11-JACS-Carbon Dots for Multiphoton Bioimaging
米托蒽醌抑制USP11促进BACE1降解延缓阿尔茨海默病发展的实验研究
米托蒽醌抑制USP11促进BACE1降解延缓阿尔茨海默病发展的实验研究吴昌安;曹岐新;艾宗耀【期刊名称】《健康研究》【年(卷),期】2022(42)3【摘要】目的探讨米托蒽醌(Mitoxantrone,MTX)抑制USP11促进BACE1降解,从而延缓阿尔茨海默病(Alzheimer’s disease,AD)发展的作用机制。
方法构建USP11-siRNA-H4细胞株,Westen blot检测USP11、β-分泌酶(BACE1)等的表达水平;免疫共沉淀和蛋白质泛素化实验探究USP11和BACE1蛋白之间的泛素化调控作用。
以米托蒽醌(MTX)腹腔注射AD小鼠,水迷宫实验观其空间记忆能力,利用Westen blot与ELISA分别检测小鼠脑组织中USP11、BACE1与Aβ_(1-40)表达水平。
结果USP11-siRNA-H4细胞中USP11、BACE1的表达水平分别为(0.300±0.114)、(0.267±0.125),均低于NT siRNA组,差异有统计学意义(P<0.01)。
USP11与BACE1之间存在相互作用且可对BACE1去泛素化。
MTX处理后,AD小鼠记忆能力提高,且下调USP11、BACE1及Aβ_(1-40)的表达。
结论米托蒽醌通过抑制USP11促进BACE1泛素化与降解,从而降低Aβ_(1-40)的表达,进而可对阿尔茨海默病的神经病变起到延缓作用。
【总页数】5页(P297-301)【作者】吴昌安;曹岐新;艾宗耀【作者单位】浙江中医药大学附属湖州中医院神经内科【正文语种】中文【中图分类】R363.1【相关文献】1.Amiloride 通过抑制缺氧诱导的 NHE1表达而延缓 calpain 介导的 ABCA1降解2.PKCβ2途径抑制药物LY333531延缓高糖诱导心肌纤维化的实验研究3.醌氧化还原酶1抑制剂双香豆素促进HBV X蛋白降解进而抑制cccDNA转录的机制研究4.脑部渗透性ACE抑制剂可延缓阿尔茨海默病(Alzheimer disease)5.抑制胶原纤维合成延缓失神经支配骨骼肌萎缩的实验研究因版权原因,仅展示原文概要,查看原文内容请购买。
锰掺杂的碳点作为纳米模拟酶用于比色检测毒死蜱
热带作物学报2019, 40(6): 1195-1204Chinese Journal of Tropical Crops锰掺杂的碳点作为纳米模拟酶用于比色检测毒死蜱白秋月1,2,杨春亮2*,林丽云2,叶剑芝21. 华中农业大学,湖北武汉430070;2. 中国热带农业科学院农产品加工研究所,广东湛江524001摘要以碳酸锰、脲、柠檬酸、双氧水为原料,采用微波加热法合成具有纳米模拟酶催化活性的锰掺杂碳点(Mn-CDs)。
Mn-CDs可催化3,3',5,5'-四甲基联苯胺(TMB)产生蓝色的ox-TMB。
乙酰胆碱酯酶(AChE)催化底物乙酰硫代胆碱(ATCh)生成的硫代胆碱(TCh),还原所生成的ox-TMB使溶液蓝色褪去。
有机磷类农药能有效抑制AChE的活性,使TCh的生成量减少,溶液的蓝色变深。
根据吸光度的变化可以定量检测有机磷农药含量,由溶液颜色的深浅可以构建毒死蜱的可视化半定量检测方法。
本研究表征了Mn-CDs的表面结构及微观形貌,以有机磷类农药主要品种毒死蜱作为分析模型,初步探讨了比色法检测毒死蜱的原理;考察了毒死蜱检测的最优条件,检测的线性范围是0~3.5 μg/mL,检测限为0.013 μg/mL。
将该检测方法用于苹果实际样品中毒死蜱的测定,回收率为95.2%~102.8%,表明该方法有望应用于实际样品中有机磷的高灵敏测定。
关键词掺杂碳点;纳米模拟酶;毒死蜱;比色检测中图分类号S481.8 文献标识码 AMn Doped Carbon Dots as Nano-mimetic Enzyme for the Colorimetric Detection of ChlorpyrifosBAI Qiuyue1,2, YANG Chunliang2*, LIN Liyun2, YE Jianzhi21. Huazhong Agricultural University, Wuhan, Hubei 430070, China;2. Agricultural Products Processing Research Institute , Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, ChinaAbstract Manganese-doped carbon dots (Mn-CDs) with nano-simulated enzyme catalytic activity were synthesized by citric acid, urea, hydrogen peroxide and manganese carbonate. Mn-CDs catalyze the production of blue ox-TMB by 3,3',5,5'- tetramethylbenzidine (TMB). Acetylcholinesterase (AChE) catalyzes the thiocholine (TCh) produced by the substrate acetylthiocholine (ATCh), and the resulting ox-TMB reduces the blue color of the solution. Organophosphorus pesticide can effectively inhibit the activity of AChE, reduce the production of TCh, and darken the blue of the solution. A visual detection method for organophosphorus pesticide can be constructed according to the depth of the solution color. The work described the surface structure and micromorphology of Mn-CDs. Utilized chlorpyrifos as an analytical model, which is the main species of organophosphorus pesticides. The principle of colorimetric detection of chlorpyrifos was discussed. The conditions for the detection of chlorpyrifos were investigated. The linear range of detection was 0-3.5 μg/mL and the detection limit was 0.013 μg/mL. The detection method was applied to the determination of chlorpyrifos in apple samples, and the recovery rate ranged from 95.2% to 102.8%, indicating that the method is expected to be ap-plied to the highly sensitive determination of organic phosphorus in actual samples.Keywords doped carbon dots; nano-mimetic enzyme; chlorpyrifos; colorimetric detectionDOI 10.3969/j.issn.1000-2561.2019.06.023有机磷农药(OPs)因其具备良好的预防、控制及根除害虫的能力而广泛应用于农业生产收稿日期 2018-12-20;修回日期 2019-02-18基金项目 海南省自然科学基金青年基金项目(No. 219QN290),农业农村部财政专项农产品质量安全监管(风险评估)项目(No. GJFP2018011);中国热带农业科学院基本科研业务费专项资金项目(No. 1630122017020)。
北京大学玻色-爱因斯坦凝聚的实现及研究进展
北京大学玻色-爱因斯坦凝聚的实现及研究进展陈帅;周小计;杨帆;夏林;马修泉;熊炜;王义遒;陈徐宗【期刊名称】《量子光学学报》【年(卷),期】2004(10)B09【摘要】在这里我们报道北京大学玻色 -爱因斯坦凝聚的实现和研究进展。
观察到单个和多个组分的 87Rb玻色 -爱因斯坦凝聚的形成。
介绍了北京大学玻色 -爱因斯坦凝聚的实验系统 ,包括达到 10 - 11毫巴的双磁光阱超高真空系统 ,大功率半导体激光系统 ,激光稳频和频率控制系统 ,QUIC磁阱及磁阱的控制系统 ,蒸发冷却系统 ,吸收成像和CCD数据采集处理系统 ,LabVIEW时序控制系统。
实验中 ,我们首先在上磁光阱中捕获 87Rb冷原子 ,并通过连续装载 ,在下磁光阱中获得 10 9,30 0μK的冷原子 ;经过偏振梯度冷却 ,将 87Rb原子进一步冷却到30 μK。
经过磁阱装载过程 ,大约 10 8的原子被绝热的装载到QUIC磁阱中 ,原子在磁阱中的震荡频率为轴向wz =2 pμ 2 0Hz ,径向wr =2 pμ 2 2 0Hz。
经过 18s的蒸发冷却 ,射频信号从 30MHz扫描到大约 1.15MHz左右 ,大约 2 μ 10 5个原子形成了玻色 -爱因斯坦凝聚。
凝聚体的形成过程通过吸收成像法探测 ,观察原子从磁阱中释放 ,在空间自由扩散的状态而得到。
在实验上得到了不同的扩散时间 ,原子在轴向和径向的尺度比的变化 ,并且和理论结果进行了比较 ,得到一致的结论。
通过调整QUIC 磁阱不同线圈中电流的关闭时间 ,观察到多组分的玻色 -爱因斯坦凝聚体。
初步结论是由于关闭使磁场经过零点而?【总页数】1页(P4-4)【关键词】北京大学;玻色—爱因斯坦凝聚实验;QUIC磁阱;蒸发冷却系统;吸收成像系统;CCD数据采集处理系统【作者】陈帅;周小计;杨帆;夏林;马修泉;熊炜;王义遒;陈徐宗【作者单位】教育部量子信息和测量重点实验室【正文语种】中文【中图分类】O469【相关文献】1.玻色-爱因斯坦凝聚(BEC)的实现和研究进展 [J], 陈丽璇;林仲金;严子浚2.稀薄原子气体玻色-爱因斯坦凝聚近期研究进展简介 [J], 苗元秀;翟荟3.磁光捕获冷原子和玻色-爱因斯坦凝聚的r研究进展 [J], 宋晓丽;冯放4.旋量玻色-爱因斯坦凝聚体拓扑性质的研究进展 [J], 王力; 刘静思; 李吉; 周晓林; 陈向荣; 刘超飞; 刘伍明因版权原因,仅展示原文概要,查看原文内容请购买。
姜黄素苯胺希夫碱稀土配合物的光致变色性能研究
个领域 ,对其光致 变色性 能的研 究 已有 大量 报道l 5 J 。具 有
潜在应用前景 的有机光致变色材料具有 两大最重 要特性 :一 是该材料应有足够 的热稳定性 , 二是该类材料 对光 的耐疲 劳
性 。目前 , 对光致 变色化 合物 的研 究大 部分 集 中在偶 氮类 、
二芳基 乙烯 、恶 嗪、俘精 酸酐 、螺 、螺吡 哺和相 关的杂环 类
此类研究开展较早 的是 二酮类化合物 与稀 土元 素的配位 反
应 ,稀土元素中的 E u与 二 酮生成 的配合物 具有很好 的荧
收 稿 日期 :2 0 1 3 — 0 5 — 1 0 。 修 订 日期 :2 0 1 3 — 0 7 - 1 4
的光化学行 为提供 了丰富的研 究内容 。 姜黄 素分子 内有多个 双键 ,酚羟基和 羰基 ,其化学 反应性 较强 ,光 、热可 导致其
第3 3 卷, 第1 2 期 2 0 1 3年 1 2月
光
谱
学
与
光
谱
分
析
V o 1 . 3 3 , N o . 1 2 , p p 3 2 0 2 — 3 2 0 6
De c e mb e r ,2 0 1 3
Sp e c t r o s c o p y a n d S p e c t r a l An a l y s i sபைடு நூலகம்
光致变色 的性质 ,与姜黄素二乙烯三胺所形成的一 系列稀 土配合物 比较 ,具有 光致变 色性能配 合物 引入 了 苯胺/ 对 甲苯胺配体基团 , 增大 了配体 的共轭 面, 从 而引起配合物的紫外一 可见吸收强度 的增大和荧光发射峰
面积 的增 加 。
关键 词
姜黄 素 ; 苯胺希夫碱 ; 稀 土配合物 ; 光致变色 ; 溶致变 色 文献标识码 : A D O I :1 0 . 3 9 6 4 k. i s s n . 1 0 0 0 — 0 5 9 3 ( 2 0 1 3 ) 1 2 — 3 2 0 2 — 0 5
一种基于多巴胺仿生化学修饰生物炭吸附材料的制备方法
一种基于多巴胺仿生化学修饰生物炭吸附材料的制备方
法
基于多巴胺仿生化学修饰生物炭吸附材料的制备方法,包括以下步骤:
1. 将收集的水稻秸秆清洗、粉碎后,置于自制的高温热解装置进行℃的高温热解,加热结束后冷却至室温,获得水稻生物炭。
2. 将盐酸多巴胺溶于乙醇水溶液,同时加入Tris-HCl缓冲溶液得到多巴胺溶液,然后用稀HCl或稀NaOH溶液将多巴胺溶液pH调节至,获得多巴胺碱溶液。
3. 将水稻生物炭加入到多巴胺碱溶液中,室温下充分搅拌即可得到RSBCPDA。
请注意,制备方法可能因材料和实验条件的不同而有所差异。
以上步骤仅供参考,具体操作应根据实际情况调整。
石墨烯负载的Pd-Co双金属催化剂催化合成γ-十一内酯
石墨烯负载的Pd-Co双金属催化剂催化合成γ-十一内酯周琳;冯乙巳【摘要】γ-十一内酯是一种极具应用价值的化工原料.采用化学还原法制备出石墨烯负载的Pd-Co催化剂(Pd-Co(x∶y)/G;x∶y为Pd与Co的质量比)并将其应用于催化剂正辛醇和丙烯酸合成γ-十一内酯的反应.对所制催化剂采用X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)及场发射透射电子显微镜(TEM)等进行表征.同时,考查不同因素对于反应的影响,最终得到γ-十一内酯的产率为85%的极佳结果.【期刊名称】《安徽化工》【年(卷),期】2015(041)006【总页数】6页(P15-19,24)【关键词】γ-十一内酯;Pd-Co/G;正辛醇;丙烯酸【作者】周琳;冯乙巳【作者单位】合肥工业大学化学与化工学院,安徽合肥230009;桐城师范高等专科学校,安徽桐城231400;合肥工业大学化学与化工学院,安徽合肥230009【正文语种】中文【中图分类】O626.11桃醛,化学名称为Y-十一内酯,常温下为浅黄或无色的粘稠状液体,几乎不溶于水,溶解于很多的有机溶剂。
桃醛有一股浓郁的桃子香味,作为一种极具应用价值的化工原料,广泛用于合成日用香精、食用香精等日化产品。
通常,很多天然植物之中均含有Y-十一内酯,但是含量有限,故而目前主要采用工业合成的方法来获得[1-2]。
关于Y-十一内酯合成的最早报道是采用十一稀酸作为反应原料[1],通过异构化反应制得目标产物,但是原料在异构的过程中极易生成多种副产物,且不易从产品中分离出来,从而对产品的香型造成了极大的影响。
之后,又开发出以糠酸作为原料的工艺路线[2],此工艺虽然糠酸价廉易得,但反应过程中需要用到格氏试剂作为添加剂,无疑增加了生产成本,同时该工艺流程过于复杂,因而不利于工业化生产。
此外,国内外也有相关专利报道采用二氯-Y-内酯为原料[3],通过水解反应制备Y-十一内酯,此法具有反应流程简单及高产率等优点,但是二氯-Y-内酯本身就属于稀缺资源,且反应过程中易生成氯代副产物,这些缺陷直接限制了该工艺在实际生产中的应用,因此,找到一种合适的催化剂以解决目前工艺上的缺陷就受到了越来越多的关注[4-7]。
碳纳米管-电沉积Co修饰电极在抗坏血酸存在下同时测定多巴胺和尿酸
碳纳米管-电沉积Co修饰电极在抗坏血酸存在下同时测定多巴胺和尿酸李珠叶1,张 萍1,刘传银1,2(1.湖北文理学院 化工与食品学院,湖北 襄阳 441053;2.低维光电材料与器件湖北省重点实验室,湖北 襄阳 441053) [摘 要]采用滴涂法和循环伏安法(CV)将碳纳米管和Co修饰到玻碳电极表面,得到碳纳米管-电沉积Co修饰电极,研究了多巴胺(DA)、尿酸(UA)在碳纳米管-电沉积Co修饰电极上的电化学响应.结果表明,在0.1mol/L磷酸缓冲液(pH=6)中,DA、UA在该电极上均显示出良好的电化学响应,碳纳米管-电沉积Co修饰的玻碳电极能够将DA和UA的氧化峰电位明显分开,两者峰电位差为124mV,并且可以在抗坏血酸(AA)存在下同时测定DA和UA.该修饰电极选择性好、稳定性高,可以实现AA存在下DA和UA共存时两种物质的定量检测. [关键词]多巴胺;尿酸;抗坏血酸;碳纳米管-电沉积钴修饰电极 [doi]10.3969/j.issn.1008-6072.2016.06.005 [中图分类号]O657.1 [文献标识码]A [文章编号]1008—6072(2016)06—0027—071 引言 多巴胺(DA)是广泛分布在哺乳动物大脑中枢神经系统中的神经递质,在中枢神经系统、肾脏和心脑血管中发挥重要作用.体内DA水平低下会导致神经紊乱,易患精神分裂症、帕金森综合症等[1].尿酸(UA)和其它羟基嘌呤一样是人体嘌呤代谢的产物,体液中UA含量过高是许多疾病的征兆,如痛风症、高血尿、心血管疾病等[2].因此,尿酸和多巴胺的检测和分析对临床诊断、了解病情进展具有重要意义.由于DA、UA具有电化学活性,而电化学分析方法以其灵敏度高,选择性好,和分析费用低廉等特点而得到了广泛的关注.但是利用电化学方法测定UA的一个主要问题是体液中共存的抗坏血酸(AA)的干扰.因此,建立在大量抗坏血酸(AA)存在下准确测定DA、UA的方法,更具有实际意义. 本文采用电沉积钴于碳纳米管修饰电极之上,研究了DA、UA在此电极上的电化学行为,优化了测定条件,探讨了DA、UA在此电极上的氧化机理,采用电化学方法测定多巴胺和尿酸.该电极在活化后能有效降低抗坏血酸对DA、AA测定的影响,实现了大量抗坏血酸存在下多巴胺、尿酸的选择性检测.该方法具有稳定性好、重现性好和准确度高的特点,对实际样品的测定结果满意.2 实验部分2.1 仪器与试剂 电化学实验均在CHI660a电化学工作站(上海辰华仪器有限公司)上完成,配备三电极体系,以玻碳电极或修饰玻碳电极为工作电极,饱和甘汞电极(SCE)为参比电极,Pt丝对电极;碳纳米管(CNTs)购自华中师范大学纳米研究院,并经酸化处理;多巴胺(DA)、尿酸(UA)、抗坏血酸2016年12月郧阳师范高等专科学校学报Dec.2016第36卷第6期Journal of Yunyang Teachers College Vol.36No.6[收稿日期]2016-09-20[基金项目]2016年度大学生创新创业项目、湖北省低维光电材料与器件重点实验室开放基金资助[作者简介]李珠叶(1994-),女,湖北襄阳人,湖北文理学院化学工程与工艺专业学生,主要从事分析化学研究. 论文联系人:刘传银(1970-),男,教授,博士.通讯联系人E-mail:liucyin2002@sina.com.YYSZXB27(AA)购自Sigma-Aldrich.其他所有试剂均为分析纯,购自上海国药集团.实验用水为超纯水.2.2 电化学实验 将裸玻碳电极为工作电极,三电极体系进行电化学实验,电沉积是在含有5%CoSO4的溶液中进行,采用循环伏安法进行电沉积;电极的表征采用交流阻抗法,在含有0.001mol/L Fe(CN)63-/4-的KCl溶液中进行,式量电位为0.22V,扫描频率为0.01-105 Hz范围内进行.3 结果与讨论3.1 电极的修饰与活化 玻碳电极(3mm)经氧化铝悬糊抛光成镜面后,将CNTs壳聚糖溶液10μL加到电极表面,红外灯下烤干,即得CNTs/GCE电极;然后将该电极插入5%CoSO4溶液中以100mV/s的扫速在-0.2到1.0V范围内循环伏安电沉积40圈,取出洗净,即得Co-CNTs/GCE修饰电极.将新修饰的Co-CNTs/GCE电极在0.1mol/L NaOH溶液中电化学活化.结果表明,随着扫描的进行,其峰电流逐渐增大,并稳定地出现一对循环伏安峰.这对峰对应着Co(III)/Co(II)在电极上的氧化还原[3-4].图1碳纳米管修饰电极的电沉积及其活化的循环伏安图Fig.1. CVs of Co electrochemical deposition on CNTs/GCE and its activation3.2 不同修饰电极的电化学表征 电极经过修饰和电沉积后,总会改变电极的面积和表面形貌,故常用循环伏安和交流阻抗法对电极进行表征.如图2(A)所示,在含有0.001mol/L Fe(CN)63-/4-的KCl溶液中,裸电极呈现一对良好的循环伏安峰,其峰电位差约95mV;然而在修饰了碳纳米管后,其峰电位差增大到175mV,但是峰电流却大大增大.这是因为碳纳米管具有较大的表面积,从而使铁氰化钾在电极上参与反应的量增大,进而使峰电流增大,然而由于壳聚糖是一种电子传递阻体,故其峰电位差会增大;而电沉积Co后,其峰电流达到最大,表明电沉积Co进一步增大了电极面积,但是当经NaOH活化后,其峰电位差和峰电流均降低,这种现象可能的原因是经活化后,其表面的氧化物转化为氢氧化物,从而降低了表面内阻,但是氢氧化物之间电子传递的能力又较强于氧化物,所以呈现出上述的现象.为了进一步表征电极的表面状态,交流阻抗法也是一种良好表征表面状况的电化学方法.图2(B)是不同电极的交流阻抗图.如图所示,裸电极呈现一条近乎450的直线,表明其表面无物质阻碍电子传递;同样其他几种修饰电极由于修饰了导电性的CNTs,并电沉积Co后,其表面均不阻碍电荷的传递,呈现为不同角度的近乎直线的交流阻抗图.交流阻抗结果与循环伏安结果相符.李珠叶,张 萍,刘传银:碳纳米管-电沉积Co修饰电极在抗坏血酸存在下同时测定多巴胺和尿酸YYSZXB28图2不同电极在0.001mol/L Fe(CN)63-/4-中的循环伏安图和交流阻抗图Fig.2. CVs and Nyquist plots of various electrodes in 0.001mol/L Fe(CN)63-/4-3.3 DA、UA在不同电极上的电化学响应 图3显示了不同电极分别在含有DA(10-4mol/L)、UA(10-4 mol/L)的磷酸缓冲溶液(pH=6)中的循环伏安图.由图3(A)可见,DA在裸GCE电极上的电流很小,修饰碳纳米管后峰电流也有上升,并且峰电位差也降低到61mV,电沉积Co后峰电位差变化不大,但峰电流增大,然而在电极经NaOH活化后,峰电位差进一步降低到51mV,峰电流进一步增大.这是由于碳纳米管有较大的比表面积,且钴的氢氧化物传递电子能力强,有利于DA在电极上的电子传递[4].而且DA在该活化后的修饰电极上的响应特别稳定,表明DA能够较快地在电极上发生氧化还原反应.由图3(B)可见,UA在4种电极上均只出现氧化峰,说明UA在电极上为完全不可逆氧化过程.UA在裸GCE(曲线a)上有一个小氧化峰,在CNTs/GCE(曲线b)氧化峰电流有所增加,但峰形差,电沉积Co后峰电位变化不大,但峰电流增大,然而电极经NaOH活化后,氧化峰电流进一步增大.这同样表明钴的氧化物虽然有催化氧化的作用,但传递电子的能力没有钴的氢氧化物强.此外,该复合膜具有高的选择性和强的抗干扰能力,使其在大量抗坏血酸存在下,能与DA、UA很好地分离,实现DA、UA的准确测定.图3不同电极下DA、UA在磷酸缓冲液(pH=6)中的循环伏安图Fig.3 CVs of DA and UA at different electrodes in pH 6PBS3.4 pH的影响 不图pH的缓冲溶液对DA、UA的测定有很大的影响,故用循环伏安法在pH 5~9范围内研究了DA、UA共存时pH对两者峰电流和峰电位的影响(如图4).DA氧化峰电流随着pH先增大后减小,当pH为6时氧化峰电流最大,故选用pH为6的磷酸缓冲溶液作为支持电解质.实验结果表明,DA,UA的氧化峰与pH呈良好的线李珠叶,张 萍,刘传银:碳纳米管-电沉积Co修饰电极在抗坏血酸存在下同时测定多巴胺和尿酸YYSZXB29YYSZXB30性关系,对于DA的氧化峰电位,线性方程为:E(V)=0.636-0.063pH,R=0.9966;对于UA的氧化峰电位,线性方程为E(V)=0.774-0.062pH,R=0.9944.从以上结果表明,DA与UA的电氧化都伴随着质子的转移,由峰电位与pH的线性关系的斜率可以推断出DA和UA的电氧化伴随着两电子两质子的过程,此结果也与以前的研究报道相符[5].图4DA,UA在不同pH下的CV图,内插图为Ep-pH关系曲线Fig.4 CVs of DA and UA in various pH PBS,inset plot is the relationship of Epversus pH3.5 不同扫速的影响 图5为DA(10-4 mol/L),UA(10-4 mol/L)在不同扫速下的循环伏安曲线.由图5(a),(b)可以看出随着扫描速度由10mV/s增加至300mV/s,它们的峰电位不断增大,峰电流也不断增大,氧化峰电位正移.将它们的峰电流分别与扫速及扫速的平方根作图,发现峰电流与扫速平方根的线性关系均比峰电流与扫速的线性关系好,故两者峰电流都与扫速平方根呈现良好的线性关系)所示,DA的回归方程为Ipa=0.383-21.960 v,r=0.9973,Ipc=-3.575+41.540 v,r=0.9972;UA回归方程为Ipa=-1.826-4.453 v,r=0.9925.表明DA,UA在该修饰电极表面是一个扩散控制过程[6].实验还发现,随着扫速的增大,峰电位与扫速的对数之间在v>80mV/s时将呈现良好的线性关系,对DA来说,Epa=0.3013+0.0209lnv,r=0.9821,Epc=0.1079-0.0399lnv,r=-0.9980.根据Laviron方程[7]:Epa=Eo/+RT(1-α)nFln(1-α)nFRTks+RT(1-α)nFlnvEpc=Eo/-RTαnFlnαnFRTks-RTαnFlnv根据线性关系的斜率和截距,可以计算出:nα=0.64,n(1-a)=1.23;ks=0.74cm/s图5 (a)DA不同扫速下的循环伏安图(b)UA不同扫速下的循环伏安图Fig.5 CVs of DA(a)and UA(b)at various scan rates李珠叶,张 萍,刘传银:碳纳米管-电沉积Co修饰电极在抗坏血酸存在下同时测定多巴胺和尿酸3.6 DA、UA在actived Co-CNTs/GCE电极上的电化学响应 图6(A)和(B)为actived Co-CNTs/GCE修饰的玻碳电极对DA和UA同时存在时固定一种物质含量改变另外一种物质含量时的循环伏安曲线.从图中可以看出DA和UA同时存在时,DA和UA的氧化峰能够明显分开.图(A)为同时含有UA(100.0μmol/L)+DA(10.0μmol/L,30.0μmol/L,50.0μmol/L,70.0μmol/L,100.0μmol/L)的PBS(0.1mol/L,pH=6.0)的溶液中的循环伏安曲线,从图中可以看出保持UA的浓度不变,改变DA的浓度,UA的氧化峰电位与峰电流几乎没有变化.图(B)为同时含有DA(100μmol/L)+UA(50μmol/L,70μmol/L,100μmol/L)的PBS(0.1mol/L,pH=6.0)溶液中的循环伏安曲线,从图中可以看出保持DA的浓度不变,改变UA的浓度,DA的氧化峰电位几乎不变,峰电流变化很小(<5%).表明actived Co-CNTs/GCE修饰的玻碳电极有可能实现DA、UA的同时检测.(A) (B)图6不同浓度的DA(A)、UA(B)共存时activated Co-CNTs/GCE电极的循环伏安曲线扫描速率;100mV/s,pH=6.0PBSFig.6 CVs of DA and UA mixture with controlled concentration of UA(A)and DA(B)at activated Co-CNTs/GCE in pH 6PBS 图7为同时含有DA+UA(10.0μmol/L,30.0μmol/L,50.0μmol/L,70.0μmol/L,100.0μmol/L)的PBS(0.1mol/L,pH=6.0)的溶液中的循环伏安曲线,由图可以看出两者在浓度相同时相互之间几乎没有干扰.为了提高分析的灵敏度利用微分脉冲伏安法(DPV),以DA,UA的氧化峰电流对其线性范围与检出限进行测定如图7所示,由图6内插图可以看出DA的峰电流与其浓度在0.50-120μmol/L范围内符合线性关系,通过线性拟合处理的直线方程为:Ip(μA)=-5.858-0.153 c(μmol/L),线性相关系数为0.9922,由线性回归方程得出DA的检出限为0.24μmol/L.实验结果还发现,本线性关系与DA单独存在时的线性响应基本一致,据此得出一定量UA的存在并不影响DA的线性检测.同样可得UA的峰电流与其浓度在2.4-160μmol/L范围内符合线性关系,线性拟合得到的直线方程为:Ip(μA)=-1.277-0.088 c(μmol/L),线性相关系数为0.9919,由线性回归方程得出UA的检出限为1.0μmol/L.同样实验也表明,该线性范围与UA单独存在时并无明显差异,据此也可得出一定量DA的存在并不影响UA的线性检测.进一步证明了图7activated Co-CNTs/GCE修饰的玻碳电极能同时测定DA,UA的可能性.李珠叶,张 萍,刘传银:碳纳米管-电沉积Co修饰电极在抗坏血酸存在下同时测定多巴胺和尿酸YYSZXB31图7 相同浓度DA,UA共存时activated Co-CNTs/GCE电极的循环伏安曲线和DPV曲线Fig.7 CVs and DPV of DA and UA with equal concentration at activated Co-CNTs/GCE3.7 AA存在下DA,UA的同时测定 图8(A)为在AA存在下,同样浓度的DA,UA在activated Co-CNTs/GCE电极上的循环伏安曲线,从图可以看出AA的存在对DA,UA的检测几乎没有影响,与没有AA存在下的图7相似,由此可以得出DA,UA的测定几乎不受AA存在的影响.该电极能够很好的在AA存在下同时测定DA和UA.为了验证上述结论的正确性,采用微分脉冲伏安法(DPV)来测定,如图8(B)所示的曲线看出110倍的AA存在使得UA的氧化峰电流有所降低(RSD=5.4%),DA的氧化峰电流变化不大(与图7相比),但两者仍能很好的测定出来,由此可得出上述结论几乎是正确的,且由图8(B)内插图依然可以看出DA,UA的峰电流与其各自的浓度均符合线性关系.图8 (A)AA存在下DA,UA同时测定activated Co-CNTs/GCE电极的CV和DPV曲线Fig.8 CVs and DPV of DA and UA in the presence of AA3.8 干扰实验 在最佳测定条件下,研究其它干扰物对DA、UA测定的影响.实验结果表明,100倍的Cl-、K+、NO3-、Mg2+、Zn2+、Na+、对混合物的测定不干扰,100倍的双氧水、抗坏血酸、1000倍的葡萄糖均无干扰,由此可以看出该修饰电极抗干扰能力强,选择性好,可以用于DA、UA的同时测定.3.9 稳定性和重现性 在优化条件下,考察activated Co-CNTs/GCE的重现性和稳定性.将DA,UA,在同一支Co-CNTs/GCE上平行测定5次,其相对标准偏差(RSD)分别为2.6%,1.8%.这说明制备的电极具有较好的稳定性.用同样的方法分别制备了6支Co-CNTs/GCE,分别测定含有40μmol/L的DA,UA的混合溶液,RSD为3.7%,4.3%.这表明所制备的电极以及制备方法具有较好的重现性,能用于实际样品的测定.3.10 回收率和实际样品分析 为了验证该电极对样品测定的准确度和应用性,分别采用加标回收的方法对模拟样品和实际尿液进行了测定.实验结果表明,DA的回收率在96.6-102.4%之间,而UA的加标回收李珠叶,张 萍,刘传银:碳纳米管-电沉积Co修饰电极在抗坏血酸存在下同时测定多巴胺和尿酸YYSZXB32率在95.5-104.2%之间,表明该方法具有良好的准确性,能用于实际样品的测定.4 结论 采用电沉积钴于CNTs修饰电极后活化制备了activated Co-CNTs/GCE修饰电极,研究了该电极对DA,UA的电化学响应并能在同时测定时不相互干扰,研究表明该电极对DA,UA的氧化具有良好的催化作用,并能够有效消除抗坏血酸存在的干扰,线性范围宽、检出限低.在AA存在下的DA,UA共存体系中,该修饰电极能不受AA的干扰,同时测定出DA,UA.该电极抗干扰能力强、稳定性好,有望用于实际样品的测定.[参考文献][1]Finchce,Cohen D M.Aging,Metabolism and Alzheimer dis-ease:review and hypotheses[J].Exp Neurol,1997,143(1):82-102.[2]A.Niaz,J.Fischer,J.Barek,B.Yosypchuk,Sirajuddin,M.I.Bhanger,Voltammetric Determination of 4-NitrophenolUsing a Novel Type of Silver Amalgam Paste Electrode[J].Elec-troanalysis 2009,21:1786-1791.[3]W.Huang,C.Yang,S.Zhang,Simultaneous determinationof 2-nitrophenol and 4-nitrophenol based on themulti-wallcarbon nanotubes Nafion-modified electrode[J].Anal.Bioanal.Chem.2003,375:703-707.[4]Liu CY,Liu ZY,Peng R,Zhong ZC,Quasireversible Processof Dopamine on Copper-Nickel Hydroxide Composite/NitrogenDoped Graphene/Nafion Modified GCE and Its Electrochemical Ap-plication[J].J Anal Methods in Chemistry,2014,724538.[5]CY Liu,JM Hu,Electrocatalytic Oxidation of Dopamineat a Nanocuprous Oxide-Methylene Blue Composite Glassy Car-bon Electrode[J].Electroanalysis,2006,3:478-484[6]A.J.Bard,L.R.Faulkner,Electrochemical Methods,Fun-damentals and Applications[M].Wiley,New York,USA,2001,222.[7]Laviron,E.,General expression of the linear potential sweepvoltammogram in the case of diffusionless electrochemical systems[J].J.Electroanal.Chem.1979,101:19-28.【编校:胡军福】Simultaneous Determination of Dopamine and Uric Acid at Electrodeposited CobaltOxide-carbon Nanotubes Modified Electrode in the Presence of Ascorbic AcidLI Zhu-ye1,ZHANG-Ping1,LIU Chuan-yin1,2(1.College of Chemical Engineering and Food Science,Hubei University of Arts and Science,Xiangyang 441053;China;2.Hubei Key Laboratory of Low Dimensional Materials and Devices,Xiangyang 441053,China)Abstract:Cobalt oxide was modified onto the surface of carbon nanotubes modified GCE by cyclic voltammetricalmethod and the electrochemical response of DA and UA were investigated on the proposed electrode.It indicates that DAand UA shows favorable electrochemical response in pH 6PBS respectively,and the electro-separation of peak for the e-lectro-oxidation of DA and UA with peak separation of 124mV,which can be used to simultaneous determination of DAand UA.The results also show that the simultaneous determination of DA and UA can also be processed in the presenceof ascorbic acid with favorable reproduction and accuracy and has been used to determinate DA and UA in simulated andreal samples with satisfactory results.Key words:dopamine;uric acid;ascorbic acid;electro-deposited Co-CNTs modified electrode李珠叶,张 萍,刘传银:碳纳米管-电沉积Co修饰电极在抗坏血酸存在下同时测定多巴胺和尿酸YYSZXB33。
多巴胺氧化石墨烯 钴基金属有机框架
多巴胺氧化石墨烯钴基金属有机框架
多巴胺氧化石墨烯(DAG)与钴基金属有机框架(Co-MOF)是当今材料科学领域备受关注的两种材料。
它们各自具有独特的性质和应用前景,但当它们相互结合时,却展现出了更加引人注目的潜力。
多巴胺氧化石墨烯是一种由石墨烯表面修饰的生物胺分子。
它的引入不仅赋予了石墨烯优异的导电性和机械强度,还赋予了其生物相容性和可接枝性。
多巴胺氧化石墨烯的引入不仅可以改善石墨烯的分散性和稳定性,还可以为其提供更多的功能化修饰位点,从而拓展了石墨烯的应用领域。
而钴基金属有机框架是一种由钴离子和有机配体组成的三维网状结构。
它具有高度可调性和丰富的孔道结构,可以通过调控组分和结构来调节其物理和化学性质。
钴基金属有机框架不仅具有较高的表面积和孔容,还具有可调控的孔径和孔隙度,使其在气体吸附、分离和催化等方面具有广泛的应用潜力。
当多巴胺氧化石墨烯与钴基金属有机框架相结合时,它们之间发生的相互作用将进一步增强材料的性能和功能。
首先,多巴胺氧化石墨烯的导电性可以为钴基金属有机框架提供电子传输通道,从而提高其电化学性能。
其次,多巴胺氧化石墨烯的生物相容性和可接枝性可以为钴基金属有机框架的生物应用提供一种新的思路和方法。
最后,多巴胺氧化石墨烯的功能化修饰位点可以为钴基金属有机框
架的功能化提供更多的可能性。
多巴胺氧化石墨烯与钴基金属有机框架的相互结合将为材料科学领域带来更多的机遇和挑战。
通过进一步研究和探索,我们相信这种新型材料将发展出更广泛的应用,为人类的生活和科技进步带来更多的惊喜和突破。
让我们一起期待多巴胺氧化石墨烯与钴基金属有机框架的未来!。
多酚氧化酶催化马齿苋提取物对真丝织物的染色
多酚氧化酶催化马齿苋提取物对真丝织物的染色
杨策;张琪;张维
【期刊名称】《印染》
【年(卷),期】2024(50)1
【摘要】为开发天然染料生态染色体系,选用漆酶、酪氨酸酶催化的马齿苋提取物对真丝织物进行染色。
探讨生物酶种类、酶催化温度及染色参数对织物K/S值及
色牢度的影响,综合运用多种表征手段分析染色过程及机理。
结果表明,漆酶在40℃下催化提取物1 h即可提高织物的染色深度。
在染色温度80℃、pH为7的条件
下染色3 h,所得丝织物的K/S值为2.639,耐皂洗和耐摩擦色牢度达到4级及以上。
漆酶催化提取物对丝织物的上染过程符合准二级动力学模型,属于化学吸附;电子鼻
传感器响应雷达图显示提取物经漆酶催化后染得的织物散发出非常浓郁的芳香气味。
【总页数】6页(P26-31)
【作者】杨策;张琪;张维
【作者单位】河北科技大学纺织服装学院;纺织行业天然染料重点实验室
【正文语种】中文
【中图分类】TS193.62
【相关文献】
1.中性染料对真丝和真丝/氨纶包覆丝并合丝针织物的染色工艺探讨
2.真丝/棉与真丝/氨包覆丝并合丝针织物的染色工艺探讨
3.烟酸对真丝织物活性染料催化染
色的研究
因版权原因,仅展示原文概要,查看原文内容请购买。
11c-匹兹堡化合物b的成像特点
11c-匹兹堡化合物b的成像特点英文回答:11C-Pittsburgh Compound B Imaging Characteristics.11C-Pittsburgh Compound B (11C-PiB) is a radiotracer used in positron emission tomography (PET) imaging to assess beta-amyloid plaques in the brain. It binds to fibrillar beta-amyloid, a key component of amyloid plaques, which are a hallmark of Alzheimer's disease.High Specificity and Sensitivity: 11C-PiB has a high affinity for beta-amyloid, allowing for specific detection of plaques. It shows high sensitivity in detecting amyloid pathology, even in early stages of Alzheimer's disease.Rapid Brain Uptake and Clearance: 11C-PiB rapidly enters the brain and binds to beta-amyloid, resulting in a clear visualization of amyloid plaques. Its fast clearance from the brain minimizes background signal and improvesimage quality.Regional Distribution: 11C-PiB binds preferentially to beta-amyloid plaques in the neocortex, particularly in areas affected by Alzheimer's disease, such as the frontal, temporal, and parietal lobes.Correlation with Clinical and Cognitive Measures: Elevated 11C-PiB retention in the brain has been associated with cognitive impairment, memory decline, and a higherrisk of developing Alzheimer's disease.Longitudinal Changes: Serial 11C-PiB PET scans can track changes in amyloid plaque burden over time, providing insights into disease progression and treatment effects.中文回答:11C-匹兹堡化合物 b 的成像特征。
基于金纳米复合物的对碱性橙21可视化快速分析检测
基于金纳米复合物的对碱性橙21可视化快速分析检测田甜;张毅;严恒;谢卫红【期刊名称】《湖北工业大学学报》【年(卷),期】2024(39)2【摘要】以苯乙烯和4-乙烯基吡啶为单体,采用乳液聚合法一步合成了聚苯乙烯-聚4-乙烯基吡啶核壳型微球。
将其与金纳米粒子结合后形成具有过氧化物酶活性的聚苯乙烯-聚4-乙烯基吡啶/金(PS-co-P4VP/Au)复合纳米材料。
该微球粒径均一,形貌良好,在有过氧化氢(H_(2)O_(2))存在的情况下,能催化3,3′,5,5′-四甲基联苯胺(TMB)生成蓝色产物。
该材料在pH=9时对碱性橙21具有良好的吸附性能,且吸附会降低其过氧化物酶活性,降低值与色素浓度呈线性关系。
据此建立了一种快速检测碱性橙21的方法,最佳检测条件为:pH=9,TMB浓度1.4 mmol/L,H_(2)O_(2)浓度140 mmol/L,材料浓度2.5 mg/mL。
该条件下碱性橙21的检出限为0.6μg/mL,在配制酒和水果糖中的回收率为92.2%~102.8%。
【总页数】6页(P93-97)【作者】田甜;张毅;严恒;谢卫红【作者单位】湖北工业大学生物工程与食品学院;湖北省食品质量安全监督检验研究院【正文语种】中文【中图分类】F273.1;F406.7【相关文献】1.基于碳纳米管/纳米金复合材料信号探针的可视化棉线快速免疫层析分析装置的研究2.再生纤维素纤维-纳米金柔性复合物的制备及其对尼尔兰的快速检测3.基于组合胶体金纳米颗粒的免疫层析试纸条快速可视化检测海产品中副溶血性弧菌4.基于纳米金棒刻蚀的多色可视化传感器应用于乌头碱快速检测5.基于金纳米粒子-纳米氧化铈-石墨烯复合物修饰电极对环境水体中As(Ⅲ)的检测因版权原因,仅展示原文概要,查看原文内容请购买。
w-十一烯酸表面改性纳米碳酸钙粒子反应机理的差示FTIR光谱研究
w-十一烯酸表面改性纳米碳酸钙粒子反应机理的差示FTIR光谱研究褚艳红;张国宝;赵根锁;余守志;王经武;李宾杰【期刊名称】《光谱学与光谱分析》【年(卷),期】2007(27)8【摘要】采用差示傅里叶变换红外光谱(FTIR)法对w十一烯酸表面改性的纳米碳酸钙粒子的组成进行了测试,结果发现:在其差谱上,波数位于1 572,1 542 cm-1附近出现了较明显的(RCC)2-Ca离子的特征吸收带,波数位于912,3 078 cm-1附近分别出现了端双键上C-H的面外弯曲(γCH)和伸缩振动(νCH)吸收带,波数位于1 746,1 703 cm-1附近分别出现了酯羰基和羧羰基的特征吸收带.由此推测,改性剂与纳米碳酸钙表面作用机理可能是:改性剂的端羧基与纳米碳酸钙表面的钙离子结合,形成(RCOO)2-Ca离子键,从而在纳米碳酸钙表面接枝上带有端双键的活性有机基团;同时,纳米碳酸钙表面利用氢键作用吸附微量有机基团.这些有机基团共同缠绕在纳米碳酸钙表面,提高了纳米碳酸钙在无水乙醇中的分散性.【总页数】4页(P1510-1513)【作者】褚艳红;张国宝;赵根锁;余守志;王经武;李宾杰【作者单位】郑州大学材料科学与工程学院,河南,郑州,450052;河南省科学院质量检验与分析测试研究中心,河南,郑州,450002;河南省科学院质量检验与分析测试研究中心,河南,郑州,450002;河南省科学院质量检验与分析测试研究中心,河南,郑州,450002;河南省科学院质量检验与分析测试研究中心,河南,郑州,450002;郑州大学材料科学与工程学院,河南,郑州,450052;河南大学,河南,开封,475002【正文语种】中文【中图分类】O561.3【相关文献】1.以纳米碳酸钙为模板纳米聚合物空心粒子制备研究 [J], 郭鉴;任向莉;毋伟2.硼砂饱和溶液的差示FTIR光谱和Raman光谱分析 [J], 郑文捷;刘志宏;陈兴国3.纳米碳酸钙的表面改性研究进展 [J], 刁润丽;张晓丽4.纳米碳酸钙粒径及表面改性对其性能影响研究 [J], 刘亚雄5.ω-十一烯酸改性纳米碳酸钙工艺研究 [J], 褚艳红;李宾杰;王经武;余守志;张国宝;陈红梅;何世均因版权原因,仅展示原文概要,查看原文内容请购买。
JACS25位副主编的研究兴趣和实验室主页
JACS所有25位副主编列表:/page/jacsat/editors.htmlEric V. Anslyn: Supramolecular Analytical Chemistry, small molecule therapeutics/research/sm.htmlStephen J. Lippard: bioinorganic chemistry. The core activities include both structural and mechanistic studies of macromolecules as well as synthetic inorganic chemistry. The focus is on the synthesis, reactions, physical and structural properties of metal complexes as models for the active sites of metalloproteins and as anti-cancer drugs. Also included is extensive structural and mechanistic work on the natural systems themselves. A program in metalloneurochemistry is also in place./lippardlab/Weston Thatcher Borden: Computational Chemistry; Organic Chemistry; Organometallic Chemistry; Application of quantitative electronic structure calculations and qualitative molecular orbital theory to the understanding and prediction of the structures and reactivities of organic and organometallic compounds./people-node/weston-t-bordenThomas E. Mallouk: Chemistry of Nanoscale Inorganic Materials: Solar Photochemistry and Photoelectrochemistry; Nanowires; Functional Inorganic Layered Materials; In-Situ Remediation of Contaminants in Soil and Groundwater Using Nanoscale Reagents/mallouk/Benjamin F. Cravatt: Chemical Strategies for the Global Analysis of Enzyme Function; Technology Development: Activity-Based Protein Profiling (ABPP); Biological applications of ABPP - profiling enzyme activities in human cancer.; Advancing the ABPP technology; Technology Development: Protease Substrate Identification; Basic Discovery: The Enzymatic Regulation of Chemical Signaling /cravatt/research.htmlChad A. Mirkin: He is a chemist and a world renowned nanoscience expert, who is known for his development of nanoparticle-based biodetection schemes, the invention of Dip-Pen Nanolithography, and contributions to supramolecular chemistry. Our research focuses on developing strategic and surface nano-optical methods for controlling the architecture of molecules and materials on a 1-100 nm scale. Our researchers, with backgrounds ranging from medicine, biology, chemistry, physics and material science, are working together in solvingfundamental and applied problems of modern nanoscience. Research in the Mirkin laboratories is divided into the five areas listed below: Anisotropic Nanostructures; On-Wire Lithography (OWL); Dip-Pen Nanolithography; Organometallic Chemistry; Spherical Nucleic Acids/mirkin-group/research/Paul Cremer: works at the crossroads of biological interfaces, metamaterials, spectroscopy, and microfluidics. Biophysical and analytical studies are tied together through the employment of novel lab-on-a-chip platforms which enable high throughput/low sample volume analysis to be performed with unprecedented signal-to-noise. From neurodegenerative diseases to artificial hip implants, a huge variety of processes occur at biological interfaces. Our laboratory uses a wide variety of surface specific spectroscopy and microfluidic technologies to probe mechanisms of disease, build new biosensors against pathogens, and understand the molecular-level details of the water layer hugging a cell membrane. Research projects in the Cremer Group are divided into the five areas listed below. Click on your area(s) of interest to learn more. SFG of Water and Ions at Interfaces; Hofmeister Effects in Protein Solutions; Bioinorganic Chemistry and Biomaterial Properties of Lipid Bilayers; pH Modulation Sensing at Biomembranes; Metamaterialshttps:///cremer/Jeffrey S. Moore:Our research involves the synthesis and study of large organic molecules and the discovery of new polymeric materials. Most projects relate to one of three areas: new macromolecular architectures and their supramolecular organization; responsive polymers including self-healing materials; mechanochemical transduction. In general, our group uses the tools of synthetic and physical organic chemistry to address problems at the interface of chemistry and materials science. More in-depth information about our research can be found on our research page./Lyndon Emsley: NMRhttp://perso.ens-lyon.fr/lyndon.emsley/Lyndon_Emsley/Research.htmlKlaus Müllen: The group pursues a broad program of experimental research in macromolecular chemistry and material science. It has a wide range of research interests: from new polymer-forming reactions including methods of organometallic chemistry, multi-dimensional polymers with complex shape-persistent architectures, molecular materials with liquid crystalline properties for electronic and optoelectronic devices to the chemistry and physics of single molecules, nanocomposites or biosynthetic hybrids.http://www2.mpip-mainz.mpg.de/groups/muellenJean M. J. Fréchet:Our research is largely concerned with functional polymers, from fundamental studies to applications. The research is highly multidisciplinary at the interface of several fields including organic, polymer, biological, and materials chemistry. Chemical Engineering is also well represented with our research in energy-related materials and microfluidics./Eiichi Nakamura: Fascination to learn about the nature of the elements and molecules and to control their behavior goes back to ancient times. The research programs in our laboratories focus on the development of new and efficient synthetic reactions, new reactive molecules, and new chemical principles that will exert impact on the future of chemical, biological and material sciences. Under the specific projects listed below, we seek for the new paradigm of chemical synthesis and functional molecules. Discovery based on logical reasoning and imagination is the key term of our research and educational programs.http://www.chem.s.u-tokyo.ac.jp/users/common/NakamuraLabE.htmlGregory C. Fu: Transition Metal Catalysis; Nucleophilic Catalysis/research.htmlWilliam R. Roush:Our research centers around themes of total synthesis, reaction development and medicinal chemistry. Over 25 structurally complex, biologically active natural products have been synthesized in the Roush lab. These serve both as testing grounds for new methods and as inspiration for potential therapeutics.Our total synthesis projects are often attempted in parallel with reaction design. Synthetic applications of intramolecular Diels-Alder reactions and acyclic diastereoselective syntheses involving allylmetal compounds are of especial interest.Total synthesis and methods development interact synergistically toward the development of medicinally relevant compounds. Current targets of interest include chemotherapeutics built upon the exploitation of tumor cell metabolism, cystein protease inhibitors for treatment of parasitic diseases and diagnostic probes for the Scripps Molecular Screening Center./roush/Research.htmlMiguel García-Garibay:Our group is currently investigating the photochemical decarbonylation of crystalline ketones. Because the reactions take place in the solid state, they exhibit high selectivites that are not possible by the analogous solution reaction. From our experience, the solution photolysis yields many products, while there is often only one product in the solid. In order for the decarbonylation reaction to proceed in crystals, there are a few requirements forthe decarbonylation precursor: (1) The compound must be a crystalline solid. (2) There must be suitable radical stabilizing substituents present at both alpha centers./dept/Faculty/mgghome/Alanna Schepartz: The Schepartz laboratory develops chemical tools to study and manipulate protein–protein and protein–DNA interactions inside the cell. Our approach centers on the design of molecules that Nature chose not to synthesize--miniature proteins, ß-peptide foldamers, polyproline hairpins, and proto-fluorescent ligands--and the use of these molecules to answer biological questions that would otherwise be nearly impossible to address. Current topics include the use of miniature proteins to identify the functional role of discrete protein-protein interactions and rewire cellular circuits, the use of cell permeable molecules to image misfolded proteins or protein interactions in live cells, and the design of protein-like assemblies of ß-peptides that are entirely devoid of -amino acids./research/index.htmlMartin Gruebele:The Gruebele Group is engaged in experiments and computational modeling to study a broad range of fundamental problems in chemical and biological physics. A common theme in the experiments is the development of new instruments to interrogate and manipulate complex molecular systems. We coupled experiments with quantum or classical simulations as well as simple models. The results of these efforts are contributing to a deeper understanding of RNA and proteins folding in vitro and in vivo, of how vibrational energy flows around within molecules, of single molecule absorption spectroscopy, and of the dynamics of glasses./mgweb/Matthew S. Sigman: Our program is focused on the discovery of new practical catalytic reactions with broad substrate scope, excellent chemoselectivity, and high stereoselectivity to access novel medicinally relevant architectures. We believe the best strategy for developing new classes of catalysts and reactions applicable to organic synthesis is using mechanistic insight to guide the discovery process. This allows us to design new reaction motifs or catalysts in which unique bond constructions can be implemented furthering new approaches to molecule construction. An underlying theme to these methodologies is to convert relatively simple substrates into much more complex compounds allowing for access to known and novel pharmacaphores in a modular manner. This provides us the ability to readily synthesis analogs enabling us to understand the important structural features responsibility for a phenotypic response in a given biological assay. We are currently engaged in several collaborative projects to evaluate our compound collections for various cancer types at the Huntsman Cancer Institute atthe University of Utah and are engaged in follow-up investigations to identify improved compounds as well as understanding the mechanism of action. The group is engaged in the following diverse projects:/faculty/sigman/research.htmlSidney M. Hecht: Sidney M. Hecht, PhD, is the co-director for the Center for Bioenergetics in the Biodesign Institute at Arizona State University. He researches diseases caused by defects in the body's energy production processes. Energy production is similar mechanistically to other molecular processes that he has studied extensively. Hecht played a key role in the development of Hycamtin, a drug used to treat ovarian and lung cancer, as well as the study of the mechanism of the anti-tumor agent bleomycin./people/sidney-hechtDonald G. Truhlar: Theoretical and Computational ChemistryWe are carrying out research in several areas of dynamics and electronic structure, with a special emphasis on applying quantum mechanics to the treatment of large and complex systems. Dynamical calculations are being carried out for combustion (with a special emphasis on biofuel mechanisms) and atmospheric reactions in the gas phase and catalytic reactions in the condensed phase. Both thermal and photochemical reactions are under consideration. New orbital-dependent density functionals are being developed to provide an efficient route to the potential energy surfaces for these studies. New methods are also being developed for representing the potentials and for combined quantum mechanical and molecular mechanical methods, with a special emphasis in the latter case on improving the electrostatics. New techniques for modeling vibrational anharmonicity and for Feynman path integral calculations are also under development./truhlar/Joseph T. Hupp: Most research projects revolve around a theme of studying materials for alternative energy applications and other environmental issues. Due to the interdisciplinary nature of our research, we have many joint students with other researchers both at Northwestern and at other institutions./hupp/research.htmlHenry S. White: My colleagues and I are engaged in both experimental and theoretical aspects of electrochemistry, with diverse connections to analytical, biological, physical, and materials chemistry. Much of our current research is focused on electrochemistry in microscale and nanoscale domains./faculty/white/white.htmlTaeghwan Hyeon: The main theme of our research is synthesis, assembly, and applications of uniformly sized nanoparticles.http://nanomat.snu.ac.kr/index.php?mid=InterestsPeidong Yang: The Yang research group is interested in the synthesis of new classes of materials and nanostructures, with an emphasis on developing new synthetic approaches and understanding the fundamental issues of structural assembly and growth that will enable the rational control of material composition, micro/nano-structure, property and functionality. We are interested in the fundamental problems of electron, photon, and phonon confinement as well as spin manipulation within 1D nanostructures./index.php/research/interests/William D. Jones:Our research group has an interest in examining the reactions of homogeneous transition metal complexes with organic substrates with an emphasis on bond activation processes that are of potential interest to the chemical industry. We also are doing theoretical DFT modeling of this chemistry on our CCLab cluster/~wdjgrp/wdj_home.html#research下面是一些网友对部分副主编(部分已经不是了)的评价,没有罗列网友的ID了,一并表示感谢。
拓扑替康结构式 -回复
拓扑替康结构式-回复拓扑替康(Tofacitinib)是一种属于JAK抑制剂的药物,用于治疗关节炎、银屑病和溃疡性结肠炎等自身免疫性疾病。
该药物的结构式如下所示:[拓扑替康结构式]拓扑替康属于一种小分子化合物,其化学名称为“3-{(3R,4R)-4-[(4-{(1E)-2-(5-氯-2-氧代苯基)乙-1-烯基}-1-苯基环己基)氨基]-3-甲基环己基}丙酸甲酯”。
它的化学式为C16H20N6O,分子量为312.37g/mol。
拓扑替康为无色结晶状固体,可溶于有机溶剂或水。
作用机制:拓扑替康通过抑制Janus激酶(JAK)的活性来发挥其治疗作用。
JAK是一类细胞内酪氨酸激酶,对细胞信号转导和调控起着重要作用。
通过抑制JAK的活性,拓扑替康可以干扰多个细胞因子途径的信号传递,从而调控免疫系统,减轻相关疾病的症状。
药物应用:拓扑替康已被美国食品药品监督管理局(FDA)批准用于治疗成人类风湿性关节炎、银屑病性关节炎、中度至重度溃疡性结肠炎以及活动性类风湿性关节炎。
它通常在其他治疗方法无效或无法耐受的情况下使用。
治疗效果:在临床试验中,拓扑替康已被证明能有效减少关节炎相关的关节疼痛、关节肿胀和关节运动受限等症状。
在银屑病和溃疡性结肠炎的治疗中,使用拓扑替康也能减少病情的恶化和复发。
注意事项:1. 在使用拓扑替康之前,患者应告知医生有关其过敏史、其他药物的使用情况以及存在的其他疾病,以便医生进行全面评估。
2. 拓扑替康可能会增加感染的风险。
在使用期间,患者应密切注意任何感染的症状,并及时向医生报告。
3. 服用拓扑替康可能导致一些不良反应,如头痛、腹泻、恶心、呕吐等。
如有不适,应立即告知医生。
总结:拓扑替康是一种抗关节炎和免疫性疾病药物,通过抑制JAK的活性,调控免疫系统,从而减轻相关疾病的症状。
尽管其可以有效改善患者的症状,但患者在使用该药物时需要密切关注可能产生的不良反应,并向医生报告任何异样症状。
通过科学的用药指导和临床监测,拓扑替康可以为患者提供更好的治疗效果。
抗静电剂溶剂纳米氧化锡的性能 导电性、透明性、耐候
鎶楅潤鐢靛墏婧跺墏绾崇背姘у寲閿$殑鎬ц兘瀵肩數鎬с€侀€忔槑鎬с€佽€愬€?/B>鎶楅潤鐢靛墏婧跺墏绾崇背姘у寲閿$殑鎬ц兘?(瀵肩數鎬с€侀€忔槑鎬с€佽€愬€欐€с€佺ǔ瀹氭€с€佸鍔熻兘鎬?2010-12-07绾崇背姘у寲閿$殑鎬ц兘?(瀵肩數鎬с€侀€忔槑鎬с€佽€愬€欐€с€佺ǔ瀹氭€с€佸鍔熻兘鎬?绾崇背鎺洪攽浜屾哀鍖栭敗(antimony doped tin oxide,绠€绉癮to),鏄竴绉峮鍨嬪崐瀵间綋鏉愭枡,涓庝紶缁熺殑鎶楅潤鐢垫潗鏂欑浉姣?绾崇背ato瀵肩數绮変綋鍏锋湁鏄庢樉鐨勪紭鍔?涓昏琛ㄧ幇鍦ㄨ壇濂界殑瀵肩數鎬?娴呰壊閫忔槑鎬?鑹ソ鐨勮€愬€欐€у拰绋冲畾鎬т互鍙婁綆鐨勭孩澶栧彂灏勭巼绛?锛氶潰,鏄竴绉嶆瀬鍏峰彂灞曟綔鍔涚殑鏂板瀷澶氬姛鑳藉鐢垫潗鏂?quot;銆傛湰鏂囦粠鎶楅潤鐢垫秱鏂欍€佹姉闈欑數绾ょ淮鍙婃姉闈欑數濉戞枡3涓柟闈粙缁嶄簡绾崇背ato绮夊湪楂樺垎瀛愭姉闈欑數鏉愭枡涓簲鐢ㄣ€?鎶楅潤鐢垫秱鏂欐姉闈欑數娑傛枡鏄撼绫砤to绮夌殑涓昏搴旂敤甯傚満銆傚皢绾崇背ato绮夋湯浣滀负瀵肩數濉枡娣诲姞鍒拌仛閰拌兒銆佷笝鐑吀绛夊熀浣撴爲鑴備腑,閫夋嫨閫傚綋鐨勫垎鏁f柟娉?鍙埗寰楃撼绫冲鍚堥€忔槑鎶楅潤鐢垫秱鏂欍€傚湪绾崇背ato澶嶅悎鎶楅潤鐢垫秱鏂欎腑,褰撶撼绫砤to绮夌殑娣诲姞閲忚揪鍒版煇涓€涓寸晫鍊兼椂,娑傚眰鐨勫鐢垫€ц兘鎵嶆槑鏄炬敼鍠勩€傜爺绌惰〃鏄?绾崇背ato绮夊湪娑傛枡涓殑涓寸晫浣撶Н娴撳害(cpvc)绾︿负23%,褰損vc杈惧埌23%鍚?娑傚眰鐨勫鐢垫€ц兘杈冨ソ,濡傚浘1鎵€绀恒€備絾杩涗竴姝ュ澶х撼绫砤to鐨勭敤閲?瀵逛簬娑傚眰鐨勫鐢垫€ц兘鐨勬敼鍠勫苟娌℃湁寰堝ぇ鐨勫府鍔?鐩稿弽,浼氬奖鍝嶆秱灞傜殑鑹叉辰銆侀€忔槑搴︿互鍙婂姏瀛︽€ц兘绛夈€傚彟澶?鍩轰綋鏍戣剛鐨勭绫汇€佹憾鍓傜殑鐢ㄩ噺浠ュ強鍒跺宸ヨ壓绛夐兘瀵规秱鏂欑殑鎬ц兘鏈夋槑鏄剧殑褰卞搷銆傜敱浜庣撼绫砤to棰楃矑姣旇〃闈㈢Н澶с€佹瘮琛ㄩ潰鑳介珮,灞炰簬鐑姏涓嶇ǔ瀹氫綋绯?绮変綋棰楃矑鑷彂鐨勭浉浜掕仛闆?浠ラ檷浣庢暣涓郴缁熺殑鐢辩創銆傝繖绉嶅舰鎴愬洟鑱氱姸鐨勪簩娆¢绮?涔冭嚦涓夋棰楃矑,浼氱牬鍧忔湯鐨勮秴缁嗘€у拰鍧囧寑鎬?褰卞搷绾崇背绮夋湯鐨勬€ц兘,杩涜€屽奖鍝嶄骇鍝佹渶缁堢殑浣跨敤鎬ц兘"1)銆傚洜姝?褰卞搷娑傛枡鎶楅潤鐢垫€ц兘鐨勯瑕佸洜绱犳槸绾崇背ato绮夌殑楂樺害鍒嗘暎闂銆傞拡瀵瑰浣曞疄鐜伴€忔槑瀵肩數娑傛枡涓撼绫砤to绮夌殑楂樺害鍒嗘暎闂,鏉庨潚灞辩瓑d2]閫氳繃瀹為獙鐮旂┒浜嗗叡娌夋穩娉曞埗澶囩殑绾崇背ato绮夊湪姘翠腑楂樺害鍒嗘暎浣撶郴鐨勫舰鎴愭潯浠?骞惰璁轰簡鐞冪(鏃堕棿鍙妏h鍊煎鍒嗘暎浣撶郴鐨勫奖鍝?缁撴灉琛ㄦ槑,鍦ㄤ笉鍔犱换浣曞姪鍓傜殑鎯呭喌涓?鐞冪(鏃堕棿闇€瑕?澶╀互涓婃墠鑳藉舰鎴愬垎鏁f晥鏋滆緝濂界殑绾崇背ato绮夋按鍒嗘暎浣撶郴锛涚撼绫砤to绮夊湪寮虹⒈鍜岀瓑鐢电偣(ph=1.8)闄勮繎鐨勬按婧舵恫涓皢鑱氭矇,鑰屽湪杩滅绛夌數鐐?ph鍊煎湪10-11.5)鐨勬按婧舵恫涓彲鍛堢幇鍑轰笉鍚岀殑鍒嗘暎鐘舵€?鍙舰鎴愭棤鍥㈣仛鐘舵€佺殑楂樼ǔ瀹氭€ф幒閿戜簩姘у寲閿¤秴缁嗙矇姘村垎鏁d綋绯汇€傜帇鏍嬬瓑""鐮旂┒浜嗙撼绫砤to鍦ㄦ按涓殑绋冲畾銆佸垎鏁h涓?璁ㄨ浜嗗垎鏁e墏绉嶇被銆乤to鐢ㄩ噺銆乸h鍊笺€佸垎鏁e墏鐢ㄩ噺瀵逛綋绯荤ǔ瀹氭€с€佸垎鏁f€у拰娴佸彉鎬х殑褰卞搷,鍒跺绮樺害杈冧綆銆佺ǔ瀹氭€у垎鏁,鍝囪壇濂界殑绾崇背ato鎮诞娑层€傜撼绫砤to澶嶅悎鎶楅潤鐢垫秱鏂欐槸涓€绉嶇敤閫斿箍娉涚殑鍔熻兘鏉愭枡,濡傜數瀛愯澶囩殑閫忔槑鍖呰钖勮啘鎶楅潤鐢垫秱灞傘€佸钩闈㈡樉绀烘潗鏂欍€侀潰鍙戠儹浣撶瓑锛涘彟澶?鍙€氳繃璋冭妭閿戞幒鏉傞噺寰楀埌涓嶅悓钃濊壊璋冪殑绾崇背ato绮?浠庤€岃幏寰椾笉鍚岃壊璋冪殑鎶楅潤鐢垫秱鏂?杩欎竴鐐瑰鍏跺湪鍖呰棰嗗煙鐨勫簲鐢ㄨ嚦鍏抽噸瑕併€?鎶楅潤鐢电氦缁寸撼绫虫棤鏈虹矇浣撴敼鎬х氦缁存潗鏂欐閫愭鎴愪负绾ょ淮鏉愭枡鏀规€х殑涓€涓噸瑕佺殑鍙戝睍鏂瑰悜銆備笌鍏跺畠绫诲瀷鐨勬姉闈欑數绾ょ淮鐩告瘮,绾崇背绾ч噾灞炴哀鍖栫墿鍨嬫姉闈欑數绾ょ淮鍏锋湁璁稿鐙壒鐨勪紭寮傛€ц兘,濡備笉鍙楁皵鍊欏拰浣跨敤鐜鐨勯檺鍒?绋冲畾鎬ц緝濂斤紱绾崇背绾ч噾灞炴哀鍖栫墿涓嶆槗浠庣氦缁翠笂鑴辫惤,鍒嗗竷涔熻緝涓哄潎鍖€锛涚氦缁村埗澶囧伐鑹虹畝鍗曪紱绾ょ淮浣跨敤鑼冨洿骞挎硾,鍑犱箮鍙敤骞蹭换浣曢渶闃查潤鐢电殑鍦哄悎绛?quot;銆傛柊鍨嬬殑绾崇背绾ч€忔槑瀵肩數绮夋湯,鍥犲叾鍒跺搧鐨勯€忔槑鎬у拰浼樿壇鐨勫鐢垫€ц€屽鍙椾汉浠殑闈掔潗銆傚皢绾崇背ato鐢ㄤ簬鍖栧绾ょ淮鎶楅潤鐢靛鐞嗙殑閫斿緞涓昏鏈?涓細1)鍦ㄧ氦缁寸汉涓濇椂鐩存帴娣诲姞绾崇背绾to绮夋湯,鍏跺叧閿槸鏃犳満绾崇背绾to涓庣氦缁存潗鏂欑殑鐩稿鎬?闇€瑕佹坊鍔犵壒娈婄殑鍒嗘暎鍔╁墏锛?)鍦ㄥ師鏂?濡傛瘺鏉°€佹钉绾朵笣)鏌撹壊杩囩▼涓坊鍔犵撼绫崇骇ato鎴栧叾姘存€ф偓娴恫,浣挎煋鑹蹭笌鍔熻兘鍖栦竴姝ュ畬鎴愶紱3)鍦ㄥ澂甯冪殑鏌撹壊鎴栨暣鐞嗚繃绋嬩腑娣诲姏鍙g撼绫崇骇ato姘存€ф偓娴恫銆備笢鍗庡ぇ瀛︾氦缁存敼鎬у浗瀹堕噸鐐瑰疄楠屽鐨勭帇鏍嬬瓑浜洪噰鐢ㄧ撼绫崇矇浣揳to绮変负鎶楅潤鐢靛墏,浠ヨ仛涔欑儻浜氳兒(pel)涓哄垎鏁e墏,灏嗙撼绫砤to绋冲畾鍧囧寑鍦板垎鏁d簬鍘荤瀛愭按涓?骞堕娆″皢璇ユ偓娴恫浣滀负鑱氫笝鐑厛绾ょ淮绾轰笣杩囩▼鐨勯鐑荡,鏉ユ敼鍠刾an绾ょ淮鐨勬姉闈欑數鎬с€傜敱浜庣氦缁村唴澶栫撼绫虫棤鏈哄井绮掔殑娴撳害宸拰鍒濈敓pan绾ょ淮鍐呴儴澶ч噺寰瓟鐨勫瓨鍦?绾崇背ato寰矑鑳藉閫氳繃鎵╂暎銆佽縼绉昏繘鍏ョ氦缁存垨鍚搁檮浜庣氦缁磋〃灞?褰損an绾ょ淮琚媺浼搞€佸共鐕ャ€佽嚧瀵嗗寲澶勭悊鏃?绾崇背ato鑳界暀鍦ㄧ氦缁翠腑骞跺舰鎴愮撼绫砤to 灞€閮ㄦ帴瑙︾殑瀵肩數閫氶亾,璧嬩簣pan绾ょ淮鎶楅潤鐢垫€с€傚疄楠岀粨鏋滆〃鏄庣撼绫砤to鏀规€an绾ょ淮鐨勪綋绉瘮鐢甸樆鐜囦笅闄嶄笁涓暟閲忕骇,鍏锋湁鑹ソ鐨勬姉闈欑數鎬ц兘,鍚屾椂杩樺熀鏈繚鎸佷簡绾ょ淮鍘熸湁鐨勫姏瀛︽€ц兘銆傚彟澶?鍥藉瓒呯粏绮夋湯宸ョ▼鐮旂┒涓績涔熸寮€灞曞皢绾崇背ato搴旂敤浜庢姉闈欑氦缁寸殑鍒跺鍙婂叾瀹冨涓鍩熺殑鐮旂┒銆傜洰鍓嶆敼鍠勬钉绾剁粐鐗╅潤鐢垫€ц兘鐨勬渶涓昏鐨勬柟娉曟槸閲囩敤鏈夋満鎶楅潤鐢靛墏閫氳繃绠€鍗曟槗琛岀殑闈㈡枡鍚庢暣鐞嗘妧鏈繘琛屾姉闈欑數鏁寸悊銆備絾鐢变簬鏈夋満鎶楅潤鐢靛墏瀛樺湪瀵圭幆澧冩箍搴︿緷璧栨€уぇ涓旀姉闈欑數鏁堟灉鎸佷箙鎬у樊绛夐棶棰?鍥犳瀵绘眰涓€绉嶅叿鏈変紭鑹笖鑰愪箙鎶楅潤鐢垫€ц兘鐨勬姉闈欑數鍓傛垚涓虹爺鍙戠儹鐐广€傚惔瓒婄瓑浜篿灏嗙撼绫砤to绮変綋鐢ㄤ簬娑ょ憾缁囩墿鎶楅潤鐢靛鐞?瀹為獙缁撴灉琛ㄦ槑,缁忕撼绫砤to鎶楅潤鐢垫暣鐞嗗墏澶勭悊鐨勬钉绾剁粐鐗╄〃闈㈢數闃讳粠鏈鐞嗙殑1012蠅闄嶄綆鍒?010蠅绾?娲楁钉50娆?鎶楅潤鐢垫晥鏋滃熀鏈笉鍙樸€傞檲闆姳绛?quot;"鐢ㄦ秱灞傛柟娉曞娑ょ憾闈㈡枡杩涜浜嗙撼绫崇骇ato鎶楅潤鐢靛墏鐨勬姉闈欑數鍔熻兘鏁寸悊,瀹為獙缁撴灉琛ㄦ槑锛氬彧鏈夊綋ato绮掑瓙鏆撮湶鍦ㄨ啘鐨勮〃闈㈡椂,瀹冩墠鑳藉彂鎸ユ姉闈欑數鎬ц兘锛涘綋ato绮掑瓙浠ラ儴鍒嗘巩娌′簬鑶滃唴,閮ㄥ垎鏄鹃湶鍦ㄨ啘琛ㄩ潰鐨勫舰寮忓瓨鍦ㄤ簬娑傚眰涓椂,娑傝啘鐨勬姉闈欑數鎬ц兘鎵嶆寔涔呫€備竵閽熷绛夊皢涓嶅悓閿戞幒鏉傞噺鐨勭撼绫砤to绮夌敤浜庢钉绾堕拡缁囩墿鐨勬姉闈欑數澶勭。
铋-金双金属纳米酶的活性调控及其比色和光热传感研究
铋-金双金属纳米酶的活性调控及其比色和光热传感研究铋-金双金属纳米酶的活性调控及其比色和光热传感研究引言:纳米科技应用于生物体系中,已经取得了重要的突破,其中双金属纳米酶对于生物催化反应的研究前景非常广阔。
本文旨在探讨铋-金双金属纳米酶的活性调控方法,以及其在比色和光热传感方面的应用。
1. 铋-金双金属纳米酶的制备方法铋-金双金属纳米酶的制备可以通过化学还原法进行。
首先,在溶液中加入金盐和铋盐,经过适当的搅拌后,加入还原剂,如柠檬酸或亚硫酸钠,控制pH值和反应温度,产生还原反应,使金和铋元素还原为金和铋纳米颗粒,最终得到铋-金双金属纳米酶。
2. 铋-金双金属纳米酶的活性调控方法铋-金双金属纳米酶的活性调控通常通过调节环境条件和添加不同催化剂实现。
例如,改变溶液的pH值和温度,可以改变铋-金纳米酶内部电荷分布和微环境,进而调控其催化活性。
此外,还可以添加特定的金属离子或有机分子,与铋-金纳米酶之间发生配位作用,从而调控其催化活性。
3. 铋-金双金属纳米酶在比色传感方面的应用铋-金双金属纳米酶具有较高的催化活性和稳定性,使其在比色传感领域具有很大的应用潜力。
通过与特定底物反应,铋-金纳米酶可以催化产生可见光吸收性产物,从而产生明显的比色变化。
通过比色变化的定量分析,可以快速、灵敏地检测目标物质的存在和浓度变化。
4. 铋-金双金属纳米酶在光热传感方面的应用铋-金双金属纳米酶在光热传感方面的应用主要是利用其催化产物的光热转换性质。
将铋-金纳米酶与特定的受体分子结合,形成纳米酶-受体复合物。
当受体与目标分子结合时,铋-金纳米酶催化产生的光热效应会发生变化,进而可通过热敏探针或红外热像仪等光热设备检测到目标分子的存在。
结论:铋-金双金属纳米酶作为一种新型的催化剂,在活性调控以及比色和光热传感方面具有广阔的应用前景。
通过调控制备方法和环境条件,可以优化铋-金纳米酶的催化活性。
同时,借助于其催化产物的比色和光热特性,铋-金双金属纳米酶在生物传感领域可以实现高灵敏度、高选择性和快速检测特定目标分子的功能,有望在临床诊断和环境监测等领域得到广泛应用。
锑掺杂二氧化锡薄膜的导电机理及其理论电导率
锑掺杂二氧化锡薄膜的导电机理及其理论电导率杨建广;唐谟堂;张保平;唐朝波;杨声海【期刊名称】《中国粉体技术》【年(卷),期】2004(010)004【摘要】归纳总结了锑掺杂二气化锡(ATO)的导电机理,晶格的氧缺位、5价Sb杂质在SnO2禁带形成施主能级并向导带提供n-型载流子是ATO导电的两种主要机理.从材料的电导率公式出发,定性分析了二氧化锡中掺杂锑的含量存在理论最佳值,根据已有模型计算证明了锑掺杂二氧化锡电导率存在理论上限.掺杂二氧化锡中锑的最佳理论含量为1.49%(质量分数),锑掺杂二氧化锡理论电导率最高为0.2×104(Ω·cm)-1,氧空位对ATO电导率的贡献为0.1392×104(Ω·cm)-1,大于掺杂电子对ATO电导率的贡献(0.061×104(Ω·cm)-1).【总页数】4页(P1-4)【作者】杨建广;唐谟堂;张保平;唐朝波;杨声海【作者单位】中南大学,冶金科学与工程学院,湖南,长沙,410083;中南大学,冶金科学与工程学院,湖南,长沙,410083;中南大学,冶金科学与工程学院,湖南,长沙,410083;中南大学,冶金科学与工程学院,湖南,长沙,410083;中南大学,冶金科学与工程学院,湖南,长沙,410083【正文语种】中文【中图分类】TB34;TB43【相关文献】1.锑掺杂二氧化锡(ATO)导电机理及制备方法研究现状 [J], 杨建广;唐谟堂;杨声海;唐朝波;张保平2.锑掺杂对二氧化锡薄膜结构及发光性质的影响 [J], 计峰;马瑾;马洪磊3.锑掺杂二氧化锡导电机理及制备方法研究现状 [J], 杨建广;唐谟堂;张保平;杨声海;陈艺峰4.纳米锑掺杂二氧化锡(ATO)水凝胶的水热法制备以及ATO导电薄膜的透明和隔热性能 [J], 张文豪;李彦良;高彦杰;赵晓伟;王维勋;郭炜;郭建辉;张经纬5.溶胶-凝胶法在玻璃纤维表面制备锑掺杂二氧化锡薄膜的工艺 [J], 李明超;张毅因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Carbon Dots for Multiphoton BioimagingLi Cao,Xin Wang,Mohammed J.Meziani,Fushen Lu,Haifang Wang,Pengju G.Luo,Yi Lin,Barbara A.Harruff,L.Monica Veca,Davoy Murray,Su-Yuan Xie,and Ya-Ping Sun*Department of Chemistry and Laboratory for Emerging Materials and Technology,Clemson Uni V ersity,Clemson,South Carolina 29634-0973Received May 17,2007;E-mail:syaping@Two-photon fluorescence materials have attracted much recent attention for their many promising applications,especially in the growing field of biomedical imaging.1-5Among the best performing two-photon fluorescence materials are semiconductor quantum dots such as CdSe and related core -shell nanoparticles.6-8These quantum dots have been demonstrated in various optical imaging experiments in vitro and in vivo.6,9,10At the same time,however,heavy metals as the essential elements in available high-performance semiconductor quantum dots have prompted serious health and environmental concerns in the community and beyond.Therefore,the search for benign alternatives has become increasingly important and urgent.Recently,we found and reported 11that nanosized pure carbon particles may be surface-passivated to exhibit bright photoluminescence in the visible.These photoluminescent carbon dots (C-Dots,Figure 1a)are of two distinctive features:one is that the underlying carbon particles are very small (sub-10nm);and the other is that the particle surface is passivated by organic or other molecules via either covalent linkages or chemical adsorp-tion.11Mechanistically,the carbon-based photoluminescence has been attributed to passivated defects on the carbon particle surface acting as excitation energy traps.11,12Here we report that the C-Dots also exhibit strong luminescence with two-photon excitation in the near-infrared.The estimated two-photon absorption cross-sections of the C-Dots are comparable to those of available high-performance semiconductor quantum dots.In addition,the two-photon lumi-nescence microscopy imaging of the C-Dots internalized in human cancer cells is demonstrated.The C-Dots were prepared as previously reported.11Poly-(propionylethylenimine-co -ethylenimine)(PPEI-EI,with EI fraction ∼20%)was used as the surface passivation agent.The C-Dots thus prepared were readily soluble in water to yield a colored aqueous solution.Shown in Figure 1b is a representative AFM image of the C-Dots on mica surface,from which feature sizes of generally less than 5nm are identified.The specimen for optical microscopy was prepared by first dropping a small aliquot of the aqueous solution on cover glass and then evaporating the water.A Leica confocal fluorescence microscope equipped with an argon ion laser and a femtosecond pulsed Ti:sapphire laser was used.The C-Dots were found to be strongly emissive in the visible with either the argon ion laser excitation (458nm)or the femtosecond pulsed laser for two-photon excitation in the near-infrared (800nm).As compared in Figure 2,the one-and two-photon luminescence images for the same scanning area match well.The C-Dots were photostable under the two-photon imaging conditions (upon repeated 800nm excitations equivalent to generating the image in Figure 2b for at least 3000times,no meaningful changes in emission intensities).The same microscope setup was used to measure the two-photon spectra.For the same specimen (C-Dots deposited on cover glass),the observed spectra vary slightly from spot to spot,reflecting the inhomogeneous nature of the sample.A representative two-photon luminescence spectrum of average C-Dots is shown in Figure 3(left).Its bandwidth is comparable with that in the one-photon spectrum of the C-Dots on surface (458nm excitation),but significantly narrower than that of the solution-phase spectrum (400Figure 1.(a)The C-Dot structure;(b)AFM topography image of C-Dots on mica substrate,with the height profile along the line in the image.Figure 2.Luminescence images (all scale bars 20µm)of the C-Dots with (a)argon ion laser excitation at 458nm and (b)femtosecond pulsed laser excitation at 800nm;(c)is an overlay of (a)and (b).Figure 3.(Left)The one-photon (0,458nm excitation)and two-photon (O ,800nm excitation)luminescence spectra of the C-Dots on glass substrate (prepared with infinite dilution,and optical spot diameter ∼500nm,covering multiple dots immobilized on the substrate)are compared with solution-phase absorption (ABS)and luminescence (solid line,400nm excitation)spectra.(Right)The quadratic relationship of the observed two-photon luminescent intensity of the C-Dots on glass substrate with the excitation laser power at 800nm (P Exc ,as measured at the focalplane).Published on Web 08/28/2007113189J.AM.CHEM.SOC.2007,129,11318-1131910.1021/ja073527l CCC:$37.00©2007American ChemicalSocietynm excitation,Figure3(left)).These results again suggest inho-mogeneity in the sample.The immobilization of the dots on surface might have allowed the measurement of small fractions in which the emissive species or sites are more homogeneous,with the narrower luminescence bands for both one-and two-photon excitations.The two-photon in nature for the luminescence with the pulsed infrared laser excitation was confirmed by the dependence of observed luminescence intensities on the excitation laser power. The luminescence signals were collected with an external detector on the confocal microscope,and the laser powers for excitation were determined by using a precision power meter in the focal plane (thus free from effects of reflection and transmission losses associated with all optical components in the system).As also shown in Figure3(right),the quadratic relationship between the excitation laser power and the luminescence intensity is obvious, thus confirming that the excitation with two near-infrared photons was indeed responsible for the observed visible luminescence of C-Dots.The two-photon absorption cross-sectionσ2(λ)of C-Dots was estimated by determining the two-photon luminescence intensities of the specimen and a reference under the same experimental conditions:σ(λ))σ2,ref(λ)(<F(t)>/<F ref(t)>)/(Φ/Φref),where<F(t)>’s represent averaged luminescence photon fluxes(or experimentally observed emission intensities),Φ’s are luminescence quantum yields,and the subscript ref denotes values for the reference compound.By using rhodamine B as the reference,13the two-photon absorption cross-sections of C-Dots at different excita-tion wavelengths were calculated from the experimental results. At800nm,the averageσ2value for the C-Dots was39000( 5000GM(Goeppert-Mayer unit,with1GM)10-50cm4s/photon). It makes the C-Dots comparable in high-performance to other two-photon luminescent nanomaterials.6,8,14,15For example,the two-photon absorption cross-section for CdSe quantum dots at800nm varies in the range of780-10300GM,depending on the particle sizes.8For CdSe/ZnS core-shell quantum dots(fluorescence at 605nm),the two-photon absorption cross-section was estimated to be on the order of50000GM.6In an exploratory experiment to demonstrate the potential of C-Dots for cell imaging with two-photon luminescence microscopy, human breast cancer MCF-7cells were cultured in terms of the established protocol.16Upon incubation with the C-Dots in an aqueous buffer at37°C,the MCF-7cells became brightly illuminated when imaged on the fluorescence microscope with excitation by800nm laser pulses.As shown in Figure4,the C-Dots were able to label both the cell membrane and the cytoplasm of MCF-7cells without reaching the nucleus in a significant fashion. The translocation of the C-Dots from outside the cell membrane into the cytoplasm is temperature dependent,with no meaningful C-Dots internalization observed at4°C.While endocytosis is likely, an understanding of the internalization mechanism still requires more investigations.In addition,a better accumulation of C-Dots in the cell(even in the nucleus)may be achieved by C-Dots coupled with membrane translocation peptides such as TAT(a human immunodeficiency virus-derived protein),which facilitates the translocation of the tissue by overcoming the cellular membrane barrier and enhances the intracellular labeling efficiency.17,18This is being pursued along with a comparison between one-and two-photon luminescence imaging of cells labeled with C-Dots.In summary,C-Dots are strongly two-photon active,with the pulsed laser excitation in the near-infrared to result in bright luminescence in the visible.The estimated two-photon absorption cross-sections of the C-Dots are comparable to those of the best-performing semiconductor quantum dots or core-shell nanoparticles already reported in the literature.Available results from exploratory experiments of luminescence imaging in vitro suggest that the C-Dots are internalized into the human breast cancer cells likely through endocytosis,demonstrating the potential of the C-Dots in cell imaging with two-photon luminescence microscopy. Acknowledgment.Financial support from the DoD Breast Cancer Research Program,NIH,and NSF is gratefully acknowl-edged.D.M.was an undergraduate participant jointly sponsored by NSF(DMR-0243734)and Clemson University.Supporting Information Available:Complete ref11and histo-grams of luminescence intensities in the images.This material is available free of charge via the Internet at . References(1)Xu,C.;Zipfel,W.;Shear,J.B.;Williams,R.M.;Webb,W.W.Proc.Natl.Acad.Sci.U.S.A.1996,93,10763-10768.(2)Cahalan,M.D.;Parker,I.;Wei,S.H.;Miller,M.J.Nat.Re V.Immun.2002,2,872-880.(3)Zipfel,W.R.;Williams,R.M.;Webb,W.W.Nat.Biotechnol.2003,21,1369-1377.(4)Helmchen,F.;Denk,W.Nat.Methods2005,2,932-940.(5)Wang,B.;Halbhuber,G.K.J.Ann.Anat.2006,188,395-409.(6)Larson,D.R.;Zipfel,W.R.;Williams,R.M.;Clark,S.W.;Bruchez,M.P.;Wise,F.W.;Webb,W.W.Science2003,300,1434-1436.(7)Chen,W.;Joly,A.G.;McCready,D.E.J.Chem.Phys.2005,122,224708(1-7).(8)Pu,S.C.;Yang,M.J.;Hsu,C.C.;Lai,C.W.;Hsieh,C.C.;Lin,S.H.;Cheng,Y.M.;Chou,P.T.Small2006,2,1308-1313.(9)Gao,X.;Cui,Y.;Levenson,R.M.;Chung,L.W.K.;Nie,S.Nat.Biotechnol.2004,22,969-976.(10)Grecco,H.E.;Lidke,K.A.;Heintzmann,R.;Lidke,D.S.;Spagnuolo,C.;Martinez,O.E.;Jares-Erijman,E.A.;Jovin,T.M.Micro.Res.Technol.2004,65,169-179.(11)Sun,Y.-P.;et al.J.Am.Chem.Soc.2006,128,7756-7757.(12)Zhou,J.;Booker,C.;Li,R.;Zhou,X.;Sham,T.K.;Sun,X.;Ding,Z.J.Am.Chem.Soc.2007,129,744-745.(13)Xu,C.;Webb,W.W.J.Opt.Soc.Am.B1996,13,481-491.(14)Wang,H.;Huff,T.B.;Zweifel,D.A.;He,W.;Low,P.S.;Wei,A.;Cheng,J.-X.Proc.Natl.Acad.Sci.U.S.A.2005,102,15752-15756.(15)Padilha,L.A.;Fu,J.;Hagan,D.J.;Van Stryland,E.W.;Cesar,C.L.;Barbosa,L.C.;Cruz,C.H.B.;Buso,D.;Martucci,A.Phys.Re V.B2007, 75,075325(1-8).(16)Lu,Q.;Moore,J.M.;Huang,G.;Mount,A.S.;Larcom,L.;Ke,P.C.Nano Lett.2004,4,2473-2477.(17)Santra,S.;Yang,H.;Stanley,J.T.;Holloway,P.H.;Moudgil,B.M.;Walter,G.;Mericle,mon.2005,25,3144-3146. (18)Stroh,M.;Zimmer,J.P.;Duda,D.G.;Levchenko,T.S.;Cohen,K.S.;Brown, E. B.;Scadden, D.T.;Torchilin,V.P.;Bawendi,M.G.;Fukumura,D.;Jain,R.K.Nat.Med.2005,11,678-682.JA073527LFigure 4.Representative two-photon luminescence image(800nm excitation)of human breast cancer MCF-7cells with internalized C-Dots. More details on the cell experiment:MCF-7cells(approximately5×105) were seeded in each well of a four-chambered Lab-Tek coverglass system (Nalge Nunc)and cultured at37°C.All cells were incubated until approximately80%confluence was reached.Separately,an aqueous solution of the C-Dots(0.9mg/mL)was passed through a0.2µm sterile filter membrane(Supor Acrodisc,Gelman Science).The filtered solution(20-40µL)was mixed with the culture medium(300µL)and then added to three wells of the glass slide chamber(the fourth well used as a control)in which the MCF-7cells were grown.After incubation for2h,the MCF-7 cells were washed three times with PBS(500µL each time)and kept in PBS for the optical imaging.C O M M U N I C A T I O N SJ.AM.CHEM.SOC.9VOL.129,NO.37,200711319。