2015年高中数学竞赛培训教材

合集下载

第十五章复数高中数学竞赛标准教材

第十五章复数高中数学竞赛标准教材

第十五章复数(高中数学竞赛标准教材)第十五章复数一、基础知识1.复数的定义:设i为方程x2=-1的根,i称为虚数单位,由i与实数进行加、减、乘、除等运算。

便产生形如a+bi(a,b∈R)的数,称为复数。

所有复数构成的集合称复数集。

通常用C来表示。

2.复数的几种形式。

对任意复数z=a+bi(a,b∈R),a称实部记作Re(z),b称虚部记作Im(z). z=ai称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。

因此复数可以用点来表示,表示复数的平面称为复平面,x轴称为实轴,y轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z又对应唯一一个向量。

因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z对应复平面内的点Z,见图15-1,连接OZ,设∠xOZ=θ,|OZ|=r,则a=rcosθ,b=rsinθ,所以z=r(cosθ+isinθ),这种形式叫做三角形式。

若z=r(cosθ+isinθ),则θ称为z的辐角。

若0≤θ2π,则θ称为z的辐角主值,记作θ=Arg(z). r称为z的模,也记作|z|,由勾股定理知|z|= .如果用eiθ表示cosθ+isinθ,则z=reiθ,称为复数的指数形式。

3.共轭与模,若z=a+bi,(a,b∈R),则 a-bi称为z的共轭复数。

模与共轭的性质有:(1);(2);(3);(4);(5);(6);(7)||z1|-|z2||≤|z1±z2|≤|z1|+|z2|;(8)|z1+z2|2+|z1-z2|2=2|z1|2+2|z2|2;(9)若|z|=1,则。

4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z1=r1(cosθ1+isinθ1), z2=r2(cosθ2+isinθ2),则z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)];若[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z1z2=r1r2ei(θ1+θ2)棣莫弗定理:[r(cosθ+isinθ)]n=rn(cosnθ+isinnθ)开方:若r(cosθ+isinθ),则,k=0,1,2,…,n-1。

高中数学竞赛书籍

高中数学竞赛书籍

高中数学竞赛书籍
高中数学竞赛是一项需要大量练习和理解的活动,为此需要一些优质的竞赛书籍作为辅助资料。

以下是一些推荐的高中数学竞赛书籍: 1. 《高中数学竞赛全书》
这本书是一本全面介绍高中数学竞赛知识的工具书,内容涵盖了数学竞赛的各个领域,包括代数、几何、概率与统计等。

书中配有大量的例题和试题,非常适合准备参加竞赛的学生使用。

2. 《高中数学竞赛辅导书》
这本书是一本全面介绍高中数学竞赛知识的辅导资料,内容涵盖了数学竞赛的各个领域,包括代数、几何、概率与统计等。

书中配有大量的例题和试题,并配有详细的讲解与解答,非常适合准备参加竞赛的学生使用。

3. 《高中数学竞赛题解汇编》
这本书是一本收集了大量高中数学竞赛试题的题解汇编,内容非常全面,包括代数、几何、概率与统计等多个领域。

书中题目难度各异,适合不同水平的竞赛学生学习。

4. 《高中数学竞赛例题精选》
这本书是一本精选了大量高中数学竞赛例题的参考书,内容涵盖了代数、几何、概率与统计等多个领域。

书中的例题难度适中,既有挑战性,又不失可操作性,提供了很好的练习机会。

总之,以上这些书籍都是非常优质的高中数学竞赛资料,可以帮助学生更好地理解和掌握数学竞赛知识,提高竞赛水平。

数学竞赛完整课程教案高中

数学竞赛完整课程教案高中

数学竞赛完整课程教案高中1. 学生能够掌握数学竞赛中常见的解题技巧和方法;2. 学生能够熟练运用数学知识解决竞赛中的问题;3. 学生能够提升自信心和解决问题的能力。

教学内容:1. 数论2. 代数3. 几何4. 统计教学过程:第一课:数论1. 介绍数论的基本概念和常见的解题技巧;2. 给出一些数论题目并引导学生解决;3. 分析解题思路和方法,引导学生总结经验。

第二课:代数1. 讲解代数的基本知识和解题技巧;2. 给出一些代数题目供学生练习;3. 分析解题思路和方法,帮助学生提升解题能力。

第三课:几何1. 引导学生理解几何知识和解题技巧;2. 给出一些几何题目供学生练习;3. 分析解题思路和方法,帮助学生提升几何解题能力。

第四课:统计1. 讲解统计知识和解题技巧;2. 给出一些统计题目供学生练习;3. 分析解题思路和方法,帮助学生提升统计解题能力。

第五课:综合练习1. 给出一些综合性的竞赛题目供学生练习;2. 帮助学生分析解题思路和方法;3. 鼓励学生多练习,提高解题速度和准确性。

评价方法:1. 平时的课堂练习;2. 期中和期末的考试;3. 数学竞赛的模拟比赛。

教学资源:1. 数学竞赛教材和习题集;2. 电子教学资源;3. 纸质习题和答案。

教学建议:1. 鼓励学生多练习,勤奋钻研;2. 注重引导学生理解数学知识,而不是死记硬背;3. 鼓励学生互相合作,相互学习。

以上是数学竞赛完整课程教案的高中范本,希朅能对您有所帮助。

奥数书籍推荐

奥数书籍推荐

打星号的是强烈推荐的,其他的书也是非常值得一读的,但是时间有限的情况下,可以暂时搁置。

通用书籍:中等数学(无论是刚入门还是国家队)第零阶段知识拓展《数学选修4-1:几何证明选讲》《数学选修4-5:不等式选讲》《数学选修3-X(忘了哪本):初等数论初步》第一阶段:全国高中数学联赛各赛区预赛1、《五年高考三年模拟》B版或《3年高考2年模拟》第二轮复习专用高中数学联赛备考手册华东师范大学出版社*3、《奥赛经典:超级训练系列》高中数学沈文选主编湖南师范大学出版社*4、单樽《解题研究》*5、单樽《平面几何中的小花》(个别地区竞赛会考到平几)6、《平面几何》浙江大学出版社7、奥林匹克小丛书第二版《不等式的解题方法与技巧》苏勇熊斌著第二阶段:全国高中数学联合竞赛第一部分:一试《奥林匹克数学中的真题分析》沈文选湖南师范大学出版社*《高中数学联赛考前辅导》熊斌冯志刚华东师范大学出版社《数学竞赛培优教程(一试)》浙江大学出版社3、命题人讲座《数列与数学归纳法》单樽4、《数列与数学归纳法》(小丛书第二版,冯志刚)5、《数列与归纳法》浙江大学出版社韦吉珠6、《解析几何的技巧》单樽(建议买华东师大出版的版本)7、《概率与期望》单樽8、《同中学生谈排列组合》苏淳9、《函数与函数方程》奥林匹克小丛书第二版10、《三角函数》奥林匹克小丛书第二版11、《奥林匹克数学中的几何问题》沈文选*12、《圆锥曲线的几何性质》13、《解析几何》浙江大学出版社第二部分:加试(我怎么可能会说二试这种词语呢)平几1、高中数学竞赛解题策略(几何分册)沈文选*2、《奥林匹克数学中的几何问题》沈文选*3、奥林匹克小丛书第二版《平面几何》4、浙大小红皮《平面几何》5、沈文选《三角形的五心》6、田廷彦《三角与几何》7、田廷彦《面积与面积方法》不等式1、《初等不等式的证明方法》韩神2、9、命题人讲座《代数不等式》计神3、10、《重要不等式》中科大出版社11、奥林匹克小丛书《柯西不等式与平均值不等式》数论(9,10,11选一本即可,某位大神说二试改为四道题以来没出过难题)12、奥林匹克小丛书初中版《整除,同余与不定方程》13、13、奥林匹克小丛书《数论》14、命题人讲座《初等数论》冯志刚组合15、奥林匹克小丛书第二版《组合数学》16、奥林匹克小丛书第二版《组合几何》17、命题人讲座刘培杰《组合问题》18、《构造法解题》苏淳19、《从特殊性看问题》中科大出版社20、《抽屉原则》常庚哲第三部分:通用《中等数学增刊:高中数学联赛模拟题》*《多功能题典:高中数学竞赛》《数学奥林匹克研究教程》单樽奥林匹克小丛书第二版《高中数学竞赛中的解题方法与策略》第三阶段:中国数学奥林匹克(Chinese Mathematical Olympiad)及以上(本渣不自量力,竟然敢给这个阶段的大神推荐书籍,如果大神们虐题审美疲劳的话,也不妨一看)命题人讲座《圆》田廷彦《近代欧式几何学》《近代的三角形的几何学》《不等式的秘密》范建熊、隋振林《奥赛经典:奥林匹克数学中的数论问题》沈文选《奥赛经典:数学奥林匹克高级教程》叶军《初等数论难题集》命题人讲座《图论》奥林匹克小丛书第二版《图论》《走向IMO》今天仔细看了看。

高中数学竞赛特级教师培训教材(49页).pptx

高中数学竞赛特级教师培训教材(49页).pptx

学海无涯
(二) 二次函数
一、二次函数的解析式:①定义式:f(x)=ax2+bx+c.②顶点式:f(x)=a(x-h)2+k.
③零点式:f(x)=a(x-x1)(x-x2).(a≠0)
二、二次函数的最值:当自变量的取值范围为闭区间[p,q]时,其最值在 f(p)、f(q)、f(-b/2a)
三者中取得,最值情况如下表:
求集合 A。 三.容斥原理 基 本 公 式 :(1)card(A ∪ B) = card(A) + card(B) - card(A ∩ B) ; (2)card(A ∪ B ∪
C)=card(A)+card(B)+card(C)-card(A∩B)-card(A∩C)-card(B∩C)+card(A∩B∩C)
学海无涯 (1)求证:A B; (2)若 A={-1,3}时,求集合 B. 二、集合中待定元素的确定 例 2.已知集合 M={X,XY,lg(xy)},S={0,∣X∣,Y},且 M=S,则(X+1/Y)+(X2+1/Y2) +……+(X2002+1/Y2002)的值等于( ). 分析:解题的关键在于求出 X 和 Y 的值,而 X 和 Y 分别是集合 M 与 S 中的元素。这一类根据集合 的关系反过来确定集合元素的问题,要求我们要对集合元素的基本性质即确定性、异性、无序性及集 合之间的基本关系(子、全、补、交、异、空、等)有本质的理解,对于两个相等的有限集合(数集), 还会用到它们的简单性质:(a)相等两集合的元素个数相等;(b)相等两集合的元素之和相等;(c)相 等两集合的元素之积相等. 解:由 M=S 知,两集合元素完全相同。这样,M 中必有一个元素为 0,又由对数的性质知,0 和 负数没有对数,所以 XY≠0,故 X,Y 均不为零,所以只能有 lg(XY)=0,从而 XY=1.∴M={X,1, 0},S={0,∣X∣,1/X}.再由两集合相等知

高中数学竞赛培优教程(一试)第五版电子版

高中数学竞赛培优教程(一试)第五版电子版

高中数学竞赛培优教程(一试)第五版电子版高中数学竞赛培优教程(一试)第五版电子版:一、数论1、重要概念认识(1)数论及其基本概念(2)数论中的重要概念(3)因数分解、自整除、递归2、素数的基本性质(1)素数的定义(2)求素数的方法(3)素数的性质3、整除性质(1)余数定理(2)倍数定理(3)欧拉定理(4)欧几里德定理4、欧拉函数(1)欧拉函数的性质(2)求欧拉函数值(3)应用欧拉函数求素数个数二、组合数1、组合数的基本概念(1)组合数的定义(2)组合数的性质2、组合数的求法(1)排列组合的求法(2)卡塔尔乘方的求法(3)频率表的求法3、组合数的计数法(1)构造法(2)两个位置求和(3)一次函数的性质4、组合数的重要性质(1)奇偶性(2)加减乘除法(3)快速改变组合列表三、概率1、随机事件与概率(1)概率(2)试验(3)事件求概率2、独立性与条件概率(1)独立事件(2)条件概率(3)贝祖定理3、联合概率与贝叶斯定理(1)联合概率(2)贝叶斯定理(3)费雪推论4、随机变量与概率分布(1)随机变量(2)概率分布(3)分布函数及其性质四、微积分1、函数与曲线(1)函数及其基本概念(2)函数图形(3)曲线及其特征2、复变函数(1)复变函数的定义(2)复变函数的性质(3)复变函数的向量表示3、微积分的基本概念(1)极限、导数、和积分的定义(2)导数的几何意义(3)多变量函数的导数及其计算4、积分(1)积分的定义(2)积分的性质(3)重要形式的积分(4)向量积分。

高中数学竞赛讲义(全套)

高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

高中数学竞赛培训教案

高中数学竞赛培训教案

高中数学竞赛培训教案
教学目标:通过本次培训,学生能够掌握竞赛所需的数学知识和解题技巧,提高数学竞赛
的应试能力。

教学内容:本次培训主要围绕高中数学竞赛的常见题型展开,包括数列、概率、几何、代
数等知识点。

教学步骤:
第一步:复习基础知识
讲解数学竞赛常见题型,包括选择题、填空题、解答题等,帮助学生理清基础知识,打好
基础。

第二步:讲解数学竞赛解题技巧
介绍数学竞赛解题的基本思路和方法,包括适时放弃、灵活运用、多角度思考等技巧。

第三步:解析典型题目
通过解析一些典型的数学竞赛题目,引导学生掌握解题技巧,提高解题速度和正确率。

第四步:练习题目
让学生进行有针对性的练习,巩固所学知识和技巧,提高解题能力。

第五步:总结反思
让学生对本次培训进行总结和反思,查漏补缺,为下次培训做好准备。

教学方法:讲解结合练习、小组合作、讨论交流等方式,激发学生学习兴趣,提高学习效果。

教学工具:教材、习题、黑板、投影仪等。

教学评价:通过练习题目和考试测验,评估学生的学习情况和提高空间,及时调整教学方案,确保教学效果。

教学改进:根据学生的反馈和评价意见,不断改进教学方法和内容,提高竞赛培训的质量
与效果。

以上是本次高中数学竞赛培训教案范本,希最能达到预期目标,提高学生的数学竞赛能力。

数学竞赛书目

数学竞赛书目
高中各学科竞赛同步辅导培训教材
s004 高中数学竞赛培训教材高一分册 浙江大学 22
s005 高中数学竞赛培训教材高二分册 浙江大学 23
s006 高中数学竞赛培训教材高三分册 浙江大学 26
高中各科竞赛实战演练丛书
s015 国内高中数学竞赛真题库 浙江大学 14
s016 国外数学竞赛真题库 浙江大学 25
s017 高中数学竞赛2000题 浙江大学 40
特级教师解密
s064 奥赛小丛书.高中卷14 组合几何 华东师大 7
s065 奥赛小丛书.高中卷15 图论 华东师大 9
s066 奥赛小丛书.高中卷16 组合极值.论证与构造 华东师大 10
s052 奥数小丛书.高中卷2 函数与函数方程 华东师大 12
s053 奥数小丛书.高中卷3 三角函数 华东师大 13
s054 奥数小丛书.高中卷4 平均值不等式与柯西不等式 华东师大 11
s055 奥数小丛书.高中卷5 不等式的解题方法与技巧 华东师大 12
《赛前集训》系列
s049 高中数学联赛专题辅导 华东师大 15
s050 高中数学联赛考前集训 华东师大 7
《数学奥林匹克小丛书》
s051 奥数小丛书.高中卷1 集合 华东师大 12
高中各学科竞赛丛书国家数学奥林匹克竞赛学会审定
s001 高中数学竞赛培优教程(一试) 浙江大学 26
s002 高中数学竞赛培优教程(专题讲座) 浙江大学 26
s003 高中数学竞赛题典 浙江大学 14
《高中奥赛试题评析》丛书
s029 高中数学奥赛试题评析 南京师大 18
启东中学奥赛训练教程
s030 启东中学奥赛训练教程.高中数学 南京师大 24

高中数学竞赛培训计划

高中数学竞赛培训计划

高中数学竞赛培训计划一、培训目标本培训旨在帮助学生提高数学竞赛的应试能力和解题技巧,增强数学思维和创新能力,为学生将来参加数学相关的竞赛和选拔赛做好充分准备。

二、培训内容1. 知识点梳理与强化对高中数学的相关知识点进行梳理,重点强化数学基础知识,包括代数、几何、概率统计等方面的知识,涉及高中阶段的必修课程内容以及拓展知识。

2. 解题方法与技巧针对竞赛题目,讲解解题方法和技巧,包括数学建模、探索性问题的解决方法,提高学生分析问题和解决问题的能力。

3. 真题训练与模拟考试通过真题训练和模拟考试,帮助学生熟悉竞赛题型和考试形式,加强应试能力,发现和弥补自身的不足。

4. 数学思维和创新能力培养通过启发式的问题解决和探索式的学习,培养学生的数学思维和创新能力,引导学生学会用数学的方法解决实际问题。

三、培训安排1. 知识讲解每周安排固定的时间进行知识点的讲解,包括理论知识的介绍和例题的讲解。

在讲解时,引导学生思考,提高学生对数学问题的理解和抽象能力。

2. 解题训练每周安排一定的时间进行解题训练,涉及不同类型的问题,包括选择题、填空题、解答题等,有针对性地提供题目,让学生熟悉应试的各种形式。

3. 模拟考试每月安排一次模拟考试,对学生进行考试,帮助学生了解自己的水平和成绩,发现不足之处,为下一阶段的学习提供指导。

4. 真题训练结合真题对学生进行训练,让学生熟悉真题的题型和难度,提高学生对竞赛题目的应对能力。

四、培训方式1. 课堂讲授对知识点进行系统的讲解,帮助学生理解和掌握数学的基础知识。

2. 个性化辅导针对学生的学习情况和能力,进行个性化的辅导,解决学生在学习过程中遇到的问题,提高学生的学习效率。

3. 小组讨论组织学生进行小组讨论,让学生在交流中相互学习和提高,培养学生的合作精神和团队意识。

4. 作业批改对学生的作业进行及时的批改和指导,帮助学生巩固所学知识,发现不足之处并加以改正。

五、评估机制1. 学习成绩每月对学生进行一次学习成绩的评估,记录学生的学习情况和成绩,发现学生在学习过程中存在的问题,并及时进行指导和帮助。

高中数学竞赛标准教材2人教版 二次函数与命题【讲义】

高中数学竞赛标准教材2人教版 二次函数与命题【讲义】

第二章 二次函数与命题一、基础知识1.二次函数:当≠a 0时,y =ax 2+bx +c 或f (x )=ax 2+bx +c 称为关于x 的二次函数,其对称轴为直线x =-a b 2,另外配方可得f (x )=a (x -x 0)2+f (x 0),其中x 0=-ab2,下同.2.二次函数的性质:当a >0时,f (x )的图象开口向上,在区间(-∞,x 0]上随自变量x 增大函数值减小(简称递减),在[x 0, -∞)上随自变量增大函数值增大(简称递增).当a <0时,情况相反.3.当a >0时,方程f (x )=0即ax 2+bx +c =0…①和不等式ax 2+bx +c >0…②及ax 2+bx +c <0…③与函数f (x )的关系如下(记△=b 2-4ac ).1)当△>0时,方程①有两个不等实根,设x 1,x 2(x 1<x 2),不等式②和不等式③的解集分别是{x |x <x 1或x >x 2}和{x |x 1<x <x 2},二次函数f (x )图象与x 轴有两个不同的交点,f (x )还可写成f (x )=a (x -x 1)(x -x 2).2)当△=0时,方程①有两个相等的实根x 1=x 2=x 0=ab2-,不等式②和不等式③的解集分别是{x |x ab2-≠}和空集∅,f (x )的图象与x 轴有唯一公共点. 3)当△<0时,方程①无解,不等式②和不等式③的解集分别是R 和∅.f (x )图象与x 轴无公共点.当a <0时,请读者自己分析.4.二次函数的最值:若a >0,当x =x 0时,f (x )取最小值f (x 0)=ab ac 442-,若a <0,则当x =x 0=a b 2-时,f (x )取最大值f (x 0)=ab ac 442-.对于给定区间[m ,n ]上的二次函数f (x )=ax 2+bx +c (a >0),当x 0∈[m , n ]时,f (x )在[m , n ]上的最小值为f (x 0); 当x 0<m 时.f (x )在[m , n ]上的最小值为f (m);当x 0>n 时,f (x )在[m , n ]上的最小值为f (n )(以上结论由二次函数图象即可得出). 定义1 能判断真假的语句叫命题,如“3>5”是命题,“萝卜好大”不是命题.不含逻辑联结词“或”、“且”、“非”的命题叫做简单命题,由简单命题与逻辑联结词构成的命题由复合命题.注1 “p 或q ”复合命题只有当p ,q 同为假命题时为假,否则为真命题;“p 且q ”复合命题只有当p ,q 同时为真命题时为真,否则为假命题;p 与“非p ”即“p ”恰好一真一假. 定义2 原命题:若p 则q (p 为条件,q 为结论);逆命题:若q 则p ;否命题:若非p 则q ;逆否命题:若非q 则非p .注2 原命题与其逆否命题同真假.一个命题的逆命题和否命题同真假.注3 反证法的理论依据是矛盾的排中律,而未必是证明原命题的逆否命题.定义3 如果命题“若p 则q ”为真,则记为p ⇒q 否则记作p ≠q .在命题“若p 则q ”中,如果已知p ⇒q ,则p 是q 的充分条件;如果q ⇒p ,则称p 是q 的必要条件;如果p ⇒q 但q 不⇒p ,则称p 是q 的充分非必要条件;如果p 不⇒q 但p ⇒q ,则p 称为q 的必要非充分条件;若p ⇒q 且q ⇒p ,则p 是q 的充要条件.二、方法与例题1.待定系数法.例1 设方程x 2-x +1=0的两根是α,β,求满足f (α)=β,f (β)=α,f (1)=1的二次函数f (x ). 【解】 设f (x )=ax 2+bx +c (a ≠0),则由已知f (α)=β,f (β)=α相减并整理得(α-β)[(α+β)a +b +1]=0, 因为方程x 2-x +1=0中△≠0,所以α≠β,所以(α+β)a +b +1=0. 又α+β=1,所以a +b +1=0.又因为f (1)=a +b +c =1,所以c -1=1,所以c =2.又b =-(a +1),所以f (x )=ax 2-(a +1)x +2. 再由f (α)=β得a α2-(a +1)α+2=β,所以a α2-a α+2=α+β=1,所以a α2-a α+1=0. 即a (α2-α+1)+1-a =0,即1-a =0, 所以a =1,所以f (x )=x 2-2x +2. 2.方程的思想.例2 已知f (x )=ax 2-c 满足-4≤f (1)≤-1, -1≤f (2)≤5,求f (3)的取值范围. 【解】 因为-4≤f (1)=a -c ≤-1, 所以1≤-f (1)=c -a ≤4.又-1≤f (2)=4a -c ≤5, f (3)=38f (2)-35f (1), 所以38×(-1)+35≤f (3)≤38×5+35×4,所以-1≤f (3)≤20.3.利用二次函数的性质.例3 已知二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R , a ≠0),若方程f (x )=x 无实根,求证:方程f (f (x ))=x 也无实根.【证明】若a >0,因为f (x )=x 无实根,所以二次函数g (x )=f (x )-x 图象与x 轴无公共点且开口向上,所以对任意的x ∈R ,f (x )-x >0即f (x )>x ,从而f (f (x ))>f (x ). 所以f (f (x ))>x ,所以方程f (f (x ))=x 无实根. 注:请读者思考例3的逆命题是否正确. 4.利用二次函数表达式解题.例4 设二次函数f (x )=ax 2+bx +c (a >0),方程f (x )=x 的两根x 1, x 2满足0<x 1<x 2<a1, (Ⅰ)当x ∈(0, x 1)时,求证:x <f (x )<x 1; (Ⅱ)设函数f (x )的图象关于x =x 0对称,求证:x 0<.21x 【证明】 因为x 1, x 2是方程f (x )-x =0的两根,所以f (x )-x =a (x -x 1)(x -x 2), 即f (x )=a (x -x 1)(x -x 2)+x . (Ⅰ)当x ∈(0, x 1)时,x -x 1<0, x -x 2<0, a >0,所以f (x )>x . 其次f (x )-x 1=(x -x 1)[a (x -x 2)+1]=a (x -x 1)[x -x 2+a1]<0,所以f (x )<x 1. 综上,x <f (x )<x 1.(Ⅱ)f (x )=a (x -x 1)(x -x 2)+x =ax 2+[1-a (x 1+x 2)]x +ax 1x 2,所以x 0=a x x a x x a 21221)(2121-+=-+,所以012121222210<⎪⎭⎫⎝⎛-=-=-a x a x x x ,所以.210xx <5.构造二次函数解题.例5 已知关于x 的方程(ax +1)2=a 2(a -x 2), a >1,求证:方程的正根比1小,负根比-1大. 【证明】 方程化为2a 2x 2+2ax +1-a 2=0. 构造f (x )=2a 2x 2+2ax +1-a 2,f (1)=(a +1)2>0, f (-1)=(a -1)2>0, f (0)=1-a 2<0, 即△>0,所以f (x )在区间(-1,0)和(0,1)上各有一根. 即方程的正根比1小,负根比-1大. 6.定义在区间上的二次函数的最值.例6 当x 取何值时,函数y =2224)1(5+++x x x 取最小值?求出这个最小值.【解】 y =1-222)1(511+++x x ,令=+112x u ,则0<u ≤1. y =5u 2-u+1=5201920191012≥+⎪⎭⎫ ⎝⎛-u , 且当101=u 即x =±3时,y m in =2019.例7 设变量x 满足x 2+bx ≤-x (b <-1),并且x 2+bx 的最小值是21-,求b 的值. 【解】 由x 2+bx ≤-x (b <-1),得0≤x ≤-(b +1).ⅰ)-2b ≤-(b +1),即b ≤-2时,x 2+bx 的最小值为-214,422-=-b b ,所以b 2=2,所以2±=b (舍去).ⅱ) -2b>-(b +1),即b >-2时,x 2+bx 在[0,-(b +1)]上是减函数, 所以x 2+bx 的最小值为b +1,b +1=-21,b =-23.综上,b =-23.7.一元二次不等式问题的解法.例8 已知不等式组⎩⎨⎧>+<-+-12022a x a a x x ①②的整数解恰好有两个,求a 的取值范围.【解】 因为方程x 2-x +a -a 2=0的两根为x 1=a , x 2=1-a , 若a ≤0,则x 1<x 2.①的解集为a <x <1-a ,由②得x >1-2a . 因为1-2a ≥1-a ,所以a ≤0,所以不等式组无解. 若a >0,ⅰ)当0<a <21时,x 1<x 2,①的解集为a <x <1-a . 因为0<a <x <1-a <1,所以不等式组无整数解.ⅱ)当a =21时,a =1-a ,①无解. ⅲ)当a >21时,a >1-a ,由②得x >1-2a ,所以不等式组的解集为1-a <x <a . 又不等式组的整数解恰有2个, 所以a -(1-a )>1且a -(1-a )≤3,所以1<a ≤2,并且当1<a ≤2时,不等式组恰有两个整数解0,1. 综上,a 的取值范围是1<a ≤2. 8.充分性与必要性.例9 设定数A ,B ,C 使得不等式A (x -y )(x -z )+B (y -z )(y -x )+C (z -x )(z -y )≥0 ①对一切实数x ,y ,z 都成立,问A ,B ,C 应满足怎样的条件?(要求写出充分必要条件,而且限定用只涉及A ,B ,C 的等式或不等式表示条件)【解】 充要条件为A ,B ,C ≥0且A 2+B 2+C 2≤2(AB +BC +CA ). 先证必要性,①可改写为A (x -y )2-(B -A -C )(y -z )(x -y )+C (y -z )2≥0 ② 若A =0,则由②对一切x ,y ,z ∈R 成立,则只有B =C ,再由①知B =C =0,若A ≠0,则因为②恒成立,所以A >0,△=(B -A -C )2(y -z )2-4AC (y -z )2≤0恒成立,所以(B -A -C )2-4AC ≤0,即A 2+B 2+C 2≤2(AB +BC +CA )同理有B ≥0,C ≥0,所以必要性成立.再证充分性,若A ≥0,B ≥0,C ≥0且A 2+B 2+C 2≤2(AB +BC +CA ),1)若A =0,则由B 2+C 2≤2BC 得(B -C )2≤0,所以B =C ,所以△=0,所以②成立,①成立. 2)若A >0,则由③知△≤0,所以②成立,所以①成立. 综上,充分性得证. 9.常用结论. 定理1 若a , b ∈R , |a |-|b |≤|a +b |≤|a |+|b |.【证明】 因为-|a |≤a ≤|a |,-|b |≤b ≤|b |,所以-(|a |+|b |)≤a +b ≤|a |+|b |, 所以|a +b |≤|a |+|b |(注:若m>0,则-m ≤x ≤m 等价于|x |≤m ). 又|a |=|a +b -b |≤|a +b |+|-b |,即|a |-|b |≤|a +b |.综上定理1得证.定理2 若a ,b ∈R , 则a 2+b 2≥2ab ;若x ,y ∈R +,则x +y ≥.2xy (证略)注 定理2可以推广到n 个正数的情况,在不等式证明一章中详细论证.三、基础训练题1.下列四个命题中属于真命题的是________,①“若x +y =0,则x 、y 互为相反数”的逆命题;②“两个全等三角形的面积相等”的否命题;③“若q ≤1,则x 2+x +q =0有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆否命题. 2.由上列各组命题构成“p 或q ”,“p 且q ”,“非p ”形式的复合命题中,p 或q 为真,p 且q 为假,非p 为真的是_________.①p ;3是偶数,q :4是奇数;②p :3+2=6,q :③p :a ∈(a ,b ),q :{a }⊄{a ,b }; ④ p : Q ⊄R , q : N =Z .3. 当|x -2|<a 时,不等式|x 2-4|<1成立,则正数a 的取值范围是________.4. 不等式ax 2+(ab +1)x +b >0的解是1<x <2,则a , b 的值是____________.5. x ≠1且x ≠2是x -11-≠x 的__________条件,而-2<m<0且0<n <1是关于x 的方程x 2+m x +n =0有两个小于1的正根的__________条件.6.命题“垂直于同一条直线的两条直线互相平行”的逆命题是_________.7.若S={x |m x 2+5x +2=0}的子集至多有2个,则m 的取值范围是_________.8. R 为全集,A ={x |3-x ≥4}, B =⎭⎬⎫⎩⎨⎧≥+125x x, 则(C R A )∩B =_________.9. 设a , b 是整数,集合A ={(x ,y )|(x -a )2+3b ≤6y },点(2,1)∈A ,但点(1,0)∉A ,(3,2)∉A 则a ,b 的值是_________.10.设集合A ={x ||x |<4}, B ={x |x 2-4x +3>0},则集合{x |x ∈A 且x ∉A ∩B }=_________. 11. 求使不等式ax 2+4x -1≥-2x 2-a 对任意实数x 恒成立的a 的取值范围.12.对任意x ∈[0,1],有⎪⎩⎪⎨⎧>+--<-+-0304222k kx x k kx x ①②成立,求k 的取值范围.四、高考水平训练题1.若不等式|x -a |<x 的解集不空,则实数a 的取值范围是_________.2.使不等式x 2+(x -6)x +9>0当|a |≤1时恒成立的x 的取值范围是_________. 3.若不等式-x 2+kx -4<0的解集为R ,则实数k 的取值范围是_________.4.若集合A ={x ||x +7|>10}, B ={x ||x -5|<k },且A ∩B =B ,则k 的取值范围是_________.5.设a 1、a 2, b 1、b 2, c 1、c 2均为非零实数,不等式a 1x 2+b 1x +c 1>0和a 2x 2+b 2x +c 2>0解集分别为M 和N ,那么“212121c c b b a a ==”是“M=N ”的_________条件. 6.若下列三个方程x 2+4ax -4a +3=0, x 2+(a -1)x +a 2=0, x 2+2ax -2a =0中至少有一个方程有实根,则实数a 的取值范围是_________. 7.已知p , q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,则r 是q 的_________条件. 8.已知p : |1-31-x |≤2, q : x 2-2x +1-m 2≤0(m>0),若非p 是非q 的必要不充分条件,则实数m 的取值范围是_________.9.已知a >0,f (x )=ax 2+bx +c ,对任意x ∈R 有f (x +2)=f (2-x ),若f (1-2x 2)<f (1+2x -x 2),求x 的取值范围.10.已知a , b , c ∈R , f (x )=ax 2+bx +c , g (x )=ax +b , 当|x |≤1时,|f (x )|≤1, (1)求证:|c |≤1;(2)求证:当|x |≤1时,|g (x )|≤2;(3)当a >0且|x |≤1时,g (x )最大值为2,求f (x ). 11.设实数a ,b ,c ,m 满足条件:mcm b m a ++++12=0,且a ≥0,m>0,求证:方程ax 2+bx +c =0有一根x 0满足0<x 0<1.五、联赛一试水平训练题1.不等式|x |3-2x 2-4|x |+3<0的解集是_________.2.如果实数x , y 满足:⎪⎩⎪⎨⎧=->->+44020222y x y x y x ,那么|x |-|y |的最小值是_________.3.已知二次函数f (x )=ax 2+bx +c 的图象经过点(1,1),(3,5),f (0)>0,当函数的最小值取最大值时,a +b 2+c 3=_________.4. 已知f (x )=|1-2x |, x ∈[0,1],方程f (f (f )(x )))=21x 有_________个实根. 5.若关于x 的方程4x 2-4x +m=0在[-1,1]上至少有一个实根,则m 取值范围是_________. 6.若f (x )=x 4+px 3+qx 2+x 对一切x ∈R 都有f (x )≥x 且f (1)=1,则p +q 2=_________. 7. 对一切x ∈R ,f (x )=ax 2+bx +c (a <b )的值恒为非负实数,则ab cb a -++的最小值为_________.8.函数f (x )=ax 2+bx +c 的图象如图,且ac b 42-=b -2ac . 那么b 2-4ac _________4. (填>、=、<)9.若a <b <c <d ,求证:对任意实数t ≠-1, 关于x 的方程(x -a )(x -c )+t (x -b )(x -d)=0都有两个不等的实根.10.某人解二次方程时作如下练习:他每解完一个方程,如果方程有两个实根,他就给出下一个二次方程:它的常数项等于前一个方程较大的根,x 的系数等于较小的根,二次项系数都是1.证明:这种练习不可能无限次继续下去,并求最多能延续的次数. 11.已知f (x )=ax 2+bx +c 在[0,1]上满足|f (x )|≤1,试求|a |+|b |+|c |的最大值.六、联赛二试水平训练题1.设f (x )=ax 2+bx +c ,a ,b ,c ∈R , a >100,试问满足|f (x )|≤50的整数x 最多有几个?2.设函数f (x )=ax 2+8x +3(a <0),对于给定的负数a ,有一个最大的正数l (a ),使得在整个区间[0,l (a )]上,不等式|f (x )|≤5都成立.求l (a )的最大值及相应a 的值.3.设x 1,x 2,…,x n ∈[a , a +1],且设x =∑=ni i x n 11, y =∑=n j j x n 121, 求f =y -x 2的最大值.4.F (x )=ax 2+bx +c ,a ,b ,c ∈R , 且|F (0)|≤1,|F (1)|≤1,|F (-1)|≤1,则对于|x |≤1,求|F (x )|的最大值.5.已知f (x )=x 2+ax +b ,若存在实数m ,使得|f (m)|≤41,|f (m+1)|≤41,求△=a 2-4b 的最大值和最小值.6.设二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R , a ≠0)满足下列条件: 1)当x ∈R 时,f (x -4)=f (2-x ),且f (x )≥x ;2)当x ∈(0, 2)时,f (x )≤221⎪⎭⎫ ⎝⎛+x ;3)f (x )在R 上最小值为0. 求最大的m(m>1),使得存在t ∈R ,只要x ∈[1, m]就有f (x +t )≤x . 7.求证:方程3ax 2+2bx -(a +b )=0(b ≠0)在(0,1)内至少有一个实根. 8.设a ,b ,A ,B ∈R +, a <A , b <B ,若n 个正数a 1, a 2,…,a n 位于a 与A 之间,n 个正数b 1, b 2,…,b n 位于b 与B 之间,求证:.2)())((2222112222122221⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+≤+++++++++AB ab abABb a b a b a b b b a a a n n n n 9.设a ,b ,c 为实数,g (x )=ax 2+bx +c , |x |≤1,求使下列条件同时满足的a , b , c 的值:(ⅰ)⎪⎭⎫⎝⎛21g =381; (ⅱ)g (x )m ax =444; (ⅲ)g (x )m in =364.。

高中数学竞赛书籍排行

高中数学竞赛书籍排行

高中数学竞赛书籍排行
以下是一些高中数学竞赛的经典书籍,排名不分先后:
1. 《高中数学竞赛专题讲座》(共10本):这套书是数学竞赛的经典教材之一,包括了许多经典的数学竞赛题目和解题方法。

2. 《高中数学竞赛全解》:这本书是数学竞赛的必备参考书之一,包含了高中数学竞赛的所有知识点和经典题目,非常适合学生自学或复习。

3. 《高中数学竞赛真题解析》:这本书收录了大量的数学竞赛真题,并进行了详细的解析,是提高学生解题能力的很好参考书。

4. 《高中数学竞赛不等式选讲》:这本书主要介绍了高中数学竞赛中的不等式问题,包括了许多经典的不等式题目和解题方法。

5. 《高中数学竞赛数论与组合分册》:这本书是数学竞赛数论和组合部分的经典教材之一,包含了大量的经典题目和解题方法。

以上书籍都是高中数学竞赛的经典教材和参考书,对于提高学生的数学竞赛水平有很大帮助。

当然,每个人的学习情况不同,需要根据自己的实际情况选择适合自己的书籍。

高中数学竞赛讲义(全套)

高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

高中数学竞赛校本教材[全套共30讲].pdf

高中数学竞赛校本教材[全套共30讲].pdf

高中数学竞赛校本教材目录§1数学方法选讲(1) (1)§2数学方法选讲(2) (11)§3集合 (22)§4函数的性质 (30)§5二次函数(1) (41)§6二次函数(2) (55)§7指、对数函数,幂函数 (63)§8函数方程 (73)§9三角恒等式与三角不等式 (76)§10向量与向量方法 (85)§11数列 (95)§12递推数列 (102)§13数学归纳法 (105)§14不等式的证明 (111)§15不等式的应用 (122)§16排列,组合 (130)§17二项式定理与多项式 (134)§18直线和圆,圆锥曲线 (143)§19立体图形,空间向量 (161)§20平面几何证明 (173)§21平面几何名定理 (180)§22几何变换 (186)§23抽屉原理 (194)§24容斥原理 (205)§25奇数偶数 (214)§26整除 (222)§27同余 (230)§28高斯函数 (238)§29覆盖 (245)§29涂色问题 (256)§30组合数学选讲 (265)§1数学方法选讲(1) 同学们在阅读课外读物的时候,或在听老师讲课的时候,书上的例题或老师讲解的例题他都能听懂,但一遇到没有见过面的问题就不知从何处入手。

看来,要提高解决问题的能力,要能在竞赛中有所作为,首先得提高分析问题的能力,这就需要学习一些重要的数学思想方法。

例题讲解一、从简单情况考虑 华罗庚先生曾经指出:善于“退”,足够的“退”,退到最原始而又不失去重要性的地方,是学好数学的一个诀窍。

从简单情况考虑,就是一种以退为进的一种解题策略。

高中数学校本课程《培优与竞赛讲义》学生版

高中数学校本课程《培优与竞赛讲义》学生版

高中数学校本课程《培优与竞赛讲义》学生版高中数学校本课程《培优与竞赛讲义》学生版随着数学教育的不断发展和改革,高中数学教育越来越受到广泛关注。

为了更好地指导学生进行数学学习,我们特别编写了《培优与竞赛讲义》学生版。

本篇文章将对该讲义进行详细介绍。

一、确定文章类型本文属于说明文,旨在向广大高中生介绍《培优与竞赛讲义》学生版的特点、内容和优势。

通过阅读本文,学生可以了解该讲义的学习方法和使用技巧,从而更好地应对数学学习和竞赛。

二、整理思路在介绍《培优与竞赛讲义》学生版之前,我们首先对关键词进行分类,并列出各类别的优缺点,以便更好地指导学生进行选择。

然后,我们将根据选择的优劣点,介绍该讲义的特点和优势。

三、详细讲解《培优与竞赛讲义》学生版是一本针对高中生数学学习的校本课程。

该讲义以培养优秀学生和参赛选手为目标,通过深入浅出的讲解和丰富的实例,帮助学生掌握数学竞赛所需的基本知识和技能。

该讲义的内容涵盖了高中数学的所有知识点,包括代数、几何、概率与统计等方面。

在讲解过程中,该讲义采用了多种方法,如归纳法、演绎法、逆推法等,旨在培养学生的逻辑思维能力。

此外,该讲义还提供了大量的典型例题和练习题,方便学生进行巩固和拓展。

四、总结归纳通过对《培优与竞赛讲义》学生版的介绍,我们可以得出以下结论:该讲义是一本针对高中生数学学习的优秀校本课程,其内容丰富、讲解深入浅出,能够帮助学生掌握数学竞赛所需的基本知识和技能。

该讲义还注重培养学生的逻辑思维能力,并提供大量的练习题和典型例题,方便学生进行巩固和拓展。

因此,我们强烈推荐广大学生使用《培优与竞赛讲义》学生版进行数学学习和竞赛。

总之,《培优与竞赛讲义》学生版是一本非常实用的数学学习资料,旨在帮助学生提高数学成绩和竞赛水平。

通过深入学习和使用该讲义,学生可以逐步掌握数学竞赛所需的各种技能和方法,提高自身的数学素养和思维能力。

该讲义还可以为学生提供针对性的学习指导和训练,帮助学生更好地应对各种数学竞赛和考试。

自学数学竞赛书籍推荐

自学数学竞赛书籍推荐

自学数学竞赛书籍推荐
自学数学竞赛书籍推荐:
1、《高中数学竞赛全书》(第三版):由安徽教育出版社出版,作者刘子健、贾开明主编,以中学生数学竞赛考试的形式,将历届真题进行系统总结,同时对比分析不同数学竞赛的知识点、解题思路及解题技巧,有助于考生全面掌握数学竞赛知识,并掌握试题解题技巧。

2、《高中数学竞赛必备课程》:由清华大学出版社出版,著名数学竞赛专家、中国教育学会理事长杜祖军编写,是一本集中考试、省考、模拟考、赛场知识点、技巧及解题方法于一体的竞赛教材。

3、《高中数学竞赛宝典》:由中国青年出版社出版,作者李晓峰、王荣荣编写,以中学生参加省市级数学竞赛为主要内容,重点突出知识点、解题思路、套路技巧等,逐步引导考生树立正确的数学思维,提高数学竞赛水平。

4、《高中数学竞赛完全指南》:由上海科技出版社出版,著名数学竞赛专家、中国教育学会理事长郑贵新编写,全面梳理中学生数学竞赛考试的知识点、题型特点、解题思路、技巧及应用。

高中数学竞赛教材讲义 第十八章 组合讲义

高中数学竞赛教材讲义 第十八章 组合讲义

第十八章 组合一、方法与例题1.抽屉原理。

例1 设整数n ≥4,a 1,a 2,…,a n 是区间(0,2n)内n 个不同的整数,证明:存在集合{a 1,a 2,…,a n }的一个子集,它的所有元素之和能被2n 整除。

[证明] (1)若n ∉{a 1,a 2,…,a n },则n 个不同的数属于n-1个集合{1,2n-1},{2,2n-2},…,{n-1,n+1}。

由抽屉原理知其中必存在两个数a i ,a j (i ≠j)属于同一集合,从而a i +a j =2n 被2n 整除;(2)若n ∈{a 1,a 2,…,a n },不妨设a n =n ,从a 1,a 2,…,a n -1(n-1≥3)中任意取3个数a i , a j , a k (a i ,<a j < a k ),则a j -a i 与a k -a i 中至少有一个不被n 整除,否则a k -a i =(a k -a j )+(a j -a i )≥2n ,这与a k ∈(0,2n)矛盾,故a 1,a 2,…,a n-1中必有两个数之差不被n 整除;不妨设a 1与a 2之差(a 2-a 1>0)不被n 整除,考虑n 个数a 1,a 2,a 1+a 2,a 1+a 2+a 3,…,a 1+a 2+…+a n-1。

ⅰ)若这n 个数中有一个被n 整除,设此数等于k n ,若k 为偶数,则结论成立;若k 为奇数,则加上a n =n 知结论成立。

ⅱ)若这n 个数中没有一个被n 整除,则它们除以n 的余数只能取1,2,…,n-1这n-1个值,由抽屉原理知其中必有两个数除以n 的余数相同,它们之差被n 整除,而a 2-a 1不被n 整除,故这个差必为a i , a j , a k-1中若干个数之和,同ⅰ)可知结论成立。

2.极端原理。

例2 在n ×n 的方格表的每个小方格内写有一个非负整数,并且在某一行和某一列的交叉点处如果写有0,那么该行与该列所填的所有数之和不小于n 。

平面几何竞赛书

平面几何竞赛书

平面几何竞赛书
平面几何竞赛书推荐如下:
1. 《高中数学竞赛专题讲座-平面几何》
这本书的平面几何基本知识讲解得比较透彻,且容易理解。

对于已经学完初中课内,想准备竞赛知识的同学来说,这本书非常值得一读,可以通过它来学习一些常规的知识方法。

2. 《平面几何证明方法》
这本书从点、线、面到整个几何图形的平移、旋转等各种变化,阐述了很多方法,讲得非常详细。

这本书也是从方法角度和思想层面对学生有很大的提升。

以上推荐仅供参考,建议根据自己的学习情况选择合适的书籍。

高中数学竞赛辅导书一

高中数学竞赛辅导书一

一、《金版奥塞教程》浙江大学出版社分为高一分册,高二分册,高中综合分册主编前两本刘康宁,后一本左宗明。

二、《冲刺全国高中数学联赛》主编王卫华吴伟朝浙江大学出版社
三、《高中数学奥林匹克竞赛解题方法大全》山西教育出版社主编周沛耕王中峰
请问这三本书分别怎么样?还有什么好书?(适合刚刚接触数学竞赛的学生)分享到:
2010-02-08 15:38
天天爱答题,抽奖送惊喜~
提问者采纳
一、《金版奥塞教程》浙江大学出版社分为高一分册,高二分册,高中综合分册主编前两本刘康宁,后一本左宗明。

这个比较适合刚刚开始学习奥赛的同学,而且是才学完高中知识的,可以循序渐进从高一的开始,到高中综合;
二、《冲刺全国高中数学联赛》主编王卫华吴伟朝浙江大学出版社;适合最后在考试前1-2个月用;
三、《高中数学奥林匹克竞赛解题方法大全》山西教育出版社主编周沛耕王中峰;这个是给有一定基础的同学用的,即是学了一段时间的学生试用的;
如果我说的话,一边可以用第一种书,并且选择高考题中难度较大的熟悉高中题的解题手法,熟练基本技巧,可能效果较好(这个仅是我的方法)。

高中数学奥赛辅导教材(共十讲)

高中数学奥赛辅导教材(共十讲)

第一讲 集合概念及集合上的运算知识、方法、技能高中一年级数学(上)(试验本)课本中给出了集合的概念;一般地,符合某种条件(或具有某种性质)的对象集中在一起就成为一个集合.在此基础上,介绍了集合的元素的确定性、互异性、无序性.深入地逐步给出了有限集、无限集,集合的列举法、描述法和子集、真子集、空集、非空集合、全集、补集、并集等十余个新名词或概念以及二十几个新符号.由此形成了在集合上的运算问题,形成了以集合为背景的题目和用集合表示空间的线面及其关系,表面平面轨迹及其关系,表示充要条件,描述排列组合,用集合的性质进行组合计数等综合型题目.赛题精讲Ⅰ.集合中待定元素的确定充分利用集合中元素的性质和集合之间的基本关系,往往能解决某些以集合为背景的高中数学竞赛题.请看下述几例.例1:求点集}lg lg )9131lg(|),{(33y x y x y x +=++中元素的个数. 【思路分析】应首先去对数将之化为代数方程来解之. 【略解】由所设知,9131,0,033xy y x y x =++>>及 由平均值不等式,有,)91()31()(3913133333xy y x y x =⋅⋅≥++ 当且仅当333331,91,9131====y x y x 即(虚根舍去)时,等号成立. 故所给点集仅有一个元素.【评述】此题解方程中,应用了不等式取等号的充要条件,是一种重要解题方法,应注意掌握之.例2:已知.}.,22|{},,34|{22B A x x x y y B x x x y y A ⋂∈+--==∈+-==求R R【思路分析】先进一步确定集合A 、B.【略解】,11)2(2≥--=x y 又.33)1(2≤++-=x y∴A=}.31|{},3|{},1|{≤≤-=⋂≤=-≥y y B A y y B y y 故【评述】此题应避免如下错误解法:联立方程组⎪⎩⎪⎨⎧+--=+-=.22,3422x x y x x y 消去.0122,2=+-x x y 因方程无实根,故φ=⋂B A . 这里的错因是将A 、B 的元素误解为平面上的点了.这两条抛物线没有交点是实数.但这不是抛物线的值域.例3:已知集合|}.|||1|||),{(},0,|||||),{(y x xy y x B a a y x y x A +=+=>=+= 若B A ⋂是平面上正八边形的顶点所构成的集合,则a 的值为.【思路分析】可作图,以数形结合法来解之.【略解】点集A 是顶点为(a ,0),(0,a ),(-a ,0),(0,-a )的正方形的四条边构成(如图Ⅰ-1-1-1).将||||1||y x xy +=+,变形为,0)1|)(|1|(|=--y x所以,集合B 是由四条直线1,1±=±=y x 构成.欲使B A ⋂为正八边形的顶点所构成,只有212<<>a a 或这两种情况.(1)当2>a 时,由于正八形的边长只能为2,显然有,2222=-a故 22+=a .(2)当21<<a 时,设正八形边长为l ,则,222,2245cos -=-=︒l l l 这时,.221=+=l a 综上所述,a 的值为,222或+如图Ⅰ-1-1-1中).0,22(),0,2(+B A 【评述】上述两题均为1987年全国高中联赛试题,题目并不难,读者应从解题过程中体会此类题目的解法.Ⅱ.集合之间的基本关系充分应用集合之间的基本关系(即子、交、并、补),往往能形成一些颇具技巧的集合综合题.请看下述几例.例4:设集合},|613{},|21{},|{},|2{Z Z Z Z ∈+=∈+=∈=∈=n n D n n C n n B n n A 则在下列关系中,成立的是( )A .D CB A ≠≠≠⊂⊂⊂ B .φφ=⋂=⋂DC B A , C .D C C B A ≠⊂⋃=, D .φ=⋂=⋃D C B B A ,图Ⅰ-1-1-1【思路分析】应注意数的特征,即.,612613,21221Z ∈+=++=+n n n n n 【解法1】∵},|613{},|21{},|{},|2{Z Z Z Z ∈+=∈+=∈=∈=n n D n n C n n B n n A ∴D C C B A ≠⊂⋃=,.故应选C. 【解法2】如果把A 、B 、C 、D 与角的集合相对应,令}.|63{},|2{},|{},|2{Z Z Z Z ∈+=∈+='∈='∈='n n D n n C n n B n n A ππππππ 结论仍然不变,显然A ′为终边在坐标轴上的角的集合,B ′为终边在x 轴上的角的集 合,C ′为终边在y 轴上的角的集合,D ′为终边在y 轴上及在直线x y 33±=上的角的集合,故应选(C ).【评述】解法1是直接法,解法2运用转化思想把已知的四个集合的元素转化为我们熟悉的的角的集合,研究角的终边,思路清晰易懂,实属巧思妙解.例5:设有集合B A B A x x B x x x A ⋃⋂<==-=和求和},2|||{}2][|{2(其中[x ]表示不超过实数x 之值的最大整数).【思路分析】应首先确定集合A 与B.从而 .2,.21A x ∈≤≤-显然∴}.22|{≤<-=⋃x x B A若 },2,1,0,1{][,2][,2--∈+=⋂∈x x x B A x 则从而得出 ).1]([1)1]([3-=-===x x x x 或 于是 }3,1{-=⋂B A【评述】此题中集合B 中元素x 满足“|x |<3”时,会出现什么样的结果,读者试解之.例6:设})],([|{},),(|{),,()(2R R R ∈==∈==∈++=x x f f x x B x x f x x A c b c bx x x f 且, 如果A 为只含一个元素的集合,则A=B.【思路分析】应从A 为只含一个元素的集合入手,即从方程0)(=-x x f 有重根来解之.【略解】设0)(},|{=-∈=x x f A 则方程R αα有重根α,于是,)()(2α-=-x x x f )],([..)()(2x f f x x x x f =+-=从而α即 ,)()]()[(222x x x x x +-+-+-=ααα 整理得,0]1)1[()(22=++--ααx x 因α,x 均为实数 .,01)1(2αα=≠++-x x 故 即.}{A B ==α【评述】此类函数方程问题,应注意将之转化为一般方程来解之.例7:已知N N M a y x y x N x y y x M =⋂≤-+=≥=求}.1)(|),{(},|),{(222成立时,a 需满足的充要条件.【思路分析】由.,M N N N M ⊆=⋂可知【略解】.M N N N M ⊆⇔=⋂由).1()12(1)(22222a y a y y x a y x -+-+-≤≤-+得于是,若0)1()12(22≤-+-+-a y a y ① 必有.,2M N x y ⊆≥即而①成立的条件是 ,04)12()1(422m a x ≤-----=a a y 即 ,0)12()1(422≤-+-a a 解得 .411≥a【评述】此类求参数范围的问题,应注意利用集合的关系,将问题转化为不等式问题来求解. 例8:设A 、B 是坐标平面上的两个点集,}.|),{(222r y x y x C r ≤+=若对任何0≥r 都有B C A C r r ⋃⊆⋃,则必有B A ⊆.此命题是否正确?【思路分析】要想说明一个命题不正确,只需举出一个反例即可.【略解】不正确.反例:取},1|),{(22≤+=y x y x A B 为A 去掉(0,0)后的集合.容易看出,B C A C r r ⋃⊆⋃但A 不包含在B 中.【评述】本题这种举反例判定命题的正确与否的方法十分重要,应注意掌握之.Ⅲ.有限集合中元素的个数有限集合元素的个数在课本P 23介绍了如下性质:一般地,对任意两个有限集合A 、B ,有 ).()()()(B A card B card A card B A card ⋂-+=⋃我们还可将之推广为:一般地,对任意n 个有限集合,,,,21n A A A 有)(1321n n A A A A A card ⋃⋃⋃⋃⋃-)]()([)]()()()([3121321A A card A A card A card A card A card A card n ⋂+⋂-++++= )]()]([)]()(1232111n n n n n n A A A card A A A card A A card A A card ⋂⋂++⋂⋂+⋂++⋂++---).()1(311n n A A A card ⋂⋂⋂⋅-+--应用上述结论,可解决一类求有限集合元素个数问题.【例9】某班期末对数学、物理、化学三科总评成绩有21个优秀,物理总评19人优秀,化学总评有20人优秀,数学和物理都优秀的有9人,物理和化学都优秀的有7人,化学和数学都优秀的有8人,试确定全班人数以及仅数字、仅物理、仅化学单科优秀的人数范围(该班有5名学生没有任一科是优秀).【思路分析】应首先确定集合,以便进行计算.【详解】设A={数学总评优秀的学生},B={物理总评优秀的学生},C={化学总评优秀的学生}. 则.8)(,7)(,9)(,20)(,19)(,21)(=⋂=⋂=⋂===A C card C B card B A card C card B card A card ∵)()()()()()()(A C card C B card B A card C card B card A card C B A card ⋂-⋂-⋂-++=⋃⋃ ),(C B A card ⋂⋂+∴.3689201921)()(=--++=⋂⋂-⋃⋃C B A card C B A card 这里,)(C B A card ⋃⋃是数、理、化中至少一门是优秀的人数,)(C B A card ⋂⋂是这三科全优的人数.可见,估计)(C B A card ⋃⋃的范围的问题与估计)(C B A card ⋂⋂的范围有关.注意到7)}(),(),(min{)(=⋂⋂⋂≤⋂⋂A C card C B card B A card C B A card ,可知 7)(0≤⋂⋂≤C B A card . 因而可得.43)(36≤⋃⋃≤C B A card 又∵.5)(),()()(=⋃⋃=⋃⋃+⋃⋃C B A card U card C B A card C B A card 其中 ∴.48)(41≤≤U card 这表明全班人数在41~48人之间. 仅数学优秀的人数是).(C B A card ⋃⋂ ∴)()()()()(B card C B A card C B card C B A card C B A card -⋃⋃=⋃-⋃⋃=⋃⋂ .32)()()(-⋃⋃=⋂+-C B A card C B card C card 可见,11)(4≤⋃⋂≤C B A card 同理可知 ,10)(3≤⋃⋂≤C A B card.12)(5≤⋃⋂≤A B C card 故仅数学单科优秀的学生在4~11之间,仅物理单科优秀的学生数在3~10之间,仅化学单科优秀的学生在5~12人之间.第二讲 映射及映射法知识、方法、技能1.映射的定义设A ,B 是两个集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有惟一的元素和它对应,这样的对应叫做从集合A 到集合B 的映射,记作.:B A f →(1)映射是特殊的对应,映射中的集合A ,B 可以是数集,也可以是点集或其他集合,这两个集合有先后次序,从A 到B 的映射与从B 到A 的映射是截然不同的.(2)原象和象是不能互换的,互换后就不是原来的映射了.(3)映射包括集合A 和集合B ,以及集合A 到B 的对应法则f ,三者缺一不可.(4)对于一个从集合A 到集合B 的映射来说,A 中的每一个元素必有惟一的,但B 中的每一个元素都不一定都有原象.如有,也不一定只有一个.2.一一映射一般地,设A 、B 是两个集合,.:B A f →是集合A 到集合B 的映射,如果在这个映射下,对于集合A 中的不同元素,在集合B 中有不同的象,而且B 中每一个元素都有原象,那么个这个映射叫做A 到B 上的一一映射.3.逆映射如果f 是A 与B 之间的一一对应,那么可得B 到A 的一个映射g :任给B b ∈,规定 a b g =)(,其中a 是b 在f 下的原象,称这个映射g 是f 的逆映射,并将g 记为f —1.显然有(f —1)—1= f ,即如果f 是A 与B 之间的一一对应,则f —1是B 与A 之间的一一对应,并且f —1的逆映射是f .事实上,f —1是B 到A 的映射,对于B 中的不同元素b 1和b 2,由于它们在f 下的原象不同,所以b 1和b 2在f —1下的像不同,所以f —1是1-1的. 任给b a f A a =∈)(,设,则a b f=-)(1.这说明A 中每个元素a 在f —1都有原象.因此,f —1是映射上的.这样即得f —1是B 到A 上的1-1映射,即f —1是B 与A 之间一一对应.从而f —1有逆映射.:B A h →由于任给b a h A a =∈)(,设,其中b 是a 在f —1下的原象,即f —1(b)=a ,所以,f(a)=b ,从而f h a f b a h ===得),()(,这即是f —1的逆映射是f .赛题精讲Ⅰ映射关映射的高中数学竞赛题是常见题型之一,请看下述试题.例1:设集合},,,,|),,,{(},,110|{M d c b a d c b a F x x x M ∈=∈≤≤=集合Z 映射f :F →Z.使得v u y x v x y u y x v u cd ab d c b a ff f ,,,,66),,,(,39),,,(.),,,(求已知→→-→的值.【思路分析】应从cd ab d c b a f -→),,,(入手,列方程组来解之.【略解】由f 的定义和已知数据,得⎩⎨⎧∈=-=-).,,,(66,39M y x v u xv uy xy uv 将两式相加,相减并分别分解因式,得.27))((,105))((=+-=-+x u v y x u v y显然,},110|{,,,,0,0Z ∈≤≤∈≥-≥-x x x v u y x v y x u 在的条件下,,110≤-≤v u ,21)(,15)(,105|)(,2210,221]11105[21=+=++≤+≤≤+≤+v y v y v y v y v y 可见但即 对应可知.5)(,7)(21=-=-x u x u 同理,由.9)(,3)(223,221]1127[,11021=+=+≤+≤≤+≤+≤-≤x u x u x u x u v y 又有知 对应地,.3)(,9)(21=-=-v y v y 于是有以下两种可能: (Ⅰ)⎪⎪⎩⎪⎪⎨⎧=-=+=-=+;3,9,7,15v y x u x u x y (Ⅱ)⎪⎪⎩⎪⎪⎨⎧=-=+=-=+.3,9,5,21v y x u x u v y 由(Ⅰ)解出x =1,y=9,u =8,v =6;由(Ⅱ)解出y=12,它已超出集合M 中元素的范围.因此,(Ⅱ)无解.【评述】在解此类问题时,估计x u v y x u v y +--+,,,的可能值是关键,其中,对它们的取值范围的讨论十分重要.例2:已知集合}.0|),{(}333|),{(><<=xy y x x y y x A 和集合求一个A 与B 的一一对应f ,并写出其逆映射.【略解】从已知集合A ,B 看出,它们分别是坐标平面上两直线所夹角形区域内的点的集合(如图Ⅰ-1-2-1).集合A 为直线x y x y 333==和所夹角内点的集合,集合B 则是第一、三象限内点的集合.所要求的对应实际上可使A 区域拓展成B 区域,并要没有“折叠”与“漏洞”.先用极坐标表示集合A 和B :图Ⅰ-1-2-1},36,,0|)sin ,cos {(πθπρρθρθρ<<∈≠=R A }.20,,0|)sin ,cos {(πϕρρϕρϕρ<<∈≠=R B 令).6(3),sin ,cos ()sin ,cos (πθϕϕρϕρθρθρ-=→f 在这个映射下,极径ρ没有改变,辐角之间是一次函数23πθϕ-=,因而ϕθ和之间是一一对应,其中),3,6(ππθ∈ ).2,0(πϕ∈所以,映射f 是A 与B 的一一对应. 逆映射极易写,从略.【评述】本题中将下角坐标问题化为极坐标问题,颇具特色.应注意理解掌握.Ⅱ映射法应用映射知识往往能巧妙地解决有关集合的一些问题.例3:设X={1,2,…,100},对X 的任一非空子集M ,M 中的最大数与最小数的和称为M 的特征,记为).(M m 求X 的所有非空子集的特征的平均数.【略解】设.}|101{,:,X A a a A A A f X A ≠≠⊂∈-=''→⊂令 于是A A f '→:是X 的非空子集的全体(子集组成的集),Y 到X 自身的满射,记X 的非空子集为A 1,A 2,…,A n (其中n=2100-1),则特征的平均数为.))()((21)(111∑∑=='+=ni i i n i i A m A m n A m n 由于A 中的最大数与A ′中的最小数的和为101,A 中最小数与A ′中的最大数的和也为101,故,202)()(='i i A m A m 从而特征平均数为 .10120221=⋅⋅n n如果A ,B 都是有限集合,它们的元素个数分别记为).(),(B card A card 对于映射B A f →:来说,如果f 是单射,则有)()(B card A card ≤;如果f 是满射,则有)()(B card A card ≥;如果f 是双射,则有)()(B card A card =.这在计算集合A 的元素的个数时,有着重要的应用.即当)(A card 比较难求时,我们就找另一个集合B ,建立一一对应B A f →:,把B 的个数数清,就有)()(B card A card =.这是我们解某些题时常用的方法.请看下述两例.例4:把△ABC 的各边n 等分,过各分点分别作各边的平行线,得到一些由三角形的边和这些平行线所组成的平行四边形,试计算这些平等四边形的个数.【略解】如图Ⅰ-1-2-2所示,我们由对称性,先考虑边不行于BC 的小平行四边形.把AB 边和AC 边各延长一等分,分别到B ′,C ′,连接B ′C ′.将A ′B ′的n 条平行线分别延长,与B ′C ′相交,连同B ′,C ′共有n+2个分点,从B ′至C ′依次记为1,2,…,n+2.图中所示的小平行四边形所在四条线分别交B ′C ′于i ,j ,k ,l .记A={边不平行于BC 的小平行四边形},}.21|),,,{(+≤<<<≤=n l k j i l k j i B把小平行四边形的四条边延长且交C B ''边于四点的过程定义为一个映射:B A f →:. 下面我们证明f 是A 与B 的一一对应,事实上,不同的小平行四边形至少有一条边不相同,那么交于C B ''的四点亦不全同.所以,四点组),,,(l k j i 亦不相同,从而f 是A 到B 的1-1的映射.任给一个四点组21),,,,(+≤<<<≤n l k j i l k j i ,过i ,j 点作AB 的平行线,过k ,l 作AC 的平行线,必交出一个边不平行于BC 的小平行四边形,所以,映射f 是A 到B 的满射. 总之f 是A 与B 的一一对应,于是有.)()(42+==n C B card A card加上边不平行于AB 和AC 的两类小平行四边形,得到所有平行四边形的总数是.342+n C 例5:在一个6×6的棋盘上,已经摆好了一些1×2的骨牌,每一个骨牌都恰好覆盖两上相邻的格子,证明:如果还有14个格子没有被覆盖,则至少能再放进一个骨牌.【思路分析】还有14个空格,说明已经摆好了11块骨牌,如果已经摆好的骨牌是12块,图Ⅰ-1-2-3所示的摆法就说明不能再放入骨牌.所以,有14个空格这一条件是完全必要的.我们要证明当还有14个空格时,能再放入一个骨牌,只要能证明必有两个相邻的空格就够了.如果这种 情况不发生,则每个空格的四周都有骨牌,由于正方形是对称的,当我们选定一个方向时,空格和骨牌就有了某种对应关系,即可建立空格到骨牌的一种映射,通过对空格集合与骨牌集合之间的数量关系,可以得到空格分布的一个很有趣的结论,从而也就证明了我们的命题.【略解】我们考虑下面5×6个方格中的空.如果棋盘第一行(即最上方的一行)中的空格数多于3个时,则必有两空格相邻,这时问题就得到解决.现设第一行中的空格数最多是3个,则有11314)(=-≥X card ,另一方面全部的骨牌数为11,即.11)(=Y card 所以必有),()(Y card X card =事实上这是一个一一映射,这时,将发生一个很有趣的现象:最下面一行全是空格,当然可以放入一个骨牌.【评述】这个题目的证明是颇具有特色的,从内容上讲,这个题目具有一定的综合性,既有覆盖与结构,又有计数与映射,尤其是利用映射来计数,在数学竞赛中还较少见.当然这个题目也可以用其他的方法来解决.例如,用抽屉原则以及用分组的方法来讨论其中两行的结构,也能比较容易地解决这个问题,请读者作为练习.例6:设N={1,2,3,…},论证是否存一个函数N N f →:使得2)1(=f ,n n f n f f +=)())((对一切N ∈n 成立,)1()(+<n f n f 格,即除去第一行后的方格中的空格.对每一个这样的空格,考察它上方的与之相邻的方格中的情况.(1)如果上方的这个方格是空格,则问题得到解决.(2)如果上方的这个方格被骨牌所占,这又有三种情况.(i )骨牌是横放的,且与之相邻的下方的另一个方格也是空格,则这时有两空格相邻,即问题得到解决;(ii )骨牌是横放的,与之相邻的下方的另一个方格不是空格,即被骨牌所覆盖; (iii )骨牌是竖放的.现在假设仅发生(2)中的(ii )和(iii )时,我们记X 为下面5×6个方格中的空格集合,Y 为上面5×6个方格中的骨牌集合,作映射Y X →:ϕ,由于每个空格(X 中的)上方都有骨牌(Y 中的),且不同的空格对应于不同的骨牌.所以,这个映射是单射,于是有 )()(Y card X card ≤,对一切N ∈n 成立.【解法1】存在,首先有一条链.1→2→3→5→8→13→21→…①链上每一个数n 的后继是)(n f ,f 满足n n f n f f +=)())((②即每个数是它产面两个数的和,这种链称为f 链.对于①中的数m>n ,由①递增易知有n m n f m f -≥-)()(③我们证明自然数集N 可以分析为若干条f 链,并且对任意自然数m>n ,③成立(从而)()1(n f n f >+),并且每两条链无公共元素).方法是用归纳法构造链(参见单壿著《数学竞赛研究教程》江苏教育出版社)设已有若干条f 链,满足③,而k+1是第一个不在已有链中出现的数,定义1)()1(+=+k f k f ④这链中其余的数由②逐一确定.对于m>n ,如果m 、n 同属于新链,③显然成立,设m 、n 中恰有一个属于新链.若m 属于新链,在m=k+1时,,1)(1)()()(n m n k n f k f n f m f -=+-≥-+=-设对于m ,③成立,则n m f m n m n f m m f n f m f f -≥+-≥-+=-)()()()())(( [由②易知)(2m f m ≥]. 即对新链上一切m ,③成立.若n 属于新链,在n=k+1时,.11)()()()(n m k m k f m f n f m f -=--≥--=-设对于n ,③成立,在m>n 时,m 不为原有链的链首。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011高中数学竞赛培训教材编者:全国特级教师(一)集合与容斥原理集合是一种基本数学语言、一种基本数学工具。

它不仅是高中数学的第一课,而且是整个数学的基础。

对集合的理解和掌握不能仅仅停留在高中数学起始课的水平上,而要随着数学学习的进程而不断深化,自觉使用集合语言(术语与符号)来表示各种数学名词,主动使用集合工具来表示各种数量关系。

如用集合表示空间的线面及其关系,表示平面轨迹及其关系、表示方程(组)或不等式(组)的解、表示充要条件,描述排列组合,用集合的性质进行组合计数等。

一、学习集合要抓住元素这个关键例1.设A={X∣X=a2+b2,a、b∈Z},X1,X2∈A,求证:X1X2∈A。

分析:A中的元素是自然数,即由两个整数a、b的平方和构成的自然数,亦即从0、1、4、9、16、25……,n2,……中任取两个(相同或不相同)数加起来得到的一个和数,本题要证明的是:两个这样的数的乘积一定还可以拆成两个自然数的平方和的形式,即(a2+b2)(c2+d2)=(M)2+(N)2,M,N∈Z 证明:设X1=a2+b2,X2=c2+d2,a、b、c、d∈Z.则X1X2=(a2+b2)(c2+d2)=a2c2+b2d2+b2c2+a2d2=a2c2+2ac²bd+b2d2+b2c2-2bc²ad+a2d2=(ac+bd)2+(bc-ad)2 又a、b、c、d∈Z,故ac+bd、bc-ad∈Z,从而X1X2∈A练习:1.设两个集合S={x|x=12m+8n,m,n∈Z},T={x|x=20p+16q,p,q∈Z}.求证:S=T。

2.设M={a|a= x2-y2,x,y∈Z}.求证:(1)一切奇数属于M;(2)4k-2(k∈Z)不属于M;(3)M中任意两个数的积仍属于M。

3.已知函数f(x)=x2+ax+b,a,b∈R,且A={x|x=f(x)},B={x|x=f[f(x)]}.(1)求证:A B;(2)若A={-1,3}时,求集合B.二、集合中待定元素的确定例2.已知集合M ={X ,XY ,lg(xy)},S ={0,∣X ∣,Y},且M =S ,则(X +1/Y)+(X2+1/Y2)+……+(X2002+1/Y2002)的值等于( ).分析:解题的关键在于求出X 和Y 的值,而X 和Y 分别是集合M 与S 中的元素。

这一类根据集合的关系反过来确定集合元素的问题,要求我们要对集合元素的基本性质即确定性、异性、无序性及集合之间的基本关系(子、全、补、交、异、空、等)有本质的理解,对于两个相等的有限集合(数集),还会用到它们的简单性质:(a)相等两集合的元素个数相等;(b)相等两集合的元素之和相等;(c)相等两集合的元素之积相等.解:由M =S 知,两集合元素完全相同。

这样,M 中必有一个元素为0,又由对数的性质知,0和负数没有对数,所以XY ≠0,故X ,Y 均不为零,所以只能有lg(XY)=0,从而XY =1.∴M ={X ,1,0},S ={0,∣X ∣,1/X}.再由两集合相等知当X =1时,M ={1,1,0},S ={0,1,1},这与同一个集合中元素的互异性矛盾,故X =1不满足题目要求;当X =-1时,M ={-1,1,0},S ={0,1,-1},M =S ,从而X =-1满足题目要求,此时Y =-1,于是X2K +1+1/Y2K +1=-2(K =0,1,2,……),X2K +1/Y2K =2(K =1,2,……),故所求代数式的值为0.练习:4.已知集合{}54321,,,,a a a a a A =,{}2524232221,,,,a a a a a B =,其中54321,,,,a a a a a 是正整数,且54321a a a a a <<<<,并满足{}41,a a B A =⋂,B A a a ⋃=+若,1041中的所有元素之和为234,求集合A 。

三.容斥原理基本公式:(1)card(A ∪B)=card(A)+card(B)-card(A ∩B); (2)card(A ∪B ∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(A∩C)-card(B∩C)+card(A∩B∩C)问题:开运动会时,高一某班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛,问同时参加田径比赛和球类比赛的有多少人?只参加游泳一项比赛的有多少人?设A={参加游泳比赛的同学},B={参加田径比赛的同学},C={参加球类比赛的同学},则card(A)=15,card(B)=8,card(C)=14,card(A∪B∪C)=28,且card(A∩B)=3,card(A∩C)=3,card(A∩B∩C)=0,由公式②得28=15+8+14-3-3-card(B∩C)+0,即card(B∩C)=3,所以同时参加田径和球类比赛的共有3人,而只参加游泳比赛的人有15-3-3=9(人)四、有限集合子集的个数例3.一个集合含有10个互不相同的两位数。

试证,这个集合必有2个无公共元素的子集合,此两子集的各数之和相等。

分析:两位数共有10,11,......,99,计99-9=90个,最大的10个两位数依次是90,91, (99)其和为945,因此,由10个两位数组成的任意一个集合中,其任一个子集中各元素之和都不会超过945,而它的非空子集却有210-1=1023个,这是解决问题的突破口。

解:已知集合含有10个不同的两位数,因它含有10个元素,故必有210=1024个子集,其中非空子集有1023个,每一个子集内各数之和都不超过90+91+…98+99=945<1023,根据抽屉原理,一定存在2个不同的子集,其元素之和相等。

如此2个子集无公共元素,即交集为空集,则已符合题目要求;如果这2个子集有公共元素,则划去它们的公共元素即共有的数字,可得两个无公共元素的非空子集,其所含各数之和相等。

说明:此题构造了一个抽屉原理模型,分两步完成,计算子集中数字之和最多有945个“抽屉”,计算非空子集得1023个“苹果”,由此得出必有两个子集数字之和相等。

第二步考察它们有无公共元素,如无公共元素,则已符合要求;如有公共元素,则去掉相同的数字,得出无公共元素并且非空的两个子集,满足条件。

例4.设A={1,2,3,…,n},对X A,设X中各元素之和为Nx,求Nx的总和.解:A中共有n个元素,其子集共有2n个。

A中每一个元素在其非空子集中都出现了2n-1次,(为什么?因为A的所有子集对其中任一个元素i都可分为两类,一类是不含i的,它们也都是{1,2,…,i-1,i+1,…n}的子集,共2n-1个;另一类是含i的,只要把i加入到刚才的2n-1个子集中的每一个中去)。

因而求A的所有子集中所有元素之和Nx的总和时,A中每一个元素都加了2n-1次,即出现了2n-1次,故得=1³2n-1+2³2n-1+…+n……2n-1=(1+2+…+n)²2n-1=n(n+1)/2³2n-1=n(n+1)³2n-2说明:这里运用了整体处理的思想及公式1+2+…+n=(1/2)n(n+1),其理论依据是加法的交换律、结合律、乘法的意义等,集合中每一个元素都在总和中出现了2n-1次,是打开解题思路之门的钥匙。

练习:5.设集合A{1,2,3,……,100},且对任意x,y∈A,必有2x≠y,求集合A中所含元素个数的最大值.6.某地区网球俱乐部都有20名成员,举行14场单打比赛,每人至少上场1次.求证:必有6场比赛,其12名参赛者各不相同.(二) 二次函数一、二次函数的解析式:①定义式:f(x)=ax2+bx+c.②顶点式:f(x)=a(x-h)2+k.③零点式:f(x)=a(x-x1)(x-x2).(a≠0)二、二次函数的最值:当自变量的取值范围为闭区间[p,q]时,其最值在f(p)、f(q)、f(-b/2a)三者中取得,最值情况如下表: -b/2a例1. 当x 为何值时,函数f(x)=(x-a1)2+(x-a2)2+…+(x-an)2取最小值。

解:∵f(x)=(x2-2a1x+a12)+(x2-2a2x+a22)+…+(x2-2anx+an2)=nx2-2(a1+a2…+an)x+(a12+a22+…+an2) ∴当x=(a1+a2+…+an)/n 时,f(x)有最小值.例2.已知x1,x2是方程x2-(k-2)x+(k2+3k+5)=0的两个实数根,x12+x22的最大值是____.解:由韦达定理得:x1+x2=k-2,x1x2=k2+3k+5.∴x12+x22=(x1+x2)2-2x1x2=(k-2)2-2(k2+3k+5 =-k2-10k-6=-(k+5)2+19 .已知x1,x2是方程的两个实根,即方程有实数根,此时方程的判别式Δ≥0,即Δ=(k-2)2-4(k2+3k+5) =-3k2-16k-16≥0 解得:-4≤k ≤-4/3.∵k=-5[-4,-4/3],设f(k)=-(k+5)2+19则f(-4)=18,f(-4/3)=50/9<18.∴当k=-4时,(x12+x22)max=18.例3.已知f(x)=x2-2x+2,在x ∈[t,t+1]上的最小值为g(t),求g(t)的表达式。

解:f(x)=(x-1)2+1 (1)当t+1<1即t<0时,g(t)=f(t+1)=t2+1(2)当t ≤1≤t+1,即0≤t ≤1时,g(t)=f(1)=1 (3)当t>1时,g(t)=f(t)=t2-2t+2 综合(1)、(2)、(3)得:例4.(1)当x2+2y2=1时,求2x+3y2的最值;(2)当3x2+2y2=6x 时,求x2+y2的最值。

解:(1)由x2+2y2=1得y2=1/2(1-x2),2x+3y2=2x+(3/2)(1-x2)=(-(3/2))(x-(2/3))2+(13/6)又1-x2=2y2≥0,∴x2≤1,-1≤x≤1 .∴当x=2/3时,y=(√10)/6,(2x+3y2)max=16/3;当x=-1时,y=0,(2x+3y2)min=-2(2)由3x2+2y2=6x,得y2=(3/2)x(2-x),代入x2+y2=x2+(3/2)x(2-x)=-1/2 (x-3)2+9/2又y2=(3/2)x (2-x)≥0,得0≤x≤2.当x=2,y=0时,(x2+y2)max=4;当x=0,y=0时,(x2+y2)min=0三、二次函数与二次方程设f(x)=ax2+bx+c(a≠0)的二实根为x1,x2,(x1<x2),Δ=b2-4ac,且α、β(α<β)是预先给定的两个实数。

相关文档
最新文档