4.中考数学专训弧长与扇形面积计算 原卷版
弧长和扇形面积-九年级数学人教版(上)(原卷版+解析版)
第二十四章圆24.4弧长和扇形面积一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,一段公路的转弯处是一段圆弧,则的展直长度为A.3π B.6πC.9π D.12π2.用圆心角为120°,半径为6 cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的底面周长是A.2π cm B.3π cmC.4π cm D.5π cm3.如图,在圆心角为的扇形中,半径=4 cm,为弧的中点,,分别是,的中点,则图中阴影部分的面积(单位)为A.B.C.D.4.如图,在△中,,,,以点B为圆心,BC长为半径画弧,交AB于点D,则CD的长为A.B.C.D.5.如图,⊙O的直径AB=6,若∠BAC=50°,则劣弧AC的长为A.2π B.C.D.二、填空题:请将答案填在题中横线上.6.一个扇形的半径为3 cm,面积为π cm2,则此扇形的圆心角为______ 度.7.如图所示,把半径为4 cm的半圆围成一个圆锥的侧面,使半圆圆心为圆锥的顶点,那么这个圆锥的高是_______cm.(结果保留根号)8.⊙A、⊙B、⊙C两两不相交,且半径都是0.5 cm,则图中的三个扇形(即阴影部分)的面积之和为________.9.圆锥的底面积为25π,母线长为13 cm,这个圆锥的底面圆的半径为________ cm,高为________ cm,侧面积为________ cm2.三、解答题:解答应写出文字说明、证明过程或演算步骤.10.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.(1)分别以直线AC,BC为轴,把△ABC旋转一周,得到两个不同的圆锥,求这两个圆锥的侧面积;(2)以直线AB为轴,把△ABC旋转一周,求所得几何体的表面积.11.如图,一个圆锥的高为cm,侧面展开图是半圆.求:(1)圆锥的母线长与底面半径之比;(2)求∠BAC的度数;(3)圆锥的侧面积.第二十四章圆24.4弧长和扇形面积一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,一段公路的转弯处是一段圆弧,则的展直长度为A.3π B.6πC.9π D.12π【答案】B【解析】的展直长度为:=6π.故选B.2.用圆心角为120°,半径为6 cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的底面周长是A.2π cm B.3π cmC.4π cm D.5π cm【答案】C3.如图,在圆心角为的扇形中,半径=4 cm,为弧的中点,,分别是,的中点,则图中阴影部分的面积(单位)为A.B.C.D.【答案】A∴空白图形ACD的面积=扇形OAC的面积-三角形OCD的面积=,三角形ODE的面积=OD×OE=2,∴图中阴影部分的面积=扇形OAB的面积-空白图形ACD的面积-三角形ODE的面积=故选:A.4.如图,在△中,,,,以点B为圆心,BC长为半径画弧,交AB于点D,则CD的长为A.B.C.D.【答案】C5.如图,⊙O的直径AB=6,若∠BAC=50°,则劣弧AC的长为A.2π B.C.D.【答案】D【解析】如图,连接CO,∵∠BAC=50°,AO=CO=3,∴∠ACO =50°, ∴∠AOC =80°, ∴劣弧AC 的长为.故选:D .二、填空题:请将答案填在题中横线上.6.一个扇形的半径为3 cm ,面积为π cm 2,则此扇形的圆心角为 ______ 度. 【答案】40【解析】设扇形的圆心角是n °,根据题意可知:S =9360n π⨯ =π,解得n =40°,所以答案为40. 7.如图所示,把半径为4 cm 的半圆围成一个圆锥的侧面,使半圆圆心为圆锥的顶点,那么这个圆锥的高是_______cm .(结果保留根号)【答案】8.⊙A 、⊙B 、⊙C 两两不相交,且半径都是0.5 cm ,则图中的三个扇形(即阴影部分)的面积之和为________.【答案】8πcm 2 【解析】∵三角形的内角和为180度,所以三个阴影扇形的圆心角的和为180°,由于它们的半径都为0.5cm ,∴2211802cm 3608S π⨯π阴影()==. 故答案是cm 8π2.9.圆锥的底面积为25π,母线长为13 cm ,这个圆锥的底面圆的半径为________ cm ,高为________ cm ,侧面积为________ cm 2. 【答案】5,12, 65π三、解答题:解答应写出文字说明、证明过程或演算步骤. 10.如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8.(1)分别以直线AC ,BC 为轴,把△ABC 旋转一周,得到两个不同的圆锥,求这两个圆锥的侧面积;(2)以直线AB 为轴,把△ABC 旋转一周,求所得几何体的表面积.【解析】(1)∵∠C =90°,AC =6,BC =8, ∴AB =22AC BC +=10,∴以直线AC 为轴,把△ABC 旋转一周,得到的圆锥的侧面积=π×8×10=80π; 以直线BC 为轴,把△ABC 旋转一周,得到的圆锥的侧面积=π×6×10=60π; (2)如答图,过点C 作CD ⊥AB 于点D .∵12CD ·AB =12AC ·BC ,∴CD=6824=105,以直线AB为轴,把△ABC旋转一周,所得几何体是由以CD为底面半径的两个圆锥组成,则它的表面积=π×245×6+π×245×8=3365π.11.如图,一个圆锥的高为cm,侧面展开图是半圆.求:(1)圆锥的母线长与底面半径之比;(2)求∠BAC的度数;(3)圆锥的侧面积.。
中考真题测试题弧长与扇形面积(含答案)
弧长与扇形面积1. (2014•广西贺州)如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是()A.B.C.D.解答:解:连接OC,∵△ACE中,AC=2,AE=,CE=1,∴AE2+CE2=AC2,∴△ACE是直角三角形,即AE⊥CD,∵sinA==,∴∠A=30°,∴∠COE=60°,∴=sin∠COE,即=,解得OC=,∵AE⊥CD,∴=,∴===.故选B.2.(2014·台湾)如图,、、、均为以O点为圆心所画出的四个相异弧,其度数均为60°,且G在OA上,C、E在AG上,若AC=EG,OG=1,AG=2,则与两弧长的和为( )A.πB.4π3C.3π2D.8π5解:设AC=EG=a,CE=2﹣2a,CO=3﹣a,EO=1+a,+=2π(3﹣a)×60°360°+2π(1+a)×60°360°=π6(3﹣a+1+a)=4π3.故选B.3. (2014·浙江金华)一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为1,则扇形纸板和圆形纸板的面积比是【】A.5:4 B.5:2 C.5:2 D.5:2【答案】A.【解析】故选A.4.(2014年山东泰安)如图,半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A.(﹣1)cm2B.(+1)cm2C. 1cm2D.cm2解:∵扇形OAB的圆心角为90°,假设扇形半径为2,∴扇形面积为:=π(cm2),半圆面积为:×π×12=(cm2),∴S Q+S M=S M+S P=(cm2),∴S Q=S P,连接AB,OD,∵两半圆的直径相等,∴∠AOD=∠BOD=45°,∴S绿色=S△AOD=×2×1=1(cm2),∴阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色=π﹣﹣1=﹣1(cm2).故选:A.5. (2014•海南)一个圆锥的侧面展开图形是半径为8cm,圆心角为120°的扇形,则此圆锥的底面半径为()A.cm B.cm C.3cm D.cm解答:解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr=,r=cm.故选A.6. (2014•黑龙江龙东)一圆锥体形状的水晶饰品,母线长是10cm,底面圆的直径是5cm,点A为圆锥底面圆周上一点,从A点开始绕圆锥侧面缠一圈彩带回到A点,则彩带最少用多少厘米(接口处重合部分忽略不计)()A.10πcm B. 10cm C.5πcm D.5cm解答:解:由题意可得出:OA=OA′=10cm,==5π,解得:n=90°,∴∠AOA′=90°,∴AA′==10(cm),故选:B.7.(2014•莱芜)如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45°,点A旋转到A′的位置,则图中阴影部分的面积为()A.πB.2πC.D.4π解答:解:∵S阴影=S扇形ABA′+S半圆﹣S半圆=S扇形ABA′==2π,故选B.8.(2014•浙江绍兴)如图,圆锥的侧面展开图使半径为3,圆心角为90°的扇形,则该圆锥的底面周长为()A.πB.πC.D.解答:解:设底面圆的半径为r,则:2πr==π.∴r=,∴圆锥的底面周长为,故选B.9.(2014•浙江)如图,半径为6cm的⊙O中,C、D为直径AB的三等分点,点E、F分别在AB两侧的半圆上,∠BCE=∠BDF=60°,连接AE、BF,则图中两个阴影部分的面积和为 6cm2.6,故答案为6.10.(2014•广安)如图,在直角梯形ABCD中,∠ABC=90°,上底AD为,以对角线BD为直径的⊙O与CD切于点D,与BC交于点E,且∠ABD为30°.则图中阴影部分的面积为﹣π(不取近似值).解答:解:连接OE,过点O作OF⊥BE于点F.∵∠ABC=90°,AD=,∠ABD为30°,∴BD=2,∴AB=3,∵OB=OE,∴∠DBC=60°,∴OF=,∵CD为⊙O的切线,∴∠BDC=90°,∴∠C=30°,∴BC=4,S阴影=S梯形ABCD﹣S△ABD﹣S△OBE﹣S扇形ODE=﹣﹣﹣=﹣﹣﹣π=﹣π.故答案为﹣π.11.(2014•绵阳)如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(结果保留π)解答:解:如图所示:连接BO,CO,∵正六边形ABCDEF内接于⊙O,∴AB=BC=CO=1,∠ABC=120°,△OBC是等边三角形,∴CO∥AB,在△COW和△ABW中,∴△COW≌△ABW(AAS),∴图中阴影部分面积为:S扇形OBC==.故答案为:.12.(2014•重庆)如图,△OAB中,OA=OB=4,∠A=30°,AB与⊙O相切于点C,则图中阴影部分的面积为4﹣.(结果保留π)解答:解:连接OC,∵AB与圆O相切,∴OC⊥AB,∵OA=OB,∴∠AOC=∠BOC,∠A=∠B=30°,在Rt△AOC中,∠A=30°,OA=4,∴OC=OA=2,∠AOC=60°,∴∠AOB=120°,AC==2,即AB=2AC=4,则S阴影=S△AOB﹣S扇形=×4×2﹣=4﹣.故答案为:4﹣.13. (2014•黑龙江)如图,如果从半径为3cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径是 2 cm.第2题图解答:解:扇形的弧长为:=4πcm,圆锥的底面半径为:4π÷2π=2cm,故答案为:2.14. (2014•荆门)如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为.第3题图解答:解:连接AC,∵DC是⊙A的切线,∴AC⊥CD,又∵AB=AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CAD=∠ACB=45°,又∵AB=AC,∴∠ACB=∠B=45°,∴∠CAD=45°,∴∠CAD=45°,∵的长为,∴,解得:r=2,∴S阴影=S△ACD﹣S扇形ACD=.故答案为:.15.(2014•襄阳)如图,在正方形ABCD中,AD=2,E是AB的中点,将△BEC绕点B逆时针旋转90°后,点E落在CB的延长线上点F处,点C落在点A处.再将线段AF绕点F顺时针旋转90°得线段FG,连接EF,CG.(1)求证:EF∥CG;(2)求点C,点A在旋转过程中形成的,与线段CG所围成的阴影部分的面积.解答:(1)证明:在正方形ABCD中,AB=BC=AD=2,∠ABC=90°,∵△BEC绕点B逆时针旋转90°得到△ABF,∴△ABF≌△CBE,∴∠FAB=∠ECB,∠ABF=∠CBE=90°,AF=EC,∴∠AFB+∠FAB=90°,∵线段AF绕点F顺时针旋转90°得线段FG,∴∠AFB+∠CFG=∠AFG=90°,∴∠CFG=∠FAB=∠ECB,∴EC∥FG,∵AF=EC,AF=FG,∴EC=FG,∴四边形EFGC是平行四边形,∴EF∥CG;(2)解:∵AD=2,E是AB的中点,∴FE=BE=AB=×2=1,∴AF===,由平行四边形的性质,△FEC≌△CGF,∴S△FEC=S△CGF,∴S阴影=S扇形BAC+S△ABF+S△FGC﹣S扇形FAG,=+×2×1+×(1+2)×1﹣,=﹣.16.(2014·昆明)如图,在△ABC 中,∠ABC =90°,D 是边AC 上的一点,连接BD ,使∠A =2∠1,E 是BC 上的一点,以BE 为直径的⊙O 经过点D .(1)求证:AC 是⊙O 的切线;(2)若∠A =60°,⊙O 的半径为2,求阴影部分的面积.(结果保留根号和π)解答: (1)证明:如图,连接OD∵OD OB =, ∴21∠=∠, ∴∠12∠=DOC , ∵12∠=∠A , ∴DOC A ∠=∠,∠ABC =90°,90=∠+∠∴C A∴ 90=∠+∠CODC ,90=∠∴ODC∵OD 为半径, ∴AC 是⊙O 的切线; (2)解: 60=∠=∠DOCA ,2=OD∴在ODC Rt ∆中,ODDC=60tan323260tan =⨯== OD DC第22题图EOCBA1D∴323222121=⨯⨯=⋅=∆DC OD S ODC Rtπππ3236026036022=⨯⨯==r n S ODE扇形 π3232-=-=∴∆ODE ODC Rt S S S 扇形阴影17. (2014年钦州)如图,点B 、C 、D 都在半径为6的⊙O 上,过点C 作AC∥BD 交OB 的延长线于点A ,连接CD ,已知∠CDB=∠OBD=30°. (1)求证:AC 是⊙O 的切线; (2)求弦BD 的长;(3)求图中阴影部分的面积.解答:(1)证明:连接OC ,OC 交BD 于E ,∵∠CDB=30°, ∴∠COB=2∠CDB=60°, ∵∠CDB=∠OBD, ∴CD∥AB, 又∵AC∥BD,∴四边形ABDC 为平行四边形, ∴∠A=∠D=30°,∴∠OCA=180°﹣∠A﹣∠COB=90°,即OC⊥AC 又∵OC 是⊙O 的半径, ∴AC 是⊙O 的切线;(2)解:由(1)知,OC⊥AC. ∵AC∥BD, ∴OC⊥BD, ∴BE=DE,∵在直角△BEO 中,∠OBD=30°,OB=6,∴BE=OBcos30°=3,∴BD=2BE=6;(3)解:易证△OEB≌△CED,∴S阴影=S扇形BOC∴S阴影==6π.答:阴影部分的面积是6π.18.(2014•贵州)如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=2.(1)求证:AC是⊙O的切线;(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)第1题图解答:(1)证明:连接OC,交BD于E,∵∠B=30°,∠B=∠COD,∴∠COD=60°,∵∠A=30°,∴∠OCA=90°,即OC⊥AC,∴AC是⊙O的切线;(2)解:∵AC∥BD,∠OCA=90°,∴∠OED=∠OCA=90°,∴DE=BD=,∵sin∠COD=,∴OD=2,在Rt△ACO中,tan∠COA=,∴AC=2,∴S阴影=×2×2﹣=2﹣.19、(2013•雅安)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)解答:(1)证明:连接OD,∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;(2)解:在Rt△OBF中,∵∠ABD=30°,OF=1,∴∠BOF=60°,OB=2,BF=,∵OF⊥BD,∴BD=2BF=2,∠BOD=2∠BOF=120°,∴S阴影=S扇形OBD﹣S△BOD=﹣×2×1=π﹣.20、(2013•新疆)如图,已知⊙O的半径为4,CD是⊙O的直径,AC为⊙O的弦,B为CD延长线上的一点,∠ABC=30°,且AB=AC.(1)求证:AB为⊙O的切线;(2)求弦AC的长;(3)求图中阴影部分的面积.解答:(1)证明:如图,连接OA.∵AB=AC,∠ABC=30°,∴∠ABC=∠ACB=30°.∴∠AOB=2∠ACB=60°,∴在△ABO中,∠AOB=180°﹣∠ABO﹣∠AOB=90°,即AB⊥OA,又∵OA是⊙O的半径,∴AB为⊙O的切线;(2)解:如图,连接AD.∵CD是⊙O的直径,∴∠DAC=90°.∵由(1)知,∠ACB=30°,∴AD=CD=4,则根据勾股定理知AC==4,即弦AC的长是4;(3)解:由(2)知,在△ADC中,∠DAC=90°,AD=4,AC=4,则S△ABC=AD•AC=×4×4=8.∵点O是△ADC斜边上的中点,∴S△AOC=S△ABC=4.根据图示知,S阴影=S扇形ADO+S△AOC=+4=+4,即图中阴影部分的面积是+4.。
初三数学扇形和弧长练习题
初三数学扇形和弧长练习题1. 计算扇形的面积问题:一个半径为5cm的圆的一个扇形的圆心角为60度,求该扇形的面积。
解析:扇形的面积等于圆的面积乘以扇形的圆心角度数除以360度。
已知半径为5cm,圆心角为60度,代入公式可得:扇形面积 = 圆的面积 ×圆心角度数 / 360= π × 5^2 × 60 / 360= π × 25 × 60 / 360= π × 25 / 6≈ 13.09cm^2所以该扇形的面积约为13.09cm^2。
2. 计算弧长问题:一个圆的周长为10π cm,求圆的一段弧长。
解析:弧长等于圆的周长乘以弧所占圆周的比例。
已知圆的周长为10π cm,我们可以设所求弧长为x cm,代入公式可得:x / (10π) = 所求弧所占圆周的比例 = 弧长 / 圆的周长解得 x = 弧长= (10π) × 弧长 / 圆的周长= (10π) × 1 / 4π= 10 / 4= 2.5 cm所以该圆的一段弧长为2.5 cm。
3. 综合计算问题:一个半径为8cm的圆的两个扇形的圆心角分别为120度和60度,求这两个扇形的面积之和。
解析:根据第一题的解析,我们可以计算出两个扇形的面积,然后相加即可。
已知半径为8cm,圆心角分别为120度和60度,代入公式可得:第一个扇形的面积= π × 8^2 × 120 / 360= π × 64 × 120 / 360= π × 8 × 40= 320π cm^2第二个扇形的面积= π × 8^2 × 60 / 360= π × 64 × 60 / 360= π × 8 × 10= 80π cm^2两个扇形的面积之和 = 第一个扇形的面积 + 第二个扇形的面积= 320π + 80π= 400π cm^2所以这两个扇形的面积之和为400π cm^2。
人教版九年级数学上册《24.4 弧长和扇形面积》练习题-附参考答案
人教版九年级数学上册《24.4 弧长和扇形面积》练习题-附参考答案一、选择题1.已知圆心角为120°的扇形的弧长为6π,该扇形的面积为()A.12πB.21πC.27πD.36π2.如图,⊙O的半径为3,AB为弦,若∠ABC=30°,则AC⌢的长为()A.πB.1 C.1.5 D.1.5π3.如图,将边长为3的正方形铁丝框ABCD,变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ADB的面积为()A.3 B.6 C.9 D.3π4.如图,分别以等边三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若等边三角形边长为3cm,则该莱洛三角形的周长为()A.2πB.9 C.3πD.6π5.如图,四边形OABC为菱形,∠AOC=120°,点B、C在以点O为圆心的EF⌢上,若OA=1,∠1=∠2,则扇形OEF的面积为()A.π6B.π4C.π3D.2π36.如图,正方形ABCD的边长为2,O为对角线的交点,点E,F分别为BC,AD的中点.以C为圆心,BC为半径作圆弧BD,再分别以E,F为圆心,BE为半径作圆弧BO,OD,则图中阴影部分的面积为()A.π−1B.π−3C.π−2D.4−π7.如图,四边形ABCD是半径为2的⊙O的内接四边形,连接OA,OC.若∠AOC:∠ABC=4:3,则AC⌢的长为()A.35πB.45πC.65πD.85π8.如图,以矩形ABCD的顶点A为圆心,AD长为半径画弧交边BC于点E,E恰为边BC的中点,AD=4 √3则图中阴影部分的面积为()A.18√3−8πB.18√3−4πC.24√3−8πD.12√6−6π二、填空题9.一个扇形的半径是3cm,圆心角是60°,则此扇形的面积是cm2.10.如果一个扇形的弧长等于它所在圆的半径,那么此扇形叫做“完美扇形”.已知某个“完美扇形”的周长等于6,那么这个扇形的面积等于.11.如图,半径为2的⊙O与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD的长为.12.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,CD=2√3,则阴影部分的面积为.⌢围成的图13.已知:如图,半圆O的直径AB=12cm,点C,D是这个半圆的三等分点,则弦AC,AD和CD形(图中阴影部分)的面积S是.三、解答题14.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,BC=1,以B为圆心,BA为半径画弧交CB的延长线于点D,求弧AD的长15.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2 √3 ,BF=2,求阴影部分的面积(结果保留π).16.如图,内接于,交于点,交于点,交于点,连接,CF .(1)求证:;(2)若的半径为,求的长结果保留.17.如图,已知AB 是O 的直径,点C 在O 上,D 为O 外一点,且90ADC ∠=︒ 2180B DAB ∠+∠=︒.(1)试说明:直线CD 为O 的切线;(2)若30,2B AD ∠=︒=求阴影部分的面积.1.C2.A3.C4.C5.C6.C7.D8.Aπ9.3210.2π11.8512.2π313.6πcm214.解:∵在Rt△ABC中,∠C=90°,∠BAC=30°,BC=1 ∴AB=2BC=2,∠ABC=90°-∠BAC=60°∴∠ABD=180°-∠ABC=120°∴弧AD=故答案为.15.(1)解:BC与⊙O相切.理由如下:连接OD.∵AD是∠BAC的平分线∴∠BAD=∠CAD.∴∠OAD=∠ODA∴∠CAD=∠ODA∴OD ∥AC∴∠ODB=∠C=90°即OD ⊥BC .又∵BC 过半径OD 的外端点D∴BC 与⊙O 相切;(2)解:设OF=OD=x ,则OB=OF+BF=x+2. 根据勾股定理得: OB 2=OD 2+BD 2 即 (x +2)2=x 2+12 ,解得:x=2 即OD=OF=2∴OB=2+2=4.在Rt △ODB 中,∵OD= 12 OB∴∠B=30°∴∠DOB=60°∴S 扇形DOF = 60π×4360 = 2π3 ,则阴影部分的面积为S △ODB ﹣S 扇形DOF = 12×2×2√3−2π3 = 2√3−2π3 . 故阴影部分的面积为 2√3−2π3 . 16.(1)证明:四边形是平行四边形.(2)解:连接由得∴的长. 17.(1)解:如图,连接OC OB OC =OCB B ∴∠=∠2AOC OCB B B ∴∠=∠+∠=∠2180B DAB ∠+∠=︒180AOC DAB ∴∠+∠=︒.OC AD ∴∥90ADC ∠=︒18090OCD ADC ∴∠=︒-∠=︒即CD OC ⊥,又OC 是O 的半径 ∴直线CD 为O 的切线.(2)如图,连接AC ,作OE BC ⊥,垂足为E ,则2BC BE = 30B ∠=︒260AOC B ∴∠=∠=︒OA OC =OAC ∴是等边三角形60OCA ∴∠=︒906030ACD ∴∠=︒-︒=︒ 12AD AC ∴= 2AD =4AC ∴=,即O 的半径为4 OE BC ⊥BE CE ∴=30,4B OB ∠=︒=2OE ∴=22224223BE OB OE ∴=-=-= 43BC ∴=1432BOC S BC OE ∴=⋅⋅=△ 30,B OB OC ∠=︒=120BOC ∴∠=︒2OBC 12041643433603OBC S S S ππ⨯⨯∴=-=-=-阴影扇△.。
考点02 弧长与扇形面积公式(原卷版)
考点02 弧长与扇形面积公式1.(北京丰台区2020-2021学年七年级上学期期末数学试题)小华家要进行室内装修,设计师提供了如下四种图案的地砖,爸爸希望灰白两种颜色的地砖面积比例大致相同,那么下面最符合要求的是( ) A . B .C .D .2.(2020年海南省中考数学模拟试卷(一))如图,已知⊙O 的半径是2,点A 、B 、C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为( )A .23π﹣B .23πC .43π﹣ D .43π 3.(2020年山东省日照市中考数学二模试卷)如图,分别以正五边形ABCDE 的顶点A 、D 为圆心,以AB长为半径画BE 、CE .若AB =a ,则阴影部分图形的面积为( )(结果保留到0.01,参考:sin72°≈0.951,tan36°≈0.727)A .0.45a 2B .0.3a 2C .0.6a 2D .0.15a 24.(河南省商丘市永城市双语学校2020-2021学年九年级上学期期中数学试题)如图,在扇形AOB 中,90,AOB ∠=︒点C 为半径OA 的中点,以点О为圆心,OC 的长为半径作弧CD 交OB 于点D .点E 为弧AB 的中点,连接CE DE 、.若4OA =,则阴影部分的面积为____________.5.(2020年重庆市南岸区中考数学一诊试卷)如图,矩形ABCD 的对角线交于点O ,以点A 为圆心,AB 的长为半径画弧,刚好过点O ,以点D 为圆心,DO 的长为半径画弧,交AD 于点E ,若AC =2,则图中阴影部分的面积为_____.(结果保留π)6.(2020年河南省洛阳市中考数学一模试卷)如图,△ABC 中,AC =6,∠A =75°,将△ABC 绕点B 逆时针旋转得△DBE ,当点D 落在AC 上时,BE ∥AC ,则阴影部分的面积为_____.7.(黑龙江省齐齐哈尔市依安县2019-2020学年九年级上学期期末数学试题)关用纸板制作了一个圆锥模型,它的底面半径为1,高为,则这个圆锥的侧面积为_________.8.(2020年广东省珠海九中中考数学一模试卷)如图,在平面直角坐标系中,点A 的坐标为(3,0),点B 的坐标为(﹣3,0).过点B 的直线绕点B 逆时针方向旋转,过程中与y 轴交于点C .过点A 作AD ⊥BC 于点D,求在点C坐标由(0到(0,的过程中点D运动的路径长.9.(人教版浙江省台州市黄岩实验中学2019-2020学年九年级上学期期中数学试题)已知△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC绕点C按顺时针方向旋转90△后的△A′B′C′;(2)在(1)的条件下,求点A旋转到点A′所经过的路线长(结果保留π)10.(吉林省白山市临江2019-2020学年九年级上学期期末数学试题)将△ABC绕点B逆时针旋转到△A′BC′,使A、B、C′在同一直线上,若∠BCA=90°,∠BAC=30°,AB=4cm,求图中阴影部分的面积.。
中考数学专项复习《弧长及扇形面积》练习浙教版.doc
2019-2020 年中考数学专项复习《弧长及扇形的面积(3)》练习浙教版一、选择题1.如图,某数学兴趣小组将边长为 3 的正方形铁丝框ABCD变形为以 A 为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为()A2上的点 E 处,点°.若将BD绕点D 经过的路径,则图中阴影部分的面积是(B 旋转后,点)D落在DC延长线A D.﹣3.如图,直径AB 为12 的半圆,绕 A 点逆时针旋转60°,此时点 B 旋转到点B′,则图中阴影部分的面积是()πD. 36π的半径为2,圆心角为90°,连接 AB,则图中阴影部分的面积是()Aπ﹣ 4 C. 4π ﹣ 2 D. 4π﹣ 45 2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接,则阴影部分的面积为()A 2π﹣ 1 C.π ﹣ 1 D.π﹣ 26 ABCD的边长为2,∠ A=60°,以点 B 为圆心的圆与AD、 DC相切,与AB、 CB的延长线分别相交于点E、 F,则图中阴影部分的面积为().﹣D. 2+,圆心角为60°,则该扇形的半径为(2D. 3)8.如图,等腰直角△ABC中, AB=AC=8,以AB 为直径的半圆O交斜边BC于 D,则阴影部分面积为(结果保留π )()A32﹣ 4πC. 32﹣ 8πD. 169的一条直径AB与弦 CD相交于点E,且 AC=2, AE=,CE=1,则图中阴影部分的面积为()A10中, AB=5,AC=3,BC=4,将△ ABC绕点 A 逆时针旋转30°后得到△ ADE,点经过的路径为,则图中阴影部分的面积为().π4π,的长为π ,则图中阴影部分的面积为()A.π﹣ C .πD. 212.如图,在边长为6 的正方形ABCD中, E 是 AB的中点,以E 为圆心, ED为半径作半圆,交 A、B 所在的直线于M、N 两点,分别以直径M D、ND为直径作半圆,则阴影部分面积为()72圆心角为90°的扇形内,以 BC为直径作半圆交AB于点 D,连接 CD,Aπ﹣ 2C.π ﹣ 2D.π﹣ 1二、填空题14.已知扇形的圆心角为120°,所对的弧长为,则此扇形的面积是.15.一个扇形的半径为3cm,面积为π cm2,则此扇形的圆心角为度.16.如图,在等腰直角三角形ABC中,∠ ACB=90°, AB=4.以 A 为圆心, AC长为半径作弧,交 AB于点 D,则图中阴影部分的面积是.(结果保留π )172,2)、B( 2,1),将△ AOB绕着点 O逆时针旋转,使点A 旋转到点A′(﹣ 2, 2)的位置,则图中阴影部分的面积为.的正方形ABCD中,先以点 A 为圆心, AD 的长为半径画弧,再以AB长的一半为半径画弧,则两弧之间的阴影部分面积是(结果保留19 心,AOB中,∠ AOB=90°,点 C 为 OA的中点, CE⊥ OA交于点的长为半径作交OB于点 D.若 OA=2,则阴影部分的面积为.E,以点O为圆20.已知扇形的圆心角为21的直径120°,弧长为6π,则扇形的面积是.AE=4,点 B,C, D均在半圆上,若AB=BC, CD=DE,连接OB, OD,则图中阴影部分的面积为.22在平面直角坐标系中,点 A 的坐标(﹣ 2,0),△ ABO是直角三角形,∠AOB=60°.现将按顺时针方向旋转到Rt△A′B′O的位置,则此时边OB 扫过的面积为.23 A中, AB=3, AD=4,将矩形 ABCD绕点 D 顺时针旋转90°得到矩形经过的路径与BA,AC′, C′B′所围成封闭图形的面积是(结果保留24 C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC 90°的扇形OEF,弧EF 经过点C,则图中阴影部分的面积为.25ABCDEF为⊙ O 的内接正六边形,若⊙O 的半径为2,则阴影部分的面积为.26.如图,已知 C,D是以 AB为直径的半圆周上的两点,O是圆心,半径 OA=2,∠COD=120°,则图中阴影部分的面积等于.27.圆心角是60°且半径为28.如图, P 为⊙ O外一点,2 的扇形面积为(结果保留π ).PA, PB 是⊙ O 的切线, A, B 为切点, PA=,∠ P=60°,则图中阴影部分的面积为.平行四边形ABCD中, AB=AC=4,AB⊥ AC,O是对角线的交点,若⊙ O过A、C两点,则图中阴影部分的面积之和为.30.如图,四边形 ABCD是⊙ O的内接四边形,∠ ABC=2∠ D,连接 OA、OB、OC、AC,OB与AC 相交于点 E.(1)求∠ OCA的度数;(2)若∠ COB=3∠ AOB, OC=2,求图中阴影部分面积(结果保留π 和根号)。
(完整)弧长与扇形面积中考题汇编(含答案),推荐文档
1.(2016·四川资阳)在Rt △ABC 中,∠ACB=90°,AC=2,以点B 为圆心,BC 的长为半径作弧,交AB 于点D ,若点D 为AB 的中点,则阴影部分的面积是( )2.(2016·四川广安·3分)如图,AB 是圆O 的直径,弦CD ⊥AB ,∠BCD=30°,CD=4,则S 阴影=( )3.(2016·湖北鄂州)如图,扇形OAB 中,∠AOB=60°,OA =6cm ,则图中阴影部分的面积是 .4.2016·四川乐山·3分)如图8,在中,,以点为Rt ABC ∆90ACB ∠= AC =C 圆心,的长为半径画弧,与边交于点,将 绕点CB AB D A BD旋转后点与点恰好重合,则图中阴影部分的面积D 0180B A 为_____.图85.2016年浙江省宁波市)如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°影部分的面积为 .6.(2016·江苏苏州)如图,AB是⊙O的直径,AC是⊙O的弦,过点C交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为.图8图87. (2016·新疆)如图,在⊙O中,半径OA⊥OB,过点OA的中点C作FD∥OB交⊙O于D、F两点,且CD=,以O为圆心,OC为半径作,交OB于E点.(1)求⊙O的半径OA的长;(2)计算阴影部分的面积.1.【解答】解:∵D为AB的中点,∴BC=BD=AB,∴∠A=30°,∠B=60°.∵AC=2,∴BC=AC •tan30°=2•=2,∴S阴影=S △A B C ﹣S扇形C B D =×2×2﹣=2﹣π.2.【解答】解:如图,假设线段CD 、AB 交于点E ,∵AB 是⊙O 的直径,弦CD ⊥AB ,∴CE=ED=2,又∵∠BCD=30°,∴∠DOE=2∠BCD=60°,∠ODE=30°,∴OE=DE •cot60°=2×=2,OD=2OE=4,∴S 阴影=S 扇形ODB ﹣S △DOE +S △BEC =﹣OE ×DE+BE •CE=﹣2+2=.故选B .3.【解答】解:S 阴影=S 扇=π n R 2-S △AOB =π×60×62-×6×6×=6π-9.3601360121233故答案为:(6π-9)cm 2.3【点评】本题考查了求扇形的面积.要熟知不同条件下的扇形的面积的4.解析:依题意,有AD =BD ,又,所以,有90ACB ∠= CB =CD =BD ,即三角形BCD 为等边三角形∠BCD=∠B=60°,∠A=∠ACD=30°,由BC =2,AB =4,AC ==,BCD BD BCD S S S A 弓形扇形=-60423603ππ⨯-=-阴影部分面积为:=ACD AD S S S A 弓形=-23π(23π-5.【解答】解:∵弦CD ∥AB ,∴S △ACD =S △OCD ,∴S 阴影=S 扇形COD =•π•=×π×=.故答案为:.6.【考点】切线的性质;圆周角定理;扇形面积的计算.【分析】连接OC ,可求得△OCD 和扇形OCB 的面积,进而可求出图中阴影部分的面积.【解答】解:连接OC ,∵过点C 的切线交AB 的延长线于点D ,∴OC ⊥CD ,∴∠OCD=90°,即∠D+∠COD=90°,∵AO=CO ,∴∠A=∠ACO,∴∠COD=2∠A,∵∠A=∠D,∴∠COD=2∠D,∴3∠D=90°,∴∠D=30°,∴∠COD=60°∵CD=3,∴OC=3×=,∴阴影部分的面积=×3×﹣=,故答案为:.7.【解答】解;(1)连接OD,∵OA⊥OB,∴∠AOB=90°,∵CD∥OB,∴∠OCD=90°,在RT△OCD中,∵C是AO中点,CD=,∴OD=2CO,设OC=x,∴x2+()2=(2x)2,∴x=1,∴OD=2,∴⊙O的半径为2.(2)∵sin∠CDO==,∴∠CDO=30°,∵FD∥OB,∴∠DOB=∠ODC=30°,∴S圆=S△CDO+S扇形OBD﹣S扇形OCE=×+﹣=+.【点评】本题考查扇形面积、垂径定理、勾股定理、有一个角是30度的直角三角形的性质等知识,解题的关键是学会利用分割法求面积.学会把求不规则图形面积转化为求规则图形面积,属于中考常考题型.。
人教版 九年级数学上册 第24章 24.4弧长和扇形面积 专题练习(含答案)
人教版 九年级数学上册 第24章 24.4弧长和扇形面积 专题练习(含答案)基础巩固1.⊙的内接多边形周长为3 ,⊙的外切多边形周长为3.4, 则下列各数中与此圆的周长最接近的是( )AB. D2.如图已知扇形的半径为6cm ,圆心角的度数为,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为( )A .B .C .D .3.若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是A .40°B .80°C .120°D .150°4.艳军中学学术报告厅门的上沿是圆弧形,这条弧所在圆的半径为1.8 米,所对的圆心角为100°,则弧长是 米.(π≈3) 【参考答案】 1. C 2. D 3. C 4. 3O O 10AOB 120°24πcm 26πcm 29πcm 212πcm 120 BOA6cm能力提高 一、选择题1.如图,已知的半径,,则所对的弧的长为( ) A .B .C .D .2.将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为 ( )A .10cmB .30cmC .40cmD .300cm3.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是( ) A .1.5B .2C .3D .64.有30%圆周的一个扇形彩纸片,该扇形的半径为40cm ,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为( ).A.9°B.18°C.63°D.72°5.已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图所示),则sin θ的值为( )A.B. C. D. O ⊙6OA =90AOB ∠=°AOB ∠AB 2π3π6π12π125135131013126.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径高则这个圆锥漏斗的侧面积是( ) A . B . C . D .二、填空题1.,圆心角等于450的扇形AOB 内部作一个正方形CDEF ,使点C 在OA上,点D .E 在OB 上,点F 在上,则阴影部分的面积为(结果保留) .2.如图,方格纸中4个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为 (结果保留).3.将一块含30°角的三角尺绕较长直角边旋转一周得一圆锥,这个圆锥的高是3,则圆锥的侧面积是____.4.如图,三角板中,,,.三角板绕直角顶点逆时针旋转,当点的对应点落在边的起始位置上时即停止转动,则点转过的路径长为 .6cm OB =,8cm OC =.230cm 230cm π260cm π2120cm AB ππABC ︒=∠90ACB ︒=∠30B 6=BC C A 'A AB B 第2题图5.已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留).6.矩形ABCD的边AB =8,AD =6,现将矩形ABCD 放在直线l 上且沿着l 向右作无滑动地翻滚,当它翻滚至类似开始的位置时(如图所示),则顶点A 所经过的路线长是_________.7.已知在△ABC 中,AB=6,AC=8,∠A=90°,把Rt△ABC 绕直线AC 旋转一周得到一个圆锥,其表面积为,把Rt△ABC 绕直线AB 旋转一周得到另一个圆锥,其表面积为,则:等于_________ 三、解答题1.如图,有一个圆O 和两个正六边形,.的6个顶点都在圆周上,的6条边都和圆O 相切(我们称,分别为圆O 的内接正六边形和外切正六边形).(1)设,的边长分别为,,圆O 的半径为,求及的值; (2)求正六边形,的面积比的值.π1111A B C D 1S 2S 1S 2S 1T 2T 1T 2T 1T 2T 1T 2T a b r a r :b r :1T 2T 21:S SB 'A CAB 第4题2.如图,圆心角都是90º的扇形OAB 与扇形OCD 叠放在一起,连结AC ,BD .(1)求证:AC=BD ; (2)若图中阴影部分的面积是,OA=2cm ,求OC 的长.3.如图,已知菱形的边长为,两点在扇形的上,求的长度及扇形的面积.2 43cm ABCD 1.5cm B C ,AEF ABCBCD AEF【参考答案】 选择题 1. B 2. A3. C4. B5. A6. C 填空题 1.2. 3. 18π 4. 5. 6. 7. 2∶3 解答题1.解:(1)连接圆心O 和T 的6个顶点可得6个全等的正三角形 .所以r∶a=1∶1;连接圆心O 和T 相邻的两个顶点,得以圆O 半径为高的正三角形, 所以r∶b=∶2;(2) T ∶T 的连长比是∶2,所以S ∶S = . 2. (1)证明:2385-π∏83π22ππ24123123124:3):(2=b a(2)根据题意得:;∴ 解得:OC =1cm .3. 解:四边形是菱形且边长为1.5,.又两点在扇形的上,,是等边三角形..的长(cm )BDAC BOD AOC DO CO BO AB BOD AOC AODBOD AOD AOC COD AOB =⇒∆≅∆⇒⎪⎭⎪⎬⎫==∠=∠⇒∠+∠=∠+∠⇒∠∠ 900==360)(9036090360902222OC OA OC OA S -=-=πππ阴影360)2(904322OC -=ππABCD 1.5AB BC ∴==B C 、AEF 1.5AB BC AC ∴===ABC ∴△60BAC ∴∠=°21805.160ππ=∙=ππ835.122121=∙∙==lR S ABC 扇形)(2cm。
专题24.4 弧长和扇形面积讲练-2021年初中数学九年级上册同步讲练(教师版含解析)
专题24.4弧长和扇形面积典例体系(本专题共91题57页)一、知识点1.弧长和扇形面积的计算扇形的弧长l =180n r π;扇形的面积S =2360n r π=12lr 2.圆锥与侧面展开图(1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.(2)计算公式:S 侧=πrl ,S=πr(l+r)二、考点点拨与训练考点1:计算弧长典例:(2020·吉林长春·初三一模)如图,BC为⊙O直径,点A是⊙O上任意一点(不与点B、C重合),以BC、AB为邻边的平行四边形ABCD的顶点D在⊙O外.(1)当AD与⊙O相切时,求∠B的大小.(2)若⊙O的半径为2,BC=2AB,直接写出AC的长.【答案】(1)∠B=45°;(2)4 3【解析】解:(1)连接OA,如图1所示:∵AD与⊙O相切,∴AD⊥OA,∵四边形ABCD是平行四边形,∴AD∥BC,∴OA⊥BC,∵OA=OB,∴△OAB是等腰直角三角形,∴∠B=45°;(2)连接AC,如图2所示:∵BC 为⊙O 直径,∴∠BAC =90°,∵BC =2AB ,∴∠ACB =30°,∴∠B =60°,∴∠AOC =2∠B =120°,∴AC 的长为1202180π⋅⨯=43π.方法或规律点拨本题是与圆有关的综合题,涉及圆的基本性质、平行四边形的性质、切线性质、平行线的性质、等腰直角三角形的判定与性质、圆周角定理、弧长公式等知识,综合性强,难易适中,认真分析,寻找这些知识的关联点并灵活运用是解答的关键.巩固练习1.(2020·黄山市徽州区第二中学一模)如图,在Rt △ABC 中,以BC 的中点O 为圆心的⊙O 分别与AB ,AC 相切于D ,E 两点,DE 的长为()A .4πB .2πC .πD .2π【答案】B【解析】连接OE 、OD ,设半径为r ,∵⊙O 分别与AB ,AC 相切于D ,E 两点,∴OE ⊥AC ,OD ⊥AB ,∵O 是BC 的中点,∴OD 是中位线,∴OD=AE=12AC ,∴AC=2r ,同理可知:AB=2r ,∴AB=AC ,∴∠B=45°,∵∴由勾股定理可知AB=2,∴r=1,∴DE =901180π⨯=2π故选B2.(2020·辽宁龙城·一模)如图,菱形OABC 的边长为4,且点A 、B 、C 在⊙O 上,则劣弧BC 的长度为()A .3πB .23πC .83πD .43π【答案】D【解析】连接OB ,∵四边形OABC 是菱形,∴OC =BC =AB =OA =4,∴OC =OB =BC ,∴△OBC 是等边三角形,∴∠COB =60°,∴劣弧BC 的长为60441801803n r ππ⨯==π,故选:D .3.(2020·江苏镇江市索普初级中学月考)如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD 长为半径画弧,两弧交于点F,则BF的长为_____.【答案】8 15π【解析】连接CF,DF,则△CFD是等边三角形,∴∠FCD=60°,∵在正五边形ABCDE中,∠BCD=108°,∴∠BCF=48°,∴BF的长=4828 18015ππ⨯⨯=,故答案为815π.4.(2020·江苏南京·月考)如图,在66⨯的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点,作ABC的外接圆,则BC的长等于_____.【答案】5 2【解析】∵每个小方格都是边长为1的正方形,∴AB =2,AC ,BC ,∴AC 2+BC 2=AB 2,∴△ACB 为等腰直角三角形,∴∠A =∠B =45°,∴连接OC ,则∠COB =90°,∵OB =∴BC 的长为:90180π⋅=2故答案为:2.5.(2020·山西太原五中一模)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm ,则该莱洛三角形的周长为_____cm .【答案】6π【解析】利用弧长公式计算:该莱洛三角形的周长6063=6180⨯⨯=⨯ππ(cm)故答案为6π6.(2020·广东其他)如图,90MON ︒∠=,动线段AB 的端点A ,B 分别在射线,OM ON 上,点C 线段AB 的中点,点B 由点O 开始沿ON 方向运动,此时点A 向点O 运动,当点A 到达O 时,运动停止,若20AB cm =,则中点C 所经过的路径长是_______________.【答案】5πcm【解析】解:连接OC ,∵90MON ︒∠=,C 为AB 中点,∴OC=1102AB cm =,∴点C 所经过的路径为以O 为圆心,以OC 为半径的弧,且弧所对的圆心角为90°,∴中点C 所经过的路径长为90105180ππ=cm .故答案为:5πcm7.(2018·华中师范大学第一附属中学光谷分校月考)在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC 的三个顶点都在格点上.(1)画出△ABC 向上平移4个单位后的△A 1B 1C 1;(2)画出△ABC 绕点O 顺时旋转90°后的△A 2B 2C 2,并求出点A 旋转到A 2所经过的路线长.【答案】(1)见解析;(2)图见解析,π【解析】(1)如图所示,△A 1B 1C 1即为所求;(2)如图所示,△A 2B 2C 2即为所求;点A 旋转到A 2所经过的路线长为:2124ππ⨯=.8.(2020·山东滨州·月考)在正方形网格中,每个小正方形的边长都是1个单位长度,△ABC 在平面直角坐标系中的位置如图所示.(1)将△ABC 向右平移2个单位长度后得到的△A 1B 1C 1;则A 1坐标为______.(2)将△ABC 绕点O 顺时针旋转90°后得到的△A 2B 2C 2;则C 2坐标为______.(3)求在(2)的旋转变换中,点C 到达C 2的路径长(结果保留π).【答案】(1)详见解析,(2,5);(2)详见解析,(2,3);(3)132π【解析】解:(1)如图,△A 1B 1C 1即为所求.A 1(2,5).故答案为(2,5).(2)△A 2B 2C 2即为所求.则C 2(2,3).故答案为(2,3).(3)点C 的运动路径为9013131802ππ=.9.(2020·山东滨州·月考)如图,已知Rt △ABC ,∠ACB =90°,∠B =30°,AB =2,将Rt △ABC 绕点C 顺时针旋转,得到Rt △DEC ,使点A 的对应点D 恰好落在AB 边上.(1)求点A 旋转到点D 所经过的路线的长;(2)若点F 为AD 的中点,作射线CF ,将射线CF 绕点C 顺时针方向旋转90°,交DE 于点G ,求CG 的长.【答案】(1)点A 旋转到点D 所经过的路线的长为3π;(2)CG =1.【解析】(1)∵∠ACB =90°,∠B =30°,AB =2,∴AC =12AB =1,∠A =60°,∵CA =CD ,∴△ACD 是等边三角形,∴∠ACD =60°,∴点A 旋转到点D 所经过的路线的长=160180π⋅⋅=3π.(2)∵△ACD 是等边三角形,AF =FD ,∴∠ACF =∠FCD =∠DCB =30°,∵∠FCG =90°,∴∠DCG =60°,∵∠CDG =∠A =60°,∴△DCG 是等边三角形,∴CG =CD =AC =1.10.(2020·广西其他)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,ABC 的三个顶点坐标分别为(1,4)A ,(1,1)B ,(3,1)C .(1)画出ABC 关于x 轴对称的111A B C △;(2)画出ABC 绕点O 逆时针旋转90°后的222A B C △;(3)在(2)的条件下,点C 运动的路径对应的弧长为______(结果保留π).【答案】(1)△ABC 关于x 轴对称的△A 1B 1C 1如图所示;见解析;(2)△ABC 绕点O 逆时针旋转90°后的△A 2B 2C 2如图所示;见解析;(3)2.【解析】解:(1)△ABC 关于x 轴对称的△A 1B 1C 1如图所示:(2)△ABC 绕点O 逆时针旋转90°后的△A 2B 2C 2,如图所示:(3)∵OC 221+3=10,∴点C 经过路径长901010=1802π⋅.考点2:由弧长求扇形半径(圆心角)典例:(2020·扬州中学教育集团树人学校初三二模)如图,将等边△ABC 的边AC 逐渐变成以B 为圆心、BA 为半径的AC ,长度不变,AB 、BC 的长度也不变,则∠ABC 的度数大小由60°变为()A .(60π)°B .(90π)°C .(120π)°D .(180π)°【答案】D【解析】解:设∠ABC 的度数大小由60变为n ,则AC=180n AB π´,由AC=AB ,解得n=180π故选D .方法或规律点拨本题考查的是弧长的计算和等边三角形的性质,掌握弧长的计算公式l=180n r π是解题的关键.巩固练习1.(2019·乐清市英华学校月考)在⊙O 中,∠AOB=120°,弧AB 的长为8π,则⊙O 的半径是()A .6B .8C .12D .24【答案】C 【解析】解:由题意得:1208180180n r r l πππ===,解得:12r =;故选C .2.(2019·河北涿鹿·期末)起重机的滑轮装置如图所示,已知滑轮半径是10cm ,当物体向上提升3πcm 时,滑轮的一条半径OA 绕轴心旋转的角度为()A .54︒B .27︒C .60︒D .108︒【答案】A 【解析】解:设半径OA 绕轴心旋转的角度为n°根据题意可得103180n ππ⨯=解得n=54即半径OA 绕轴心旋转的角度为54°故选A .3.(2020·辽宁双台子·初三一模)一个扇形的弧长是π,半径是2,则此扇形的圆心角的度数是()A .80°B .90°C .100°D .120°【答案】B【解析】解:∵弧长是π,半径是2,∴2180n ππ=,解得:90n =︒故选:B .4.(2020·扬州市江都区国际学校初三三模)已知一个扇形的半径为6,弧长为2π,则这个扇形的圆心角为()A .60°B .30°C .90°D .120°【答案】A 【解析】解:∵180n rl π=∴1801802606l n r πππ⋅===°故选:A 5.(2020·浙江泰顺·初三二模)一段圆弧的半径是12,弧长是4π,则这段圆弧所对的圆心角是()A .60︒B .90︒C .120︒D .150︒【答案】A【解析】解:根据弧长公式有:4π=12180n π,解得:n =60.故选:A .6.(2020·安定区中华路中学三模)一个扇形的弧长是20cm π,面积是2240cm π,则这个扇形的圆心角是___度.【答案】150【解析】根据扇形的面积公式12S lr =可得:1240202r ππ=⨯,解得r =24cm ,再根据弧长公式20180n r l cm ππ==,解得150n =︒.故答案为:150.7.(2020·甘肃肃州·初三二模)已知一个扇形的弧长为2π,扇形的面积是4π,则它的半径为________.【答案】4【解析】解:由扇形的面积公式1=2S lr 可得:1422ππ=⨯⨯r ,解得4r =,故答案为4.8.(2020·哈尔滨市第四十七中学初三三模)已知扇形的半径为5,弧长为103π,那么这个扇形的圆心角为__________度.【答案】120【解析】解:扇形的半径为5,弧长为103π,设扇形的圆心角为n ,可得5101803n ππ⨯=,解得n=120.故答案为:120.9.(2020·黑龙江哈尔滨·初三二模)一个扇形的弧长为6π,面积为27π,则此扇形的圆心角为_______度.【答案】120【解析】解:设扇形圆心角度数为n ,半径为r ,∵弧长为6π,面积为27π,∴62360n r ππ=⨯,227360n r ππ=⨯,解得n=120,r=9,故答案为:12010.(2020·黑龙江哈尔滨·一模)已知扇形半径是9cm ,弧长为4cm π,则扇形的圆心角为__________度.【答案】80【解析】根据94180180n r n l πππ⨯===解得n=80故答案为:8011.(2020·全国单元测试)已知圆弧的半径为15厘米,圆弧的长度为10π,求圆心角的度数.【答案】120︒【解析】解:圆心角的度数1801801012015l n r πππ⨯===︒.考点3:图形中扇形和不规则图形面积计算典例:(2020·江苏东台·初三月考)如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 分别与BC ,AC 交于点D ,E ,过点D 作⊙O 的切线DF ,交AC 于点F .(1)求证:DF ⊥AC ;(2)若⊙O 的半径为4,∠C=67.5°,求阴影部分的面积.【答案】(1)详见解析;(2)S 阴影=4π﹣8.(1)证明:如图1,连接OD ,OB OD =,ABC ODB∴∠=∠AB AC∴=ABC ACB∴∠=∠ODB ACB∴∠=∠//OD AC∴DF 是O 的切线,DF OD∴⊥DF AC∴⊥(2)如图2,连接OE ,DF AC AB AC⊥=,67.5ABC C ∴∠=∠=︒45BAC ∴∠=︒OA OB=90AOE ∠=︒O 的半径为4,29041=44483602S ππ⨯∴-⨯⨯=-阴影方法或规律点拨本题考查切线的性质、等腰三角形的性质、扇形的面积等知识,是重要考点,难度较易,掌握相关知识是解题关键.1.(2019·阳江市江城区教育教学研究室二模)如图,AB 是O 的直径,弦CD AB ⊥,30CDB ∠=︒,CD =,则阴影部分图形的面积为()A .4πB .2πC .πD .23π【答案】D【解析】连接OD .∵CD ⊥AB ,∴12CE DE CD ===(垂径定理),∴S △OCE =S △ODE ,∴阴影部分的面积等于扇形OBD 的面积,又∵∠CDB=30°,∴∠COB=60°(圆周角定理),∴OC=2,∴260223603OBD S ππ⨯==扇形,∴阴影部分的面积为23π.故选:D .2.(2020·山东初三一模)如图,菱形ABCD 的边长为4,且AE BC ⊥,E 、F 、G 、H 分别为BC 、CD 、DA 、AB 的中点,以A 、B 、C 、D 四点为圆心,半径为2作圆,则图中阴影部分的面积是()A .34-πB .32πC .832-πD .34-π【答案】D 【解析】∵点E 为BC 的中点,且AE ⊥BC ,∴AB=AC ,∴AB=BC=AC ,∴∠B=60°,BE=EC=12BC=2,∴22224223AB BE -=-=,∴ABCD BC •AE 3S ==菱形,2AGH BEH CEF DGF S S 24S S ππ+++==扇形扇形扇形扇形,∴图中阴影部分的面积是:34π-.故选:D .3.(2020·厦门市翔安区教师进修学校(厦门市翔安区教育研究中心)其他)如图,在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为2时,则阴影部分的面积为()A .2π﹣4B .4π﹣8C .2π﹣8D .4π﹣4【答案】A【解析】如图,连接OC .∵C 是弧AB 的中点,∠AOB =90°,∴∠COB =45°,∵四边形CDEF 是正方形,且其边长为∴∠ODC =∴在Rt △ODC 中,,OC==4∴S 阴影=S 扇形OBC -S △ODC =2454360π⨯-12-4,故选A.4.(2020·广西西乡塘·期末)如图,阴影部分表示以直角三角形各边为直径的三个半圆所组成的两个新月形,已知S 1+S 2=12,且AC +BC =10,则AB 的长为()A .B .C .D .【答案】A 【解析】解:由勾股定理得,AC 2+BC 2=AB 2,∵S 1+S 2=12,∴12×π×22AC ⎛⎫ ⎪⎝⎭+12π×22BC ⎛⎫ ⎪⎝⎭+12AC ×BC ﹣12π×22AB ⎛⎫ ⎪⎝⎭=12,∴AC ×BC =24,AB ==故选:A .5.(2020·福建宁化·期中)如图,点A 、B 、C 是⊙O 上的点,且∠ACB=40°,阴影部分的面积为8π,则此扇形的半径为()A .3B .4C .5D .6【答案】D 【解析】由题意可知:∠AOB =2∠ACB =2×40°=80°,设扇形半径为r ,故阴影部分的面积为2808360r ππ=,故解得:16r =,26r =-(不合题意,舍去),故选D .6.(2020·湖北江岸·月考)如图,平行四边形ABCD 中8AB cm =,14BC cm =,以点B 为圆心AB 长为半径画弧交BC 于点E ,以点C 为圆心CD 长为半径画弧交BC 于点F ,三角形CDE 的面积为212cm ,阴影部分的面积为_____2cm .(π取3进行运算)【答案】40【解析】∵四边形ABCD 是平行四边形,∴AB=CD=8cm ,∠B+∠C=180°,∵三角形CDE 的面积为212cm ,∴平行四边形的面积为122146⨯⨯=562cm ,∵以点B 为圆心AB 长为半径画弧交BC 于点E ,以点C 为圆心CD 长为半径画弧交BC 于点F ,∴28360ABE B S π∠⋅⋅=扇形2cm ,28360CDF C S π∠⋅⋅=扇形2cm ,∴=()ABCD CDF ABE S S S S --阴影扇形扇形=ABCDABE CDF S S S +-扇形扇形=28360C π∠⋅⋅+28360B π∠⋅⋅﹣56=218038360⨯⨯﹣56=96-56=40(2cm ),故答案为:40.7.(2019·乐清市英华学校期中)如图,在扇形AOB 中,120AOB ︒∠=,半径OC 交弦AB 于点D ,且OC OA ⊥.若=OA _____.π+【解析】解:作OE AB ⊥于点F ,在扇形AOB 中,120AOB ︒∠=,半径OC 交弦AB 于点D ,且OC OA ⊥.=OA 90AOD ︒∴∠=,90BOC ︒∠=,OA OB =,30OAB OBA ︒∴∠=∠=,tan 3023OD OA ︒∴=⋅=⨯=,4=AD ,2262AB AF ==⨯=,OF =,2BD ∴=,∴阴影部分的面积是:2230223602AOD BDOOBC S S S ππ∆∆⨯⨯-++-==+扇形,π+.8.(2020·河南二模)如图,在Rt △ABC 中,∠B =90°,∠C =30°,BC B 为圆心,AB 为半径作弧交AC 于点E ,则图中阴影部分面积是______________.【答案】64π-【解析】连接BE ,∵在Rt ABC ∆中,90B ∠=︒,30C ∠=︒,3BC =;∴1AB =,60BAE ∠=︒;∵BA BE =;∴ABE ∆是等边三角形;∴图中阴影部分面积是:22601313360464ππ⨯⨯-=-.故答案为:364π-.9.(2020·高邮市外国语学校初中部月考)已知扇形的圆心角为150°,它的面积为240πcm 2,那么扇形的半径为__________.【答案】24cm .【解析】解:∵扇形的圆心角为150°,它的面积为240πcm2,∴设扇形的半径为:r ,则:240π=2150360r π⨯⨯解得:r=24cm .故答案为:24cm .10.(2020·丹阳市横塘初级中学月考)如图,三圆同心于O ,AB =6cm ,CD ⊥AB 于O ,则图中阴影部分的面积为________cm 2.【答案】94π【解析】解:阴影部分的面积2211694424r πππ⎛⎫=== ⎪⎝⎭故答案为:94π.11.(2020·山东济南·中考真题)如图,在正六边形ABCDEF 中,分别以C ,F 为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为_____.【答案】6【解析】解:∵正六边形的内角是120度,阴影部分的面积为24π,设正六边形的边长为r ,∴2120224360r ππ⨯⨯=,2224,3r ππ∴=236,r ∴=解得r =6.(负根舍去)则正六边形的边长为6.故答案为:6.12.(2020·福建省福州屏东中学二模)如图,在ABC 中,CA CB =,90ACB ∠=︒,2AB =,点D 为AB 的中点,以点D 为圆心作圆心角为90︒的扇形DEF ,点C 恰在弧EF 上,则图中阴影部分的面积为______【答案】142π-【解析】解:连接CD ,∵CA=CB ,∠ACB=90°,∴∠B=45°,∵点D 为AB 的中点,∴DC=12AB=BD=1,CD ⊥AB ,∠DCA=45°,∴∠CDH=∠BDG ,∠DCH=∠B ,在△DCH 和△DBG 中,CDH BDG CD BD DCH B ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DCH ≌△DBG(ASA),∴S 四边形DGCH =S △BDC =12S △ABC =12×12AB•CD=14×2×1=12.∴S 阴影=S 扇形DEF -S △BDC =2901360π⨯-12=4π-12.故答案为4π-12.13.(2020·广东二模)如图,四边形ABCD 是菱形,∠A =60°,AB =2,扇形EBF 的半径为2,圆心角为60°,则图中阴影部分的面积是_____.【答案】233π【解析】解:如图,连接BD.∵四边形ABCD 是菱形,∠A =60°,∴∠ADC =120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB =2,∴△ABD∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,234A AB BD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABG ≌△DBH(ASA),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF ﹣S △ABD=260212236023ππ⨯-⨯⨯=-.故答案是:23π-14.(2020·全国月考)如图,在扇形ABO 中,∠AOB =90°,C 是弧AB 的中点,若OD :OB =1:3,OA =3,则图中阴影部分的面积为_____.【答案】98π﹣4.【解析】解:连接OC ,过C 作CE OB ⊥于E ,90AOB ∠=︒Q ,C 是弧AB 的中点,45AOC BOC ∴∠=∠=︒,OCE ∴∆是等腰直角三角形,:1:3OD OB =,3OA =,232322CE ∴==,1OD =,∴图中阴影部分的面积245319136028CODCOB S S ππ∆⋅⨯=-=-⨯=-扇形,故答案为:984π-.15.(2020·广东其他)如图,四边形ABCD 和AEFG 都是正方形,点,E G 分别在,AB AD 上,点F 在扇形ADB 的DB 上,已知正方形ABCD 的边长为1,则图中阴影部分的面积为________________.【答案】3π24-【解析】解:如图,连接AF ,正方形ABCD 的边长为1,点F 在扇形ADB 的DB 上1,90AF AD A ︒∴==∠=四边形AEFG 为正方形,AE EF ∴=且2221AE EF AF +==,即221AE =,解得22AE =∴正方形ABCD 的面积为1,正方形AEFG 的面积为2221(22AE ==,扇形的面积为29013604ππ︒︒⋅⋅=∴阴影部分的面积=1314224ππ-+=-.16.(2020·江苏泰州·初三月考)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠BCD =30°,CD =,则阴影部分面积S 阴影=_____.【答案】23π【解析】解:连接OC .∵AB ⊥CD ,∴BC BD =,CE =DE ∴∠COD =∠BOD ,∵∠BOD =2∠BCD =60°,∴∠COB =60°,∵OC =OB =OD ,∴△OBC ,△OBD 都是等边三角形,∴OC =BC =BD =OD ,∴四边形OCBD 是菱形,∴OC//BD ,∴S △BDC =S △BOD ,∴S 阴=S 扇形OBD ,∵OD =sin 60ED ︒=2,∴S 阴=2602360π∙∙=23π,17.(2018·开江县中小学教学研究室一模)如图,小明自制一块乒乓球拍,正面是半径为8cm 的O ,AB 所对的圆心角的度数为90︒,弓形ACB (阴影部分)粘贴胶皮,则胶皮面积为_____________.(结果保留π)【答案】23248()cm π+【解析】连接OA 、OB ,∵∴∠AOB=90°,∴AOB S =188322⨯⨯=(2cm ),()236090848π360ACB S π-⨯==扇形(2cm ),则弓形ACB 胶皮面积为(3248π+)2cm .故答案为:(3248π+)2cm .18.(2020·西藏日喀则·一模)如图,折扇完全打开后,OA ,OB 的夹角为120°,OA 的长为18cm ,AC 的长为9cm ,求图中阴影部分的面积S .【答案】81πcm 2【解析】解:∵OA=18,AC=9,∴OC=OA-AC=9∴22120181209=1082781360360S πππππ⨯⨯-=-=阴影(cm 2)答:阴影部分的面积S 为81πcm 2.考点4:图形变换过程中形成的图象面积计算典例:(2020·江苏新沂·初三三模)(1)如图,在Rt △ABC 中,∠C =90°,∠A =30°,AB =2.将ABC 绕顶点A 顺时针方向旋转至AB C ''△的位置,点B ,A ,C '在同一条直线上,则线段BC 扫过的区域面积为.(2)①在ABC ,∠ACB=45°,∠ABC=30°,AB=4cm ,则BC=;②将ABC 绕点A 顺时针旋转120°得到AB C ''△,在旋转过程中求线段BC 所扫过的面积.【答案】(1)512π;(2)①(2cm +;②163π【解析】解:(1)Rt ABC △中,90C ∠=︒,30A ∠=︒,2AB =,112122BC AB ∴==⨯=,322AC =⨯=,150BAB ∴∠'=︒,()AC B ACB BAB CAB BAB CAB S S S S S S S ''''''∴=+-+=-△△阴影扇形扇形扇形扇形21502536012ππ⨯⨯=-.故答案为:512π.(2)①过点A 作AD BC ⊥,在Rt △ABD 中,30ABC ∠=︒,4cm AB =,∴3cm BD =,2cm AD =,在Rt ACD △中,45ACD ∠=︒,∴2cm CD AD ==,∴(23cm BC BD CD =+=+,故答案为:(23cm +;②(22221202212041202120216=3603603603603S πππππ⨯⨯⨯⨯-+-=阴.方法或规律点拨本题考查了旋转的性质,以及弧长的计算,扇形的面积的计算,(1)中推出扫过的面积等于两个扇形的面积的差是解题的关键.巩固练习1.(2020·广东宝安·初三三模)如图,Rt ABC △中,90ACB ∠=,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC 绕点B 顺时针旋转120到11A BC V 的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为()A .77π338B .47π338C .πD .4π33+【答案】C【解析】∵O 、H 分别为边AB ,AC 的中点,将△ABC 绕点B 顺时针旋转120°到△A 1BC 1的位置,∴△OBH ≌△O 1BH 1,利用勾股定理可求得BH=437+=,所以利用扇形面积公式可得()()2212012074360360BH BC πππ-⨯-==.故选C .2.(2020·全国课时练习)如图,在AOC ∆中,31OA cm OC cm =,=,将△AOC 绕点O 顺时针旋转90后得到BOD ∆,则AC 边在旋转过程中所扫过的图形的面积为()2cm .A .2πB .2πC .178πD .198π【答案】B【解析】解:AOC BOD ∆∆≌,∴阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积229039012360360πππ⋅⨯⋅⨯=-=故选B .3.(2020·北京海淀区101中学温泉校区初三三模)如图,将ABC 绕点C 按顺时针旋转60︒得到A B C ''V ,已知6AC =,4BC =,则线段AB 扫过的图形的面积为()A .23πB .83πC .6πD .103π【答案】D【解析】解:ABC ∆绕点C 旋转60︒得到△A B C '',ABC \D @△A B C '',ABC A B C S S D ⅱ\=V ,60BCB ACA ∠'=∠'=︒.AB Q 扫过的图形的面积ABC A B C ACA BCB S S S S D ⅱⅱ=+--V 扇形扇形,AB ∴扫过的图形的面积ACA BCB S S ⅱ=-扇形扇形,AB ∴扫过的图形的面积11103616663p p p =-=.故选:D .4.(2020·恩施市白果乡初级中学其他)有一张矩形纸片ABCD ,其中4=AD ,以AD 为直径的半圆,正好与对边BC 相切,如图(甲),将它沿DE 折叠,使A 点落在BC 上,如图(乙),这时,半圆还露在外面的部分(阴影部分)的面积是_______.【答案】433π【解析】如图,点O 为半圆的圆心,过点O 作作OH ⊥DK 于H ,∵以AD 为直径的半圆,正好与对边BC 相切,∴AD=2CD ,∵∠C=90º,∴∠DAC=30º,∴∠ODK=30º,∵OD=OK ,∴∠DOK=120º,∠ODK=∠OKD=30º∴扇形ODK 的面积为120443603ππ⨯=,∵∠ODK=∠OKD=30º,OD=2,∴OH=1,DH=KH==,∴DK=∴△ODK 的面积为112⨯⨯=∴半圆还露在外面的部分(阴影部分)的面积是4(3π,故答案为:4(3π.5.(2020·福建省福州延安中学初三期中)如图,在ABC 中90C ∠=︒,2AC BC ==,将ABC 以点A 为旋转中心,顺时针旋转30°,得到ADE ,点B 经过的路径为BD 点C 经过的路径为CE ,则图中阴影部分的面积为__________.【答案】π3【解析】由题意可得AB AD ===则阴影部分的面积为222230π(22)30π222π236036023ABC ADEABD ACE S S S S ∆∆⨯⨯⨯⨯+--=+--=扇形扇形6.(2019·广东潮州·其他)如图,C 为半圆内一点,O 为圆心,直径AB 长为2cm,60,90BOC BCO ︒︒∠=∠=,将BOC 绕圆心O 逆时针旋转至B OC ''△,点C '在OA 上,则边BC 扫过区域(图中阴影部分)的面积为_______2cm .(结果保留π).【答案】4π【解析】解:60BOC ∠=︒,△B OC ''是BOC ∆绕圆心O 逆时针旋转得到的,60B OC ∴∠''=︒,BCO ∆≅△B C O '',60B OC ∴∠'=︒,30C B O ∠''=︒,120B OB ∴∠'=︒,2AB cm =,1OB cm ∴=,12OC '=,32B C ∴''=,2120113603B OB S ππ'⨯∴==扇形,1120436012C OC S ππ'⨯==扇形,∴阴影部分面积113124B C O BCO B OB C OC B OB C OC S SS S S S πππ''∆''''=+--=-=-=扇形扇形扇形扇形;故答案为:14π.7.(2020·沭阳县怀文中学初三月考)如图,将四边形ABCD 绕点A 逆时针旋转30后得到四边形,AEFG 点D 经过的路径为弧DG .若6,AD =则图中阴影部分的面积为________________________.【答案】3π【解析】∵将四边形ABCD 绕点A 逆时针旋转30°后得到四边形AEFG ,∴S 四边形ABCD =S 四边形AGFE ,AG=AD=6,∴图中阴影部分的面积=S 扇形DAG =23063360ππ⨯=.故答案为:3π.8.(2020·广西兴业·初三其他)如图,C 为半圆内一点,O 为圆心,直径AB 长为2cm ,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B′OC′,点C′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为_________cm 2.【答案】4π【解析】解:∵∠BOC=60°,∠BCO=90°,∴∠OBC=30°,∴OC=12OB=1则边BC 扫过区域的面积为:22112012012=3603604πππ⎛⎫⨯ ⎪⨯⎝⎭-故答案为4π.9.(2020·山东中区·初三二模)如图,在△ABC 中,∠ABC =45°,∠ACB =30°,AB =2,将△ABC 绕点C 顺时针旋转60°得△CDE ,则图中线段AB 扫过的阴影部分的面积为_____.【答案】233【解析】作AF ⊥BC 于F ,∵∠ABC =45°,∴AF =BF =22AB在Rt △AFC 中,∠ACB =30°,∴AC =2AF =2,FC =tan ∠AF ACF =,由旋转的性质可知,S △ABC =S △EDC ,∴图中线段AB 扫过的阴影部分的面积=扇形DCB 的面积+△EDC 的面积﹣△ABC 的面积﹣扇形ACE 的面积=扇形DCB 的面积﹣扇形ACE 的面积=260360π⨯﹣260(22)360π⨯=3π,故答案为:3π.10.(2020·洛阳市第二外国语学校初三二模)如图1,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为_____.(答案用根号表示)【答案】6π﹣2【解析】连接OD ,∵扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,∴AC =OC ,OD =2OC =6,∴CD ==∴∠CDO =30°,∠COD =60°,∴由弧AD 、线段AC 和CD 所围成的图形的面积=S 扇形AOD ﹣S △COD =2606133602π⨯-⨯362π=-∴阴影部分的面积为6π﹣2,故答案为6π﹣2.11.(2020·江苏宿豫·初三期中)如图,在平面直角坐标系xOy 中,边长为4的正方形ABCD 的中心在原点O 处,且AB ∥x 轴,点P 在正方形ABCD 的边上,点P 从点A 处沿A→B→C→D→A→B→…匀速运动,以点P 为圆心,以1为半径长画圆,在运动过程中:(1)当⊙P 第1次与x 轴相切时,则圆心P 的坐标为;(直接写出结果)(2)当圆心P 的运动路程为2019时,判断⊙P 与y 轴的位置关系,并说明理由;(3)当⊙P 第一次回到出发的位置时,即⊙P 运动一周,求⊙P 运动一周覆盖平面的区域的面积.【答案】(1)(﹣2,1);(2)相切;理由见解析;(3)28+π.【解析】(1)∵边长为4的正方形ABCD 的中心在原点O 处,且AB ∥x 轴,∴A(2,2),B(-2,2),C(-2,-2),D(2,-2),∵当⊙P 第1次与x 轴相切时,圆心P 在正方形的BC 边上,且点P 到x 轴的距离为1,∴圆心P 的坐标为(﹣2,1),故答案为:(﹣2,1)(2)⊙P 与y 轴相切,理由:∵正方形ABCD 的边长为4,∴⊙P 运动一周时,圆心P 的运动路程为4×4=16,∵2019÷16=126……3,∴⊙P 运动了126周多,且AP =3,∴圆心P 在AB 上,∴圆心P 的坐标为(﹣1,2),∴圆心P 到y 轴的距离d =3-2=1,∵⊙P 的半径r =1,∴d =r ,∴⊙P 与y 轴相切;(3)如图,阴影部分面积S =4×6+1×4×2﹣2×2+29014360π⋅⨯=28+π,∴⊙P 运动一周覆盖平面的区域的面积为28+π.12.(2020·武汉市黄陂区第六中学初三其他)在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC 的三个顶点都在格点上.(1)画出△ABC 向上平移4个单位后的△A 1B 1C 1;(2)将△ABC 绕点O 顺时针旋转90°,则点A 所经过的路径长;线段AC 扫过的面积;(3)直接写出△ABC 的外接圆的半径.【答案】(1)见解析;(2)52π;254π;.【解析】解:如图:(1)△A 1B 1C 1即为所求;(2)将△ABC 绕点O 顺时针旋转90°,则点A 所经过的路径长为:905180π⨯=52π;线段AC 扫过的面积为:2905360π⨯=254π;故答案为:52π,254π;(3)△ABC 的外接圆的半径为:OC 2212+5513.(2020·黑龙江初三月考)如图,在边长为1的正方形组成的网格中,AOB ∆的顶点均在格点上,其中点()4,3A ,()1,3B ,将AOB ∆绕点O 逆时针旋转90︒后得到11A OB ∆.(1)画出11A OB ∆;(2)在旋转过程中点B 所经过的路径长为________;(3)求在旋转过程中线段AB 、BO 扫过的图形面积之和.【答案】(1)见解析;(2)52;(3)254π【解析】解:(1)11A OB ∆如图所示:(2)由勾股定理得,22125BO =+=,所以,点B 所经过的路程长90551802ππ⋅==;由勾股定理得:2243255OA =+==,∵AB 所扫过的面积11A OA B OB S S =-扇形扇形,BO 扫过的面积1=B OB S 扇形,∴线段AB 、BO 扫过的图形面积之和11112905253604A OA B OB B OB A OA ππS S S S ⋅⋅+====-扇形扇形扇形扇形.考点5:圆锥侧面积计算典例:(2020·西藏日喀则·一模)如图,已知用一块圆心角为270°的扇形铁皮做一个圆锥形的烟囱帽(接缝忽略不计),做成的烟囱帽底面圆直径是60cm ,则这个烟囱帽的侧面积是_________cm 2.【答案】1200π【解析】解:∵圆锥的底面直径为60cm ,∴圆锥的底面周长为60πcm ,∴扇形的弧长为60πcm ,设扇形的半径为r ,则270180r π=60π,解得:r=40cm ,∴这个烟囱帽的侧面积是12×60π×40=1200πcm 2故答案为:1200π.方法或规律点拨本题考查了圆锥的计算,解题的关键是首先求得圆锥的底面周长,利用圆锥的底面周长等于扇形的弧长求解.巩固练习1.(2020·黄山市徽州区第二中学一模)已知圆锥的底面积为9πcm 2,母线长为6cm ,则圆锥的侧面积是()A .18πcm 2B .27πcm 2C .18cm 2D .27cm 2【答案】A【解析】∵圆锥的底面积为9πcm 2,∴圆锥的底面半径为3,∵母线长为6cm ,∴侧面积为3×6π=18πcm 2,故选A ;2.(2020·江苏宿迁·二模)一个圆锥的主视图是边长为4cm 的正三角形,则这个圆锥的侧面积等于()A .216cm πB .212cm πC .28cm πD .24cm π【答案】C【解析】∵圆锥的主视图是边长为4cm 的正三角形,∴圆锥的母线长为4cm ,底面圆的半径为2cm ,故圆锥底面圆的周长为4πcm ,故圆锥侧面展开图的面积为S =12×4×4π=8π(cm 2).故选C.3.(2020·长沙麓山国际实验学校初三期末)在Rt △ABC 中,∠C=90°,AC=12,BC=5,将△ABC 绕边AC 所在直线旋转一周得到圆锥,则该圆锥的侧面积是A .25πB .65πC .90πD .130π【答案】B【解析】解:由已知得,母线长l=13,半径r 为5,∴圆锥的侧面积是s=πlr=13×5×π=65π.故选B .4.(2019·江苏金坛·初三期中)若将半径为12cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是()A .2cmB .3cmC .4cmD .6cm 【答案】D【解析】解:圆锥的侧面展开图的弧长为2π×12÷2=12π(cm ),∴圆锥的底面半径为12π÷2π=6(cm ),故选D .5.(2020·福建福州十八中三模)一个圆锥的底面半径4r =,高3h =,则这个圆锥的侧面积是__________________(结果取整数).【答案】63【解析】解:圆锥的母线长5=,所以这个圆锥的侧面积=12×2π×4×5=20π≈63.故答案为63.6.(2020·广西玉林·一模)已知某圆锥的底面半径为3cm,母线长6cm,则它的侧面展开图的面积为________.【答案】18πcm2【解析】底面半径为3cm,则底面周长=6πcm,侧面面积=12×6π×6=18πcm2.7.(2020·江苏南京·月考)一个圆锥的底面半径为3,高为4,则此圆锥的侧面积为_____.【答案】15π【解析】解:∵圆锥的底面半径为3,高为4,∴母线长为5,∴圆锥的侧面积为:πrl=π×3×5=15π,故答案为:15π8.(2020·江苏镇江·其他)已知圆锥的母线长为3,底面圆半径为2,则该圆锥的侧面积为_____.(结果保留π)【答案】6π【解析】解:圆锥的侧面积=12×3×2π×2=6π.故答案为:6π.9.(2020·江苏省泰兴市黄桥初级中学初三月考)圆锥的底面半径为1,母线长为3,则该圆锥侧面积为_________(结果保留π).【答案】3π【解析】解:圆锥的底面周长=2π×1=2π,即圆锥的侧面展开图扇形的弧长为2π,则圆锥侧面积=12×2π×3=3π,故答案为:3π.10.(2020·江苏泰州·初三月考)圆锥底面圆半径为5,母线长为6,则圆锥侧面积等于_____.【答案】30π【解析】解:圆锥侧面积=12×2π×5×6=30π.故答案为30π.11.(2020·浙江长兴·初三一模)如图是一个圆锥形雪糕冰激凌外壳(不计厚度),已知其母线长为12cm,底面圆半径为3cm.则这个冰激凌外壳的侧面积等于_______2cm.(结果保留 )【答案】36π【解析】这个冰激凌外壳的侧面积为()231236cmππ⨯⨯=,故答案为36π.考点6:有圆锥的侧面积求圆锥的母线等元素典例:(2019·广东郁南·初三月考)若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是()A .90°B .100°C .120°D .60°【答案】C【解析】设圆心角的度数是n 度.则6180n π⨯=4π,解得:n =120.故选C.方法或规律点拨本题考查扇形弧长公式.利用转化思想将圆锥的底面圆周长转化为圆锥侧面展开图扇形的弧长是解题的关键.巩固练习1.(2020·江苏泰州·初三月考)如图,正方形ABCD 的边长为4,以点A 为圆心,AD 为半径画圆弧DE 得到扇形DAE (阴影部分,点E 在对角线AC 上).若扇形DAE 正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A 2B .1C .22D .12【答案】D 【解析】∵正方形ABCD 的边长为4∴4AD AE ==∵AC 是正方形ABCD 的对角线∴45EAD ∠=︒∴454=180DE l ππ︒⨯⨯=︒∴圆锥底面周长为2C r ππ==,解得12r =∴该圆锥的底面圆的半径是12,故选:D .2.(2020·全国课时练习)若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图的扇形的圆心角为()A .120°B .180°C .240°D .300°【答案】B【解析】设母线长为R ,底面半径为r ,∴底面周长=2πr ,底面面积=πr 2,侧面面积=πrR ,∵侧面积是底面积的2倍,∴2πr 2=πrR ,∴R=2r ,设圆心角为n ,有180n R π=2πr=πR ,∴n=180°.故选B .3.(2020·山东岚山·初三期末)圆锥形纸帽的底面直径是18cm ,母线长为27cm ,则它的侧面展开图的圆心角为()A .60°B .90°C .120°D .150°【答案】C【解析】解:根据圆锥侧面展开图的面公式为:πrl=π×9×27=243π,∵展开图是扇形,扇形半径等于圆锥母线长度,∴扇形面积为:227243360n ππ⨯=解得:n=120.故选:C .考点7:圆锥的母线、底面半径等计算典例:(2020·绍兴市越城区成章中学期中)如图,在正方形网格图中建立平面直角坐标系,一条圆弧经过格点(0,4)A 、(4,4)B -、(6,2)C -,若该圆弧所在圆的圆心为D 点,请你利用网格图回答下列问题:。
九年级数学:弧长及扇形的面积练习(含答案)
九年级数学:弧长及扇形的面积练习(含答案)1.如果扇形的半径为r ,圆心角为n °,扇形的弧长为l ,那么扇形的面积S 扇形=________=________.2.求不规则图形的面积采用“割补法”、“等积变形法”、“平移法”、“旋转法”等,把不规则图形转化为规则图形求解.A 组 基础训练1.一条弧所对的圆心角为90°,半径为R ,则这条弧所对的扇形面积为( ) A.πR 2 B.πR 22 C.πR 4 D.πR 242.已知⊙O 的半径OA =6,扇形OAB 的面积等于12π,则AB ︵所对的圆周角的度数是( ) A .120° B .90° C .60° D .30° 3.已知圆心角为120°的扇形的面积为12π,则扇形的弧长为( )A .4B .2C .4πD .2π 4.(内江中考)如图,点A ,B ,C 在⊙O 上,若∠BAC =45°,OB =2,则图中阴影部分的面积为( )第4题图A .π-4 B.23π-1 C .π-2 D.23π-25.已知扇形的面积是24πcm 2,弧长是8πcm ,则扇形的半径是________cm.6.若面积相等的两个扇形的圆心角分别是60°和45°,则这两个扇形的半径之比为________.7.如图,分别以n 边形的顶点为圆心,以单位1为半径画圆,则图中阴影部分的面积之和为________个平方单位.第7题图8.(河北中考)如图,将长为8cm 的铁丝首尾相接围成半径为2cm 的扇形.则S 扇形=________cm 2.第8题图9.如图,一水平放置的圆柱形油桶的截面半径是R ,油面高为32R ,求截面上有油的弓形(阴影部分)的面积.第9题图10.如图,AB 为半圆O 的直径,C 、D 是AB ︵上的三等分点,若⊙O 的半径为2,E 是直径AB 上任意一点,求图中阴影部分的面积.第10题图B 组 自主提高8.在△ABC 中,∠C 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作弧BAC ︵,如图,若AB =4,AC =2,S 1-S 2=π4,则S 3-S 4的值是( )第11题图A.29π4 B.23π4 C.11π4 D.5π412.(咸宁中考)如图,在扇形OAB 中,∠AOB =90°,点C 是AB ︵上的一个动点(不与A ,B 重合),OD ⊥BC ,OE ⊥AC ,垂足分别为D ,E.若DE =1,则扇形OAB 的面积为________.第12题图13.如图,以正三角形ABC 的AB 边为直径画⊙O ,分别交AC ,BC 于点D ,E ,AB =6cm ,求DE ︵的长及阴影部分的面积.第13题图C组综合运用14.已知点P是正方形ABCD内的一点,连结PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P′CB的位置,如图所示.(1)设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中,边PA所扫过区域的面积;(2)若PA=2,PB=4,∠APB=135°,求PC的长.第14题图参考答案3.8 弧长及扇形的面积(第2课时)【课堂笔记】 1. n πr 2360 12lr【课时训练】 1-4. DCCC 5. 6 6. 3∶2 7. π 8. 49. 连结OA,OB.S 阴=S 扇形OAB 阴影+S △AOB ,∵∠AOB =120°,∴S 扇形OAB 阴影=240πR 2360,S △AOB =12×12R×3R,∴S 阴=23πR 2+34R 2.10. 连OC 、OD 、CD,∵AB 为半圆的直径,C 、D 为弧AB ︵的三等分点,∴∠AOC =∠COD=∠BOD =13×180°=60°,而OC =OD,∴△OCD 为等边三角形,∴∠OCD =60°,∴CD ∥AB,∴S △ECD =S △OCD ,∴阴影部分的面积=S 扇形OCD =60·πR 2360=16π·22=23π.11. D 12.π213. 连结OD,OE,AE,DE.第13题图∵△ABC 是等边三角形,AB 是直径,∴AE ⊥BC,BE =OB,∠B =60°,∴OE 平行且等于AD,OA =OE,∴四边形OADE 是菱形,∴∠DOE =∠AOD=∠OBE=60°,∵AB =6cm ,∴OD =OE =BE =3cm ,∴AE =62-32=33(cm ),∴△OBE 中底边BE 上的高以及△AOD 中底边OD 上的高都为:332cm ,∴弧DE 的长=60180π·3=π(cm ),S 阴影=S △OBE +S △AOD +S扇形ODE=12×3×332+12×3×332+60π·9360=(932+32π)cm 2. 14.(1)根据旋转变换,AP 扫过的面积为扇形BAC 与扇形BPP′的差,∴S =90πa 2360-90πb 2360=π4(a 2-b 2); (2)连结PP′,则PP′=BP 2+BP′2=42,∵BP =BP′,∠PBP ′=90°,∴∠BP ′P =45°,∵∠BP ′C =∠BPA=135°,∴∠PP ′C =90°,∴△PP ′C 是Rt △,∴PC =PP′2+P′C 2=6.。
初三弧长与扇形的面积练习题
初三弧长与扇形的面积练习题在初三数学学习中,初步接触到了弧长与扇形的概念。
弧长是指圆上一段弧所对应的圆周长度,而扇形是由圆心、圆上一点和圆上对应弧段围成的图形。
正因为这两个概念的重要性,我们需要更多的练习题来加深对它们的理解和运用。
本文将为大家提供一些关于初三弧长与扇形面积的练习题,希望能帮助大家巩固所学知识。
练习题1:已知一个圆的半径为5cm,求这个圆的弧长。
要求精确到小数点后两位。
解析:弧长的公式为L = πd 或L = 2πr,其中π 可以取近似值3.14,d 为直径,r 为半径。
根据题目条件可知,该圆的半径为5cm,则直径为2 × 5 = 10cm。
代入公式L = πd 可得 L = 3.14 × 10 = 31.4cm(精确到小数点后两位)。
练习题2:已知一个圆的直径为8cm,求这个圆的弧长。
要求精确到小数点后三位。
解析:利用弧长的公式L = πd 或L = 2πr,其中π 可以取近似值3.14,d 为直径,r 为半径。
根据题目条件可知,该圆的直径为8cm,则半径为8 ÷ 2 = 4cm。
代入公式L = 2πr 可得 L = 2 × 3.14 × 4 = 25.12cm(精确到小数点后两位)。
练习题3:已知一个弧长为12.56cm,半径为4cm的扇形,求该扇形的圆心角。
要求结果精确到整数度。
解析:圆心角与弧长之间的关系为L = rθ,其中 L 为弧长,r 为半径,θ 为圆心角。
已知弧长为12.56cm,半径为4cm,代入公式可得12.56 = 4θ。
解方程得θ ≈ 3.14(精确到小数点后两位)。
将弧度转换为角度,即θ ≈ 3.14 × 180°/π ≈ 179°(精确到整数度)。
练习题4:已知一个扇形的半径为6cm,圆心角为120°,求这个扇形的面积。
要求精确到小数点后两位。
解析:扇形的面积公式为S = 1/2r²θ,其中 r 为半径,θ 为圆心角。
中考数学模拟试卷精选汇编:弧长与扇形面积附答案
弧长与扇形面积一.选择题1.(2015·江苏江阴长泾片·期中)已知圆锥的底面半径为4cm ,高为3cm ,则圆锥的侧面积是 ( )A .20 cm 2B .20兀cm 2C .12兀cm 2D .10兀cm 2 答案:B2.(2015·江苏江阴青阳片·期中)圆锥的底面半径为2,母线长为4,则它的侧面积为 ( ▲ ) A .8π B .π12C .43πD .4π答案:A3.(2015·江苏江阴夏港中学·期中)一个圆锥底面直径为2,母线为4,则它的侧面积为( ) A .2π B .12πC . 4πD .8π答案:C4.(2015·江苏江阴要塞片·一模)圆锥的底面半径为2,母线长为4,则它的侧面积为 ( ▲ )A .4πB .8πC .16πD .43π答案:B5. (2015·湖南永州·三模)如图,以AD 为直径的半圆O 经过Rt △ABC 的斜边AB 的两个端点,交直角边AC 于点E .B 、E 是半圆弧的三等分点,弧BE 的长为32π,则图中阴影部分的面积为( )A .9π B .93πC .2323π−D .32233π−答案:D 解析:连接OB .OE 、BE ,,因为B .E 是半圆弧的三等分点,所以∠BOE =60°,根据同底等高的三角形面积相等可知△OBE 和△ABE 的面积相等,所以阴影部分的面积等于△ABC 减去扇形OBE 的面积.因为弧BE的长为32π,设半圆的半径为r ,根据弧长公式1806032r ⨯⨯=ππ,解得r =2,323221OBE 2ππ=⨯⨯=扇形S .根据圆周角的性质可知,∠DAB =∠EAB =30°,连接BD ,则△ABD 是直角三角形,AD =2r =4,cos ∠DAB =ADAB ,AB 在Rt △ABC 中,得BC 由正切计算得AC =3,所以S △ABC所以阴影面积32π.6. (2015•山东滕州张汪中学•质量检测二)用圆心角为120°,半径为6cm 的扇形纸片卷成一个圆锥形无底纸帽(如图1所示),则这个纸帽的高是( )A .2cmB .32cmC .42cmD . 4cm答案:C ;7. (2015·江西省·中等学校招生考试数学模拟)如图所示,正三角形ABC 中,边AC 渐变成»AC ,其它两边长度不变,则ABC Ð的度数的大小由60 变为( ) A . 180p B . 120p C . 90p D . 60p答案:选A .命题思路:考查弧长的计算公式的运用8. (2015·山东省枣庄市齐村中学二模)已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为( ) A .2.5B .5C .10D .15答案:C9. (2015•山东济南•模拟)扇形的半径为30cm ,圆心角为120°,此扇形的弧长是A .20πcmB .10πcmC .10 cmD .20 cm 答案:A10. (2015·江苏无锡北塘区·一模)已知圆柱的底面半径为2cm ,高为4cm ,则圆柱的侧面积是( ▲ )A .16 cm 2B .16π cm 2C .8π cm 2D .4π cm 2 答案: B11. (2015·无锡市宜兴市洑东中学·一模)圆锥的底面半径为2,母线长为4,则它的侧面积为 ( ▲ )A .4πB .8πC .16πD .43π答案:B12.(2015·锡山区·期中)一个圆锥形的圣诞帽底面半径为12cm ,母线长为13cm ,则圣诞帽的表面积为(▲)A .312π2cm B .156π2cm C .78π2cm D .60π2cm 答案:B二.填空题1. (2015·江苏高邮·一模)半径为6 cm ,圆心角为120°的扇形的面积为 ▲ . 答案:12π2. (2015·江苏高邮·一模)如图,已知正方形ABCD 的顶点A 、B 在⊙O 上,顶点C 、D 在⊙O 内,将正方形ABCD 绕点逆时针旋转,使点D 落在⊙O 上.若正方形ABCD 的边长和⊙O 的半径均为6 cm ,则点D 运动的路径长为 ▲ cm .答案:π;3. (2015·江苏常州·一模)若扇形的半径为3cm ,扇形的面积为2π2cm ,则该扇形的圆心角为 ▲ °,弧长为 ▲ cm . 答案:80,34π 4. (2015·吉林长春·二模)答案:π5.(2015·江苏江阴·3月月考)如图,AB 、CD 是⊙O 的两条互相垂直的直径,点O 1、O 2、O 3、O 4分别OA 、OB 、OC 、OD 的中点,若⊙O 的半径是2,则阴影部分的面积为____________________.A BCD答案:86.(2015·江苏江阴要塞片·一模)如图,正△ABC 的边长为9cm ,边长为3cm 的正△RPQ 的顶点R 与点A 重合,点P ,Q 分别在AC ,AB 上,将△RPQ 沿着边AB ,BC ,CA 连续翻转(如图所示),直至点P 第一次回到原来的位置,则点P 运动路径的长为____▲____cm .(结果保留π)答案:6π7.( 2015·广东广州·二模)如图5,菱形ABCD 的边长为2,∠ADC =120°,弧CD 是以 点B 为圆心BC 长为半径的弧.则图中阴影部分的面积为 ▲ (结 果保留π). 答案:23π8.(2015•山东滕州东沙河中学•二模)若一个圆锥的轴截面是一个腰长为6 cm ,底边长为2 cm 的等腰三角形,则这个圆锥的表面积为____cm 2. 答案:7π;9.(2015•山东滕州羊庄中学•4月模拟)已知扇形的弧长为3πcm ,面积为3πcm 2,扇形的半径是 cm .答案:2;10. (2015·网上阅卷适应性测试)将一个圆心角为120°,半径为6cm 的扇形围成一个圆锥的侧面,则所得圆锥的高为 ▲ cm .答案:42第1题图(图5)11. ( 2015·呼和浩特市初三年级质量普查调研)已知圆锥的母线长度为8,其侧面展开图的半圆,则这个圆锥的高为_____________. 答案:4312. (2015·辽宁盘锦市一模)在半径为2的圆中,弦AB 的长为2, 则弧的长等于答案:32π 13.(2015·辽宁东港市黑沟学校一模,3分)已知圆锥底面圆的半径为6cm ,它的侧面积为60πcm 2,则这个圆锥的高是____________cm . 答案: 814.(2015·山东省东营区实验学校一模)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将 Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为BD ︵,则图中阴影部分的面积是____.答案:π615.(2015·广东中山·4月调研)如图,在△ABC中,CA=CB ,∠ACB =90°,AB =2,点D 为AB 的中点,以点D 为圆心作圆心角为90°的扇形DEF ,点C 恰在弧EF 上,则图中阴影部分的面积为 _________ .答案:214−π16.(2015·山东枣庄·二模)如图,△ABC 是边长为2的等边三角形,D 为AB 边的中点,以CD 为直径画圆,则图中影阴部分的面积为____________(结果保留π).答案:5384π− 17. (2015•山东青岛•模拟)如图,在等腰直角三角形ABC 中,AB =BC =2 cm ,以直角顶点B 为圆心,AB 长为半径画弧,再以AC 为直径画弧,两弧之间形成阴影部分.阴影部分面积为 cm 2. 答案:218. (2015•山东济南•一模)图①所示的正方体木块棱长为6cm ,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A 爬行到顶点B 的最短距离为____________cm . 答案:(3+3)19.(2015·江苏扬州宝应县·一模)如图,小正方形的边长均为1,扇形OAB 是某圆锥的侧面展开图,则这个圆锥的底面周长为 ▲ .(结果保留π)答案:2π20.(2015·江苏南京溧水区·一模)圆锥的底面直径是6,母线长为5,则圆锥侧面展开图的圆心角是 ▲ 度. 答案: 216;21.(2015·江苏无锡崇安区·一模)已知扇形的圆心角为120º,半径为6cm ,则扇形的弧长为 ▲ cm.(第16题)AOB答案: 4π22.(2015·无锡市南长区·一模)一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积...是 . 答案:3π23.(2015·无锡市宜兴市洑东中学·一模)若一个圆锥底面圆的半径为3,高为4,则这个圆锥的侧面积为 . 答案:15π24.(2015·无锡市新区·期中)已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是 ▲ . 答案:10πcm 225.(2015·无锡市新区·期中)如图,扇形OMN 与正三角形ABC ,半径OM 与AB 重合,扇形弧MN 的长为AB 的长,已知AB =10,扇形沿着正三角形翻滚到首次与起始位置相同,则点O 经过的路径长 ▲ .答案:37010π+三.解答题 1.(2015·江苏江阴·3月月考)如图四边形ABCD 中,已知∠A =∠C =30°,∠D =60°,AD =8,CD =10.(1)求AB 、BC 的长(2)已知,半径为1的⊙P 在四边形ABCD 的外面沿各边滚动(无滑动)一周,求⊙P 在整个滚动过程中所覆盖部分图形的面积.答案:解:(1)AB =23BC =43ABCABCP(2)在⊙P 的整个滚动过程中,圆心P 的运动路径长为18+167333π+; 所以⊙P 在整个滚动过程中,所覆盖部分图形的面积为36+3214333π+;2.(2015·江苏江阴长泾片·期中)如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个底角为60°.等边△ABC 的边长为1,它的一边AC 在MN 上,且顶点A 与M 重合.现将等边△ABC 在梯形的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶点与Q 重合即停止滚动.(1)请在所给的图中,画出顶点A 在等边△ABC 整个翻滚过程中所经过的路线图; (2)求等边△ABC 在整个翻滚过程中顶点A 所经过的路径长; 答案: 解:(1)如右图所示:……………………………3分 (2)点A 所经过的路线长π311……………………………6分3.(2015·邗江区·初三适应性训练)如图,⊙O 是△ABC 的外接圆,AB 是直径,作OD ∥BC 与过点A 的切线交于点D ,连接DC 并延长交AB 的延长线于点E . (1)求证:DE 是⊙O 的切线;(2)若AE =6,CE =32,求线段CE 、BE 与劣弧BC 所围成的图形面积.(结果保留根号和π)答案:解:(1)连结OC ,证得∠AOD =∠COD ;证得△AOD ≌△COD (SAS ); 第3题证得∠OCD =∠OAD =90°; 则DE 是⊙O 的切线.(2)设半径为r ,在Rt △OCE 中,OC 2+CE 2=OE 2()()22236r r ∴+=−2,解得2r =.︒=∠∴=∠60,3tan COE COE π32=∴COB S 扇形∴所求图形面积为π3232−=−∆COB COE S S 扇形4. (2015·辽宁东港市黑沟学校一模,12分)如图,⊙O 是△ACD 的外接圆,AB 是直径,过点D 作直线DE ∥AB ,过点B 作直线BE ∥AD ,两直线交于点E ,如果∠ACD =45°,⊙O 的半径是4cm(1)请判断DE 与⊙O 的位置关系,并说明理由; (2)求图中阴影部分的面积(结果用π表示).解:(1)DE 与⊙O 相切.理由如下: 连结OD ,则∠ABD =∠ACD =45°, ∵AB 是直径, ∴∠ADB =90°,∴△ADB 为等腰直角三角形, 而点O 为AB 的中点, ∴OD ⊥AB , ∵DE ∥AB , ∴OD ⊥DE , ∴DE 为⊙O 的切线; (2)∵BE ∥AD ,DE ∥AB , ∴四边形ABED 为平行四边形,∴DE=AB=8cm,∴S阴影部分=S梯形BODE﹣S扇形OBD=(4+8)×4﹣=(24﹣4π)cm2.5.(2015·山东省济南市商河县一模)(本小题满分4分)如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA.求:劣弧BC的长.(结果保留π)解:连接OC,OB,∵AB为圆O的切线,∴∠ABO=90°,------------------------------------1分在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°,----------------------------2分∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC为等边三角形,∴∠BOC=60°------------------------------------------------3分∴劣弧长为=π.----------------------------------------4分6. (2015·广东从化·一模)(本小题满分12分某公园管理人员在巡视公园时,发现有一条圆柱形的输水管道破裂,通知维修人员到场检测,维修员画出水平放置的破裂管道有水部分的截面图(如图9).(1)请你帮忙补全这个输水管道的圆形截面(不写作法,但应保留作图痕迹);12cm,水面最深地方的高度为(2)维修员量得这个输水管道有水部分的水面宽AB=36cm,请你求出这个圆形截面的半径r及破裂管道有水部分的截面图的面积S。
初三弧长和扇形面积练习题
初三弧长和扇形面积练习题(本文按照练习题的形式进行排版,分为三个部分:选择题、填空题和解答题)练习题一:初三弧长和扇形面积选择题1. 已知圆半径为6cm,弧长为12πcm,则弧度为多少?A. π/2B. πC. 2πD. 3π2. 若扇形的半径为10cm,弧长为8cm,则扇形的圆心角为多少度?A. 36B. 45C. 90D. 1803. 扇形的圆心角为60度,半径为7cm,求扇形的面积是多少?A. 14πB. 21πC. 28πD. 42π4. 在一个半径为5cm的圆中,扇形的面积是圆心角的3倍,求扇形的弧长是多少?A. 10πB. 12πC. 15πD. 20π练习题二:初三弧长和扇形面积填空题1. 已知半径为8cm的圆,一个扇形的圆心角为120度,则扇形的弧长为\_\_\_\_\_cm。
2. 在一个圆中,扇形的面积是12πcm²,圆心角是60度,则半径为\_\_\_\_\_cm。
3. 半径为6cm的圆中,扇形的面积与圆心角的比值为1:4,扇形的弧长为\_\_\_\_\_cm。
4. 若扇形的半径为5cm,弧长为10πcm,则扇形的面积为\_\_\_\_\_cm²。
练习题三:初三弧长和扇形面积解答题1. 解:根据已知条件,半径为6cm,弧长为12πcm。
弧度 = 弧长 / 半径= (12π)cm / 6cm = 2π弧度。
因此,答案为C. 2π。
2. 解:已知扇形的半径为10cm,弧长为8cm。
圆心角 = 弧长 / 半径 = 8cm / 10cm = 0.8弧度。
360度= 2π弧度,所以圆心角≈ 0.8 * 360 ≈ 288度。
因此,答案为D. 180。
3. 解:已知扇形的圆心角为60度,半径为7cm。
扇形的面积 = 圆心角 / 360度* π * 半径² = 60度 / 360度* π *(7cm)² ≈ π * 7² ≈ 49πcm²。
弧长与扇形面积中考题(带答案解析)
弧长与扇形面积一、选择题1.(2016·湖北十堰)如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.10cm D.20cm【考点】圆锥的计算.【分析】根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长,设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到r,然后利用勾股定理计算出圆锥的高.【解答】解:过O作OE⊥AB于E,∵OA=OD=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm,∴弧CD的长==20π,设圆锥的底面圆的半径为r,则2πr=20π,解得r=10,∴圆锥的高==20.故选D.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.2. (2016兰州,12,4分)如图,用一个半径为5cm 的定滑轮带动重物上升,滑轮上一点P 旋转了108º,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了()(A)πcm (B) 2πcm(C) 3πcm (D) 5πcm【答案】:C 【解析】:利用弧长公式即可求解 【考点】:有关圆的计算3.(2016福州,16,4分)如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为r下,则r 上 = r 下.(填“<”“=”“<”)【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可. 【解答】解:如图,r 上=r 下.故答案为=.【点评】本题考查了弧长公式:圆周长公式:C=2πR (2)弧长公式:l=(弧长为l ,圆心角度数为n ,圆的半径为R );正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.4. (2016·四川资阳)在Rt △ABC 中,△ACB=90°,AC=2,以点B 为圆心,BC 的长为半径作弧,交AB 于点D ,若点D 为AB 的中点,则阴影部分的面积是( )A.2﹣π B.4﹣π C.2﹣π D.π【考点】扇形面积的计算.【分析】根据点D为AB的中点可知BC=BD=AB,故可得出△A=30°,△B=60°,再由锐角三角函数的定义求出BC的长,根据S阴影=S△A B C﹣S扇形C B D即可得出结论.【解答】解:△D为AB的中点,△BC=BD=AB,△△A=30°,△B=60°.△AC=2,△BC=AC•tan30°=2•=2,△S阴影=S△AB C﹣S扇形C B D=×2×2﹣=2﹣π.故选A.5. (2016·四川自贡)圆锥的底面半径为4cm,高为5cm,则它的表面积为()A.12πcm2B.26πcm2C.πcm2 D.(4+16)πcm2【考点】圆锥的计算.【专题】压轴题.【分析】利用勾股定理求得圆锥的母线长,则圆锥表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【解答】解:底面半径为4cm,则底面周长=8πcm,底面面积=16πcm2;由勾股定理得,母线长=cm,圆锥的侧面面积=×8π×=4πcm2,∴它的表面积=16π+4π=(4+16)πcm2,故选D.【点评】本题利用了勾股定理,圆的周长公式和扇形面积公式求解.6.(2016·四川广安·3分)如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=()A.2πB.πC.πD.π【考点】圆周角定理;垂径定理;扇形面积的计算.【分析】根据垂径定理求得CE=ED=2,然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD 、OE 的长度,最后将相关线段的长度代入S 阴影=S 扇形ODB ﹣S △DOE +S △BEC .【解答】解:如图,假设线段CD 、AB 交于点E , ∵AB 是⊙O 的直径,弦CD ⊥AB , ∴CE=ED=2, 又∵∠BCD=30°,∴∠DOE=2∠BCD=60°,∠ODE=30°, ∴OE=DE •cot60°=2×=2,OD=2OE=4,∴S 阴影=S 扇形ODB ﹣S △DOE +S △BEC =﹣OE ×DE+BE •CE=﹣2+2=.故选B .7. (2016吉林长春,7,3分)如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,若OA=2,∠P=60°,则的长为( )A .πB .πC .D .【考点】弧长的计算;切线的性质. 【专题】计算题;与圆有关的计算.【分析】由PA 与PB 为圆的两条切线,利用切线的性质得到两个角为直角,再利用四边形内角和定理求出∠AOB 的度数,利用弧长公式求出的长即可.【解答】解:∵PA 、PB 是⊙O 的切线, ∴∠OBP=∠OAP=90°, 在四边形APBO 中,∠P=60°, ∴∠AOB=120°, ∵OA=2,∴的长l==π,故选C【点评】此题考查了弧长的计算,以及切线的性质,熟练掌握弧长公式是解本题的关键. 8.(2016·广东深圳)如图,在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为22时,则阴影部分的面积为( )A.42-πB.84-πC.82-πD.44-π 答案:A考点:扇形面积、三角形面积的计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算力专训四十九:弧长与扇形面积计算
1.(2020·河北石家庄二中初三其他)将一个半径为1的圆形纸片,如下图连续对折三次之后,用剪刀沿虚线①剪开,则虚线①所对的圆弧长和展开后得到的多边形的内角和分别为( )
A .,1802π
︒ B .,5404π
︒ C .,10804π
︒ D .,21603π
︒
2.(2019·山东诸城·初三三模)如图,在边长为2的正方形ABCD 中,以点D 为圆心,AD 为半径画AC ,再以BC 为直径画半圆,若阴影部分①的面积为S 1,阴影部分②的面积为S 2,则图中S 2﹣S 1的值为( )
A .32π﹣4
B .32π +4
C .34π﹣2
D .34
π +2 3.(2020·全国课时练习)一个扇形的半径为8 cm ,弧长为
163π cm ,则扇形的圆心角为( ) A .60° B .120° C .150° D .180°
4.(2020·河南初三其他)如图,正方形ABCD 的边长为4,分别以AD 、DC 为直径作半圆,则图中阴影部分的面积为_____.
5.(2020·宁波市惠贞书院初二期末)已知圆锥的底面半径为5,母线长为8,则这个圆锥的侧面积是________.
6.(2020·佛山市三水区三水中学附属初中初三三模)若圆锥的底面半径为3cm ,母线长为5cm ,则这个圆锥的全面积为_____cm 2.(结果保留π)
7.(2020·佛山市三水区三水中学附属初中初三二模)如图,在边长为4的正方形ABCD 中,以B 为圆心,AB 长为半径画AC ,分别以AB 、CD 的中点E 、F 为圆心,AE 、CF 的长为半径画弧交于点G ,则图中阴影部分面积为__.
8.(2020·河北其他)如图,在矩形ABCD 中,4=AD ,30BAC ∠=︒,点O 为对角线AC 上的动点(不与A 、C 重合),以点O 为圆心在AC 下方作半径为2的半圆O ,交AC 于点E 、F .
(1)当半圆O 过点A 时,求半圆O 被AB 边所截得的弓形的面积;
(2)若M 为EF 的中点,在半圆O 移动的过程中,求BM 的最小值;
(3)当半圆O 与矩形ABCD 的边相切时,求AE 的长.
9.(2019·江苏东台市实验中学初三期中)如图,已知在⊙O 中,AB=AC 是⊙O 的直径,AC ⊥BD 于F ,∠A=30°.
(1)求出图中阴影扇形OBD 的周长?
(2)求出图中阴影扇形OBD 的面积?
10.(2020·江苏鼓楼·初三期中)已知:如图,AB 为O 的直径,AB AC BC =,交O 于点D ,AC 交O 于点E ,BAC 45∠=︒.
(1)求EBC ∠的大小;
(2)若O 的半径为2,求图中阴影部分的面积.
11.(2020·宜春市宜阳学校初三期中)如图,已知AB 是O 的直径,点C 在O 上,延长BC 至点D ,使得DC BC =;直线DA 与O 的另一个交点为E ,连结AC ,CE .
(1)求证:CD CE =; (2)若2AC =,30E ∠=︒,求阴影部分(弓形)面积.。