【山东模拟 文数】2015年山东高考模拟试题 文科数学试题及答案

合集下载

2015年山东省实验中学高考一模数学试卷(文科)【解析版】

2015年山东省实验中学高考一模数学试卷(文科)【解析版】

2015年山东省实验中学高考数学一模试卷(文科)一、选择题(本题包括10小题,每小题5分,共50分.每小题只有一个选项符合题意)1.(5分)i为虚数单位,若,则|z|=()A.1B.C.D.22.(5分)已知集合M={x|},集合N={x|﹣2≤x<3},则M∩N为()A.(﹣2,3)B.(﹣3,﹣2]C.[﹣2,2)D.(﹣3,3] 3.(5分)命题“若x2<1,则﹣1<x<1”的逆否命题是()A.若x2≥1,则x≥1且x≤﹣1B.若﹣1<x<1,则x2<1C.若x>1或x<﹣1,则x2>1D.若x≥1或x≤﹣1,则x2≥1 4.(5分)某程序框图如图所示,现输入如下四个函数,则可以输出的函数是()A.f(x)=x2B.f(x)=C.f(x)=e x D.f(x)=sin x 5.(5分)某个几何体的三视图如图所示,则该几何体的体积是()A.30B.40C.24D.726.(5分)已知x、y满足,则z=2x+4y的最小值为()A.5B.﹣5C.6D.﹣67.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期是π,若其图象向右平移个单位后得到的函数为奇函数,则函数y=f(x)的图象()A.关于点(,0)对称B.关于直线x=对称C.关于点(,0)对称D.关于直线x=对称8.(5分)已知双曲线﹣=1(a>0,b>0)的离心率e∈[,2],则一条渐近线与实轴所成角的取值范围是()A.B.C.D.9.(5分)已知a n=()n,把数列{a n}的各项排列成如下的三角形状:记A(m,n)表示第m行的第n个数,则A(11,2)()A.()67B.()68C.()101D.()102 10.(5分)函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.则①函数f(x)=(x﹣1)3是单函数:②函数f(x)=是单函数③若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2)④若函数f(x)在定义域内某个区间D上具有单调性,则f(x)一定是单函数以上命题正确的是()A.①④B.②③C.①③D.①③④二、填空题(本题包括5小题,每小题5分,共25分)11.(5分)已知a、b∈R+,2a+b=2,则+的最小值为.12.(5分)已知P是面积为S三角形ABC内部点,则三角形PBC的面积大于的概率是.13.(5分)已知正方形ABCD的边长为2,E为CD的中点,F为AD的中点,则=.14.(5分)已知点A(﹣2,1)和圆C:(x﹣2)2+(y﹣2)2=1,一条光线从A 点发射到x轴上后沿圆的切线方向反射,则这条光线从A点到切点所经过的路程是.15.(5分)已知函数,f(x)是定义在R上的奇函数,它的图象关于直线x=1对称,且f(x)=x(0<x≤1).若函数y=f(x)﹣﹣a在区间[﹣10,10]上有10个零点(互不相同).则实数a的取值范围是.三、解答题(共6个大题,75分)16.(12分)在△ABC中,角A、B、C的对边分别为a、b、c,且满足(2b﹣c)cos A﹣a cos C=0,(Ⅰ)求角A的大小;(Ⅱ)若,,试判断△ABC的形状,并说明理由.17.(12分)已知某班学生语文与数学的学业水平测试成绩抽样统计如下表,若抽取学生n人,成绩分为A(优秀)、B(良好)、C(及格)三个等级,设x,y分别表示语文成绩与数学成绩,例如:表中语文成绩为B等级的共有20+18+4=42人,已知x与y均为B等级的概率是0.18.(Ⅰ)求抽取的学生人数;(Ⅱ)设该样本中,语文成绩优秀率是30%,求a,b的值;(Ⅲ)已知a≥10,b≥8,求语文成绩为A等级的总人数比语文成绩为C等级的总人数少的概率.18.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,侧面P AD⊥底面ABCD,且P A=PD=AD,E、F分别为PC、BD的中点.(1)求证:EF∥平面P AD;(2)求证:面P AB⊥平面PDC.19.(12分)已知数列{a n}是正数等差数列,其中a1=1,且a2、a4、a6+2成等比数列;数列{b n}的前n项和为S n,满足2S n+b n=1.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)如果c n=a n b n,设数列{c n}的前n项和为T n,是否存在正整数n,使得T n >S n成立,若存在,求出n的最小值,若不存在,说明理由.20.(13分)已知函数f(x)=e x﹣x﹣1(Ⅰ)求函数y=f(x)在点(1,f(1))处的切线方程:(Ⅱ)若方程f(x)=a,在[﹣2,ln2]上有唯一零点,求实数a的取值范围;(Ⅲ)对任意x≥0,f(x)≥(t﹣1)x恒成立,求实数t的取值范围.21.(14分)已知椭圆的一个焦点与抛物线的焦点F重合,且椭圆短轴的两个端点与F构成正三角形.(Ⅰ)求椭圆的方程;(Ⅱ)若过点(1,0)的直线l与椭圆交于不同两点P、Q,试问在x轴上是否存在定点E(m,0),使恒为定值?若存在,求出E的坐标及定值;若不存在,请说明理由.2015年山东省实验中学高考数学一模试卷(文科)参考答案与试题解析一、选择题(本题包括10小题,每小题5分,共50分.每小题只有一个选项符合题意)1.(5分)i为虚数单位,若,则|z|=()A.1B.C.D.2【解答】解:∵,∴|||z|=||,即2|z|=2,∴|z|=1,故选:A.2.(5分)已知集合M={x|},集合N={x|﹣2≤x<3},则M∩N为()A.(﹣2,3)B.(﹣3,﹣2]C.[﹣2,2)D.(﹣3,3]【解答】解:由集合M中的不等式变形得:(x﹣2)(x+3)<0,解得:﹣3<x<2,即M=(﹣3,2),∵N=[﹣2,3),∴M∩N=[﹣2,2).故选:C.3.(5分)命题“若x2<1,则﹣1<x<1”的逆否命题是()A.若x2≥1,则x≥1且x≤﹣1B.若﹣1<x<1,则x2<1C.若x>1或x<﹣1,则x2>1D.若x≥1或x≤﹣1,则x2≥1【解答】解:根据逆否命题的定义知,原命题的逆否命题为:若x≤﹣1,或x≥1,则x2≥1.故选:D.4.(5分)某程序框图如图所示,现输入如下四个函数,则可以输出的函数是()A.f(x)=x2B.f(x)=C.f(x)=e x D.f(x)=sin x 【解答】解:∵A:f(x)=x2、C:f(x)=e x,不是奇函数,故不满足条件①又∵B:f(x)=的函数图象与x轴没有交点,故不满足条件②而D:f(x)=sin x既是奇函数,而且函数图象与x也有交点,故D:f(x)=sin x符合输出的条件故选:D.5.(5分)某个几何体的三视图如图所示,则该几何体的体积是()A.30B.40C.24D.72【解答】解:根据几何体的三视图,得;该几何体是下部为长方体,上部为四棱锥的组合体,如图所示;所以,该几何体的体积为V=V四棱锥+V长方体=×3×4×(6﹣2)+3×4×2=40.故选:B.6.(5分)已知x、y满足,则z=2x+4y的最小值为()A.5B.﹣5C.6D.﹣6【解答】解:满足约束条件的可行域如下图所示:∵z=2x+4y故z A=﹣6,z B=36,z C=5故z=2x+4y的最小值是﹣6故选:D.7.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期是π,若其图象向右平移个单位后得到的函数为奇函数,则函数y=f(x)的图象()A.关于点(,0)对称B.关于直线x=对称C.关于点(,0)对称D.关于直线x=对称【解答】解:由题意可得=π,解得ω=2,故函数f(x)=sin(2x+φ),其图象向右平移个单位后得到的图象对应的函数为y=sin[2(x﹣)+φ]=sin(2x﹣+φ]是奇函数,又|φ|<,故φ=﹣,故函数f(x)=sin(2x﹣),故当x=时,函数f(x)=sin=1,故函数f(x)=sin(2x﹣)关于直线x=对称,故选:D.8.(5分)已知双曲线﹣=1(a>0,b>0)的离心率e∈[,2],则一条渐近线与实轴所成角的取值范围是()A.B.C.D.【解答】解:∵e,∴2≤≤4,又∵c2=a2+b2,∴2≤≤4,即1≤≤3,得1≤≤.由题意知,为双曲线的一条渐近线的方程,设此渐近线与实轴所成的角为θ,则,即1≤tanθ≤.∵0<θ<,∴≤θ≤,即θ的取值范围是.故选:C.9.(5分)已知a n=()n,把数列{a n}的各项排列成如下的三角形状:记A(m,n)表示第m行的第n个数,则A(11,2)()A.()67B.()68C.()101D.()102【解答】解:由A(m,n)表示第m行的第n个数可知,A(11,2)表示第11行的第2个数,根据图形可知:①每一行的最后一个项的项数为行数的平方,所以第11行的最后一个项的项数为112=121,即为a121;②每一行都有2n﹣1个项,所以第11行有2×11﹣1=21个项,得到第11行第一个项为121﹣21+1=101,所以第12项的项数为101+2﹣1=102;所以A(11,2)=a102=()102,故选:D.10.(5分)函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.则①函数f(x)=(x﹣1)3是单函数:②函数f(x)=是单函数③若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2)④若函数f(x)在定义域内某个区间D上具有单调性,则f(x)一定是单函数以上命题正确的是()A.①④B.②③C.①③D.①③④【解答】解:①中函数f(x)=(x﹣1)3,是函数f(x)=x3是单调函数,故∃x1,x2∈A且f(x1)=f(x2)时,有x1=x2,满足“单函数”的定义;②中函数f(x)=,当x=0或x=4时,f(x)=2,故∃x1,x2∈A且f(x1)=f(x2)时,有x1≠x2,不满足“单函数”的定义;③由“单函数”的定义可得f(x1)=f(x2)时总有x1=x2,故其逆否命题:x1≠x2,则f(x1)≠f(x2)成立,故③为真命题④中函数f(x)在定义域内某个区间D上具有单调性,但在整个定义域上有增有减时,可能会存在x1≠x2,使x1≠x2,从而不满足“单函数”的定义;综上真命题有①③.故选:C.二、填空题(本题包括5小题,每小题5分,共25分)11.(5分)已知a、b∈R+,2a+b=2,则+的最小值为4.【解答】解:∵a、b∈R+,2a+b=2,∴+=(+)(2a+b)=(4++)≥(4+2)=4当且仅当=时取等号,联立=和2a+b=2可解得a=且b=1,故答案为:4.12.(5分)已知P是面积为S三角形ABC内部点,则三角形PBC的面积大于的概率是.【解答】解:设AB、AC上分别有点D、E满足AD=AB,且AE=AC∴△ADE∽△ABC,∴DE∥BC,且DE=BC,∵A到DE的距离等于A到BC距离的,∴DE到BC的距离等于△ABC高的,当动点P在△ABC内部运动,且在△ADE内时,P到BC的距离大于DE到BC 的距离,因此,当P在△ADE内运动时,△PBC的面积大于△ABC面积的,∴△PBC的面积大于的概率是P==()2=.故答案为:.13.(5分)已知正方形ABCD的边长为2,E为CD的中点,F为AD的中点,则=0.【解答】解:如图所示,建立平面直角坐标系则A(0,0)B(2,0),C(2,2),D(0,2)∵E为CD的中点,F为AD的中点∴E((1,2),F(0,1)∴=(1,2),=(﹣2,1)则=1×(﹣2)+2×1=0故答案为:014.(5分)已知点A(﹣2,1)和圆C:(x﹣2)2+(y﹣2)2=1,一条光线从A 点发射到x轴上后沿圆的切线方向反射,则这条光线从A点到切点所经过的路程是2.【解答】解:如图所示,设A关于x轴的对称点为A′,则A′(﹣2,﹣1),A′C==5.由光学性质可知,A′在反射线上,因为反射线与圆相切,所以这条光线从A点到切点所经过的路程是=2.故答案为:2.15.(5分)已知函数,f(x)是定义在R上的奇函数,它的图象关于直线x=1对称,且f(x)=x(0<x≤1).若函数y=f(x)﹣﹣a在区间[﹣10,10]上有10个零点(互不相同).则实数a的取值范围是.【解答】解:因为f(x)的图象关于x=1对称,所以f(1+x)=f(1﹣x)因为f(x)是R上的奇函数,所以f(x+1)=﹣f(x﹣1).所以f(x+2)=﹣f(x),f(x+4)=﹣f(x+2)=f(x).则f(x)是周期为4的函数,由f(x)=x(0<x≤1)画出f(x)和y=的图象(第一象限部分):.因为函数y=f(x)﹣﹣a在区间[﹣10,10]上有10个零点,所以y=f(x)与y=+a在区间[﹣10,10]上有10个不同的交点,因为y=f(x)与y=是奇函数,所研究第一象限的部分交点问题即可,而y=+a的图象是由y=的图象上下平移得到,由图得,向上平移时保证图象第三象限的部分在x轴的下方,则第一象限的部分有4个交点,第三象限的部分有6个交点,同理向下平移时保证图象第一象限的部分在x轴的上方,则第一象限的部分有6个交点,第三象限的部分有4个交点,即,解得.故答案为:.三、解答题(共6个大题,75分)16.(12分)在△ABC中,角A、B、C的对边分别为a、b、c,且满足(2b﹣c)cos A﹣a cos C=0,(Ⅰ)求角A的大小;(Ⅱ)若,,试判断△ABC的形状,并说明理由.【解答】解:(Ⅰ)∵(2b﹣c)cos A﹣a cos C=0,由正弦定理,得(2sin B﹣sin C)cos A﹣sin A cos C=0,∴2sin B cos A﹣sin(A+C)=0,sin B(2cos A﹣1)=0,∵0<B<π,∴sin B≠0,∴,∵0<A<π,∴.(Ⅱ)∵,即∴bc=3①由余弦定理可知cos A==∴b2+c2=6,②由①②得,∴△ABC为等边三角形.17.(12分)已知某班学生语文与数学的学业水平测试成绩抽样统计如下表,若抽取学生n人,成绩分为A(优秀)、B(良好)、C(及格)三个等级,设x,y分别表示语文成绩与数学成绩,例如:表中语文成绩为B等级的共有20+18+4=42人,已知x与y均为B等级的概率是0.18.(Ⅰ)求抽取的学生人数;(Ⅱ)设该样本中,语文成绩优秀率是30%,求a,b的值;(Ⅲ)已知a≥10,b≥8,求语文成绩为A等级的总人数比语文成绩为C等级的总人数少的概率.【解答】解:(Ⅰ)根据题意,得;=0.18,解得n=100,即抽取的学生人数是100;(Ⅱ)由(Ⅰ)知,n=100;∴=30%,解得a=14;又7+9+a+20+18+4+5+6+b=100,解得b=17;(Ⅲ)设“语文成绩为A等级的总人数比语文成绩为C等级的总人数少”为事件A,由(Ⅱ)得,a+b=31,且a≥10,b≥8;∴满足条件的(a,b)有:(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),(16,15),(17,14),(18,13),(19,12),(20,11),(21,10),(22,9),(23,8)共14种;其中b+11>a+16的有:(10,21),(11,20),(12,19)共3种;∴所求的概率为P=.18.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,侧面P AD⊥底面ABCD,且P A=PD=AD,E、F分别为PC、BD的中点.(1)求证:EF∥平面P AD;(2)求证:面P AB⊥平面PDC.【解答】证明:(1)连接AC,由正方形性质可知,AC与BD相交于BD的中点F,F也为AC中点,E为PC中点.所以在△CP A中,EF∥P A,又P A⊂平面P AD,EF⊄平面P AD,所以EF∥平面P AD;(2)平面P AD⊥平面ABCD平面P AD∩面ABCD=AD⇒CD⊥平面P AD⇒CD⊥P A正方形ABCD中CD⊥ADP A⊂平面P ADCD⊂平面ABCD又,所以P A2+PD2=AD2所以△P AD是等腰直角三角形,且,即P A⊥PD.因为CD∩PD=D,且CD、PD⊂面PDC所以P A⊥面PDC又P A⊂面P AB,所以面P AB⊥面PDC.19.(12分)已知数列{a n}是正数等差数列,其中a1=1,且a2、a4、a6+2成等比数列;数列{b n}的前n项和为S n,满足2S n+b n=1.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)如果c n=a n b n,设数列{c n}的前n项和为T n,是否存在正整数n,使得T n >S n成立,若存在,求出n的最小值,若不存在,说明理由.【解答】(本题满分13分)解:(Ⅰ)设数列{a n}的公差为d,∵a1=1,且a2、a4、a6+2成等比数列,∴依条件有,即,解得(舍)或d=1,所以a n=a1+(n﹣1)d=1+(n﹣1)=n.…(2分)由2S n+b n=1,得,当n=1时,2S1+b1=1,解得,当n≥2时,,所以,所以数列{b n}是首项为,公比为的等比数列,故.…(5分)(2)由(1)知,,所以①②得.…(9分)又.所以,当n=1时,T1=S1,当n≥2时,,所以T n>S n,故所求的正整数n存在,其最小值是2.…(13分)20.(13分)已知函数f(x)=e x﹣x﹣1(Ⅰ)求函数y=f(x)在点(1,f(1))处的切线方程:(Ⅱ)若方程f(x)=a,在[﹣2,ln2]上有唯一零点,求实数a的取值范围;(Ⅲ)对任意x≥0,f(x)≥(t﹣1)x恒成立,求实数t的取值范围.【解答】解:(Ⅰ)∵f(x)=e x﹣x﹣1,∴f′(x)=e x﹣1.…(1分)∴f′(1)=e﹣1,f(1)=e﹣2,∴求函数y=f(x)在点(1,f(1))处的切线方程是y﹣(e﹣2)=(e﹣1)(x ﹣1).化简得所求切线的方程为y=(e﹣1)x﹣1.…(3分)(Ⅱ)f′(x)=e x﹣1,当x∈(﹣2,0)时,f′(x)≤0,f(x)单调递减;当x∈(0,ln2)时,f′(x)≥0,f(x)单调递增.…(5分),f(ln2)=1﹣ln2.…(6分)∵f(﹣2)>f(ln2).函数f(x)=a,在[﹣2,ln2]上有唯一零点,等价于,f(ln2)<a≤f(﹣2)或a=f(0),即或a=0.∴实数a的取值范围是或a=0.…(8分)(Ⅲ)令g(x)=f(x)﹣(t﹣1)x=e x﹣1﹣tx,则g′(x)=e x﹣t.∵x≥0,∴e x≥1.…(9分)(i)当t≤1时,g′(x)≥0,g(x)在区间[0,+∞)上是增函数,所以g(x)≥g(0)=0.即f(x)≥(t﹣1)x恒成立.…(11分)(ii)当t>1时,e x﹣t=0,x=lnt,当x∈(0,lnt)时,g′(x)≤0,g(x)单调递减,当x∈(0,lnt)时,g(x)<g(0)=0,此时不满足题设条件.…(12分)综上所述:实数t的取值范围是t≤1.…(13分)21.(14分)已知椭圆的一个焦点与抛物线的焦点F重合,且椭圆短轴的两个端点与F构成正三角形.(Ⅰ)求椭圆的方程;(Ⅱ)若过点(1,0)的直线l与椭圆交于不同两点P、Q,试问在x轴上是否存在定点E(m,0),使恒为定值?若存在,求出E的坐标及定值;若不存在,请说明理由.【解答】解:(Ⅰ)由题意知抛物线的焦点,∴…(1分)又∵椭圆的短轴的两个端点与F构成正三角形,∴b=1,∴椭圆的方程为…(3分)(Ⅱ)当直线l的斜率存在时,设其斜率为k,则l的方程为:y=k(x﹣1)代入椭圆方程,消去y,可得(4k2+1)x2﹣8k2x+4k2﹣4=0设P(x1,y1),Q(x2,y2),则…(5分)∵∴=m2﹣m(x1+x2)+x1x2+y1y2===…(7分)==…(9分)当,即时,为定值…(10分)当直线l的斜率不存在时,由可得,∴综上所述,当时,为定值…(12分)。

山东省2015届高考模拟试题数学(文)试题 Word版含答案

山东省2015届高考模拟试题数学(文)试题 Word版含答案

山东省2015届高考模拟试题数学(文)试题20140410第Ⅰ卷 选择题(共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)1.已知集合{}{}R x y y N x x x M x ∈==≥=,2,2,则MN = ( )A .)(1,0 B .]1,0[ C .)1,0[D .]1,0(2.已知复数(1i)(12i)z =-+,其中i 为虚数单位,则z 的实部为A .3-B .1C .1-D .3 3.下列命题中的真命题是( )A .对于实数a 、b 、c ,若a b >,则22ac bc >B .x 2>1是x >1的充分而不必要条件C .,R αβ∃∈ ,使得sin()sin sin αβαβ+=+成立D .,R αβ∀∈,tan tan tan()1tan tan αβαβαβ++=-⋅成立4.已知圆22:68210C x y x y ++++=,抛物线28y x =的准线为,设抛物线上任意一点P 到直线的距离为m ,则||PC m +的最小值为A .5B .41C .41-2D .45.在A ,B 两个袋中都有6张分别写有数字0,1,2,3,4, 5的卡片,现从每个袋中任取一张卡片,则两张卡片上数字之和为7的概率为A .19B .118C .16 D .136.下图是计算10181614121++++值的一个程序框图,其中判断框内应填入的条件是A .5≥kB .5<kC .5>kD .6≤k7.设等差数列{}n a 的前n 项和为n S ,若201312014a a a -<<-,则必定有A .201320140,0S S ><且B .201320140,0S S <>且C .201320140,0a a ><且D .201320140,0a a <>且8.已知O,A,M,B 为平面上四点,且(1)OM OB OA λλ=+-,实数(1,2)λ∈,则A .点M 在线段AB 上 B .点B 在线段AM 上C .点A 在线段BM 上D .O,A,M,B 一定共线9.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,其中120,1A b ==,且ABC ∆,则sin sin a bA B+=+ABC .D .10.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为,F C 与过原点的直线相交于,A B 两点,连接,AF BF ,若410,6,cos ABF 5AB AF ==∠=,则椭圆C 的离心率e =A .57B .54C .74D .65第Ⅱ卷 非选择题(共100分)二、填空题(本大题共5小题,每小题5分,满分25分,把答案填写在答题卡相应的位置) 11.复数4+3i 1+2i的虚部是__ ___.12.函数1()1f x x x =+-(1)x >的最小值为__ ___. 13.一个几何体的三视图如图所示,则该几何体的体积为__ ___.14.在ABC ∆中,不等式1119A B C π++≥成立;在凸四边形ABCD 中,不等式1111162A B C D π+++≥成立;在凸五边形ABCDE 中,不等式11111253A B C D E π++++≥成立,…,依此类推,在凸n 边形n A A A 21中,不等式12111nA A A +++≥__ ___成立.15.选做题(请考生在以下三个小题中任选一题做答,如果多做,则按所做的第一题评阅记分)A .(坐标系与参数方程)已知直线的参数方程为,1x y ⎧=⎪⎪⎨⎪=⎪⎩ (为参数),圆C 的参数方程为cos 2sin x y θθ=+⎧⎨=⎩(θ为参数), 则圆心C 到直线的距离为_________.B .(几何证明选讲)如图,直线PC 与圆O 相切于点C ,割线经过圆心O ,弦CD ⊥AB 于点E ,4PC =,8PB =,则CE =_________.C .(不等式选讲)若存在实数x 使12x m x -++≤成立,则实数m 的取值范围是_________.三、解答题:解答应写出文字说明,证明过程或演算步骤(本答题共6小题,共75分) 16.(本小题满分12分)已知函数()⎪⎭⎫ ⎝⎛--=672sin cos 22πx x x f . (Ⅰ)求函数)(x f 的最大值,并写出)(x f 取最大值时x 的取值集合; (Ⅱ)已知ABC ∆中,角C B A ,,的对边分别为.,,c b a 若3(),2f A = 2.b c +=求实数a 的最小值.17.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,211,(1),1,2,.2n n a S n a n n n ==--=(Ⅰ)证明:数列⎭⎬⎫⎩⎨⎧+n S nn 1是等差数列,并求n S ; (Ⅱ)设233nn S b nn +=,求证:125.12n b b b +++<18.(本小题满分12分)在直三棱柱ABC -A 1B 1C 1中,已知AB=5,AC=4,BC=3,AA 1=4,点D 在棱AB 上. (Ⅰ)求证:AC ⊥B 1C ;(Ⅱ)若D 是AB 中点,求证:AC 1∥平面B 1CD .19.(本小题满分12分)已知关于x 的一元二次函数.14)(2+-=bx ax x f(Ⅰ)设集合P={1,2, 3}和Q={-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数)(x f y =在区间[),1+∞上是增函数的概率;(Ⅱ)设点(a ,b )是区域⎪⎩⎪⎨⎧>>≤-+008y x y x 内的随机点,求函数),1[)(+∞=在区间x f y 上是增函数的概率. 20.(本小题满分13分)已知函数x a x x f ln )1()(--=(0)x >. (Ⅰ)求函数)(x f 的单调区间和极值;(Ⅱ)若0)(≥x f 对),1[+∞∈x 上恒成立,求实数a 的取值范围. 21.(本小题满分14分)如下图所示,椭圆22:1(01)y C x m m+=<<的左顶点为A ,M 是椭圆C 上异于点A 的任意一点,点P 与点A 关于点M 对称.(Ⅰ)若点P 的坐标为9(5,求m 的值;(Ⅱ)若椭圆C 上存在点M ,使得OP OM ⊥,求m 的取值范围.山东省2015届高考模拟试题数学(文)参考答案20140410一、选择题:二、填空题:11.-1; 12.3; 13.23; 14.; 15.A ; B .512; C .[3,1]-.三、解答题∴函数)(x f 的最大值为2.要使)(x f 取最大值,则sin(2)1,6x π+=22()62x k k Z πππ∴+=+∈ ,解得,6x k k Z ππ=+∈.故x 的取值集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. ………6分 (Ⅱ)由题意,3()sin(2)162f A A π=++=,化简得 1sin(2).62A π+=()π,0∈A ,132(,)666A πππ∴+∈,∴5266A ππ+=, ∴.3π=A在ABC ∆中,根据余弦定理,得bc c b bc c b a 3)(3cos 22222-+=-+=π.由2=+c b ,知1)2(2=+≤c b bc ,即12≥a . ∴当1==c b 时,实数a 取最小值.1 ………12分 17.(本小题满分12分)解:(Ⅰ)证明:由)1(2--=n n a n S n n 知,当2≥n 时:)1()(12---=-n n S S n S n n n , 即)1()1(122-=---n n S n S n n n ,∴1111=--+-n n S n nS n n ,对2≥n 成立. 又⎭⎬⎫⎩⎨⎧+∴=+n S n n S 1,11111是首项为1,公差为1的等差数列. 1)1(11⋅-+=+n S n n n ,∴12+=n n S n . ………6分(Ⅱ))3111(21)3)(1(1323+-+=++=+=n n n n n n S b n n ,………8分∴)311121151314121(2121+-+++-+⋯+-+-=+⋯⋯++n n n n b b b n =125)312165(21<+-+-n n .………12分 18.(本小题满分12分)解: (Ⅰ)证明:在△ABC 中,因为 AB=5,AC=4,BC=3, 所以 AC 2+ BC 2= AB 2, 所以 AC ⊥BC .因为 直三棱柱ABC-A 1B 1C 1,所以 C C 1⊥AC , 因为 BC ∩AC =C ,所以 AC ⊥平面B B 1C 1C . 所以 AC ⊥B 1C . ……… 6分 (Ⅱ)连结BC 1,交B 1C 于E ,连接DE .因为直三棱柱ABC-A 1B 1C 1,D 是AB 中点,所以 侧面B B 1C 1C 为矩形, DE 为△ABC 1的中位线,所以DE// AC 1.因为 DE ⊂平面B 1CD ,AC 1⊄平面B 1CD ,所以 AC 1∥平面B 1CD .……… 12分 19.(本小题满分12分)解:(Ⅰ)∵函数14)(2+-=bx ax x f 的图象的对称轴为,2abx =要使14)(2+-=bx ax x f 在区间),1[+∞上为增函数,当且仅当a >0且a b ab ≤≤2,12即, 若a =1则b =-1;若a =2则b =-1,1;若a =3则b =-1,1; ∴事件包含基本事件的个数是1+2+2=5, ∴所求事件的概率为51153=. ………6分 (Ⅱ)由(1)知当且仅当a b ≤2且a >0时,函数),1[14)(2+∞+-=在区是间bx ax x f 上为增函数,依条件可知试验的全部结果所构成的区域为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧>>≤-+0008|),(b a b a b a ,构成所求事件的区域为三角形部分.由),38,316(208得交点坐标为⎪⎩⎪⎨⎧==-+ab b a ∴所求事件的概率为31882138821=⨯⨯⨯⨯=P .………12分 20.(本小题满分13分)解:(Ⅰ)xa x xa x f -=-=1)(')0(>x ,当0≤a 时,0)('>x f ,在),0(+∞上增,无极值; 当0>a 时,a x xax x f ==-=得由,0)(', )(x f 在),0(a 上减,在),(+∞a 上增, )(x f 有极小值a a a a f ln )1()(--=,无极大值; ……… 6分(Ⅱ)xax x a x f -=-=1)(', 当1≤a 时,0)('≥x f 在),1[+∞上恒成立,则)(x f 是单调递增的, 则只需0)1()(=≥f x f 恒成立,所以1≤a ,当1>a 时,)(x f 在上),1(a 减,在),(+∞a 上单调递增,所以当),1(a x ∈时,0)1()(=≤f x f 这与0)(≥x f 恒成立矛盾,故不成立,综上:1≤a .……… 13分21.(本小题满分14分)解:(Ⅰ)依题意,M 是线段AP 的中点, 因为A (-1,0),P ⎪⎪⎭⎫ ⎝⎛534,59,所以点M 的坐标为⎪⎪⎭⎫⎝⎛532,52 由点M 在椭圆C 上,所以,12512254=+m ,解得74=m (II )解:设M ()11-,1,020200<<-+x myx y x 且,则① 因为M 是线段AP 的中点,所以P ()002,12y x + 因为OP ⊥OM ,所以()02122000=++y x x ②由①②,消去0y ,整理得22220020-+=x x x m所以()4321826221100-≤-++++=x x m。

20152015年山东高考文科数学附答案精编 word版.doc

20152015年山东高考文科数学附答案精编 word版.doc

2015年普通高等学校招生全国统一考试(山东卷)文 科 数 学第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合,,则{|24}A x x =<<{|(1)(3)0}B x x x =--<A B =(A )(B ) (C )(D ) (1,3)(1,4)(2,3)(2,4)(2)已知复数满足,其中i 是虚数单位,则z 1z i i =-z =(A )(B ) (C ) (D )1i -1i +1i --1i -+(3)设,则的大小关系是0.6 1.50.60.6,0.6, 1.5a b c ===,,a b c (A ) (B ) (C ) (D )a b c <<a c b <<b a c <<b c a <<(4)要得到函数的图像,只需将函数的图像sin(43y x π=-sin 4y x =(A )向左平移个单位 (B )向右平移个单位12π12π(C )向左平移个单位 (D )向右平移个单位3π3π(5),命题“若,则方程有实根”的逆否命题是m R ∈0m >20x x m +-=(A )若方程有实根,则 (B )若方程有实根,则 20x x m +-=0m >20x x m +-=0m ≤(C )若方程没有实根,则(D )若方程没有实根,则20x x m +-=0m >20x x m +-=0m ≤(6)为了比较甲、乙两地某月14时的气温数据状况,随机选取 甲 乙该月中的5天,将这5天中14时的气温数据(单位:℃) 9 8 6 2 8 9 制成如图所示的茎叶图,考虑以下结论: 1 1 3 0 1 2① 甲地该月14时的平均气温低于乙地该月14是的平均气温;② 甲地该月14时的平均气温高于乙地该月14是的平均气温;③ 甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④ 甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差其中根据茎叶图能到到的统计结论的标号为(A )①③ (B )①④ (C )②③ (D )②④(7)在区间上随机地取一个数x ,则事件“”发生的概率为[0,2]1211log ()12x -≤+≤(A ) (B ) (C ) (D )34231314(8)若函数是奇函数,则使成立的x 的取值范围为21()2x x f x a +=-()3f x >(A ) (B ) (C ) (D )(,1)-∞-(1,0)-(0,1)(1,)+∞(9)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为(A(B(C ) (D)(10)设函数若则b=3,1,()2, 1.x x b x f x x -<⎧=⎨≥⎩5(())4,6f f =(A )1 (B ) (C ) (D )783412第Ⅱ卷(共100二、填空题:本大题共5小题,每小题5分,共25分.(11)执行右面的程序框图,若输入的的值为1x 的值为 13 . y (12)若满足约束条件,则,x y 1,31,y x x y y -≤⎧⎪+≤⎨⎪≥⎩3z x y =+的最大值为7 .(13)过点作圆的两条切线,P 221x y +=切点分别为A ,B ,则 1.5 .PA PB = A (14)定义运算“”:⊗22(,,x y x y x y R xy xy -⊗=∈≠(2)x y y x ⊗+⊗(15)过双曲线的右焦点作一条与其渐近线平行的直线,交C 于点P.若2222:1(0,0)x y C a b a b -=>>点P 的横坐标为,则C 2a 三、解答题:本大题共6小题,共75分.(16)(本小题满分12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参见书法社团参见演讲社团85未参加演讲社团230(Ⅰ)从该班随机选1名同学,求该同学至少参见上述一个社团的概率;(Ⅱ)在既参加书法社团又参见演讲社团的8名同学中,有5名男同学3名女12345,,,,,A A A A A 同学现从这5名男同学和3名女同学中各随机选1人,求被选中且未被选123,,,B B B 1A 1B 中的概率.(17)(本小题满分12分)中,角A ,B ,C 所对的边分别为a ,b ,c ,已知ABC ∆ 求和c 的值.cos )B A B ac =+==sin A 不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。

2015高考一模 数学★山东省2015年高考模拟冲刺卷(六)文科数学word含答案

2015高考一模 数学★山东省2015年高考模拟冲刺卷(六)文科数学word含答案

绝密★启用前 试卷类型A山东省2015年高考模拟冲刺卷(六)文科数学说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。

第I 卷(选择题 共50分)一、选择题:在每小题给出的四个选项中,只有一个是符合题目要求的(本大题共10小题,每小题5分,共50分).1.已知集合1={R| 2},{R| 1}xA x eB x x∈<=∈>则A B = ( )A .2{|0log }x R x e ∈<<B .{|01}x R x ∈<<C .2{|1log }x R x e ∈<<D .2{|log }x R x e ∈< 2.以下判断正确的是( )A .函数()y f x =为R 上的可导函数,则'0()0f x =是0x 为函数()f x 极值点的充要条件. B .命题“2,10x R xx ∈+-<存在”的否定是“2,10x R x x ∈+->任意”.C .命题“在ABC ∆中,若,sin sin A B A B >>则”的逆命题为假命题.D .“0b =”是“函数2()f x ax bx c =++是偶函数”的充要条件.3.已知复数2320131i i i i z i++++=+,则复数z 在复平面内对应的点位于( )A .第一像限B .第二像限C .第三像限D .第四像限 4.函数331x x y =-的图象大致是( )A B C D6 7 758 8 8 6 84 0 93甲乙俯视图5.甲、乙两位歌手在“中国好声音”选拔赛中,5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别为x 甲、x 乙,则下列判断正确的是 ( ) A .x x <甲乙,甲比乙成绩稳定B .x x <甲乙,乙比甲成绩稳定C .x x >甲乙,甲比乙成绩稳定D .x x >甲乙,乙比甲成绩稳定6.右图是函数y =A sin (ωx +φ)(00,ω>>A ,||2πϕ≤)图像的一部分.为了得到这个函数的图像,只要将y =sin x (x ∈R )的图像上所有的点( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变.B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变.D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.7.在ABC ∆中,点M 是BC 中点.若 120=∠A ,12⋅=-AB AC ,则AM的最小值是 ( )A . BC .32D .128.若某几何体的三视图(单位:cm )如图所示,则该几何体的体积等于( )A .310cm B .320cm C .330cmD .340cm9.曲线21:2(0)=>C y px p 的焦点F 恰好是曲线22222:1-=x yC a b 的右焦点,且曲线1C 与曲线2C 交点连线过点F ,则曲线2C 的离心率是( )A .1BC D .110.定义在R 上的函数()f x 满足:()()1(0)4f x f x f '+>=,,则不等式()3xx e f x e >+(其中e 为自然对数的底数)的解集为( )A .()0,+∞B .()(),03,-∞+∞C .()(),00,-∞+∞ D .()3,+∞第Ⅱ卷(非选择题 共100分)二、填空题:把答案填在相应题号后的横线上(本大题共5小题,每小题5分,共25分).11.在平面直角坐标系xOy 中,设D 是由不等式组⎪⎩⎪⎨⎧≥≤-+≥+-0101y y x y x 表示的区域,E 是到原点的距离不大于1的点构成的区域,若向E 中随机投一点,则所投点落在D 中的概率是 .12.设集合{}|01A x x =≤<,{}|12B x x =≤≤,2,()42,x x Af x x x B⎧∈=⎨-∈⎩,0x A ∈ 且0[()]f f x A ∈,则0x 的取值范 围是 .13.如右上所示框图,若2()31f x x =-,取0.1ε=,则输出的值为 . 14.若关于x 的不等式a x x ≤-+1无解,则实数a 的取值范围为 . 15.已知函数[][]x x x f =)(,其中[]x 表示不超过实数x 的最大整数,如[][]1999.1,301.2=-=-.若3322x -≤≤,则)(x f 的值域为 .三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分). 16.(本小题满分12分)在ABC ∆中,角A B C 、、对边分别是a b c 、、,满足222()AB AC a b c ⋅=-+. (Ⅰ)求角A 的大小;(Ⅱ)求24sin()23C B π--的最大值,并求取得最大值时角B C 、的大小.17.(本小题满分12分)已知数列}{n a 中,51=a 且1221n n n a a -=+-(2n ≥且n N +∈)(Ⅰ)证明:数列12n n a -⎧⎫⎨⎬⎩⎭为等差数列; (Ⅱ)求数列}{n a 的前n 项和n S .名义务宣传志愿者,成立环境保护宣传组织.现把该组织的成员按年龄分成5组:第1组[)35,40,第5组[40,45],20,25,第2组[)25,30,第3组[)30,35,第4组[)得到的频率分布直方图如图所示,已知第2组有35人.(Ⅰ)求该组织的人数.(Ⅱ)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加某社区的宣传活动,应从第3,4,5组各抽取多少名志愿者?(Ⅲ)在(Ⅱ)的条件下,该组织决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第3组至少有一名志愿者被抽中的概率.ABCDEF如图,E 是以AB 为直径的半圆上异于点A B 、的点,矩形ABCD 所在的平面垂直于该半圆所在平面,且AB=2AD=2. (Ⅰ)求证:EA EC ;(Ⅱ)设平面ECD 与半圆弧的另一个交点为F①求证:EF //AB ;②若EF=1,求多面体ABCDEF 的体积V .已知椭圆2222:1(0)x y C a b a b+=>>的离心率为=e ,以原点为圆心,椭圆短半轴长为半径的圆与直线0x y -=相切.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设12(1,0),(1,0)F F -,若过1F 的直线交曲线C 于A B 、两点,求22F A F B 的取值范围.已知函数()ln 3f x a x ax =--(a R ∈). (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若函数()f x 的图像在点(2,(2))f 处的切线的倾斜角为45,且函数32'()()2⎡⎤=++⎢⎥⎣⎦m g x x x f x 在区间(1,3)上不单调,求m 的取值范围;(Ⅲ)试比较ln 2222+ln 3232+…+ln n 2n 2与n -n +n +的大小(n ∈N +,且n ≥2),并证明你的结论.文科数学(六)1---5 BDACB 6----10 ADBDA 11.1π 12.23(log ,1)213.1932 14.1<a 15.{}0,1,2,3 三、解答题:()1112112n n ++⎡⎤=-+⎣⎦1=, …………4分由上可知,数列12n n a -⎧⎫⎨⎬⎩⎭为首项是2、公差是1的等差数列. …………5分(Ⅱ)由(Ⅰ)知,()1111122n n a a n --=+-⨯, 即:()121nn a n =+⋅+. …………7分 ∴()()()()12122132121121n nn S n n -⎡⎤=⋅++⋅+++⋅+++⋅+⎣⎦.即()1212232212n n n S n n n -=⋅+⋅++⋅++⋅+. 令()1212232212n n nT n n -=⋅+⋅++⋅++⋅, ①则()23122232212n n nT n n +=⋅+⋅++⋅++⋅. ② …………9分②-①,得()()12312222212n n n T n +=-⋅-+++++⋅12n n +=⋅.∴()11221n n n S n n n ++=⋅+=⋅+. …………12分A BCD EF(A3,C1),共有12种, …………11分 则第3组至少有一名志愿者被抽中的概率为124155p == …………12分 19.(本题满分12分)解:(Ⅰ)∵E 是半圆上异于A 、B 的点,∴AE ⊥EB, 又∵矩形平面ABCD ⊥平面ABE ,且CB ⊥AB ,由面面垂直性质定理得:CB ⊥平面ABE ,∴平面CBE ⊥平面ABE , 且二面交线为EB ,由面面垂直性质定理得:AE ⊥平面ABE ,又EC 在平面ABE 内,故得:EA ⊥EC …………4分 (Ⅱ) ①由CD//AB ,得CD//平面ABE ,又∵平面CDE ∩平面ABE 于直线EF ,∴根据线面平行的性质定理得:CD//EF ,CD//AB ,故EF//AB …………7分②分别取AB 、EF 的中点为O 、M ,连接OM ,则在直角三角形OME中,OM ===,因为矩形ABCD 所在的平面垂直于该半圆所在平面,,OM AB OM ABCD ⊥∴⊥面,即OM 为M 到面ABCD 之距,又EF //AB , ∴E 到到面ABCD之距也为OM =9分则D-AEF 111V=V +V =1121323E ABCD -⨯⨯+⨯⨯ ……12分 20.(本题满分13分)解:(Ⅰ)由题意可得圆的方程为222x y b +=,∵直线0x y -=与圆相切,∴d b ==,即1b =, …………2分又c e a ==222a b c =+,得2a =,所以椭圆方程为2212x y +=.…………4分 (Ⅱ)①当直线AB 的斜率为0时,A(,0),B,0)时,22F A F B =-1…5分 ②当直线AB 的斜率不为0时,不妨设AB 的方程为:1x my += 由22112x my x y +=⎧⎪⎨+=⎪⎩得:22(2)210m y my +--=,------7分 设11122()()A x y B x y ,,,,则:12222m y y m +=+,12212y y m =-+,22F A F B 11221122(1,)(1,)(2,)(2,)x y x y my y my y =-∙-=-∙-212121212(2)(2)(1)2()4my my y y m y y m y y =--+=+-++2225194122m m m --=+=-+++7(1,2∈-], 由①、②得:22F A F B 的取值范围为[71,2-]. …………13分 21.(本小题满分14)解:(Ⅰ)'(1)()(0)a x f x x x-=> …………1分 当0a >时,()f x 的单调增区间为(]0,1,单调减区间为[)1,+∞; …………2分 当0a <时,()f x 的单调增区间为[)1,+∞,单调减区间为(]0,1 …………3分 当0a =时,()f x 不是单调函数。

2015年山东省枣庄市高考一模数学试卷(文科)【解析版】

2015年山东省枣庄市高考一模数学试卷(文科)【解析版】

2015年山东省枣庄市高考数学一模试卷(文科)一.选择题1.(5分)若复数x2﹣1+(x+1)i是纯虚数(i是虚数单位,x∈R),则x=()A.1B.﹣1C.±1D.02.(5分)若点P(3,﹣1)是圆(x﹣2)2+y2=25的弦AB的中点,则直线AB 的方程为()A.x+y﹣2=0B.2x﹣y﹣7=0C.x﹣y﹣4=0D.2x+y﹣5=0 3.(5分)下列命题中的假命题是()A.∀x∈R,2x>0B.∃a∈(0,1),log a>0C.∀x∈(0,1),x<1D.∃α∈(0,),sinα+cosα=4.(5分)已知双曲线=1(a>0,b>0)的离心率是,则该双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x 5.(5分)函数f(x)=a x﹣b的图象如图所示,其中a,b为常数,则下列结论正确的是()A.a>1,b>0B.a>1,b<0C.0<a<1,b>0D.0<a<1,b<0 6.(5分)如图,=,=,且BC⊥OA,C为垂足,设=λ,则λ的值为()A.B.C.D.7.(5分)甲、乙两位歌手在“中国好声音”选拔赛中,5位评委评分情况如茎叶图所示,记甲、乙两人的平均得分分别为、,则下列判断正确的是()A.<,甲比乙成绩稳定B.<,乙比甲成绩稳定C.>,甲比乙成绩稳定D.>,乙比甲成绩稳定8.(5分)在平面直角坐标系xOy中,角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边经过点P(1,1),则函数y=sin(2x+α)在[O,π]上的单调递减区间为()A.[0,]与[]B.[,]C.[0,]与[,]D.[]9.(5分)某个四面体的三视图如图(其中三个正方形的边长均为1)所示,则该几何体的体积为()A.B.C.D.10.(5分)对于任意实数x,规定[x]表示不大于x的最大整数,则不等式4[x]2﹣12[x]+5<0成立的充分不必要条件是()A.x∈(,)B.x∈(,3)C.x∈[1,2]D.x∈[1,3)二.填空题11.(5分)已知实数x,y满足不等式组,则x﹣y的最大值为.12.(5分)函数f(x)=sin x+cos x的图象的一个对称中心到离它最近的对称轴的距离为.13.(5分)若程序框图如图所示,则程序运行后输出k的值是.14.(5分)已知偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x.若在区间[﹣1,3]上,函数g(x)=f(x)﹣kx﹣k有3个零点,则实数k的取值范围是.15.(5分)若曲线C1:y=ax2(a>0)与曲线C2:y=lnx有唯一的公共点,则实数a的值为.三.解答题16.(12分)在△ABC中,角A、B、C的对边分别为a、b、c,cos A=,cos B =.(1)求角C:(2)设c=,求△ABC的面积.17.(12分)关于x的一元二次方程x2﹣2ax+b2=0.(1)若连续抛掷两次骰子得到的点数分别为a和b,求上述方程有实根的概率;(2)若从区间[0,6]中随机取两个数a和b,求上述方程有实根且a2+b2≤36的概率.18.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,BC=AD,P A=PD,Q为AD的中点.(1)求证:AD⊥平面PBQ;(2)已知点M为线段PC的中点,证明:P A∥平面BMQ.19.(12分)已知数列{a n}中,前m项依次构成首项为1,公差为﹣2的等差数列.第m+1项至第2m项依次构成首项为1,公比为的等比数列,其中m≥3,m∈N*.(1)求a m,a2m(2)若对任意的n∈N*,都有a n+2m=a n.设数列{a n}的前n项和为S n,求S4m+3.20.(13分)设函数f(x)=(a﹣2)ln(﹣x)++2ax(a∈R).(Ⅰ)当a=0时,求f(x)的极值;(Ⅱ)当a≠0时,求f(x)的单调区间.21.(14分)已知椭圆C:+=1(a>b>0)的一个焦点与抛物线y2=4x 的焦点重合,D(1,)是椭圆C上一点.(1)求椭圆C的方程;(2)A,B分别是椭圆C的左、右顶点,P,Q是椭圆C上异于A,B的两个动点,直线AP,AQ的斜率之积为﹣.①设△APQ与△BPQ的面积分别为S1,S2,请问:是否存在常数λ(λ∈R).得S1=λS2恒成立?若存在,求出λ的值,若不存在,请说明理由;②求直线AP与BQ的交点M的轨迹方程.2015年山东省枣庄市高考数学一模试卷(文科)参考答案与试题解析一.选择题1.(5分)若复数x2﹣1+(x+1)i是纯虚数(i是虚数单位,x∈R),则x=()A.1B.﹣1C.±1D.0【解答】解:复数x2﹣1+(x+1)i是纯虚数,则x2﹣1=0,x+1≠0,解得x=1,故选:A.2.(5分)若点P(3,﹣1)是圆(x﹣2)2+y2=25的弦AB的中点,则直线AB 的方程为()A.x+y﹣2=0B.2x﹣y﹣7=0C.x﹣y﹣4=0D.2x+y﹣5=0【解答】解:由(x﹣2)2+y2=25,可得,圆心C(2,0).∴k PC==﹣1.∵PC⊥AB,∴k AB=1.∴直线AB的方程为y+1=x﹣3,即x﹣y﹣4=0.故选:C.3.(5分)下列命题中的假命题是()A.∀x∈R,2x>0B.∃a∈(0,1),log a>0C.∀x∈(0,1),x<1D.∃α∈(0,),sinα+cosα=【解答】解:对于A,根据指数函数的性质,可知正确;对于B,根据对数函数的单调性,可知正确;对于C,根据指数函数的性质,可知正确;对于D,sinα+cosα=sin(α+),∵α∈(0,),∴α+∈(,),∴α∈(0,),sinα+cosα,故不正确.故选:D.4.(5分)已知双曲线=1(a>0,b>0)的离心率是,则该双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x 【解答】解:双曲线=1的离心率e==,即c=a,由b2=c2﹣a2=3a2﹣a2=2a2,即b=a,则该双曲线的渐近线方程为y=±x,即为y=x.故选:B.5.(5分)函数f(x)=a x﹣b的图象如图所示,其中a,b为常数,则下列结论正确的是()A.a>1,b>0B.a>1,b<0C.0<a<1,b>0D.0<a<1,b<0【解答】解:由指数函数的单调性知函数为递减函数,则0<a<1,∵f(0)=a﹣b<1,∴﹣b>0,即b<0,故选:D.6.(5分)如图,=,=,且BC⊥OA,C为垂足,设=λ,则λ的值为()A.B.C.D.【解答】解:=﹣,,∴,∴即===0∴λ=故选:A.7.(5分)甲、乙两位歌手在“中国好声音”选拔赛中,5位评委评分情况如茎叶图所示,记甲、乙两人的平均得分分别为、,则下列判断正确的是()A.<,甲比乙成绩稳定B.<,乙比甲成绩稳定C.>,甲比乙成绩稳定D.>,乙比甲成绩稳定【解答】解:由茎叶图知,甲的得分情况为17,16,28,30,34;乙的得分情况为15,28,26,28,33,因此可知甲的平均分为,乙的平均分为=86,故可知<,排除C、D,同时根据茎叶图数据的分布情况可知,乙的数据主要集中在86左右,甲的数据比较分散,乙比甲更为集中,故乙比甲成绩稳定,选B.故选:B.8.(5分)在平面直角坐标系xOy中,角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边经过点P(1,1),则函数y=sin(2x+α)在[O,π]上的单调递减区间为()A.[0,]与[]B.[,]C.[0,]与[,]D.[]【解答】解:由题意可得,sinα==cosα,∴α=+2kπ,k∈z,函数y=sin(2x+α)=sin(2x+),令2kπ+≤2x+≤2kπ+,k∈z,求得kπ+≤x≤kπ+,故函数的减区间为[kπ+,kπ+],k∈z.再结合x∈[O,π],可得函数的减区间为[,],故选:D.9.(5分)某个四面体的三视图如图(其中三个正方形的边长均为1)所示,则该几何体的体积为()A.B.C.D.【解答】解:由三视图可知:该几何体为正方体的内接正四面体,图中红颜色部分.该几何体的体积V=13=.故选:B.10.(5分)对于任意实数x,规定[x]表示不大于x的最大整数,则不等式4[x]2﹣12[x]+5<0成立的充分不必要条件是()A.x∈(,)B.x∈(,3)C.x∈[1,2]D.x∈[1,3)【解答】解:由4[x]2﹣12[x]+5<0,得:<[x]<,又[x]表示不大于x的最大整数,所以1≤x≤2.故选:C.二.填空题11.(5分)已知实数x,y满足不等式组,则x﹣y的最大值为1.【解答】解:满足约束条件的平面区域如图所示:点O(0,0),点A(1,0),点B(0,1)分别代入得z=0,1,﹣1,当x=1,y=0时,x﹣y有最大值1故答案为:112.(5分)函数f(x)=sin x+cos x的图象的一个对称中心到离它最近的对称轴的距离为..【解答】解:∵f(x)=sin x+cos x=sin(x+),∴T==2π,∴函数f(x)=sin x+cos x的图象的一个对称中心到离它最近的对称轴的距离为==.故答案为:.13.(5分)若程序框图如图所示,则程序运行后输出k的值是6.【解答】解:模拟执行程序,可得n=5,k=1不满足n为偶数,n=16,k=2,不满足n=1,满足n为偶数,n=8,k=3,不满足n=1,满足n为偶数,n=4,k=4,不满足n=1,满足n为偶数,n=2,k=5,不满足n=1,满足n为偶数,n=1,k=6,满足n=1,退出循环,输出k的值为6.故答案为:6.14.(5分)已知偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x.若在区间[﹣1,3]上,函数g(x)=f(x)﹣kx﹣k有3个零点,则实数k的取值范围是(,).【解答】解:根据已知条件知函数f(x)为周期为2的周期函数;且x∈[﹣1,1]时,f(x)=|x|;而函数g(x)的零点个数便是函数f(x)和函数y=kx+k的交点个数;∴(1)若k>0,则如图所示:当y=kx+k经过点(1,1)时,k=;当经过点(3,1)时,k=;∴;(2)若k<0,即函数y=kx+k在y轴上的截距小于0,显然此时该直线与f(x)的图象不可能有三个交点;即这种情况不存在;(3)若k=0,得到直线y=0,显然与f(x)图象只有两个交点;综上得实数k的取值范围是;故答案为:().15.(5分)若曲线C1:y=ax2(a>0)与曲线C2:y=lnx有唯一的公共点,则实数a的值为.【解答】解:由y=ax2,得y′=2ax,由y=lnx,得y′=,曲线y=ax2(a>0)与曲线y=lnx有唯一的公共点,则该公共点为两曲线公切线的切点,设为(s,t),则,解得a=.故答案为:.三.解答题16.(12分)在△ABC中,角A、B、C的对边分别为a、b、c,cos A=,cos B =.(1)求角C:(2)设c=,求△ABC的面积.【解答】解:(1)∵cos A=,cos B=.A、B、C为三角形内角.∴sin A==,sin B==,∴cos C=cos[π﹣(A+B)]=﹣cos(A+B)=﹣cos A cos B+sin A sin B=×﹣×=.∴C=.(2)∵c=,由(1)可得:sin C=,∴由正弦定理可得:b===,a===,∴S=ab sin C=××=.△ABC17.(12分)关于x的一元二次方程x2﹣2ax+b2=0.(1)若连续抛掷两次骰子得到的点数分别为a和b,求上述方程有实根的概率;(2)若从区间[0,6]中随机取两个数a和b,求上述方程有实根且a2+b2≤36的概率.【解答】解:记事件A=“方程x2﹣2ax+b2=0有实根”.由△=(2a)2﹣4b2≥0,得:a2≥b2所以,当a≥0,b≥0时,方程x2+2ax+b2=0有实根⇔a≥b(2分)(1)基本事件共6×6=36个,其中事件A包含21个基本事件:(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(4,4)(5,1),(5,2),(5,3),(5,4),(5,5),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)所以P(A)=(6分)(2)全部结果所构成的区域为{(a,b)|0≤a≤6,0≤b≤6},其面积为S=6×6=36.又构成事件A的区域为{(a,b)|0≤a≤6,0≤b≤6,a≥b,a2+b2≤36},其面积为S′=,所以P(A)=(10分)18.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,BC=AD,P A=PD,Q为AD的中点.(1)求证:AD⊥平面PBQ;(2)已知点M为线段PC的中点,证明:P A∥平面BMQ.【解答】证明:(1)△P AD中,P A=PD,Q为AD中点,∴PQ⊥AD,底面ABCD中,AD∥BC,BC=AD,∴DQ∥BC,DQ=BC,∴BCDQ为平行四边形,由∠ADC=90°,∴∠AQB=90°,∴AD⊥BQ,由AD⊥PQ,AD⊥BQ,BQ∩PQ=Q,PQ、BQ⊂面PBQ,∴AD⊥平面PBQ.…(7分)(2)连接CA,AC∩BQ=N,由AQ∥BC,AQ=BC,∴ABCQ为平行四边形,∴N为AC中点,由△P AC中,M、N为PC、AC中点,∴MN∥P A由MN⊂面BMQ,P A⊄面BMQ∴P A∥面BMQ.…(14分)19.(12分)已知数列{a n}中,前m项依次构成首项为1,公差为﹣2的等差数列.第m+1项至第2m项依次构成首项为1,公比为的等比数列,其中m≥3,m∈N*.(1)求a m,a2m(2)若对任意的n∈N*,都有a n+2m=a n.设数列{a n}的前n项和为S n,求S4m+3.【解答】解:(1)当1≤n≤m时,a n=1+(n﹣1)(﹣2)=﹣2n+3;当m+1≤n≤2m时,,综上,,∴;(2)S4m+3=S4m+a4m+1+a4m+2+a4m+3=2S2m+a1+a2+a3=2[(a1+a2+…+a m)+(a m+1+a m+2+…+a2m)]+a1+a2+a3=+(1﹣1﹣3)=.20.(13分)设函数f(x)=(a﹣2)ln(﹣x)++2ax(a∈R).(Ⅰ)当a=0时,求f(x)的极值;(Ⅱ)当a≠0时,求f(x)的单调区间.【解答】解:(Ⅰ)依题意,知f(x)的定义域为(﹣∞,0).当a=0时,,=.令f′(x)=0,解得.当x变化时,f′(x)与f(x)的变化情况如下表:由上表知:当时,f′(x)>0;当时,f′(x)<0.故当时,f(x)取得极大值为2ln2﹣2.(5分)(Ⅱ)==若a>0,令f′(x)>0,解得:;令f′(x)<0,解得:.若a<0,①当﹣2<a<0时,令f′(x)>0,解得:;令f′(x)<0,解得:或.②当a=﹣2时,,③当a<﹣2时,令f′(x)>0,解得:;令f′(x)<0,解得:或.综上,当a>0时,f(x)的增区间为,减区间为;当﹣2<a<0时,f(x)的增区间为,减区间为,;当a=﹣2时,f(x)的减区间为(﹣∞,0),无增区间;当a<﹣2时,f(x)的增区间为,减区间为,.(14分)21.(14分)已知椭圆C:+=1(a>b>0)的一个焦点与抛物线y2=4x 的焦点重合,D(1,)是椭圆C上一点.(1)求椭圆C的方程;(2)A,B分别是椭圆C的左、右顶点,P,Q是椭圆C上异于A,B的两个动点,直线AP,AQ的斜率之积为﹣.①设△APQ与△BPQ的面积分别为S1,S2,请问:是否存在常数λ(λ∈R).得S1=λS2恒成立?若存在,求出λ的值,若不存在,请说明理由;②求直线AP与BQ的交点M的轨迹方程.【解答】解:(1)由抛物线y2=4x的焦点重合,可得焦点F(1,0),∴c=1,1=a2﹣b2.∵D(1,)是椭圆C上一点,∴=1.把a2=1+b2代入上式可得:+=1,解得b2=3.∴a2=4.∴椭圆C的方程为;(2)①A(﹣2,0),B(2,0).当直线PQ的斜率存在时,设直线PQ的方程为y=kx+m,P(x1,y1),Q(x2,y2).联立,化为(3+4k2)x2+8kmx+4m2﹣12=0,△>0,可得m2<3+4k2.x1+x2=,x1x2=.又=﹣,y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2,∴4k2x1x2+4km(x1+x2)+4m2+x1x2+2(x1+x2)+4=0,∴(4k2+1)x1x2+(4km+2)(x1+x2)+4+4m2=0,∴++4+4m2=0,化为2k2+km﹣m2=0,∴2k=m或k=﹣m.满足△>0.点A到直线PQ的距离d1=,点B到直线PQ的距离d2=,∴===,把k=﹣m代入可得:=3.当直线PQ的斜率不存在时,x1=x2,y2=﹣y1,∴k AP k AQ==,化为2y1=±(x1+2).代入椭圆方程可得,x1=﹣2舍去.∴=3.综上可得:存在常数λ=3.得S1=3S2恒成立.②设直线AP的斜率为k,则直线BQ的斜率为,直线AP的方程为:y=k(x+2),直线BQ的方程为:y=﹣,消去k可得:=1,即为直线AP与BQ的交点M的轨迹方程.。

【2015高考一模 数学文科】2015年3月济南市高三模拟考试数学试题(文)及答案

【2015高考一模 数学文科】2015年3月济南市高三模拟考试数学试题(文)及答案

2015年高考模拟考试(山东卷)数学(文科)本试卷分第I 卷和第Ⅱ卷两部分,共5页.满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:柱体的体积公式:V Sh =,其中S 是柱体的底面积,h 是柱体的高.第I 卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}2230,1,1,3,M x x x N M N =+-==-⋃=则 A.{}1,3- B.{}1,1,3- C.{}1,1,3,3-- D.{}1,1,3--2.已知复数z 满足()1i z i -=(i 是虚数单位),则z 在复平面内对应的点所在象限为A.第一象限B.第二象限C.第三象限D.第四象限3.函数y =A.[)1,+∞B.()1,+∞C.1,2⎛⎫+∞ ⎪⎝⎭D.1,12⎛⎫ ⎪⎝⎭ 4.“1cos 2α=”是“3πα=”的 A.充分而不必要条件 B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.已知,,a b c R ∈,那么下列命题中正确的是A.若a b <,则22ac bc <B.若0,0a b c >><,则c c a b < C.若a b >,则()()22a c b c +>+D.若0ab >,则2a b b a+≥ 6.执行如图所示的程序框图,输出的S 值为A.9B.16C.25D.367.已知,x y 满足约束条件13223x x y z x y x y ≥⎧⎪+≤=+⎨⎪-≤⎩,若的最大值和最小值分别为,a b ,则a b +=A.7B.6C.5D.48.已知函数()y f x =是R 上的偶函数,当()12,0,x x ∈+∞时,都有()()()12120x x f x f x -⋅-<⎡⎤⎣⎦.设()21ln ,ln ,a b c ππ=== A.()()()f a f b f c >>B. ()()()f b f a f c >>C. ()()()f c f a f b >>D. ()()()f c f b f a >>9. 已知12,F F 是双曲线()222210,0x y a b a b-=>>的两个焦点,以12F F 为直径的圆与双曲线一个交点是P ,且12F PF ∆的三条边长成等差数列,则此双曲线的离心率是C.2D.510.设函数()f x 的定义域为R ,若存在常数()0f x x ωω>≤,使对一切实数x 均成立,则称()f x 为“条件约束函数”.现给出下列函数:①()4f x x =;②()22f x x =+;③()2225x f x x x =-+;④()f x 是定义在实数集R 上的奇函数,且对一切12,x x 均有()()12124f x f x x x -≤-.其中是“条件约束函数”的有A.1个B.2个C.3个D.4个第II 卷(共100分)二、填空题:本大题共5个小题,每小题5分,共25分.11.100名学生某次数学测试成绩(单位:分)的频率分布直方图如图所示,则模块测试成绩落在[)50,70中的学生人数是_________.12.已知ABC ∆中,角A,B,C 所对的边分别为,,a b c ,若s i n :s i n :s i n 1:2:3A B C =C=__________.13.某圆柱切割获得的几何体的三视图如图所示,其中俯视图是中心角为3π的扇形,则该几何体的体积为__________. 14.设,,a b c r r r 是单位向量,且()()0a b a c b c ⋅=-⋅-r r r r r r ,则的最大值为________.15.已知P 是直线34100x y +-=上的动点,PA ,PB 是圆222440x y x y +-++=的两条切线,A,B 是切点,C 是圆心,那么四边形PACB 面积的最小值为________.三、解答题:本大题共6小题,共75分.16.(本小题满分12分)设函数()22sin f x x x ωω=+0ω>),且()f x 的最小正周期为2π.(I )求ω的值;(II )将函数()y f x =图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()y g x =的图象,求函数()g x 的单调增区间.17. (本小题满分12分)某在元宵节活动上,组织了“摸灯笼猜灯谜”的趣味游戏.已知在一个不透明的箱子内放有大小和形状相同的标号分别为1,2,3的小灯笼若干个,每个灯笼上都有一个谜语,其中标号为1的小灯笼1个,标号为2的小灯笼2个,标号为3的小灯笼n 个.若参赛者从箱子中随机摸取1个小灯笼进行谜语破解,取到标号为3的小灯笼的概率为14. (I )求n 的值;(II )从箱子中不放回地摸取2个小灯笼,记第一次摸取的小灯笼的标号为a ,第二次摸取的小灯笼的标号为b.记“4a b +≥”为事件A ,求事件A 的概率.18. (本小题满分12分)如图,平面PBA ⊥平面ABCD ,90,,DAB PB AB BF PA ∠==⊥o ,点E 在线段AD 上移动. (I )当点E 为AD 的中点时,求证:EF//平面PBD ;(II )求证:无论点E 在线段AD 的何处,总有PE BF ⊥.19. (本小题满分12分)数列{}n a 满足()111,2n n a a a n N *+==∈,n S 为其前n 项和.数列{}n b 为等差数列,且满足1143,b a b S ==.(I )求数列{}{},n n a b 的通项公式;(II )设2221log n n n c b a +=⋅,数列{}n c 的前n 项和为n T ,证明:1132n T ≤<.20. (本小题满分13分)已知函数()()0xf x e ax a a R a =+-∈≠且. (I )若函数()0f x x =在处取得极值,求实数a 的值;并求此时()[]21f x -在,上的最大值;(II )若函数()f x 不存在零点,求实数a 的取值范围.21. (本小题满分14分)在平面直角坐标系xoy 中,椭圆()2222:10x y C a b a b+=>>的焦距为2,一个顶点与两个焦点组成一个等边三角形.(I )求椭圆C 的标准方程;(II )椭圆C 的右焦点为F ,过F 点的两条互相垂直的直线12,l l ,直线1l 与椭圆C 交于P ,Q 两点,直线2l 与直线4x 交于T 点.(i )求证:线段PQ 的中点在直线OT 上;(ii )求TFPQ 的取值范围.文科数学参考答案一、选择题 CBABD BACDC二、填空题11.25 12.3π 13. 2π 14. 1 三、解答题16. 解:(Ⅰ)()sin 2f x x x ωω=+=2sin(2)3x πω+……………………4分 ∴ 2=22ππω,即12ω= ……………………………………6分 (Ⅱ)由(Ⅰ)知()f x =2sin()3x π+,将函数)(x f y =的图象各点的横坐标缩短为原来的12,纵坐标不变,得到函数)(x g y =的图象,即()g x =2sin(2)3x π+ ……………………8分 由22+2232k x k πππππ-≤+≤,k Z ∈得:51212k x k ππππ-+≤≤+,k Z ∈,……………………10分 ∴()g x 的单调递增区间是:5[,]1212k k ππππ-++,k Z ∈ …………12分 17. 解:(Ⅰ)由题意,1124n n =++,1n ∴=……………………4分 (2)记标号为2的小灯笼为1a ,2a ;连续..摸取2个小灯笼的所有基本事件为: (1, 1a ),(1, 2a ),(1,3),(1a ,1),(2a ,1),(3,1),(1a ,2a ), (1a ,3),(2a ,1a ), (3, 1a ),(2a ,3),(3, 2a )共12个基本事件. ……………………8分A 包含的基本事件为: (1,3), (3,1),(1a ,2a ),(2a ,1a ),(1a ,3),(3, 1a ), (2a ,3),(3, 2a )……………………10分8()12P A ∴=23= ……………………12分 18. (Ⅰ)证明: 在三角形PBA 中,,PB AB BF PA =⊥,所以F 是PA 的中点,连接EF , ………………………………2分在PDA ∆中,点,E F 分别是边,AD PA 的中点,所以//EF PD …………………………………4分又EF PBD ⊄平面,PD PBD ⊂平面所以EF //平面PBD .……………………………6分(Ⅱ)因为平面PBA ⊥平面ABCD ,平面PBA 平面ABCD AB =, 90DAB ∠=,DA AB ⊥ ,DA ABCD ⊂平面所以DA ⊥平面PBA …………………… 8分又BF PBA ⊂平面 ,所以DA BF ⊥,又BF PA ⊥,PADA A =,,PA DA PDA ⊂平面,所以BF PDA ⊥面 ……………………………………10分又PE PDA ⊂平面 所以BF PE ⊥所以无论点E 在线段AD 的何处,总有PE ⊥BF . …………………………12分19. 解:(Ⅰ)由题意,{}n a 是首项为1,公比为2的等比数列,11121--⋅=⋅=∴n n n q a a . ∴12n n a -=,21n n S =-, …………………3分 设等差数列{}n b 的公差为d ,111b a ==,4137b d =+=,∴2d = ∴1(1)221n b n n =+-⨯=-. …………………6分 (II )∵212222log =log 221n n a n ++=+, ∴22211111()log (21)(21)22121n n n c b a n n n n +===-⋅-+-+,…………………7分. …………………9分∵*N n ∈, …………………10分当2n ≥∴数列{}n T 是一个递增数列,…………………12分 20. 解:(Ⅰ)函数)(x f 的定义域为R ,a e x f x +=)(',…………………1分 0)0(0'=+=a e f ,1-=∴a .…………………2分∴'()1x f x e =-∵在)0,(-∞上)(,0)('x f x f <单调递减,在),0(+∞上)(,0)('x f x f >单调递增, ∴0=x 时)(x f 取极小值.1-=∴a . …………………3分易知)(x f 在)0,2[-上单调递减,在]1,0(上)(x f 单调递增;且;31)2(2+=-e f ;)1(e f =)1()2(f f >-.…………………4分 当2-=x 时,)(x f 在]1,2[-的最大值为.312+e …………………5分 (Ⅱ)a e x f x +=)(',由于0>xe .①当0>a 时,)(,0)('x f x f >是增函数,…………………7分且当1>x 时,0)1()(>-+=x a e x f x .…………………8分 当0<x 时,取a x 1-=,则0)11(1)1(<-=--+<-a aa a f , 所以函数)(x f 存在零点,不满足题意.…………9分②当0<a 时,)ln(,0)('a x a e x f x -==+=.在))ln(,(a --∞上)(,0)('x f x f <单调递减,在)),(ln(+∞-a 上)(,0)('x f x f >单调递增,所以)ln(a x -=时)(x f 取最小值.………………11分函数)(x f 不存在零点,等价于0)ln(2)ln())(ln()ln(>-+-=--+=--a a a a a a e a f a , 解得02<<-a e .综上所述:所求的实数a 的取值范围是02<<-a e .………………13分 21. 解:(Ⅰ)由题意1222c a c ⎧=⎪⎨⎪=⎩,………………1分 解得3,1,2===b c a ,………………3分所求椭圆C 的标准方程为13422=+y x ;………………4分 (Ⅱ)解法一:(i )设:1PQ l x my =+,221431x y x my ⎧+=⎪⎨⎪=+⎩,消去x ,化简得096)43(22=-++my y m . 09)43(43622>⋅++=∆m m设),,(),,(2211y x Q y x P PQ 的中点00(,)G x y ,则436221+-=+m m y y ,439221+-=m y y ,……………6分 43322210+-=+=m m y y y ,4341200+=+=m my x , 即2243(,)3434m G m m -++,……………7分 4344343322m m m m k OG-=+⋅+-=,设)1(:--=x m y l FT ,得T 点坐标(m 3,4-),43m k OT -= ,所以OT OG k k =,线段PQ 的中点在直线OT 上.……………9分 (ii) 当0=m 时,PQ 的中点为F ,)0,4(T .1||||,32||,3||2====PQ TF a b PQ TF .……………10分 当0m ≠时,13)3()14(||222+=-+-=m m TF ,||11||122y y k PQ PQ -+==-+⋅+=2122124)(1y y y y m 4394)436(12222+-⋅-+-⋅+m m m m 4311222++⋅=m m .……………11分 )1113(411243113||||22222+++⋅=+⋅++=m m m m m PQ TF 令12+=m t .则)1)(13(41||||>+⋅=t tt PQ TF .令)1)(13(41)(>+⋅=t t t t g 则函数()g t 在()1,+∞上为增函数,……………13分所以1)1()(=>g t g . 所以||||PQ TF 的取值范围是[1,)+∞.……………14分 解法二:(i )设T 点的坐标为),4(m ,当0=m 时,PQ 的中点为F ,符合题意. ……………5分当0m ≠时,m k m k PQ FT 3,3-==.3:(1)PQ l y x m-=- ⎪⎪⎩⎪⎪⎨⎧--==+)1(313422x m y y x ,消去x 化简得22(12)6270m y my +--=. 027)12(43622>⋅++=∆m m设),,(),,(2211y x Q y x P PQ 的中点00(,)G x y ,则126221+=+m m y y .1227221+-=m y y ,……………6分 12322210+=+=m m y y y ,121231200+=-=m my x , 即)123,1212(22++m m m G ,……………7分 4121212322m m m m k OG =+⋅+=,又4m k OT = . 所以OT OG k k =,线段PQ 的中点在直线OT 上.……………9分 (ii) 当0m = 时,632PQ == , 413TF =-=,1TF PQ= ……………10分 当0m ≠时, 9)14(||222+=+-=m m TF ,||11||12y y k PQ PQ -+=.=-+⋅+=2122124)(91y y y y m 12274)126(912222+-⋅-+⋅+m m m m 129422++⋅=m m .……………11分 )939(4141299||||22222+++⋅=+⋅++=m m m m m PQ TF令92+=m t .则)3)(3(41||||>+⋅=t tt PQ TF .令)3)(3(41)(>+⋅=t t t t g 则函数()g t 在()3,+∞上为增函数,……………13分所以1)3()(=>g t g . 所以当||||PQ TF 的取值范围是[1,)+∞.……………14分 解法三:(i )当直线PQ l 斜率不存在时,PQ 的中点为F ,)0,4(T ,符合题意. ……………5分 当直线PQ l 斜率存在时,若斜率为0,则2l 垂直于 x 轴,与 x=4不能相交,故斜率不为0 设)1(:-=x k y l PQ ,(0k ≠)⎪⎩⎪⎨⎧-==+)1(13422x k y y x ,消去y ,化简得. 2222(34)84120k x k x k +-+-= 4222644(34)(412)144(1)0k k k k ∆=-+-=+>设),,(),,(2211y x Q y x P PQ 的中点00(,)G x y ,则2221438k k x x +=+,222143124k k x x +-=,……………6分 222104342kk x x x +=+=,200433)1(k k x k y +-=-=, 即)433,434(222k k k k G +-+,……………7分 kk k k k k OG 43443433222-=+⋅+-=, 设)1(1:--=x k y l FT ,得T 点坐标(k 3,4-),kk OT 43-=,所以OT OG k k =,线段PQ 的中点在直线OT 上.……………9分 (ii) 当直线PQ l 斜率不存在时,PQ 的中点为F ,)0,4(T .1||||,32||,3||2====PQ TF a b PQ TF .……………10分 当直线PQ l 斜率存在时,222213)3()14(||k k k TF +=-+-=,||1||122x x k PQ -+=. =-+⋅+=2122124)(1x x x x k 222222431244)438(1k k k k k +-⋅-+⋅+ 2243112kk ++⋅=.……………11分2222||34)||12(1)114TF k k PQ k k +==+++=⋅ 令211k t +=.则)1)(13(41||||>+⋅=t t t PQ TF .令)1)(13(41)(>+⋅=t t t t g 则函数()g t 在()1,+∞上为增函数,……………13分 所以1)1()(=>g t g . 所以||||PQ TF 的取值范围是),1[+∞.……………14分。

2015年高考文科数学山东卷(含详细答案)

2015年高考文科数学山东卷(含详细答案)

数学试卷 第1页(共33页)数学试卷 第2页(共33页)数学试卷 第3页(共33页)绝密★启用前2015年普通高等学校招生全国统一考试(山东卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|24}A x x =<<,{|(1)(3)0}B x x x =--<,则AB = ( )A .1,3()B .1,4()C .2,3()D .2,4()2.若复数z 满足z1i-=i ,其中i 为虚数单位,则z=( )A .1i -B .1i +C .1i --D .1i -+ 3.设0.60.6a =, 1.50.6b =,0.61.5c =,则a ,b ,c 的大小关系是( )A .a <b <cB .a <c <bC .b <a <cD .b <c <a4.要得到函数πsin(4)3y x =-的图象,只需要将函数sin 4y x =的图象( )A .向左平移π12个单位 B .向右平移π12个单位 C .向左平移π3个单位D .向右平移π3个单位5.若m ∈R ,命题“若0m >,则方程20x x m +-=有实根”的逆否命题是 ( )A .若方程20x x m +-=有实根,则0m >B .若方程20x x m +-=有实根,则0m ≤C .若方程20x x m +-=没有实根,则0m > D .若方程20x x m +-=没有实根,则0m ≤6.为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( )A .①③B .①④C .②③D .②④7.在区间[0,2]上随机地取一个数x ,则事件“1211log ()12x -+≤≤”发生的概率为( )A .34 B .23 C .13D .148.若函数21()2x x f x a+=-是奇函数,则使()3f x >成立的x 的取值范围为( )A .(,1)-∞-B .0,1-()C .01,()D .(1,)+∞9.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()AB C .D .10.设函数3, 1,()2, 1.x x b x f x x -⎧=⎨⎩<≥若5(())46f f =,则b =( )A .1B .78C .34D .12第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上. 11.执行如图所示的程序框图,若输入的x 的值为1,则输出的y 的值是_________.12.若x ,y满足约束条件131y x x y y -⎧⎪+⎨⎪⎩≤,≤,≥,则z =x +3y 的最大值为_______.13.过点(1P 作圆221x y +=的两条切线,切点分别为A ,B ,则PA PB =________.14.定义运算“⊗”:22(,,0)x y x y x y xy xy-⊗=∈≠R .当0x >,0y >时,(2)x y y x ⊗+⊗的最小值为__________.15.过双曲线2222:1(0,0)x y C a b a b-=>>的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为___________.---------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共33页)数学试卷 第5页(共33页)数学试卷 第6页(共33页)三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单(Ⅰ)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学1A ,2A ,3A ,4A ,5A ,3名女同学1B ,2B ,3B .现从这5名男同学和3名女同学中各随机选1人,求1A 被选中且1B 未被选中的概率.17.(本小题满分12分)ABC △中,角A ,B ,C 所对的边分别为a ,b ,c .已知cos B =,sin()A B +=,ac =sin A 和c 的值.18.(本小题满分12分)如图,三棱台DEF —ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点. (Ⅰ)求证:BD ∥平面FGH ;(Ⅱ)若CF ⊥BC ,AB ⊥BC ,求证:平面BCD ⊥平面EGH .19.(本小题满分12分)已知数列{}n a 是首项为正数的等差数列,数列11{} n n a a +的前n 项和为21nn +.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设()1 2n a n n b a =+,求数列{}n b 的前n 项和n T .20.(本小题满分13分)设函数()()ln f x x a x =+,2()x x g x e=,已知曲线()y f x =在点(1,(1))f 处的切线与直线20x y -=平行. (Ⅰ)求a 的值;(Ⅱ)是否存在自然数k ,使得方程()()f x g x =在(k ,k +1)内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(Ⅲ)设函数()min{()()}(min{},m x f x g x p q p q =,,表示中的较小值),求m (x )的最大值.21.(本小题满分14分)平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b C +=>>:的离心率为,且点1)2在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222144E x y a b+=:,P 为椭圆C 上任意一点,过点P 的直线y kx m =+交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .(i )求||||OQ OP 的值;(ii )求ABQ △面积的最大值.2015年普通高等学校招生全国统一考试(山东卷)数学(文科)答案解析第Ⅰ卷{2|A B x=3 / 11数学试卷 第10页(共33页) 数学试卷 第11页(共33页)数学试卷 第12页(共33页)1log -≤.02x ≤≤∴所求的概率为:【解析】2()2f x =22x a a =-22xxa a =-,21()21x x f x +=>-【提示】由5 / 11【解析】如图为等腰直角三角形旋转而成的旋转体.242π3h=数学试卷 第16页(共33页) 数学试卷 第17页(共33页)数学试卷 第18页(共33页)7.30OPA ∴∠=,260BPA ∠=,1||||cos60322PA PB PA PB ∴==+=2,然后代入向量数量积的定义可求PA PB .】xx y⊗=由0x>,222x≥⨯2,故答案为7 / 11数学试卷 第22页(共33页) 数学试卷 第23页(共33页)数学试卷 第24页(共33页)G F M =四边形CFDG FGH ,BD ∴∥,G ,H 分别为,AB BC ⊥HC ,EF HE ∥,CF BC ⊥平面EGH ,HE GH H =,又BC ⊂平面BCD EGH .H F H =,BD ⊂平面(Ⅰ)证法一:如图所示,连接CDGF M =由已知可得四边形CFDG利用三角形的中位线定理可得:MH ∥BD ,可得的中点,可得四边形1n n a +,则c9 / 11又数列1n n a +⎬⎭的前(Ⅰ)知21(1)2(2n 11)24n n n n b a n -==-+=,12114244n n T b n ∴=++++…,2311424(1)44n n n n ++++-+…,两式相减,得1143443n n n T +-=+-,1(31)449n n +-+. (Ⅰ)通过对1n n c a +分离分母,并项相加并利用数列1n n a +⎬⎭的前4nn ,写出T 【考点】数列的求和数学试卷 第28页(共33页) 数学试卷 第29页(共33页)数学试卷 第30页(共33页)22004x y +②设1(,A x 212414m x -=+122222222|4164|14(16414||14x x k m k k m k m k -+-++-+⎫⎪+⎭,,将y kx m =+,又24m <+时取得最大值2理、三角形面积公式及换元法,计算即可.【考点】直线与圆锥曲线的综合问题,椭圆的标准方程11 / 11。

2015年山东省高考数学试卷及解析(文科)

2015年山东省高考数学试卷及解析(文科)

2015年山东省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、(5分)已知集合A={x|2<x<4},B={x|(x﹣1)(x﹣3)<0},则A∩B=()A、(1,3)B、(1,4)C、(2,3)D、(2,4)2、(5分)若复数z满足=i,其中i为虚数单位,则z=()A、1﹣iB、1+iC、﹣1﹣iD、﹣1+i3、(5分)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系()A、a<b<cB、a<c<bC、b<a<cD、b<c<a4、(5分)要得到函数y=sin(4x﹣)的图象,只需要将函数y=sin4x的图象()个单位、A、向左平移B、向右平移C、向左平移D、向右平移5、(5分)当m∈N*,命题“若m>0,则方程x2+x﹣m=0有实根”的逆否命题是()A、若方程x2+x﹣m=0有实根,则m>0B、若方程x2+x﹣m=0有实根,则m≤0C、若方程x2+x﹣m=0没有实根,则m>0D、若方程x2+x﹣m=0没有实根,则m≤06、(5分)为比较甲,乙两地某月14时的气温,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差、其中根据茎叶图能得到的统计结论的编号为()A、①③B、①④C、②③D、②④7、(5分)在区间[0,2]上随机地取一个数x,则事件“﹣1≤log(x+)≤1”发生的概率为()A、B、C、D、8、(5分)若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为()A、(﹣∞,﹣1)B、(﹣1,0)C、(0,1)D、(1,+∞)9、(5分)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A、B、C、2πD、4π10、(5分)设函数f(x)=,若f(f())=4,则b=()A、1B、C、D、二、填空题(共5小题,每小题5分,满分25分)11、(5分)执行如图的程序框图,若输入的x的值为1,则输出的y的值是、12、(5分)若x,y满足约束条件,则z=x+3y的最大值为、13、(5分)过点P(1,)作圆x2+y2=1的两条切线,切点分别为A,B,则=、14、(5分)定义运算“⊗”x⊗y=(x,y∈R,xy≠0)、当x>0,y>0时,x⊗y+(2y)⊗x的最小值为、15、(5分)过双曲线C:(a>0,b>0)的右焦点作一条与其渐近线平行的直线,交C于点P、若点P的横坐标为2a,则C的离心率为、三、解答题(共6小题,满分75分)16、(12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团参加演讲社团85未参加演讲社团230(Ⅰ)从该班随机选1名同学,求该同学至少参加一个社团的概率;(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3、现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率、17、(12分)△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin(A+B)=,ac=2,求sinA和c的值、18、(12分)如图,三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点、(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH、19、(12分)已知数列{a n}是首项为正数的等差数列,数列{}的前n项和为、(1)求数列{a n}的通项公式;(2)设b n=(a n+1)•2,求数列{b n}的前n项和T n、20、(13分)设函数f(x)=(x+a)lnx,g(x)=、已知曲线y=f(x)在点(1,f(1))处的切线与直线2x﹣y=0平行、(Ⅰ)求a的值;(Ⅱ)是否存在自然数k,使得方程f(x)=g(x)在(k,k+1)内存在唯一的根?如果存在,求出k;如果不存在,请说明理由;(Ⅲ)设函数m(x)=min{f(x),g(x)}(min{p,q}表示p,q中的较小值),求m(x)的最大值、21、(14分)平面直角坐标系xOy中,已知椭圆C:=1(a>b>0)的离心率为,且点(,)在椭圆C上、(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆E:=1,P为椭圆C上任意一点,过点P的直线y=kx+m 交椭圆E与A,B两点,射线PO交椭圆E于点Q、(Ⅰ)求的值;(Ⅱ)求△ABQ面积的最大值、参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、(5分)已知集合A={x|2<x<4},B={x|(x﹣1)(x﹣3)<0},则A∩B=()A、(1,3)B、(1,4)C、(2,3)D、(2,4)题目分析:求出集合B,然后求解集合的交集、试题解答解:B={x|(x﹣1)(x﹣3)<0}={x|1<x<3},A={x|2<x<4},∴A∩B={x|2<x<3}=(2,3)、故选:C、点评:本题考查集合的交集的求法,考查计算能力、2、(5分)若复数z满足=i,其中i为虚数单位,则z=()A、1﹣iB、1+iC、﹣1﹣iD、﹣1+i题目分析:直接利用复数的乘除运算法则化简求解即可、试题解答解:=i,则=i(1﹣i)=1+i,可得z=1﹣i、故选:A、点评:本题考查复数的基本运算,基本知识的考查、3、(5分)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系()A、a<b<cB、a<c<bC、b<a<cD、b<c<a题目分析:利用指数函数和幂函数的单调性,可判断三个式子的大小、试题解答解:函数y=0.6x为减函数;故a=0.60.6>b=0.61.5,函数y=x0.6在(0,+∞)上为增函数;故a=0.60.6<c=1.50.6,故b<a<c,故选:C、点评:本题考查的知识点是指数函数和幂函数的单调性,难度中档、4、(5分)要得到函数y=sin(4x﹣)的图象,只需要将函数y=sin4x的图象()个单位、A、向左平移B、向右平移C、向左平移D、向右平移题目分析:直接利用三角函数的平移原则推出结果即可、试题解答解:因为函数y=sin(4x﹣)=sin[4(x﹣)],要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象向右平移单位、故选:B、点评:本题考查三角函数的图象的平移,值域平移变换中x的系数是易错点、5、(5分)当m∈N*,命题“若m>0,则方程x2+x﹣m=0有实根”的逆否命题是()A、若方程x2+x﹣m=0有实根,则m>0B、若方程x2+x﹣m=0有实根,则m≤0C、若方程x2+x﹣m=0没有实根,则m>0D、若方程x2+x﹣m=0没有实根,则m≤0题目分析:直接利用逆否命题的定义写出结果判断选项即可、试题解答解:由逆否命题的定义可知:当m∈N*,命题“若m>0,则方程x2+x ﹣m=0有实根”的逆否命题是:若方程x2+x﹣m=0没有实根,则m≤0、故选:D、点评:本题考查四种命题的逆否关系,考查基本知识的应用、6、(5分)为比较甲,乙两地某月14时的气温,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差、其中根据茎叶图能得到的统计结论的编号为()A、①③B、①④C、②③D、②④题目分析:由已知的茎叶图,我们易分析出甲、乙甲,乙两地某月14时的气温抽取的样本温度,进而求出两组数据的平均数、及方差可得答案试题解答解:由茎叶图中的数据,我们可得甲、乙甲,乙两地某月14时的气温抽取的样本温度分别为:甲:26,28,29,31,31乙:28,29,30,31,32;可得:甲地该月14时的平均气温:(26+28+29+31+31)=29,乙地该月14时的平均气温:(28+29+30+31+32)=30,故甲地该月14时的平均气温低于乙地该月14时的平均气温;甲地该月14时温度的方差为:=[(26﹣29)2+(28﹣29)2+(29﹣29)2+(31﹣29)2+(31﹣29)2]=3.6乙地该月14时温度的方差为:=[(28﹣30)2+(29﹣30)2+(30﹣30)2+(31﹣30)2+(32﹣30)2]=2,故>,所以甲地该月14时的气温的标准差大于乙地该月14时的气温标准差、故选:B、点评:本题考查数据的离散程度与茎叶图形状的关系,考查学生的计算能力,属于基础题7、(5分)在区间[0,2]上随机地取一个数x,则事件“﹣1≤log(x+)≤1”发生的概率为()A、B、C、D、题目分析:先解已知不等式,再利用解得的区间长度与区间[0,2]的长度求比值即得、试题解答解:利用几何概型,其测度为线段的长度、∵﹣1≤log(x+)≤1∴解得0≤x≤,∵0≤x≤2∴0≤x≤∴所求的概率为:P=故选:A、点评:本题主要考查了几何概型,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型、8、(5分)若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为()A、(﹣∞,﹣1)B、(﹣1,0)C、(0,1)D、(1,+∞)题目分析:由f(x)为奇函数,根据奇函数的定义可求a,代入即可求解不等式、试题解答解:∵f(x)=是奇函数,∴f(﹣x)=﹣f(x)即整理可得,∴1﹣a•2x=a﹣2x∴a=1,∴f(x)=∵f(x))=>3∴﹣3=>0,整理可得,,∴1<2x<2解可得,0<x<1故选:C、点评:本题主要考查了奇函数的定义的应用及分式不等式的求解,属于基础试题、9、(5分)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A、B、C、2πD、4π题目分析:画出图形,根据圆锥的体积公式直接计算即可、试题解答解:如图为等腰直角三角形旋转而成的旋转体、V=2×S•h=2×πR2•h=2×π×()2×=、故选:B、点评:本题考查圆锥的体积公式,考查空间想象能力以及计算能力、是基础题、10、(5分)设函数f(x)=,若f(f())=4,则b=()A、1B、C、D、题目分析:直接利用分段函数以及函数的零点,求解即可、试题解答解:函数f(x)=,若f(f())=4,可得f()=4,若,即b≤,可得,解得b=、若,即b>,可得,解得b=<(舍去)、故选:D、点评:本题考查函数的零点与方程根的关系,函数值的求法,考查分段函数的应用、二、填空题(共5小题,每小题5分,满分25分)11、(5分)执行如图的程序框图,若输入的x的值为1,则输出的y的值是13、题目分析:模拟执行程序框图,依次写出得到的x,y的值,当x=2时不满足条件x<2,计算并输出y的值为13、试题解答解:模拟执行程序框图,可得x=1满足条件x<2,x=2不满足条件x<2,y=13输出y的值为13、故答案为:13、点评:本题主要考查了循环结构的程序框图,属于基本知识的考查、12、(5分)若x,y满足约束条件,则z=x+3y的最大值为7、题目分析:作出题中不等式组表示的平面区域,再将目标函数z=x+3y对应的直线进行平移,可得当x=1且y=2时,z取得最大值、试题解答解:作出不等式组表示的平面区域,得到如图的三角形及其内部,由可得A(1,2),z=x+3y,将直线进行平移,当l经过点A时,目标函数z达到最大值∴z=1+2×3=7、最大值故答案为:7点评:本题给出二元一次不等式组,求目标函数z=x+3y的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题、13、(5分)过点P(1,)作圆x2+y2=1的两条切线,切点分别为A,B,则=、题目分析:根据直线与圆相切的性质可求PA=PB,及∠APB,然后代入向量数量积的定义可求、试题解答解:连接OA,OB,PO则OA=OB=1,PO=,2,OA⊥PA,OB⊥PB,Rt△PAO中,OA=1,PO=2,PA=∴∠OPA=30°,∠BPA=2∠OPA=60°∴===故答案为:点评:本题主要考查了圆的切线性质的应用及平面向量的数量积的定义的应用,属于基础试题、14、(5分)定义运算“⊗”x⊗y=(x,y∈R,xy≠0)、当x>0,y>0时,x⊗y+(2y)⊗x的最小值为、题目分析:通过新定义可得x⊗y+(2y)⊗x=,利用基本不等式即得结论、试题解答解:∵x⊗y=,∴x⊗y+(2y)⊗x=+=,由∵x>0,y>0,∴x2+2y2≥2=xy,当且仅当x=y时等号成立,∴≥=,故答案为:、点评:本题以新定义为背景,考查函数的最值,涉及到基本不等式等知识,注意解题方法的积累,属于中档题、15、(5分)过双曲线C:(a>0,b>0)的右焦点作一条与其渐近线平行的直线,交C于点P、若点P的横坐标为2a,则C的离心率为2+、题目分析:求出P的坐标,可得直线的斜率,利用条件建立方程,即可得出结论、试题解答解:x=2a时,代入双曲线方程可得y=±b,取P(2a,﹣b),∴双曲线C:(a>0,b>0)的右焦点作一条与其渐近线平行的直线的斜率为,∴=∴e==2+、故答案为:2+、点评:本题考查双曲线的性质,考查学生的计算能力,比较基础、三、解答题(共6小题,满分75分)16、(12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团参加演讲社团85未参加演讲社团230(Ⅰ)从该班随机选1名同学,求该同学至少参加一个社团的概率;(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3、现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率、题目分析:(Ⅰ)先判断出这是一个古典概型,所以求出基本事件总数,“至少参加一个社团”事件包含的基本事件个数,从而根据古典概型的概率计算公式计算即可;(Ⅱ)先求基本事件总数,即从这5名男同学和3名女同学中各随机选1人,有多少中选法,这个可利用分步计数原理求解,再求出“A1被选中,而B1未被选中”事件包含的基本事件个数,这个容易求解,然后根据古典概型的概率公式计算即可、试题解答解:(Ⅰ)设“至少参加一个社团”为事件A;从45名同学中任选一名有45种选法,∴基本事件数为45;通过列表可知事件A的基本事件数为8+2+5=15;这是一个古典概型,∴P(A)=;(Ⅱ)从5名男同学中任选一个有5种选法,从3名女同学中任选一名有3种选法;∴从这5名男同学和3名女同学中各随机选1人的选法有5×3=15,即基本事件总数为15;设“A1被选中,而B1未被选中”为事件B,显然事件B包含的基本事件数为2;这是一个古典概型,∴、点评:考查古典概型的概念,以及古典概型的概率的求法,分步计数原理的应用、17、(12分)△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin(A+B)=,ac=2,求sinA和c的值、题目分析:①利用两角和与差的正弦函数公式以及基本关系式,解方程可得;②利用正弦定理解之、试题解答解:①因为△ABC中,角A,B,C所对的边分别为a,b,c已知cosB=,sin(A+B)=,ac=2,所以sinB=,sinAcosB+cosAsinB=,所以sinA+cosA=①,结合平方关系sin2A+cos2A=1②,由①②解得27sin2A﹣6sinA﹣16=0,解得sinA=或者sinA=﹣(舍去);②由正弦定理,由①可知sin(A+B)=sinC=,sinA=,所以a=2c,又ac=2,所以c=1、点评:本题考查了利用三角函数知识解三角形,用到了两角和与差的正弦函数、同角三角函数的基本关系式、正弦定理等知识、18、(12分)如图,三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点、(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH、题目分析:(I)证法一:如图所示,连接DG,CD,设CD∩GF=M,连接MH、由已知可得四边形CFDG是平行四边形,DM=MC、利用三角形的中位线定理可得:MH∥BD,可得BD∥平面FGH;证法二:在三棱台DEF﹣ABC中,AB=2DE,H为BC的中点、可得四边形BHFE 为平行四边形、BE∥HF、又GH∥AB,可得平面FGH∥平面ABED,即可证明BD ∥平面FGH、(II)连接HE,利用三角形中位线定理可得GH∥AB,于是GH⊥BC、可证明EFCH 是平行四边形,可得HE⊥BC、因此BC⊥平面EGH,即可证明平面BCD⊥平面EGH、试题解答(I)证法一:如图所示,连接DG,CD,设CD∩GF=M,连接MH、在三棱台DEF﹣ABC中,AB=2DE,G为AC的中点、∴,∴四边形CFDG是平行四边形,∴DM=MC、又BH=HC,∴MH∥BD,又BD⊄平面FGH,MH⊂平面FGH,∴BD∥平面FGH;证法二:在三棱台DEF﹣ABC中,AB=2DE,H为BC的中点、∴,∴四边形BHFE为平行四边形、∴BE∥HF、在△ABC中,G为AC的中点,H为BC的中点,∴GH∥AB,又GH∩HF=H,∴平面FGH∥平面ABED,∵BD⊂平面ABED,∴BD∥平面FGH、(II)证明:连接HE,∵G,H分别为AC,BC的中点,∴GH∥AB,∵AB⊥BC,∴GH⊥BC,又H为BC的中点,∴EF∥HC,EF=HC,CF⊥BC、∴EFCH是矩形,∴CF∥HE、∵CF⊥BC,∴HE⊥BC、又HE,GH⊂平面EGH,HE∩GH=H,∴BC⊥平面EGH,又BC⊂平面BCD,∴平面BCD⊥平面EGH、点评:本题考查了空间线面面面平行与垂直的判定及性质定理、三角形中位线定理、平行四边形的判定与性质定理,考查了空间想象能力、推理能力,属于中档题、19、(12分)已知数列{a n}是首项为正数的等差数列,数列{}的前n项和为、(1)求数列{a n}的通项公式;(2)设b n=(a n+1)•2,求数列{b n}的前n项和T n、题目分析:(1)通过对c n=分离分母,并项相加并利用数列{}的前n项和为即得首项和公差,进而可得结论;(2)通过b n=n•4n,写出T n、4T n的表达式,两式相减后利用等比数列的求和公式即得结论、试题解答解:(1)设等差数列{a n}的首项为a1、公差为d,则a1>0,∴a n=a1+(n﹣1)d,a n+1=a1+nd,令c n=,则c n==[﹣],∴c1+c2+…+c n﹣1+c n=[﹣+﹣+…+﹣]=[﹣]==,又∵数列{}的前n项和为,∴,∴a1=1或﹣1(舍),d=2,∴a n=1+2(n﹣1)=2n﹣1;(2)由(1)知b n=(a n+1)•2=(2n﹣1+1)•22n﹣1=n•4n,∴T n=b1+b2+…+b n=1•41+2•42+…+n•4n,∴4T n=1•42+2•43+…+(n﹣1)•4n+n•4n+1,两式相减,得﹣3T n=41+42+…+4n﹣n•4n+1=•4n+1﹣,∴T n=、点评:本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题、20、(13分)设函数f(x)=(x+a)lnx,g(x)=、已知曲线y=f(x)在点(1,f(1))处的切线与直线2x﹣y=0平行、(Ⅰ)求a的值;(Ⅱ)是否存在自然数k,使得方程f(x)=g(x)在(k,k+1)内存在唯一的根?如果存在,求出k;如果不存在,请说明理由;(Ⅲ)设函数m(x)=min{f(x),g(x)}(min{p,q}表示p,q中的较小值),求m(x)的最大值、题目分析:(Ⅰ)求出f(x)的导数,求得切线的斜率,由两直线平行的条件:斜率相等,解方程可得a=1;(Ⅱ)求出f(x)、g(x)的导数和单调区间,最值,由零点存在定理,即可判断存在k=1;(Ⅲ)由(Ⅱ)求得m(x)的解析式,通过g(x)的最大值,即可得到所求、试题解答解:(Ⅰ)函数f(x)=(x+a)lnx的导数为f′(x)=lnx+1+,曲线y=f(x)在点(1,f(1))处的切线斜率为f′(1)=1+a,由切线与直线2x﹣y=0平行,则a+1=2,解得a=1;(Ⅱ)由(Ⅰ)可得f(x)=(x+1)lnx,f′(x)=lnx+1+,令h(x)=lnx+1+,h′(x)=﹣=,当x∈(0,1),h′(x)<0,h(x)在(0,1)递减,当x>1时,h′(x)>0,h(x)在(1,+∞)递增、当x=1时,h(x)min=h(1)=2>0,即f′(x)>0,f(x)在(0,+∞)递增,即有f(x)在(k,k+1)递增,g(x)=的导数为g′(x)=,当x∈(0,2),g′(x)>0,g(x)在(0,2)递增,当x>2时,g′(x)<0,g(x)在(2,+∞)递减、则x=2取得最大值,令T(x)=f(x)﹣g(x)=(x+1)lnx﹣,T(1)=﹣<0,T(2)=3ln2﹣>0,T(x)的导数为T′(x)=lnx+1+﹣,由1<x<2,通过导数可得lnx>1﹣,即有lnx+1+>2;e x>1+x,可得﹣>,可得lnx+1+﹣>2+=>0,即为T′(x)>0在(1,2)成立,则T(x)在(1,2)递增,由零点存在定理可得,存在自然数k=1,使得方程f(x)=g(x)在(k,k+1)内存在唯一的根;(Ⅲ)由(Ⅱ)知,m(x)=,其中x0∈(1,2),且x=2时,g(x)取得最大值,且为g(2)=,则有m(x)的最大值为m(2)=、点评:本题考查导数的运用:求切线方程和单调区间、极值,同时考查零点存在定理和分段函数的最值,考查运算能力,属于中档题、21、(14分)平面直角坐标系xOy中,已知椭圆C:=1(a>b>0)的离心率为,且点(,)在椭圆C上、(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆E:=1,P为椭圆C上任意一点,过点P的直线y=kx+m 交椭圆E与A,B两点,射线PO交椭圆E于点Q、(Ⅰ)求的值;(Ⅱ)求△ABQ面积的最大值、题目分析:(Ⅰ)通过将点点(,)代入椭圆C方程,结合=及a2﹣c2=b2,计算即得结论;(Ⅱ)通过(I)知椭圆E的方程为:+=1、(i)通过设P(x0,y0)、=λ可得Q(﹣λx0,﹣λy0),利用+=1及+=1,计算即可;(ii)设A(x1,y1)、B(x2,y2),分别将y=kx+m代入椭圆E、椭圆C的方程,利用根的判别式△>0、韦达定理、三角形面积公式及换元法,计算即可、试题解答解:(Ⅰ)∵点(,)在椭圆C上,∴,①∵=,a2﹣c2=b2,∴=,②联立①②,解得:a2=4,b2=1,∴椭圆C的方程为:+y2=1;(Ⅱ)由(I)知椭圆E的方程为:+=1、(i)设P(x0,y0),=λ,由题意可得Q(﹣λx0,﹣λy0),∵+=1,及+=1,即(+)=1,∴λ=2,即=2;(ii)设A(x1,y1),B(x2,y2),将y=kx+m代入椭圆E的方程,可得(1+4k2)x2+8kmx+4m2﹣16=0,由△>0,可得m2<4+16k2,由韦达定理,可得x1+x2=﹣,x1•x2=,∴|x1﹣x2|=,∵直线y=kx+m交y轴于点(0,m),∴S=|m|•|x1﹣x2|△OAB=|m|•==2,设t=,将y=kx+m代入椭圆C的方程,可得(1+4k2)x2+8kmx+4m2﹣4=0,由△≥0,可得m2≤1+4k2,又∵m2<4+16k2,∴0<t≤1,∴S=2=2=≤2,当且仅当t=1,即m2=1+4k2时取得最大值2,=3S,由(i)知S△ABQ∴△ABQ面积的最大值为6点评:本题是一道直线与圆锥曲线的综合问题,考查求椭圆方程、线段的比及三角形的面积问题,考查计算能力,利用韦达定理是解决本题的关键,注意解题方法的积累,属于难题。

2015年山东省济宁市高考一模数学试卷(文科)【解析版】

2015年山东省济宁市高考一模数学试卷(文科)【解析版】

2015年山东省济宁市高考数学一模试卷(文科)一、选择题:本大题共10小题.每小题5分.共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.(5分)若集合A={x|1gx<1},B={y|y=sin x,x∈R},则A∩B=()A.(0,1)B.(0,1]C.[﹣1,1]D.∅2.(5分)已知i为虚数单位,复数z满足iz=1+i,则=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i3.(5分)已知简谐运动的图象经过点(0,1),则该简谐运动的最小正周期T和初相φ分别为()A.T=6,φ=B.T=6,φ=C.T=6π,φ=D.T=6π,φ=4.(5分)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α5.(5分)已知如图1所示是某学生的14次数学考试成绩的茎叶图,第1次到第14次的考试成绩依次记为A1,A2,…A14,图2是统计茎叶图中成绩在一定范围内考试次数的一个程序框图,则输出的n的值是()A.8B.9C.10D.116.(5分)下列说法不正确的是()A.“若a+b≥2,则a,b中至少有一个不小于1”的逆命题为真B.存在正实数a,b,使得lg(a+b)=1ga+1gbC.命题p:∃x∈R,使得x2+x﹣1<0,则¬p:∀x∈R,使得x2+x﹣1≥0D.a+b+c=0是方程ax2+bx+c=0(a≠0)有一个根为1的充分必要条件7.(5分)若函数f(x)=ka x﹣a﹣x(a>0且a≠1)在(﹣∞,+∞)上既是奇函数又是增函数,则函数g(x)=log a(x+k)的图象是()A.B.C.D.8.(5分)设变量x,y满足约束条件,则z=2x﹣2y的取值范围为()A.[4,32]B.[,8]C.[8,16]D.[,4]9.(5分)设偶函数f(x)对任意x∈R,都有f(x+3)=﹣,且当x∈[﹣3,﹣2]时,f(x)=4x,则f(107.5)=()A.10B.C.﹣10D.﹣10.(5分)已知抛物线y=x2与双曲线﹣x2=1(a>0)有共同的焦点F,O 为坐标原点,P在x轴上方且在双曲线上,则•的最小值为()A.2﹣3B.3﹣2C.D.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)已知sin2α=,则cos2(α+)=.12.(5分)如果在一次试验中,测得(x,y)的四组数值分别是根据上表可得回归方程=﹣5x+,据此模型预报当x为20时,y的值为.13.(5分)某几何体的三视图如图所示,则该几何体外接球的表面积为.14.(5分)与圆C:x2+y2﹣2x+4y=0外切于原点,且半径为2的圆的标准方程为.15.(5分)设曲线y=x n+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为x n,令a n=lgx n,则a1+a2+…+a99的值为.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)某校高三年级文科学生600名,从参加期末考试的学生中随机抽出某班学生(该班共50名同学),并统计了他们的数学成绩(成绩均为整数且满分为150分),数学成绩分组及各组频数如下表:(1)写出a、b的值;(2)估计该校文科生数学成绩在120分以上学生人数;(3)该班为提高整体数学成绩,决定成立“二帮一”小组,即从成绩在[135,150]中选两位同学,来帮助成绩在[45,60)中的某一位同学.已知甲同学的成绩为56分,乙同学的成绩为145分,求甲乙在同一小组的概率.17.(12分)在△ABC中,a,b,c分别是角A,B,C的对边且a cos C=b﹣c.(Ⅰ)求角A的大小;=时,求边b和c的大小.(Ⅱ)当a=,S△ABC18.(12分)如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=,平面ABCD⊥平面BCEG,BC=CD=CE=2AD =2BG=2.求证:(Ⅰ)EC⊥CD;(Ⅱ)求证:AG∥平面BDE;(Ⅲ)求:几何体EG﹣ABCD的体积.19.(12分)等差数列{a n}的前n项和为S n,数列{b n}是等比数列,满足a1=3,b1=1,b2+S2=10,a5﹣2b2=a3.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)令Cn=设数列{c n}的前n项和T n,求T2n.20.(13分)已知函数f(x)=+lnx(a∈R)(Ⅰ)当a=1时,求f(x)的最小值;(Ⅱ)若f(x)在(0,e]上的最小值为2,求实数a的值;(Ⅲ)当a=﹣1时,试判断函数g(x)=f(x)+在其定义域内的零点的个数.21.(14分)已知椭圆C:+=1(a>b>0)的离心率为,椭圆中心到直线x+y﹣b=0的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)设过椭圆C的右焦点F且倾斜角为45°的直线l和椭圆C交于A,B两点,对于椭圆C上任一点M,若=λ+μ,求λμ的最大值.2015年山东省济宁市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共10小题.每小题5分.共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.(5分)若集合A={x|1gx<1},B={y|y=sin x,x∈R},则A∩B=()A.(0,1)B.(0,1]C.[﹣1,1]D.∅【解答】解:由A中不等式变形得:lgx<1=lg10,即0<x<10,∴A=(0,10),由y=sin x∈[﹣1,1],得到B=[﹣1,1],则A∩B=(0,1],故选:B.2.(5分)已知i为虚数单位,复数z满足iz=1+i,则=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【解答】解:∵iz=1+i,∴﹣i•iz=﹣i(1+i),化为z=1﹣i,∴=1+i.故选:A.3.(5分)已知简谐运动的图象经过点(0,1),则该简谐运动的最小正周期T和初相φ分别为()A.T=6,φ=B.T=6,φ=C.T=6π,φ=D.T=6π,φ=【解答】解:由题意知图象经过点(0,1),即2sinφ=1,又因可得,,由函数的周期得T==6,故选:A.4.(5分)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α【解答】解:A.若m∥α,n∥α,则m,n相交或平行或异面,故A错;B.若m⊥α,n⊂α,则m⊥n,故B正确;C.若m⊥α,m⊥n,则n∥α或n⊂α,故C错;D.若m∥α,m⊥n,则n∥α或n⊂α或n⊥α,故D错.故选:B.5.(5分)已知如图1所示是某学生的14次数学考试成绩的茎叶图,第1次到第14次的考试成绩依次记为A1,A2,…A14,图2是统计茎叶图中成绩在一定范围内考试次数的一个程序框图,则输出的n的值是()A.8B.9C.10D.11【解答】解:由程序框图知:算法的功能是计算学生在14次数学考试成绩中,成绩大于等于90的次数,由茎叶图得,在14次测试中,成绩大于等于90的有:93、99、98、98、94、91、95、103、101、114共10次,∴输出n的值为10.故选:C.6.(5分)下列说法不正确的是()A.“若a+b≥2,则a,b中至少有一个不小于1”的逆命题为真B.存在正实数a,b,使得lg(a+b)=1ga+1gbC.命题p:∃x∈R,使得x2+x﹣1<0,则¬p:∀x∈R,使得x2+x﹣1≥0D.a+b+c=0是方程ax2+bx+c=0(a≠0)有一个根为1的充分必要条件【解答】解:对于A,“若a+b≥2,则a,b中至少有一个不小于1”的逆命题为“若a,b中至少有一个不小于1,则a+b≥2”为假命题,例如a=2≥1,b =﹣1,则a+b=1<2,故A错误;对于B,存在正实数a=b=2,使得lg(2+2)=1g2+1g2,故B正确;对于C,命题p:∃x∈R,使得x2+x﹣1<0,则¬p:∀x∈R,使得x2+x﹣1≥0,故C正确;对于D,a+b+c=0⇒方程ax2+bx+c=0(a≠0)有一个根为1,即充分性成立;反之,若方程ax2+bx+c=0(a≠0)有一个根为1,则a+b+c=0,即必要性成立;所以,a+b+c=0是方程ax2+bx+c=0(a≠0)有一个根为1的充分必要条件,即D正确.综上所述,错误的选项为A,故选:A.7.(5分)若函数f(x)=ka x﹣a﹣x(a>0且a≠1)在(﹣∞,+∞)上既是奇函数又是增函数,则函数g(x)=log a(x+k)的图象是()A.B.C.D.【解答】解:∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是奇函数则f(﹣x)+f(x)=0即(k﹣1)(a x﹣a﹣x)=0则k=1又∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是增函数则a>1则g(x)=log a(x+k)=log a(x+1)函数图象必过原点,且为增函数故选:C.8.(5分)设变量x,y满足约束条件,则z=2x﹣2y的取值范围为()A.[4,32]B.[,8]C.[8,16]D.[,4]【解答】解:由约束条件作出可行域如图,令t=x﹣2y,化为直线方程的斜截式得:,联立,解得A(﹣2,﹣2),联立,解得C(﹣1,2).由图可知,当直线过A时,直线在y轴上的截距最小,t最大,最大值为2;当直线过C时,直线在y轴上的截距最大,t最小,最小值为﹣5.则t∈[﹣5,2],由z=2x﹣2y=2t t∈[﹣5,2],得z∈.故选:D.9.(5分)设偶函数f(x)对任意x∈R,都有f(x+3)=﹣,且当x∈[﹣3,﹣2]时,f(x)=4x,则f(107.5)=()A.10B.C.﹣10D.﹣【解答】解:因为f(x+3)=﹣,故有f(x+6)=﹣=﹣=f(x).函数f(x)是以6为周期的函数.f(107.5)=f(6×17+5.5)=f(5.5)=﹣=﹣=﹣=.故选:B.10.(5分)已知抛物线y=x2与双曲线﹣x2=1(a>0)有共同的焦点F,O 为坐标原点,P在x轴上方且在双曲线上,则•的最小值为()A.2﹣3B.3﹣2C.D.【解答】解:抛物线y=x2的焦点F为(0,2),则双曲线﹣x2=1的c=2,则a2=3,即双曲线方程为=1,设P(m,n),(n),则n2﹣3m2=3,则•=(m,n)•(m,n﹣2)=m2+n2﹣2n=﹣1+n2﹣2n=﹣2n﹣1=(n﹣)2﹣,由于区间[,+∞)在n=的右边,则为增区间,则当n=时,取得最小值,且为=3﹣2.故选:B.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)已知sin2α=,则cos2(α+)=.【解答】解:∵sin2α=,∴cos2(α+)====.故答案为:.12.(5分)如果在一次试验中,测得(x,y)的四组数值分别是根据上表可得回归方程=﹣5x+,据此模型预报当x为20时,y的值为26.5.【解答】解:==17.5,==39∴回归方程过点(17.5,39)代入=﹣5x+得39=﹣5×17.5+,∴=126.5∴x=20时,y=﹣5×20+126.5=26.5,故答案为:26.5.13.(5分)某几何体的三视图如图所示,则该几何体外接球的表面积为4π.【解答】解:由三视图知:几何体为圆锥,圆锥的高为1,底面半径为1,设外接球的半径为R,则由题设可得:则(R﹣1)2+1=R2,解得:R=1.∴外接球的表面积S=4π×12=4π.故答案为:4π14.(5分)与圆C:x2+y2﹣2x+4y=0外切于原点,且半径为2的圆的标准方程为(x+2)2+(y﹣4)2=20.【解答】解:圆C:x2+y2﹣2x+4y=0可化为圆C:(x﹣1)2+(y+2)2=5,设所求圆的圆心为C′(a,b),∵圆C′与圆C外切于原点,∴a<0①,∵原点与两圆的圆心C′、C三点共线,∴=﹣2,则b=﹣2a②,由|C′C|=3,得=3③,联立①②③解得a=﹣2,则圆心为(﹣2,4),∴所求圆的方程为:(x+2)2+(y﹣4)2=20.故答案为:(x+2)2+(y﹣4)2=20.15.(5分)设曲线y=x n+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为x n,令a n=lgx n,则a1+a2+…+a99的值为﹣2.【解答】解:∵曲线y=x n+1(n∈N*),∴y′=(n+1)x n,∴f′(1)=n+1,∴曲线y=x n+1(n∈N*)在(1,1)处的切线方程为y﹣1=(n+1)(x﹣1),该切线与x轴的交点的横坐标为x n=,∵a n=lgx n,∴a n=lgn﹣lg(n+1),∴a1+a2+…+a99=(lg1﹣lg2)+(lg2﹣lg3)+(lg3﹣lg4)+(lg4﹣lg5)+(lg5﹣lg6)+…+(lg99﹣lg100)=lg1﹣lg100=﹣2.故答案为:﹣2.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)某校高三年级文科学生600名,从参加期末考试的学生中随机抽出某班学生(该班共50名同学),并统计了他们的数学成绩(成绩均为整数且满分为150分),数学成绩分组及各组频数如下表:(1)写出a、b的值;(2)估计该校文科生数学成绩在120分以上学生人数;(3)该班为提高整体数学成绩,决定成立“二帮一”小组,即从成绩在[135,150]中选两位同学,来帮助成绩在[45,60)中的某一位同学.已知甲同学的成绩为56分,乙同学的成绩为145分,求甲乙在同一小组的概率.【解答】解:(1)频率总数是1,所以所缺频率b=1﹣(0.04+0.08+0.16+0.22+0.30+0.08)=0.12.第6行的频数=50×0.12=6;∴a、b的值分别为:6、0.12…(2分)(2)成绩在1(20分)以上的有6+4=10人,所以估计该校文科生数学成绩在1(20分)以上的学生有:人.…(6分)(3)[45,60)内有2人,记为甲、A.[135,150]内有4人,记为乙、B、C、D.法一:“二帮一”小组有以下6种分组办法:(甲乙B,ACD)、(甲乙C,ABD)、(甲乙D,ABC)、(甲BC,A乙D)、(甲BD,A乙C)、(甲CD,A乙B).其中甲、乙两同学被分在同一小组有3种办法:(甲乙B,ACD)、(甲乙C,ABD)、(甲乙D,ABC).所以甲、乙分到同一组的概率为.…(12分).17.(12分)在△ABC中,a,b,c分别是角A,B,C的对边且a cos C=b﹣c.(Ⅰ)求角A的大小;=时,求边b和c的大小.(Ⅱ)当a=,S△ABC【解答】解:(Ⅰ)由a cos C=b﹣c.可得:sin A cos C=sin B﹣sin C,又sin B=sin(A+C)=sin A cos C+cos A sin C,∴sin C=cos A sin C,∵sin C≠0,∴cos A=,又∵0<A<π,∴A=(Ⅱ)由S==bc sin A可得:bc=2.△ABC由余弦定理可得:a2=b2+c2﹣2bc cos A,可知:b2+c2﹣bc=3,即有:(b+c)2﹣3bc=3,所以解得:b+c=3,从而解得:b=2,c=1,或b=1,c=218.(12分)如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=,平面ABCD⊥平面BCEG,BC=CD=CE=2AD =2BG=2.求证:(Ⅰ)EC⊥CD;(Ⅱ)求证:AG∥平面BDE;(Ⅲ)求:几何体EG﹣ABCD的体积.【解答】(Ⅰ)证明:由平面ABCD ⊥平面BCEG ,平面ABCD ∩平面BCEG =BC ,CE ⊥BC ,CE ⊂平面BCEG , ∴EC ⊥平面ABCD ,…(3分)又CD ⊂平面BCDA ,故EC ⊥CD …(4分)(Ⅱ)证明:在平面BCEG 中,过G 作GN ⊥CE 交BE 于M ,连DM , 则由已知知;MG =MN ,MN ∥BC ∥DA ,且,∴MG ∥AD ,MG =AD ,故四边形ADMG 为平行四边形,∴AG ∥DM …(6分) ∵DM ⊂平面BDE ,AG ⊄平面BDE ,∴AG ∥平面BDE …(8分) (Ⅲ)解:V EG ﹣ABCD =V D ﹣BCEG +V G ﹣ABD =××2×2+××1×1×2=(12分)19.(12分)等差数列{a n }的前n 项和为S n ,数列{b n }是等比数列,满足a 1=3,b 1=1,b 2+S 2=10,a 5﹣2b 2=a 3. (Ⅰ)求数列{a n }和{b n }的通项公式; (Ⅱ)令Cn =设数列{c n }的前n 项和T n ,求T 2n .【解答】解:(Ⅰ)设数列{a n }的公差为d ,数列{b n }的公比为q , 由b 2+S 2=10,a 5﹣2b 2=a 3. 得,解得∴a n=3+2(n﹣1)=2n+1,.(Ⅱ)由a1=3,a n=2n+1得S n=n(n+2),则n为奇数,c n==,n为偶数,c n=2n﹣1.∴T2n=(c1+c3+…+c2n﹣1)+(c2+c4+…+c2n)===.20.(13分)已知函数f(x)=+lnx(a∈R)(Ⅰ)当a=1时,求f(x)的最小值;(Ⅱ)若f(x)在(0,e]上的最小值为2,求实数a的值;(Ⅲ)当a=﹣1时,试判断函数g(x)=f(x)+在其定义域内的零点的个数.【解答】解:(Ⅰ)当a=1时,,当x∈(0,1)时,f′(x)<0,f(x)单调递减,当x∈(1,+∞)时,f′(x)>0,f(x)单调递增,所以,当x=1时,f(x)有最小值:f(x)min=f(1)=1.(Ⅱ)因为,①当a≤0时,f′(x)>0,f(x)在(0,e]上为增函数,此时f(x)在(0,e]上无最小值.②当a∈(0,e]时,若x∈(0,a),则f′(x)<0,f(x)单调递减,若x∈(a,e],则f′(x)>0,f(x)单调递增,所以f(x)min=f(a)=1+lna=2,∴a=e,符合题意;③当a>e时,x∈(0,e],∴f′(x)<0,f(x)单调递减,所以,∴a=e,不符合题意;综上所述,a=e时符合题意.(Ⅲ)证明当a=﹣1时,函数,,令φ(x)=2+x﹣lnx,(x>0),则,所以x∈(0,1)时,φ′(x)<0,φ(x)单调递减,当x∈(1,+∞)时,φ′(x)>0,φ(x)单调递增,所以,φ(x)min=φ(1)=3>0,在定义域内g′(x)>0,g(x)在(0,+∞)单调递增,又g(1)=﹣1<0,而,因此,函数g(x)在(1,e)上必有零点,又g(x)在(0,+∞)单调递增,所以函数在其定义域内有唯一的零点.21.(14分)已知椭圆C:+=1(a>b>0)的离心率为,椭圆中心到直线x+y﹣b=0的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)设过椭圆C的右焦点F且倾斜角为45°的直线l和椭圆C交于A,B两点,对于椭圆C上任一点M,若=λ+μ,求λμ的最大值.【解答】解:(Ⅰ)∵e==,∴c2=,∴b2=a2﹣c2=,∵椭圆中心到直线x+y﹣b=0的距离为.∴d==,∴b=5,b2=25,a2=4b2=100,∴椭圆的方程为+=1.(Ⅱ)由(Ⅰ)知F(5,0),由题意可知AB方程为y=x﹣5,①椭圆的方程可化为x2+4y2=100,②将①代入②消去y得5x2﹣40x+200=0,③设A(x1,y1),B(x2,y2),则有x1+x2=8,x1x2=40,设M(x,y),由=λ+μ得(x,y)=λ(x1,y1)+μ(x2,y2)=(λx1+μx2,λy1+μy2)∴,又点M在椭圆上,∴x2+4y2=+4=λ2++2λμx1x2+4(++2λμy1y2)=λ2(+4)+μ2(+4)+2λμ(x1x2+4y1y2)=100,④又A,B在椭圆上,故有=100,=100,⑤而x 1x2+4y1y2=x1x2+4(x1﹣5)()=5x1x2﹣20(x1+x2)+300=5×40﹣20×8+300=20,⑥将⑤,⑥代入④可得λ2+μ2+=1,∵1=≥2λμ+=,∴λμ≤,当且仅当λ=μ时取“=”,则λμ的最大值为.。

【山东一模汇总 文数7份】2015届山东省各地市高三一模数学(文)试题及答案(Word版)

【山东一模汇总 文数7份】2015届山东省各地市高三一模数学(文)试题及答案(Word版)

山东省各地市2015年3月份高考模拟考试数学(文史类)试题及答案汇编【潍坊一模文数】山东省潍坊市2015届高三3月一模数学(文)试题及答案(Word版)2【济南一模文数】2015年3月济南市高三模拟考试数学试题(文)及答案11【烟台一模文数】山东省烟台市2015年高考诊断性测试文科数学试题及答案(Word版) 22【淄博一模文数】山东省淄博市2014-2015学年度高三模拟考试数学试题(文)及答案(Word版) 31【济宁一模文数】山东省济宁市2015届高三第一次模拟考数学试题(文)及答案(word版本) 42【德州一模文数】山东省德州市2015届高三下学期3月一模考试数学(文)试题Word版含答案51【泰安一模文数】泰安市2015届高三第一次模拟数学试题(文)含答案59【潍坊一模 文数】山东省潍坊市2015届高三3月一模数学(文)试题及答案(Word 版)试卷类型:A高三数学(文史类)本试卷共5页,分第I 卷(选择题)和第II 卷(非选择题)两部分.共150分.考试时间120分钟.第I 卷(选择题 共50分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每题选出答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再改涂其它答案标号.一、选择题:本大题共10小题,每小题5分,共50分.在每小给出的四个选项中,只有一项是符合题目要求的.1.集合(){}11,122xM x N x y g x ⎧⎫⎪⎪⎛⎫=≥==+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则M N ⋂等于A. [)0,+∞B. (]2,0-C. ()2,-+∞D. ()[),20,-∞-⋃+∞2.设复数12,z z 在复平面内的对应点关于虚轴对称,若112z i =-,则21z z 的虚部为 A.35B. 35-C.45D. 45-3.已知抛物线()220y px p =>上横坐标为1的点到焦点F 的距离为2,则抛物线方程为 A. 2y x =B. 22y x =C. 24y x =D. 28y x =4.已知函数()y f x =的定义域为{}0x x Rx ∈≠且,且满足()()0,0f x f x x +-=>当时,()l n 1f x x x =-+,则函数()y f x =的大致图象为5.某同学寒假期间对其30位亲属的饮食习惯进行了一次调查,列出了如下22⨯列联表:则可以说其亲属的饮食习惯与年龄有关的把握为 A.90% B.95% C.99% D.99.9%附:参考公式和临界值表6.下列结论中正确的是①命题:()30,2,3xx x ∀∈>的否定是()30,2,3xx x ∃∈≤;②若直线l 上有无数个点不在平面α内,则//l α;③射击比赛中,比赛成绩的方差越小的运动员成绩越不稳定; ④等差数列{}n a 的前n 项和为473=21.n S a S =,若,则 A.①②B.②③C.③④D.①④7.如图,在ABC ∆中,点D 在AC上,,5,sin AB BD BC BD ABC ⊥==∠=5,则CD 的长为A.B.4C.D.58.某几何体的三视图如图所示,其中左视图为半圆,则该几何体的体积是A.3B.2πC.3D.π9.圆()22:125C x y -+=,过点()2,1P -作圆的所有弦中,以最长弦和最短弦为对角线的四边形的面积是A.B.C.D. 10.对于实数,m n 定义运算“⊕”: ()()2221,21m mn m nm n f x x n mnm n ⎧-+-≤⎪⊕==-⊕⎨->⎪⎩设 ()1x -,且关于x 的方程()f x a =恰有三个互不相等的实数根123,,,x x x 则123,,x x x 的取值范围是A. 1,032⎛⎫-⎪⎝⎭B. 1,016⎛⎫-⎪⎝⎭C. 10,32⎛⎫ ⎪⎝⎭D. 10,16⎛⎫⎪⎝⎭第II 卷(非选择题 共100分)注意事项:1.将第II 卷答案用0.5mm 的黑色签字笔答在答题纸的相应位置上.2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共5小题,每小题5分,共25分. 11.已知0,0,x y >>且满足1221x y x y+=+,则的最小值是_________. 12.运行右面的程序框图,如果输入的x 的值在区间[]2,3-内,那么输出的()f x 的取值范围是_________.13.若变量,x y 满足约束条件20,3260,3x y x y z x y y k +-≥⎧⎪--≤=+⎨⎪≥⎩且的最小值为4,则k=_________.14.对于实数[],x x 表示不超过x的最大整数,观察下列等式:按照此规律第n 个等式的等号右边的结果为______________________.15.设双曲线()222210,0x y a b a b-=>>的左焦点为F ,过点F 作与x 轴垂直的直线l 交两条渐近线于M 、N两点,且与双曲线在第二象限的交点为P.设O 为坐标原点,若()1,,8OP mOM nON m n R mn =+∈=且,则双曲线的离心率为________.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16. (本小题满分12分) 已知函数()()2sin 24sin 206f x x x πωωω⎛⎫=--+> ⎪⎝⎭,其图象与x 轴相邻两个交点的距离为2π. (I )求函数()f x 的解析式;(II )若将()f x 的图象向左平移()0m m >个长度单位得到函数()g x 的图象恰好经过点,03π⎛⎫-⎪⎝⎭,求当m 取得最小值时,()7612g x ππ⎡⎤-⎢⎥⎣⎦在,上的单调递增区间. 17. (本小题满分12分)如图,已知平行四边形ABCD 与直角梯形ABEF 所在的平面互相垂直,11,//,2AB BE AF BE AF AB AF ===⊥,4CBA BC π∠==,P 为DF的中点.(I )求证:PE//平面ABCD ; (II )求三棱锥A BCE -的体积.18. (本小题满分12分)某校从参加某次数学能力测试学生中抽出36名学生,并统计了他们的数学成绩(成绩均为整数且满分为120分),成绩的频率分布直方图如图所示,其中成绩分组区间是:[)[)[)[]809090.100100110110120,,,,,,. (I )求实数a 的值并求这36名学生成绩的样本平均数x (同一组中的数据用该组区间的中点值作代表);(II )已知数学成绩为120分有4位同学,从这4位同学中任选两位同学,再从数学成绩在[)8090,中任选一位同学组成“二帮一”小组.已知甲同学的成绩为81分,乙同学的成绩为120分,求甲、乙两同学恰好被安排在同一个“二帮一”小组的概率.19. (本小题满分12分)已知各项都为正数的等比数列{}n a 的前n 项和为n S ,数列{}n b 的通项公式{}n b 的通项公式().1n n n b n N n n *⎧=∈⎨+⎩为偶数为奇数若2352441,S b a a b =+⋅=. (I )求数列{}n a 的通项公式; (II )求数列{}n n a b ⋅的前n 项和n T . 20. (本小题满分13分)椭圆2222:1x y C a b+=的左、右焦点分别为12,F F ,直线1:l x my +=C 的右焦点2F 且与椭圆交于P ,Q 两点,已知1F PQ ∆的周长为8,点O 为坐标原点. (I )求椭圆C 的方程;(II )设直线:l y kx t =+与椭圆C 相交于M,N 两点,以线段OM ,ON 为邻边作平行四边形OMGN ,其中点G 在椭圆C 上,当112t ≤≤时,求OG 的取值范围.21. (本小题满分14分)已知函数()()2ln f x x ax x a R =--∈.(I )当1a =时,求函数()f x 在()1,2-处的切线方程; (II )当0a ≤时,讨论函数()f x 的单调性;(III )问当0a >时,函数()y f x =的图象上是否存在点()()00,P x f x ,使得以P 点为切点的切线()l y f x =将的图象分割成12,C C 两部分,且12,C C 分别位于l 的两侧(仅点P 除外)?若存在,求出0x 的值;若不存在,说明理由.【济南一模 文数】2015年3月济南市高三模拟考试数学试题(文)及答案2015年高考模拟考试(山东卷)数学(文科)本试卷分第I 卷和第Ⅱ卷两部分,共5页.满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:柱体的体积公式:V Sh =,其中S 是柱体的底面积,h 是柱体的高.第I 卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}2230,1,1,3,M x x x N M N =+-==-⋃=则A.{}1,3-B.{}1,1,3-C.{}1,1,3,3--D.{}1,1,3--2.已知复数z 满足()1i z i -=(i 是虚数单位),则z 在复平面内对应的点所在象限为 A.第一象限B.第二象限C.第三象限D.第四象限3.函数y = A.[)1,+∞B.()1,+∞C.1,2⎛⎫+∞⎪⎝⎭D.1,12⎛⎫⎪⎝⎭4.“1cos 2α=”是“3πα=”的 A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.已知,,a b c R ∈,那么下列命题中正确的是 A.若a b <,则22ac bc < B.若0,0a b c >><,则c c a b< C.若a b >,则()()22a cbc +>+ D.若0ab >,则2a bb a+≥ 6.执行如图所示的程序框图,输出的S 值为 A.9 B.16 C.25 D.367.已知,x y 满足约束条件13223x x y z x y x y ≥⎧⎪+≤=+⎨⎪-≤⎩,若的最大值和最小值分别为,a b ,则a b +=A.7B.6C.5D.48.已知函数()y f x =是R 上的偶函数,当()12,0,x x ∈+∞时,都有()()()12120x x f x f x -⋅-<⎡⎤⎣⎦.设()21ln,ln ,ln a b c ππ===,则A.()()()f a f b f c >>B. ()()()f b f a f c >>C. ()()()f c f a f b >>D. ()()()f c f b f a >>9. 已知12,F F 是双曲线()222210,0x y a b a b-=>>的两个焦点,以12F F 为直径的圆与双曲线一个交点是P ,且12F PF ∆的三条边长成等差数列,则此双曲线的离心率是C.2D.510.设函数()f x 的定义域为R ,若存在常数()0f x x ωω>≤,使对一切实数x 均成立,则称()f x 为“条件约束函数”.现给出下列函数:①()4f x x =;②()22f x x =+;③()2225xf x x x =-+;④()f x 是定义在实数集R 上的奇函数,且对一切12,x x 均有()()12124f x f x x x -≤-.其中是“条件约束函数”的有 A.1个 B.2个 C.3个D.4个第II 卷(共100分)二、填空题:本大题共5个小题,每小题5分,共25分.11.100名学生某次数学测试成绩(单位:分)的频率分布直方图如图所示,则模块测试成绩落在[)50,70中的学生人数是_________. 12.已知ABC ∆中,角A,B,C 所对的边分别为,,a b c ,若s i n :s i n :s i n 2:3A B C =C=__________.13.某圆柱切割获得的几何体的三视图如图所示,其中俯视图是中心角为3π的扇形,则该几何体的体积为__________. 14.设,,a b c r r r是单位向量,且()()0a b a c b c ⋅=-⋅-r r r r r r ,则的最大值为________.15.已知P 是直线34100x y +-=上的动点,PA ,PB 是圆222440x y x y +-++=的两条切线,A,B 是切点,C 是圆心,那么四边形PACB 面积的最小值为________.三、解答题:本大题共6小题,共75分. 16.(本小题满分12分)设函数()22sin f x x x ωω=+0ω>),且()f x 的最小正周期为2π. (I )求ω的值;(II )将函数()y f x =图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()y g x =的图象,求函数()g x 的单调增区间.17. (本小题满分12分)某在元宵节活动上,组织了“摸灯笼猜灯谜”的趣味游戏.已知在一个不透明的箱子内放有大小和形状相同的标号分别为1,2,3的小灯笼若干个,每个灯笼上都有一个谜语,其中标号为1的小灯笼1个,标号为2的小灯笼2个,标号为3的小灯笼n 个.若参赛者从箱子中随机摸取1个小灯笼进行谜语破解,取到标号为3的小灯笼的概率为14. (I )求n 的值;(II )从箱子中不放回地摸取2个小灯笼,记第一次摸取的小灯笼的标号为a ,第二次摸取的小灯笼的标号为b.记“4a b +≥”为事件A ,求事件A 的概率.18. (本小题满分12分)如图,平面PBA ⊥平面ABCD ,90,,DAB PB AB BF PA ∠==⊥o ,点E 在线段AD 上移动. (I )当点E 为AD 的中点时,求证:EF//平面PBD ;(II )求证:无论点E 在线段AD 的何处,总有PE BF ⊥.19. (本小题满分12分)数列{}n a 满足()111,2n n a a a n N *+==∈,n S 为其前n 项和.数列{}n b 为等差数列,且满足1143,b a b S ==. (I )求数列{}{},n n a b 的通项公式; (II )设2221log n n n c b a +=⋅,数列{}n c 的前n 项和为n T ,证明:1132n T ≤<.20. (本小题满分13分)已知函数()()0x f x e ax a a R a =+-∈≠且.(I )若函数()0f x x =在处取得极值,求实数a 的值;并求此时()[]21f x -在,上的最大值; (II )若函数()f x 不存在零点,求实数a 的取值范围.21. (本小题满分14分)在平面直角坐标系xoy 中,椭圆()2222:10x y C a b a b+=>>的焦距为2,一个顶点与两个焦点组成一个等边三角形.(I )求椭圆C 的标准方程;(II )椭圆C 的右焦点为F ,过F 点的两条互相垂直的直线12,l l ,直线1l 与椭圆C 交于P ,Q 两点,直线2l 与直线4x =交于T 点.(i )求证:线段PQ 的中点在直线OT 上; (ii )求TF PQ的取值范围.文科数学参考答案一、选择题 CBABD BACDC二、填空题11.25 12.3π13. 2π 14. 1 三、解答题16. 解:(Ⅰ)()sin 2f x x x ωω=+=2sin(2)3x πω+……………………4分∴2=22ππω,即12ω= ……………………………………6分 (Ⅱ)由(Ⅰ)知()f x =2sin()3x π+,将函数)(x f y =的图象各点的横坐标缩短为原来的12,纵坐标不变,得到函数)(x g y =的图象,即()g x =2sin(2)3x π+ ……………………8分由22+2232k x k πππππ-≤+≤,k Z ∈得:51212k x k ππππ-+≤≤+,k Z ∈,……………………10分 ∴()g x 的单调递增区间是:5[,]1212k k ππππ-++,k Z ∈ …………12分17. 解:(Ⅰ)由题意,1124n n =++,1n ∴=……………………4分(2)记标号为2的小灯笼为1a ,2a ;连续..摸取2个小灯笼的所有基本事件为:(1, 1a ),(1, 2a ),(1,3),(1a ,1),(2a ,1),(3,1),(1a ,2a ), (1a ,3),(2a ,1a ), (3, 1a ),(2a ,3), (3, 2a )共12个基本事件. ……………………8分A 包含的基本事件为: (1,3), (3,1),(1a ,2a ),(2a ,1a ),(1a ,3),(3, 1a ), (2a ,3),(3, 2a ) ……………………10分8()12P A ∴=23= ……………………12分 18. (Ⅰ)证明: 在三角形PBA 中,,PB AB BF PA =⊥, 所以F 是PA 的中点,连接EF , ………………………………2分 在PDA ∆中,点,E F 分别是边,AD PA 的中点, 所以//EF PD …………………………………4分又EF PBD ⊄平面,PD PBD ⊂平面 所以EF //平面PBD .……………………………6分(Ⅱ)因为平面PBA ⊥平面ABCD ,平面PBA平面ABCD AB =, 90DAB ∠=,DA AB ⊥ ,DA ABCD ⊂平面所以DA ⊥平面PBA …………………… 8分又BF PBA ⊂平面 ,所以DA BF ⊥,又BF PA ⊥,PA DA A =,,PA DA PDA ⊂平面,所以BF PDA ⊥面 ……………………………………10分 又PE PDA ⊂平面 所以BF PE ⊥所以无论点E 在线段AD 的何处,总有PE ⊥BF . …………………………12分19. 解:(Ⅰ)由题意,{}n a 是首项为1,公比为2的等比数列,11121--⋅=⋅=∴n n n q a a . ∴12n n a -=,21n n S =-, …………………3分设等差数列{}n b 的公差为d ,111b a ==,4137b d =+=,∴2d = ∴1(1)221n b n n =+-⨯=-. …………………6分 (II )∵212222log =log 221n n a n ++=+, ∴22211111()log (21)(21)22121n n n c b a n n n n +===-⋅-+-+,…………………7分. …………………9分 ∵*N n ∈,…………………10分 当2n ≥∴数列{}n T 是一个递增数列,…………………12分 20. 解:(Ⅰ)函数)(x f 的定义域为R ,a e x f x +=)(',…………………1分0)0(0'=+=a e f ,1-=∴a .…………………2分∴'()1xf x e =-∵在)0,(-∞上)(,0)('x f x f <单调递减,在),0(+∞上)(,0)('x f x f >单调递增, ∴0=x 时)(x f 取极小值.1-=∴a . …………………3分易知)(x f 在)0,2[-上单调递减,在]1,0(上)(x f 单调递增;且;31)2(2+=-e f ;)1(e f =)1()2(f f >-.…………………4分 当2-=x 时,)(x f 在]1,2[-的最大值为.312+e…………………5分(Ⅱ)a e x f x +=)(',由于0>xe .①当0>a 时,)(,0)('x f x f >是增函数,…………………7分 且当1>x 时,0)1()(>-+=x a e x f x .…………………8分 当0<x 时,取a x 1-=,则0)11(1)1(<-=--+<-a aa a f , 所以函数)(x f 存在零点,不满足题意.…………9分 ②当0<a 时,)ln(,0)('a x a e x f x -==+=.在))ln(,(a --∞上)(,0)('x f x f <单调递减,在)),(ln(+∞-a 上)(,0)('x f x f >单调递增, 所以)ln(a x -=时)(x f 取最小值.………………11分函数)(x f 不存在零点,等价于0)ln(2)ln())(ln()ln(>-+-=--+=--a a a a a a e a f a , 解得02<<-a e .综上所述:所求的实数a 的取值范围是02<<-a e .………………13分21. 解:(Ⅰ)由题意1222c a c ⎧=⎪⎨⎪=⎩,………………1分解得3,1,2===b c a ,………………3分所求椭圆C 的标准方程为13422=+y x ;………………4分 (Ⅱ)解法一:(i )设:1PQ l x my =+,221431x y x my ⎧+=⎪⎨⎪=+⎩,消去x ,化简得096)43(22=-++my y m . 09)43(43622>⋅++=∆m m设),,(),,(2211y x Q y x P PQ 的中点00(,)G x y ,则436221+-=+m m y y ,439221+-=m y y ,……………6分 43322210+-=+=m m y y y ,4341200+=+=m my x , 即2243(,)3434mG m m -++,……………7分 4344343322m m m m k OG-=+⋅+-=, 设)1(:--=x m y l FT ,得T 点坐标(m 3,4-),43mk OT -=,所以OT OG k k =,线段PQ 的中点在直线OT 上.……………9分 (ii) 当0=m 时,PQ 的中点为F ,)0,4(T .1||||,32||,3||2====PQ TF a b PQ TF .……………10分当0m ≠时,13)3()14(||222+=-+-=m m TF ,||11||122y y k PQ PQ-+==-+⋅+=2122124)(1y y y y m 4394)436(12222+-⋅-+-⋅+m m m m 4311222++⋅=m m .……………11分 )1113(411243113||||22222+++⋅=+⋅++=m m m m m PQ TF令12+=m t .则)1)(13(41||||>+⋅=t tt PQ TF .令)1)(13(41)(>+⋅=t t t t g则函数()g t 在()1,+∞上为增函数,……………13分 所以1)1()(=>g t g .所以||||PQ TF 的取值范围是[1,)+∞.……………14分 解法二:(i )设T 点的坐标为),4(m ,当0=m 时,PQ 的中点为F ,符合题意. ……………5分当0m ≠时,m k m k PQ FT 3,3-==. 3:(1)PQ l y x m -=-⎪⎪⎩⎪⎪⎨⎧--==+)1(313422x m y y x ,消去x 化简得22(12)6270m y my +--=. 027)12(43622>⋅++=∆m m设),,(),,(2211y x Q y x P PQ 的中点00(,)G x y ,则126221+=+m m y y .1227221+-=m y y ,……………6分 12322210+=+=m m y y y ,121231200+=-=m my x , 即)123,1212(22++m mm G ,……………7分 4121212322mm m m k OG=+⋅+=,又4m k OT = .所以OT OG k k =,线段PQ 的中点在直线OT 上.……………9分 (ii) 当0m = 时,632PQ == , 413TF =-=,1TF PQ= ……………10分 当0m ≠时,9)14(||222+=+-=m m TF ,||11||12y y k PQ PQ-+=.=-+⋅+=2122124)(91y y y y m 12274)126(912222+-⋅-+⋅+m m m m 129422++⋅=m m .……………11分)939(4141299||||22222+++⋅=+⋅++=m m m m m PQ TF令92+=m t .则)3)(3(41||||>+⋅=t tt PQ TF .令)3)(3(41)(>+⋅=t t t t g则函数()g t 在()3,+∞上为增函数,……………13分所以1)3()(=>g t g .所以当||||PQ TF 的取值范围是[1,)+∞.……………14分 解法三:(i )当直线PQ l 斜率不存在时,PQ 的中点为F ,)0,4(T ,符合题意. ……………5分 当直线PQ l 斜率存在时,若斜率为0,则2l 垂直于 x 轴,与 x=4不能相交,故斜率不为0 设)1(:-=x k y l PQ ,(0k ≠)⎪⎩⎪⎨⎧-==+)1(13422x k y y x ,消去y ,化简得. 2222(34)84120k x k x k +-+-= 4222644(34)(412)144(1)0k k k k ∆=-+-=+>设),,(),,(2211y x Q y x P PQ 的中点00(,)G x y ,则2221438k k x x +=+,222143124kk x x +-=,……………6分 222104342k k x x x +=+=,200433)1(k kx k y +-=-=, 即)433,434(222k kk k G +-+,……………7分 kk k k k k OG43443433222-=+⋅+-=, 设)1(1:--=x k y l FT ,得T 点坐标(k 3,4-),kk OT 43-=,所以OT OG k k =, 线段PQ 的中点在直线OT 上.……………9分(ii) 当直线PQ l 斜率不存在时,PQ 的中点为F ,)0,4(T .1||||,32||,3||2====PQ TF a b PQ TF .……………10分当直线PQ l 斜率存在时,222213)3()14(||kk k TF +=-+-=,||1||122x x k PQ -+=.=-+⋅+=2122124)(1x x x x k 222222431244)438(1kk k k k +-⋅-+⋅+ 2243112k k ++⋅=.……………11分2222||34)||12(1)114TF k k PQ k k +==+++=⋅令211kt +=.则)1)(13(41||||>+⋅=t t t PQ TF .令)1)(13(41)(>+⋅=t t t t g 则函数()g t 在()1,+∞上为增函数,……………13分 所以1)1()(=>g t g .所以||||PQ TF 的取值范围是),1[+∞.……………14分【烟台一模 文数】山东省烟台市2015年高考诊断性测试文科数学试题及答案(Word 版)一. 选择题(本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. ) 1. 设i 是虚数单位,R a ∈,若21a ii-+是一个纯虚数,则实数a 的值为( ) A. 12-B. 1-C. 12D. 12. 已知集合()(){}360,x x x x P =--≤∈Z ,{}Q 5,7=,则下列结论成立的是( ) A. Q ⊆PB. Q P =PC. Q Q P =D. {}Q 5P =3. 已知向量()1,2a =,()1,0b =,()4,3c =-. 若λ为实数且()a b c λ+⊥,则λ=( ) A. 14B. 12C. 1D. 24. 若条件:p 2x ≤,条件:q x a ≤,且p 是q 的充分不必要条件,则a 的取值范围是( ) A. 2a ≥B. 2a ≤C. 2a ≥-D.2a ≤-5. 某几何体三视图如图所示,其中三角形的三边长与圆的直径均为2,则该几何体体积为( )C.43+D.43+ 6. 已知点(),x y M 的坐标满足5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,N 点的坐标为()1,3-,点O 为坐标原点,则ON⋅OM 的最小值是( ) A. 12B. 5C. 6-D. 21-7. 将函数2sin 4y x πω⎛⎫=- ⎪⎝⎭(0ω>)的图象分别向左. 向右各平移4π个单位后,所得的两个图象的对称轴重合,则ω的最小值为( ) A. 12B. 1C. 2D.48. 右图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本的平均重量为( ) A. 13B. 12C. 11D. 109. 已知(),x y P 是直线40kx y ++=(0k >)上一动点,PA 是圆C :2220x y y +-=的一条切线,A 是切点,若线段PA 长度最小值为2,则k 的值为( ) A. 3B.2C. D. 210. 已知()2243,023,0x x x f x x x x ⎧-+≤⎪=⎨--+>⎪⎩,不等式()()2f x a f a x +>-在[],1a a +上恒成立,则实数a 的取值范围是( ) A. (),2-∞-B. (),0-∞C. ()0,2D.()2,0-二. 填空题(本大题共5小题,每小题5分,共25分. ) 11. 函数()()21log 2f x x =-的定义域为 .12. 某程序框图如图所示,现依次输入如下四个函数:①()cos f x x =;②()1f x x =;③()lg f x x =;④()2x xe ef x --=,则可以输出的函数的序号是 .13. 已知曲线sin cos y a x x =+在0x =处的切线方程为10x y -+=,则实数a 的值为.14. 已知抛物线22y px =的焦点F 与双曲线22179x y -=的右焦点重合,抛物线的准线与x 轴的交点为K ,点A在抛物线上,且F AK =,则F ∆A K 的面积为 .15. 关于方程1sin 102xx ⎛⎫+-= ⎪⎝⎭,给出下列四个命题:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(),0-∞内有且只有一个实数根;④若0x 是方程的实数根,则01x >-,其中所有正确命题的序号是 .三. 解答题(本大题共6小题,共75分. 解答应写出文字说明. 证明过程或演算步骤. )16. (本小题满分12分)汽车是碳排放量比较大的行业之一,某地规定,从2015年开始,将对二氧化碳排放量超过130/g km 的轻型汽车进行惩罚性征税. 检测单位对甲. 乙两品牌轻型汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:/g km ).经测算得乙品牌轻型汽车二氧化碳排放量的平均值为120x =乙/g km .()1求表中x 的值,并比较甲. 乙两品牌轻型汽车二氧化碳排放量的稳定性;()2从被检测的5辆甲品牌轻型汽车中任取2辆,则至少有一辆二氧化碳排放量超过130/g km 的概率是多少?17. (本小题满分12分)已知函数()f x a b =⋅,其中()2cos ,sin 2a x x =,()cos ,1b x =,R x ∈.()1求函数()y f x =的单调递减区间;()2在C ∆AB 中,角A . B . C 所对的边分别为a . b . c ,()1f A =-,a =向量()3,sin m =B 与()2,sinC n =共线,求边长b 和c 的值.18. (本小题满分12分)如图,CD AB 是正方形,D E ⊥平面CD AB .()1求证:C A ⊥平面D B E ;()2若F//D A E ,D 3F E =A ,点M 在线段D B 上,且1D 3BM =B ,求证://AM 平面F BE .19. (本小题满分12分)已知数列{}n a 的前n 项和为n S ,n a . n S 满足()()12n n t S t a -=-(t 为常数,0t ≠且1t ≠).()1求数列{}n a 的通项公式; ()2设()()3log 1n n n b a S =-⋅-,当13t =时,求数列{}n b 的前n 项和n T .20. (本小题满分13分)已知函数()x f x e =,()2g x ax bx c =++(0a ≠).()1若()f x 的图象与()g x 的图象所在两条曲线的一个公共点在y 轴上,且在该点处两条曲线的切线互相垂直,求b 和c 的值;()2若1a c ==,0b =,试比较()f x 与()g x 的大小,并说明理由.21. (本小题满分12分)已知椭圆:E 22221x y a b +=(0a b >>焦点到直线=y x()1求椭圆E的方程;()2已知点()的直线l交椭圆E于两个不同点A. B,设直线MA与2,1M,斜率为12MB的斜率分别为1k,2k,①若直线l过椭圆E的左顶点,求此时1k,2k的值;②试猜测k,2k的关系,并给出你的证明.1参考答案一.选择题1. C2. D3. B4. A5. D6. D7. C8. B9. D 10. A 二.填空题11. {2x x >且3x ≠} 12. ④ 13. 1 14. 32 15. ②③④ 三. 解答题16. 解:(1)由题可知,120x =乙,所以480+1205x=,解得120x =. 又由已知可得120x =甲,……………2分()()()()()2222221=801201101201201201401201501206005s ⎡⎤-+-+-+-+-=⎣⎦甲 ()()()()()2222221=1001201201201201201001201601204805s ⎡⎤-+-+-+-+-=⎣⎦乙因为x x =甲乙,22s s >甲乙,……………5分所以乙品牌轻型汽车二氧化碳排放量的稳定性好. ……………6分(2)从被检测的5辆甲品牌轻型汽车中任取2辆,共有10种二氧化碳排放量结果:()()80 11080 120,,,,()()80 14080 150,,,,()()110 120110 140,,,, ()()110 150120 140,,,,()()120 150140 150,,,,…………10分 设“至少有一辆二氧化碳排放量超过130/g km ”为事件A , 则7()0.710P A ==, 所以至少有一辆二氧化碳排放量超过130/g km 的概率是0.7. ………12分 17. 解:(1)2()=2cos 21cos 2212cos(2)3f x x x x x x π-=+=++, (3)分令2223k x k ππ≤+≤π+π,解得)63k x k k πππ-≤≤π+∈Z (,所以()f x 的单调递减区间为 )63k k k ππ⎡⎤π-π+∈⎢⎥⎣⎦Z ,(. ………6分 (2)∵()12cos 213f A A π⎛⎫=++=- ⎪⎝⎭,∴cos 213A π⎛⎫+=- ⎪⎝⎭,MFDCBAEG又72333A πππ<+<,∴23A ππ+=,即3A π=,…………8分∵a =()22222cos 37a b c bc A b c bc =+-=+-=. ……①因为向量(3,sin )B =m 与(2,sin )C =n 共线,所以2sin 3sin B C =, 由正弦定理得23b c =,……②………11分 解①②得3b =,2c =. …………12分18. (1)证明:因为DE ⊥平面ABCD ,所以AC DE ⊥. ……………2分 因为ABCD 是正方形,所以BD AC ⊥,又=BD DE D , 从而AC ⊥平面BDE . ……………5分 (2)解:延长EF DA 、交于点G , 因为DE AF //,AF DE 3=,所以13GA AF GD DE ==,…………7分 因为13BM BD =,所以13BM BD =,所以13BM GA BD GD ==,所以//AM GB ,……10分又AM ⊄平面BEF ,GB ⊂平面BEF , 所以//AM 平面BEF . …………12分19. 解:(1)由(1)(2)n n t S t a -=-,及11(1)(2)n n t S t a ++-=-,作差得1n n a ta +=, 即数列{}n a 成等比数列,11n n a a t -=,当1n =时,11(1)(2)t S t a -=-,解得12a t =,故2n n a t =. …5分(2)当13t =时,123nn a =⋅(),113n n S -=, ()()32log =31n n n n nb S a -=-⋅,………8分2324623333n n n T =++++, 234+112462 33333n n n T =++++,作差得234+1+1+122222221223+113333333333n n n n n n n n n T +=++++-=--=-, 所以323223n n n T +=-⋅.………12分 20. 解:(1)由已知(0)1f =,'()e x f x =,'(0)1f =,(0)g c =,'()2g x ax b =+,'(0)g b =,……2分依题意:⎧⎨⎩(0)(0)'(0)'(0)1f g f g ==-,所以⎧⎨⎩1,1c b ==-;……5分(2)1a c ==,0b =时,2()1g x x =+,①0x =时,(0)1f =,(0)1g =,即()()f x g x =;………6分 ②0x <时,()1f x <,()1g x >,即()()f x g x <;………7分 ③0x >时,令2()()()e 1x h x f x g x x =-=--,则'()e 2x h x x =-. 设()'()=e 2x k x h x x =-,则'()=e 2x k x -,当ln 2x <时,'()0,()k x k x <在区间ln 2)-∞(,单调递减; 当ln 2x >时,'()0,()k x k x >在区间ln 2+)∞(,单调递增.所以当ln 2x =时,()k x 取得极小值,且极小值为ln 2(ln 2)e 2ln 22ln 40k =-=-> 即()'()=e 20x k x h x x =->恒成立,故()h x 在R 上单调递增,又(0)0h =, 因此,当0x >时,()(0)=0h x h >,即()g()f x x >. ……12分 综上,当0x <时,()()f x g x <;当0x =时,()()f x gx =; 当0x>时,()g()f x x >.……13分21. 解:(1)设椭圆的右焦点( 0)c ,,由右焦点到直线y x =,解得c =又由椭圆的离心率为,ca ∴=228,2ab ==,所以椭圆E 的方程为22182x y +=. …………4分(2)①若直线过椭圆的左顶点,则直线的方程是1:2l y x =+,联立方程组2212182y x x y ⎧=⎪⎪⎨⎪+=⎪⎩,解得121200x x y y =⎧⎧=-⎪⎪⎨⎨==⎪⎪⎩⎩故12k k ==. ………7分 ②猜测:120k k +=. 证明如下:………8分设直线在y 轴上的截距为m ,所以直线的方程为12y x m =+.由2211282x y y x m ⎧=+⎪+⎨=⎪⎪⎪⎩,得222240x mx m ++-=. 设11(,)A x y . 22(,)B x y ,则122x x m +=-,21224x x m =-. ………10分 又1111,2y k x -=-2221,2y k x -=- 故1212121122y y k k x x --+=+--122112(1)(2)(1)(2)(2)(2)y x y x x x --+--=--. 又1112y x m =+,2212y x m =+, 所以1221(1)(2)(1)(2)y x y x --+--122111=1)(2)1)(2)22x m x x m x +--++--(( 1212(2)()4(1)x x m x x m =+-+-- 224(2)(2)4(1)0m m m m =-+----=故120k k +=. ………14分【淄博一模 文数】山东省淄博市2014-2015学年度高三模拟考试数学试题(文)及答案(Word 版)淄博市2014—2015学年度高三模拟考试试题文 科 数 学本试卷分第I 卷和第Ⅱ卷两部分,共6页.满分150分,考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A ,B 互斥,那么P(A+B)=P(A)+P(B)第I 卷(共50分)一、选择题:本大题共10小题。

2015山东高考文科数学真题及答案

2015山东高考文科数学真题及答案

2015山东高考文科数学真题及答案第Ⅰ卷(共50分)一、 选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的1. 已知集合A={x|2<x<4},B={x|(x-1)(x-3)<0},则A ⋂B=( ) (A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4) 【答案】C 【解析】试题分析:因为B ={x|1<x<3},所以(2,3)A B ⋂=,故选C. 考点:1.集合的基本运算;2.简单不等式的解法. 2. 若复数Z 满足1zi-=i ,其中i 为虚数单位,则Z=( ) (A )1-i (B )1+i (C )-1-i (D )-1+i 【答案】C考点:1.复数的运算;2.共轭复数.3. 设a=0.60.6,b=0.61.5,c=1.50.6,则a ,b ,c 的大小关系是( ) (A )a <b <c (B )a <c <b (C )b <a <c (D )b <c <a 【答案】C 【解析】试题分析:由0.6xy =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C.考点:1.指数函数的性质;2.函数值比较大小. 4. 要得到函数y=sin (4x-3π)的图象,只需要将函数y=sin4x 的图象( ) (A ).向左平移12π个单位 (B )向右平移12π个单位(C ).向左平移3π个单位 (D )向右平移3π个单位 【答案】B考点:三角函数图象的变换.5. 设m R ∈,命题“若m>0,则方程20x x m +-=有实根”的逆否命题是( ) A.若方程20x x m +-=有实根,则>0 B.若方程20x x m +-=有实根,则.若方程20x x m +-=没有实根,则>0 .若方程20x x m +-=没有实根,则0【答案】D 【解析】试题分析:一个命题的逆否命题,要将原命题的条件、结论加以否定,并且加以互换,故选D.考点:命题的四种形式.6. 为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的标号为( ) (A )①③ (B) ①④ (C) ②③ (D) ②④ 【答案】B考点:1.茎叶图;2.平均数、方差、标准差.7. 在区间[0,2]上随机地取一个数x,则事件“121-1log 2x ≤+≤()1”发生的概率为( ) (A )34 (B )23 (C )13 (D )14【答案】A 【解析】试题分析:由121-1log 2x ≤+≤()1得,11122211113log 2log log ,2,022222x x x ≤+≤≤+≤≤≤(),所以,由几何概型概率的计算公式得,3032204P -==-,故选A.考点:1.几何概型;2.对数函数的性质.8. 若函数21()2x x f x a+=-是奇函数,则使f (x )>3成立的x 的取值范围为( )(A )( ) (B)() (C )(0,1) (D )(1,+)【答案】C 【解析】试题分析:由题意()()f x f x =--,即2121,22x x xxa a --++=---所以,(1)(21)0,1x a a -+==,21(),21x x f x +=-由21()321x x f x +=>-得,122,01,x x <<<<故选C.考点:1.函数的奇偶性;2.指数运算.9. 已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) ()()()22π()42π【答案】B考点:1.旋转体的几何特征;2.几何体的体积. 10. 设函数3,1()2,1xx b x f x x -<⎧=⎨≥⎩,若5(())46f f =,则b=( ) (A )1 (B )78 (C )34 (D)12【答案】D 【解析】试题分析:由题意,555()3,662f b b =⨯-=-由5(())46f f =得,51253()42b b b ⎧-<⎪⎪⎨⎪--=⎪⎩或5251224bb -⎧-≥⎪⎨⎪=⎩,解得12b =,故选D. 考点:1.分段函数;2.函数与方程.第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分11. 执行右边的程序框图,若输入的x 的值为1,则输出的y的值是.【答案】13考点:算法与程序框图.12. 若x,y 满足约束条件13,1y x x y y -≤⎧⎪+≤⎨⎪≥⎩则3z x y =+的最大值为 .【答案】7 【解析】试题分析:画出可行域及直线30x y +=,平移直线30x y +=,当其经过点(1,2)A 时,直线的纵截距最大,所以3z x y =+最大为1327z =+⨯=.考点:简单线性规划.13. 过点P (1,)作圆的两条切线,切点分别为A ,B ,则=.【答案】32考点:1.直线与圆的位置关系;2.平面向量的数量积.14. 定义运算“⊗”: 22x y x y xy-⊗=(,0x y R xy ∈≠,).当00x y >>,时,(2)x y y x ⊗+⊗的最小值是 .2 【解析】试题分析:由新定义运算知,2222(2)4(2)(2)2y x y x y x y x xy --⊗==,因为,00x y >>,,所以,2222224222(2)222x y y x x y xyx y y x xy xy xy --+⊗+⊗=+=≥=2x =时,(2)x y y x ⊗+⊗2.考点:1.新定义运算;2.基本不等式.15. 过双曲线C :22221x y a a-=0,0a b >>()的右焦点作一条与其渐近线平行的直线,交C于点P .若点P 的横坐标为2a ,则C 的离心率为 . 【答案】23+考点:1.双曲线的几何性质;2.直线方程. 三、解答题:本大题共6小题,共75分 16. (本小题满分12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团参加演讲社团 8 5 未参加演讲社团 230(1) 从该班随机选1名同学,求该同学至少参加上述一个社团的概率; (2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3.现从这5名男同学和3名女同学中各随机选1人,求A 1被选中且B 1未被选中的概率.【答案】(1) 13;(2)215. 【解析】试题分析:(1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,故至少参加上述一个社团的共有453015-=人,所以从该班级随机选1名同学,利用公式计算即得.(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:111213212223313233{,},{,},{,},{,},{,},{,},{,},{,},{,},A B A B A B A B A B A B A B A B A B 414243515253{,},{,},{,},{,},{,},{,}A B A B A B A B A B A B ,共15个.根据题意,这些基本事件的出现是等可能的.事件“1A 被选中且1B 未被选中”所包含的基本事件有:1213{,},{,}A B A B ,共2个. 应用公式计算即得.试题解析:(1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,故至少参加上述一个社团的共有453015-=人,所以从该班级随机选1名同学,该同学至少参加上述一个社团的概率为151.453P == (2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:111213212223313233{,},{,},{,},{,},{,},{,},{,},{,},{,},A B A B A B A B A B A B A B A B A B 414243515253{,},{,},{,},{,},{,},{,}A B A B A B A B A B A B ,共15个.根据题意,这些基本事件的出现是等可能的.事件“1A 被选中且1B 未被选中”所包含的基本事件有:1213{,},{,}A B A B ,共2个. 因此1A 被选中且1B 未被选中的概率为215P =. 考点:1.古典概型;2.随机事件的概率. 17. (本小题满分12分)ABC ∆中,角A ,B ,C 所对的边分别为a,b,c.已知cos ()B A B ac =+==求sin A 和c 的值.【答案】3由正弦定理可得23a c =,结合23ac =即得.试题解析:在ABC ∆中,由3cos B =6sin B =因为A B C π++=,所以6sin sin()9C A B =+=, 因为sin sin C B <,所以C B <,C 为锐角,3cos 9C =, 因此sin sin()sin cos cos sin A B C B C B C =+=+653362239393=⨯+⨯=. 由,sin sin a c A C =可得2sin 33sin 6cc A a c C ===,又23ac =1c =. 考点:1.两角和差的三角函数;2.正弦定理.18. 如图,三棱台DEF ABC -中,2AB DE G H =,,分别为AC BC ,的中点. (I )求证://BD 平面FGH ;(II )若CF BC AB BC ⊥⊥,,求证:平面BCD ⊥平面EGH .【答案】证明见解析思路二:在三棱台DEF ABC -中,由2,BC EF H =为BC 的中点, 可得HBEF 为平行四边形, //.BE HF 在ABC ∆中,G H ,分别为AC BC ,的中点, 得到//,GH AB 又GH HF H ⋂=, 得到平面//FGH 平面ABED .(II)证明:连接HE .根据 G H ,分别为AC BC ,的中点,得到 //,GH AB 由,AB BC ⊥得GH BC ⊥,又H 为BC 的中点,得到四边形EFCH 是平行四边形,从而//.CF HE又CF BC ⊥,得到 HE BC ⊥.试题解析:(I )证法一:连接,.DG CD 设CD GF M ⋂=,连接MH ,在三棱台DEF ABC -中,2AB DE G =,分别为AC 的中点,可得//,DF GC DF GC =,所以四边形DFCG 是平行四边形,则M 为CD 的中点,又H 是BC 的中点,所以//HM BD , 又HM ⊂平面FGH ,BD ⊄平面FGH ,所以//BD 平面FGH .证法二:在三棱台DEF ABC -中,由2,BC EF H =为BC 的中点, 可得//,,BH EF BH EF =所以HBEF 为平行四边形,可得//.BE HF 在ABC ∆中,G H ,分别为AC BC ,的中点, 所以//,GH AB 又GH HF H ⋂=, 所以平面//FGH 平面ABED , 因为BD ⊂平面ABED , 所以//BD 平面FGH.(II)证明:连接HE .因为G H ,分别为AC BC ,的中点,所以//,GH AB 由,AB BC ⊥得GH BC ⊥,又H 为BC 的中点,所以//,,EF HC EF HC =因此四边形EFCH 是平行四边形,所以//.CF HE又CF BC ⊥,所以HE BC ⊥.又,HE GH ⊂平面EGH ,HE GH H ⋂=,所以BC ⊥平面EGH , 又BC ⊂平面BCD ,所以平面BCD ⊥平面.EGH 考点:1.平行关系;2.垂直关系. 19. (本小题满分12分)已知数列{}n a 是首项为正数的等差数列,数列11n n a a +⎧⎫⎨⎬•⎩⎭的前n 项和为21nn +.(I )求数列{}n a 的通项公式;(II )设()12n an n b a =+⋅,求数列{}n b 的前n 项和n T .【答案】(I )2 1.n a n =- (II) 14(31)4.9n n n T ++-⋅=【解析】试题分析:(I )设数列{}n a 的公差为d , 令1,n =得12113a a =,得到 123a a =. 令2,n =得12231125a a a a +=,得到 2315a a =. 解得11,2a d ==即得解.(II )由(I )知24224,n n n b n n -=⋅=⋅得到 121424......4,n n T n =⋅+⋅++⋅ 从而23141424......(1)44,n n n T n n +=⋅+⋅++-⋅+⋅利用“错位相减法”求和.试题解析:(I )设数列{}n a 的公差为d , 令1,n =得12113a a =,所以123a a =. 令2,n =得12231125a a a a +=,所以2315a a =. 解得11,2a d ==,所以2 1.n a n =-(II )由(I )知24224,n n n b n n -=⋅=⋅所以121424......4,n n T n =⋅+⋅++⋅ 所以23141424......(1)44,n n n T n n +=⋅+⋅++-⋅+⋅ 两式相减,得121344......44n n n T n +-=+++-⋅114(14)13444,1433n n n n n ++--=-⋅=⨯--所以113144(31)44.999n n n n n T ++-+-⋅=⨯+=考点:1.等差数列的通项公式;2.数列的求和、“错位相减法”. 20. (本小题满分13分)设函数. 已知曲线在点(1,(1))f 处的切线与直线平行.(Ⅰ)求a 的值;(Ⅱ)是否存在自然数k ,使得方程()()f x g x =在(,1)k k +内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(Ⅲ)设函数()min{(),()}m x f x g x =(min{p ,q}表示,p ,q 中的较小值),求m(x)的最大值.【答案】(I )1a = ;(II) 1k = ;(III) 24e. 【解析】试题分析:(I )由题意知, '(1)2f =,根据'()ln 1,af x x x=++即可求得. (II )1k =时,方程()()f x g x =在(1,2)内存在唯一的根.设2()()()(1)ln ,x x h x f x g x x x e=-=+-通过研究(0,1]x ∈时,()0h x <.又2244(2)3ln 2ln8110,h e e =-=->-= 得知存在0(1,2)x ∈,使0()0h x =.应用导数研究函数()h x 的单调性,当(1,)x ∈+∞时,()h x 单调递增. 作出结论:1k =时,方程()()f x g x =在(,1)k k +内存在唯一的根.(III )由(II )知,方程()()f x g x =在(1,2)内存在唯一的根0x ,且0(0,)x x ∈时,()()f x g x <,0(,)x x ∈+∞时,()()f x g x >,得到020(1)ln ,(0,](),(,)xx x x x m x x x x e +∈⎧⎪=⎨∈+∞⎪⎩.当0(0,)x x ∈时,研究得到0()().m x m x ≤当0(,)x x ∈+∞时,应用导数研究得到24()(2),m x m e ≤=且0()(2)m x m <. 综上可得函数()m x 的最大值为24e. 试题解析:(I )由题意知,曲线在点(1,(1))f 处的切线斜率为2,所以'(1)2f =,又'()ln 1,af x x x=++所以1a =. (II )1k =时,方程()()f x g x =在(1,2)内存在唯一的根.设2()()()(1)ln ,x x h x f x g x x x e=-=+-当(0,1]x ∈时,()0h x <. 又2244(2)3ln 2ln8110,h e e=-=->-= 所以存在0(1,2)x ∈,使0()0h x =. 因为1(2)'()ln 1,x x x h x x x e -=+++所以当(1,2)x ∈时,1'()10h x e>->,当(2,)x ∈+∞时,'()0h x >,所以当(1,)x ∈+∞时,()h x 单调递增.所以1k =时,方程()()f x g x =在(,1)k k +内存在唯一的根.(III )由(II )知,方程()()f x g x =在(1,2)内存在唯一的根0x ,且0(0,)x x ∈时,()()f x g x <,0(,)x x ∈+∞时,()()f x g x >,所以020(1)ln ,(0,](),(,)xx x x x m x x x x e+∈⎧⎪=⎨∈+∞⎪⎩. 当0(0,)x x ∈时,若(0,1],()0;x m x ∈≤若0(1,),x x ∈由1'()ln 10,m x x x=++>可知00()();m x m x <≤故0()().m x m x ≤ 当0(,)x x ∈+∞时,由(2)'(),xx x m x e-=可得0(,2)x x ∈时,'()0,()m x m x >单调递增;(2,)x ∈+∞时,'()0,()m x m x <单调递减;可知24()(2),m x m e≤=且0()(2)m x m <.综上可得函数()m x 的最大值为24e . 考点:1.导数的几何意义;2.应用导数研究函数的单调性、最值. 21. (本小题满分14分)平面直角坐标系xOy 中,已知椭圆C :2222+=1(>>0)x y b bαα,且点12)在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆E :2222+=144x y a b,P 为椭圆C 上任意一点,过点P 的直线=+y kx m交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q. (i )求||||OQ OP 的值; (ii)求ABQ ∆面积的最大值.【答案】(I )2214x y +=;(II )(i )||2||OQ OP =;(ii ) 【解析】试题分析:(I )由题意知22311,4a b+==,解得224,1a b ==. (II )由(I )知椭圆E 的方程为221164x y +=. (i )设00||(,),,||OQ P x y OP λ=由题意知00(,)Q x y λλ--. 根据2200 1.4x y +=及 2200()()1164x y λλ--+=,知2λ=. (ii )设1122(,),(,),A x y B x y 将y kx m =+代入椭圆E 的方程,可得222(14)84160k x kmx m +++-=,由0,∆>可得22416m k <+……………………①应用韦达定理计算12||x x -=及OAB ∆的面积12212|||||214m S m x x k =-==+= 设22.14m t k =+将直线y kx m =+代入椭圆C 的方程,可得222(14)8440k x kmx m +++-=,由0,∆≥可得2214m k ≤+……………………②由①②可知01,t S <≤==当且仅当1t =,即2214m k =+时取得最大值由(i )知,ABQ ∆的面积为3S 即得ABQ ∆面积的最大值为试题解析:(I )由题意知22311,4a b+==,解得224,1a b ==, 所以椭圆C 的方程为22 1.4x y += (II )由(I )知椭圆E 的方程为221164x y +=. (ii )设00||(,),,||OQ P x y OP λ=由题意知00(,)Q x y λλ--. 因为2200 1.4x y +=又2200()()1164x y λλ--+=,即22200() 1.44x y λ+= 所以2λ=,即||2.||OQ OP = (ii )设1122(,),(,),A x y B x y 将y kx m =+代入椭圆E 的方程,可得222(14)84160k x kmx m +++-=,由0,∆>可得22416m k <+……………………①则有21212228416,.1414km m x x x x k k-+=-=++所以12||x x -=因为直线y kx m =+与y 轴交点的坐标为(0,)m ,所以OAB ∆的面积121||||2S m x x =-=== 设22.14m t k=+将直线y kx m =+代入椭圆C 的方程,可得222(14)8440k x kmx m +++-=,由0,∆≥可得2214m k ≤+……………………②由①②可知01,t S <≤==故S ≤当且仅当1t =,即2214m k =+时取得最大值由(i )知,ABQ ∆的面积为3S ,所以ABQ ∆面积的最大值为考点:1.椭圆的标准方程及其几何性质;2.直线与椭圆的位置关系;3.距离与三角形面积;4.转化与化归思想.。

2015年山东省19所名校联考高考一模数学试卷(文科)【解析版】

2015年山东省19所名校联考高考一模数学试卷(文科)【解析版】

2. (5 分)已知 a,b,c∈R,且 a<b,则( A.a3>b3 B.a2<b2 C.
3. (5 分)已知正数组成的等比数列{an},若 a1•a20=100,那么 a7+a14 的最小值 为( A.20 ) B.25 C.50 D.不存在
4. (5 分)若变量 x,y 满足约束条件 别为( A.4 和 3 ) B.4 和 2
【解答】解:由 x2﹣2x﹣3≤0,解得:﹣1≤x≤3. ∴A={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3}. 由 ∴B={x| ,解得:﹣2<x<2. }={x|﹣2<x<2}.
∴A∩B={x|﹣1≤x≤3}∩{x|﹣2<x<2}=[﹣1,2) . 故选:A. 2. (5 分)已知 a,b,c∈R,且 a<b,则( A.a3>b3 B.a2<b2 C. ) D.ac2≤bc2
A. (﹣∞,e4)
二、填空题:本大题共 5 小题,每小题 5 分,共 25 分. 11. (5 分)已知 tan(π﹣α)=﹣ ,则 tanβ= . .
12. (5 分)已知正数 x,y 满足 3x+4y=xy,则 x+3y 的最小值为 13. (5 分)已知幂函数 f(x)=
(m∈Z)在(0,+∞)上为增函数,
第 4 页(共 17 页)
2015 年山东省 19 所名校联考高考数学一模试卷(文科)
参考答案与试题解析
一、选择题:本大题共 10 小题.每小题 5 分,共 50 分.在每小题给出的四个 选项中.只有一项是符合题目要求的. 1. (5 分)已知集合 A.[﹣1,2) B. (﹣2,2) C. (﹣1,3) ,则 A∩B=( D. (2,3] )
. (把你认为正确的命题的序号都填
(2)令 bn=an•an+1,求{bn}的前 n 项的和 Sn. 17. (12 分)已知向量 =(cosωx,sinωx) , =(cosωx, <ω<2) .函数, 其图象的一条对称轴为 cosωx) ,其中(0 .

2015年高考文科数学山东卷及答案解析

2015年高考文科数学山东卷及答案解析

数学试卷 第1页(共18页)数学试卷 第2页(共18页)数学试卷 第3页(共18页)绝密★启用前2015年普通高等学校招生全国统一考试(山东卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|24}A x x =<<,{|(1)(3)0}B x x x =--<,则A B = ( )A .1,3()B .1,4()C .2,3()D .2,4() 2.若复数z 满足z1i-=i ,其中i 为虚数单位,则z=( )A .1i -B .1i +C .1i --D .1i -+ 3.设0.60.6a =, 1.50.6b =,0.61.5c =,则a ,b ,c 的大小关系是( )A .a <b <cB .a <c <bC .b <a <cD .b <c <a4.要得到函数πsin(4)3y x =-的图象,只需要将函数sin 4y x =的图象( )A .向左平移π12个单位 B .向右平移π12个单位 C .向左平移π3个单位D .向右平移π3个单位5.若m ∈R ,命题“若0m >,则方程20x x m +-=有实根”的逆否命题是 ( )A .若方程20x x m +-=有实根,则0m >B .若方程20x x m +-=有实根,则0m ≤ C .若方程20x x m +-=没有实根,则0m > D .若方程20x x m +-=没有实根,则0m ≤6.为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( )A .①③B .①④C .②③D .②④7.在区间[0,2]上随机地取一个数x ,则事件“1211log ()12x -+≤≤”发生的概率为( )A .34 B .23 C .13D .148.若函数21()2x x f x a+=-是奇函数,则使()3f x >成立的x 的取值范围为( )A .(,1)-∞-B .0,1-()C .01,()D .(1,)+∞9.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.3 B .3C .D .10.设函数3, 1,()2, 1.xx b x f x x -⎧=⎨⎩<≥若5(())46f f =,则b =( )A .1B .78C .34D.12第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上. 11.执行如图所示的程序框图,若输入的x 的值为1,则输出的y 的值是_________.12.若x ,y 满足约束条件131y x x y y -⎧⎪+⎨⎪⎩≤,≤,≥,则z =x +3y 的最大值为_______.13.过点P 作圆221x y +=的两条切线,切点分别为A ,B ,则PA PB =________.14.定义运算“⊗”:22(,,0)x y x y x y xy xy-⊗=∈≠R .当0x >,0y >时,(2)x y y x ⊗+⊗的最小值为__________.15.过双曲线2222:1(0,0)x y C a b a b-=>>的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为___________.---------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共18页)数学试卷 第5页(共18页) 数学试卷 第6页(共18页)三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单(Ⅰ)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学1A ,2A ,3A ,4A ,5A ,3名女同学1B,2B ,3B .现从这5名男同学和3名女同学中各随机选1人,求1A 被选中且1B 未被选中的概率.17.(本小题满分12分)ABC △中,角A ,B ,C 所对的边分别为a ,b ,c .已知cos B ,sin()A B +=ac =sin A 和c 的值.18.(本小题满分12分)如图,三棱台DEF —ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点. (Ⅰ)求证:BD ∥平面FGH ;(Ⅱ)若CF ⊥BC ,AB ⊥BC ,求证:平面BCD ⊥平面EGH .19.(本小题满分12分)已知数列{}n a 是首项为正数的等差数列,数列11{} n n a a +的前n 项和为21nn +. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设()1 2n an n b a =+,求数列{}n b 的前n 项和n T .20.(本小题满分13分)设函数()()ln f x x a x =+,2()x x g x e=,已知曲线()y f x =在点(1,(1))f 处的切线与直线20x y -=平行. (Ⅰ)求a 的值;(Ⅱ)是否存在自然数k ,使得方程()()f x g x =在(k ,k +1)内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(Ⅲ)设函数()min{()()}(min{},m x f x g x p q p q =,,表示中的较小值),求m (x )的最大值.21.(本小题满分14分)平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a bC +=>>:的离心率为2,且点1)2在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222144E xy a b+=:,P 为椭圆C 上任意一点,过点P 的直线y kx m =+交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .(i )求||||OQ OP 的值;(ii )求ABQ △面积的最大值.2015年普通高等学校招生全国统一考试(山东卷)数学(文科)答案解析第Ⅰ卷{2|A B x=【提示】求出集合【考点】交集及其运算1log-≤.02x≤≤∴所求的概率为:【解析】2()2f x=1222xx xa a+=-,22x xa a-=-21()21xxf x+=>-故选C.【解析】如图为等腰直角三角形旋转而成的旋转体.21142π3h=数学试卷第7页(共18页)数学试卷第8页(共18页)数学试卷第9页(共18页)最大值.故答案为7.30OPA∴∠=,260BPA∠=,1||||cos60322PA PB PA PB∴==⨯+=2可求PA PB.【考点】平面向量数量积的运算,直线与圆相交的性质【答案】2【解析】xx y⊗=由0x>,,22x∴+222y xyCD GF M=数学试卷第10页(共18页)数学试卷第11页(共18页)数学试卷第12页(共18页)数学试卷 第13页(共18页)数学试卷 第15页(共18页),G ,H 分别为,AB BC ⊥的中点,EF ∴是平行四边形,CF BC ⊥HE BC ∴⊥又HE ,GH HE GH H =平面BCD ⊥平面EGH .H F H =,BD ⊂平面(Ⅰ)证法一:如图所示,连接CD GF M =,连接利用三角形的中位线定理可得:1n n a +,则n c 又数列1n n a +⎬⎭的前1)2n -=-由(211)2(2n 11)24n nn a n -=-+=,1214244nn +++…,23141424(1)44nn n T n n +∴=+++-+…,211134444433n n n n ++-+++-=-…,11)449n ++. 11n n a +分离分母,并项相加并利用数列1n n a +⎫⎬⎭的前n 项和为即得首项和公差,进而可得结论;4nn ,写出【考点】数列的求和,22004x y +212414m x x -=+数学试卷 第16页(共18页) 数学试卷 第17页(共18页) 数学试卷 第18页(共18页)122222222|4164|14(16414||14x x k m k k m k m k-+-++-+⎫⎪+⎭,,将y kx m =+24m <+1,即2m =3.。

2015届山东省高考仿真试题数学(文)试题(含答案)

2015届山东省高考仿真试题数学(文)试题(含答案)

2015届山东省高考仿真试题数学(文)试题本试卷分第I 卷和第II 卷两部分.考试时间120分钟,满分150分.请考生按规定用笔将所有试题的答案写在答题纸上.第I 卷(共50分)一、选择题: 本大题共10小题, 每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.集合}{,,,,,U =123456,}{,,S =145,}{,,T =234,则)(T C S U 等于 A .}{,,,1456 B .}{4C .}{,15D .}{,,,,123452.若复数iia 213++(a R ∈,i 为虚数单位)是纯虚数,则实数a 的值为 A .-6 B .13 C .32D .133.设a ∈R ,则“a =-2”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.若直线l 与平面α相交但不垂直,则A .α内存在直线与l 平行B .α内不存在与l 垂直的直线C .过l 的平面与α不垂直D .过l 的平面与α不平行 5.某中学高三文科班从甲、乙两个班各选出7名学生参加文史知识竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的平均分是85,乙班学生成绩的中位数是83,则x +y 的值为A .8B .7C .9D .1686.从集合122,3,4,,23⎧⎫⎨⎬⎩⎭中取两个不同的数,a b ,则log 0a b >的概率为A .12B .15C .25D .357.若G 为三角形ABC 的重心,若060=∠A ,2=∙AC AB ,则||AG 的最小值是A B C .23D .3328.已知函数()sin f x x x =的定义域为[],a b ,值域为⎡-⎣,则b a -的取值范围为A .55,63ππ⎡⎤⎢⎥⎣⎦ B .5,26ππ⎡⎤⎢⎥⎣⎦ C .75,63ππ⎡⎤⎢⎥⎣⎦D .7,26ππ⎡⎤⎢⎥⎣⎦ 9.设P 为双曲线221916x y -=右支上一点,12,F F 分别是双曲线的左焦点和右焦点,过P 点作12PH F F ⊥,若12PF PF ⊥,则PH =A .645B .85C .325D .16510.已知函数()32,f x x x R =-∈.规定:给定一个实数0x ,赋值()10x f x =,若1244x ≤,则继续赋值()21,x f x =,以此类推,若1244n x -≤,则()1n n x f x -=,否则停止赋值,如果n x 称为赋值了n 次()n N *∈.已知赋值k 次后该过程停止,则0x 的取值范围为A .(653,3k k --⎤⎦ B .(5631,31k k--⎤++⎦ C .(6531,31k k --⎤++⎦D .(4531,31k k--⎤++⎦第Ⅱ卷 非选择题部分 (共100分)二、填空题: 本大题共7小题, 每小题4分, 共28分. 11.若bi ia-=-11,其中b a ,都是实数,i 是虚数单位,则a b += . 12.若等差数列{}n a 的前5项和525S =,且23a =,则7a = . 13.已知几何体的三视图如图所示,则该几何体的体积为 ___ .14.直角坐标平面内能完全“覆盖”区域Ω:24020y x y x y ≤⎧⎪++≥⎨⎪--≤⎩的最小圆的方程为 _____.15.若函数()f x 的导数5()()(),1,2k f x x x k k k Z '=--≥∈,已知x k =是函数()f x 的极大值点,则k =________. 16.已知,,,0,10a b c R a b c a bc ∈++=+-=,则a 的取值范围 .17.已知()f x 是定义在R 上且以4为周期的奇函数,当(0,2)x ∈时,2()ln()f x x x b =-+,若函数()f x 在区间[2,2]-上的零点个数为5,则实数b 的取值范围是________.三、解答题: 本大题共5小题, 共72分.解答应写出文字说明, 证明过程或演算步骤. 18.(本题满分14分)如图,在ABC ∆中,45,C D ∠=为BC 中点,2BC =.记锐角ADB α∠=,且满足7cos2.25α=-(Ⅰ)求cos CAD ∠; (Ⅱ)求BC 边上的高.19.(本题满分14分)已知数列{}n a 的前n 项和n S ,常数0λ>且11n n a a S S λ=+对一切正整数n 都成立.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设10,100a λ>=,当n 为何值时,数列1lg n a ⎧⎫⎨⎬⎩⎭的 前n 项和最大? 20.(本题满分14分)如图,在五面体ABCDEF 中,四边形ABCD 是矩形,DE ⊥平面.ABCD(Ⅰ)求证:AB ∥EF ;(Ⅱ)若22AB BC EF ===,BD 与平面BCF 成30的角,求二面角F BD C --的正切值.21.(本题满分15分)已知函数d cx bx x x f +++=2331)(,设曲线)(x f y =在与x 轴交点处的切线为124-=x y ,()f x '为()f x 的导函数,满足)()2(x f x f '=-'.(Ⅰ)求()f x 的解析式.(Ⅱ)若函数在区间(),m n 内的图象从左到右的单调性为依次为 减-增-减-增,则称该函数在区间(),m n 内是“W -型函数”.已知函数()()2g x x k =+()1,2-内是“W -型函数”,求实数k 的取值范围; 22.(本题满分15分)在直角坐标系xOy 中,点)21,2(-M ,点F 为抛物线)0(:2>=m mx y C 的焦点,线段MF 恰被抛物线C 平分. (Ⅰ)求m 的值;(Ⅱ)过点M 作直线l 交抛物线C 于B A ,两点,设直线FA 、FM 、FB 的斜率分别为1k 、2k 、3k ,问321,,k k k 能否成公差不为零的等差数列?若能,求直线l 的方程;若不能,请说明理由.2015届山东省高考仿真试题数学(文)参考答案一、选择题二、填空题11.1 12.1313.644π+ 14.()()221225x y ++-= 15.1 16.2a ≥-+2a ≤--17.141≤<b 或45=b 三、解答题18.解:(1)3cos 5α== ()cos cos cos cos sin sin 10CAD C C C ααα∠=-=+=(2)由sin sin AD CDC CAD =∠得5AD =, 4545sin =⨯=⋅=∴αAD h 19.解(1)令1n =,则2112a a λ=,10a ∴=或12a λ=若10a =,则0n a = 若12a λ=,则22n n a S λ=+,1122n n n n n a a S S a --∴-=-=,即()122nn a n a -=≥ {}n a ∴是以2λ为首项,2为公比的等比数列.2nn a λ=(2)1100lglg 2lg 22n n n a ==-,数列1lg n a ⎧⎫⎨⎬⎩⎭是递减数列 由1100lglg 02n n a =>,解得6n ≤,∴当6n =时,数列1lg n a ⎧⎫⎨⎬⎩⎭的前n 项和最大。

2015年山东省潍坊市高考一模数学试卷(文科)【解析版】

2015年山东省潍坊市高考一模数学试卷(文科)【解析版】

2015年山东省潍坊市高考数学一模试卷(文科)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)集合M={x|()x≥1},N={x|y=lg(x+2)},则M∩N等于()A.[0,+∞)B.(﹣2,0]C.(﹣2,+∞)D.(﹣∞,﹣2)∪[0,+∞)2.(5分)设复数z1,z2在复平面内对应的点关于虚轴对称,若z1=1﹣2i,则的虚部为()A.B.﹣C.D.﹣3.(5分)如果双曲线﹣=1(a>0,b>0)的一条渐近线与直线x﹣y+=0平行,则双曲线的离心率为()A.B.C.2D.34.(5分)已知函数y=f(x)的定义域为{x|x≠0},满足f(x)+f(﹣x)=0,当x>0时,f(x)=1gx﹣x+1,则函数)y=f(x)的大致图象是()A.B.C.D.5.(5分)某同学寒假期间对其30位亲属的饮食习惯进行了一次调查,列出了如下2×2列联表:则可以说其亲属的饮食习惯与年龄有关的把握为()附:参考公式和临界值表:Χ2=A.90%B.95%C.99%D.99.9%6.(5分)下列结论中正确的是()①命题:∀x∈(0,2),3x>x3的否定是∃x∈(0,2),3x≤x3;②若直线l上有无数个点不在平面α内,则l∥α;③若随机变量ξ服从正态分布N(1,σ2),且P(ξ<2)=0.8,则P(0<ξ<1)=0.2;④等差数列{a n}的前n项和为S n,若a4=3,则S7=21.A.①②B.②③C.③④D.①④7.(5分)如图,在△ABC中,点D在AC上,AB⊥BD,BC=3,BD=5,sin∠ABC=,则CD的长为()A.B.4C.2D.58.(5分)某几何体的三视图是如图所示,其中左视图为半圆,则该几何体的体积是()A.πB.C.πD.π9.(5分)圆C:(x﹣1)2+y2=25,过点P(2,﹣1)作圆的所有弦中,以最长弦和最短弦为对角线的四边形的面积是()A.10B.9C.10D.910.(5分)对于实数m,n定义运算“⊕”:m⊕n=,设f(x)=(2x﹣1)⊕(x﹣1),且关于x的方程f(x)=a恰有三个互不相等的实数根x1,x2,x3,则x1x2x3的取值范围是()A.(﹣,0)B.(﹣,0)C.(0,)D.(0,)二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上..11.(5分)已知x>0,y>0,且2x+y=1,则+的最小值是.12.(5分)运行右面的程序框图,如果输入的x的值在区间[﹣2,3]内,那么输出的f(x)的取值范围是13.(5分)若变量x,y满足约束条件,且z=x+3y的最小值为4,则k=.14.(5分)对于实数x,[x]表示不超过x的最大整数,观察下列等式:[]+[]+[]=3[]+[]+[]+[]+[]=10[]+[]+[]+[]+[]+[]+[]=21…按照此规律第n个等式的等号右边的结果为.15.(5分)设双曲线=1(a>0,b>0)的左焦点为F,过点F作与x 轴垂直的直线l交两条渐近线于M,N两点,且与双曲线在第二象限的交点为P,设O为坐标原点,若(m,n∈R),且mn=,则双曲线的离心率为.三、解答题:本大题共6小题,满分75分,解答应写出文字说明、证明过程或演算步骤16.(12分)已知函数f(x)=sin(2wx﹣)﹣4sin2wx+2(w>0),其图象与x轴相邻两个交点的距离为.(1)求函数f(x)的解析式;(2)若将f(x)的图象向左平移m(m>0)个长度单位得到函数g(x)的图象恰好经过点(﹣,0),求当m取得最小值时,g(x)在[﹣,]上的单调增区间.17.(12分)如图,已知平行四边形ABCD与直角梯形ABEF所在的平面互相垂直,且AB=BE=AF=1,BE∥AF,AB⊥AF,∠CBA=,BC=,P为DF的中点.(1)求证:PE∥平面ABCD;(2)求三棱锥A﹣BCE的体积.18.(12分)某校从参加某次数学能力测试的学生中中抽查36名学生,统计了他们的数学成绩(成绩均为整数且满分为120分),成绩的频率直方图如图所示,其中成绩分组间是:[80,90),[90,100),[100,110),[110,120](1)求实数a的值并求这36名学生成绩的样本平均数(同一组中的数据用该组的中点值作代表);(2)已知数学成绩为120分有4位同学,从这4位同学中任选两位同学,再从数学成绩在[80,90)中任选以为同学组成“二帮一”小组,已知甲同学的成绩为81分,乙同学的成绩为120分,求甲、乙两同学恰好被安排在同一个“二帮一”小组的概率.19.(12分)已知各项为正数的等比数列数列{a n}的前n项和为S n,数列{b n}的通项公式b n=(n∈N*),若S3=b5+1,b4是a2和a4的等比中项.(1)求数列{a n}的通项公式;(2)求数列{a n•b n}的前n项和为T n.20.(13分)椭圆=1的左右焦点分别为F1,F2,直线l:x+my=恒过椭圆的右焦点F2,且与椭圆交于P,Q两点,已知△F1PQ的周长为8,点O 为坐标原点.(1)求椭圆C的方程;(2)若直线l:y=kx+t与椭圆C交于M,N两点,以线段OM,ON为邻边作平行四边形OMGN其中G在椭圆C上,当≤|t|≤1时,求|OG|的取值范围.21.(14分)已知函数f(x)=lnx﹣ax2﹣x(a∈R)(1)当a=1时,求函数f(x)在(1,﹣2)处的切线方程;(2)当a≤0时,讨论函数f(x)的单调性;(3)问当a>0时,函数y=f(x)的图象上是否存在点P(x0,f(x0)),使得以P点为切点的切线l将y=f(x)的图象分割成C1,C2两部分,且C1,C2分别位于l的两侧(仅点P除外)?若存在,求出x0的值;若不存在,说明理由.2015年山东省潍坊市高考数学一模试卷(文科)参考答案与试题解析一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)集合M={x|()x≥1},N={x|y=lg(x+2)},则M∩N等于()A.[0,+∞)B.(﹣2,0]C.(﹣2,+∞)D.(﹣∞,﹣2)∪[0,+∞)【解答】解:因为集合M={x|≥1}={x|≥},所以M={x|x≤0},N={x|y=lg(x+2)}={x|x>﹣2},所以A∩B={x|x≤0}∩{x|x>﹣2}={x|﹣2<x≤0},故选:B.2.(5分)设复数z1,z2在复平面内对应的点关于虚轴对称,若z1=1﹣2i,则的虚部为()A.B.﹣C.D.﹣【解答】解:复数z1,z2在复平面内对应的点关于虚轴对称,若z1=1﹣2i,z2=﹣1﹣2i,则====.复数的虚部为:.故选:D.3.(5分)如果双曲线﹣=1(a>0,b>0)的一条渐近线与直线x﹣y+=0平行,则双曲线的离心率为()A.B.C.2D.3【解答】解:∵双曲线﹣=1(a>0,b>0)的一条渐近线与直线x﹣y+=0平行∴双曲线的渐近线方程为y=±x∴=,得b2=3a2,c2﹣a2=3a2,此时,离心率e==2.故选:C.4.(5分)已知函数y=f(x)的定义域为{x|x≠0},满足f(x)+f(﹣x)=0,当x>0时,f(x)=1gx﹣x+1,则函数)y=f(x)的大致图象是()A.B.C.D.【解答】解:因为函数y=f(x)的定义域为{x|x≠0},满足f(x)+f(﹣x)=0,所以函数是奇函数,排除C、D.又函数当x>0时,f(x)=lgx﹣x+1,当x=10时,y=1﹣10+1=﹣8,就是的图象在第四象限,A正确,故选:A.5.(5分)某同学寒假期间对其30位亲属的饮食习惯进行了一次调查,列出了如下2×2列联表:则可以说其亲属的饮食习惯与年龄有关的把握为()附:参考公式和临界值表:Χ2=A.90%B.95%C.99%D.99.9%【解答】解:设H0:饮食习惯与年龄无关.因为Χ2==10>6.635,所以有99%的把握认为其亲属的饮食习惯与年龄有关.故选:C.6.(5分)下列结论中正确的是()①命题:∀x∈(0,2),3x>x3的否定是∃x∈(0,2),3x≤x3;②若直线l上有无数个点不在平面α内,则l∥α;③若随机变量ξ服从正态分布N(1,σ2),且P(ξ<2)=0.8,则P(0<ξ<1)=0.2;④等差数列{a n}的前n项和为S n,若a4=3,则S7=21.A.①②B.②③C.③④D.①④【解答】解:①命题:∀x∈(0,2),3x>x3的否定是∃x∈(0,2),3x≤x3,正确;②若直线l上有无数个点不在平面α内,则l∥α或l与α相交,故不正确;③若随机变量ξ服从正态分布N(1,σ2),且P(ξ<2)=0.8,则P(ξ>2)=0.2,P(0<ξ<1)=0.5﹣0.2=0.3,不正确;④等差数列{a n}的前n项和为S n,若a4=3,则S7==7a4=21,正确.故选:D.7.(5分)如图,在△ABC中,点D在AC上,AB⊥BD,BC=3,BD=5,sin∠ABC=,则CD的长为()A.B.4C.2D.5【解答】解:由题意可得sin∠ABC==sin(+∠CBD)=cos∠CBD,再根据余弦定理可得CD2=BC2+BD2﹣2BC•BD•cos∠CBD=27+25﹣2×3×5×=16,可得CD=4,故选:B.8.(5分)某几何体的三视图是如图所示,其中左视图为半圆,则该几何体的体积是()A.πB.C.πD.π【解答】解:根据几何体的三视图,得;该几何体是平放的半圆锥,且圆锥的底面半径为1,母线长为3,∴圆锥的高为=2;∴该几何体的体积为V半圆锥=×π×12×2=π.故选:A.9.(5分)圆C:(x﹣1)2+y2=25,过点P(2,﹣1)作圆的所有弦中,以最长弦和最短弦为对角线的四边形的面积是()A.10B.9C.10D.9【解答】解:∵圆的方程为:(x﹣1)2+y2=25,∴圆心坐标为M(1,0),半径r=5.∵P(2,﹣1)是该圆内一点,∴经过P点的直径是圆的最长弦,且最短的弦是与该直径垂直的弦.结合题意,得AC是经过P点的直径,BD是与AC垂直的弦.∵|PM|=,∴由垂径定理,得|BD|=2=2.因此,四边形ABCD的面积是S=|AC|•|BD|=×10×2=10.故选:C.10.(5分)对于实数m,n定义运算“⊕”:m⊕n=,设f(x)=(2x﹣1)⊕(x﹣1),且关于x的方程f(x)=a恰有三个互不相等的实数根x1,x2,x3,则x1x2x3的取值范围是()A.(﹣,0)B.(﹣,0)C.(0,)D.(0,)【解答】解:由2x﹣1≤x﹣1,得x≤0,此时f(x)=(2x﹣1)*(x﹣1)=﹣(2x﹣1)2+2(2x﹣1)(x﹣1)﹣1=﹣2x,由2x﹣1>x﹣1,得x>0,此时f(x)=(2x﹣1)*(x﹣1)=(x﹣1)2﹣(2x ﹣1)(x﹣1)=﹣x2+x,∴f(x)=(2x﹣1)⊕(x﹣1)=,作出函数的图象可得,要使方程f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,不妨设x1<x2<x3,则0<x2<<x3<1,且x2和x3,关于x=对称,∴x 2+x3=2×=1.则x2+x3≥2,0<x2x3<,等号取不到.当﹣2x=时,解得x=﹣,∴﹣<x1<0,∵0<x2x3<,∴﹣<x1•x2•x3<0,即x1•x2•x3的取值范围是(﹣,0),故选:A.二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上..11.(5分)已知x>0,y>0,且2x+y=1,则+的最小值是8.【解答】解:∵2x+y=1,∴+=(+)×(2x+y)=2+2+≥4+2=8当且仅当=,即x=,y=时等号成立,∴+的最小值是8故答案为:812.(5分)运行右面的程序框图,如果输入的x的值在区间[﹣2,3]内,那么输出的f(x)的取值范围是[,9].【解答】解:模拟执行程序,可得其功能是求分段函数f(x)=的值,所以,当x∈[﹣2,2]时,f(x)=2x∈[,4],当x∈(2,3]时,f(x)=x2∈(4,9].故如果输入的x的值在区间[﹣2,3]内,那么输出的f(x)的取值范围是[,9].故答案为:[,9].13.(5分)若变量x,y满足约束条件,且z=x+3y的最小值为4,则k=1.【解答】解:由z=x+3y,得,作出不等式对应的可行域,平移直线,由平移可知当直线,经过点B时,直线,的截距最小,此时z取得最小值为4,即x+3y=4,由,解得,即B(1,1),B同时也在直线y=k上,则k=1,故答案为:114.(5分)对于实数x,[x]表示不超过x的最大整数,观察下列等式:[]+[]+[]=3[]+[]+[]+[]+[]=10[]+[]+[]+[]+[]+[]+[]=21…按照此规律第n个等式的等号右边的结果为2n2+n.【解答】解:因为[x]表示不超过x的最大整数,所以=1,=2,…,因为等式:,,,…,所以第1个式子的左边有3项、右边1+1+1=1×3=3,第2个式子的左边有5项、右边2+2+2+2+2=2×5=10,第3个式子的左边有7项、右边3×7=21,则第n个式子的左边有(2n+1)项、右边=n(2n+1)=2n2+n,故答案为:2n2+n.15.(5分)设双曲线=1(a>0,b>0)的左焦点为F,过点F作与x 轴垂直的直线l交两条渐近线于M,N两点,且与双曲线在第二象限的交点为P,设O为坐标原点,若(m,n∈R),且mn=,则双曲线的离心率为.【解答】解:双曲线=1(a>0,b>0)的渐近线为:y=±x,设左焦点F(﹣c,0),则M(﹣c,),N(﹣c,﹣),P(﹣c,),因为(m,n∈R),所以(﹣c,)=(﹣(m+n)c,(m﹣n)),所以m+n=1,m﹣n=,解得:m=,n=,又由mn=,得:=,解得:=,所以,e==.故答案为:.三、解答题:本大题共6小题,满分75分,解答应写出文字说明、证明过程或演算步骤16.(12分)已知函数f(x)=sin(2wx﹣)﹣4sin2wx+2(w>0),其图象与x轴相邻两个交点的距离为.(1)求函数f(x)的解析式;(2)若将f(x)的图象向左平移m(m>0)个长度单位得到函数g(x)的图象恰好经过点(﹣,0),求当m取得最小值时,g(x)在[﹣,]上的单调增区间.【解答】解:(1)函数f(x)=sin(2wx﹣)﹣4sin2wx+2(w>0)=sin2wx﹣cos2wx﹣4•+2=sin2wx+cos2wx=sin(2wx+),根据图象与x轴相邻两个交点的距离为,可得函数的最小正周期为2×=,求得w=1,故函数f(x)=sin(2x+).(2)将f(x)的图象向左平移m(m>0)个长度单位得到函数g(x)=sin[2(x+m)+]=sin(2x+2m+)的图象,再根据g(x)的图象恰好经过点(﹣,0),可得sin(2m﹣)=0,故m =,g(x)=sin(2x+).令2kπ﹣≤2x+≤2kπ+,k∈z,求得kπ﹣≤x≤kπ﹣,故函数g(x)的增区间为[kπ﹣,kπ﹣],k∈z.再结合x∈[﹣,],可得增区间为[﹣,﹣]、[,].17.(12分)如图,已知平行四边形ABCD与直角梯形ABEF所在的平面互相垂直,且AB=BE=AF=1,BE∥AF,AB⊥AF,∠CBA=,BC=,P为DF的中点.(1)求证:PE∥平面ABCD;(2)求三棱锥A﹣BCE的体积.【解答】(1)证明:取AD的中点M,连接MP,MB,∵P为DF的中点,∴,又∵,∴,∴四边形BEPM是平行四边形,∴PE∥BM,又PE⊄平面ABCD,BM⊂平面ABCD.∴PE∥平面ABCD.(2)解:在△ABC中,由余弦定理可得:AC2=AB2+BC2﹣2AB•BC cos∠ABC==1,∴AC=1,∴AC2+AB2=BC2,∴AC⊥AB.∵平面ABCD⊥平面ABEF,平面ABCD∩平面ABEF=AB,∴AC⊥平面ABEF,∵==.∴V A﹣BCE =V C﹣ABE===.18.(12分)某校从参加某次数学能力测试的学生中中抽查36名学生,统计了他们的数学成绩(成绩均为整数且满分为120分),成绩的频率直方图如图所示,其中成绩分组间是:[80,90),[90,100),[100,110),[110,120](1)求实数a的值并求这36名学生成绩的样本平均数(同一组中的数据用该组的中点值作代表);(2)已知数学成绩为120分有4位同学,从这4位同学中任选两位同学,再从数学成绩在[80,90)中任选以为同学组成“二帮一”小组,已知甲同学的成绩为81分,乙同学的成绩为120分,求甲、乙两同学恰好被安排在同一个“二帮一”小组的概率.【解答】解:(Ⅰ)由频率分布直方图知,10a=1﹣()×10=,故a==×10×85+×10×95+×10×115=,(Ⅱ)成绩在[80,90)分的学生有=3人,分别记为甲,A,B,数学成绩为120分有4位同学记为乙,1,2,3,则“二帮一”小组共有18种,分别去下:甲乙1,甲乙2,甲乙3,甲12,甲13,甲23,A乙1,A乙2,A乙3,A12,A13,A23,B乙1,B乙2,B乙3,B12,B13,B23,其中甲、乙两同学恰好被安排在同一个“二帮一”小组有3种情况,甲乙1,甲乙2,甲乙3故甲、乙两同学恰好被安排在同一个“二帮一”小组的概率为=19.(12分)已知各项为正数的等比数列数列{a n}的前n项和为S n,数列{b n}的通项公式b n=(n∈N*),若S3=b5+1,b4是a2和a4的等比中项.(1)求数列{a n}的通项公式;(2)求数列{a n•b n}的前n项和为T n.【解答】解:(1)∵数列{b n}的通项公式b n=(n∈N*),∴b5=6,b4=4,设各项为正数的等比数列数列{a n}的公比为q,q>0,∵S3=b5+1=7,∴,①∵b4是a2和a4的等比中项,∴,解得,②由①②得3q2﹣4q﹣4=0,解得q=2,或q=﹣(舍),∴a1=1,.(2)当n为偶数时,T n=(1+1)•20+2•2+(3+1)•22+4•23+(5+1)•24+…+[(n﹣1)+1]•2n﹣2+n•2n﹣1=(20+2•2+3•22+4•23+…+n•2n﹣1)+(20+22+…+2n﹣2),设H n=20+2•2+3•22+4•23+…+n•2n﹣1,①2H n=2+2•22+3•23+4•24+…+n•2n,②①﹣②,得﹣H n=20+2+22+23+…+2n﹣1﹣n•2n=﹣n•2n=(1﹣n)•2n﹣1,∴H n=(n﹣1)•2n+1,∴+=(n﹣)•2n+.当n为奇数,且n≥3时,T n=T n﹣1+(n+1)•2n﹣1==+,经检验,T1=2符合上式,∴T n=.20.(13分)椭圆=1的左右焦点分别为F1,F2,直线l:x+my=恒过椭圆的右焦点F2,且与椭圆交于P,Q两点,已知△F1PQ的周长为8,点O 为坐标原点.(1)求椭圆C的方程;(2)若直线l:y=kx+t与椭圆C交于M,N两点,以线段OM,ON为邻边作平行四边形OMGN其中G在椭圆C上,当≤|t|≤1时,求|OG|的取值范围.【解答】解:(1)∵直线l:x+my=恒过定点,∴椭圆的右焦点F2.∴.∴△F1PQ的周长为8,∴4a=8,解得a=2,∴b2=a2﹣c2=1,∴椭圆C的方程为=1;(2)联立,化为(1+4k2)x2+8ktx+4t2﹣4=0,由△=64k2t2﹣4(1+4k2)(4t2﹣4)>0,可得4k2+1>t2.设M(x1,y1),N(x2,y2),G(x0,y0),则,∵四边形OMGN是平行四边形,∴,y0=y1+y2=k(x1+x2)+2t=kx0+2t=,可得G,∵G在椭圆C上,∴+=1,化为4t2(4k2+1)=(4k2+1)2,∴4t2=4k2+1,∴|OG|2=====4﹣,∵≤|t|≤1,∴,∴,∴|OG|的取值范围是.21.(14分)已知函数f(x)=lnx﹣ax2﹣x(a∈R)(1)当a=1时,求函数f(x)在(1,﹣2)处的切线方程;(2)当a≤0时,讨论函数f(x)的单调性;(3)问当a>0时,函数y=f(x)的图象上是否存在点P(x0,f(x0)),使得以P点为切点的切线l将y=f(x)的图象分割成C1,C2两部分,且C1,C2分别位于l的两侧(仅点P除外)?若存在,求出x0的值;若不存在,说明理由.【解答】解:(1)当a=1时,f(x)=lnx﹣x2﹣x,f′(x)=﹣2x﹣1,函数f(x)在(1,﹣2)处的切线斜率为k=1﹣2﹣1=﹣2,则函数f(x)在(1,﹣2)处的切线方程为y+2=﹣2(x﹣1),即为y=﹣2x;(2)f′(x)=﹣2ax﹣1=(x>0),①当a=0时,f′(x )=,当0<x<1时,f′(x)>0,f(x)递增,当x>1时,f′(x)<0,f(x)递减.②当a<0时,f′(x)=0,即﹣2ax2﹣x+1=0,当△=1+8a≤0时,即a ≤﹣,﹣2ax2﹣x+1≥0在(0,+∞)恒成立,即f′(x)≥0在(0,+∞)恒成立,f(x)在(0,+∞)递增;当△=1+8a>0,即﹣<a<0时,﹣2ax2﹣x+1=0的两根为x1=x2=,f′(x )=(x>0)且x1>0,x2>0,x1<x2,则0<x<x1,f′(x)>0,f(x)递增,x1<x<x2,f′(x)<0,f(x)递减.综上可得,a=0,f(x)的增区间为(0,1),减区间为(1,+∞);a ≤﹣时,f(x)的增区间为(0,+∞);﹣<a<0时,f(x)的增区间为(0,),(,+∞),f(x )的减区间为(,).(3)f′(x )=﹣2ax﹣1,P(x0,f(x0)),在P点的切线方程为y=f′(x0)(x﹣x0)+f(x0),令g(x)=f(x)﹣f′(x0)(x﹣x0)+f(x0),且g(x0)=0,g′(x)=f′(x)﹣f′(x0)=﹣2ax﹣1﹣+2ax0+1=﹣(x﹣x0)•(x>0),由a>0,当0<x<x0,g′(x)>0,g(x)递增,当x>x0,g′(x)<0,g(x)递减,故g(x)≤g(x0)=0,即f(x)≤f′(x0)(x﹣x0)+f(x0),也就是y=f(x)的图象永远在切线的下方.故不存在这样的点P.第21页(共21页)。

2015年山东省菏泽市高考一模数学试卷(文科)【解析版】

2015年山东省菏泽市高考一模数学试卷(文科)【解析版】

2015年山东省菏泽市高考数学一模试卷(文科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)已知复数z1=1﹣i,z2=1+i,则等于()A.2i B.﹣2i C.2+i D.﹣2+i2.(5分)设集合M={0,1},N={x∈Z|y=),则()A.M∩N=∅B.M∩N={0}C.M∩N{1}D.M∩N=M3.(5分)给定函数①y=x,②y=log x,③y=|x﹣1|,④y=2x,其中在区间(0,1)上单调递减的函数序号是()A.①②B.②③C.③④D.①④4.(5分)在△ABC中,若sin A﹣sin A cos C=cos A sin C,则△ABC的形状是()A.正三角形B.等腰三角形C.直角三角形D.等腰直角三角形5.(5分)为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e,众数为m o,平均值为,则()A.m e=m o=B.m e=m o<C.m e<m o<D.m o<m e<6.(5分)已知α,β,直线l,m,且有l⊥α,m⊂β,给出下列命题:①若α∥β,则l⊥m;②若l∥m,则α⊥β;③若α⊥β,则l∥m;④若l⊥m,则α∥β;其中,正确命题个数有()A.1B.2C.3D.47.(5分)若函数f(x)=的图象如图所示,则m的范围为()A.(﹣∞,﹣1)B.(﹣1,2)C.(1,2)D.(0,2)8.(5分)设双曲线+=1的离心率为2,且一个焦点与抛物线x2=8y的焦点相同,则此双曲线的方程为()A.﹣y2=1B.﹣=1C.y2﹣=1D.﹣=19.(5分)已知函数f(x)=(a∈R),若函数f(x)在R上有两个零点,则a的取值范围是()A.(﹣∞,﹣1)B.(﹣∞,0)C.(﹣1,0)D.[﹣1,0)10.(5分)若b>a>3,f(x)=,则下列各结论中正确的是()A.B.C.f()<f()<f(a)D.f(b)<f()<f()二、填空题(共5小题,每小题5分,满分25分)11.(5分)圆心在直线x=2上的圆C与y轴交于两点A(0,﹣4),B(0,﹣2),则圆C的方程为.12.(5分)已知x,y满足不等式组,则z=2x+y的最大值与最小值比为.13.(5分)定义在实数集R上的函数f(x)满足f(x)+f(x+2)=0,且f(4﹣x)=f(x).现有以下三种叙述:①8是函数f(x)的一个周期;②f(x)的图象关于直线x=2对称;③f(x)是偶函数其中正确的序号是.14.(5分)执行如图中的程序框,如果输入的t∈[﹣1,3],则输出的S属于区间.15.(5分)在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”类似的,我们在平面向量集D={|=(x,y),x∈R,y∈R}上也可以定义在一个称“序”的关系,记为“>>”,定义如下:对于任意两个向量=(x1,y1)2=(x2,y2),“1>>2”当且仅当“x1>x2”或“x1=x2”且“y1>y2”,按上述定义的关系“>>”给出如下四个命题:①若1=(1,0),2=(0,1),=(0,0),则1>>2>>②若1>>2,2>>3,则1>>3③若1>>2,则对于任意∈D,1+>>2+④对于任意向量>>,=(0,0),若1>>2,则•1=•2其中真命题的序号为.三、解答题(共6小题,满分75分)16.(12分)已知函数f(x)=2cos2x+2sin x cos x+a,且当x∈[0,]时,f(x)的最小值为2.(1)求a的值,并求f(x)的单调递增区间;(2)先将函数y=f(x)的图象上的点纵坐标不变,横坐标缩小到原来的,再将所得图象向右平移个单位,得到函数y=g(x)的图象,求方程g(x)=4在区间[0,]上所有根之和.17.(12分)如图,将边长为2的正六边形ABDEF沿对角线BE翻折,连接AC、FD,形成如图所示的多面体,且AC=.(1)证明:平面ABEF⊥平面BCDE;(2)求三棱锥E﹣ABC的体积.18.(12分)某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.(1)求x和y的值;(2)计算甲班7位学生成绩的方差s2;(3)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.19.(12分)已知数列{a n}的前n项和为S n,且S n=n(n+1)(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足:,求数列{b n}的通项公式;(Ⅲ)令(n∈N*),求数列{c n}的前n项和T n.20.(13分)设函数f(x)=lnx﹣﹣bx(Ⅰ)当a=b=时,求函数f(x)的单调区间;(Ⅱ)令F(x)=f(x)+<x≤3),其图象上任意一点P(x0,y0)处切线的斜率k≤恒成立,求实数a的取值范围;(Ⅲ)当a=0,b=﹣1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.21.(14分)椭圆C:+=1过点A(1,),离心率为,左右焦点分别为F1、F2.过点F1的直线l交椭圆于A、B两点.(1)求椭圆C的方程.(2)当△F2AB的面积为时,求l的方程.2015年山东省菏泽市高考数学一模试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)已知复数z1=1﹣i,z2=1+i,则等于()A.2i B.﹣2i C.2+i D.﹣2+i【解答】解:∵复数z1=1﹣i,z2=1+i,则====﹣2i.故选:B.2.(5分)设集合M={0,1},N={x∈Z|y=),则()A.M∩N=∅B.M∩N={0}C.M∩N{1}D.M∩N=M【解答】解:由1﹣x≥0,得x≤1,∴N={x∈Z|y=}={x∈Z|x≤1},又M={0,1},∴M∩N={0,1}=M.故选:D.3.(5分)给定函数①y=x,②y=log x,③y=|x﹣1|,④y=2x,其中在区间(0,1)上单调递减的函数序号是()A.①②B.②③C.③④D.①④【解答】解:选项①y=x在(0,+∞)上单调递增,不存在减区间,故错误;选项②y=log x,在(0,+∞)上单调递减,故正确;选项选项③y=|x﹣1|在(﹣∞,1)单调递减,故正确;选项④y=2x在R上单调递增,无递减区间,故错误.故选:B.4.(5分)在△ABC中,若sin A﹣sin A cos C=cos A sin C,则△ABC的形状是()A.正三角形B.等腰三角形C.直角三角形D.等腰直角三角形【解答】解:∵sin A﹣sin A cos C=cos A sin C,∴sin A=sin A cos C+cos A sin C=sin(A+C)=sin B∴A=B(A+B=π舍去),是等腰三角形故选:B.5.(5分)为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e,众数为m o,平均值为,则()A.m e=m o=B.m e=m o<C.m e<m o<D.m o<m e<【解答】解:由图知m0=5,有中位数的定义应该是第15个数与第16个数的平均值,由图知将数据从大到小排第15 个数是5,第16个数是6,所以>5.9故选:D.6.(5分)已知α,β,直线l,m,且有l⊥α,m⊂β,给出下列命题:①若α∥β,则l⊥m;②若l∥m,则α⊥β;③若α⊥β,则l∥m;④若l⊥m,则α∥β;其中,正确命题个数有()A.1B.2C.3D.4【解答】解:有l⊥α,m⊂β,给出下列命题:①若α∥β,∴l⊥β,又m⊂β,则l⊥m,正确;②若l∥m,m⊂β,则α⊥β,正确;③若α⊥β,则l∥m或异面直线,不正确;④若l⊥m,则α∥β或相交,因此不正确.其中,正确命题个数为2.故选:B.7.(5分)若函数f(x)=的图象如图所示,则m的范围为()A.(﹣∞,﹣1)B.(﹣1,2)C.(1,2)D.(0,2)【解答】解:f′(x)==由图知m﹣2<0,且m>0,故0<m<2,又>1,∴m>1,因此1<m<2,故选:C.8.(5分)设双曲线+=1的离心率为2,且一个焦点与抛物线x2=8y的焦点相同,则此双曲线的方程为()A.﹣y2=1B.﹣=1C.y2﹣=1D.﹣=1【解答】解:抛物线x2=8y的焦点为(0,2),则双曲线的焦点在y轴上,方程为﹣=1,则c=2=,双曲线+=1的离心率为2,则=2,解得m=﹣3,n=1.即有双曲线的方程为y2﹣=1.9.(5分)已知函数f(x)=(a∈R),若函数f(x)在R上有两个零点,则a的取值范围是()A.(﹣∞,﹣1)B.(﹣∞,0)C.(﹣1,0)D.[﹣1,0)【解答】解:由解析式可得函数的左半部分为指数函数的一部分,且随着a的变化而上下平移,右半部分为直线的一部分,且是固定的,作图如下:结合图象分析可得,当左半部分的图象介于两红线之间时符合题意,而红线与y轴的焦点坐标为a+1,且只需0≤a+1<1,即﹣1≤a<0即可故选:D.10.(5分)若b>a>3,f(x)=,则下列各结论中正确的是()A.B.C.f()<f()<f(a)D.f(b)<f()<f()【解答】解:∵f(x)=,∴f′(x)=,令f′(x)=0,解得x=e,当x≥e时,f′(x)<0,为减函数,当0<x<e时,f′(x)>0,为增函数,∵b>a>3>e,∴ab>b>>>a>e,∴f(a)>f()>f()>f(b)>f(ab),二、填空题(共5小题,每小题5分,满分25分)11.(5分)圆心在直线x=2上的圆C与y轴交于两点A(0,﹣4),B(0,﹣2),则圆C的方程为(x﹣2)2+(y+3)2=5.【解答】解:根据垂径定理可得AB的垂直平分线y=﹣3过圆心,而圆心过x=2,则圆心坐标为(2,﹣3),圆的半径r=|AC|==,则圆的标准方程为:(x﹣2)2+(y+3)2=5.故答案为:(x﹣2)2+(y+3)2=512.(5分)已知x,y满足不等式组,则z=2x+y的最大值与最小值比为2:1.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点B时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即B(2,2),代入目标函数z=2x+y得z=2×2+2=6.即目标函数z=2x+y的最大值为6.当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最小,此时z最小.由,解得,即A(1,1),代入目标函数z=2x+y得z=2+1=3.即目标函数z=2x+y的最小值为3.则z=2x+y的最大值与最小值比为6:3=2:1故答案为:2:113.(5分)定义在实数集R上的函数f(x)满足f(x)+f(x+2)=0,且f(4﹣x)=f(x).现有以下三种叙述:①8是函数f(x)的一个周期;②f(x)的图象关于直线x=2对称;③f(x)是偶函数其中正确的序号是①②③.【解答】解:对于①,由于定义在实数集R上的函数f(x)满足f(x)+f(x+2)=0,则f(x+2)=﹣f(x),即有f(x+4)=﹣f(x+2),则f(x+4)=f(x),即4是函数的最小正周期,故①对;对于②,由于f(x)满足f(4﹣x)=f(x),即有f(2+x)=f(2﹣x),即f(x)的图象关于直线x=2对称,故②对;对于③,由于f(4﹣x)=f(x),即有f(﹣x)=f(x+4),又f(x+4)=f(x),则f(﹣x)=f(x),则f(x)为偶函数,故③对.故答案为:①②③.14.(5分)执行如图中的程序框,如果输入的t∈[﹣1,3],则输出的S属于区间[﹣3,4].【解答】解:执行程序框图,有输入的t∈[﹣1,3],S=输出S的值,画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故答案为:[﹣3,4]15.(5分)在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”类似的,我们在平面向量集D={|=(x,y),x∈R,y∈R}上也可以定义在一个称“序”的关系,记为“>>”,定义如下:对于任意两个向量=(x1,y1)2=(x2,y2),“1>>2”当且仅当“x1>x2”或“x1=x2”且“y1>y2”,按上述定义的关系“>>”给出如下四个命题:①若1=(1,0),2=(0,1),=(0,0),则1>>2>>②若1>>2,2>>3,则1>>3③若1>>2,则对于任意∈D,1+>>2+④对于任意向量>>,=(0,0),若1>>2,则•1=•2其中真命题的序号为①②③.【解答】解:①∵=(1,0),=(0,1),横坐标1>0,∴,而=(0,0),横坐标0=0,纵坐标1>0,则>>;②若>>,则“x>x2”或“x1=x2”且“y1>y2”,若,则“x21>x3”或“x2=x3”且“y2>y3”,可得“x1>x3”或“x1=x3,y1>y3”,则.因此正确.③若>>,则“x 1>x2”或“x1=x2”且“y1>y2”,对于任意=(x,y)∈D,则x1+x>x2+x,或x1+x=x2+x且y1+y>y2+y,因此>>.因此正确;④对于任意向量>>,=(0,0),若>>,取=(4,3),=(2,1),=(1,1),则=7,=3,因此,不正确.其中真命题的序号为①②③.故答案为:①②③.三、解答题(共6小题,满分75分)16.(12分)已知函数f(x)=2cos2x+2sin x cos x+a,且当x∈[0,]时,f(x)的最小值为2.(1)求a的值,并求f(x)的单调递增区间;(2)先将函数y=f(x)的图象上的点纵坐标不变,横坐标缩小到原来的,再将所得图象向右平移个单位,得到函数y=g(x)的图象,求方程g(x)=4在区间[0,]上所有根之和.【解答】解:(1)化简可得f(x)=2cos2x+2sin x cos x+a=cos2x+1+sin2x+a=2sin(2x+)+a+1,∵x∈[0,],∴2x+∈[,],∴f(x)的最小值为﹣1+a+1=2,解得a=2,∴f(x)=2sin(2x+)+3,由2kπ﹣≤2x+≤2kπ+可得kπ﹣≤x≤kπ+,∴f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z);(2)由函数图象变换可得g(x)=2sin(4x﹣)+3,由g(x)=4可得sin(4x﹣)=,∴4x﹣=2kπ+或4x﹣=2kπ+,解得x=+或x=+,(k∈Z),∵x∈[0,],∴x=或x=,∴所有根之和为+=.17.(12分)如图,将边长为2的正六边形ABDEF沿对角线BE翻折,连接AC、FD,形成如图所示的多面体,且AC=.(1)证明:平面ABEF⊥平面BCDE;(2)求三棱锥E﹣ABC的体积.【解答】(1)证明:正六边形ABCDEF中,连结AC、BE,交点为G,由边长为2的正六边形ABCDEF的性质得AC⊥BE,且AG=CG=,在多面体中,由AC=,得AG2+CG2=AC2,∴AG⊥GC,又GC∩BE=G,GC,BE⊂平面BCDE,∴AG⊥平面BCDE,又AG⊂平面ABEF,∴平面ABEF⊥平面BCDE.(2)解:连结AE,CE,则AG为三棱锥A﹣BCE的高,GC为△BCE的高,在正六边形ABCDEF中,BE=2AF=4,∴,∴V E﹣ABC =V A﹣BCE==2.18.(12分)某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.(1)求x和y的值;(2)计算甲班7位学生成绩的方差s2;(3)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.【解答】解:(1)∵甲班学生的平均分是85,∴,∴x=5,∵乙班学生成绩的中位数是83,∴y=3;(2)甲班7位学生成绩的方差为s2==40;(3)甲班成绩在90分以上的学生有两名,分别记为A,B,乙班成绩在90分以上的学生有三名,分别记为C,D,E,从这五名学生任意抽取两名学生共有10种情况:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)其中甲班至少有一名学生共有7种情况:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E).记“从成绩在90分以上的学生中随机抽取两名学生,甲班至少有一名学生”为事件M,则.答:从成绩在90分以上的学生中随机抽取两名学生,甲校至少有一名学生的概率为.19.(12分)已知数列{a n}的前n项和为S n,且S n=n(n+1)(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足:,求数列{b n}的通项公式;(Ⅲ)令(n∈N*),求数列{c n}的前n项和T n.【解答】解:(Ⅰ)当n=1时,a1=S1=2,=n(n+1)﹣(n﹣1)n=2n,当n≥2时,a n=S n﹣S n﹣1知a1=2满足该式,∴数列{a n}的通项公式为a n=2n.(2分)(Ⅱ)∵(n≥1)①∴②(4分)②﹣①得:,b n+1=2(3n+1+1),故b n=2(3n+1)(n∈N*).(6分)(Ⅲ)=n(3n+1)=n•3n+n,∴T n=c1+c2+c3+…+c n=(1×3+2×32+3×33+…+n×3n)+(1+2+…+n)(8分)令H n=1×3+2×32+3×33+…+n×3n,①则3H n=1×32+2×33+3×34+…+n×3n+1②①﹣②得:﹣2H n=3+32+33+…+3n﹣n×3n+1=∴,…(10分)∴数列{c n}的前n项和…(12分)20.(13分)设函数f(x)=lnx﹣﹣bx(Ⅰ)当a=b=时,求函数f(x)的单调区间;(Ⅱ)令F(x)=f(x)+<x≤3),其图象上任意一点P(x0,y0)处切线的斜率k≤恒成立,求实数a的取值范围;(Ⅲ)当a=0,b=﹣1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.【解答】解:(Ⅰ)依题意,知f(x)的定义域为(0,+∞).(1分)当a=b=时,f(x)=lnx﹣x2﹣x,f′(x)=﹣x﹣=.(2分)令f′(x)=0,解得x=1.当0<x<1时,f′(x)>0,此时f(x)单调递增;当x>1时,f′(x)<0,此时f(x)单调递减.(3分)所以函数f(x)的单调增区间(0,1),函数f(x)的单调减区间(1,+∞).(4分)(Ⅱ)F(x)=lnx+,x∈(0,3],所以k=F′(x0)=≤,在x0∈(0,3]上恒成立,(6分)所以a≥(﹣x02+x0)max,x0∈(0,3](7分)当x0=1时,﹣x02+x0取得最大值.所以a≥.(9分)(Ⅲ)当a=0,b=﹣1时,f(x)=lnx+x,因为方程f(x)=mx在区间[1,e2]内有唯一实数解,所以lnx+x=mx有唯一实数解.∴,设g(x)=,则g′(x)=.令g′(x)>0,得0<x<e;g′(x)<0,得x>e,∴g(x)在区间[1,e]上是增函数,在区间[e,e2]上是减函数,g(1)=1,g(e2)=1+=1+,g(e)=1+,所以m=1+,或1≤m<1+.21.(14分)椭圆C:+=1过点A(1,),离心率为,左右焦点分别为F1、F2.过点F1的直线l交椭圆于A、B两点.(1)求椭圆C的方程.(2)当△F2AB的面积为时,求l的方程.【解答】解:(1)∵椭圆过点,∴…(1分)∵离心率为,∴,…(2分)又∵a2=b2+c2…(3分)解①②③得a2=4,b2=3…(4分)∴椭圆…(6分)(2)由(1)得F1(﹣1,0)①当l的倾斜角是时,l的方程为x=﹣1,焦点此时,不合题意.…(7分)②当l的倾斜角不是时,设l的斜率为k,则其直线方程为y=k(x+1)由,消去y得:(4k2+3)x2+8k2x+4k2﹣12=0,设A(x1,y1),B(x2,y2),则…(9分)∴===…(10分)又已知,∴,∴(k2﹣1)(17k2+18)=0,∴k2﹣1=0,解得k=±1,故直线l的方程为y=±1(x+1),即x﹣y+1=0或x+y+1=0.…(13分)。

山东省济宁市2015年高考模拟考试数学文试题

山东省济宁市2015年高考模拟考试数学文试题
2
∀x ∈ R ,使得 x 2 + x − 1 ≥ 0
必要条件
D. a + b + c = 0 是方程 ax + bx + c = 0 ( a ≠ 0 ) 有一个根为 1 的充 7. 若 函 数 f ( x ) = ka − a
x −x
+ ∞) ( a > 0且a ≠ 1) 在 ( −∞,
既是奇函数又是增函数,则函数
2015
济宁市高考模拟考试
数学文科试题
试卷 第 I 卷和第Ⅱ卷两部 ,共 5 页.满 150 .考试用时 120 卷和答题卡一并交回. 注意事项: 1.答卷前,考生 必用 0.5 毫米黑色 笔将自 的姓 座 准考证 填写在答题纸 . 2.第 I 卷 小题选出答案 ,用 2B 铅笔把答题纸 对 题目的答案标 涂黑 如需改 ,用 橡皮擦 净 再选涂其他答案标 .答案 能答在试题卷 . 3.第Ⅱ卷必须用 0.5 毫米黑色签 笔作答,答案必须写在答题纸各题指定区域内相 的位置, 能写在试题卷 如需改 ,先划掉原来的答案,然 再写 新的答案 准使用涂改液 胶带 纸 修 带. 按 要求作答的答案无效. 参考公式 锥体的体积公式 V = 2015.03 钟,考试结束 ,将试
π
6
B. T = 6, ϕ =
和初相 ϕ
别为
A. T = 6, ϕ = 4.
π
3
C. T = 6π , ϕ =
π
6
D. T = 6π , ϕ =
π
3
知 m, n 表示两条
直线, α 表示 面, 列说法 确的是 B. 若 m ⊥ α , n ⊂ α , 则m ⊥ n D.若 m / /α , m ⊥ n,则n ⊥ α
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档