线性规划与LINGO编程
Lingo与线性规划
Lingo 与线性规划线性规划的标准形式是Minz c 1 x 1 c n x na 11x1a 1n xnb 1 s..ta m1 x1a mnxn(1)b mx i 0, i 1,2,, n其中 z c 1 x 1 c n x n 称为目标函数, 自变量 x i 称为决策变量 ,不等式组 (1)称为约束条件 .满足不等式组 (1)的所有 ( x 1, , x n ) 的集合称为可行域,在可行域里面使得z取最小值的 ( x 1* , , x n * ) 称为最优解,最优解对应的函数值称为最优值。
求解优化模型的主要软件有 Lingo 、Matlab 、Excel 等。
其中 Lingo 是一款专业求解优化模型的软件, 有其他软件不可替代的方便功能。
本文将简要介绍其在线性规划领域的应用。
一、基本规定1、目标函数输入格式max=函数解析式; 或者 min=函数解析式;2、约束条件输入格式利用: >、<、>=、<=等符号。
但是 >与 >=没有区别。
Lingo 软件默认所以自变量都大于等于 0.3、运算 加 (+), 减(-), 乘(*), 除(/), 乘方 (x^a) ,要注意乘号 (*) 不能省略。
4、变量名不区分大小写字母,不超过 32 个字符,必须以字母开头。
5、标点符号每个语句以分号“;”结束,感叹号“!”开始的是说明语句(说明语句也需要以分号“ ; ”结束)。
但是,model ,sets ,data 以“:”结尾。
endsets ,enddata , end 尾部不加任何符号。
6、命令不考虑先后次序7、MODEL 语句一般程序必须先输入 MODEL :表示开始输入模型,以“ END ”结束。
对简单的模型,这两个语句也可以省略。
8、改变变量的取值范围 @bin(变量名 ) ;@bnd(a, 变量名 ,b ) ;@free( 变量名 ) ; @gin(变量名 ) ;例 1 求目标函数 z 2x 1限制该变量为 0 或 1.限制该变量介于 a,b 之间 .允许该变量为负数 .限制该变量为整数 .3x 2 的最小值,约束条件为s..t x1x2350x11002x12x2600x1 , x20输入 Lingo 程序:min = 2*x1 + 3*x2;x1 + x2 >= 350;x1 >= 100;2*x1 + x2 <= 600;有两种运行方式:1、点击工具条上的按钮即可。
应用lingo软件实现线性规划和整数规划
一、 实验目的应用lingo 软件实现线性规划和整数规划。
二、 实验内容:1.线性规划方法的lingo 软件实现。
2.整数规划方法的Lingo 软件实现三、 实验环境:1 硬件要求:计算机一台2 操作系统:WindowsXP3 软件要求:lingo10四、实验步骤及程序编写:1.线性规划模型。
某战略轰炸机群奉命摧毁敌人军事目标。
已知该目标有四个要害部位,只要摧毁其中之一即可达到目的。
为完成此项任务的汽油消耗量限制为48000升、重型炸弹48枚、轻型炸弹32枚。
飞机携带重型炸弹时每升汽油可飞行2千米,带轻型炸弹时每升汽油可飞行3千米。
又知每架飞机每次只能装载一枚炸弹,每出发轰炸一次除来回路程汽为了使摧毁敌方军事目标的可能性最大,应如何确定飞机轰炸的方案。
解:设用了x 枚重型炸弹,用了y 枚轻型炸弹,攻击的是第i 个部位,再设一标志变量f 定义如下: ⎩⎨⎧=个部位不攻击第个部位攻击第i i f i 01目标函数为: ()[]∑=⨯⨯+⨯=41max i i li ih f p y px()()480002004/3/2004/2/≤++⨯+++⨯i i i i d d y d d x48≤x ,32≤y141=∑=i if2、整数规划模型。
某厂生产甲、乙两种产品,生产甲种产品每件要消耗煤9t ,电力4kw ,使用劳动力3个,获利70元;生产乙种产品每件消耗煤4t ,电力5kw ,使用劳动力10个,获利120元。
有一个生产日,这个厂可动用的煤是360t ,电力是200kw ,劳动力是300个,问应该如何安排甲、乙两种产品的生产,才能使工厂在当日的获利最大,并问该厂当日的最大获利是多少? 解:模型建立:⎪⎪⎩⎪⎪⎨⎧<+<+<++=取整x x x x x x x x x x t s f 2121212121,3001032005436049..12070max五、程序调试及实验总结1.线性规划模型。
Lingo求解简单规划模型代码
一、Lingo 能做什么——Lingo 的简单模型1、简单线性规划求解(目标函数)2134maxx x z += s.t.(约束条件)⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0,781022122121x x x x x x x(决策变量) x 1,x 2手工计算的方法注:Lingo 中“<”代表“<=”,“>”代表“>=”,Lingo 中默认的变量都是大于等于0的,不用显式给出。
求解结果:z=26,x1=2,x2=62、整数规划求解219040Max x x z += ⎪⎩⎪⎨⎧≥≤+≤+0,702075679212121x x x x x xLingo 程序求解3、0-1规划求解Max 432215.18.04.0x x x x f +++=10106234321≤+++x x x x10,,,4321或=x x x x12344、非线性规划求解||4||3||2||min 4321x x x x z +−−=s.t. ⎪⎪⎩⎪⎪⎨⎧−=+−−=−+−=+−−2132130432143214321x x x x x x x x x x x x12345、背包问题一个旅行者的背包最多只能装 6kg 物品,现有4 件物品的重量和价值分别为 2 kg ,3 kg ,3 kg ,4 kg ;1 元,1.2元,0.9元,1.1元。
问应怎样携带那些物品使得携带物品的价值最大?建模:记j x 为旅行者携带第j 件物品的件数, 取值只能为 0 或 1。
求目标函数43211.19.02.1x x x x f +++=在约束条件643324321≤+++x x x x 下的最大值.用Lingo 软件求解0-1规划计算结果6、指派问题有四个工人,要指派他们分别完成4项工作,每人做各项工作所消耗的时间如下表: 问指派哪个人去完成哪项工作,可使总的消耗时间为最小? 设:第i 个工人做第j 项工作用时ij t ,标志变量ij f 定义如下:变量名 取值⎩⎨⎧=其他件工作个工人去做第指派第01j i f ijmin∑∑==×4141i j ij ijt fs.t. 141=∑=i ijf()4,3,2,1=j 每份工作都有一人做∑==411j ijf()4,3,2,1=i 每人都只做一项工作(1) 集合定义部分(从“SETS :”到“ENDSET ”):定义集合及其属性,语句“work/A,B,C,D/”其结果正是定义了4个集合元素,没有定义变量名。
lingo解决线性规划问题的程序
lingo解决线性规划问题的程序Lingo12软件培训教案Lingo 主要⽤于求解线性规划,整数规划,⾮线性规划,V10以上版本可编程。
例1 ⼀个简单的线性规划问题0 ,600 2100350 st.3 2max >=<=+=<<=++=y x y x x y x y x z! 源程序max = 2*x+3*y;[st_1] x+y<350;[st_2] x<100;2*x+y<600; !决策变量黙认为⾮负; <相当于<=; ⼤⼩写不区分当规划问题的规模很⼤时,需要定义数组(或称为矩阵),以及下标集(set) 下⾯定义下标集和对应数组的三种⽅法,效果相同::r1 = r2 = r3, a = b = c.sets :r1/1..3/:a;r2 : b;r3 : c;link2(r1,r2): x;link3(r1,r2,r3): y;endsetsdata :ALPHA = ;a=11 12 13 ;r2 = 1..3;b = 11 12 13;c = 11 12 13;enddata例2 运输问题解:设决策变量ij x = 第i 个发点到第j 个售点的运货量,i =1,2,…m; j =1,2,…n; 记为ij c =第i 个发点到第j 个售点的运输单价,i =1,2,…m;j =1,2,…n记i s =第i 个发点的产量, i =1,2,…m; 记j d =第j 个售点的需求量, j =1,2,…n. 其中,m = 6; n = 8.设⽬标函数为总成本,约束条件为(1)产量约束;(2)需求约束。
于是形成如下规划问题:nj m i x n j d xm i s x x c ij j n i ij i mj ij m i nj ij ij ,...,2,1,,...,2,1,0 ,...,2,1,,...,2,1, st.z min 1111==>=<==<==∑∑∑∑====把上述程序翻译成LINGO 语⾔,编制程序如下:! 源程序model: !6发点8收点运输问题;sets:rows/1..6/: s; !发点的产量限制;cols/1..8/: d; !售点的需求限制;links(rows,cols): c, x; !运输单价,决策运输量; endsets!-------------------------------------;data:s = 60,55,51,43,41,52;d = 35 37 22 32 41 32 43 38;c = 6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddata!------------------------------------;min = @sum(links: c*x); !⽬标函数=运输总成本;@for(rows(i):@sum(cols(j): x(i,j))<=s(i) ); ! 产量约束;@for(cols(j):@sum(rows(i): x(i,j))=d(j) ); !需求约束;end例3把上述程序进⾏改进,引进运⾏⼦模块和打印运算结果的语句:! 源程序model: !6发点8收点运输问题;sets:rows/1..6/: s; !发点的产量限制;cols/1..8/: d; !售点的需求限制;links(rows,cols): c, x; !运输单价,决策运输量; endsets!==================================;data:s = 60,55,51,43,41,52;d = 35 37 22 32 41 32 43 38;c = 6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddata!==================================;submodel transfer:min = cost; ! ⽬标函数极⼩化;cost = @sum(links: c*x); !⽬标函数:运输总成本;@for(rows(i):@sum(cols(j): x(i,j)) < s(i) ); ! 产量约束;@for(cols(j):@sum(rows(i): x(i,j)) > d(j) ); !需求约束; endsubmodel!==================================;calc:@solve(transfer); !运⾏⼦模块(解线性规划);@divert('');!向.txt⽂件按⾃定格式输出数据;@write('最⼩运输成本=',cost,@newline(1),'最优运输⽅案x=');@for(rows(i):@write(@newline(1));@writefor(cols(j): ' ',@format(x(i,j),'') ) );@divert(); !关闭输出⽂件;打开⽂件,内容为:最⼩运输成本=664最优运输⽅案x=0 19 0 0 41 0 0 01 0 0 32 0 0 0 00 11 0 0 0 0 40 00 0 0 0 0 5 0 3834 7 0 0 0 0 0 00 0 22 0 0 27 3 0例4 data段的编写技巧(1):从txt⽂件中读取原始数据 ! 源程序中的data也可以写为:data:s = @file('');d = @file('');c = @file('');enddata其中,的内容为:!程序的数据;!产量约束s= ;60,55,51,43,41,52 ~!需求约束d= ;35 37 22 32 41 32 43 38 ~!运输单价c= ;6 2 67 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3 ~!注:字符~是数据分割符,若⽆此符,视所有数据为⼀个数据块,只赋给⼀个变量;例5lingo程序的的3种输⼊和3种输出⽅法;rows/1..3/: ;cols/1..4/: ;link(rows,cols): a, b, mat1, mat2;endsetsdata:b = 1,2,3,45,6,7,89,10,11,12; !程序内输⼊;a = @file(''); !外部txt⽂件输⼊;mat1 = @ole('d:\lingo12\',mat1); !EXcel⽂件输⼊;enddatacalc:@text('') = a; !列向量形式输出数据;@for(link: mat2 = 2*mat1);@ole('d:\lingo12\') = mat2 ;!把mat2输出到xls⽂件中的同名数据块; !向.txt⽂件按⾃定格式输出数据(参照前例);Endcalc例6程序段中的循环和选择结构举例!的源程序;sets:rows/1..5/:;cols/1..3/:;links(rows,cols):d;endsetsdata:d=0 2 34 3 21 3 24 7 22 1 6;enddatacalc:i=1;@while(i#le#5:a = d(i,1);b = d(i,2);c = d(i,3);@ifc(a#eq#0:@write('infeasible!',@newline(1));@elsedelta = b^2-4*a*c;sqrt = @sqrt(@if(delta#ge#0, delta,-delta));@ifc(delta#ge#0:@write('x1=',(-b+sqrt)/2/a,'x2=',(-b-sqrt)/2/a,@newline(1));@else@write('x1=',-b/2/a,'+',sqrt/2/a,'i', 'x2=',-b/2/a,'-',sqrt/2/a,'i',@newline(1));););i=i+1;);endcalc本程序中的循环结构也可以⽤@for(rows(i): 程序体);进⾏计算。
线性规划问题的Lingo求解
即求总成本的最小值。 约束条件1:如果每个月都有非负的存储量,显然满足要求,可用约束:
x d
i 1 i i 1
j
j
i
0
约束条件2:4个月的总产量等于总需求量即:
x d
i 1 i i 1
4
4
i
0
约束条件3:产量限制,0<=xi<=10000。 综上,建立如下数学模型:
j j min f c j x j xi d i e j 1 j 1 j 1 i 1 i 1 j j xi d i 0, j 1, 2, 3 i 1 i 1 4 4 s.t. xi d i 0 i 1 i 1 0 xi 10000, i 1, 2, 3, 4 4 3
说明1、 (1)红框内的部分是对目标函数进行的灵敏性分析,第一列是变量,第二列
是对应的系数,第三列是允许增加量,第四列是允许减少量,允许增加和允许减少 都是在当前系数基础上改变的。 在其他变量系数都不变的情况下有: 当x1在(2-0.5,2+∞)=(1.5, ∞)之间变化时,最优解不变; 当x2在(3-3,3+1)=(0,4)之间变化时,最优解不变。
4
j
第j月到j+1月的库存量(记作第j+1月的库存量)应该是1月到j月的总产量减去
1月到j月的总销售量,即:
x d
i 1 i i 1
j
j
i
j j 总的库存费用为: xi di e j 1 j 1 i 1 i 1 j 4 3 j c j x j xi di e j 1 总成本为: j 1 j 1 i 1 i 1 3
线性规划问题的Lingo求解
Lingo中参数设置与调整
01
参数设置
02
调整策略
Lingo允许用户设置求解器的参数, 如求解方法、迭代次数、收敛精度等 。这些参数可以通过`@option`进行 设置。
如果求解过程中遇到问题,如无解、 解不唯一等,可以通过调整参数或修 改模型来尝试解决。常见的调整策略 包括放松约束条件、改变目标函数权 重等。
02
比较不同方案
03
验证求解结果
如果存在多个可行解,需要对不 同方案进行比较,选择最优方案。
可以通过将求解结果代入原问题 进行验证,确保求解结果的正确 性和合理性。
感谢您的观看
THANKS
问题,后面跟随线性表达式。
02 03
约束条件表示
约束条件使用`subject to`或简写为`s.t.`来引入,后面列出所有约束条 件,每个约束条件以线性表达式和关系运算符(如`<=`, `>=`, `=`, `<`, `>`)表示。
非负约束
默认情况下,Lingo中的变量是非负的,如果变量可以为负,需要使用 `@free`进行声明。
问题的解通常出现在约束条件的边界上 。
变量通常是连续的。
特点 目标函数和约束条件都是线性的。
线性规划问题应用场景
生产计划
确定各种产品的最优生产量, 以最大化利润或最小化成本。
资源分配
在有限资源下,如何最优地分 配给不同的项目或任务。
运输问题
如何最低成本地将物品从一个 地点运输到另一个地点。
金融投资
03
求解结果
通过Lingo求解,得到使得总加工时间最短的生产计划安 排。
运输问题优化案例
问题描述
某物流公司需要将一批货物从A地运往B地,可以选择不同的运输方式和路径,每种方式和路径的运输时间和成本不 同。公司需要在满足货物送达时间要求的前提下,选择最优的运输方式和路径,使得总成本最低。
运用Lingo进行线性规划求解(实例)
LinDo
输入模型 求解
点击求解按钮 结果
即可
♂返回
!注释内容,可用中文
输
!目标函数:最大-max,最小-min,大小写不分
max 3 x1+5 x2+4 x3
入
!约束,以subject to开始
模
subject to
型
2 x1+3 x2<=1500
2 x2+4 x3<=800
3*x1+2*x2+5*x3<=2 000; end
注意与LinDo的区别
目标函数中加等号 变量与系数之间用“*” Model:-end可省略
♂返回
LinGo 模 式
Model: Sets: !定义集合
Endsets
Data:
!定义数据
Enddata 调用函数与计算
end
♂返回
model: !开始
数
@sum(set(set_index_list)|condition:expressi
on)
@min(max)(set(set_index_list)|condition:ex pression)
♂返回
Global optimal solution found at
iteration:
3
结
Objective value: 2675.000
果
Variable Value
Reduced Cost
C( 1) 3.000000
0.000000
C( 2) 5.000000
0.000000
C( 3) 4.000000
0.000000
运用Lingo进行线性规划求解(实例)
LINGO
支持多种线性规划算法,包括单纯形法、网络算法等。
要点二
Gurobi
主要采用高级优化算法,如分支定界法、动态规划等。
LINGO与Gurobi的比较
LINGO
支持各种类型的约束条件,包括整数约束、非线性约束 等。
Gurobi
特别擅长处理大规模、非线性问题,但对线性问题的处 理能力稍弱。
LINGO
界面简洁,建模语言直观,易于学习和掌握。
Excel
需要结合多个函数和工具进行建模,对于复杂问题操作相对繁琐。
LINGO与Excel的比较
LINGO
针对优化问题进行了优化,求解速度 较快,精度较高。
Excel
求解速度较慢,对于大规模问题可能 无法得到满意的结果。
LINGO与Gurobi的比较
LINGO软件特点
高效求解
LINGO采用先进的求解算法,能够快速求解大规 模线性规划问题。
灵活建模
LINGO支持多种建模语言,用户可以根据需要选 择合适的语言进行建模。
图形界面
LINGO提供直观的图形界面,方便用户进行模型 设计和结果查看。
LINGO软件应用领域
生产计划
LINGO可用于制定生产计划,优化资源配置, 提高生产效率。
金融投资
LINGO可以用于金融投资组合优化,帮助投 资者实现风险和收益的平衡。
物流优化
LINGO可以帮助企业优化物流配送路线,降 低运输成本。
资源分配
LINGO可用于资源分配问题,如人员、设备、 资金的分配,以达到最优效果。
2023
PART 02
线性规划基本概念
REPORTING
线性规划定义
线性规划是数学优化技术的一种,它通过将问 题抽象为数学模型,利用数学方法来寻找最优 解。
LINGO软件在线性规划中的运用
Southwestuniversityofscienceandtechnology实验报告LINGO软件在线性规划中的运用学院名称环境与资源学院专业名称采矿工程学生姓名学号指导教师二〇一五年十一月实验LINGO软件在线性规划中的运用1.实验目的掌握LINGO软件求解线性规划问题的基本步骤,了解LINGO软件解决线性规划问题的基本原理,熟悉常用的线性规划计算代码,理解线性规划问题的迭代关系。
2.实验仪器、设备或软件电脑,LINGO软件3.实验内容(1)LINGO软件求解线性规划问题的基本原理;(2)编写并调试LINGO软件求解线性规划问题的计算代码;4.实验步骤(1)使用LINGO计算并求解线性规划问题;(2)写出实验报告,并浅谈学习心得体会(线性规划的基本求解思路与方法及求解过程中出现的问题及解决方法)。
5.题目有一艘货轮,分前、中、后三个舱位,它们的容积与最大允许载重量如表1所示。
现有三种货物待运,已知有关数据列于表2中。
又为了航运安全,要求前、中、后舱在实际载重量上大体保持各舱最大允许载重量的比例关系。
具体要求前、后舱分别与中舱之间载重量比例上偏差不超过15%,前、后舱之间不超过10%。
问该货轮应装载A、B、C各多少件,运费收入为最大?要求写出建模分析,数学模型建立,并分别用lingo和matlab编写程序代码,并计算出结果和分析结果。
前舱中舱后舱最大允许载重量(t) 2000 3000 1500容积(m3) 4000 5400 1500商品数量(件) 每件体积(m3/件) 每件重量(t/件) 运价(元/件)A 600 10 8 1000B 1000 5 6 700C 800 7 5 6006.实验过程!设前舱运A为x11,运B:x12,运C:x13;!设中舱运A为x21,运B:x22,运C:x23;!设后舱运A为x31,运B:x32,运C:x33;!单位:件;!目标函数;max=1000*(x11+x21+x31)+700*(x12+x22+x32)+600*(x13+x23+x33);!数量约束;x11+x21+x31<=600;x12+x22+x32<=1000;x13+x23+x33<=800;!容量约束;x11*10+x12*5+x13*7<=4000;x21*10+x22*5+x23*7<=5400;x31*10+x32*5+x33*7<=1500;!重量约束;x11*8+x12*6+x13*5<=2000;x21*8+x22*6+x23*5<=3000;x31*8+x32*6+x33*5<=1500;!平衡约束;x11*8+x12*6+x13*5<=1.15*(x21*8+x22*6+x23*5);x21*8+x22*6+x23*5<=1.15*(x11*8+x12*6+x13*5);x31*8+x32*6+x33*5<=1.15*(x21*8+x22*6+x23*5);x21*8+x22*6+x23*5<=1.15*(x31*8+x32*6+x33*5);x11*8+x12*6+x13*5<=1.1*(x21*8+x22*6+x23*5);x21*8+x22*6+x23*5<=1.1*(x11*8+x12*6+x13*5);!整数约束;@gin(x11);@gin(x12);@gin(x13);@gin(x21);@gin(x22);@gin(x23);@gin(x31);@gin(x32);@gin(x33);7.心得体会运筹学是近几十年发展起来的一门新兴学科。
lingo解决线性规划问题的程序(经典)
非线性规划问题
目前Lingo主要专注于线性规划问题的求 解,未来可以进一步拓展到非线性规划领 域。
与其他软件的集成
为了更好地满足用户需求,Lingo可以与 其他数学软件或编程语言进行集成,提供 更强大的功能和更广泛的应用范围。
感谢观看
THANKS
调整模型或参数
输出结果报告
如果运行结果不合理或不符合预期,可以 调整数学模型或参数设置,并重新运行程 序进行求解。
将运行结果整理成报告形式,包括问题背景 、数学模型、运行结果、结果分析等部分, 以便后续参考和使用。
04
经典线性规划问题案例解析
生产计划问题
问题描述
某公司生产多种产品,每种产品需要 不同的资源和时间,且有市场需求限 制。公司需要制定一个生产计划,以 最大化利润或最小化成本。
目标函数
以总收益为目标函数,求解最优资源分配方案。
变量设置
设每项任务分配的资源数量为决策变量,根据资 源总量和任务需求建立约束条件。
Lingo程序实现
使用Lingo语言描述问题,调用Lingo求解器求解 。
05
Lingo在解决线性规划问题 中的优势
高效求解大规模问题
01
利用高效的求解引擎,能够快速处理包含大量变量和约束的线 性规划问题。
法等。
支持用户自定义算法, 满足特殊问题的求解需
求。
易于操作和使用
01 提供直观的图形化界面,方便用户输入问 题、查看求解结果和进行数据分析。
02 支持多种数据格式导入,如Excel、CSV等 ,方便用户处理实际问题。
03
提供丰富的函数库和建模语言,支持用户 快速构建复杂的数学模型。
04
提供详细的帮助文档和教程,帮助用户快 速上手并解决遇到的问题。
第2讲 线性规划与LINGO编程
粮库
A1 A2
粮站
B1
12 30
B2
24 12
B3
8 24
2.2 连续性线性规划
解 设A1,A2调运到三个粮站的大米分别为x1, x2, x3, x4, x5, x6吨。 题设量可总到下表:
距离
粮库
及运 粮站 量
12
B1 x1
30 存 量
A1 A2
需要量
x2
12
4 8
求解方法:单纯形算法simplex method。
2.2 连续性线性规划
连续线性规划问题的性质 1.比例性:每个决策变量对目标函数以及右端项 的贡献与该决策变量的取值成正比。 2.可加性:每个决策变量对目标函数以及右端项 的贡献与其他决策变量的取值无关。 3.连续性:每个决策变量的取值都是连续的。
2.2 连续性线性规划
程序的调试 1.直接点击运行,如果出错会弹出错误提示,根 据提示做相应的修改; 2.可以用“!”把约束变成说明语句,而把这条 语句屏蔽掉,缩小寻找出错的范围; 3.可以边写程序边运行,保证每行书写都是正确 的程序;
2.2 连续性线性规划
例2 阶段生产问题 某公司生产某产品,最大生产能力为10000单位,每 单位存储费2元,预定的销售量与单位成本如下:
x4 2
x5 4
x6 5
2.2 连续性线性规划
结合存量限制和需量限制得数学模型:
min f 12 x1 24 x2 8 x3 30 x4 12 x5 24 x6
x1 x 2 x 3 4 x4 x5 x6 8 x1 x4 2 s .t . x 2 x5 4 x 3 x6 5 x1 , x 2 , x 3 , x4 , x5 , x6 0
用Lingo软件编程求解规划问题解决方案
Lingo软件具有直观易用的界面,提供丰富的函数库和求解算法, 能够高效地求解大规模复杂规划问题。
Lingo软件应用
Lingo软件被广泛应用于各个领域的规划问题求解,如金融、物流、 制造等。
解决方案目标与意义
解决方案目标
通过Lingo软件编程求解规划问题, 旨在获得满足约束条件的最优解,使 得目标函数达到最优。
要点三
推动软件升级和普及
Lingo软件作为一款优秀的数学规划 求解工具,未来可以进一步推动其升 级和普及工作。例如,可以增加更多 实用的功能、提高软件的易用性和稳 定性等,以吸引更多的用户使用该软 件解决规划问题。
THANKS
感谢观看
Lingo编程环境介绍
Lingo是一款专门用于求解线性、非线性和整数规划问题的软件,它提供了一个直观易用的编程环境。
Lingo支持多种类型的数学模型,如线性规划、目标规划、整数规划等,并内置了大量的函数和算法, 方便用户快速构建和求解模型。
Lingo还提供了丰富的数据输入/输出功能,支持Excel、数据库等多种数据格式,方便用户进行数据处理 和分析。
结果分析
根据求解结果,分析每种产品的生产量是否符合预期,并评估总成本是否达到最小化。 同时,可以对不同方案进行比较,选择最优方案。
敏感性分析
通过改变某些参数或约束条件,观察求解结果的变化,以评估方案的稳定性和可行性。
06
总结与展望
研究成果总结
成功构建了规划问题的数学模型
通过深入研究规划问题的本质,我们成功构建了能够准确 描述问题的数学模型,为后续的求解工作奠定了坚实的基 础。
学习和使用。
02
Lingo语言基本语法
学习Lingo语言的基本语法和规则,如变量定义、函数定义、约束条件
数学建模 线性规划及lingo编程
2014年数学建模作业:线性规划及lingo编程Ⅰ-1 灵敏度分析某公司计划生产I、II两种产品,每天生产条件如表,问(1)该公司应如何安排生产计划才能使总利润最多?(2)若产品Ⅰ的利润降至1.5百元/单位,而产品Ⅱ的利润增至2百元/单位,最优生产计划有何变化?(3)若产品Ⅰ的利润不变,则产品Ⅱ的利润在什么范围内变化时,该公司的最优生产计划将不发生变化?在0.67-2不变(4)设备A和调试工序每天能力不变,而设备B能力增加到32,问最优生产计划如何变化?B在18-30内不变。
在B=32时,Ⅰ-2投资问题某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券以及其信用等级、到期年限、收益如下表所示。
按照规定,市政证券的收益可以免税,其它证券的收益需按50%的税率纳税。
此外还有以下限制:①政府及代办机构的证券总共至少要购进400万元;②所购证券的平均信用等级不超过1.49,信用等级数字越小,信用程度越高;③所购证券的平均到期年限不超过5年。
(1)若该经理有1000万元资金,应如何投资?(2)(3)(2)如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作?去借钱吧,收益为3.039% ,收益更高,(3)在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应否改变?若证券C的税前收益减少为 4.8%,投资应否改变?表证券信息B 代办机构2 15 5.4C 政府 1 4 5.0D 政府 1 3 4.4E 5 2 4.5Ⅰ-3 一家保姆服务公司专门向顾主提供保姆服务。
根据统计,下年的需求是:春季6000工(1人做1天为1个工),夏季7500工,秋季5500工,冬季9000工。
公司新招聘的保姆必须经过5天的培训才能上岗。
每个保姆每季度工作(新保姆包括培训)65天。
保姆从该公司而不是从雇主那里得到报酬,每人每月工资800元。
春季开始时公司拥有120名保姆,在每个季度结束时,将有15%的保姆自动离职。
LINGO使用简介及简单线性规划模型的求解
这些运算符的优先级由高到低为:
高 #not# ﹣(取反)
^
﹡/
﹢﹣
#eq# #ne# #gt# #ge# #lt# #le#
#and# #or#
低 <= = >=
1
数学函数
@abs(x)
返回x的绝对值
@sin(x)
返回x的正弦值,x采用弧度制
ห้องสมุดไป่ตู้
@cos(x)
返回x的余弦值
@tan(x)
1
集的类型
LINGO有两种:原始集(primitive set)和派生 集(derived set)。
一个原始集是由一些最基本的对象组成的。 一个派生集是用一个或多个其它集来定义的,
也就是说,它的成员来自于其它已存在的集。
1
定义原始集
为了定义一个原始集,必须详细声明: ·集的名字 ·可选,集的成员 ·可选,集成员的属性 定义一个原始集,用下面的语法: setname[/member_list/][:attribute_list];
注意:用“[]”表示该部分内容可选。
1
集合的定义
Setname是你选择的来标记集的名字,最好具 有较强的可读性。集名字必须严格符合标准命 名规则:以拉丁字母或下划线(_)为首字符, 其后由拉丁字母(A—Z)、下划线、阿拉伯 数字(0,1,…,9)组成的总长度不超过32 个字符的字符串,且不区分大小写。
flase #lt# 若左边的运算符严格小于右边的运算符,则为true;否则为flase #le# 若左边的运算符小于或等于右边的运算符,则为true;否则为
flase #and# 仅当两个参数都为true时,结果为true;否则为flase #or# 仅当两个参数都为false时,结果为false;否则为true
用LINGO求解线性规划问题
实验1 用LINGO求解线性规划问题LINGO使用简介LINGO软件是美国的LINDO系统公司(Lindo System Inc)开发的一套用于求解最优化问题的软件包.LINGO除了能用于求解线性规划和二次规划外,还可以用于非线性规划求解以及一些线性和非线性方程(组)的求解.LINGO软件的最大特色在于它允许优化模型中的决策变量为整数,而且执行速度快.LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果,这里简单介绍LINGO的使用方法.LINGO可以求解线性规划、二次规划、非线性规划、整数规划、图论及网络优化和排队论模型中的最优化问题等.一个LINGO程序一般会包含集合段、数据输入段、优化目标和约束段、初始段和数据预处理段等部分,每一部分有其独特的作用和语法规则,读者可以通过查阅相关的参考书或者LINGO的HELP文件详细了解,这里就不展开介绍了.LINGO的主要功能特色为:既能求解线性规划问题,也有较强的求解非线性规划问题的能力;输入模型简练直观;运算速度快、计算能力强;内置建模语言,提供几十个内部函数,从而能以较少语句,较直观的方式描述大规模的优化模型;将集合的概念引入编程语言,很容易将实际问题转换为LINGO模型;并且能方便地与Excel、数据库等其他软件交换数据.LINGO的语法规定:(1)求目标函数的最大值或最小值分别用MAX=…或MIN=…来表示;(2)每个语句必须以分号“;”结束,每行可以有许多语句,语句可以跨行;(3)变量名称必须以字母(A~Z)开头,由字母、数字(0~9)和下划线所组成,长度不超过32个字符,不区分大小写;(4)可以给语句加上标号,例如[OBJ] MAX=200*X1+300*X2;(5)以惊叹号“!”开头,以分号“;”结束的语句是注释语句;(6)如果对变量的取值范围没有作特殊说明,则默认所有决策变量都非负;(7)LINGO模型以语句“MODEL:”开头,以“END”结束,对于比较简单的模型,这两个语句可以省略.实验目的1.对于给定的实际应用问题,正确的建立线性规划问题数学模型,并用LINGO求解;2.掌握灵敏度分析以及资源的影子价格的相关分析方法.实验数据与内容问题1.1某工厂在计划期内要安排生产A、B两种产品,已知生产单位产品所需设备台时及对甲、乙两种原材料的消耗,有关数据如表1.1.问:应如何安排生产计划,使工厂获利最大?.问题1.2 某公司饲养实验用的动物以供出售,已知这些动物的生长对饲料中3种营养成分(蛋白质、矿物质和维生素)特别敏感,每个动物每周至少需要蛋白质60g ,矿物质3g ,维生素8mg ,该公司能买到5种不同的饲料,每种饲料1kg 所含各种营养成分和成本如表1.2所示,如果每个小动物每周食用饲料不超过52kg ,求既能满足动物生长需要,又使总成本最低的饲料配方.实验指导问题1.1设计划生产两种产品分别为,则建立线性规划问题数学模型B A ,21,x x ⎪⎪⎩⎪⎪⎨⎧≥≤≤≤++=0,12416482.32max 21212121x x x x x x t s x x S 在LINGO 的MODEL 窗口内输入如下模型:model :max =2*x1+3*x2;x1+2*x2<=8;4*x1<=16;4*x2<=12;end选菜单Lingo|Solve(或按Ctrl+S),或用鼠标点击“求解”按纽,如果模型有语法错误,则弹出一个标题为“LINGO Error Message ”(错误信息)的窗口,指出在哪一行有怎样的错误,每一种错误都有一个编号(具体含义可查阅相关文献或LINGO 的Help ).改正错误以后再求解,如果语法通过,LINGO 用内部所带的求解程序求出模型的解,然后弹出一个标题为“LINGO Solver Status ”(求解状态)的窗口,其内容为变量个数、约束条件个数、优化状态、耗费内存、所花时间等信息,点击Close 关闭窗口,屏幕上出现标题为“Solution Report ”(解的报告)的信息窗口,显示优化计算(线性规划中换基迭代)的步数、优化后的目标函数值、列出各变量的计算结果.求解结果:Global optimal solution found at iteration: 5Objective value: 14.00000Variable Value Reduced CostX1 4.000000 0.000000X2 2.000000 0.000000Row Slack or Surplus Dual Price1 14.00000 1.0000002 0.000000 1.5000003 0.000000 0.12500004 4.000000 0.000000该报告说明:运行5步找到全局最优解,目标函数值为14,变量值分别为.“Reduced Cost ”的含义是需缩减成本系数或需增加利润系数(最优解中取值非零的决策变量的Reduced Cost 值等于零).“Row ”是输入模型中的行号,目标函数是第一行;“Slack or Surplus ”的意思是松弛或剩余,即约束条件左边与右边的差值,对于“124,2==x x ≤”的不等式,右边减左边的差值为Slack (松弛),对于“”的不等式,左边减右边的差值为Surplus (剩余),当约束条件两边相等时,松弛或剩余的值等于零.“Dual Price ”的意思是对偶价格(或称为影子价格),上述报告中Row2的松弛值为0,表明生产甲产品4单位、乙产品2单位,所需设备8台时已经饱和,对偶价格1.5的含义是:如果设备增加1台时,能使目标函数值增加1.5.报告中Row4的松弛值为4,表明生产甲产品4单位、乙产品2单位,所需原材料乙8公斤还剩余4公斤,因此增加原材料乙不会使目标函数值增加,所以对偶价格为0.≥问题1.2设需要饲料分别为 kg ,则建立线性规划数学模型:54321,,,,A A A A A 54321,,,,x x x x x 123451234512345123451234512345min 0.20.70.40.30.50.320.6 1.8600.10.050.020.20.0530.050.10.020.20.088.52,,,,0S x x x x x x x x x x x x x x x x x x x x s t x x x x x x x x x x =++++++++≥⎧⎪++++⎪⎪≥++++⎨⎪++++≤⎪≥⎪⎩≥ 在LINGO 的MODEL 窗口内输入如下模型:Min=0.2*x1+0.7*x2+0.4*x3+0.3*x4+0.5*x5;0.3*x1+2*x2+x3+0.6*x4+1.8*x5>60;0.1*x1+0.05*x2+0.02*x3+0.2*x4+0.05*x5>3;0.05*x1+0.1*x2+0.02*x3+0.2*x4+0.08*x5>8;x1+x2+x3+x4+x5<52;求解输出结果如下:Global optimal solution found at iteration: 4Objective value: 22.40000Variable Value Reduced CostX1 0.000000 0.7000000X2 12.00000 0.000000X3 0.000000 0.6166667X4 30.00000 0.000000X5 10.00000 0.000000Row Slack or Surplus Dual Price1 22.40000 -1.0000002 0.000000 -0.58333333 4.100000 0.0000004 0.000000 -4.1666675 0.000000 0.8833333因此,每周每个动物的配料为饲料、、分别为12、30和10kg ,合计为52,可使得饲养成本达到最小,最小成本为22.4元;不选用饲料和的原因是因为这两种饲料的价格太高了,没有竞争力.“Reduced Cost ”分别等于0.7和0.617,说明当这两种饲料的价格分别降低0.7元和0.62元以上时,不仅选用这两种饲料而且使得饲养成本降低.从“Slack or Surplus”可以看出,蛋白质和维生素刚达到最低标准,矿物质超过最低标准4.12A 4A 5A kg kg kg 1A 3A g ;从“Dual Price”可以得到降低标准蛋白质1单位可使饲养成本降低0.583元,降低标准维生素1单位可使饲养成本降低4.167元,但降低矿物质的标准不会降低饲养成本,如果动物的进食量减少,就必须选取精一些的饲料但要增加成本,大约进食量降低1可使得饲养成本增加0.88元.kg 对于目标函数系数和约束条件右端常数项的灵敏度分析,可以通过LINGO 软件求解的灵敏度分析给出.如果要看灵敏度分析结果,必须激活灵敏度计算功能才会在求解时给出灵敏度分析结果,默认情况下这项功能是关闭的.想要激活它,必须运行LINGO|Options …命令,选择Gengral Solver ,在Dual Computation 列表框中,选择Prices and Ranges 选项并确定.对于例1.1问题进行灵敏度分析,结果如下:以下是灵敏度分析的结果Ranges in which the basis is unchanged:Objective Coefficient RangesCurrent Allowable AllowableVariable Coefficient Increase DecreaseX1 2.000000 INFINITY 0.5000000X2 3.000000 1.000000 3.000000Righthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 8.000000 2.000000 4.0000003 16.00000 16.00000 8.0000004 12.00000 INFINITY 4.000000对于例1.2问题进行灵敏度分析,结果如下:Ranges in which the basis is unchanged:Objective Coefficient RangesCurrent Allowable AllowableVariable Coefficient Increase DecreaseX1 0.2000000 INFINITY 0.7000000X2 0.7000000 INFINITY 0.1358974X3 0.4000000 INFINITY 0.6166667X4 0.3000000 1.400000 1.000000X5 0.5000000 0.1247059 INFINITYRighthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 60.00000 4.800000 4.8000003 3.000000 4.100000 INFINITY4 8.000000 0.3428571 0.48000005 52.00000 1.846154 1.411765思考题某投资公司拟制定今后5年的投资计划,初步考虑下面四个投资项目:项目A:从第1年到第4年每年年初可以投资,于次年年末收回成本,并可获利润15%;项目B:第3年年初可以投资,到第5年年末可以收回成本,并获得利润25%,但为了保证足够的资金流动,规定该项目的投资金额上限为不超过总金额的40%;项目C:第2年年初可以投资,到第5年年末可以收回成本,并获得利润40%,但公司规定该项目的最大投资金额不超过总金额的30%;项目D:5年内每年年初可以购买公债,于当年年末可以归还本金,并获利息6%.该公司现有投资金额100万元,请帮助该公司制定这些项目每年的投资计划,使公司到第5年年末核算这5年投资的收益率达到最大.建立线性规划问题的数学模型,并用LINGO求解.。
用lingo求解线性规划问题
用lingo求解线性规划问题中国石油大学胜利学院程兵兵摘要食物营养搭配问题是现代社会中常见的问题,其最终的目的是节省总费用.本文通过对营养问题的具体剖析.构建了一般的线性规划模型。
并通过实例应用Lingo数学软件求解该问题.并给出了价值系数灵敏度分析,得出蔬菜价格的变动对模型的影响.关键词线性规划,lingo,灵敏度分析。
一、问题重述与分析营养师要为某些特殊病人拟订一周的菜单,可供选择的蔬菜及其费用和所含营养成分的数量以及这类病人每周所需各种营养成分的最低数量如下表1所示。
有以下规定:一周内所用卷心菜不多于2份,其他蔬菜不多于4份。
问题一:若病人每周需要14份蔬菜,问选用每种蔬菜各多少份,可使生活费用最小.问题二:当市场蔬菜价格发生怎样波动时,所建模型的适用性。
表 1 所需营养和费用营养搭配是一个线性规划问题,在给定蔬菜的情况下,要求菜单所需的营养成分必须达到要求,并在此条件下求出什么样的搭配所花费的费用最少.第一个要求是满足各类营养的充足,根据表中数据列出不等式。
第二要求为问题一中,蔬菜的份数必须为14,第三要求为在一周内,卷心菜不多于2份,其他不多于4份,根据以上条件列出各类蔬菜份数的限定条件,并可表示出费用的表达式.对于第二问,就是价值系数的变化对总费用的影响,模型的适用范围。
三、模型假设第一,假设各蔬菜营养成分保持稳定,满足题干要求。
第二,假设各蔬菜价格在一定时间内保持相对稳定。
第三,假设各类蔬菜供应全部到位,满足所需要求量. 第四,假设所求出最优解时不要求一定为整数。
四、符号约定(1)Z 代表目标函数,此题即为费用。
(2)i c 为价值系数,此题即为每份蔬菜的价格。
下标i 代表蔬菜的种类。
(3)i x 为决策变量,表示各种蔬菜的数量。
(4)i b 为最低限定条件,表示蔬菜最低营养需要。
五、模型建立根据以上各种假设和符号约定,建立模型如下。
所求的值就是min,也就是最优化结果.s 。
用LINGO求解线性规划问题
用LINGO求解线性规划问题实验1 用LINGO求解线性规划问题LINGO使用简介LINGO软件是美国的LINDO系统公司(Lindo System Inc)开发的一套用于求解最优化问题的软件包.LINGO除了能用于求解线性规划和二次规划外,还可以用于非线性规划求解以及一些线性和非线性方程(组)的求解.LINGO软件的最大特色在于它允许优化模型中的决策变量为整数,而且执行速度快.LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果,这里简单介绍LINGO的使用方法.LINGO可以求解线性规划、二次规划、非线性规划、整数规划、图论及网络优化和排队论模型中的最优化问题等.一个LINGO程序一般会包含集合段、数据输入段、优化目标和约束段、初始段和数据预处理段等部分,每一部分有其独特的作用和语法规则,读者可以通过查阅相关的参考书或者LINGO的HELP文件详细了解,这里就不展开介绍了.LINGO的主要功能特色为:既能求解线性规划问题,也有较强的求解非线性规划问题的能力;输入模型简练直观;运算速度快、计算能力强;内置建模语言,提供几十个内部函数,从而能以较少语句,较直观的方式描述大规模的优化模型;将集合的概念引入编程语言,很容易将实际问题转换为LINGO模型;并且能方便地与Excel、数据库等其他软件交换数据.LINGO的语法规定:(1)求目标函数的最大值或最小值分别用MAX=…或MIN=…来表示;(2)每个语句必须以分号“;”结束,每行可以有许多语句,语句可以跨行;(3)变量名称必须以字母(A~Z)开头,由字母、数字(0~9)和下划线所组成,长度不超过32个字符,不区分大小写;(4)可以给语句加上标号,例如[OBJ] MAX=200*X1+300*X2;(5)以惊叹号“!”开头,以分号“;”结束的语句是注释语句;(6)如果对变量的取值范围没有作特殊说明,则默认所有决策变量都非负;(7)LINGO模型以语句“MODEL:”开头,以“END”结束,对于比较简单的模型,这两个语句可以省略.实验目的1.对于给定的实际应用问题,正确的建立线性规划问题数学模型,并用LINGO求解;2.掌握灵敏度分析以及资源的影子价格的相关分析方法.实验数据与内容问题1.1 某工厂在计划期内要安排生产A、B两种产品,已知生产单位产品所需设备台时及对甲、乙两种原材料的消耗,有关数据如表1.1.问:应如何安排生产计划,使工厂获利最大?表1.1 资源配置问题的数据产品资源AB可利用资源设备128台时甲416公斤乙412公斤单位利润2元3元建立线性规划问题的数学模型,用LINGO求出最优解并做相应的分析.问题1.2 某公司饲养实验用的动物以供出售,已知这些动物的生长对饲料中3种营养成分(蛋白质、矿物质和维生素)特别敏感,每个动物每周至少需要蛋白质60g,矿物质3g,维生素8mg,该公司能买到5种不同的饲料,每种饲料1kg所含各种营养成分和成本如表1.2所示,如果每个小动物每周食用饲料不超过52kg,求既能满足动物生长需要,又使总成本最低的饲料配方.表1.2 配料(食谱)问题的数据饲料营养1A2A4A5A营养最低要求蛋白质(g) 0.3210.61.860矿物质(g) 0.10.050.20.053维生素(mg) 0.050.10.020.20.088成本(元/ kg)0.20.70.40.5实验指导问题1.1设计划生产两种产品分别为,则建立线性规划问题数学模型 BA,21,xx.......≥≤≤≤++=0,12416482.32max21212121xxxxxxtsxxS在LINGO的MODEL窗口内输入如下模型:model:max=2*x1+3*x2;x1+2*x2<=8;4*x1<=16;4*x2<=12;end选菜单Lingo|Solve(或按Ctrl+S),或用鼠标点击“求解”按纽,如果模型有语法错误,则弹出一个标题为“LINGO Error Message”(错误信息)的窗口,指出在哪一行有怎样的错误,每一种错误都有一个编号(具体含义可查阅相关文献或LINGO的Help).改正错误以后再求解,如果语法通过,LINGO用内部所带的求解程序求出模型的解,然后弹出一个标题为“LINGO Solver Status”(求解状态)的窗口,其内容为变量个数、约束条件个数、优化状态、耗费内存、所花时间等信息,点击Close关闭窗口,屏幕上出现标题为“Solution Report”(解的报告)的信息窗口,显示优化计算(线性规划中换基迭代)的步数、优化后的目标函数值、列出各变量的计算结果.求解结果:Global optimal solution found at iteration: 5Objective value: 14.00000Variable Value Reduced CostX1 4.000000 0.000000X2 2.000000 0.000000Row Slack or Surplus Dual Price1 14.00000 1.0000002 0.000000 1.5000003 0.000000 0.12500004 4.000000 0.000000该报告说明:运行5步找到全局最优解,目标函数值为14,变量值分别为.“Reduced Cost”的含义是需缩减成本系数或需增加利润系数(最优解中取值非零的决策变量的Reduced Cost值等于零).“Row”是输入模型中的行号,目标函数是第一行;“Slack orSurplus”的意思是松弛或剩余,即约束条件左边与右边的差值,对于“124,2==xx≤”的不等式,右边减左边的差值为Slack(松弛),对于“”的不等式,左边减右边的差值为Surplus(剩余),当约束条件两边相等时,松弛或剩余的值等于零.“Dual Price”的意思是对偶价格(或称为影子价格),上述报告中Row2的松弛值为0,表明生产甲产品4单位、乙产品2单位,所需设备8台时已经饱和,对偶价格1.5的含义是:如果设备增加1台时,能使目标函数值增加1.5.报告中Row4的松弛值为4,表明生产甲产品4单位、乙产品2单位,所需原材料乙8公斤还剩余4公斤,因此增加原材料乙不会使目标函数值增加,所以对偶价格为0.≥问题1.2设需要饲料分别为 kg,则建立线性规划数学模型:54321,,,,AAAAA54321,,,,xxxxx123451234512345123451234512345min0.20.70.40.30.50.32 0.61.8600.10.050.020.20.0530.050.10.020.20.088.52,,,,0Sxxxxxxxx xxxxxxxxxxxxstxxxxxxxxxx=++++++++≥..++++..++++..++++≤.≥..在LINGO的MODEL窗口内输入如下模型:Min=0.2*x1+0.7*x2+0.4*x3+0.3*x4+0.5*x5;0.3*x1+2*x2+x3+0.6*x4+1.8*x5>60;0.1*x1+0.05*x2+0.02*x3+0.2*x4+0.05*x5>3;0.05*x1+0.1*x2+0.02*x3+0.2*x4+0.08*x5>8; x1+x2+x3+x4+x5<52;求解输出结果如下:Global optimal solution found at iteration: 4 Objective value: 22.40000Variable Value Reduced CostX1 0.000000 0.7000000X2 12.00000 0.000000X3 0.000000 0.6166667X4 30.00000 0.000000X5 10.00000 0.000000Row Slack or Surplus Dual Price1 22.40000 -1.0000002 0.000000 -0.58333333 4.100000 0.0000004 0.000000 -4.1666675 0.000000 0.8833333因此,每周每个动物的配料为饲料、、分别为12、30和10kg,合计为52,可使得饲养成本达到最小,最小成本为22.4元;不选用饲料和的原因是因为这两种饲料的价格太高了,没有竞争力.“Reduced Cost”分别等于0.7和0.617,说明当这两种饲料的价格分别降低0.7元和0.62元以上时,不仅选用这两种饲料而且使得饲养成本降低.从“Slack or Surplus”可以看出,蛋白质和维生素刚达到最低标准,矿物质超过最低标准4.12A4A5Akgkgkg1A3Ag;从“Dual Price”可以得到降低标准蛋白质1单位可使饲养成本降低0.583元,降低标准维生素1单位可使饲养成本降低4.167元,但降低矿物质的标准不会降低饲养成本,如果动物的进食量减少,就必须选取精一些的饲料但要增加成本,大约进食量降低1可使得饲养成本增加0.88元.kg对于目标函数系数和约束条件右端常数项的灵敏度分析,可以通过LINGO软件求解的灵敏度分析给出.如果要看灵敏度分析结果,必须激活灵敏度计算功能才会在求解时给出灵敏度分析结果,默认情况下这项功能是关闭的.想要激活它,必须运行LINGO|Options…命令,选择Gengral Solver,在Dual Computation列表框中,选择Prices and Ranges选项并确定.对于例1.1问题进行灵敏度分析,结果如下:以下是灵敏度分析的结果Ranges in which the basis is unchanged:Objective Coefficient RangesCurrent Allowable AllowableVariable Coefficient Increase DecreaseX1 2.000000 INFINITY 0.5000000X2 3.000000 1.000000 3.000000Righthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 8.000000 2.000000 4.0000003 16.00000 16.00000 8.0000004 12.00000 INFINITY 4.000000对于例1.2问题进行灵敏度分析,结果如下:Ranges in which the basis is unchanged: Objective Coefficient RangesCurrent Allowable AllowableVariable Coefficient Increase Decrease X1 0.2000000 INFINITY 0.7000000X2 0.7000000 INFINITY 0.1358974X3 0.4000000 INFINITY 0.6166667X4 0.3000000 1.400000 1.000000X5 0.5000000 0.1247059 INFINITY Righthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 60.00000 4.800000 4.8000003 3.000000 4.100000 INFINITY4 8.000000 0.3428571 0.48000005 52.00000 1.846154 1.411765思考题某投资公司拟制定今后5年的投资计划,初步考虑下面四个投资项目:项目A:从第1年到第4年每年年初可以投资,于次年年末收回成本,并可获利润15%;项目B:第3年年初可以投资,到第5年年末可以收回成本,并获得利润25%,但为了保证足够的资金流动,规定该项目的投资金额上限为不超过总金额的40%;项目C:第2年年初可以投资,到第5年年末可以收回成本,并获得利润40%,但公司规定该项目的最大投资金额不超过总金额的30%;项目D:5年内每年年初可以购买公债,于当年年末可以归还本金,并获利息6%.该公司现有投资金额100万元,请帮助该公司制定这些项目每年的投资计划,使公司到第5年年末核算这5年投资的收益率达到最大.建立线性规划问题的数学模型,并用LINGO求解.。
2024版lingo解决线性规划问题的程序经典要点
资源分配问题案例
01
问题描述
资源分配问题涉及如何将有限的资源分配给不同的项目或部 门,以实现整体效益最大化的目标。
02 03
Lingo模型构建
在资源分配问题中,决策变量通常表示分配给不同项目或部 门的资源数量。目标函数可以是最大化整体效益或满足特定 目标下的资源分配,约束条件则包括资源总量的限制、项目 或部门的需求限制等。
数据处理能力
Excel在数据处理和表格计算方面 非常强大,而Lingo则更适合处理 复杂的优化问题。
求解规模
对于较小规模的线性规划问题, Excel的规划求解工具可以胜任, 但对于大规模问题,Lingo更具优 势。
扩展性
Lingo可以通过编写程序来解决各 种复杂的优化问题,而Excel则受 限于其内置的函数和工具。
对偶单纯形法
内点法
启发式算法
单纯形法是求解线性规 划问题的经典方法,它 通过迭代的方式在可行 域的顶点上寻找最优解。
对偶单纯形法是单纯形 法的一种改进,它通过 对偶问题的求解来得到 原问题的最优解,适用 于初始基可行解不易找 到的情况。
内点法是一种适用于大 规模线性规划问题的求 解方法,它通过在可行 域内部寻找最优解来避 免单纯形法在迭代过程 中可能出现的退化情况。
Lingo程序编写注意事项
变量命名规范 变量命名应具有描述性,避免使用无意 义的字符或数字组合,以提高代码可读
性和可维护性。 避免重复计算
在循环或迭代过程中,避免重复计算 相同的表达式或值,以减小计算量和
时间复杂度。
注释清晰明了 在关键代码处添加注释,解释代码功 能和实现思路,便于他人理解和修改。
Lingo软件功能与特点
功能丰富
Lingo软件提供了丰富的数学规划求解功能,包括 线性规划、非线性规划、整数规划、二次规划等。 用户可以根据实际问题需求选择合适的求解方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求解方法:单纯形算法simplex method。
2.2 连续性线性规划
连续线性规划问题的性质 1.比例性:每个决策变量对目标函数以及右端项 的贡献与该决策变量的取值成正比。 2.可加性:每个决策变量对目标函数以及右端项 的贡献与其他决策变量的取值无关。 3.连续性:每个决策变量的取值都是连续的。
2.1 什么是数学规划
(三)按目标的多少可分为: 1.单目标规划。 2.多目标规划。 (四)按模型中参数和变量是否具有不确定性可分为: 1.确定性规划。 2.不确定性规划。 (五)按问题求解的特性可分为: 1.目标规划。 2.动态规划。 3.多层规划。 4.网络优化。 5.„„等等。
2.1 什么是数学规划
2.2 连续性线性规划
线性规划的一般形式:
min z (或max z ) c j x j
j 1
n
s. t .
a
j1
n
ij
x j (或 或 )bi , i 1, , m x j 0, j 1, , n
2.2 连续性线性规划
一般线性规划问题都可以通过引入非负的松弛 变量slack variable与非负的剩余变量surplus variable的方法化为标准形式(约束全是等约束)。 线性规划问题的可行域feasible region是一个凸 集convex set(任意两点的连线上的点都在区域内部, 可以看作是没有凹坑的凸多面体),所以最优解 Optimal solution/point在凸多面体的某个顶点上达 到
要解决的问题的目标可以用数值指标反映
对于要实现的目标有多种方案可选择
有影响决策的若干约束条件
2.2 连续性线性规划
例1 运输问题
有两个粮库A1 , A2向三个粮站B1 , B2 , B3 调运大米, 两个粮库现存大米分别 为4吨,8吨, 三个粮站至少需要 大米分别为2,4,5吨, 两个粮库到三个粮站的 距离(单位 : 公里)如下, 问如何调运使运费最低 。
最优化问题的数学模型的一般形式为:
opt
z f x
( 1)
s. t .
t k x 0, k 1, , n xD R
s
g j x 0, j 1, , m
( 2)
hi x 0, i 1, , l
三个要素:决策变量decision bariable,目标函数 objective function,约束条件constraints。
2.1 什么是数学规划
优化模型的分类 (一)按有无约束条件(2)可分为: 1.无约束优化unconstrainned optimization。 大部分实际问题都是约束优化问题。
2.1 什么是数学规划
(二)按决策变量取值是否连续可分为: 1.数学规划或连续优化。 可继续划分为线性规划(LP)Linear programming 和非线性规划(NLP) Nonlinear programming。在 非线性规划中有一种规划叫做二次规划 (QP)Quadratic programming,目标为二次函数, 约束为线性函数。 2.离散优化或组合优化。 包含:整数规划(IP)Integer programming,整数 规划中又包含很重要的一类规划:0-1(整数)规 划Zero-one programming,这类规划问题的决策 变量只取0或者1。
求解优化问题常用的软件 LINGO软件和MATLAB软件。 对于LINGO软件,线性优化求解程序通常使用 单纯形法simplex method,单纯形法虽然在实际应用 中是最好最有效的方法,但对某些问题具有指数阶的 复杂性,为了能解大规模问题,也提供了内点算法 interior point method备选(LINGO中一般称为障碍 法,即barrier),非线性优化求解程序采用的是顺序 线性规划法,也可用顺序二次规划法,广义既约梯度 法,另外可以使用多初始点(LINGO中称multistart) 找多个局部最优解增加找全局最优解的可能,还具有 全局求解程序—分解原问题成一系列的凸规划。
小明同学,烧一壶水要8分钟,灌开水 要1分钟,取牛奶和报纸要5分钟,整理书包 要6分钟,为了尽快做完这些事,怎样安排 才能使时间最少?最少需要几分钟?
2.1 什么是数学规划
十个人各提一只水桶,同时到水龙头 前打水。设水龙头注满第一个人的桶需要1 分钟,注满第二个人的桶需要2分钟,依此 类推,注满第几个人的桶就需要几分钟, 如果只有一只水龙头,适当安排这10个人 的顺序,就可以使每个人所费的时间总和 尽可能小,问这个总费时至少是几分钟?
2.1 什么是数学规划
约束条件(2)所确定的x的范围称为可行域 feasible region,满足(2)的解x称为可行解 feasible solution,同时满足(1)(2)的解x称为 最优解Optimal solution,整个可行域上的最优解 称为全局最优解global optimal solution,可行域中 某个领域上的最优解称为局部最优解local optimal solution。最优解所对应的目标函数值称为最优值 optimum。
2.1 什么是数学规划
数学规划(最优化)作为一门学科孕育于20世 纪的30年代,诞生于第二次世界大战弥漫的硝烟 中。 数学规划指在一系列客观或主观限制条件 下,寻求合理分配有限资源使所关注的某个或多 个指标达到最大(或最小)的数学理论和方法, 是运筹学里一个十分重要的分支。
2.1 什么是数学规划
内容说明
以下内容在《数学 建模与数学实验 (第二版) 》 (汪晓银 ,周保 平主编)第3章
内容说明
2.1 什么是数学规划 2.2 连续性线性规划 2.3 敏感性分析
2.4 整数线性规划
2.5 0-1规划
2.1 什么是数学规划
数学规划俗称最优化,首先是一种理 念,其次才是一种方法,它所追求的是一种 “至善”之道,一种追求卓越的精神.