K 2=≈8.333>7.879参照附表,得到的正确结论是( )A. 有 以上的把握认为“爱好该项运动与性别有关”B. 有 以上的把握认为“爱好该项运动与性别无关”C. 在犯错误的概率不超过 的前提下,认为“爱好该项运动与性别有关”D. 在犯错误的概率不超过 的前提下,认为“爱好该项运动与性别无关”5. 某公司2018年在各个项目中总投资500万元,如图是几类项目的投资占比情况,已知在1万元以上的项目投资中,少于3万元的项目投资占,那么不少于3万元的项目投资共有( ) A. 56万元 B. 65万元 C. 91万元 D. 147万元6. 已知,,若θ是第二象限角,则tanθ的值为( )A.B.C.D.7. 已知α,β是平面,m ,n 是直线.下列命题中不正确的是( )A. 若 , ,则B. 若 , ,则C. 若 , ,则D. 若 , ,则8. 已知函数则的是( ) A.B.C. eD. 39. 我国古代数学专著《九章算术》中有一个“两鼠穿墙题”,其内容为:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.问何日相逢?各穿几何?”如图的程序框图源于这个题目,执行该程序框图,若输入x =20,则输出的结果为( ) A. 3 B. 4 C. 5 D. 6 10. 设函数,则下列结论错误的是( )A. 为 的一个周期B. 的图象关于直线对称 C. 的一个零点为D. 的最大值为211. 设F 是椭圆 :> > 的右焦点,A 是椭圆E 的左顶点,P 为直线上一点,△APF是底角为30°的等腰三角形,则椭圆E 的离心率为( )A.B.C.D.12. 若函数f (x )=-x 2(x 2+ax +b )的图象关于直线x =-1对称,则f (x )的最大值是( )A. B. C. 0 D. 1 二、填空题(本大题共4小题,共20.0分)13. 若x ,y 满足约束条件,则z =3x -2y 的最小值为______. 14. 已知平面向量 ,, , ,且 ∥ ,则实数m 的值为______.15. 已知四棱锥S -ABCD 的底面是边长为 的正方形,且四棱锥S -ABCD 的顶点都在半径为2的球面上,则四棱锥S -ABCD 体积的最大值为______.16. 已知△ABC 中, ,D 是BC 边上的一点,且△ABD 为等边三角形,则△ACD 面积S 的最大值为______.三、解答题(本大题共7小题,共82.0分)17. 已知等差数列{a n }的前n 项和为S n ,公差d 不为零,若a 1,a 3,a 9成等比数列,且S4=10.(1)求数列{a n }的通项公式;(2)求证:< .18. 已知如图,长方体ABCD -A 1B 1C 1D 1中,AB =BC =4, ,点E ,F ,M 分别为C 1D 1,A 1D 1,B 1C 1的中点,过点M 的平面α与平面DEF 平行,且与长方体的面相交,交线围成一个几何图形.(1)在图中画出这个几何图形,并求这个几何图形的面积(画图说出作法,不用说明理由);(2)求证:D1B平面DEF.19.已知抛物线C:x2=4y的焦点为F,直线y=kx+m(m>0)与抛物线C交于不同的两点M,N.(1)若抛物线C在点M和N处的切线互相垂直,求m的值;(2)若m=2,求|MF|•|NF|的最小值.20.某快递公司收取快递费用的标准是:重量不超过1kg的包裹收费10元;重量超过1kg的包裹,除收费10元之外,超过1kg的部分,每超出1kg(不足1kg,按1kg计算)需要再收费5元.该公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).(1)求这60天每天包裹数量的平均值和中位数;(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.已知公司前台有工作人员3人,每人每天工资100元,以样本估计总体,试估计该公司每天的利润有多少元?(3)小明打算将A(0.9kg),B(1.3kg),C(1.8kg),D(2.5kg)四件礼物随机分成两个包裹寄出,且每个包裹重量都不超过5kg,求他支付的快递费为45元的概率.21.已知函数f(x)=x-a ln x-1.(1)若函数f(x)的极小值为0,求a的值;(2)∀t>0且a≤1,求证:>.22.在直角坐标系xOy中,直线:,圆:,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求C1,C2的极坐标方程;(2)若直线C3的极坐标方程为,设C1与C2的交点为O,A,圆C2与C3的交点为O,B,求△OAB的面积.23.已知正实数x,y满足x+y=1.(1)解关于x的不等式;(2)证明:.答案和解析1.【答案】A【解析】解:;∴.故选:A.可以求出集合N,然后进行交集的运算即可.考查描述法的定义,以及交集的运算.2.【答案】C【解析】解:设z====,所以z的共轭复数的虚部为-,故选:C.先求出复数的代数形式,即可得到的共轭复数的虚部本题考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.3.【答案】D【解析】解:双曲线mx2+y2=1的渐近线方程为:y±x=0,因为双曲线mx2+y2=1的一条渐近线方程为2x+y=0,可得,解得m=-4.故选:D.求出双曲线的渐近线方程与已知渐近线方程对比,即可求出m的值.本题考查双曲线的简单性质的应用,是基本知识的考查.4.【答案】A【解析】解:由题意知K2=≈8.333>7.879,对照临界值得出,有99.5%以上的把握认为“爱好该项运动与性别有关”.故选:A.由题意知观测值K2,对照临界值得出结论.本题考查了独立性检验原理的应用问题,是基础题.5.【答案】B【解析】解:由题意,因为在1万元以上的项目投资中,少于3万元的项目投资占,所以在1万元以上的项目投资中,不少于3万元的项目投资占比为,而1万元以上的项目投资占总投资的比例为1-46%-33%=21%,所以不少于3万元的项目投资共有500×21%×=65万元,故选:B.根据题意,在1万元以上的项目投资中,少于3万元的项目投资占,可得不少于3万元的项目投资占比为,而1万元以上的项目投资占总投资的比例为1-46%-33%=21%,即可得到那么不少于3万元的项目投资.本题考查了扇形图的读图识图能力,属于基础题.6.【答案】C【解析】解:∵,∴sin2θ+cos2θ=()2+(-)2=1,解得:a=0,或a=4,∵θ为第二象限角,∴sinθ>0,cosθ<0.∴a=4,∴可得:sinθ=,cosθ=-,tanθ=-.故选:C.利用sin2θ+cos2θ=1,解得a.由于θ为第二象限角,可得sinθ>0,cosθ<0.即可得出a的值,进而可求tanθ的值.本题考查了同角三角函数的基本关系式、三角函数值的符号,考查了推理能力与计算能力,属于基础题.7.【答案】B【解析】解:对于A,根据两条平行线中一条垂直某平面,另一条也垂直这平面可判定A正确;对于B,若m∥α,α∩β=n,则m∥n或异面,故错;对于C,根据线面垂直的性质、面面平行的判定,可知C正确;对于D,根据面面垂直的判定,可D正确;故选:B.A,根据两条平行线中一条垂直某平面,另一条也垂直这平面可判定;B,若m∥α,α∩β=n,则m∥n或异面,;C,根据线面垂直的性质、面面平行的判定判定;D,根据面面垂直的判定;本题考查了命题真假的判定,属于基础题.8.【答案】D【解析】解:根据题意,函数则f ()=ln=-ln3,则f[f ()]=f(-ln3)=e ln3=3;故选:D.根据题意,由函数的解析式求出f ()=-ln3,进而可得f[f ()]=f(-ln3),计算可得答案.本题考查函数值的计算,涉及分段函数的解析式,属于基础题.9.【答案】C【解析】解:若x=20,则T=1+1=2,S=0+2=2,S<20是,a=2,b=,n=2T=2+=,S=+2=,S<20是,a=4,b=,n=3,T=4+=,S=+=,S<20是,a=8,b=,n=4,T=8+=,S=+=,S<20是,a=16,b=,n=5,T=16+=,S=+=,S<20否,程序终止,输出,n=5,故选:C.根据程序框图进行模拟计算即可.本题主要考查程序框图的识别和判断,利用模拟运算法是解决本题的关键.考查学生的计算能力.10.【答案】D【解析】解:∵函数=cos2x+cos2x=(+1)cos2x,故它的周期为=π,故A正确;当x=,求得f(x)=-(+1),为最小值,故它的图象关于直线x=对称,故B正确;当x=,求得f(x)=0,故f(x)的一个零点为x=,故C正确;由于f(x)的最大值为+1,故D错误,故选:D.由题意利用诱导公式化简函数的解析式,再利用余弦函数的性质得出结论.本题主要考查诱导公式、余弦函数的性质,属于基础题.11.【答案】B【解析】解:设交x轴于点M,∵△FPA是底角为30°的等腰三角形∴∠PFA=120°,|PF|=|FA|,且|PF|=2|FM|∵P为直线上一点,∴2(-c)=a+c,解之得2a=3c∴椭圆E的离心率为e==故选:B.利用△FPA是底角为30°的等腰三角形,可得|PF|=|FA|,根据P为直线上一点建立方程,由此可求椭圆的离心率.本题给出与椭圆有关的等腰三角形,在已知三角形形状的情况下求椭圆的离心率.着重考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.12.【答案】C【解析】解:因为函数f(x)=-x2(x2+ax+b)的图象关于直线x=-1对称,则,即,解得,当a=b=4时,f(x)=f(-2-x)恒成立,即a=b=4满足题意,即f(x)=-x2(x+2)2=-[(x+1)2-1]2,当x=0时,f(x)取最大值0,故选:C.由函数的性质得:函数f(x)=-x2(x2+ax+b)的图象关于直线x=-1对称,则,即,解得,当a=b=4时,f(x)=f(-2-x)恒成立,即a=b=4满足题意,由二次函数的最值问题得:f(x)=-x2(x+2)2=-[(x+1)2-1]2,当x=0时,f(x)取最大值0,得解.本题考查了函数的性质及二次函数的最值问题,属中档题.13.【答案】0【解析】解:由z=3x-2y得y=x-,作出不等式组对应的平面区域如图(阴影部分):平移直线y=x-由图象可知当直线y=x-经过点A时,直线的截距最小,此时z也最小,由,解得O(0,0)将O(0,0)代入目标函数z=3x-2y,得z=0.故答案为:0.作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.14.【答案】【解析】解:平面向量,且∥,所以,2m+1-(-)•2m=0,解得m=-.故答案为:-.根据平面向量的共线定理与坐标表示,列方程求出m的值.本题考查了平面向量的共线定理与坐标运算问题,是基础题.15.【答案】6【解析】解:设M为正方形ABCD的中心,O为外接球的球心,则OM平面ABCD,∵正方形ABCD边长为,∴AM=,∴OM==1,当S,O,M在同一条直线上且O在四棱锥内部时,S到平面ABCD的距离取得最大值,最大距离为2+1=3.∴四棱锥的最大体积为()2×3=6.故答案为:6.计算球心到平面ABCD的距离,得出S到平面ABCD的最大距离,再根据体积公式计算最大体积.本题考查了棱锥与外接球的位置关系,棱锥的体积计算,属于中档题.16.【答案】【解析】解:△ABC 中,,且△ABD为等边三角形,如图所示;则∠ADC=120°,△ADC中,AC=2,由余弦定理得:AC2=CD2+AD2-2CD•AD•cos∠ADC,即12=CD2+AD2-2CD•AD•(-),又CD2+AD2≥2CD•AD,所以3CD•AD≤12,即CD•AD≤4,当且仅当CD=AD=2时取“=”;所以△ACD面积为S=AD•CD•sin∠ADC≤×4×=,即△ACD面积S的最大值为.故答案为:.利用余弦定理和基本不等式求得CD•AD的最大值,再求△ACD面积S的最大值.本题考查了余弦定理以及三角形面积的计算问题,也考查了利用基本不等式求最值的应用问题,是中档题.17.【答案】解:(1)由a1,a3,a9成等比数列,可得且d≠0,化简得a1=d-------------------------------(3分)由S4=10可得2a1+3d=5由上解得a1=d=1,∴a n=1+(n-1)•1=n------------------------------(6分)(2)由(1)知,-------------------------------(7分)-----------------------------(9分)∴<------------(12分)【解析】(1)利用等比数列以及等差数列,转化求解数列的首项与公差,得到数列的通项公式.(2)求出数列的和,利用裂项消项法求解数列的和即可.本题考查等差数列以及等比数列的应用,数列求和,考查计算能力.18.【答案】解:(1)设N为A1B1的中点,连结MN,AN、AC、CM,则四边形MNAC为所作图形.由题意知MN∥A1C1(或∥EF),四边形MNAC为梯形,且,过M作MP AC于点P,可得,,得,∴梯形MNAC的面积=.证明:(2)证法1:在长方体中ABCD-A1B1C1D1,设D1B1交EF于Q,连接DQ,则Q为EF的中点并且为D1B1的四等点,如图,,由DE=DF得DQ EF,又EF BB1,∴EF平面BB1D1D,∴EF D1B,,∴∠D1QD=∠BD1D,∴∠QD1B+∠D1QD=∠DD1B+∠BD1Q=90°,∴DQ D1B,∴D1B平面DEF.证法2:设D1B1交EF于Q,连接DQ,则Q为EF的中点,且为D1B1的四等分点,,由BB1平面A1B1C1D1可知BB1EF,又B1D1EF,BB1∩B1D1=B1,∴EF平面BB1D1D,∴EF D1B,由得tan∠QDD1=tan∠D1BD,得∠QDD1=∠D1BD,∴∠QDB+∠D1BD=∠QDB+∠QDD1=90°,∴DQ D1B,又DQ∩EF=Q,∴D1B平面DEF.【解析】(1)设N为A1B1的中点,连结MN,AN、AC、CM,则四边形MNAC为所作图形.推导出四边形MNAC为梯形,过M作MP AC于点P,由此能求出梯形MNAC的面积.(2)证法1:设D1B1交EF于Q,连接DQ,则Q为EF的中点并且为D1B1的四等点,推导出EF平面BB1D1D,从而EF D1B,推导出DQ D1B,由此能证明D1B平面DEF.证法2:设D1B1交EF于Q,连接DQ,则Q为EF的中点,且为D1B1的四等分点,推导出BB1EF,从而EF平面BB1D1D,EF D1B,推导出DQ D1B,由此能证明D1B平面DEF.本题考查几何图形面积的求法,考查空间中直线的位置关系的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理推论证能力、运算求解能力,是中档题.19.【答案】解:(1)设M(x1,y1),N(x2,y2),对求导得:,------------------------------------(1分)故抛物线C在点M和N处切线的斜率分别为和,又切线垂直,∴,即x1•x2=-4,-------------------------------------------------(3分)把y=kx+m代入C的方程得x2-4kx-4m=0.∴x1x2=-4m.-------------------------------(5分)故m=1.------------------------------------------------(6分)(2)解:设M(x1,y1),N(x2,y2),由抛物线定义可知|MF|=y1+1,|NF|=y2+1---------------(8分)由(1)和m=2知x1x2=-8,x1+x2=4k所以=4k2+9------(11分)所以当k=0时,|MF|•|NF|取得最小值,且最小值为9.-----------------------------------------------------(12分)【解析】(1)设M(x1,y1),N(x2,y2),对求导得:,故抛物线C在点M和N处切线的斜率分别为和,通过切线垂直,得到x1•x2=-4,把y=kx+m代入C的方程得x2-4kx-4m=0.利用韦达定理求解即可.(2)设M(x1,y1),N(x2,y2),由抛物线定义可知|MF|=y1+1,|NF|=y2+1,由(1)和m=2知x1x2=-8,x1+x2=4k,求出|MF|•|NF|的表达式,然后求解最小本题考查直线与抛物线的位置关系的应用,考查转化思想以及计算能力.20.【答案】解:(1)每天包裹数量的平均数为0.1×50+0.1×150+0.5×250+0.2×350+0.1×450=260;--------------------------------------------(2分)【或:由图可知每天揽50、150、250、350、450件的天数分别为6、6、30、12、6,所以每天包裹数量的平均数为】设中位数为x,易知x(200,300),则0.001×100×2+0.005×(x-200)=0.5,解得x=260.所以公司每天包裹的平均数和中位数都为260件.-----------------------------------------(4分)(2)由(1)可知平均每天的揽件数为260,利润为260×5-3×100=1000(元),所以该公司平均每天的利润有1000元.-------------------------------------------------(7分)(3)设四件礼物分为二个包裹E、F,因为礼物A、C、D共重0.9+1.8+2.5=5.2(千克),礼物B、C、D共重1.3+1.8+2.5=5.6(千克),都超过5千克,------------------(8分)故E和F的重量数分别有1.8和4.7,2.5和4.0,2.2和4.3,2.7和3.8,3.1和3.4共5种,对应的快递费分别为45、45、50,45,50(单位:元)------------------------------(10分)故所求概率为.----------------------------------------------------------------------------------(12分)【解析】(1)根据频率分布直方图,将每一组的中点作为改组数据的代表值,对应的频率作为权重,取加权平均即可.(2)根据(1)中得到的平均值,求出每天的费用,减去300元的前台工作人员工资即可.(3)将4件礼物分成2个包裹,且每个包裹重量都不超过5kg,共有5种分法,其中快递费用为45的有3种,可得概率.本题考查了用频率分布直方图估计平均值,考查频率公式,频率分布直方图的应用,古典概型的概率求法.属于基础题.21.【答案】解:(1)∵函数f(x)=x-a ln x-1,∴,当a≤0时,f (x)>0,函数f(x)在定义域上递增,不满足条件;当a>0时,函数f(x)在(0,a)上递减,在(a,+∞)上递增,故f(x)在x=a取得极小值0,∴f(a)=a-a lna-1=0,令p(a)=a-a lna-1,p'(a)=-ln a,所以p(a)在(0,1)单调递增,在(1,+∞)单调递减,故p(a)≤p(1)=0,∴f(a)=0的解为a=1,故a=1.证明:(2)证法1:由>>>,∵a≤1,所以只需证当t>0时,>恒成立,令,,由(1)可知x-ln x-1≥0,令x=e t得e t-t-1≥0,∴g(t)在(0,+∞)上递增,故g(t)>g(0)=0,故>.证法2:>>>,设(t>0),则g'(t)=e t-at-a,则g''(t)=e t-a,又e t>e0=1,a≤1,得g''(t)>0,∴g'(t)单调递增,得g'(t)>g(0)=1-a≥0,∴g(t)单调递增,得g(t)>g(0)=0,故>.【解析】(1)求出,当a≤0时,f′(x)>0,函数f(x)在定义域上递增,不满足条件;当a>0时,函数f(x)在(0,a)上递减,在(a,+∞)上递增,从而f(x)在x=a取得极小值0,由此能求出a.(2)法1:由,由a≤1,得只需证当t>0时,恒成立,令,x-lnx-1≥0,令x=e t得e t-t-1≥0,由此能证明.法2:,设(t>0),则g'(t)=e t-at-a,推导出g(t)单调递增,得g(t)>g(0)=0,由此能证明.本题考查实数值的求法,考查不等式的证明,考查导数性质、函数的单调性、最值等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.22.【答案】解:(1)因为x=ρcosθ,y=ρsinθ,-------------------------------------------------------(1分)所以C1的极坐标方程为,即(ρR),----------------------------(3分)C2的极坐标方程为ρ2-2ρcosθ-4ρsinθ=0.----------------------------------------------------(4分)即ρ-2cosθ-4sinθ=0----------------------------------------------------------------------------------(5分)(2)代入ρ-2cosθ-4sinθ=0,解得.------------------------------------(7分)代入ρ-2cosθ-4sinθ=0,解得.---------------------------------------------(8分)故△OAB的面积为.----------------------------------(10分)【解析】(1)利用x=ρcosθ,y=ρsinθ可把C1,C2化成极坐标方程;(2)联立极坐标方程并利用极径的几何意义和面积公式可得.本题考查了简单曲线的极坐标方程,属中档题.23.【答案】(1)解:∵x+y=1,且x>0,y>0,∴ <<<<<<,解得<,所以不等式的解集为,,证明:(2)方法一:∵x+y=1,且x>0,y>0,∴ ===.当且仅当时,取“=”.方法二:∵x+y=1,且x>0,y>0,∴ ====,当且仅当时,取“=”.【解析】(1)利用x的取值,去掉绝对值符号,求解绝对值不等式即可.(2)利用已知条件,通过“1”的代换以及基本不等式求解表达式的最小值,证明不等式即可.不等式选讲本小题考查绝对值不等式、基本不等式的解法与性质等基础知识,考查运算求解能力、推理论证能力,考查分类与整合思想、化归与转化思想等.。
揭阳市2019届高三上期末学业水平调研数学(文)试卷(含答案)
揭阳市2018-2019学年度高中毕业班学业水平考试数学(文科)本试卷共23题,共150分,共4页,考试结束后将本试卷和答题卡一并收回. 一、选择题:本题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1,2,3}A =-,{1,1}B =-,则A B =ðA .{1,2}B .{0,1,2}C .{0,2,3}D .{0,1,2,3} 2.复数221z i i=++-的虚部是 A .3 B .2 C .2i D .3i3.“0a b ⋅≥”是“a 与b 的夹角为锐角”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知函数2()2x a f x -=,14f =,则(f =A .1B .18-C .12D .185.记等比数列{}n a 的前n 项和为n S ,已知132,6S S =-=-,且公比1q ≠,则3a =A .-2B .2C .-8D .-2或-86.若点A 在抛物线2:2C y px =上,记抛物线C 的焦点为F ,则直线AF 的斜率为A .4 B .3 C . D .37.已知[0,]x π∈,且3sin2x=tan 2x =A .12-B .12C .43D .28.右图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.则下列结论中表述不正确...的是 A.从2000年至2016年,该地区环境基础设施投资额逐年增加;B.2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;C.2012年该地区基础设施的投资额比2004年的投资额翻了两番;D.为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立了投资额y 与时间变量t 的线性回归模型ˆ9917.5yt =+,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.9.函数1()ln ||f x x=+的图象大致为10.若,x y 满足约束条件10210x y x y x --≤⎧⎪-+≥⎨⎪≥⎩,则2x z y =-+的最小值为A .-1B .-2C .1D . 211.某几何体示意图的三视图如图示,已知其主视图的周长为8,则该几何体侧面积的最大值为 A .πB .2πC .4πD .16πA .B .C .D .OHCBAP12.已知函数312()423x xf x x x e e =-+-,其中e 是自然对数的底, 若2(1)(2)0f a f a -+≤,则实数a 的取值范围是A .(,1]-∞-B .1[,)2+∞C .1(1,)2-D .1[1,]2-二、填空题:本题共4小题,每小题5分,共20分.13.已知向量(1,)a x =、(1,2)b =--,若a b ⊥,则||a = _____;14.已知双曲线22221x y a b-=(0,0)a b >>的一条渐近线方程为y ,则该双曲线的离心率为____;15.如图,圆柱O 1 O 2内接于球O ,且圆柱的高等于球O 的半径,则从球O 内任取一点,此点取自圆柱O 1 O 2的概率为; 16.已知数列{}n a 满足119a =-,181nn n a a a +=+()n N *∈,则数列{}n a 中最大项的值为. 三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个试题考生都必须做答.第22题~第23题为选考题,考生根据要求做答.(一)必考题:共60分 17.(12分)在ABC ∆中,内角A 、B 、C 所对的边分别是a 、b 、c ,且2si n c o s s i n 0a B A b A-=,(1)求A ;(2)当函数()sin )6f x B C π=-取得最大值时,试判断ABC ∆的形状.18.(12分)如图,在三棱锥P-ABC 中,正三角形PAC 所在平面与等腰三角形ABC 所在平面互相垂直,AB =BC ,O 是AC 中点,OH ⊥PC 于H .(1)证明:PC ⊥平面BOH ;(2)若OH OB ==,求三棱锥A-BOH 的体积.19.(12分)某公司培训员工某项技能,培训有如下两种方式,方式一:周一到周五每天培训1小时,周日测试;方式二:周六一天培训4小时,周日测试.公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如下表:(1)用方式一与方式二进行培训,分别估计员工受训的平均时间(精确到0.1),并据此判断哪种培训方式效率更高?(2)在甲乙两组中,从第三周...培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率. 20.(12分)设椭圆()222210x y a b a b+=>>的右顶点为A ,下顶点为B ,过A 、O 、B (O 为坐标原点)三点的圆的圆心坐标为1()22-. (1)求椭圆的方程;(2)已知点M 在x 轴正半轴上,过点B 作BM 的垂线与椭圆交于另一点N ,若∠BMN =60°,求点M 的坐标.21.(12分)已知函数()()21322x f x x e x x =--+. (1)求函数()f x 的单调递减区间;(2)求实数a 的值,使得2x =是函数()()3213g x f x ax ax =+-唯一的极值点.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22. [选修4-4:坐标系与参数方程](10分)已知曲线C 的参数方程为22x ty t=⎧⎨=⎩,(t 为参数),以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,过极点的两射线1l 、2l 相互垂直,与曲线C 分别相交于A 、B 两点(不同于点O ),且1l 的倾斜角为锐角α.(1)求曲线C 和射线2l 的极坐标方程;(2)求△OAB 的面积的最小值,并求此时α的值. 23. [选修45:不等式选讲] (10分)已知函数()|2||2|f x x a x =--+.(1)当2a =时,求不等式()2f x <的解集;(2)当[2,2]x ∈-时,不等式()f x x ≥恒成立,求a 的取值范围.揭阳市2018-2019学年度高中毕业班学业水平考试数学(文科)参考答案及评分说明一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.11.三视图知,该几何体为圆锥,设底面的半径为r ,母线的长为l ,则2284r l r l +=⇒+=,S 侧=2()42r l rl πππ+≤=(当且仅当r l =时“=”成立) 12. 由222'()42240x x f x x e e x x -=-++≥-+=≥,知()f x 在R 上单调递增,且31()422()3x x f x x x e e f x --=-++-=-,即函数()f x 为奇函数, 故2(1)(2)0f a f a -+≤2(1)(2)f a f a ⇔-≤-212a a ⇔-≤-2210a a ⇔+-≤, 解得112a -≤≤. 二、填空题181n n n a a +=+18n n n n a a a +==+18n na a +⇒-=, 即数列1{}na 是公差为8的等差数列,故111(1)8817n n n a a =+-⨯=-,所以1817n a n =-,当1,2n =时0n a <;当3n ≥时,0n a >,数列{}n a 递减,故最大项的值为317a =.三、解答题17.解:(1)由正弦定理sin sin a bA B=得sin sin 0a B b A =≠,----------------------------------2分又2sin cos sin 0a B A b A -=, ∴2cos 1A =,即1cos 2A =,------------------------------------------------------------------------4分∵0A π<<∴3A π=.-----------------------------------------------------------------------------6分(2)解法一:∵3A π=∴23C B π=-,从而62C Bππ-=-,------------------------------7分∴()sin sin()2f x B B π=+-sin B B =------------------------------------------8分12(sin )2B B =+2sin()3B π=+---------------------------------------------10分 ∵33B πππ<+<,∴当6B π=时,函数()f x 取得最大值,这时632C ππππ=--=,即ABC∆是直角三角形.-------------------------------------------12分 【解法二:∵3A π=∴23B C π=-,-----------------------------------------------------------------7分∴2()sin())36f x C C ππ=-+-OHC B AP11sin 3(cos )2222C C C C =+- 2sin C =--------------------------------------------------------------------------------------10分∵203C π<<,∴当2C π=时,函数()f x 取得最大值, ∴ABC∆是直角三角形.---------------------------------------------------------------------------12分】18.解:(1)∵AB =BC ,O 是AC 中点,∴BO ⊥AC ,-------------------------------------------------------------------------------------------1分又平面PAC ⊥平面ABC ,且BO ⊂平面ABC ,平面PAC ∩平面ABC =AC ,∴ BO ⊥平面PAC ,----------------------------------------------3分 ∴ BO ⊥PC ,------------------------------------------------------4分 又OH ⊥PC ,BO ∩OH =O ,∴ PC ⊥平面BOH ;---------------------------------------------6分 (2)解法1:∵△HAO 与△HOC 面积相等,∴A BOH B HAO B HOC V V V ---==, ∵BO ⊥平面PAC ,∴13B HOC OHC V S OB -∆=⋅,-------------------------------------------------8分∵OH = ∴1HC =,∴12OHC S CH OH ∆=⋅=,-----------------------------------------------------------------------10分∴11322B OCH V -=⨯=,即12A BOH V -=.----------------------------------------------------12分 【其它解法请参照给分】19.解:(1)设甲乙两组员工受训的平均时间分别为1t 、2t ,则120525*********1060t ⨯+⨯+⨯+⨯==(小时)----------------------------------------2分2841682012161610.960t ⨯+⨯+⨯+⨯=≈(小时)----------------------------------------4分据此可估计用方式一与方式二培训,员工受训的平均时间分别为10小时和10.9小时,因1010.9<,据此可判断培训方式一比方式二效率更高;---------------------------------------------6分(2)从第三周培训后达标的员工中采用分层抽样的方法抽取6人,则这6人中来自甲组的人数为:610230⨯=,--------------------------------------------------7分 来自乙组的人数为:620430⨯=,----------------------------------------------------------------8分记来自甲组的2人为:a b 、;来自乙组的4人为:c d e f 、、、,则从这6人中随机抽取2人的不同方法数有:(,),(,),(,),(,),(,)a b a c a d a e a f ,(,),(,),(,),(,)b c b d b e b f ,(,),(,),(,)c d c e c f ,(,),(,),(,)d e d f e f ,共15种,----------------------------------------------10分其中至少有1人来自甲组的有:(,),(,),(,),(,),(,)a b a c a d a e a f ,(,),(,),(,),(,),b c b d b e b f 共9种,故所求的概率93155P ==.----------------------------------------------------------------------12分20.解:(1)依题意知(,0)A a ,(0,)B b -,------------------------------------------------------------------1分∵△AOB 为直角三角形,∴过A 、O 、B 三点的圆的圆心为斜边AB 的中点,∴1,2222a b =-=-,即1a b ==,--------------------------------3分 ∴椭圆的方程为2213x y +=.-----------------------------------------4分(2)由(1)知(0,1)B -,依题意知直线BN 的斜率存在且小于0,设直线BN 的方程为1(0)y kx k =-<, 则直线BM 的方程为:11y x k=--,------------------------------------------------------------5分 由2233,1.x y y kx ⎧+=⎨=-⎩消去y 得22(13)60k x kx +-=,----------------------------------------------6分 解得:2613N k x k =+,1N N y kx =-,---------------------------------------------------------------7分∴||BN =|N x == ∴|||N B BN x x =-26||13k k=+,------------------------------------------------8分【注:学生直接代入弦长公式不扣分!】在11y x k=--中,令0y =得x k =-,即(,0)M k - ∴||BM =,-----------------------------------------------------------------------------------9分在Rt△MBN 中,∵∠BMN=60°,∴|||BN BM =,26||13k k=+23|10k k -+=,解得||k =,∵0k <,∴k =,------------------------------------------------------11分∴点M 的坐标为(3.---------------------------------------------------------------------------12分 21.解:(1)()()()21x f x x e '=--,-----------------------------------------------------------------1分令()0f x '<,得2010xx e -<⎧⎨->⎩或2010xx e ->⎧⎨-<⎩,-----------------------------------------------------2分由2010xx e -<⎧⎨->⎩得02x <<,而不等式组2010xx e ->⎧⎨-<⎩的解集为φ-----------------------------3分∴函数()f x 的单调递减区间为()0,2;----------------------------------------------------------4分(2)依题意得()()()()()221x g x f x ax x x e ax ''=+-=-+-,显然()20g '=,---5分记()1x h x e ax =+-,x R ∈,则()00h =,当0a =时,()110h e =->;当0a ≠时,110ah e a ⎛⎫=> ⎪⎝⎭;由题意知,为使2x =是函数()g x 唯一的极值点,则必须()0h x ≥在R 上恒成立;----------7分只须()min 0h x ≥,因'()x h x e a =+,①当0a ≥时,'()0x h x e a =+>,即函数()h x 在R 上单调递增, 而()1110h a e-=--<,与题意不符;--------------------------------------------------------8分②当0a <时,由()0h x '<,得()ln x a <-,即()h x 在()(),ln a -∞-上单调递减, 由()0h x '>,得()ln x a >-,即()h x 在()()ln ,a -+∞上单调递增, 故()()()min ln h x h a =-,------------------------------------------------------------------------10分若1a =-,则()()mi n ()00h x h x h ≥==,符合题意;------------------------------------11分若1a ≠-,则()()()min 00()ln h h x h a =≥=-,不合题意; 综上所述,1a =-.----------------------------------------------------------------------------------12分【或由()min 0h x ≥,及(0)0h =,得()min (0)h h x =, ∴()ln 0a -=,解得1a =-.-----------------------------------------------------------------12分】22. 解:(1)由曲线C 的参数方程,得普通方程为24y x =,由cos x ρθ=,sin y ρθ=,得224sin cos ρθρθ=, 所以曲线C 的极坐标方程为2c o s 4s i n ρθθ=,[或24sin cos θρθ=]--------------------------3分2l 的极坐标方程为2πθα=+;----------------------------------------------------------------------5分 (2)依题意设(,),(,)2A B A B πραρα+,则由(1)可得24sin cos A αρα=, 同理得24si n ()2cos()2B παρπα+=+,即24c o ssinB αρα=,--------------------------------------------------7分∴11||||||22OAB A B S OA OB ρρ∆=⋅=⋅228|sin cos |cos sin αααα⋅=⋅ ∵02πα<<∴0απ<<,∴8cos sin OABS αα∆=⋅16sin 2α=16≥,----------------9分 △OAB 的面积的最小值为16,此时sin 21α=, 得22πα=,∴4πα=.-------------------------------------------------------------------------10分23.解:(1)①当2x <-时,()22(2)62f x x x x =-+++=+<,解得4x <-,-------------------------------------------------------------------------------------------1分②当22x -≤<时,()22(2)322f x x x x =-+-+=--<, 解得423x -<,--------------------------------------------------------------------------------------2分③当2x ≥时,()22(2)62f x x x x =--+=--< 解得2x ≥,---------------------------------------------------------------------------------------------3分 上知,不等式()2f x <的解集为4(,4)(,)3-∞--+∞;-----------------------------------5分(2)解法1:当[2,2]x ∈-时,()2(2)(1)2(1)f x x a x a x a =--+=-++-,------------6分设()()g x f x x =-,则[2,2]x ∀∈-,()(2)2(1)0g x a x a =-++-≥恒成立,只需((2g g -≥⎧⎨≥⎩,-------------------------------------------------------------------------------------8分即60420a ≥⎧⎨--≥⎩,解得12a ≤---------------------------------------------------------------------10分 【解法2:当[2x ∈-时,()2f x x a x=--+,----------------------------------------------6分()f x x≥,即2(x a x x--+≥,即(2x a x+≤----------------------------------7分 ①当2x =-时,上式恒成立,a R ∈;------------------------------------------8分②当(2,2]x ∈-时,得2(1)2x a x -≤+622x =-++恒成立, 只需min61(2)22a x ≤-+=-+, 综上知,12a ≤-.----------------------------------------------------------------10分】。
2019届揭阳市高三数学(文科)二模试题和答案详细解析及家长必读
高三复习的禁忌有哪些?高三是一条艰辛而又坎坷的道路,现如今很多高三学子又犹如当初的我们在挑灯夜读,废寝忘食的备考,但很多学子在备考难免会出现各种各样的备考的错误来减缓自己学习的脚步,下面就高三备考需要注意哪些备考禁忌和大家一起说说,让我们一起来看看吧!无论是什么考试,如果在备考中没有相应的备考计划,那么这个考生在这场考试中的备考一定是低效的,所以各位高三学子在备考中一定有着自己的复习计划,其次,对于计划一定要细化,量化,对于每天、每周、每月的学习进度要进行明确的安排,在制定完备考计划后,一定要坚定不移的完成每天的计划量,不然第一次没有完成,第二次则会更加容易的到来,所以就需要考生鉴定的去执行。
高三的备考是一个漫长的过程,在这个过程中高三学子应该避免有急于求成的心态,特别是在高三的第一轮的复习中,有很多的考生直接将精力从基础复习阶段直接跳到了高考题的复习阶段,这其实并不是一件好事,备考是一件循循渐进的过程,在这个阶段中不能一口气吃成一个大胖子,好高骛远的复习只会让自己摔的很惨,只有稳步前进才能让自己的信心和基础更加扎实起来!高三的备考除了是对于毅力的考验,在后期备考的时候更是对于身体素质上的考验,很多考生在复习完第一轮的时候,会有一种心累的感觉,在复习第二轮的时候,就会有一些考生身体因素跟不上导致自己备考不在状态以至于成绩下滑,而有些考生在备考的时候则是心有余力,就算是进入了第二轮复习依然是非常的有精神的,而想保证有精神的复习,必要的锻炼是必不可少的,所以在备考初期的时候,考生就要有意识的去进行,毕竟锻炼也是一个长期的行为。
在备考中不难会发现有一些考生在复习时看似不是很努力但是在考试的时候成绩依然是稳步前行,而有些考生在备考的时候常常挑灯夜读,在考试时成绩依然进步缓慢,这其中的差距就是他们能很好的安排自己的生活和学习,其实高三的学习看似紧张和繁忙,但是其中的学习还是有着一定的规律的,考生只要根据自身的实际情况结合学习情况找到合理生活学习规律,相信效率一定能够大幅度的提升!创造和谐的备考氛围,做好孩子的“环境净化师”面对高考的重要挑战,孩子特别需要家长的支持和理解。
揭阳市2019年高考二模文科数学试题
绝密★启用前揭阳市2019年高考二模数学(文科)本试卷共23题,共150分,共4页,考试结束后将本试卷和答题卡一并收回. 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题目的顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}|11M x x =-<<,{}|21N x y x ==-,则MN =A .1|12N x x ⎧⎫=≤<⎨⎬⎩⎭B .1|12N x x ⎧⎫=<<⎨⎬⎩⎭C .{}|01N x x =≤<D .1|12N x x ⎧⎫=-<≤⎨⎬⎩⎭2.复数13ii +的共轭复数的虚部为 A .110 B .310 C .110- D .310-3.已知双曲线221mx y +=的一条渐近线方程为20x y +=,则m 的值为A .41-B .1-C .2-D .4- 4.通过随机询问50名性别不同的大学生是否爱好某项运动,得到如右的列联 表,由22()()()()()n ad bc K a b c d a c b d -=++++得2250(2015105)8.3337.87930202525K ⨯⨯-⨯=≈>⨯⨯⨯爱好 不爱好 合计男生 20 5 25 女生 10 15 25 合计 3020502()p K k ≥ 0.010 0.005 0.0015千元至1万元的项目投资(占33%)1万元以上的项目投资5千元以下的项目投资(占46%)否T=a+b输入xa=1,b=1,T=0,S =0,n=1n=n+1开始结束输出n S <x ?S =S +Ta =2a ,b=12b是参照附表,得到的正确结论是A .有99.5%以上的把握认为“爱好该项运动与性别有关”B .有99.5%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”5.某公司2018年在各个项目中总投资500万元,右图是几类项目的投资占比 情况,已知在1万元以上的项目投资中,少于3万元的项目投资占821,那么不少于3万元的项目投资共有A .56万元B .65万元C .91万元D .147万元6.已知1sin ,cos 11a aa a -==-++θθ,若θ是第二象限角,则tan θ的值为 A. 12- B. 2- C. 34- D. 43-7.已知βα,是平面,n m ,是直线,则下列命题中不正确...的是 A.若m ∥α⊥m n ,,则α⊥n B.若m ∥n =⋂βαα,,则m ∥n C.若⊥m βα⊥m ,,则α∥β D.若⊥m βα⊂m ,,则⊥αβ8.已知函数e 0()ln 0x x f x x x -⎧≤=⎨>⎩,,,,则1[()]3f f 的是A .13 B .1eC .eD .3 9. 我国古代数学专著《九章算术》中有一个“两鼠穿墙题”,其内容为:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍, 小鼠日自半。
揭阳市2019届高三上学期期末学业水平调研数学(文)试题含答案
绝密★启用前揭阳市2018-2019学年度高中毕业班学业水平考试数学(文科)本试卷共23题,共150分,共4页,考试结束后将本试卷和答题卡一并收回. 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题目的顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1,2,3}A =-,{1,1}B =-,则A B =ðA .{1,2}B .{0,1,2}C .{0,2,3}D .{0,1,2,3}2.复数221z i i=++-的虚部是 A .3B .2C .2iD .3i3.“0a b ⋅≥”是“a 与b 的夹角为锐角”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知函数2()2xaf x -=,14f =,则(f = A .1 B .18- C .12D .185.记等比数列{}n a 的前n 项和为n S ,已知132,6S S =-=-,且公比1q ≠,则3a =A .-2B .2C .-8D .-2或-86. 若点(2,A 在抛物线2:2C y px =上,记抛物线C 的焦点为F ,则直线AF 的斜率为A B C . D7. 已知[0,]x π∈,且3sin2x =tan 2x = A .12- B .12 C .43D .28. 右图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.则下列结论中表述不正确...的是 A.从2000年至2016年,该地区环境基础设施投资额逐年增加;B.2011年该地区环境基础设施的投资额比 2000年至2004年的投资总额还多;C.2012年该地区基础设施的投资额比2004年的投资额翻了两番 ;D.为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立了投资额y 与时间变量t 的线性回归模型ˆ9917.5yt =+,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元. 9.函数1()ln ||f x x=+的图象大致为10.若,x y 满足约束条件102100x y x y x --≤⎧⎪-+≥⎨⎪≥⎩,则2x z y =-+的最小值为A . -1B .-2C .1D . 211.某几何体示意图的三视图如图示,已知其主视图的周长为8,则该几何体侧面积的最大值为 A .πB .2πC .4πD .16π12.已知函数312()423x x f x x x e e=-+-,其中e 是自然对数的底, 若2(1)(2)0f a f a -+≤,则实数a 的取值范围是A .(,1]-∞-B .1[,)2+∞C .1(1,)2-D .1[1,]2-二、填空题:本题共4小题,每小题5分,共20分.13.已知向量(1,)a x =、(1,2)b =--,若a b ⊥,则||a = _____;14.已知双曲线22221x y a b-=(0,0)a b >>的一条渐近线方程为y =,则该双曲线的离心率为____;15. 如图,圆柱O 1 O 2 内接于球O ,且圆柱的高等于球O 的半径,则从球O 内任取一点,此点取自圆柱O 1 O 2 的概率为 ;OHCBAP16. 已知数列{}n a 满足119a =-,181n n n a a a +=+()n N *∈,则数列{}n a 中最大项的值为 .三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个试题考生都必须做答.第22题~第23题为选考题,考生根据要求做答.(一)必考题:共60分17.(12分)在ABC ∆中,内角A 、B 、C 所对的边分别是a 、b 、c ,且2s i n c o s s i n a B A b A -=,(1)求A ;(2)当函数()sin )6f x B C π=-取得最大值时,试判断ABC ∆的形状.18.(12分)如图,在三棱锥P-ABC 中,正三角形PAC 所在平面与等腰三角形 ABC 所在平面互相垂直,AB =BC ,O 是AC 中点,OH ⊥PC 于H . (1)证明:PC ⊥平面BOH ;(2)若OH OB ==,求三棱锥A-BOH 的体积.19.(12分)某公司培训员工某项技能,培训有如下两种方式,方式一:周一到周五每天培训1小时,周日测试;方式二:周六一天培训4小时,周日测试.公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训;甲组选方式一,乙组选方式二,并记录每周培训后测(1)用方式一与方式二进行培训,分别估计员工受训的平均时间(精确到0.1),并据此判断哪种培训方式效率更高?(2)在甲乙两组中,从第三周...培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率. 20.(12分)设椭圆()222210x y a b a b+=>>的右顶点为A ,下顶点为B ,过A 、O 、B (O 为坐标原点)三点的圆的圆心坐标为1)2-. (1)求椭圆的方程;(2)已知点M 在x 轴正半轴上,过点B 作BM 的垂线与椭圆交于另一点N ,若∠BMN =60°,求点M 的坐标.21.(12分)已知函数()()21322xf x x e x x =--+. (1)求函数()f x 的单调递减区间;(2)求实数a 的值,使得2x =是函数()()3213g x f x ax ax =+-唯一的极值点. (二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22. [选修4-4:坐标系与参数方程] (10分)已知曲线C 的参数方程为22x ty t=⎧⎨=⎩,(t 为参数),以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,过极点的两射线1l 、2l 相互垂直,与曲线C 分别相交于A 、B 两点(不同于点O ),且1l 的倾斜角为锐角α. (1)求曲线C 和射线2l 的极坐标方程;(2)求△OAB 的面积的最小值,并求此时α的值. 23. [选修4-5:不等式选讲] (10分)已知函数()|2||2|f x x a x =--+.(1)当2a =时,求不等式()2f x <的解集;(2)当[2,2]x ∈-时,不等式()f x x ≥恒成立,求a 的取值范围.揭阳市2018-2019学年度高中毕业班学业水平考试数学(文科)参考答案及评分说明一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.:11. 三视图知,该几何体为圆锥,设底面的半径为r ,母线的长为l ,则2284r l r l +=⇒+=, S 侧=2()42r l rl πππ+≤=(当且仅当r l =时“=”成立) 12. 由222'()42240x x f x x e e x x -=-++≥-+=≥,知()f x 在R 上单调递增,且31()422()3x x f x x x e e f x --=-++-=-,即函数()f x 为奇函数, 故2(1)(2)0f a f a -+≤2(1)(2)f a f a ⇔-≤-212a a ⇔-≤-2210a a ⇔+-≤,解得112a -≤≤. 二、填空题:16. 由181n n n a a +=+得18n n n n a a a +==+18n n a a +⇒-=, 即数列1{}n a 是公差为8的等差数列,故111(1)8817n n n a a =+-⨯=-,所以1817n a n =-, 当1,2n =时0n a <;当3n ≥时,0n a >,数列{}n a 递减,故最大项的值为317a =. 三、解答题17.解:(1)由正弦定理sin sin a bA B=得sin sin 0a B b A =≠,----------------------------------2分又2sin cos sin 0a B A b A -=, ∴2cos 1A =,即1cos 2A =,------------------------------------------------------------------------4分 ∵0A π<< ∴3A π=.-----------------------------------------------------------------------------6分(2)解法一:∵3A π= ∴23C B π=-,从而62C B ππ-=-, ------------------------------7分OHCB AP∴()sin sin()2f x B B π=-sin B B =------------------------------------------8分12(sin )2B B =+2sin()3B π=+---------------------------------------------10分 ∵33B πππ<+<,∴当6B π=时,函数()f x 取得最大值,这时632C ππππ=--=,即ABC ∆是直角三角形. -------------------------------------------12分【解法二:∵3A π=∴23B C π=-, -----------------------------------------------------------------7分∴2()sin())36f x C C ππ=-+-11sin cos )22C C C C =++- 2sin C =--------------------------------------------------------------------------------------10分 ∵203C π<<,∴当2C π=时,函数()f x 取得最大值,∴ABC ∆是直角三角形.------------------- --------------------------------------------------------12分】18.解:(1)∵AB =BC ,O 是AC 中点,∴ BO ⊥AC , -------------------------------------------------------------------------------------------1分 又平面PAC ⊥平面ABC ,且BO ⊂平面ABC ,平面PAC ∩平面ABC =AC , ∴ BO ⊥平面PAC ,----------------------------------------------3分 ∴ BO ⊥PC ,------------------------------------------------------4分 又OH ⊥PC ,BO ∩OH =O ,∴ PC ⊥平面BOH ;---------------------------------------------6分 (2)解法1:∵△HAO 与△HOC 面积相等,∴A BOH B HAO B HOC V V V ---==,∵BO ⊥平面PAC , ∴13B HOC OHC V S OB -∆=⋅, -------------------------------------------------8分∵OH =,∠HOC=30° ∴1HC =,∴122OHC S CH OH ∆=⋅=,-----------------------------------------------------------------------10分∴11322B OCHV -=⨯=,即12A BOH V -=.----------------------------------------------------12分【其它解法请参照给分】19.解:(1)设甲乙两组员工受训的平均时间分别为1t 、2t ,则120525*********1060t ⨯+⨯+⨯+⨯==(小时) ----------------------------------------2分2841682012161610.960t ⨯+⨯+⨯+⨯=≈(小时)----------------------------------------4分据此可估计用方式一与方式二培训,员工受训的平均时间分别为10小时和10.9小时,因1010.9<,据此可判断培训方式一比方式二效率更高;---------------------------------------------6分(2)从第三周培训后达标的员工中采用分层抽样的方法抽取6人,则这6人中来自甲组的人数为:610230⨯=,--------------------------------------------------7分 来自乙组的人数为:620430⨯=,----------------------------------------------------------------8分 记来自甲组的2人为:a b 、;来自乙组的4人为:c d e f 、、、,则从这6人中随机抽取2人的不同方法数有:(,),(,),(,),(,),(,)a b a c a d a e a f ,(,),(,),(,),(,)b c b d b e b f ,(,),(,),(,)c d c e c f ,(,),(,),(,)d e d f e f ,共15种,----------------------------------------------10分其中至少有1人来自甲组的有:(,),(,),(,),(,),(,)a b a c a d a e a f ,(,),(,),(,),(,),b c b d b e b f共9种,故所求的概率93155P ==.----------------------------------------------------------------------12分20.解:(1)依题意知(,0)A a ,(0,)B b -,------------------------------------------------------------------1分 ∵△AOB 为直角三角形,∴过A 、O 、B 三点的圆的圆心为斜边AB 的中点,∴1222a b =-=-,即1a b ==,--------------------------------3分 ∴椭圆的方程为2213x y +=.-----------------------------------------4分 (2)由(1)知(0,1)B -,依题意知直线BN 的斜率存在且小于0,设直线BN 的方程为1(0)y kx k =-<,则直线BM 的方程为:11y x k=--,------------------------------------------------------------5分由2233,1.x y y kx ⎧+=⎨=-⎩消去y 得22(13)60k x kx +-=,----------------------------------------------6分解得:2613N kx k=+,1N N y kx =-,---------------------------------------------------------------7分∴||BN =|N x ==∴|||N B BN x x =-26||13k k=+,------------------------------------------------8分【注:学生直接代入弦长公式不扣分!】在11y x k=--中,令0y =得x k =-,即(,0)M k -∴||BM =-----------------------------------------------------------------------------------9分在Rt △MBN 中,∵∠BMN=60°,∴|||BN BM =,26||13k k =+23|10k k -+=,解得||3k =,∵0k <,∴3k =-,------------------------------------------------------11分∴点M 的坐标为.---------------------------------------------------------------------------12分 21.解:(1)()()()21x f x x e '=--,-----------------------------------------------------------------1分令()0f x '<,得2010xx e -<⎧⎨->⎩或2010xx e ->⎧⎨-<⎩,-----------------------------------------------------2分由2010x x e -<⎧⎨->⎩得02x <<,而不等式组2010x x e ->⎧⎨-<⎩的解集为φ-----------------------------3分∴函数()f x 的单调递减区间为()0,2;----------------------------------------------------------4分 (2)依题意得()()()()()221x g x f x ax x x e ax ''=+-=-+-,显然()20g '=,---5分记()1xh x e ax =+-,x R ∈,则()00h =,当0a =时,()110h e =->;当0a ≠时,110a h e a ⎛⎫=> ⎪⎝⎭;由题意知,为使2x =是函数()g x 唯一的极值点,则必须()0h x ≥在R 上恒成立;----------7分只须()min 0h x ≥,因'()xh x e a =+,①当0a ≥时,'()0xh x e a =+>,即函数()h x 在R 上单调递增,而()1110h a e-=--<,与题意不符; --------------------------------------------------------8分 ②当0a <时,由()0h x '<,得()ln x a <-,即()h x 在()(),ln a -∞-上单调递减,由()0h x '>,得()ln x a >-,即()h x 在()()ln ,a -+∞上单调递增,故()()()min ln h x h a =-, ------------------------------------------------------------------------10分 若1a =-,则()()m i n ()00h x h x h ≥==,符合题意;------------------------------------11分 若1a ≠-,则()()()min 00()ln h h x h a =≥=-,不合题意;综上所述,1a =-.----------------------------------------------------------------------------------12分 【或由()min 0h x ≥,及(0)0h =,得()min (0)h h x =,∴()ln 0a -=,解得1a =-. -----------------------------------------------------------------12分】 22. 解:(1)由曲线C 的参数方程,得普通方程为24y x =,由cos x ρθ=,sin y ρθ=,得224sin cos ρθρθ=, 所以曲线C 的极坐标方程为2cos 4sin ρθθ=,[或24sin cos θρθ=] --------------------------3分2l 的极坐标方程为2πθα=+;----------------------------------------------------------------------5分(2)依题意设(,),(,)2A B A B πραρα+,则由(1)可得24sin cos A αρα=, 同理得24sin()2cos ()2B παρπα+=+,即24cos sin B αρα=,--------------------------------------------------7分∴11||||||22OAB A B S OA OB ρρ∆=⋅=⋅228|sin cos |cos sin αααα⋅=⋅ ∵02πα<<∴0απ<<,∴8cos sin OAB S αα∆=⋅16sin 2α=16≥, ----------------9分△OAB 的面积的最小值为16,此时sin 21α=, 得22πα=,∴4πα=. -------------------------------------------------------------------------10分23.解:(1)①当2x <-时,()22(2)62f x x x x =-+++=+<,解得4x <-,-------------------------------------------------------------------------------------------1分 ②当22x -≤<时,()22(2)322f x x x x =-+-+=--<, 解得423x -<<,--------------------------------------------------------------------------------------2分 ③当2x ≥时,()22(2)62f x x x x =--+=--<解得2x ≥,---------------------------------------------------------------------------------------------3分上知,不等式()2f x <的解集为4(,4)(,)3-∞--+∞;-----------------------------------5分(2)解法1:当[2,2]x ∈-时,()2(2)(1)2(1)f x x a x a x a =--+=-++-,------------6分设()()g x f x x =-,则[2,2]x ∀∈-,()(2)2(1)0g x a x a =-++-≥恒成立,只需(2)0(2)0g g -≥⎧⎨≥⎩,-------------------------------------------------------------------------------------8分即60420a ≥⎧⎨--≥⎩,解得12a ≤---------------------------------------------------------------------10分【解法2:当[2,2]x ∈-时,()2(2)f x x a x =--+,----------------------------------------------6分()f x x ≥,即2(2)x a x x --+≥,即(2)2(1)x a x +≤----------------------------------7分①当2x =-时,上式恒成立,a R ∈;------------------------------------------8分 ②当(2,2]x ∈-时,得2(1)2x a x -≤+622x =-++恒成立, 只需min61(2)22a x ≤-+=-+,综上知,12a ≤-.----------------------------------------------------------------10分】。
广东省揭阳市2019-2020学年高考数学第二次调研试卷含解析
广东省揭阳市2019-2020学年高考数学第二次调研试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.平行四边形ABCD 中,已知4AB =,3AD =,点E 、F 分别满足2AE ED =uu u r uu u r ,DF FC =u u ur u u u r ,且6AF BE ⋅=-u u u r u u u r ,则向量AD u u u r 在AB u u u r上的投影为( )A .2B .2-C .32D .32-【答案】C 【解析】 【分析】将,AF BE u u u r u u u r 用向量AD u u u r 和AB u u u r 表示,代入6AF BE ⋅=-u u u r u u u r 可求出6AD AB ⋅=u u u r u u u r ,再利用投影公式AD AB AB⋅u u u r u u u r u u u r 可得答案. 【详解】解:()()AF BE AD DF BA AE ⋅=+⋅+u u u r u u u r u u u r u u u r u u u r u u u r21123223AD AB AD AD AB AB AB AD =⋅+⋅-⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r22421346332AD AB =⋅+⨯-⨯=u u ur u u u r , 得6AD AB ⋅=u u u r u u u r,则向量AD u u u r 在AB u u u r 上的投影为6342AD AB AB⋅==u u u r u u u ru u ur . 故选:C. 【点睛】本题考查向量的几何意义,考查向量的线性运算,将,AF BE u u u r u u u r 用向量AD u u u r 和AB u u u r表示是关键,是基础题.2.数列{a n }是等差数列,a 1=1,公差d ∈[1,2],且a 4+λa 10+a 16=15,则实数λ的最大值为( ) A .72B .5319C .2319-D .12-【答案】D 【解析】 【分析】利用等差数列通项公式推导出λ131819dd-=+,由d ∈[1,2],能求出实数λ取最大值.【详解】∵数列{a n }是等差数列,a 1=1,公差d ∈[1,2],且a 4+λa 10+a 16=15,∴1+3d+λ(1+9d )+1+15d =15,解得λ1318d19d-=+,∵d ∈[1,2],λ1318d 19d -==-+21519d++是减函数,∴d =1时,实数λ取最大值为λ13181192-==-+. 故选D . 【点睛】本题考查实数值的最大值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题. 3.如图,四面体ABCD 中,面ABD 和面BCD 都是等腰直角三角形,2AB =,2BAD CBD π∠=∠=,且二面角A BD C --的大小为23π,若四面体ABCD 的顶点都在球O 上,则球O 的表面积为( )A .223πB .283πC .2π D .23π 【答案】B 【解析】 【分析】分别取BD 、CD 的中点M 、N ,连接AM 、MN 、AN ,利用二面角的定义转化二面角A BD C --的平面角为23AMN π∠=,然后分别过点M 作平面ABD 的垂线与过点N 作平面BCD 的垂线交于点O ,在Rt OMN ∆中计算出OM ,再利用勾股定理计算出OA ,即可得出球O 的半径,最后利用球体的表面积公式可得出答案. 【详解】 如下图所示,分别取BD 、CD 的中点M 、N ,连接AM 、MN 、AN ,由于ABD ∆是以BAD ∠为直角等腰直角三角形,M 为BD 的中点,AM BD ∴⊥,2CBD π∠=Q ,且M 、N 分别为BD 、CD 的中点,所以,//MN BC ,所以,MN BD ⊥,所以二面角A BD C --的平面角为23AMN π∠=, 2AB AD ==Q ,则222BD AB AD =+=,且2BC =,所以,112AM BD ==,112MN BC ==, ABD ∆Q 是以BAD ∠为直角的等腰直角三角形,所以,ABD ∆的外心为点M ,同理可知,BCD ∆的外心为点N ,分别过点M 作平面ABD 的垂线与过点N 作平面BCD 的垂线交于点O ,则点O 在平面AMN 内,如下图所示,由图形可知,2326OMN AMN AMO πππ∠=∠-∠=-=, 在Rt OMN ∆中,3cos 2MN OMN OM =∠=,233OM ∴==所以,22213OA OM AM =+=, 所以,球O 的半径为213R =,因此,球O 的表面积为222128443R πππ=⨯=⎝⎭. 故选:B. 【点睛】本题考查球体的表面积,考查二面角的定义,解决本题的关键在于找出球心的位置,同时考查了计算能力,属于中等题.4.已知l ,m 是两条不同的直线,m ⊥平面α,则“//l α”是“l ⊥m”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】根据充分条件和必要条件的定义,结合线面垂直的性质进行判断即可.【详解】当m ⊥平面α时,若l ∥α”则“l ⊥m”成立,即充分性成立, 若l ⊥m ,则l ∥α或l ⊂α,即必要性不成立, 则“l ∥α”是“l ⊥m”充分不必要条件, 故选:A. 【点睛】本题主要考查充分条件和必要条件的判断,结合线面垂直的性质和定义是解决本题的关键.难度不大,属于基础题5.若点(2,k)到直线5x-12y+6=0的距离是4,则k 的值是( ) A .1 B .-3C .1或53D .-3或173【答案】D 【解析】 【分析】4=,解方程即得k 的值.【详解】4=,解方程即得k=-3或173.故答案为:D 【点睛】(1)本题主要考查点到直线的距离公式,意在考查学生对该知识的掌握水平和计算推理能力.(2) 点00(,)P x y 到直线:0l Ax By C ++=的距离d =.6.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为m k 的星的亮度为E k (k=1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为( ) A .1010.1 B .10.1C .lg10.1D .10–10.1【答案】A 【解析】 【分析】由题意得到关于12,E E 的等式,结合对数的运算法则可得亮度的比值.两颗星的星等与亮度满足12125lg 2E m m E -=,令211.45,26.7m m =-=-, ()10.111212222lg( 1.4526.7)10.1,1055E E m m E E =⋅-=-+==. 故选A. 【点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及指数对数运算. 7.已知(1)n x λ+展开式中第三项的二项式系数与第四项的二项式系数相等,2012(1)n n n x a a x a x a x λ+=++++L ,若12242n a a a ++⋅⋅⋅=,则012(1)n n a a a a -+-⋅⋅⋅+-的值为( ) A .1 B .-1 C .8l D .-81【答案】B 【解析】 【分析】根据二项式系数的性质,可求得n ,再通过赋值求得0a 以及结果即可. 【详解】因为(1)nx λ+展开式中第三项的二项式系数与第四项的二项式系数相等,故可得5n =,令0x =,故可得01a =, 又因为125242a a a +++=L ,令1x =,则()501251243a a a a λ+=++++=L , 解得2λ=令1x =-,则()()5501251211a a a a -=-+-+-=-L . 故选:B. 【点睛】本题考查二项式系数的性质,以及通过赋值法求系数之和,属综合基础题. 8.设,,a b c ∈R 且a b >,则下列不等式成立的是( ) A .c a c b -<- B .22ac bc >C .11a b< D .1b a< 【答案】AA 项,由a b >得到a b -<-,则c a c b -<-,故A 项正确;B 项,当0c =时,该不等式不成立,故B 项错误;C 项,当1a =,2b =-时,112>-,即不等式11a b<不成立,故C 项错误;D 项,当1a =-,2b =-时,21ba =>,即不等式1b a<不成立,故D 项错误.综上所述,故选A .9.阅读如图的程序框图,运行相应的程序,则输出的a 的值为( )A .2-3B .3-2C .52D .25【答案】C 【解析】 【分析】根据给定的程序框图,计算前几次的运算规律,得出运算的周期性,确定跳出循环时的n 的值,进而求解a 的值,得到答案.【详解】由题意,3,15a n ==, 第1次循环,2,23a n =-=,满足判断条件;第2次循环,5,32a n ==,满足判断条件;第3次循环,3,45a n ==,满足判断条件;L L可得a 的值满足以3项为周期的计算规律,所以当2019n =时,跳出循环,此时n 和3n =时的值对应的a 相同,即52a =. 故选:C. 【点睛】律是解答的关键,着重考查了推理与计算能力. 10.已知函数()()sin 06f x A x a a A ωπ⎛⎫=+-<< ⎪⎝⎭在区间70,3ωπ⎡⎤⎢⎥⎣⎦有三个零点1x ,2x ,3x ,且123x x x <<,若123523x x x π++=,则()f x 的最小正周期为( ) A .2πB .23πC .πD .43π【答案】C 【解析】 【分析】根据题意,知当7π3x ω=时,π5π62x ω+=,由对称轴的性质可知122π3x x ω+=和238π3x x ω+=,即可求出w ,即可求出()f x 的最小正周期. 【详解】解:由于()()sin 06f x A x a a A ωπ⎛⎫=+-<< ⎪⎝⎭在区间70,3ωπ⎡⎤⎢⎥⎣⎦有三个零点1x ,2x ,3x , 当7π3x ω=时,π5π62x ω+=, ∴由对称轴可知1x ,2x 满足12πππ2662x x ωω+++=⨯, 即122π3x x ω+=. 同理2x ,3x 满足23ππ3π2662x x ωω+++=⨯,即238π3x x ω+=, ∴12310π5π233x x x ω++==,2ω=, 所以最小正周期为:2ππ2T ==. 故选:C. 【点睛】本题考查正弦型函数的最小正周期,涉及函数的对称性的应用,考查计算能力.11.定义在[]22-,上的函数()f x 与其导函数()f x '的图象如图所示,设O 为坐标原点,A 、B 、C 、D 四点的横坐标依次为12-、16-、1、43,则函数()xf x y e=的单调递减区间是( )A .14,63⎛⎫-⎪⎝⎭ B .1,12⎛⎫-⎪⎝⎭C .11,26--⎛⎫⎪⎝⎭ D .()1,2【答案】B 【解析】 【分析】先辨别出图象中实线部分为函数()y f x =的图象,虚线部分为其导函数的图象,求出函数()xf x y e=的导数为()()xf x f x y e'='-,由0y '<,得出()()f x f x '<,只需在图中找出满足不等式()()f x f x '<对应的x 的取值范围即可. 【详解】若虚线部分为函数()y f x =的图象,则该函数只有一个极值点,但其导函数图象(实线)与x 轴有三个交点,不合乎题意;若实线部分为函数()y f x =的图象,则该函数有两个极值点,则其导函数图象(虚线)与x 轴恰好也只有两个交点,合乎题意. 对函数()xf x y e=求导得()()xf x f x y e'='-,由0y '<得()()f x f x '<,由图象可知,满足不等式()()f x f x '<的x 的取值范围是1,12⎛⎫-⎪⎝⎭, 因此,函数()xf x y e =的单调递减区间为1,12⎛⎫- ⎪⎝⎭.故选:B.本题考查利用图象求函数的单调区间,同时也考查了利用图象辨别函数与其导函数的图象,考查推理能力,属于中等题.12.已知定义在R 上函数()f x 的图象关于原点对称,且()()120f x f x ++-=,若()11f =,则()1(2)(3)(2020)f f f f ++++=L ( )A .0B .1C .673D .674【答案】B 【解析】 【分析】由题知()f x 为奇函数,且()()120f x f x ++-=可得函数()f x 的周期为3,分别求出()00f ,=()11f =,()21f =-,知函数在一个周期内的和是0,利用函数周期性对所求式子进行化简可得.【详解】因为()f x 为奇函数,故()00f =;因为()()120f x f x ++-=,故()()()122f x f x f x +=--=-, 可知函数()f x 的周期为3;在()()120f x f x ++-=中,令1x =,故()()211f f =-=-, 故函数()f x 在一个周期内的函数值和为0, 故(1)(2)(3)(2020)(1)1f f f f f ++++==L . 故选:B. 【点睛】本题考查函数奇偶性与周期性综合问题. 其解题思路:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解. 二、填空题:本题共4小题,每小题5分,共20分。
2019年揭阳市调考文科数学题
绝密★启用前2019—2019学年度揭阳市高中毕业班期末质量测试数学试题(文科)本试卷共4页,21小题,满分150分.考试用时l20分钟. 参考公式:锥体的体积公式13V Sh =,其中S 表示底面积,h 表示高. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0A x x =≥,{0,1,2}B =,则A .AB ⊂≠B .B A ⊂≠C .A B B =UD .A B =∅I2.已知复数z 满足(1)2i z -=,则z 为A. 1i +B. 1i -C. 1i -+D. 1i -- 3.已知幂函数()y f x =的图象过点11(,)28--,则2log (4)f 的值为A. 3B. 4C.6D.-64.若(,3),(,2)a xb x ==-,则“x =”是“a b ⊥”的A .充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 5.如果等差数列{}n a 中,35712a a a ++=,那么129a a a +++的值为A.18B.27C.36D.54 6.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 A.若l m ⊥,m α⊂,则l α⊥ B.若l α⊥,l m //,则m α⊥ C.若l α//,m α⊂,则l m // D.若l α//,m α//,则l m // 7.已知11tan ,tan()43ααβ=-=则tan β=. A.711 B.117- C. 113- D.113 8.已知双曲线221412x y -=上一点M 的横坐标是3,则点M 到双曲线左焦点的距离是A.4B.1)C. 1)D.8俯视图左视图主视图9.在ABC ∆中,若1c =,a =23A π∠=,则b 为. A.1 B.2 10.已知(){},|8,0,0,x y x y x y Ω=+≤≥≥(){},|2,0,30A x y x y x y =≤≥-≥,若向区域Ω上随机投1个点P ,则点P 落入区域A 的概率为 A.14 B.716 C. 34 D.316二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11-13题)11.命题P :“2,12x Rx x ∃∈+<”的否定P ⌝为: 、P ⌝的真假为 12.如果执行右面的框图,输入5N =,则输出的数S= .第13题图 第12题图13.四棱锥P ABCD -的顶点P 在底面ABCD 中的投影恰好是A ,其三视图如上图所示,根据图中的信息,在四棱锥P ABCD -的任两个顶点的连线中,互相垂直的异面直线对数为 . (二)选做题(14、15题,考生只能从中选做一题)14.(坐标系与参数方程选做题) 已知曲线C 的参数方程为1cos ,sin .x y θθ=+⎧⎨=⎩(θ为参数),则曲线C上的点到直线220x y -+=的距离的最大值为 .15.(几何证明选讲选做题) 已知圆O 的半径为3,从圆O 外一点A 引切线AD 和割线ABC ,圆心O 到AC 的距离为22,3AB =, 则切线AD 的长为 ____ _.三.解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本题满分12分)24131452[185,190)[180,185)[175,180)[170,175)[165,170)[160,165)频数身高(cm )身高(cm )频数[150,155)[165,170)[170,175)[175,180)[155,160)[160,165)1712631男生样本频率分布直方图0.02频率/cm甲D CBAF E乙DBA已知函数()cos f x x x ππ=+, x R ∈. (1)求函数()f x 的最小正周期和值域; (2)求函数()f x 的单调增区间. 17. (本题满分12分)如图甲,在平面四边形ABCD 中,已知45,90,A C ∠=∠=105ADC ∠=,AB BD =,现将四边形ABCD 沿BD 折起,使平面ABD ⊥平面BDC (如图乙),设点E 、F 分别为棱 AC 、AD 的中点.(1)求证:DC ⊥平面ABC ;(2)设CD a =,求三棱锥A -BFE 的体积. 18.(本题满分14分)为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别进行抽样检查,测得身高频数分布表如下表1、表2. 表1:男生身高频数分布表表2::女生身高频数分布表(1)求该校男生的人数并完成下面频率分布直方图;(2)估计该校学生身高在165180cm :的概率;(3)从样本中身高在180:190cm 之间的男生中任选2人,求至少有1人身高在185:190cm 之间的概率。
广东省揭阳市2019年高考二模文科数学试题(解析版)
绝密★启用前揭阳市2019年高考二模数学(文科)本试卷共23题,共150分,共4页,考试结束后将本试卷和答题卡一并收回. 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题目的顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}|11M x x =-<<,{}|21N x y x ==-,则MN =A .1|12x x ⎧⎫≤<⎨⎬⎩⎭B .1|12x x ⎧⎫<<⎨⎬⎩⎭C .{}|01x x ≤<D .1|12x x ⎧⎫-<≤⎨⎬⎩⎭答案:A考点:集合的运算。
解析:1|2N x x ⎧⎫=≥⎨⎬⎩⎭,MN =1|12x x ⎧⎫≤<⎨⎬⎩⎭,选A 。
2.复数13ii +的共轭复数的虚部为A .110B .310C .110-D .310-答案:C考点:复数的概念,复数的运算。
解析:13i i +=(13)31101010i i i -=+,共轭复数:311010i -,虚部为110- 3.已知双曲线221mx y +=的一条渐近线方程为20x y +=,则m 的值为A .41- B .1- C .2- D .4- 答案:D考点:双曲线的性质。
解析:双曲线为:2211x y m-=-,渐近线方程为:0mx y ±-+=, 2m -=,解得:m =-44.通过随机询问50名性别不同的大学生是否爱好某项运动,得到如右的列联 表,由22()()()()()n ad bc K a b c d a c b d -=++++得2250(2015105)8.3337.87930202525K ⨯⨯-⨯=≈>⨯⨯⨯ 参照附表,得到的正确结论是A .有99.5%以上的把握认为“爱好该项运动与性别有关”B .有99.5%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” 答案:A考点:独立性检验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年广东省揭阳市高考数学二模试卷(文科)一、选择题(本大题共12小题,共60.0分)1. 已知集合M ={x |-1<x <1}, ,则M ∩N =( )A.B.C.D.2. 复数的共轭复数的虚部为( )A.B.C.D.3. 已知双曲线mx 2+y 2=1的一条渐近线方程为2x +y =0,则m 的值为( )A.B.C.D.4.由K 2=得K 2=≈8.333>7.879参照附表,得到的正确结论是( )A. 有 以上的把握认为“爱好该项运动与性别有关”B. 有 以上的把握认为“爱好该项运动与性别无关”C. 在犯错误的概率不超过 的前提下,认为“爱好该项运动与性别有关”D. 在犯错误的概率不超过 的前提下,认为“爱好该项运动与性别无关”5. 某公司2018年在各个项目中总投资500万元,如图是几类项目的投资占比情况,已知在1万元以上的项目投资中,少于3万元的项目投资占,那么不少于3万元的项目投资共有( ) A. 56万元 B. 65万元 C. 91万元 D. 147万元6. 已知,,若θ是第二象限角,则tanθ的值为( )A.B.C.D.7. 已知α,β是平面,m ,n 是直线.下列命题中不正确的是( )A. 若 , ,则B. 若 , ,则C. 若 , ,则D. 若 , ,则8. 已知函数则的是( ) A.B.C. eD. 39. 我国古代数学专著《九章算术》中有一个“两鼠穿墙题”,其内容为:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.问何日相逢?各穿几何?”如图的程序框图源于这个题目,执行该程序框图,若输入x =20,则输出的结果为( ) A. 3 B. 4 C. 5 D. 6 10. 设函数,则下列结论错误的是( )A. 为 的一个周期B. 的图象关于直线对称 C. 的一个零点为D. 的最大值为211. 设F 是椭圆 :> > 的右焦点,A 是椭圆E 的左顶点,P 为直线上一点,△APF是底角为30°的等腰三角形,则椭圆E 的离心率为( )A.B.C.D.12. 若函数f (x )=-x 2(x 2+ax +b )的图象关于直线x =-1对称,则f (x )的最大值是( )A. B. C. 0 D. 1 二、填空题(本大题共4小题,共20.0分)13. 若x ,y 满足约束条件,则z =3x -2y 的最小值为______. 14. 已知平面向量 ,, , ,且 ∥ ,则实数m 的值为______.15. 已知四棱锥S -ABCD 的底面是边长为 的正方形,且四棱锥S -ABCD 的顶点都在半径为2的球面上,则四棱锥S -ABCD 体积的最大值为______.16. 已知△ABC 中, ,D 是BC 边上的一点,且△ABD 为等边三角形,则△ACD 面积S 的最大值为______.三、解答题(本大题共7小题,共82.0分)17. 已知等差数列{a n }的前n 项和为S n ,公差d 不为零,若a 1,a 3,a 9成等比数列,且S4=10.(1)求数列{a n }的通项公式;(2)求证:< .18. 已知如图,长方体ABCD -A 1B 1C 1D 1中,AB =BC =4, ,点E ,F ,M 分别为C 1D 1,A 1D 1,B 1C 1的中点,过点M 的平面α与平面DEF 平行,且与长方体的面相交,交线围成一个几何图形.(1)在图中画出这个几何图形,并求这个几何图形的面积(画图说出作法,不用说明理由);(2)求证:D1B平面DEF.19.已知抛物线C:x2=4y的焦点为F,直线y=kx+m(m>0)与抛物线C交于不同的两点M,N.(1)若抛物线C在点M和N处的切线互相垂直,求m的值;(2)若m=2,求|MF|•|NF|的最小值.20.某快递公司收取快递费用的标准是:重量不超过1kg的包裹收费10元;重量超过1kg的包裹,除收费10元之外,超过1kg的部分,每超出1kg(不足1kg,按1kg计算)需要再收费5元.该公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).(1)求这60天每天包裹数量的平均值和中位数;(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.已知公司前台有工作人员3人,每人每天工资100元,以样本估计总体,试估计该公司每天的利润有多少元?(3)小明打算将A(0.9kg),B(1.3kg),C(1.8kg),D(2.5kg)四件礼物随机分成两个包裹寄出,且每个包裹重量都不超过5kg,求他支付的快递费为45元的概率.21.已知函数f(x)=x-a ln x-1.(1)若函数f(x)的极小值为0,求a的值;(2)∀t>0且a≤1,求证:>.22.在直角坐标系xOy中,直线:,圆:,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求C1,C2的极坐标方程;(2)若直线C3的极坐标方程为,设C1与C2的交点为O,A,圆C2与C3的交点为O,B,求△OAB的面积.23.已知正实数x,y满足x+y=1.(1)解关于x的不等式;(2)证明:.答案和解析1.【答案】A【解析】解:;∴.故选:A.可以求出集合N,然后进行交集的运算即可.考查描述法的定义,以及交集的运算.2.【答案】C【解析】解:设z====,所以z的共轭复数的虚部为-,故选:C.先求出复数的代数形式,即可得到的共轭复数的虚部本题考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.3.【答案】D【解析】解:双曲线mx2+y2=1的渐近线方程为:y±x=0,因为双曲线mx2+y2=1的一条渐近线方程为2x+y=0,可得,解得m=-4.故选:D.求出双曲线的渐近线方程与已知渐近线方程对比,即可求出m的值.本题考查双曲线的简单性质的应用,是基本知识的考查.4.【答案】A【解析】解:由题意知K2=≈8.333>7.879,对照临界值得出,有99.5%以上的把握认为“爱好该项运动与性别有关”.故选:A.由题意知观测值K2,对照临界值得出结论.本题考查了独立性检验原理的应用问题,是基础题.5.【答案】B【解析】解:由题意,因为在1万元以上的项目投资中,少于3万元的项目投资占,所以在1万元以上的项目投资中,不少于3万元的项目投资占比为,而1万元以上的项目投资占总投资的比例为1-46%-33%=21%,所以不少于3万元的项目投资共有500×21%×=65万元,故选:B.根据题意,在1万元以上的项目投资中,少于3万元的项目投资占,可得不少于3万元的项目投资占比为,而1万元以上的项目投资占总投资的比例为1-46%-33%=21%,即可得到那么不少于3万元的项目投资.本题考查了扇形图的读图识图能力,属于基础题.6.【答案】C【解析】解:∵,∴sin2θ+cos2θ=()2+(-)2=1,解得:a=0,或a=4,∵θ为第二象限角,∴sinθ>0,cosθ<0.∴a=4,∴可得:sinθ=,cosθ=-,tanθ=-.故选:C.利用sin2θ+cos2θ=1,解得a.由于θ为第二象限角,可得sinθ>0,cosθ<0.即可得出a的值,进而可求tanθ的值.本题考查了同角三角函数的基本关系式、三角函数值的符号,考查了推理能力与计算能力,属于基础题.7.【答案】B【解析】解:对于A,根据两条平行线中一条垂直某平面,另一条也垂直这平面可判定A正确;对于B,若m∥α,α∩β=n,则m∥n或异面,故错;对于C,根据线面垂直的性质、面面平行的判定,可知C正确;对于D,根据面面垂直的判定,可D正确;故选:B.A,根据两条平行线中一条垂直某平面,另一条也垂直这平面可判定;B,若m∥α,α∩β=n,则m∥n或异面,;C,根据线面垂直的性质、面面平行的判定判定;D,根据面面垂直的判定;本题考查了命题真假的判定,属于基础题.8.【答案】D【解析】解:根据题意,函数则f ()=ln=-ln3,则f[f ()]=f(-ln3)=e ln3=3;故选:D.根据题意,由函数的解析式求出f ()=-ln3,进而可得f[f ()]=f(-ln3),计算可得答案.本题考查函数值的计算,涉及分段函数的解析式,属于基础题.9.【答案】C【解析】解:若x=20,则T=1+1=2,S=0+2=2,S<20是,a=2,b=,n=2T=2+=,S=+2=,S<20是,a=4,b=,n=3,T=4+=,S=+=,S<20是,a=8,b=,n=4,T=8+=,S=+=,S<20是,a=16,b=,n=5,T=16+=,S=+=,S<20否,程序终止,输出,n=5,故选:C.根据程序框图进行模拟计算即可.本题主要考查程序框图的识别和判断,利用模拟运算法是解决本题的关键.考查学生的计算能力.10.【答案】D【解析】解:∵函数=cos2x+cos2x=(+1)cos2x,故它的周期为=π,故A正确;当x=,求得f(x)=-(+1),为最小值,故它的图象关于直线x=对称,故B正确;当x=,求得f(x)=0,故f(x)的一个零点为x=,故C正确;由于f(x)的最大值为+1,故D错误,故选:D.由题意利用诱导公式化简函数的解析式,再利用余弦函数的性质得出结论.本题主要考查诱导公式、余弦函数的性质,属于基础题.11.【答案】B【解析】解:设交x轴于点M,∵△FPA是底角为30°的等腰三角形∴∠PFA=120°,|PF|=|FA|,且|PF|=2|FM|∵P为直线上一点,∴2(-c)=a+c,解之得2a=3c∴椭圆E的离心率为e==故选:B.利用△FPA是底角为30°的等腰三角形,可得|PF|=|FA|,根据P为直线上一点建立方程,由此可求椭圆的离心率.本题给出与椭圆有关的等腰三角形,在已知三角形形状的情况下求椭圆的离心率.着重考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.12.【答案】C【解析】解:因为函数f(x)=-x2(x2+ax+b)的图象关于直线x=-1对称,则,即,解得,当a=b=4时,f(x)=f(-2-x)恒成立,即a=b=4满足题意,即f(x)=-x2(x+2)2=-[(x+1)2-1]2,当x=0时,f(x)取最大值0,故选:C.由函数的性质得:函数f(x)=-x2(x2+ax+b)的图象关于直线x=-1对称,则,即,解得,当a=b=4时,f(x)=f(-2-x)恒成立,即a=b=4满足题意,由二次函数的最值问题得:f(x)=-x2(x+2)2=-[(x+1)2-1]2,当x=0时,f(x)取最大值0,得解.本题考查了函数的性质及二次函数的最值问题,属中档题.13.【答案】0【解析】解:由z=3x-2y得y=x-,作出不等式组对应的平面区域如图(阴影部分):平移直线y=x-由图象可知当直线y=x-经过点A时,直线的截距最小,此时z也最小,由,解得O(0,0)将O(0,0)代入目标函数z=3x-2y,得z=0.故答案为:0.作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.14.【答案】【解析】解:平面向量,且∥,所以,2m+1-(-)•2m=0,解得m=-.故答案为:-.根据平面向量的共线定理与坐标表示,列方程求出m的值.本题考查了平面向量的共线定理与坐标运算问题,是基础题.15.【答案】6【解析】解:设M为正方形ABCD的中心,O为外接球的球心,则OM平面ABCD,∵正方形ABCD边长为,∴AM=,∴OM==1,当S,O,M在同一条直线上且O在四棱锥内部时,S到平面ABCD的距离取得最大值,最大距离为2+1=3.∴四棱锥的最大体积为()2×3=6.故答案为:6.计算球心到平面ABCD的距离,得出S到平面ABCD的最大距离,再根据体积公式计算最大体积.本题考查了棱锥与外接球的位置关系,棱锥的体积计算,属于中档题.16.【答案】【解析】解:△ABC 中,,且△ABD为等边三角形,如图所示;则∠ADC=120°,△ADC中,AC=2,由余弦定理得:AC2=CD2+AD2-2CD•AD•cos∠ADC,即12=CD2+AD2-2CD•AD•(-),又CD2+AD2≥2CD•AD,所以3CD•AD≤12,即CD•AD≤4,当且仅当CD=AD=2时取“=”;所以△ACD面积为S=AD•CD•sin∠ADC≤×4×=,即△ACD面积S的最大值为.故答案为:.利用余弦定理和基本不等式求得CD•AD的最大值,再求△ACD面积S的最大值.本题考查了余弦定理以及三角形面积的计算问题,也考查了利用基本不等式求最值的应用问题,是中档题.17.【答案】解:(1)由a1,a3,a9成等比数列,可得且d≠0,化简得a1=d-------------------------------(3分)由S4=10可得2a1+3d=5由上解得a1=d=1,∴a n=1+(n-1)•1=n------------------------------(6分)(2)由(1)知,-------------------------------(7分)-----------------------------(9分)∴<------------(12分)【解析】(1)利用等比数列以及等差数列,转化求解数列的首项与公差,得到数列的通项公式.(2)求出数列的和,利用裂项消项法求解数列的和即可.本题考查等差数列以及等比数列的应用,数列求和,考查计算能力.18.【答案】解:(1)设N为A1B1的中点,连结MN,AN、AC、CM,则四边形MNAC为所作图形.由题意知MN∥A1C1(或∥EF),四边形MNAC为梯形,且,过M作MP AC于点P,可得,,得,∴梯形MNAC的面积=.证明:(2)证法1:在长方体中ABCD-A1B1C1D1,设D1B1交EF于Q,连接DQ,则Q为EF的中点并且为D1B1的四等点,如图,,由DE=DF得DQ EF,又EF BB1,∴EF平面BB1D1D,∴EF D1B,,∴∠D1QD=∠BD1D,∴∠QD1B+∠D1QD=∠DD1B+∠BD1Q=90°,∴DQ D1B,∴D1B平面DEF.证法2:设D1B1交EF于Q,连接DQ,则Q为EF的中点,且为D1B1的四等分点,,由BB1平面A1B1C1D1可知BB1EF,又B1D1EF,BB1∩B1D1=B1,∴EF平面BB1D1D,∴EF D1B,由得tan∠QDD1=tan∠D1BD,得∠QDD1=∠D1BD,∴∠QDB+∠D1BD=∠QDB+∠QDD1=90°,∴DQ D1B,又DQ∩EF=Q,∴D1B平面DEF.【解析】(1)设N为A1B1的中点,连结MN,AN、AC、CM,则四边形MNAC为所作图形.推导出四边形MNAC为梯形,过M作MP AC于点P,由此能求出梯形MNAC的面积.(2)证法1:设D1B1交EF于Q,连接DQ,则Q为EF的中点并且为D1B1的四等点,推导出EF平面BB1D1D,从而EF D1B,推导出DQ D1B,由此能证明D1B平面DEF.证法2:设D1B1交EF于Q,连接DQ,则Q为EF的中点,且为D1B1的四等分点,推导出BB1EF,从而EF平面BB1D1D,EF D1B,推导出DQ D1B,由此能证明D1B平面DEF.本题考查几何图形面积的求法,考查空间中直线的位置关系的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理推论证能力、运算求解能力,是中档题.19.【答案】解:(1)设M(x1,y1),N(x2,y2),对求导得:,------------------------------------(1分)故抛物线C在点M和N处切线的斜率分别为和,又切线垂直,∴,即x1•x2=-4,-------------------------------------------------(3分)把y=kx+m代入C的方程得x2-4kx-4m=0.∴x1x2=-4m.-------------------------------(5分)故m=1.------------------------------------------------(6分)(2)解:设M(x1,y1),N(x2,y2),由抛物线定义可知|MF|=y1+1,|NF|=y2+1---------------(8分)由(1)和m=2知x1x2=-8,x1+x2=4k所以=4k2+9------(11分)所以当k=0时,|MF|•|NF|取得最小值,且最小值为9.-----------------------------------------------------(12分)【解析】(1)设M(x1,y1),N(x2,y2),对求导得:,故抛物线C在点M和N处切线的斜率分别为和,通过切线垂直,得到x1•x2=-4,把y=kx+m代入C的方程得x2-4kx-4m=0.利用韦达定理求解即可.(2)设M(x1,y1),N(x2,y2),由抛物线定义可知|MF|=y1+1,|NF|=y2+1,由(1)和m=2知x1x2=-8,x1+x2=4k,求出|MF|•|NF|的表达式,然后求解最小本题考查直线与抛物线的位置关系的应用,考查转化思想以及计算能力.20.【答案】解:(1)每天包裹数量的平均数为0.1×50+0.1×150+0.5×250+0.2×350+0.1×450=260;--------------------------------------------(2分)【或:由图可知每天揽50、150、250、350、450件的天数分别为6、6、30、12、6,所以每天包裹数量的平均数为】设中位数为x,易知x(200,300),则0.001×100×2+0.005×(x-200)=0.5,解得x=260.所以公司每天包裹的平均数和中位数都为260件.-----------------------------------------(4分)(2)由(1)可知平均每天的揽件数为260,利润为260×5-3×100=1000(元),所以该公司平均每天的利润有1000元.-------------------------------------------------(7分)(3)设四件礼物分为二个包裹E、F,因为礼物A、C、D共重0.9+1.8+2.5=5.2(千克),礼物B、C、D共重1.3+1.8+2.5=5.6(千克),都超过5千克,------------------(8分)故E和F的重量数分别有1.8和4.7,2.5和4.0,2.2和4.3,2.7和3.8,3.1和3.4共5种,对应的快递费分别为45、45、50,45,50(单位:元)------------------------------(10分)故所求概率为.----------------------------------------------------------------------------------(12分)【解析】(1)根据频率分布直方图,将每一组的中点作为改组数据的代表值,对应的频率作为权重,取加权平均即可.(2)根据(1)中得到的平均值,求出每天的费用,减去300元的前台工作人员工资即可.(3)将4件礼物分成2个包裹,且每个包裹重量都不超过5kg,共有5种分法,其中快递费用为45的有3种,可得概率.本题考查了用频率分布直方图估计平均值,考查频率公式,频率分布直方图的应用,古典概型的概率求法.属于基础题.21.【答案】解:(1)∵函数f(x)=x-a ln x-1,∴,当a≤0时,f (x)>0,函数f(x)在定义域上递增,不满足条件;当a>0时,函数f(x)在(0,a)上递减,在(a,+∞)上递增,故f(x)在x=a取得极小值0,∴f(a)=a-a lna-1=0,令p(a)=a-a lna-1,p'(a)=-ln a,所以p(a)在(0,1)单调递增,在(1,+∞)单调递减,故p(a)≤p(1)=0,∴f(a)=0的解为a=1,故a=1.证明:(2)证法1:由>>>,∵a≤1,所以只需证当t>0时,>恒成立,令,,由(1)可知x-ln x-1≥0,令x=e t得e t-t-1≥0,∴g(t)在(0,+∞)上递增,故g(t)>g(0)=0,故>.证法2:>>>,设(t>0),则g'(t)=e t-at-a,则g''(t)=e t-a,又e t>e0=1,a≤1,得g''(t)>0,∴g'(t)单调递增,得g'(t)>g(0)=1-a≥0,∴g(t)单调递增,得g(t)>g(0)=0,故>.【解析】(1)求出,当a≤0时,f′(x)>0,函数f(x)在定义域上递增,不满足条件;当a>0时,函数f(x)在(0,a)上递减,在(a,+∞)上递增,从而f(x)在x=a取得极小值0,由此能求出a.(2)法1:由,由a≤1,得只需证当t>0时,恒成立,令,x-lnx-1≥0,令x=e t得e t-t-1≥0,由此能证明.法2:,设(t>0),则g'(t)=e t-at-a,推导出g(t)单调递增,得g(t)>g(0)=0,由此能证明.本题考查实数值的求法,考查不等式的证明,考查导数性质、函数的单调性、最值等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.22.【答案】解:(1)因为x=ρcosθ,y=ρsinθ,-------------------------------------------------------(1分)所以C1的极坐标方程为,即(ρR),----------------------------(3分)C2的极坐标方程为ρ2-2ρcosθ-4ρsinθ=0.----------------------------------------------------(4分)即ρ-2cosθ-4sinθ=0----------------------------------------------------------------------------------(5分)(2)代入ρ-2cosθ-4sinθ=0,解得.------------------------------------(7分)代入ρ-2cosθ-4sinθ=0,解得.---------------------------------------------(8分)故△OAB的面积为.----------------------------------(10分)【解析】(1)利用x=ρcosθ,y=ρsinθ可把C1,C2化成极坐标方程;(2)联立极坐标方程并利用极径的几何意义和面积公式可得.本题考查了简单曲线的极坐标方程,属中档题.23.【答案】(1)解:∵x+y=1,且x>0,y>0,∴ <<<<<<,解得<,所以不等式的解集为,,证明:(2)方法一:∵x+y=1,且x>0,y>0,∴ ===.当且仅当时,取“=”.方法二:∵x+y=1,且x>0,y>0,∴ ====,当且仅当时,取“=”.【解析】(1)利用x的取值,去掉绝对值符号,求解绝对值不等式即可.(2)利用已知条件,通过“1”的代换以及基本不等式求解表达式的最小值,证明不等式即可.不等式选讲本小题考查绝对值不等式、基本不等式的解法与性质等基础知识,考查运算求解能力、推理论证能力,考查分类与整合思想、化归与转化思想等.。