高三数学寒假作业专题05导数在函数中的应用学

合集下载

导数在函数中的应用——题型总结

导数在函数中的应用——题型总结

导数在函数中的应用一.基础知识1.函数的导数与单调性在某个区间内,若()f x '>0,则函数)(x f y =在这个区间内单调递增;若()f x '<0, 则函数)(x f y =在这个区间内单调递减.2.函数的导数与极值(1)极大值:如果在0x 附近的左侧()f x '>0,右侧()f x '<0,且()f x '=0,那么0()f x 是极大值;(2)极小值:如果在0x 附近的左侧()f x '<0,右侧()f x '>0,且()f x '=0,那么0()f x 是极小值;3.函数的导数与最值(1)函数)(x f y =在区间[a,b]上有最值的条件:一般地,如果在区间[a,b]上,函数)(x f y =的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2) 求函数)(x f y =在区间[a, b]上最大值与最小值的步骤:①求函数)(x f y =在区间(a,b )内的极值;②将函数)(x f y =的各个极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值4.利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y =f(x);(2)求函数的导数f′(x),解方程f′(x)=0;(3)比较函数在区间端点和f′(x)=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.注意事项1.直线与曲线有且只有一个公共点,直线不一定是曲线的切线;反之直线是曲线的切线,但直线不一定与曲线有且只有一个公共点.2.(1)f′(x)>0在(a ,b)上成立是f(x)在(a ,b)上单调递增的充分条件.(2)对于可导函数f(x),f′(x0)=0是函数f(x)在x =x0处有极值的必要不充分条件.3.求函数单调区间的步骤:(1)确定函数f(x)的定义域;(2)求导数f′(x);(3)由f′(x)>0(f′(x)<0)解出相应的x 的范围.当f′(x)>0时,f(x)在相应的区间上是增函数;当f′(x)<0时,f(x)在相应的区间上是减函数,还可以列表,写出函数的单调区间.4.(1)注意实际问题中函数定义域的确定.(2)在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定最大值还是最小值即可,不必再与端点的函数值比较.二.题型训练题型一 求曲线切线的方程例1.已知函数f (x )=x 3-4x 2+5x -4.(1)求曲线f (x )在x =2处的切线方程;(2)求经过点A (2,-2)的曲线f (x )的切线方程.变式1.曲线y =x e x +1在点(0,1)处的切线方程是( )A .x -y +1=0B .2x -y +1=0C .x -y -1=0D .x -2y +2=02.直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则a -b 的值为( )A .-4B .-1C .3D .-2题型二.求函数的单调区间例2. 已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值.练习:1. 设函数f (x )=x (e x -1)-12x 2,则函数f (x )的单调增区间为________.2. 已知函数f(x)=13x 3+ax 2+bx(a ,b ∈R ).(1)当a =1时,求函数f(x)的单调区间;(2)若f(1)=13,且函数f(x)在⎝⎛⎭⎫0,12上不存在极值点,求a 的取值范围.题型三.分类讨论求函数的单调区间例3. 已知函数f (x )=x 2+ax +b ln x (x >0,实数a ,b 为常数).(1)若a =1,b =-1,求函数f (x )的极值;(2)若a +b =-2,讨论函数f (x )的单调性.练习:1. 已知函数f(x)=x 2-(a +2)x +a ln x +2a +2,其中a ≤2.(1)求函数f(x)的单调区间;(2)若函数f(x)在(0,2]上有且只有一个零点,求实数a 的取值范围.2. 已知a ∈R ,函数3()42f x x ax a =-+(1)求()f x 的单调区间(2)证明:当0≤x ≤1时,()f x + 2a ->0.3. 设函数()x f x e ax 2=--(Ⅰ)求()f x 的单调区间(Ⅱ)若a=1,k 为整数,且当x>0时,()()x k f x x 10'>-++,求k 的最大值小结:利用导数研究函数的单调性关注四点(1)利用导数研究函数的单调性,大多数情况下归结为对含有参数的不等式的解集的讨论.(2)在能够通过因式分解求出不等式对应方程的根时,依据根的大小进行分类讨论.(3)在不能通过因式分解求出根时,根据不等式对应方程的判别式进行分类讨论.(4)讨论函数的单调性是在函数的定义域内进行的,千万不要忽视了定义域的限制.题型四.单调性的逆用例4. 已知函数f (x )=x 3-ax 2-3x .(1)若f (x )在[1,+∞)上是增函数,求实数a 的取值范围;(2)若x =3是f (x )的极值点,求f (x )的单调区间.练习:1. 已知函数f (x )=(x +a )2-7b ln x +1,其中a ,b 是常数且a ≠0.(1)若b =1时,f (x )在区间(1,+∞)上单调递增,求a 的取值范围;(2)当b =47a 2时,讨论f (x )的单调性.2. 若函数f (x )=x 2+ax +1x 在⎝⎛⎭⎫12,+∞上是增函数,则a 的取值范围是( ) A .[-1,0] B .[-1,+∞) C .[0,3] D .[3,+∞)3. 函数f (x )=13x 3-x 2+ax -5在区间[-1,2]上不单调,则实数a 的范围是________. 4. 已知函数f (x )=3213x x ax b -++的图像在点P (0,f(0))处的切线方程为y=3x-2 (Ⅰ)求实数a,b 的值;(Ⅱ)设g (x )=f(x)+1m x -是[2,+∞]上的增函数,求实数m 的最大。

专题05 导数中含参讨论问题总结(解析版)

专题05 导数中含参讨论问题总结(解析版)

专题05 导数中含参讨论问题总结一、重点题型目录【题型】一、由函数的单调区间求参数 【题型】二、由函数在区间上的单调性求参数 【题型】三、含参分类讨论求函数单调性区间 【题型】四、根据极值点求参数【题型】五、有导数求函数的最值(含参) 【题型】六、已知函数最值求参数 【题型】七、参变分离法解决导数问题【题型】八、构造函数并利用函数的单调性判定函数值大小 【题型】九、构造函数法解决导数问题 二、题型讲解总结【题型】一、由函数的单调区间求参数例1.(2023·全国·高三专题练习)已知函数()2ln x ax f x x =++的单调递减区间为1,12⎛⎫⎪⎝⎭,则( ). A .(],3a ∈-∞- B .3a =- C .3a = D .(],3a ∈-∞【答案】B【分析】根据()f x 得到()f x ',再根据()f x 的单调递减区间是1,12⎛⎫ ⎪⎝⎭,得到12和1是方程()0f x '=的两个根,代入解方程即可.【详解】由()2ln x ax f xx =++得()221x ax f x x++'=,又()f x 的单调递减区间是1,12⎛⎫ ⎪⎝⎭,所以12和1是方程2210x ax x++=的两个根,代入得3a =-.经检验满足题意故选:B.例2.(2023·全国·高三专题练习)已知函数()sin cos f x x a x =+在区间ππ,42⎛⎫⎪⎝⎭上是减函数,则实数a 的取值范围为( )A .1a >B .1a ≥C .1a >D .1a ≥-【答案】B【分析】根据函数的单调性知导数小于等于0恒成立,分离参数后由正切函数单调性求解.【详解】由题意,()cos sin 0f x x a x '=-≤在ππ,42⎛⎫⎪⎝⎭上恒成立,即cos 1sin tan x a x x ≥=在ππ,42⎛⎫⎪⎝⎭上恒成立, 因为tan y x =在ππ,42⎛⎫⎪⎝⎭上单调递增,所以tan 1y x =>,所以在ππ,42x ⎛⎫∈ ⎪⎝⎭时,101tan x <<, 所以1a ≥. 故选:B例3.(2022·全国·高三专题练习)已知函数()32f x x ax bx c =+++,()g x 为()f x 的导函数.若()f x 在(0,1)上单调递减,则下列结论正确的是( )A .23a b -有最小值3B .23a b -有最大值C .()()010f f ⋅≤D .()()010g g ⋅≥【答案】D【分析】由()f x 在(0,1)上单调递减,得到()00g b =≤,()1230g a b =++≤,即可判断D ;求出()()()2011f f c a b c ⋅=+++,当0c <时,有()()010f f ⋅>,可否定C ;记23z a b =-,其中(),a b 满足2300a b b ++≤⎧⎨≤⎩,利用数形结合求出,判断A 、B.【详解】由题意可得()()232g x f x x ax b ='=++.因为()f x 在(0,1)上单调递减,所以()0g x ≤在(0,1)上恒成立,即()00g b =≤,()1230g a b =++≤,所以()()010g g ⋅≥, 因为()()0,11f c f a b c ==+++,()f x 在(0,1)上单调递减, 所以1c a b c >+++,即10a b ++<,所以()()()()20111f f c a b c c a b c ⋅=+++=+++,当0c <时,有()()010f f ⋅> 所以C 错误,D 正确.记23z a b =-,其中(),a b 满足2300a b b ++≤⎧⎨≤⎩,作出可行域如图示:由2300a b b ++=⎧⎨=⎩解得:3,02A ⎛⎫- ⎪⎝⎭.当抛物线21133a z b -=,经过点3,02A ⎛⎫- ⎪⎝⎭时94z =最小,没有最大值.故A 、B 错误.故选:D.例4.(2023·全国·高三专题练习)已知()2121()1e 2x f x a x -=--,若不等式11ln 1f f x x ⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭在(1,)+∞上恒成立,则a 的值可以为( )A .B .1-C .1D 【答案】AD【分析】由条件可得()f x 在(1,)+∞上单调递增,再结合导数和单调性的关系列不等式求a 的范围,由此确定正确选项.【详解】设1ln (1)y x x x =-->,则110y x'=->, 所以1ln y x x =--在(1,)+∞上单调递增,所以1ln 0x x -->, 所以ln 1,(1,)x x x <-∈+∞,∴0ln 1x x <<-, ∴110ln 1x x >>-. 又11ln 1f f x x ⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭在(1,)+∞上恒成立, 所以()f x 在(1,)+∞上单调递增,所以()21()1e 0x f x a x -=--≥'对(1,)x ∀∈+∞恒成立,即211e x x a --≥恒成立.令111(),()eex x xxg x g x ---='=,当1x >时,()0g x '<,故()(1)1g x g <=,∴211a -≥,解得a ≥a ≤所以a 的值可以为, 故选:AD.【题型】二、由函数在区间上的单调性求参数例5.(2023·全国·高三专题练习)若函数2()ln 2f x x x x =+--在其定义域的一个子区间(21,21)k k -+内不是单调函数,则实数k 的取值范围是( ) A .33,24⎛⎫- ⎪⎝⎭B .1,32⎡⎫⎪⎢⎣⎭C .3,32⎛⎫- ⎪⎝⎭D .13,24⎡⎫⎪⎢⎣⎭【答案】D【分析】先求出函数的定义域(0,)+∞,则有210k -≥,对函数求导后,令()0f x '=求出极值点,使极值点在(21,21)k k -+内,从而可求出实数k 的取值范围.【详解】因为函数()f x 的定义域为(0,)+∞, 所以210k -≥,即12k ≥, 2121(1)(21)()21x x x x f x x x x x+-+-'=+-==, 令()0f x '=,得12x =或=1x -(舍去), 因为()f x 在定义域的一个子区间(21,21)k k -+内不是单调函数, 所以121212k k -<<+,得4143k -<<, 综上,1324k ≤<, 故选:D例6.(2023·全国·高三专题练习)若函数()324f x x ax x =-++在区间()0,2上单调递增,则实数a 的取值范围为( ) A .[)2,+∞ B .()2,+∞ C .(],2-∞ D .(),2-∞【答案】A【分析】将问题转化为()0f x '≥在()0,2上恒成立,采用分离变量法可得423a x x ≥-,由434x x-<可构造不等式求得结果. 【详解】()f x 在()0,2上单调递增,()23240f x x ax '∴=-++≥在()0,2上恒成立,即234423x a x x x-≥=-在()0,2上恒成立, 又43y x x =-在()0,2上单调递增,43624x x ∴-<-=,24a ∴≥,解得:2a ≥,即实数a 的取值范围为[)2,+∞. 故选:A.例7.(2023·全国·高三专题练习)下列说法正确的有( )A .设{}25A x x =≤≤,{}23B x a x a =≤≤+,若B A ⊆,则实数a 的取值范围是[]1,2 B .“1a >,1b >”是“1ab >”成立的充分条件C .命题p :x ∀∈R ,20x >,则p ⌝:x ∃∈R ,20x <D .“5a ≤”是“函数()()e 23xf x a x -=--是R 上的单调增函数”的必要不充分条件【答案】BD【分析】分B =∅与B ≠∅两种情况讨论,求出参数a 的范围,即可判断A ,根据不等式的性质及充分条件的定义判断B ,根据全称量词命题的否定为特称量词命题判断C ,求出函数的导数,由()0f x '≥恒成立求出a 的取值范围,再根据集合的包含关系判断D 即可; 【详解】解:对于A :当B =∅,即23a a >+,解得3a >时满足B A ⊆, 当B ≠∅,因为B A ⊆,所以352223a a a a +≤⎧⎪≥⎨⎪≤+⎩,解得12a ≤≤,综上可得[][)1,23,a ∈+∞,故A错误;对于B :由1a >,1b >则1ab >,故“1a >,1b >”是“1ab >”成立的充分条件,即B 正确; 对于C :命题p :x ∀∈R ,20x >,则p ⌝:x ∃∈R ,20x ≤,故C 错误;对于D :因为()()e 23xf x a x -=--,所以()()e 2x f x a =-'-,若()f x 在R 上单调递增, 则()()e 20xf x a -'=-≥恒成立,所以20a -≤,解得2a ≤,因为(],2-∞ (],5-∞, 所以“5a ≤”是“函数()()e 23xf x a x -=--是R 上的单调增函数”的必要不充分条件,故D正确; 故选:BD例8.(2023·全国·高三专题练习)已知函数()2sin 262x f x x mx π⎛⎫=+-- ⎪⎝⎭在06,π⎡⎤⎢⎥⎣⎦上单调递减,则实数m 的最小值是___________【分析】原问题等价于()2cos 206f x x x m π⎛⎫'=+--≤ ⎪⎝⎭在06,π⎡⎤⎢⎥⎣⎦上恒成立,构造函数求最值即可.【详解】由()2sin 262x f x x mx π⎛⎫=+-- ⎪⎝⎭在06,π⎡⎤⎢⎥⎣⎦上单调递减,得()2cos 206f x x x m π⎛⎫'=+--≤ ⎪⎝⎭06x ,⎛π⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,即2cos 26x x m π⎛⎫+-≤ ⎪⎝⎭,令()2cos 26g x x xπ⎛⎫=+- ⎪⎝⎭06x ,⎛π⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,则()4sin 216g x x π⎛⎫'=-+- ⎪⎝⎭, 当0,6x π⎡⎤∈⎢⎥⎣⎦时,2662x πππ≤+≤ ,则24sin 246x π⎛⎫≤+≤ ⎪⎝⎭,所以54sin 2+136x π-≤-≤-⎛⎫- ⎪⎝⎭,即()0g x '<,所以()g x 在0,6x π⎡⎤∈⎢⎥⎣⎦是单调递减函数,max ()(0)g x g ≤=得m ≥m【题型】三、含参分类讨论求函数单调性区间 例9.(2023·全国·高三专题练习)已知()()ln 11axf x x x =+++,则下列说法正确的是( ) A .当0a >时,()f x 有极大值点和极小值点 B .当a<0时,()f x 无极大值点和极小值点 C .当0a >时,()f x 有最大值 D .当a<0时,()f x 的最小值小于或等于0【答案】D【分析】讨论0a >、a<0,利用导数研究()f x 在定义域上的单调性,进而判断极值点及最值情况,即可确定答案. 【详解】由题设,2211()(1)1(1)a x a f x x x x ++'=+=+++且(1,)∈-+∞x ,当0a >时()0f x '>,则()f x 在(1,)-+∞上递增,无极值点和最大值,A 、C 错误; 当a<0时,若(1,1)x a ∈---则()0f x '<,()f x 递减;(1,)x a ∈--+∞则()0f x '>,()f x 递增;所以()(1)1ln()f x f a a a ≥--=++-,即()f x 无极大值点,有极小值点,B 错误; 令()1ln()g a a a =++-且(,0)a ∈-∞,则11()1a g a a a+'=+=, 当1a <-时()0g a '>,()g a 递增;当10a -<<时()0g a '<,()g a 递减; 所以()(1)0g a g ≤-=,即()f x 的最小值小于或等于0,D 正确; 故选:D例10.(2023·全国·高三专题练习)已知函数()ln 1f x x x =--,若不等式()()21f x a x ≥-在区间(]0,1上恒成立,则实数a 的取值范围为( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .1,2⎛⎫-∞ ⎪⎝⎭C .1,2⎛⎫+∞ ⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭【答案】A【分析】2()(1)0f x a x --≥即为2ln 1(1)0x x a x ----≥,设2()ln 1(1)g x x x a x =----,(0,1]x ∈,求出函数()g x 的导函数,分解12a ≤和12a >讨论函数()g x 的单调性,求出函数()g x 在区间(]0,1上的最小值,即可得解.【详解】解:由已知可得2()(1)0f x a x --≥即为2ln 1(1)0x x a x ----≥,设2()ln 1(1)g x x x a x =----,(0,1]x ∈, 则(1)(12)()x ax g x x--'=,当0a ≤时,显然()0g x '≤,当102a <≤时,()0g x '≤在(0,1]x ∈上也成立, 所以12a ≤时,()g x 在(0,1]上单调递减,()(1)0g x g ≥=恒成立; 当12a >时,当102x a <<时,()0g x '<,当112x a<<时,()0g x '>, 所以()g x 在10,2a ⎛⎤ ⎥⎝⎦上单调递减,在1,12a ⎛⎫ ⎪⎝⎭上单调递增, 于是,存在01,12x a ⎛⎫∈ ⎪⎝⎭,使得0()(1)0g x g <=,不满足()0g x ≥,舍去此情况,综上所述,12a ≤. 故选:A.例11.(2023·全国·高三专题练习)已知()()22e 2e e 2e a a b bm m a m m +--=+-,则( )A .当()1,0m ∈-,a ,(),0b ∈-∞时,a b >B .当()1,0m ∈-,a ,(),0b ∈-∞时,a b <C .当()1,2m ∈,a ,()0,b ∈+∞时,a b >D .当()1,2m ∈,a ,()0,b ∈+∞时,a b < 【答案】AC【分析】根据等号两边式子的结构特征构造函数()f x ,利用导数分类讨论函数()f x 的单调性进行求解.【详解】设()()2e 2e x xf x m m x =+--,因为()()22e 2e e 2e a a b bm m a m m +--=+-,所以()()f a f b b =+,当a ,(),0b ∈-∞时,()()0f a f b b -=<,即()()f a f b <.易知()()()e 12e 1x xf x m '=-+,当()1,0m ∈-时,()0f x '<,所以()f x 在(),0∞-上单调递减, 所以a b >,故选项A 正确,选项B 错误.当a ,()0,b ∈+∞时,()()0f a f b b -=>,即()()f a f b >. 当()1,2m ∈时,令()0f x '=,解得ln x m =-,所以()f x 在(),ln m -∞-上单调递减,在()ln ,m -+∞上单调递增, 所以a b >,故选项C 正确,选项D 错误. 故选:AC.【题型】四、根据极值点求参数例12.(2023·全国·高三专题练习)若函数3()3f x x bx b =-+在区间(0,1)内有极小值,则b 的取值范围是( ) A .(,1)-∞ B .(0,1)C .(1,)+∞D .(1,0)-【答案】B【分析】先利用导数求出函数的极小值点,然后使极小值点在(0,1)内,从而可求出b 的取值范围【详解】由题意,得2()33f x x b '=-,当0b ≤时,()0f x '>在(0,1)上恒成立,所以()f x 在(0,1)上递增,函数无极值, 所以0b >,令()0f x '=,则x =,∴函数在()上()0f x '<,+∞)上()0f x '>,函数递增 ∴x =∴函数3()3f x x bx b =-+在区间(0,1)内有极小值,∴01, ∴b ∴(0,1) 故选:B .例13.(2023·全国·高三专题练习)若3π-,3π分别是函数()()()sin 0,0f x x ωϕωϕπ=+><<的零点和极值点,且在区间,155ππ⎛⎫⎪⎝⎭上,函数()y f x =存在唯一的极大值点0x ,使得()01f x =,则下列数值中,ω的可能取值是( ) A .814B .994C .1054D .1174【答案】C【分析】由函数的零点和极值点的概念结合正弦函数图象的性质对各个选项进行判断即可. 【详解】设函数()y f x =的最小正周期为T ,由题意得1122,3(,),32k k k Z k πωϕπππωϕπ⎧-+=⎪⎪∈⎨⎪+=+⎪⎩则3(21),4,24k k ωππϕ+⎧=⎪='⎪⎨⎪+⎪⎩其中121221,(,),k k k k k Z k k k =+⎧∈⎨=-⎩'在区间,155ππ⎛⎫ ⎪⎝⎭上, 函数()y f x =存在唯一的极大值点0x ,使得()01f x =, 所以22,51515T πππ-=≤解得030,ω<≤即3(21)30,4k +≤解得19.5.k ≤ 对于D.若1174ω=,则19.k =由11139(),34k k k Z ππϕπωπ=+=+∈且0ϕπ<<可知3,4πϕ=可使1122,3(,),32k k k Z k πωϕπππωϕπ⎧-+=⎪⎪∈⎨⎪+=+⎪⎩成立, 当,155x ππ⎛⎫∈ ⎪⎝⎭时1173(2.7,6.6),44x πππ+∈当011739442x ππ+=或132π时,()01f x =都成立,故不符合; 对于C. 若1054ω=,则17k =,1135,34k k ππϕπωπ=+=+且0ϕπ<<可知 3,4πϕ=可使1122,3(,),32k k k Z k πωϕπππωϕπ⎧-+=⎪⎪∈⎨⎪+=+⎪⎩成立,当,155x ππ⎛⎫∈ ⎪⎝⎭时1053(2.5,6)44x πππ+∈,当010539442x ππ+=时,存在唯一的极大值点0x ,使得()01f x =,故符合条件; 对于B. 若949ω=,则16,k =由1133,34k k ππϕπωπ=+=+且0ϕπ<<可知,4πϕ= 可使1122,3(,),32k k k Z k πωϕπππωϕπ⎧-+=⎪⎪∈⎨⎪+=+⎪⎩成立,当,155x ππ⎛⎫∈ ⎪⎝⎭时99(1.9,5.2)44x πππ+∈, 当0995442x ππ+=或92π时,()01f x =都成立,故不符合; 对于A. 若148ω=,则13,k =由 112734k k ππϕπωπ=+=+且0ϕπ<<可知3,4πϕ=可使1122,3(,),32k k k Z k πωϕπππωϕπ⎧-+=⎪⎪∈⎨⎪+=+⎪⎩成立,当,155x ππ⎛⎫∈ ⎪⎝⎭时,813(2,1,4.8)44x πππ+∈, 当08135442x ππ+=或92π时,()01f x =都成立,故不符合; 故选:C【题型】五、有导数求函数的最值(含参)例14.(2023·全国·高三专题练习)设直线x t =与函数()22f x x =,()ln g x x =的图象分别交于点M ,N ,则当|MN |达到最小时t 的值为( )A .1B .12CD 【答案】B【分析】由题意,函数()()22ln y f x g x x x =-=-的最小值即|MN |达到最小值时,再求导分析()()22ln y f x g x x x =-=-的极小值点即可【详解】设函数()()22ln y f x g x x x =-=-,求导数得()()212114x x y x x x+-'=-= 因为0x >,故当102x <<时,0'<y ,函数在10,2⎛⎫⎪⎝⎭上为单调减函数, 当12x >时,0'>y ,函数在1,2⎛⎫+∞ ⎪⎝⎭上为单调增函数 所以x 12=为()()22ln y f x g x x x =-=-的极小值点.故当|MN |达到最小时t 的值为12. 故选:B .例15.(2023·全国·高三专题练习)如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,DBC △,ECA △,FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起DBC △,ECA △,FAB ,使得D 、E 、F 重合,得到三棱锥.当ABC 的边长变化时,所得三棱锥体积(单位:3cm )的最大值为______.【答案】3【分析】连接OD ,交BC 于点G ,设OG x =,则BC =,5DG x =-, 进而算出三棱锥的高和体积,构造函数,令45()2510f x x x =-,5(0,)2x ∈,求导,根据导函数的正负判断单调性进而求出最大值.【详解】由题意,连接OD ,交BC 于点G ,由题意得OD BC ⊥,OG =,即OG 的长度与BC 的长度成正比,设OG x =,则BC =,5DG x =-,三棱锥的高h 221)2ABCS==,则213ABC V Sh =⨯=45()2510f x x x =-,5(0,)2x ∈,34()10050f x x x '=-,令()0f x '≥,即4320x x -≤,解得2x ≤,则()(2)80f x f ≤=,∴3V ,∴体积最大值为3.故答案为:3【点睛】思路点睛:本题将三棱锥体积的计算转化为利用导数研究函数的最值问题,考查学生对这些知识的掌握能力,本题的解题关键是掌握根据导数求单调性的方法,属于中档题.例16.(2023·河北·高三阶段练习)R,2e 12x x x a ∀∈-≥+,则a 的最大值为_____________.【答案】1【分析】R,2e 12x x x a ∀∈-≥+,即R,2e 12x x x a ∀∈--≥,令()2e 12xf x x =--,分1ln2x >和1ln2x ≤两种情况讨论,利用导数求出函数的最小值,即可得出答案. 【详解】解:R,2e 12xx x a ∀∈-≥+, 即R,2e 12xx x a ∀∈--≥, 令()2e 12xf x x =--,当2e 10x ->,即1ln 2x >时,()2e 12xf x x =--,则()2e 2xf x '=-,当1ln02x <<时,()0f x '<,当0x >时,0f x ,所以函数()f x 在1ln ,02⎛⎫⎪⎝⎭上递减,在()0,∞+上递增,所以当1ln 2x >时,()()min 01f x f ==,当2e 10x -≤,即1ln2x ≤时,()12e 2xf x x =--, 因为函数2e ,2x y y x ==为增函数,所以函数()12e 2xf x x =--在1,ln 2⎛⎫-∞ ⎪⎝⎭上递减,所以当1ln2x ≤时,()min 1ln ln 412f x f ⎛⎫==> ⎪⎝⎭, 综上所述,()()min 01f x f ==, 所以1a ≤, 即a 的最大值为1. 故答案为:1.【题型】六、已知函数最值求参数例17.(2023·广西·模拟预测(文))已知函数()ln f x x ax =+存在最大值0,则a 的值为( ) A .2- B .1e-C .1D .e【答案】B【分析】讨论a 与0的大小关系确定()f x 的单调性,求出()f x 的最大值. 【详解】因为()1f x a x'=+,0x >, 所以当0a ≥时,0fx恒成立,故函数()f x 单调递增,不存在最大值;当a<0时,令()0f x '=,得出1x a=-,所以当10,x a ⎛⎫∈- ⎪⎝⎭时,0fx ,函数单调递增,当1,x a ∈-+∞⎛⎫⎪⎝⎭时,()0f x '<,函数单调递减,所以() max11ln 10f x f a a ⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,解得:=a 1e -. 故选:B.例18.(2023·全国·高三专题练习)若函数()22e xx x af x +-=在区间(,1)a a +上存在最小值,则实数a 的取值范围为( ) A .(),1-∞-B .()2,1--C .⎛-∞ ⎝⎭D .1⎫-⎪⎪⎝⎭【答案】D【分析】求得()22exx a f x -++'=,根据()f x 在区间(,1)a a +上存在最小值,得到()00f x '=且()0f a '<,()10f a '+>,设()22g x x a =-++,根据()0g a <且()10g a +>,列出不等式组,即可求解.【详解】由函数()22e xx x af x +-=,可得()22e x x a f x -++'=,且()f x 在区间(,1)a a +上存在最小值, 即()f x '在区间(,1)a a +上存在0(,1)x a a ∈+, 使得()00f x '=且()0f a '<,()10f a '+>,设()22g x x a =-++,即满足()0g a <,且()10g a +>,可得()()2220110g a a a g a a a ⎧=-++<⎪⎨+=--+>⎪⎩1a <<-,即实数a 的取值范围是1⎫-⎪⎪⎝⎭.故选:D.例19.(2023·全国·高三专题练习)已知函数21()e xx x f x +-=,则下列结论正确的是( )A .函数()f x 只有一个零点B .函数()f x 只有极大值而无极小值C .当e 0k -<<时,方程()f x k =有且只有两个实根D .若当[,)x t ∈+∞时,max 25()e f x =,则t 的最大值为2 【答案】CD【分析】解方程()0f x =判断A ;利用导数探讨()f x 的极值判断B ;分析函数()f x 的性质,借助图象判断C ;由25(2)e f =结合取最大值的x 值区间判断D 作答.【详解】对于A ,由()0f x =得:210x x +-=,解得x =A 不正确;对于B ,对()f x 求导得:22(1)(2)()e ex xx x x x f x '--+-=-=-,当1x <-或2x >时,()0f x '<,当12x -<<时,()0f x '>,即函数()f x 在(,1)-∞-,(2,)+∞上单调递减,在(1,2)-上单调递增,因此,函数()f x 在=1x -处取得极小值(1)e f -=-,在2x =处取得极大值25(2)e f =,B 不正确;对于C ,由选项B 知,作出曲线()y f x =及直线y k =,如图,观察图象得当e 0k -<<时,直线y k =与曲线()y f x =有2个交点,所以当e 0k -<<时,方程()f x k =有且只有两个实根,C 正确; 对于D ,因25(2)e f =,而函数()f x 在(2,)+∞上单调递减,因此当[,)x t ∈+∞时,max25()e f x =, 当且仅当2[,)t ∈+∞,即2t ≤,所以t 的最大值为2,D 正确. 故选:CD【点睛】方法点睛:函数零点个数判断方法:(1)直接法:直接求出f (x )=0的解;(2)图象法:作出函数f (x )的图象,观察与x 轴公共点个数或者将函数变形为易于作图的两个函数,作出这两个函数的图象,观察它们的公共点个数.【题型】七、参变分离法解决导数问题例20.(2023·江苏·苏州中学高三阶段练习)若关于x 的不等式(41ln )ln 3k x x x x --<-+对于任意(1,)x ∈+∞恒成立,则整数k 的最大值为( ) A .-2 B .-1 C .0 D .1【答案】C【分析】参变分离将恒成立问题转化为求函数最值问题,然后利用导数求最值可得. 【详解】(41ln )ln 3k x x x x --<-+对于任意(1,)x ∈+∞恒成立 等价于ln 34ln x k x x x<++对于任意(1,)x ∈+∞恒成立 令ln 3()ln x f x x x x =++,则2221ln 13ln 2()x x x f x x x x x ---'=+-= 令()ln 2g x x x =--,则11()10x g x x x-'=-=> 所以()g x 在(1,)+∞上单调递增,又(3)1ln30,(4)2ln 40g g =-<=->所以()g x 在()3,4有且仅有一个根0x ,满足00ln 20x x --=,即00ln 2x x =- 当0(1,)x x ∈时,()0g x <,即()0f x '<,函数()f x 单调递减, 0(,)x x ∈+∞时,()0g x >,即()0f x '>,函数()f x 单调递增,所以0min 000000231()()21x f x f x x x x x x -==+-+=+- 由对勾函数可知001113114134x x +-<+-<+-,即0713()34f x << 因为04()k f x <,即0()4f x k <,0()71312416f x <<,Z k ∈ 所以0k ≤. 故选:C例21.(2023·全国·高三专题练习)已知1a >,1x ,2x ,3x 均为2x a x =的解,且123x x x <<,则下列说法正确的是( ) A .1(2,1)x ∈-- B .2e (1,e )a ∈ C .120x x +< D .232e x x +<【答案】B【分析】A 选项:根据“三个等价”,将方程根的问题转化成构造出的函数零点的问题,利用零点存在性定理确定出1x 的取值情况;B ,C ,D 选项:对方程变形,参变分离构造函数,从函数的角度以及利用极值点偏移可以得出相应结论,详细过程见解析.【详解】对于A ,令2()x f x a x =-,因为1a >,所以()f x 在(,0)-∞上单调递增,与x 轴有唯一交点,由零点存在性定理,得1(1)10f a --=-<,0(0)00f a =->,则1(1,0)x ∈-,故A 错误. 对于B ,C ,D ,当0x >时,两边同时取对数,并分离参数得到ln ln 2a xx=, 令ln ()x g x x =,()21ln xg x x -'∴=, 当()0,e x ∈时,()0g x '>,()g x 单调递增; 当()e,x ∈+∞时,()0g x '<,()g x 单调递减; 如图所示,∴当0x >时,ln 2ay =与ln ()x g x x =的图象有两个交点,ln 1(0,)2ea ∈,解得2e (1,e )a ∈,故B 正确; ∴2(1,e)x ∈,由A 选项知1(1,0)x ∈-,120x x ∴+>,故C 错误;由极值点偏移知识,此时函数()g x 的极值点左移,则有23e 2x x +>,故D 错误. 故选:B.例22.(2023·上海·高三专题练习)在空间直角坐标系O xyz -中,三元二次方程所对应的曲面统称为二次曲面.比如方程2221x y z ++=表示球面,就是一种常见的二次曲面.二次曲面在工业、农业、建筑等众多领域应用广泛.已知点(,,)P x y z 是二次曲面22420x xy y z -+-=上的任意一点,且0x >,0y >,0z >,则当zxy取得最小值时,不等式ln e 3022xa yx za +-≥恒成立,则实数a 的取值范围是________.【答案】[e,)-+∞【分析】先通过zxy取得最小值这个条件找出当,,x y z 的关系,带入后一个不等式,利用对数恒等式变型,此后分离参数求最值即可.【详解】根据题意22420x xy y z -+-=,带入z xy 可得:2224212222z z x xy y x y xy xy xy y x -+===+-,而0x >,0y >,利用基本不等式222x y y x +≥=,当22x y y x =,即2y x =取得等号,此时22224246z x x x x x =-⋅+=,即23z x =,综上可知,当z xy 取得最小值时,223y x z x =⎧⎨=⎩,带入第二个式子可得,2e ln 02x a x ax x +-≥,即e ln 0x ax a x x +-≥,于是ln e ln (ln )0xx x ax a x e a x x x-+-=+-≥,设()ln u u x x x ==-,11()1x u x x x -'=-=,故当1x >时,()u x 递增,01x <<时,()u x 递减,min ()(1)1u x u ==;于是原不等式转化为1u ≥时,0u e au +≥恒成立,即ue a u -≤在1u ≥时恒成立,设()u e h u u=(1)u ≥,于是2(1)()0u e u h u u -'=≥,故()h u 在1u ≥时单调递增,min ()(1)h u h e ==,故a e -≤,a e ≥-即可. 故答案为:[e,)-+∞【点睛】本题e ln 0xax a x x+-≥恒成立的处理用到了对数恒等式,若直接分离参数求最值,会造成很大的计算量.【题型】八、构造函数并利用函数的单调性判定函数值大小例23.(2023·全国·高三专题练习)设函数()f x '是奇函数()f x (x ∴R )的导函数,f (﹣1)=0,当x >0时,()()0xf x f x '->,则使得f (x )>0成立的x 的取值范围是( ) A .(﹣∞,﹣1)∴(﹣1,0) B .(0,1)∴(1,+∞) C .(﹣∞,﹣1)∴(0,1) D .(﹣1,0)∴(1,+∞)【答案】D【分析】构造函数()()f x g x x =,求导结合题意可得()()f xg x x=的单调性与奇偶性,结合()10g -=求解即可 【详解】由题意设()()f x g x x=,则()()()2xf x f x g x x '-'=∴当x >0时,有()()0xf x f x '->, ∴当x >0时,()0g x '>, ∴函数()()f xg x x=在(0,+∞)上为增函数, ∴函数f (x )是奇函数, ∴g (﹣x )=g (x ),∴函数g (x )为定义域上的偶函数, g (x )在(﹣∞,0)上递减, 由f (﹣1)=0得,g (﹣1)=0, ∴不等式f (x )>0∴x •g (x )>0,∴()()01x g x g >⎧⎨>⎩或()()01x g x g <⎧⎨<-⎩, 即有x >1或﹣1<x <0,∴使得f (x )>0成立的x 的取值范围是:(﹣1,0)∴(1,+∞), 故选:D .例24.(2023·全国·模拟预测)以下数量关系比较的命题中,正确的是( )A .2e e 2> B .2ln 23>C .ln π1πe< D .ln 2ln π2π> 【答案】ABC【分析】令()()eln 0f x x x x =->,利用导数研究函数的单调性,进而可判断A ;根据指数函数与对数函数的单调性可判断B ;令()()ln 0xg x x x=>,利用导数研究函数的单调性,进而可判断CD ;【详解】对于A :设()()eln 0f x x x x =->,则()()e e 10xf x x x x-'=-=>, 当0e x <<时,0fx,函数单调递增;当e x >时,()0f x '<,函数单调递减;所以()()e elne e 0f x f <=-=,所以()()2eln 22e 0f f =-<=,即2>eln 2, 所以 2e e 2>,故A 正确;对于B :因为28e >,所以2ln8ln e >,所以3ln 22>,即2ln 23>,故B 正确; 对于CD :设()()ln 0xg x x x =>,()21ln x g x x-'=, 当0e x <<时,()0g x '>,函数单调递增;当e x >时,()0g x '<,函数单调递减; 所以()()e πg g >,即ln π1πe<,故C 正确; 又()()()e π4g g g >>,所以ln πln 4ln 2π42>=,故D 错误; 故选:ABC【题型】九、构造函数法解决导数问题例25.(2023·全国·高三专题练习)定义在(0)+∞,上的函数()f x 满足()()110,2ln2xf x f '+=>,则不等式)(e 0x f x +> 的解集为( ) A .(02ln2),B .(0,ln2)C .(ln21),D .(ln2)+∞,【答案】D【分析】构造新函数()()ln ,(0)g x f x x x =+>,利用导数说明其单调性,将)(e 0x f x +>变形为)>(e (2)x g g ,利用函数的单调性即可求解. 【详解】令()()ln ,(0)g x f x x x =+> , 则()11()()xf x g x f x x x'+''=+=,由于()10xf x '+>, 故()0g x '>,故()g x 在(0)+∞,单调递增, 而1(2)(2)ln2ln ln 202g f =+=+= ,由)(e 0x f x +>,得)>(e (2)x g g , ∴e 2x > ,即ln2x > ,∴不等式)(e 0x f x +>的解集为(ln2)+∞,, 故选:D .例26.(2023·全国·高三专题练习)已知e ,3,e a b c πππ===,则它们的大小关系是( ) A .a b c >> B .c b a >> C .b c a >> D .c a b >>【答案】C【分析】由y x π=在区间(0,)+∞上为单调递增函数,可得到b c >,设()eln f x x x =-,利用导数求得函数()f x 单调递增,可得eln 0ππ->,进而得到c a >,即可求解. 【详解】由函数y x π=在区间(0,)+∞上为单调递增函数, 因为3e >,所以3e ππ>,即b c >, 设()eln f x x x =-,可得()e 1f x x'=-, 令()e10f x x'=-=,解得x e =, 当e x >时,0fx,()f x 单调递增,可得()()e 0f f π>=,即eln 0ππ->,即eln ππ>, 两边取e 的指数,可得e e ππ>,即c a >, 所以b c a >>. 故选:C.例27.(2023·江西·赣州市赣县第三中学高三期中(理))设()f x '是函数()f x 的导函数,且()()()3R f x f x x '>∈,1e 3f ⎛⎫= ⎪⎝⎭(e 为自然对数的底数),则不等式()3ln f x x <的解集为( )A .e 0,3⎛⎫ ⎪⎝⎭B .1e ,e 3⎛⎫ ⎪⎝⎭C .(D .e 3⎛ ⎝【答案】C【分析】构造函数()()3exf xg x =,由已知可得函数()g x 在R 上为增函数,不等式()3ln f x x <即为()1ln 3g x g ⎛⎫< ⎪⎝⎭,根据函数的单调性即可得解.【详解】解:令()()3e x f x g x =,则()()()33e xf x f xg x '-'=, 因为()()()3R f x f x x '>∈,所以()()()330e xf x f xg x '-'=>,所以函数()g x 在R 上为增函数, 不等式()3ln f x x <即不等式()3ln <1>0f x x x ⎧⎪⎨⎪⎩,又()()()3ln 3ln ln ln e x f x f x g x x ==,11313e f g ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭,所以不等式()3ln f x x <即为()1ln 3g x g ⎛⎫< ⎪⎝⎭,即1ln 3x <,解得0x <<所以不等式()3ln f x x <的解集为(.故选:C.例28.(2023·全国·高三专题练习)已知函数()()()()e 1,1ln xf x xg x x x =+=+,若()()120f x g x =>,则21x x 可取( ) A .1 B .2 C .e D .2e【答案】CD【分析】由()()()ln 1ln ln e 1xg x x x x =+=+,利用同构结合()f x 在(0,)+∞上单调递增,即可得到12ln x x =,则()12111e ,0x x x x x =>,记e(),(0)xh x x x=>,求出()h x '即可判断()h x 在(0,)+∞上的单调性,即可得出21e x x ≥,由此即可选出答案. 【详解】因为()()120f xg x =>,所以120,1x x >>,因为()e ()0e e 111x x xx x x f =+'+++>=恒成立,所以()f x 在(0,)+∞上单调递增,又()()()ln 1ln ln e 1xg x x x x =+=+,因为()()12f x g x =,即()()12ln 12e 1ln e 1x xx x +=+,所以1122ln e xx x x =⇒=,所以()12111e ,0x x x x x =>,记e (),(0)xh x x x=>, 所以2(1)()x e x h x x '-= 当01x <<时,()0h x '<,()h x 单调递减,当1x >时,()0h x '>,()h x 单调递增,所以()(1)e h x h ≥=,即21e x x ≥ 故选:CD.【点睛】本题考查利用导数求函数的最值,属于难题,其中将()()()ln 1ln ln e 1x g x x x x =+=+变形为()()e 1x f x x =+的结构,是解本题的关键.。

导数在函数中的应用知识点讲解+例题讲解(含解析)

导数在函数中的应用知识点讲解+例题讲解(含解析)

导数在函数中的应用一、知识梳理1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.函数的极值与导数形如山峰形如山谷3.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)若函数f (x )在(a ,b )内单调递增,那么一定有f ′(x )>0.( )(2)如果函数f (x )在某个区间内恒有f ′(x )=0,则f (x )在此区间内没有单调性.( ) (3)函数的极大值一定大于其极小值.( )(4)对可导函数f (x ),f ′(x 0)=0是x 0为极值点的充要条件.( )(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( ) 解析 (1)f (x )在(a ,b )内单调递增,则有f ′(x )≥0. (3)函数的极大值也可能小于极小值.(4)x 0为f (x )的极值点的充要条件是f ′(x 0)=0,且x 0两侧导函数异号. 答案 (1)× (2)√ (3)× (4)× (5)√2.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A.1B.2C.3D.4解析 由题意知在x =-1处f ′(-1)=0,且其两侧导数符号为左负右正. 答案 A3.函数f (x )=2x -x ln x 的极值是( ) A.1eB.2eC.eD.e 2解析 因为f ′(x )=2-(ln x +1)=1-ln x ,令f ′(x )=0,所以x =e ,当f ′(x )>0时,解得0<x <e ;当f ′(x )<0时,解得x >e ,所以x =e 时,f (x )取到极大值,f (x )极大值=f (e)=e. 答案 C4.(2019·青岛月考)函数f (x )=cos x -x 在(0,π)上的单调性是( ) A.先增后减 B.先减后增 C.单调递增D.单调递减解析易知f′(x)=-sin x-1,x∈(0,π),则f′(x)<0,所以f(x)=cos x-x在(0,π)上递减.答案D5.(2017·浙江卷)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()解析设导函数y=f′(x)与x轴交点的横坐标从左往右依次为x1,x2,x3,由导函数y=f′(x)的图象易得当x∈(-∞,x1)∪(x2,x3)时,f′(x)<0;当x∈(x1,x2)∪(x3,+∞)时,f′(x)>0(其中x1<0<x2<x3),所以函数f(x)在(-∞,x1),(x2,x3)上单调递减,在(x1,x2),(x3,+∞)上单调递增,观察各选项,只有D选项符合.答案D6.(2019·豫南九校考评)若函数f(x)=x(x-c)2在x=2处有极小值,则常数c的值为()A.4B.2或6C.2D.6解析函数f(x)=x(x-c)2的导数为f′(x)=3x2-4cx+c2,由题意知,在x=2处的导数值为12-8c+c2=0,解得c=2或6,又函数f(x)=x(x-c)2在x=2处有极小值,故导数在x=2处左侧为负,右侧为正,而当e=6时,f(x)=x(x-6)2在x=2处有极大值,故c=2.答案C考点一 求函数的单调区间【例1】 已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值. (1)确定a 的值;(2)若g (x )=f (x )e x ,求函数g (x )的单调减区间. 解 (1)对f (x )求导得f ′(x )=3ax 2+2x ,因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0,即3a ·⎝ ⎛⎭⎪⎫-432+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12.(2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x ,故g ′(x )=12x (x +1)(x +4)e x . 令g ′(x )<0,即x (x +1)(x +4)<0, 解得-1<x <0或x <-4,所以g (x )的单调减区间为(-1,0),(-∞,-4). 规律方法 1.求函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求f ′(x );(3)在定义域内解不等式f ′(x )>0,得单调递增区间;(4)在定义域内解不等式f ′(x )<0,得单调递减区间. 2.若所求函数的单调区间不止一个时,用“,”与“和”连接.【训练1】 (1)已知函数f (x )=x ln x ,则f (x )( ) A.在(0,+∞)上递增 B.在(0,+∞)上递减 C.在⎝ ⎛⎭⎪⎫0,1e 上递增 D.在⎝ ⎛⎭⎪⎫0,1e 上递减 (2)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间为________.解析 (1)因为函数f (x )=x ln x ,定义域为(0,+∞),所以f ′(x )=ln x +1(x >0),当f ′(x )>0时,解得x >1e ,即函数的单调递增区间为⎝ ⎛⎭⎪⎫1e ,+∞;当f ′(x )<0时,解得0<x <1e ,即函数的单调递减区间为⎝ ⎛⎭⎪⎫0,1e .(2)f ′(x )=sin x +x cos x -sin x =x cos x .令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2,即f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2.答案 (1)D (2)⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2考点二 讨论函数的单调性【例2】 (2017·全国Ⅰ卷改编)已知函数f (x )=e x (e x -a )-a 2x ,其中参数a ≤0. (1)讨论f (x )的单调性; (2)若f (x )≥0,求a 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),且a ≤0. f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x ,在(-∞,+∞)上单调递增. ②若a <0,则由f ′(x )=0,得x =ln ⎝ ⎛⎭⎪⎫-a 2.当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2上单调递减,在区间⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞上单调递增.(2)①当a =0时,f (x )=e 2x ≥0恒成立.②若a <0,则由(1)得,当x =ln ⎝ ⎛⎭⎪⎫-a 2时,f (x )取得最小值,最小值为f ⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2=a 2⎣⎢⎡⎦⎥⎤34-ln ⎝⎛⎭⎪⎫-a 2, 故当且仅当a 2⎣⎢⎡⎦⎥⎤34-ln ⎝⎛⎭⎪⎫-a 2≥0, 即0>a ≥-2e 34时,f (x )≥0.综上,a 的取值范围是[-2e 34,0].【训练2】 已知f (x )=x 22-a ln x ,a ∈R ,求f (x )的单调区间.解 因为f (x )=x 22-a ln x ,x ∈(0,+∞),所以f ′(x )=x -a x =x 2-ax .(1)当a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上为单调递增函数. (2)当a >0时,f ′(x )=(x +a )(x -a )x,则有①当x ∈(0,a )时,f ′(x )<0,所以f (x )的单调递减区间为(0,a ). ②当x ∈(a ,+∞)时,f ′(x )>0,所以f (x )的单调递增区间为(a ,+∞). 综上所述,当a ≤0时,f (x )的单调递增区间为(0,+∞),无单调递减区间. 当a >0时,函数f (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).考点三 函数单调性的简单应用 角度1 比较大小或解不等式【例3-1】 (1)已知函数y =f (x )对于任意的x ∈⎝ ⎛⎭⎪⎫0,π2满足f ′(x )cos x +f (x )sin x =1+ln x ,其中f ′(x )是函数f (x )的导函数,则下列不等式成立的是( ) A.2f ⎝ ⎛⎭⎪⎫π3<f ⎝ ⎛⎭⎪⎫π4B.2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4C.2f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π4D.3f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π6(2)已知函数f ′(x )是函数f (x )的导函数,f (1)=1e ,对任意实数都有f (x )-f ′(x )>0,设F (x )=f (x )e x ,则不等式F (x )<1e 2的解集为( ) A.(-∞,1) B.(1,+∞) C.(1,e)D.(e ,+∞)解析 (1)令g (x )=f (x )cos x ,则g ′(x )=f ′(x )cos x -f (x )(-sin x )cos 2x =1+ln x cos 2x .由⎩⎪⎨⎪⎧0<x <π2,g ′(x )>0,解得1e <x <π2;由⎩⎪⎨⎪⎧0<x <π2,g ′(x )<0,解得0<x <1e .所以函数g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,π2上单调递增,又π3>π4,所以g ⎝ ⎛⎭⎪⎫π3>g ⎝ ⎛⎭⎪⎫π4,所以f ⎝ ⎛⎭⎪⎫π3cos π3>f ⎝ ⎛⎭⎪⎫π4cos π4, 即2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4.(2)F ′(x )=f ′(x )e x -e x f (x )(e x )2=f ′(x )-f (x )e x ,又f (x )-f ′(x )>0,知F ′(x )<0, ∴F (x )在R 上单调递减.由F (x )<1e 2=F (1),得x >1, 所以不等式F (x )<1e 2的解集为(1,+∞).答案 (1)B (2)B角度2 根据函数单调性求参数【例3-2】 (2019·日照质检)已知函数f (x )=ln x ,g (x )=12ax 2+2x . (1)若函数h (x )=f (x )-g (x )存在单调递减区间,求实数a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求实数a 的取值范围. 解 h (x )=ln x -12ax 2-2x ,x >0.∴h ′(x )=1x -ax -2.(1)若函数h (x )在(0,+∞)上存在单调减区间, 则当x >0时,1x -ax -2<0有解,即a >1x 2-2x 有解. 设G (x )=1x 2-2x ,所以只要a >G (x )min . 又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,所以G (x )min =-1.所以a >-1.即实数a 的取值范围是(-1,+∞). (2)由h (x )在[1,4]上单调递减,∴当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立, 则a ≥1x 2-2x 恒成立,设G (x )=1x 2-2x , 所以a ≥G (x )max . 又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,x ∈[1,4],因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.又当a =-716时,h ′(x )=1x +716x -2=(7x -4)(x -4)16x,∵x ∈[1,4],∴h ′(x )=(7x -4)(x -4)16x ≤0,当且仅当x =4时等号成立. ∴h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.规律方法 1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小. 2.根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )是单调递增的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间存在单调区间可转化为不等式有解问题.【训练3】 (1)已知f (x )是定义在区间(0,+∞)内的函数,其导函数为f ′(x ),且不等式xf ′(x )<2f (x )恒成立,则( ) A.4f (1)<f (2) B.4f (1)>f (2) C.f (1)<4f (2)D.f (1)>4f ′(2)(2)(2019·淄博模拟)若函数f (x )=kx -ln x 在区间(2,+∞)上单调递增,则k 的取值范围是( )A.(-∞,-2]B.⎣⎢⎡⎭⎪⎫12,+∞ C.[2,+∞) D.⎝ ⎛⎦⎥⎤-∞,12解析 (1)设函数g (x )=f (x )x 2(x >0),则g ′(x )=x 2f ′(x )-2xf (x )x 4=xf ′(x )-2f (x )x 3<0,所以函数g (x )在(0,+∞)内为减函数,所以g (1)>g (2),即f (1)12>f (2)22,所以4f (1)>f (2).(2)由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(2,+∞)上单调递增,等价于f ′(x )=k -1x ≥0在(2,+∞)上恒成立,由于k ≥1x ,而0<1x <12,所以k ≥12.即k 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞. 答案 (1)B (2)B三、课后练习1.(2017·山东卷)若函数e x f (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( ) A.f (x )=2-x B.f (x )=x 2 C.f (x )=3-xD.f (x )=cos x解析 设函数g (x )=e x ·f (x ),对于A ,g (x )=e x ·2-x =⎝ ⎛⎭⎪⎫e 2x,在定义域R 上为增函数,A 正确.对于B ,g (x )=e x ·x 2,则g ′(x )=x (x +2)e x ,由g ′(x )>0得x <-2或x >0,∴g (x )在定义域R 上不是增函数,B 不正确.对于C ,g (x )=e x ·3-x =⎝ ⎛⎭⎪⎫e 3x在定义域R 上是减函数,C 不正确.对于D ,g (x )=e x ·cos x ,则g ′(x )=2e x cos ⎝ ⎛⎭⎪⎫x +π4,g ′(x )>0在定义域R 上不恒成立,D 不正确. 答案 A2.(2019·上海静安区调研)已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝ ⎛⎭⎪⎫ln 1x <2f (1)的解集为( ) A.(e ,+∞)B.(0,e)C.⎝ ⎛⎭⎪⎫0,1e ∪(1,e) D.⎝ ⎛⎭⎪⎫1e ,e 解析 f (x )=x sin x +cos x +x 2是偶函数,所以f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=f (ln x ).则原不等式可变形为f (ln x )<f (1)⇔f (|ln x |)<f (1). 又f ′(x )=x cos x +2x =x (2+cos x ), 由2+cos x >0,得x >0时,f ′(x )>0.所以f (x )在(0,+∞)上单调递增. ∴|ln x |<1⇔-1<ln x <1⇔1e <x <e. 答案 D3.若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是________.解析 f ′(x )=1-23cos 2x +a cos x =1-23(2cos 2x -1)+a cos x =-43cos 2 x +a cos x +53,f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立.令cos x =t ,t ∈[-1,1],则-43t 2+at +53≥0在[-1,1]上恒成立,即4t 2-3at -5≤0在t ∈[-1,1]上恒成立. 令g (t )=4t 2-3at -5,则⎩⎨⎧g (1)=4-3a -5≤0,g (-1)=4+3a -5≤0,解得-13≤a ≤13. 答案 ⎣⎢⎡⎦⎥⎤-13,134.已知函数f (x )=a ln x -ax -3(a ∈R ). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎢⎡⎦⎥⎤f ′(x )+m 2在区间(t ,3)上总不是单调函数,求m 的取值范围.解 (1)函数f (x )的定义域为(0,+∞), 且f ′(x )=a (1-x )x, 当a >0时,f (x )的递增区间为(0,1), 递减区间为(1,+∞);当a <0时,f (x )的递增区间为(1,+∞),递减区间为(0,1); 当a =0时,f (x )为常函数.(2)由(1)及题意得f ′(2)=-a 2=1,即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x .∴g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x , ∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t ,3)上总不是单调函数, 即g ′(x )在区间(t ,3)上有变号零点.由于g ′(0)=-2,∴⎩⎨⎧g ′(t )<0,g ′(3)>0.当g ′(t )<0时,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9;由g ′(3)>0,即m >-373. ∴-373<m <-9.即实数m 的取值范围是⎝ ⎛⎭⎪⎫-373,-9.。

(寒假总动员)2015年高三数学寒假作业专题05导数在函数中的应用(学)

(寒假总动员)2015年高三数学寒假作业专题05导数在函数中的应用(学)

(寒假总动员) 2015 年高三数学寒假作业专题05导数在函数中的应用(学)学一学 ------ 基础知识结论1.导数与函数单一性的关系函数y f ( x)在某个区间内可导①若 f '( x)0②若 f '( x)0,则f ( x)在这个区间内单一递加,则f ( x)在这个区间内单一递减例 1.【 2014 泉州月考卷】若函数 f ( x)2x2ln x在其定义域的一个子区间t,t 2 上不是单一函数,则实数 t 的取值范围是 ()101313t t t tA .2B .2C.22D.22.函数的极值( 1)极值点与极值设函数f ( x)在点x0及邻近有定义,且在==双侧的单一性相反或导数值为零,则x0 为函数f ( x)的极值点,f ( x)为函数的极值.(2) 极大值点与极小值点①若先增后减(导数值先正后负),则x0为极大值点;②若先减后增(导数值先负后正),则x0为极小值点 .f (x) 1 x3 1 ax22bx(a,b R)f (x) 在区间0,1例 2.已知函数32,且函数内获得极大值,在区间1,2内获得极小值,则a2b26a 9的取值范围是.函数的最值在闭区间[a, b]上连续的函数f (x)在[ a,b]上必有最大值与最小值 .若函数f ( x)在[ a, b]上单一递加,则f (a)为函数的最小值,f (b)为函数的最大值;若函数f (x)在[a,b]上单一递减,则f (a)为函数的最大值,f (b)为函数的最小值.设函数f ( x)在[ a, b]上连续,在(a,b)内可导,求f ( x)在[ a, b]上的最大值和最小值的步骤以下:①求 f ( x) 在 [a, b] 内的极值;②将f ( x)的各极值与f (a),f (b)比较,此中最大的一个是最大值,最小的一个是最小值.f ( x) ax 33( a 2) x26x 3例 3.已知函数2.( I )当a 2时,求函数f ( x)的极小值;( II )试议论曲线y f (x)与x轴的公共点的个数利用导数解决实质生活中的优化问题剖析实质问题中各变量之间的关系,成立实质问题的数学模型,写出相应的函数关系式 == 并确立定义域;求导数 f '( x) ,解方程 f '( x)0判断使f '( x)0的点是极大值点仍是极小值点;确立函数的最大值或最小值,复原到实质问题中作答.5.利用导数解决函数与方程问题研究函数图像的交点、方程的根、函数的零点,归根究竟仍是研究函数的性质,如单一性、极值,而后经过数形联合的思想找到解题的思路,所以使用的值的知识 .知识仍是函数的单一性和极6.导数与不等式相联合的问题求解不等式恒成立的问题时,能够考虑将从拿书分别出来,将的值域问题 .学一学 ------ 方法例律技巧一个条件参数范围转变为研究新函数f '(x) 0(或 f '(x) 0 )在 (a, b) 上成立是 f (x) 在 (a,b) 上单一递加(递减)的充足条件.四点提示针对本讲的内容,利用导数解决问题时应注意以下两点:先求定义域;对参数的分类议论要做到不重不漏.(3)注意实质问题中函数定义域确实定.(4)在实质问题中,假如函数在区间内只有一个极值点,那么只需依据实质意义判断最大值仍是最小值即可,不用再与端点的函数值比较.。

高考数学二轮核心考点突破:专题05-函数与导数的综合应用(含答案)

高考数学二轮核心考点突破:专题05-函数与导数的综合应用(含答案)

专题05 函数与导数的综合运用【自主热身,归纳提炼】1、函数f (x )=13ax 3+12ax 2-2ax +2a +1的图像经过四个象限的充要条件是________.【答案】-65<a <-316【解析】:由f ′(x )=ax 2+ax -2a =0得x =1或x =-2,结合图像可知函数的图像经过四个象限的充要条件是⎩⎪⎨⎪⎧a <0,f 1>0,f -2<0或⎩⎪⎨⎪⎧a >0,f 1<0,f -2>0,解得-65<a <-316.2、 在平面直角坐标系xOy 中,直线l 与曲线y =x 2(x >0)和y =x 3(x >0)均相切,切点分别为A (x 1,y 1)和B (x 2,y 2),则x 1x 2的值为________.3、已知点A (0,1),曲线C :y =log a x 恒过点B ,若P 是曲线C 上的动点,且AB →·AP →的最小值为2,则实数a =________.【答案】e思路分析 根据条件,要求AB →·AP →的最小值,首先要将它表示成点P (x ,log a x )的横坐标x 的函数,然后再利用导数的方法来判断函数的单调性,由此来求出函数的最小值.点A (0,1),B (1,0),设P (x ,log a x ),则AB →·AP →=(1,-1)·(x ,log a x -1)=x -log a x +1.依题f (x )=x -log a x +1在(0,+∞)上有最小值2且f (1)=2,所以x =1是f (x )的极值点,即最小值点.f ′(x )=1-1x ln a=x ln a -1x ln a.若0<a <1,f ′(x )>0,f (x )单调递增,在(0,+∞)无最小值,所以a >1.设f ′(x )=0,则x =log a e ,当x ∈(0,log a e)时,f ′(x )<0;当x ∈(log a e ,+∞)时,f ′(x )>0,从而当且仅当x =log a e 时,f (x )取最小值,所以log a e =1,a =e.解后反思 本题的关键在于要能观察出f (x )=x -log a x +1=2的根为1,然后利用函数的极小值点为x =1来求出a 的值,因而解题过程中,不断地思考、观察很重要,平时学习中,要养成多思考、多观察的习惯. 4、 已知函数f (x )=x -1-(e -1)ln x ,其中e 为自然对数的底,则满足f (e x)<0的x 的取值范围为________. 【答案】(0,1)思路分析 注意到条件f (e x )<0,让我们想到需要研究函数f (x )的单调性,通过函数的单调性将问题进行转化化简. 【答案】: -1e【思路分析】 若ba 的最小值为λ,则b a≥λ恒成立,结合题意必有λa -b ≤0恒成立.由f (x )=(ln x +e x )-ax -b ≤0恒成立,得f ⎝ ⎛⎭⎪⎫1e =-1e a -b ≤0.猜想a >0,从而b a ≥-1e . f ′(x )=1x+(e -a )=e -a x +1x(x >0),当e -a ≥0,即a ≤e 时,f (e b )=(e -a )e b>0,显然f (x )≤0不恒成立. 当e -a <0,即a >e 时,当x ∈⎝⎛⎭⎪⎫0,1a -e 时,f ′(x )>0,f (x )为增函数;当x ∈⎝ ⎛⎭⎪⎫1a -e ,+∞时,f ′(x )<0,f (x )为减函数,所以f (x )max =f ⎝⎛⎭⎪⎫1a -e =-ln(a -e)-b -1. 由f (x )≤0恒成立,得f (x )max ≤0,所以b ≥-ln(a -e)-1,所以得b a ≥-ln a -e -1a.设g (x )=-ln x -e -1x(x >e),g ′(x )=xe -x +ln x -e +1x 2=ee -x+ln x -e x2. 由于y =e e -x +ln(x -e)为增函数,且当x =2e 时,g ′(x )=0,所以当x ∈(e,2e)时,g ′(x )<0,g (x )为减函数;当x ∈(2e ,+∞)时,g ′(x )>0,g (x )为增函数,所以g (x )min =g (2e)=-1e ,所以b a ≥-1e,当a=2e ,b =-2时,b a 取得最小值-1e.解后反思 在考试时,到上一步就可以结束了,胆大一点,到猜想a >0这步就可结束了.现证最小值能取到,当b a =-1e 时,f ⎝ ⎛⎭⎪⎫1e =0应该是极大值,所以f ′⎝ ⎛⎭⎪⎫1e =2e -a =0,此时a =2e ,b =-2,f (x )=ln x -e x+2,易证f ⎝ ⎛⎭⎪⎫1e =0也是最大值,证毕.8、若函数f (x )=x 2||x -a 在区间[0,2]上单调递增,则实数a 的取值范围是________.【答案】(-∞,0]∪[3,+∞)思路分析 含绝对值的函数需要去绝对值转化为分段函数,本题已知函数在[0,2]上为增函数,则需先讨论函数在[0,+∞)上的单调性,自然地分a ≤0和a >0两个情况进行讨论,得到函数在[0,+∞)上的单调性,结合函数单调性得到23a ≥2,从而解出a 的取值范围.先讨论函数在[0,+∞)上的单调性.当a ≤0时,f (x )=x 3-ax 2,f ′(x )=3x 2-2ax ≥0在[0,+∞)上恒成立,所以f (x )在[0,+∞)上单调递增,则也在[0,2]上单调递增,成立;当a >0时,f (x )=⎩⎪⎨⎪⎧ax 2-x 3, 0≤x ≤a ,x 3-ax 2, x >a .①当0≤x ≤a 时,f ′(x )=2ax -3x 2,令f ′(x )=0,则x =0或x =23a ,则f (x )在⎣⎢⎡⎭⎪⎫0,23a 上单调递增,在⎝ ⎛⎭⎪⎫23a ,a 上单调递减;②当x >a 时,f ′(x )=3x 2-2ax =x (3x -2a )>0,所以f (x )在(a ,+∞)上单调递增,所以当a >0时,f (x )在⎣⎢⎡⎭⎪⎫0,23a 上单调递增,在⎝ ⎛⎭⎪⎫23a ,a 上单调递减,在(a ,+∞)上单调递增.要使函数在区间[0,2]上单调递增,则必有23a ≥2,解得a ≥3.综上,实数a 的取值范围是(-∞,0]∪[3,+∞).【关联1】、若函数f (x )=⎪⎪⎪⎪⎪⎪e x2-a e x (a ∈R )在区间[1,2]上单调递增,则实数a 的取值范围是________. 【答案】: ⎣⎢⎡⎦⎥⎤-e 22,e 22 【解析】:【思路分析】 本题所给函数含有绝对值符号,可以转化为g (x )=e x2-ae x 的值域和单调性来研究,根据图像的对称性可得g (x )=e x2-aex 只有单调递增和单调递减这两种情况.设g (x )=e x2-ae x ,因为f (x )=|g (x )|在区间[1,2]上单调递增,所以g (x )有两种情况:①g (x )≤0且g (x )在区间[1,2]上单调递减. 又g ′(x )=e x 2+2a2·e x,所以g ′(x )=e x 2+2a2·ex≤0在区间[1,2]上恒成立,且g (1)≤0. 所以⎩⎪⎨⎪⎧2a ≤-e x2,e 2-ae≤0,无解.②g (x )≥0且g (x )在区间[1,2]上单调递增,即g ′(x )=e x 2+2a2·ex≥0在区间[1,2]上恒成立,且g (1)≥0,所以⎩⎪⎨⎪⎧2a ≥-e x 2,e 2-ae≥0,解得a ∈⎣⎢⎡⎦⎥⎤-e 22,e 22.综上,实数a 的取值范围为⎣⎢⎡⎦⎥⎤-e 22,e 22.【关联2】、若函数f(x)=(x +1)2|x -a|在区间[-1,2]上单调递增,则实数a 的取值范围是________.【答案】: (-∞,-1]∪⎣⎢⎡⎭⎪⎫72,+∞思路分析 由于条件中函数的解析式比较复杂,可以先通过代数变形,将其化为熟悉的形式,进而利用导数研究函数的性质及图像,再根据图像变换的知识得到函数f(x)的图像进行求解. 函数f(x)=(x +1)2|x -a|=|(x +1)2(x -a)|=|x 3+(2-a)x 2+(1-2a)x -a|. 令g(x)=x 3+(2-a)x 2+(1-2a)x -a ,则g ′(x)=3x 2+(4-2a)x +1-2a =(x +1)(3x +1-2a). 令g′(x)=0得x 1=-1,x 2=2a -13.①当2a -13<-1,即a<-1时,令g′(x)>0,即(x +1)(3x +1-2a)>0,解得x<2a -13或x>-1;令g′(x)<0,解得2a -13<x<-1.所以g(x)的单调增区间是⎝ ⎛⎭⎪⎫-∞,2a -13,(-1,+∞),单调减区间是⎝ ⎛⎭⎪⎫2a -13,-1.又因为g(a)=g(-1)=0,所以f(x)的单调增区间是⎝ ⎛⎭⎪⎫a ,2a -13,(-1,+∞),单调减区间是(-∞,a),⎝ ⎛⎭⎪⎫2a -13,-1,满足条件,故a<-1(此种情况函数f(x)图像如图1). ,图1)②当2a -13=-1,即a =-1时,f(x)=|(x +1)3|,函数f(x)图像如图2,则f(x)的单调增区间是(-1,+∞),单调减区间是(-∞,-1),满足条件,故a =-1.,图2)③当2a -13>-1,即a>-1时,令g′(x)>0,即(x +1)(3x +1-2a)>0,解得x<-1或x>2a -13;令g ′(x)<0,解得-1<x<2a -13.所以g(x)的单调增区间是(-∞,-1),⎝⎛⎭⎪⎫2a -13,+∞,单调减区间是⎝ ⎛⎭⎪⎫-1,2a -13. 又因为g(a)=g(-1)=0,所以f(x)的单调增区间是⎝⎛⎭⎪⎫-1,2a -13,(a ,+∞),单调减区间是(-∞,-1),⎝ ⎛⎭⎪⎫2a -13,a ,要使f(x)在[-1,2]上单调递增,必须满足2≤2a -13,即a≥72,又因为a>-1,故a≥72(此种情况函数f(x)图像如图3).综上,实数a 的取值范围是(-∞,-1]∪⎣⎢⎡⎭⎪⎫72,+∞.9、 已知函数f (x )=⎩⎪⎨⎪⎧-|x 3-2x 2+x |, x <1,ln x , x ≥1,若对于∀t ∈R ,f (t )≤kt 恒成立,则实数k 的取值范围是________.【答案】: [1e ,1] 【思路分析】 本题条件“∀t ∈R ,f (t )≤kt ”的几何意义是:在(-∞,+∞)上,函数y =f (t )的图像恒在直线y =kt 的下方,这自然提示我们利用数形结合的方法解决本问题.令y =x 3-2x 2+x ,x <1,则y ′=3x 2-4x +1=(x -1)·(3x -1),令y ′>0,即(x -1)(3x -1)>0,解得x <13或x >1.又因为x <1,所以x <13.令y ′<0,得13<x <1,所以y 的增区间是(-∞,13),减区间是(13,1),所以y极大值=427.根据图像变换可作出函数y =-|x 3-2x 2+x |,x <1的图像.又设函数y =ln x (x ≥1)的图像经过原点的切线斜率为k 1,切点(x 1,ln x 1),因为y ′=1x ,所以k 1=1x 1=ln x 1-0x 1-0,解得x 1=e ,所以k 1=1e .函数y=x 3-2x 2+x 在原点处的切线斜率k 2=y ′x =0=1.因为∀t ∈R ,f (t )≤kt ,所以根据f (x )的图像,数形结合可得1e≤k ≤1.10、 已知a 为常数,函数f(x)=xa -x 2-1-x2的最小值为-23,则a 的所有值为________. 【答案】: 4,14解法1(构造三角形) f(x)=xa -x 2-1-x 2=x (a -x 2+1-x 2)a -1,因为f(x)为奇函数,令g(x)=x (a -x 2+1-x 2)|a -1|(x>0),则g(x)的最大值为23,由根号内的结构联想到勾股定理,从而构造△ABC 满足AB =a ,AC =1,AD ⊥BC ,AD =x ,则BD =a -x 2,DC =1-x 2,则S △ABC =12BC ·AD =12x(a -x 2+1-x 2)=12AB ·AC ·sin ∠BAC ≤12AB ·AC =12a ,当且仅当∠BAC =π2时,△ABC 的面积最大,且最大值为12 a.从而g(x)=x (a -x 2+1-x 2)|a -1|=2|a -1|S △ABC ≤a |a -1|,所以a |a -1|=23,解得a =4或a =14.解法2(导数法,理科) 由题意得函数f(x)为奇函数. 因为函数f(x)=x a -x 2-1-x2,所以f ′(x)=(a -x 2-1-x 2)-x ⎝ ⎛⎭⎪⎫-2x 2a -x 2--2x 21-x 2(a -x 2-1-x 2)2=a -x21-x 2-x2(a -x 2-1-x 2)a -x 21-x2,a ≠1.令f ′(x)=0,得x 2=a -x21-x 2,则x 2=a a +1.因为函数f(x)的最小值为-23,且a>0.由a -x21-x 2-x 2>0,得a -(a +1)x 2>0.①当0<a<1时,a -x 2-1-x 2<0,函数f(x)的定义域为[-a ,a],由f ′(x)>0得-a ≤x<-aa +1或aa +1<x ≤a ;由f ′(x)<0得-aa +1<x<a a +1,函数f(x)在[-a ,-a a +1),⎝ ⎛⎦⎥⎤a a +1,a 上为增函数,在(-a a +1,aa +1)上为减函数. 因为f(-a)=a 1-a >f ⎝⎛⎭⎪⎫a a +1=a a -1,所以f(x)min =f ⎝⎛⎭⎪⎫a a +1=a a -1=-23,解得a =14. ②当a>1时,a -x 2-1-x 2>0,函数f(x)的定义域为[-1,1],由f ′(x)>0得-aa +1<x<a a +1;由f ′(x)<0得-1≤x<-aa +1或a a +1<x ≤1,函数f(x)在⎝⎛⎭⎪⎫-aa +1,a a +1上为增函数,在⎣⎢⎡⎭⎪⎫-1,-a a +1,⎝ ⎛⎦⎥⎤a a +1,1上为减函数. 因为f ⎝ ⎛⎭⎪⎫-a a +1=-a a -1<f(1)=1a -1,所以f(x)min =f ⎝ ⎛⎭⎪⎫-a a +1=-a a -1=-23,解得a =4. 综上所述,a =4或a =14.解法3(构造向量) f(x)=xa -x 2-1-x 2=x (a -x 2+1-x 2)a -1,因为f(x)为奇函数,令g(x)=x (a -x 2+1-x 2)|a -1|(x>0),则g(x)的最大值为23,设向量a =(a -x 2,x 2),b =(x 2,1-x 2),a 与b的夹角为θ,则有a ·b =|a |·|b |cos θ≤|a |·|b |,即(a -x 2,x 2)·(x 2,1-x 2)≤(a -x 2)+x 2·x 2+(1-x 2), 亦即a -x 2·x 2+x 2·1-x 2≤a ,亦即x (a -x 2+1-x 2)≤a , 当且仅当a 与b 同向时等号成立,即a -x 2·1-x 2-x 2·x 2=0,亦即x 2=aa +1时,取等号.即x (a -x 2+1-x 2)的最大值为a ,从而g (x )的最大值为a |a -1|,即有a |a -1|=23,解得a =4或a =14.解后反思 1. 最值的求法通常有如下的方法:(2)解法1(根的分布) 当x 0>1时,则f(x 0)>0,又b =3-a ,设t =f(x 0),则题意可转化为方程ax +3-ax -c =t(t >0) 在(0,+∞)上有相异两实根x 1,x 2, (6分)即关于x 的方程ax 2-(c +t)x +(3-a)=0(t >0)在(0,+∞)上有相异两实根x 1,x 2. 则x 1,2=c +t ±(c +t )2-4a (3-a )2a,所以⎩⎪⎨⎪⎧0<a <3,Δ=(c +t )2-4a (3-a )>0,x 1+x 2=c +ta >0,x 1x 2=3-a a >0,得⎩⎪⎨⎪⎧0<a <3,(c +t )2>4a (3-a ),c +t >0.所以c >2a (3-a )-t 对任意t ∈(0,+∞)恒成立. 因为0<a <3,所以2a (3-a )≤2×a +3-a 2=3(当且仅当a =32时取等号). 又-t <0,所以2a (3-a )-t 的取值范围是(-∞,3),所以c ≥3. 故c 的最小值为3.(10分)解法2(图像法) 由b =3-a ,且0 <a <3,得g ′(x)=a -3-a x 2=ax 2-(3-a )x 2=0,得 x =3-aa或x =-3-a a (舍),则函数g(x)在⎝⎛⎭⎪⎫0,3-a a 上单调递减;在⎝⎛⎭⎪⎫3-a a ,+∞上单调递增. 又对任意x 0>1,f(x 0)为(0,+∞)上的任意一个值,若存在不相等的正实数x 1,x 2,使得g(x 1)=g(x 2)=f(x 0),则g(x)的最小值小于或等于0. 即g ⎝⎛⎭⎪⎫3-a a =2a (3-a )-c ≤0,(6分) 即c ≥2a (3-a )对任意 a ∈(0,3)恒成立. 又2a (3-a )≤a +(3-a)=3,所以c ≥3.当c =3时,对任意a ∈(0,3),x 0∈(1,+∞),方程g(x)-f(x 0)=0化为ax +3-a x -3-f(x 0)=0,即ax2-[3+f(x 0)]x +(3-a)=0 (*).关于x 的方程(*)的Δ=[3+f(x 0)]2-4a(3-a)≥[3+f(x 0)]2-4⎝ ⎛⎭⎪⎫a +3-a 22=[3+f(x 0)]2-9,因为x 0>1,所以f(x 0)=ln x 0>0,所以Δ>0,所以方程(*)有两个不相等的实数解x 1,x 2,又x 1+x 2=f (x 0)+3a >0,x 1x 2=3-aa >0,所以x 1,x 2为两个相异正实数解,符合题意.所以c 的最小值为3. 解法3(图像法) 当x 0>1时,可知f(x 0)>0,又b =3-a ,设t =f(x 0),则t >0. 令h(x)=ax +3-a x -c -t(x >0,t >0),同解法2可知h(x)在⎝ ⎛⎭⎪⎫0,3-a a 上单调递减;在⎝⎛⎭⎪⎫3-a a ,+∞上单调递增.当c <2a (3-a )时,若0<t <2a (3-a )-c ,则x >0时,h(x)=ax +3-ax-c -t ≥2a (3-a )-c-t >0,所以h(x)在(0,+∞)上没有零点,不符合题意. 当c ≥2a (3-a )时,h ⎝⎛⎭⎪⎫3-a a =2a (3-a )-c -t ≤-t <0. 因为a (3-a )<2a (3-a )≤c ,a (3-a )<c +t ,所以0<3-ac +t <3-a a ,所以当0<m <3-ac +t时,3-a m >c +t ,所以h(m)=am +3-a m -c -t >3-am -c -t >0, 又h(x)在⎝ ⎛⎭⎪⎫0,3-a a 上单调递减,并且连续,则h(x)在(m ,3-aa)上恰有一个零点,所以存在x 1∈(0,3-aa),使得h(x 1)=0,即g(x 1)=t. 因为c +t >c >a (3-a ),所以c +ta >3-a a ,所以当n >c +t a 时,h(n)=an +3-an-c -t >an -c -t >0, 又h(x)在⎝ ⎛⎭⎪⎫3-a a ,+∞上单调递增,并且连续,则h(x)在⎝ ⎛⎭⎪⎫3-a a ,n 上恰有一个零点,所以存在x 2∈⎝⎛⎭⎪⎫3-a a ,+∞,使得h(x 2)=0,即g(x 2)=t. 所以当c ≥2a (3-a )时,对任意x 0∈(1,+∞)和任意a ∈(0,3),总存在不相等的正实数x 1,x 2,使得g(x 1)=g(x 2)=f(x 0).即c ≥2a (3-a )对任意 a ∈(0,3)恒成立.又2a (3-a )≤a +(3-a)=3,当且仅当a =32时取等号,所以c ≥3.故c 的最小值为3.(3)当a =1时,因为函数f(x)与g(x)的图像交于A ,B 两点,所以⎩⎪⎨⎪⎧ln x 1=x 1+bx 1-c ,ln x 2=x 2+bx2-c ,两式相减,得b =x 1x 2(1-ln x 2-ln x 1x 2-x 1).要证明x 1x 2-x 2<b<x 1x 2-x 1,即证x 1x 2-x 2<x 1x 2⎝⎛⎭⎪⎫1-ln x 2-ln x 1x 2-x 1<x 1x 2-x 1,即证1x 2<ln x 2-ln x 1x 2-x 1<1x 1,即证1-x 1x 2<ln x 2x 1<x 2x 1-1.令x 2x 1=t ,则t>1,此时即证1-1t<ln t<t -1. 令φ(t)=ln t +1t -1,所以φ′(t)=1t -1t 2=t -1t 2>0,所以当t>1时,函数φ(t)单调递增.又φ(1)=0,所以φ(t)=ln t +1t -1>0,即1-1t<ln t 成立;再令m(t)=ln t -t +1,所以m ′(t)=1t -1=1-tt <0,所以当t>1时,函数m(t)单调递减.又m(1)=0,所以m(t)=ln t -t +1<0,即ln t<t -1也成立. 综上所述, 实数x 1,x 2满足x 1x 2-x 2<b<x 1x 2-x 1.【变式2】、.已知函数f(x)=⎩⎪⎨⎪⎧-x 3+x 2,x<0,e x-ax ,x ≥0,其中常数a∈R .(1) 当a =2时,求函数f (x )的单调区间;(2) 若方程f (-x )+f (x )=e x-3在区间(0,+∞)上有实数解,求实数a 的取值范围; (3) 若存在实数m ,n ∈[0,2],且|m -n |≥1,使得f (m )=f (n ),求证:1≤ae -1≤e.思路分析(1) 先分段讨论,再整体说明单调区间是否可合并(关键是图像在x =0处怎样跳跃). (2) 转化为a =x 2+x +3x 在(0,+∞)上有实数解,即求函数g(x)=x 2+x +3x 在(0,+∞)上的值域.(3) 首先缩小a 的范围为1<a<e 2,在此基础上考察f(x)在0,1,2,m ,n 处的函数值的大小关系.【解析】:(1) 当a =2时,f(x)=⎩⎪⎨⎪⎧-x 3+x 2,x<0,e x-2x ,x ≥0.①当x<0时,f ′(x)=-3x 2+2x<0恒成立,所以f(x)在(-∞,0)上递减;(2分)②当x ≥0时,f ′(x)=e x-2,可得f(x)在[0,ln 2]上递减,在[ln 2,+∞)上递增.(4分)因为f(0)=1>0,所以f(x)的单调递减区间是(-∞,0)和[0,ln 2],单调递增区间是[ln 2,+∞).(5分) (2) 当x>0时,f(x)=e x-ax ,此时-x<0,f(-x)=-(-x)3+(-x)2=x 3+x 2. 所以可化为a =x 2+x +3x在区间(0,+∞)上有实数解.(6分)记g(x)=x 2+x +3x ,x ∈(0,+∞),则g ′(x)=2x +1-3x 2=(x -1)(2x 2+3x +3)x2.(7分) 可得g(x)在(0,1]上递减,在[1,+∞)上递增,且g(1)=5,当x →+∞时,g(x)→+∞.(9分) 所以g(x)的值域是[5,+∞),即实数a 的取值范围是[5,+∞).(10分) (3) 当x ∈[0,2]时,f(x)=e x-ax ,有f ′(x)=e x-a.若a ≤1或a ≥e 2,则f(x)在[0,2]上是单调函数,不合题意.(11分) 所以1<a<e 2,此时可得f(x)在[0,ln a]上递减,在[ln a ,2]上递增.不妨设0≤m<ln a<n ≤2,则f(0)≥f(m)>f(ln a),且f(ln a)<f(n)≤f(2).由m ,n ∈[0,2],n -m ≥1,可得0≤m ≤1≤n ≤2.(12分) 因为f(m)=f(n),所以⎩⎪⎨⎪⎧1<a<e 2,f (0)≥f (m )≥f (1),f (2)≥f (n )≥f (1),得⎩⎪⎨⎪⎧1<a<e 2,1≥e -a ,e 2-2a ≥e -a ,(14分)即e -1≤a ≤e 2-e ,所以1≤ae -1≤e .(16分) 解后反思 第(1)题中,若函数f(x)改为f(x)=⎩⎪⎨⎪⎧-x 3+x 2+2,x<0,e x -2x ,x ≥0.则函数f(x)的“两个”递减区间(-∞,0)和[0,ln 2]应合并为一个递减区间(-∞,ln 2],因为函数图像在x =0处(从左往右)向下跳跃.而原题中函数图像在x =0处(从左往右)向上跳跃,所以不能合并.【关联1】、.已知函数f(x)=e x(3x -2),g(x)=a(x -2),其中a ,x ∈R . (1) 求过点(2,0)和函数y =f (x )图像相切的直线方程; (2) 若对任意x ∈R ,有f (x )≥g (x )恒成立,求a 的取值范围; (3) 若存在唯一的整数x 0,使得f (x 0)<g (x 0),求a 的取值范围.思路分析 (1)利用导数的几何意义求切线的方程,根据斜率建立方程即可.(2)不等式恒成立问题处理的方法有两种:一种是分离参变,转化为相应函数的值域(最值)问题解决;另一种是转化为含参函数的值域问题,通过分类讨论解决.这里可以采取第一种方法,只是分离参变时要注意对x -2的符号进行分类讨论.(3)在第(2)小问的基础上,分离参变,转化为存在有限整数自变量满足条件的问题.利用导数研究函数F(x)=e x (3x -2)x -2的性质,找到相关的整数自变量,求得对应的函数值是解决本问题的关键.【解析】(1) 设切点为(x 0,y 0),f ′(x)=e x(3x +1),则切线斜率为e x 0(3x 0+1),所以切线方程为y -y 0=e x 0(3x 0+1)(x -x 0),因为切线过点(2,0), 所以-e x 0(3x 0-2)=e x 0(3x 0+1)(2-x 0), 化简得3x 20-8x 0=0,解得x 0=0或x 0=83,当x 0=0时,切线方程为y =x -2, 当x 0=83时,切线方程为y =9e 83x -18e 83.(2) 由题意,对任意x ∈R ,有e x(3x -2)≥a (x -2)恒成立, ①当x ∈(-∞,2)时,a ≥e x(3x -2)x -2,即a ≥⎣⎢⎡⎦⎥⎤e x(3x -2)x -2max.令F (x )=e x (3x -2)x -2,则F ′(x )=e x (3x 2-8x )(x -2)2, 令F ′(x )=0,得x =0,列表如下:F (x )max =F (0)=1,故此时a ≥1. ②当x =2时,恒成立,故此时a ∈R .③当x ∈(2,+∞)时,a ≤e x(3x -2)x -2,即a ≤⎣⎢⎡⎦⎥⎤e x(3x -2)x -2min,令F ′(x )=0,得x =83,列表如下:F (x )min =F ⎝ ⎛⎭⎪⎫83=9e 83, 故此时a ≤9e 83,综上,1≤a ≤9e 83.(3) 由f (x )<g (x ),得e x(3x -2)<a (x -2), 由(2)知a ∈(-∞,1)∪(9e 83,+∞),令F (x )=e x(3x -2)x -2,列表如下:(12分)当x ∈(-∞,2)时,存在唯一的整数x 0使得f (x 0)<g (x 0), 等价于a <e x(3x -2)x -2存在的唯一整数x 0成立,因为F (0)=1最大,F (-1)=53e ,F (1)=-e ,所以当a <53e 时,至少有两个整数成立,所以a ∈⎣⎢⎡⎭⎪⎫53e ,1. 当x ∈(2,+∞)时,存在唯一的整数x 0使得f (x 0)<g (x 0),等价于a >e x(3x -2)x -2存在唯一的整数x 0成立,因为F ⎝ ⎛⎭⎪⎫83=9e 83最小,且F (3)=7e 3,F (4)=5e 4,所以当a >5e 4时,至少有两个整数成立,当a ≤7e 3时,没有整数成立,所以a ∈(7e 3,5e 4].综上,a ∈⎣⎢⎡⎭⎪⎫53e ,1∪(7e 3,5e 4].【关联2】、已知函数f(x)=ln x(x +a )2,其中a 为常数.(1) 若a =0,求函数f(x)的极值;(2) 若函数f(x)在(0,-a)上单调递增,求实数a 的取值范围; (3) 若a =-1,设函数f(x)在(0,1)上的极值点为x 0,求证:f(x 0)<-2.思路分析 第一小问,利用导函数求单调性、极值、值域的一般步骤,必须掌握!也是解决后面问题的基础;第二小问,由函数在(0,-a)上的单调性得出导函数在特定区间的符号,转化为含参数的恒成立问题;第三小问,关键是找到零点的大致范围,还是利用导数求最大值、最小值的方法. 【解析】:(1) 当a =0时,f(x)=ln xx 2,定义域为(0,+∞).f ′(x)=1-2ln xx3,令f ′(x)=0,得x =e . 当x 变化时,f ′(x),f(x)的变化情况如下表:x (0,e ) e(e ,+∞)f ′(x) + 0 - f(x)极大值12e所以当x =e 时,f(x)的极大值为12e,无极小值.①若0<-a ≤e -12,即0>a ≥-e -12,则g ′(x)=2ln x +1<0对x ∈(0,-a)恒成立,所以g(x)=2x ln x -x 在(0,-a)上单调递减,则a ≤2(-a)ln (-a)-(-a),所以ln (-a)≥0,所以a ≤-1与a ≥-e -12矛盾,舍去;②若-a>e -12,即a<-e -12,令g ′(x)=2ln x +1=0,得x =e -12,当0<x<e -12时,g ′(x)=2ln x +1<0,所以g(x)=2x ln x -x 单调递减,当e -12<x<-a 时,g ′(x)=2ln x +1>0,所以g(x)=2x ln x -x 单调递增,所以当x =e -12时,g(x)min =g(e -12)=2e -12·lne -12-e -12=-2e -12,所以a ≤-2e -12.综上,实数a 的取值范围是(-∞,-2e -12].(3) 当a =-1时,f(x)=ln x (x -1)2,f ′(x)=x -1-2x ln xx (x -1)3.令h(x)=x -1-2x ln x ,x ∈(0,1),则h ′(x)=1-2(ln x +1)=-2ln x -1,令h ′(x)=0,得x =e -12.①当e -12≤x<1时,h ′(x)≤0,所以h(x)=x -1-2x ln x 单调递减,h(x)∈(0,2e -12-1],x ∈(0,1),所以f ′(x)=x -1-2x ln x x (x -1)3<0恒成立,所以f(x)=ln x (x -1)2单调递减,且f(x)≤f(e -12).②当0<x ≤e -12时,h ′(x)≥0,所以h(x)=x -1-2x ln x 单调递增,其中h ⎝ ⎛⎭⎪⎫12=12-1-2·12·ln 12=ln4e>0,h(e -2)=e -2-1-2e -2·lne -2=5e2-1<0,所以存在唯一x 0∈⎝⎛⎭⎪⎫e -2,12,使得h(x 0)=0,所以f ′(x 0)=0,当0<x<x 0时,f ′(x)>0,所以f(x)=ln x(x -1)2单调递增;当x 0<x ≤e -12时,f ′(x)<0,所以f(x)=ln x (x -1)2单调递减,且f(x)≥f(e -12),由①和②可知,f(x)=ln x(x -1)2在(0,x 0)上单调递增,在(x 0,1)上单调递减,所以当x =x 0时,f(x)=ln x(x -1)2取极大值.因为h(x 0)=x 0-1-2x 0ln x 0=0,所以ln x 0=x 0-12x 0,所以f(x 0)=ln x 0(x 0-1)2=12x 0(x 0-1)=12⎝⎛⎭⎪⎫x 0-122-12.又x 0∈⎝ ⎛⎭⎪⎫e -2,12⊆⎝ ⎛⎭⎪⎫0,12,所以2⎝ ⎛⎭⎪⎫x 0-122-12∈⎝ ⎛⎭⎪⎫-12,0,所以f(x 0)=12⎝⎛⎭⎪⎫x 0-122-12<-2.解后反思 本题三个小题梯度明显,有较好的区分度.其中第(1)小题简单;第(2)小题难度中等,但要完成讨论也需要不错的基础;第三小题“隐零点”问题.不是一般的考生能讨论出范围的,建议一般的考生果断放弃.各个小问题中都利用了导数研究函数的单调性、极值、值域. 【关联3】、已知函数f (x )=x-1-a lnx (其中a 为参数). (1) 求函数f (x )的单调区间;(2) 若对任意x ∈(0,+∞)都有f (x )≥0成立,求实数a 的取值集合;(3) 证明:⎝⎛⎭⎪⎫1+1n n <e<⎝ ⎛⎭⎪⎫1+1n n +1(其中n ∈N *,e 为自然对数的底数).【解析】:(1) f ′(x )=1-a x =x -ax(x >0),当a ≤0时,f ′(x )=1-a x =x -ax>0,所以f (x )在(0,+∞)上是增函数;当a >0时,x (0,a ) a(a ,+∞)f ′(x ) -0 + f (x )极小值所以f (x )的增区间是(a 综上所述, 当a ≤0时,f (x )的单调递增区间是(0,+∞);当a >0时,f (x )的单调递增区间是(a ,+∞),单调递减区间是(0,a ). (2) 由题意得f (x )min ≥0.当a ≤0时,由(1)知f (x )在(0,+∞)上是增函数, 当x →0时,f (x )→-∞,故不合题意;(6分)当a >0时,由(1)知f (x )min =f (a )=a -1-a ln a ≥0.令g (a )=a -1-a ln a ,则由g ′(a )=-ln a =0,得a =1,a (0,1) 1 (1,+∞)g ′(a ) +0 - g (a )极大值所以g (a )=a -1-a ln a min =0, 所以a =1,即实数a 的取值集合是{1}.(10分) (3) 要证不等式1+1n n <e<1+1nn +1,两边取对数后,只要证n ln1+1n <1<(n +1)ln1+1n,即只要证1n +1<ln1+1n <1n, 令x =1+1n ,则只要证1-1x<ln x <x -1(1<x ≤2).由(1)知当a =1时,f (x )=x -1-ln x 在(1,2]上递增, 因此f (x )>f (1),即x -1-ln x >0,所以ln x <x -1(1<x ≤2) 令φ(x )=ln x +1x -1(1<x ≤2),则φ′(x )=x -1x2>0,所以φ(x )在(1,2]上递增,故φ(x )>φ(1),即ln x +1x -1>0,所以1-1x<ln x (1<x ≤2).综上,原命题得证.【关联4】、已知函数f (x )=e x,g (x )=x -b ,b ∈R . (1) 若函数f (x )的图像与函数g (x )的图像相切,求b 的值; (2) 设函数T (x )=f (x )+ag (x ),a ∈R ,求T (x )的单调递增区间;(3) 设函数h (x )=|g (x )|·f (x ),b <1.若存在x 1,x 2∈[0,1],使|h (x 1)-h (x 2)|>1成立,求b 的取值范围.【思路分析】 (1) 对于直线与曲线相切问题,只要切点不知道的,都要先设切点坐标,然后运用好切点的双重身份,即切点既是切线上的点,又是曲线上的点,它的坐标既适合切线方程,又适合曲线方程,再由方程(组)思想,求出未知量;(2) 要求函数T (x )的单调递增区间,只要求T ′(x )>0的解区间就行,不过需对a 进行分类讨论;(3) 首先要把“若存在x 1,x 2∈[0,1],使|h (x 1)-h (x 2)|>1成立”运用等价转化的思想转化为“h (x )在[0,1]上的最大值h (x )max 和最小值h (x )min 满足h (x )max -h (x )min >1”,接下来的问题就是求h (x )在[0,1]上的最大值和最小值.对于含绝对值的函数一般首先要去掉绝对值,这里要运用好分类讨论思想.(3) 若存在x 1,x 2∈[0,1],使|h (x 1)-h (x 2)|>1成立,则等价转化为h (x )在[0,1]上的最大值h (x )max 和最小值h (x )min 满足h (x )max -h (x )min >1.解法1 h (x )=|g (x )|·f (x )=⎩⎪⎨⎪⎧x -b e x, x ≥b ,-x -b e x, x <b .当x ≥b 时,有h ′(x )=(x -b +1)e x>0; 当x <b -1时,有h ′(x )=-(x -b +1)e x>0; 当b -1<x <b 时,有h ′(x )=-(x -b +1)e x <0,所以h (x )在(-∞,b -1)上是增函数,在(b -1,b )上是减函数,在(b ,+∞)上是增函数.(10分) 因为b <1,则①当b ≤0时,h (x )在[0,1]上为增函数.所以h (x )max =h (1)=(1-b )e ,h (x )min =h (0)=-b .则由h (x )max -h (x )min >1,得(1-b )e +b >1,解得b <1,所以b ≤0.(12分)②当0<b <1时,h (x )在(0,b )上是减函数,在(b,1)上是增函数,所以h (x )min =h (b )=0,h (x )max =max{h (0),h (1)}.若h (0)-h (1)=b -(1-b )e =b (e +1)-e>0,即b >ee +1,此时h (0)>h (1);若b <e e +1,此时h (0)<h (1).(ⅰ) 当0<b <ee +1时,有h (x )max =h (1)=(1-b )e ,h (x )min =h (b )=0. 则由h (x )max -h (x )min >1,得(1-b )e>1,解得b <e -1e .(ⅱ) 当ee +1≤b <1时,有h (x )max =h (0)=b ,h (x )min =h (b )=0. 因为b <1,所以h (x )max -h (x )min =b >1不成立. 综上,b 的取值范围为-∞,e -1e.解法2 h (x )=|g (x )|·f (x )=|x -b |·e x=|(x -b )e x|,令φ(x )=(x -b )e x,则h (x )=|φ(x )|. 先研究函数φ(x )=(x -b )e x,φ′(x )=(x -b +1)e x.因为b <1,所以在[0,1]上有φ′(x )=(x -b +1)e x>0,因此φ(x )在[0,1]上是增函数.所以φ(x )min =φ(0)=-b ,φ(x )max =φ(1)=(1-b )e>0.①若φ(0)=-b ≥0,即b ≤0时,h (x )min =φ(0)=-b ,h (x )max =φ(1)=(1-b )e , 则由h (x )max -h (x )min >1,即(1-b )e +b >1,解得b <1,所以b ≤0.②若φ(0)=-b <0,即0<b <1时,h (x )min =φ(b )=0,h (x )max =max{-φ(0),φ(1)}, 令-φ(0)-φ(1)=b -(1-b )e =b (e +1)-e =0,则b =ee +1.(ⅰ) 当0<b <ee +1时,-φ(0)-φ(1)<0,所以h (x )min =φ(b )=0,h (x )max =max{-φ(0),φ(1)}=φ(1)=(1-b )e , 由h (x )max -h (x )min >1,即(1-b )e>1,解得b <e -1e ,所以0<b <e -1e .(14分)(ⅱ) 当ee +1≤b <1时,-φ(0)-φ(1)≥0,所以h (x )min =φ(b )=0,h (x )max =max{-φ(0),φ(1)}=-φ(0)=b , 由h (x )max -h (x )min >1,得b >1,与b <1矛盾,故h (x )max -h (x )min >1不成立. 综上,b 的取值范围为-∞,e -1e .。

专题05 利用导数研究函数零点问题 (解析版)

专题05 利用导数研究函数零点问题 (解析版)

导数及其应用专题五:利用导数研究函数零点问题一、知识储备1、利用导数确定函数零点的常用方法(1)图象法:根据题目要求画出函数的图象,标明函数极(最)值的位置,借助数形结合的思想分析问题(画草图时注意有时候需使用极限).(2)利用函数零点存在定理:先用该定理判定函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数. 2、利用函数的零点求参数范围的方法(1)分离参数(()a g x =)后,将原问题转化为()y g x =的值域(最值)问题或转化为直线y a =与()y g x =的图象的交点个数问题(优选分离、次选分类)求解; (2)利用函数零点存在定理构建不等式求解;(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解. 二、例题讲解1.(2022·重庆市秀山高级中学校高三月考)已知函数()e e x x f x x =+. (1)求函数()f x 的单调区间和极值;(2)讨论函数()()()g x f x a a =-∈R 的零点的个数.【答案】(1)单调递减区间是(,2)-∞-,单调递增区间是(2,)-+∞,极小值为21e -,无极大值;(2)详见解析. 【分析】(1)利用导数求得()f x 的单调区间,进而求得极值.(2)由(1)画出()f x 大致图象,由此对a 进行分类讨论,求得()g x 的零点个数. 【详解】(1)函数()f x 的定义域为R ,且()(2)e x f x x '=+, 令()0f x '=得2x =-,则()'f x ,()f x 的变化情况如下表示:(2,)-+∞.当2x =-,()f x 有极小值为21(2)e f -=-,无极大值. (2)令()0f x =有1x =-:当1x <-时,()0f x <;当1x >-时,()0f x >,且()f x 经过212,e A ⎛⎫-- ⎪⎝⎭,(1,0)B -,(0,1)C .当x →-∞,与一次函数相比,指数函数e x y -=增长更快,从而1()0e xx f x -+=→;当x →+∞时,()f x →+∞,()f x '→+∞,根据以上信息,画出大致图象如下图所示.函数()()()g x f x a a =-∈R 的零点的个数为()y f x =与y a =的交点个数. 当2x =-时,()f x 有极小值21(2)e f -=-. ∴关于函数()()()g x f x a a =-∈R 的零点个数有如下结论: 当21e a <-时,零点的个数为0个; 当21e a =-或0a ≥,零点的个数为1个; 当210ea -<<时,零点的个数为2个. 【点睛】求解含参数零点问题,可利用分离常数法,结合函数图象进行求解.感悟升华(核心秘籍)本题讨论()()()g x f x a a =-∈R 零点的个数,将问题分解为()y f x =与y a =交点的个数,注意在利用导函数求()f x 单调性,极值后,画出草图,容易出错,本题利用极限x →-∞时,()0f x →,从而将草图画的更准确;三、实战练习1.(2022·河南高三开学考试(文))若函数()34f x ax bx =+-,当2x =时,函数()f x 有极值43-.(1)求函数的递减区间;(2)若关于x 的方程()0f x k -=有一个零点,求实数k 的取值范围. 【答案】(1)递减区间为()2,2-;(2)428,,33⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.【分析】(1)对函数进行求导,利用()()2120,42824,3f a b f a b ⎧=-='⎪⎨=-+=-⎪⎩,解方程即可得1,34.a b ⎧=⎪⎨⎪=⎩,对函数求导,根据导数的性质列表,即可得答案;(2)作出函数的图象,直线与函数图象需有1个交点,即可得答案; 【详解】(1)()23f x ax b '=-,由题意知()()2120,42824,3f a b f a b ⎧=-='⎪⎨=-+=-⎪⎩解得1,34.a b ⎧=⎪⎨⎪=⎩ 故所求的解析式为()31443f x x x =-+,可得()()()2422f x x x x '=-=-+,令()0f x '=,得2x =或2x =-,由此可得所以函数的递减区间为2,2-.(2)由(1)知,得到当2x <-或2x >时, ()f x 为增函数; 当22x -<<时, ()f x 为减函数,∴函数()31443f x x x =-+的图象大致如图,由图可知当43k <-或283k >时, ()f x 与y k =有一个交点,所以实数k 的取值范围为428,,33⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.【点睛】关键点睛:根据函数的单调性做出该函数的大致图像,进而利用数形结合求解,考查利用导数研究函数的极值、单调性、零点,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力、运算求解能力.2.(2022·陕西西安中学高三月考(理))已知函数()()1xf x e ax a R =--∈.(1)试讨论函数()f x 的零点个数;(2)若函数()()ln 1ln xg x e x =--,且()()f g x f x <⎡⎤⎣⎦在()0,x ∈+∞上恒成立,求实数a 的取值范围.【答案】(1)当0a 或1a =时,函数()f x 只有一个零点;当()()0,11,a ∈+∞时,函数()f x 有两个零点.(2)(],1-∞【分析】(1)通过求解函数的单调性,然后根据零点存在定理,通过讨论求解得出函数零点的个数;(2)根据(1)中结论,得到函数()f x 在(0,)+∞上单调递增,将不等式转换为自变量的比较,最后得出结论. 【详解】解:(1)根据题意,可得()x f x e a '=-,则有:①若0a ,则()0x f x e a '=->,此时可得函数()f x 在R 上单调递增, 又因为(0)0f =,所以函数只有一个零点; ②若0a >,令()0f x '=,则有ln x a =,所以()0ln f x x a '>⇒>,此时函数()f x 在(ln ,)a +∞上单调递增;()0ln f x x a '<⇒<,此时函数()f x 在(,ln )a -∞上单调递减;即()(ln )1ln min f x f a a a a ==--,则有:()i 当ln 01a a =⇒=时,则()0f x ,此时函数()f x 只有一个零点;()ii 当ln 0a ≠时,即1a ≠时,则(ln )(0)0f a f <=,又因为x →-∞时,()f x →+∞;x →+∞时,()f x →+∞, 根据零点存在定理可得,此时函数()f x 在R 上有两个零点. 综上可得,当0a 或1a =时,函数()f x 只有一个零点;当()()0,11,a ∈+∞时,函数()f x 有两个零点.(2)下面证明:0x ∀>,有()0g x x <<,先证:0x ∀>,有()0g x >,由(1)可知当1a =时,()()00min f x f ==,即当0x >时,1x e x ->,故0x ∀>,()()()1ln 1ln ln ln10x xe g x e x g x x ⎛⎫-=--==>= ⎪⎝⎭,再证0x ∀>,()g x x <;要证0x ∀>,()g x x <,只需证明0x ∀>,1x xe e x-<,即证0x ∀>,1x x e xe -<,即证0x ∀>,10x x xe e -+> 令()1(0)x x H x xe e x =-+>()0x H x xe '=>在(0,)+∞上恒成立,即得函数()H x 在(0,)+∞上单调递增,故有()(0)0H x H >=,即0x ∀>,10x x xe e -+>恒成立,即0x ∀>,有()0g x x <<,当1a ≤时,由(1)得,()f x 在(0,)+∞上单调递增,则由上结论可知,[()]()f g x f x <在(0,)x ∈+∞上恒成立,符合题意;当1a >时,由(1)得,()f x 在(0,ln )a 上单调递减,在(ln ,)a +∞上单调递增, 此时当0ln x a <<时,0()ln [()]()g x x a f g x f x <<<⇔>,不合题意, 综上可得,1a ,即(],1a ∈-∞. 【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.3.(2022·榆林市第十中学高三月考(文))已知函数()2ln f x ax x x =--,0a ≠.(1)试讨论函数()f x 的单调性;(2)若函数()f x 有两个零点,求实数a 的取值范围.【答案】(1)当0a <时,函数()f x 在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)()0,1. 【分析】(1)求出导函数()212121ax x f x ax x x-'-=--=,设()221g x ax x =--,对a 分类讨论:当0a <时,函数()f x在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)把()f x 有两个零点,转化为2ln x xa x +=有两个解,令()2ln x x h x x+=,二次求导后得到函数()h x 的单调性和极值,即可求出实数a 的取值范围. 【详解】函数()2ln f x ax x x =--的定义域为()0+∞,. (1)()212121ax x f x ax x x-'-=--=,设()221g x ax x =--当0a <时,因为函数()g x 图象的对称轴为104x a=<,()01g =-. 所以当0x >时,()0g x <,()0f x '<,函数()f x 在()0,∞+上单调递减;当0a >时,令()0g x =.得1x =2x =当20x x <<时,()0<g x ,()0f x '<,当2x x >时,()0>g x ,()0f x '>.所以函数()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)若()f x 有两个零点,即2ln 0ax x x --=有两个解,2ln x x a x +=.设()2ln x x h x x +=,()312ln x h x xx '-=-, 设()12ln F x x x =--,因为函数()F x 在()0,∞+上单调递减,且()10F =, 所以当01x <<时,()0F x >,()0h x '>,当1x >时,()0F x <,()0h x '<. 以函数()h x 在()0,1上单调递增,在()1,+∞上单调递减, 且 x →+∞时,()0h x →,()11h =, 所以01a <<.即实数a 的取值范围为()0,1.4.(2022·沙坪坝·重庆南开中学)已知函数()e 1xf x x a -=++(R a ∈).(1)讨论()f x 的单调性;(2)若函数()f x 有两个零点,求a 的取值范围.【答案】(1)当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增;(2)()20,e -.【分析】(1)对函数求导,进而讨论a 的符号,进而得到函数的单调区间;(2)由(1)可以判断0a >,根据(1)可知()()min ln 0f x f a =<,进而根据零点存在定理结合放缩法得到答案. 【详解】(1)()f x 的定义域为R ,()1e xf x a -'=-,①当0a ≤时,()0f x '>恒成立,所以()f x 在R 上单调递增; ②当0a >时,令()0f x '=得ln x a =, 当ln x a <时,()0f x '<,()f x 单调递减, 当ln x a >时,()0f x '>,()f x 单调递增,所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增综上所述,当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增.(2)由(1)可知,0a ≤时,()f x 在R 上单调递增,函数至多有一个零点,不合题意.0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增,因为函数有2个零点,所以()()2min ln ln 200e f x f a a a -==+<⇒<<,且()11e 02f a -+>=.记()()e 0x g x x x =-<,则()e 1xg x '=-,所以(),0x ∈-∞时,()0g x '<,()g x 单调递减,所以()()010g x g >=>,则e xx >,于是2e2x x ->-,则x <0时,2e 4xx ->. 所以当x <0时,()214ax f x x >++,限定1x <-,则()()212844ax f x x x ax >+=+, 所以当1x <-且8x a<-时,()0f x >.于是,若函数有2个零点,则()20,e a -∈.【点睛】在“()()2min ln ln 200e f x f a a a -==+<⇒<<,且()11e 02f a -+>=”这一步之后,另一个特值不太好找,这时候需要利用e xx >得到2e2x x->-,进而根据放缩法得到结论. 5.(2022·赣州市第十四中学高三月考(文))已知函数()e 2xf x x =+. (1)求函数()y f x =的单调区间;(2)若函数()()()g x f x ax a =-∈R ,在定义域内恰有三个不同的零点,求实数a 的取值范围.【答案】(1)()f x 在(),2-∞-和()2,1--上为减函数,在()1,-+∞上为增函数;(2)⎛⎫+∞⎪⎪⎭. 【分析】(1)求出函数()f x 的定义域,利用导数与函数单调性的关系可求得函数()f x 的增区间和减区间;(2)分析可知,直线y a =与函数()22xeh x x x=+(0x ≠且2x ≠-)的图象有三个交点,利用导数分析函数()22xe h x x x=+的单调性与极值,数形结合可得出实数a 的取值范围.【详解】(1)因为()e 2xf x x =+的定义域为{}2x x ≠-,且()()()212x e x f x x +'=+,则当2x <-时,()0f x '<,()f x 为减函数; 当21x -<<-时,()0f x '<,()f x 为减函数; 当1x >-时,()0f x '>,()f x 为增函数,综上可得:()f x 在(),2-∞-和()2,1--上为减函数,在()1,-+∞上为增函数; (2)令函数()()0g x f x ax =-=,因为0x =不是方程的解,所以可得22xe a x x=+,构造函数()22xeh x x x =+(0x ≠且2x ≠-),则()()()22222x e x h x x x -'=+,由()0h x '=可得x =作出函数()h x 的图象如下图所示:由图可知,当a >时,函数y a =与函数()y h x =的图象有三个不同的交点,因此实数a 的取值范围是⎛⎫+∞⎪⎪⎭.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.6.(2022·天津静海一中高三月考)已知函数32()3f x x x ax b =-++在1x =-处的切线与x 轴平行. (1)求a 的值和函数()f x 的单调区间; (2)若函数()y f x =的图象与抛物线231532y x x =-+恰有三个不同交点,求b 的取值范围. 【答案】(1)-9,单调增区间为(,1)-∞-和(3,)+∞;单调减区间为(1,3)-;(2)1,12⎛⎫⎪⎝⎭.【分析】(1)根据(1)0f '-=即可求得a 的值,利用导函数求解单调区间;(2)令23239()()1536322g x f x x x x x x b ⎛⎫=--+=-++- ⎪⎝⎭,转化为()g x 有三个不同的零点.【详解】(1)由已知得2()36f x x x a '=-+, ∵在1x =-处的切线与x 轴平行 ∴(1)0f '-=,解得9a =-.这时2()3693(1)(3)f x x x x x ==+'--- 由()0f x '>,解得3x >或1x <-; 由()0f x '<,解13x .∴()f x 的单调增区间为(,1)-∞-和(3,)+∞;单调减区间为(1,3)-. (2)令23239()()1536322g x f x x x x x x b ⎛⎫=--+=-++- ⎪⎝⎭,则原题意等价于()g x 图象与x 轴有三个交点. ∵2()3963(1)(2)g x x x x x '=-+=--, ∴由()0g x '>,解得2x >或1x <; 由()0g x '<,解得12x <<.∴()g x 在1x =时取得极大值1(1)2g b =-;()g x 在2x =时取得极小值(2)1g b =-.依题意得10210b b ⎧->⎪⎨⎪-<⎩,解得112b <<.故b 的取值范围为1,12⎛⎫⎪⎝⎭.7.(2022·沙坪坝·重庆南开中学高三月考)已知函数()()2ln =+-∈f x ax x x a R .(1)当1a =时,求()f x 在区间1[,1]3上的最值;(2)若()()g x f x x =-在定义域内有两个零点,求a 的取值范围.【答案】(1)3()=ln 24min f x +,()2max f x =;(2)10,2e ⎛⎫⎪⎝⎭.【分析】(1)当1a =时,求出导函数,求出函数得单调区间,即可求出()f x 在区间1[,1]3上的最值;(2)由()()0g x f x x =-=,分离参数得2ln ()x a h x x ==,根据函数2ln ()xh x x =得单调性作图,结合图像即可得出答案. 【详解】解:(1)当1a =时,()2ln f x x x x =+-,(21)(1)()x x f x x-+'=,∴()f x 在11[,)32单调递减,在1(,1]2单调递增,11114ln ln 339339f ⎛⎫=+-=+ ⎪⎝⎭,()414112ln 993f e f ⎛⎫==+> ⎪⎝⎭,∴13()()ln 224min f x f ==+,()(1)2max f x f ==.(2)()()0g x f x x =-=2ln ()x a h x x ⇔==,则312ln ()xh x x -'=,∴()h x在单调递增,在)+∞单调递减,12h e=,当0x →时,()h x →-∞,当x →+∞时,()0h x →, 作出函数2ln ()x h x x =和y a=得图像, ∴由图象可得,1(0,)2a e∈.8.(2022·全国高三专题练习)已知函数()ln f x a x bx =+的图象在点(1,3)-处的切线方程为21y x =--. (1)若对任意1[,)3x ∈+∞有()f x m 恒成立,求实数m 的取值范围;(2)若函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点,求实数k 的范围. 【答案】(1)[ln31--,)+∞;(2)3(ln2,0)4-.【分析】(1)()af x b x'=+,(0)x >,根据函数()f x 的图象在点(1,3)-处的切线的方程为21y x =--.可得f '(1)2=-,f (1)3=-,解得a ,b ,利用导数研究函数的单调性极值与最值即可得出实数m 的取值范围. (2)由(1)可得:2()ln 32g x x x x k =-+++,利用导数研究函数的单调性极值与最值,根据函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点,可得最值满足的条件,进而得出实数k 的取值范围.【详解】解:(1)()a f x b x'=+,(0)x >.函数()f x 的图象在点(1,3)-处的切线的方程为21y x =--. f '∴(1)2=-,f (1)3=-,∴23a b b +=-⎧⎨=-⎩,解得3b =-,1a =.()ln 3f x x x ∴=-.13()13()3x f x x x --=-=',1[,)3x ∈+∞,()0f x '∴.∴当13x =时,函数()f x 取得最大值,1()ln313f =--.对任意1[,)3x ∈+∞有()f x m 恒成立,所以()max m f x ,1[,)3x ∈+∞.ln31m ∴--.∴实数m 的取值范围是[ln31--,)+∞.(2)由(1)可得:2()ln 32g x x x x k =-+++,∴1(21)(1)()23x x g x x x x--'=+-=, 令()0g x '=,解得12x =,1. 列表如下:由表格可知:当1x =时,函数()f x 取得极小值g (1)k =;当2x =时,函数()g x 取得极大值13()ln224g k =-++.要满足函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点, 3ln2040k k ⎧-++>⎪⎨⎪<⎩, 解得3ln204k -<<, 则实数k 的取值范围3(ln2,0)4-.【点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、转化方法,考查了推理能力于计算能力,属于难题.9.(2022·全国高三开学考试)已知函数()()()21102f x x a x x =-+>. (1)若()()ln g x f x a x =+,讨论函数()g x 的单调性;(2)已知()()()2ln 222m x f x x x a x a =-++-+,若()m x 在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点,求a 的取值范围.【答案】(1)答案见解析;(2)9ln 21,105⎛⎤+ ⎥⎝⎦ 【分析】(1)求出导函数,对a 进行分类讨论:①0a ≤;②01a <<;③a =1;④a >1,利用导数研究单调性. (2)把()m x 在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点转化为关于x 方程2ln 2=2x x x a x -++在1,2⎡⎫+∞⎪⎢⎣⎭上有两个不相等的实数根.令()2ln 21=,,22x x x h x x x -+⎡⎫∈+∞⎪⎢+⎣⎭利用导数判断单调性,求出值域,即可求出a 的范围. 【详解】(1)()f x 的定义域为(0,+∞),()()()()11x x a a f x x a x x--'=-++=. ①当0a ≤时,令()0f x '<,得到01x <<;令()0f x '>,得到1x >,此时()f x 在(0,1)上为减函数,在(1,+∞)上为增函数;②当01a <<时,令()0f x '<,得到1<<a x ;令()0f x '>,得到0x a <<或1x >,此时()f x 在(a ,1)上为减函数,在(0,a )和()1,+∞上为增函数;③当a =1时,显然()0f x '≥恒成立,此时()f x 在0,+∞)上为增函数;④当a >1时,令()0f x '<,得到1x a <<;令()0f x '>,得到01x <<或x a >.此时()f x 在(1,a )上为减函数,在(0,1)和(a ,+∞)上为增函数.综上:①当0a ≤时, ()f x 在(0,1)上为减函数,在(1,+∞)上为增函数; ②当01a <<时, ()f x 在(a ,1)上为减函数,在(0,a )和()1,+∞上为增函数; ③当a =1时,()f x 在0,+∞)上为增函数;④当a >1时,()f x 在(1,a )上为减函数,在(0,1)和(a ,+∞)上为增函数.(2)()()()22ln 222ln 22m x f x x x a x a x ax x x a =-++-+=---+在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点,即关于x 方程2ln 2=2x x x a x -++在1,2⎡⎫+∞⎪⎢⎣⎭上有两个不相等的实数根.令()2ln 21=,,22x x x h x x x -+⎡⎫∈+∞⎪⎢+⎣⎭则()()2232ln 4=2x x x h x x +--'+, 令()2132ln 4,2p x x x x x ⎡⎫=+--∈+∞⎪⎢⎣⎭,,则()()()212x x p x x-+'=,显然()0p x '≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,故()p x 在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增.因为p (1)=0,所以当1,12x ⎡⎫∈⎪⎢⎣⎭,有()0p x <,即()0h x '<所以()h x 单调递减;当()1x ∈+∞,,有()0p x >,即()0h x '>所以()h x 单调递增; 因为()()9ln 24=,1,0111423ln 21532h h h h ⎛⎫⎛⎫+==-> ⎪ ⎪⎝⎭⎝⎭,所以a 的取值范围9ln 21,105⎛⎤+ ⎥⎝⎦ 10.(2022·贵州贵阳一中(文))已知函数3211()()32f x x ax a =-∈R 在[0,1]上的最小值为16-.(1)求a 的值;(2)若函数()()2()g x f x x b b =-+∈R 有1个零点,求b 的取值范围. 【答案】(1)1a =;(2)76b <-或103b >.【分析】(1)利用导数分0a ,01a <<,1a =和1a >四种情况求出函数的最小值,然后列方程可求出a 的值; (2)由(1)3211()232g x x x x b =--+,可得3211232b x x x =-++,构造函数3211()232h x x x x =-++,利用导数求出函数的单调区间和极值,结合函数图像可得答案 【详解】解:(1)由3211()32f x x ax =-,2()()f x x ax x x a =--'=,当0a 时,()'f x 在[0,)+∞上恒大于等于0,所以()f x 在[0,1]上单调递增, min ()(0)0f x f ==,不合题意;当01a <<时,则[0,]x a ∈时,()0f x '<,()f x 单调递减; [,1]x a ∈时,()0f x '>,()f x 单调递增,所以333min 111()()326f x f a a a a ==-=-,31166a -=-,所以1a =,不满足01a <<;当1a =时,在[0,1]上,()0f x '且不恒为0,所以()f x 在[0,1]上单调递减,min 111()(1)326f x f ==-=-,适合题意;当1a >时,在[0,1]上,()0f x '<,所以()f x 在[0,1]上单调递减,min 111()(1)326f x f a ==-=-,所以1a =,不满足1a >;综上,1a =. (2)由(1)3211()232g x x x x b =--+,所以3211232b x x x =-++,令3211()232h x x x x =-++,则2()2(2)(1)h x x x x x =-++=--+',所以(2)0,(1)0h h ''=-=,且当1x <-时,()0h x '<; 当12x -<<时,()0h x '>;当2x >时,()0h x '<,所以 117()(1)2326h x h =-=+-=-极小, 1110()(2)844323h x h ==-⨯+⨯+=极大,如图:函数()g x 有1个零点,所以76b <-或103b >.。

高三数学导数在研究函数中的应用

高三数学导数在研究函数中的应用
y
1 -1
o
1
x
四、数学运用:
例1 确定函数
f ( x) x
2
4x 3
在哪个区间内是增函数,哪个区间内是减函数。
解:取x1<x2,,x1、x2∈R, f(x1)-f(x2)=(x12-4x1+3)-(x22-4x2+3) =(x1+x2)(x1-x2)-4(x1-x2) = (x1-x2)(x1+x2-4) 则当x1<x2<2时, x1+x2-4<0, f(x1)>f(x2), 所以 y=f(x)在区间(-∞,2)单调递减。 当2<x1<x2时, x1+x2-4>0, f(x1)<f(x2), 所以 y=f(x)在区间(2,+∞)单调递增。 综上 y=f(x)单调递增区间为(2,+∞) y=f(x)单调递减区间为(-∞,2)。
归纳:
用导数法确定函数的单调性时的步骤是:
(1)求出函数的定义域;(若定义域为R,则可 省去)
(2)求出函数的导函数; (3)求解不等式f ′(x)>0,求得其解集, 再根据解集写出单调递增区间; 求解不等式f ′(x)<0,求得其解集, 再根据解集写出单调递减区间。 注:单调区间不以“并集”出现。
一、情境设置:
过山车是一项富有刺激性的娱乐工具。那种风驰 电掣、有惊无险的快感令不少人着迷。
动画演示
二、学生活动:
讨论
通过图形演示你得出了什么结论?
函数单调性与导数符号有着密切的关系!
三、建构数学:
一般地, 设函数y=f(x),
1)如果在某区间上f′(x)>0,那么f(x) 为该区间上的增函数, 2)如果在某区间上f′(x)<0,那么f(x) 为该区间上的减函数。

(完整版)导数在研究函数中的应用(含标准答案)

(完整版)导数在研究函数中的应用(含标准答案)

导数在研究函数中的应用【自主归纳,自我查验】一、自主归纳1.利用导函数判断函数单调性问题函数f (x )在某个区间(a ,b )内的单调性与其导数的正负有如下关系 (1)若____ ___,则f (x )在这个区间上是增加的. (2)若____ ___,则f (x )在这个区间上是减少的. (3)若_____ __,则f (x )在这个区间内是常数. 2.利用导数判断函数单调性的一般步骤 (1)求f ′(x ).(2)在定义域内解不等式f ′(x )>0或f ′(x )<0. (3)根据结果确定f (x )的单调区间. 3.函数的极大值在包含0x 的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都_____0x 点的函数值,称点0x 为函数y =f (x )的极大值点,其函数值f (0x )为函数的极大值. 4.函数的极小值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都_____0x 点的函数值,称点0x x 0为函数y =f (x )的极小值点,其函数值f (0x )为函数的极小值.极大值与极小值统称为_______,极大值点与极小值点统称为极值点. 5.函数的最值与导数1.函数y =f (x )在[a ,b ]上的最大值点0x 指的是:函数在这个区间上所有点的函数值都_________f (0x ).2.函数y =f (x )在[a ,b ]上的最小值点0x 指的是:函数在这个区间上所有点的函数值都_________f (0x ).二、自我查验1.函数f (x )=x +eln x 的单调递增区间为( ) A .(0,+∞)B .(-∞,0)C .(-∞,0)和(0,+∞)D .R2.若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________.3.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( ) A .1个 B .2个 C .3个D .4个4.若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 等于( ) A .2 B .3 C .4 D .55.函数ln xy x=的最大值为( ) A .1e - B .e C .2e D .103【典型例题】考点一 利用导数研究函数的单调性【例1】(2015·高考全国卷Ⅱ)已知函数f (x )=ln x +a (1-x ).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.【变式训练1】已知()3222f x x ax a x =+-+.(1)若1a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)若0a >,求函数()f x 的单调区间.考点二 利用导函数研究函数极值问题【例2】已知函数()ln 3,f x x ax a =-+∈R . (1)当1a =时,求函数的极值; (2)求函数的单调区间.【变式训练2】(2011·安徽)设f (x )=e x 1+ax 2,其中a 为正实数.当a =43时,求f (x )的极值点;考点三 利用导函数求函数最值问题【例3】已知a 为实数,.(1)求导数; (2)若,求在[]2,2-上的最大值和最小值.【应用体验】1.函数ln y x x =-的单调递减区间为( ) A .](1,1- B .)(0,+∞ C .[)1,+∞ D .](0,1()))(4(2a x x x f --=()xf '()01=-'f ()x f2.函数()e x f x x -=的单调递减区间是( )A .(1,)+∞B .(,1)-∞-C .(,1)-∞D .(1,)-+∞ 3.函数()()3e x f x x =-的单调递增区间是( ) A .()0,3 B .()1,4C .()2,+∞D .(),2-∞4.设函数()2ln f x x x=+,则( ) A .12x =为()f x 的极大值点 B .12x =为()f x 的极小值点C .2x =为()f x 的极大值点D .2x =为()f x 的极小值点5.函数32()23f x x x a =-+的极大值为6,那么a 的值是( ) A .0 B .1 C .5 D .6【复习与巩固】A 组 夯实基础一、选择题1.已知定义在R 上的函数()f x ,其导函数()f x '的大致图象如图所示,则下列叙述正确的是( )A .()()()f b f c f d >>B .()()()f b f a f e >>C .()()()f c f b f a >>D .()()()f c f e f d >>2.函数()2ln f x x a x =+在1x =处取得极值,则a 等于( )A .2B .2-C .4D .4-3.函数()e xf x x =-(e 为自然对数的底数)在区间[]1,1-上的最大值是( )A.1B.1C.e +1D.e -1二、填空题4.若函数()321f x x x mx =+++是R 上的单调增函数,则实数m 的取值范围是________________.5.若函数()23exx axf x +=在0x =处取得极值,则a 的值为_________. 6.函数()e x f x x =-在]1,1[-上的最小值是_____________. 三、解答题 7.已知函数()21ln ,2f x x x =-求函数()f x 的单调区间8.已知函数(),1ln xf x ax x x=+>. (1)若()f x 在()1,+∞上单调递减,求实数a 的取值范围; (2)若2a =,求函数()f x 的极小值.B 组 能力提升一、选择题1.已知函数()213ln 22f x x x =-+在其定义域内的一个子区间()1,1a a -+内不是单调函数,则实数a 的取值范围是( ) A .13,22⎛⎫-⎪⎝⎭ B .51,4⎡⎫⎪⎢⎣⎭ C .31,2⎛⎫ ⎪⎝⎭ D .31,2⎡⎫⎪⎢⎣⎭2.若函数32y x ax a =-+在()0,1内无极值,则实数a 的取值范围是( ) A .30,2⎡⎤⎢⎥⎣⎦B .(),0-∞C .(]3,0,2⎡⎫-∞+∞⎪⎢⎣⎭U D .3,2⎡⎫+∞⎪⎢⎣⎭3.若函数()3232f x x x a =-+在[]1,1-上有最大值3,则该函数在[]1,1-上的最小值是( ) A . B .0 C .D .1二、填空题4.已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎡⎦⎤13,2上是增函数,则实数a 的取值范围为________.5.设x 1,x 2是函数f (x )=x 3-2ax 2+a 2x 的两个极值点,若x 1<2<x 2,则实数a 的取值范围是________.6.若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是________. 三、解答题7.已知函数f (x )=x -2ln x -ax+1,g (x )=e x (2ln x -x ).(1)若函数f (x )在定义域上是增函数,求a 的取值范围;(2)求g (x )的最大值.12-128.设函数f(x)=(x-1)e x-kx2(其中k∈R).(1)当k=1时,求函数f(x)的单调区间和极值;(2)当k∈[0,+∞)时,证明函数f(x)在R上有且只有一个零点.《导数在研究函数中的应用》标准答案一.自主归纳1.(1)f ′(x )>0 (2)f ′(x )<0 (3)f ′(x )=0 3. 小于 4. 大于 极值 5.不超过 不小于 二.自我查验1.解析:函数定义域为(0,+∞),f ′(x )=1+ex>0,故单调增区间是(0,+∞).答案:A2.解析:∵f (x )=x 3+x 2+mx +1, ∴f ′(x )=3x 2+2x +m .又∵f (x )在R 上是单调增函数,∴f ′(x )≥0恒成立,∴Δ=4-12m ≤0,即m ≥13.答案:⎣⎢⎡⎭⎪⎫13,+∞3.解析:导函数f ′(x )的图象与x 轴的交点中,左侧图象在x 轴下方,右侧图象在x 轴上方的只有一个,故选A.答案:A4.解析:f ′(x )=3x 2+2ax +3,由题意知f ′(-3)=0,即3×(-3)2+2×(-3)a +3=0,解得a =5.答案:D5..A 当(0,e)x ∈时函数单调递增,当(e,)x ∈+∞时函数单调递减, A. 三.典型例题【例题1】(1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)单调递增.若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0.所以f (x )在⎝⎛⎭⎪⎫0,1a 单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)无最大值;当a >0时,f (x )在x =1a处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1.因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).【变式训练1】(1)当1a =时,()322f x x x x =+-+,∴()2321f x x x '=+-, ∴切线斜率为()14k f '==,又()13f =,∴切点坐标为()1,3,∴所求切线方程为()341y x -=-,即410x y --=.(2)()()()22323f x x ax a x a x a '=+-=+-,由()0f x '=,得x a =-或3ax =.0,.3a a a >∴>-Q 由()0f x '>,得x a <-或3a x >,由()0f x '<,得.3aa x -<<∴函数()f x 的单调递减区间为,3a a ⎛⎫- ⎪⎝⎭,单调递增区间为(),a -∞-和,3a ⎛⎫+∞ ⎪⎝⎭.【例题2】(1)当1a =时,()ln 3f x x x =-+,()()1110xf x x x x-'=-=>, 令()0f x '>,解得01x <<,所以函数()f x 在(0,1)上单调递增; 令()0f x '<,解得1x >,所以函数()f x 在()1,+∞上单调递减; 所以当1x =时取极大值,极大值为()12f =,无极小值. (2)函数()f x 的定义域为()0,+∞,()1f x a x'=-. 当0a ≤时,1()0f x a x'=->在()0,+∞上恒成立,所以函数()f x 在()0,+∞上单调递增;当0a >时,令()0f x '>,解得10x a <<,所以函数()f x 在10,a ⎛⎫⎪⎝⎭上单调递增;令()0f x '<,解得1x a >,所以函数()f x 在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减. 综上所述,当0a ≤时,函数()f x 的单调增区间为()0,+∞;当0a >时,函数()f x 的单调增区间为10,a ⎛⎫ ⎪⎝⎭,单调减区间为1,a ⎛⎫+∞ ⎪⎝⎭.【变式训练2】解 对f (x )求导得f ′(x )=e x ·1+ax 2-2ax 1+ax 22. 当a =43时,若f ′(x )=0, 则4x 2-8x +3=0,解得x 1=32,x 2=12.结合①,可知x (-∞,12) 12 (12,32) 32 (32,+∞) f ′(x ) +0 - 0 + f (x )极大值极小值所以x 1=2是极小值点,x 2=2是极大值点.【例题3】1).(2)由得,故, 则43x =或,由,,41641205504.39329627f ⎛⎫⎛⎫⎛⎫=-⨯-=-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故,.【变式训练3】1)当0a ≥时,函数()e 20x f x a '=+>,()f x 在R 上单调递增,当0a <时,()e 2x f x a '=+,令e 20x a +=,得ln(2)x a =-,所以当(,ln(2))x a ∈-∞-()423)4()(2'22--=-+-=ax x x a x x x f ()01=-'f 21=a 2421)21)(4()(232+--=--=x x x x x x f ()34,143'2=-=⇒--=x x x x x f 或0)2()2(==-f f 29)1(=-f 29)(max =x f 2750)(min -=x f时,()0f x '<,函数()f x 单调递减;当(ln(2),)x a ∈-+∞时,()0f x '>,函数()f x 单调递增.(2)由(1)可知,当0a ≥时,函数()e 20x f x ax =+>,不符合题意. 当0a <时,()f x 在(,ln(2))a -∞-上单调递减,在(ln(2),)a -+∞上单调递增.①当ln(2)1a -≤()f x 最小值为(1)2e f a =+.解2e 0a +=,得.②当ln(2)1a ->()f x 最小值为(ln(2))22ln(2)f a a a a -=-+-,解22ln(2)0a a a -+-=,得2ea =-,不符合题意.应用体验: 1.D【解析】函数的定义域为)(0,+∞,令1110x y x x-'=-=≤,解得](0,1x ∈,又0x >,所以](0,1x ∈,故选D. 考点:求函数的单调区间. 2.A【解析】导数为()()()e e 1e x x x f x x x ---'=+⋅-=-,令()0f x '<,得1x >,所以减区间为()1,+∞.考点:利用导数求函数的单调区间. 3.C【解析】()()()e 3e e 2x x x f x x x '=+-=-,令()()e 20x f x x '=->,解得2x >,所以函数()f x 的单调增区间为()2,+∞.故选C . 4.【解析】()22212x f x x x x-'=-+=,由()0f x '=得2x =,又函数定义域为()0,+∞,当02x <<时,()0f x '<,()f x 递减,当2x >时,()0f x '>,()f x 递增,因此2x =是函数()f x 的极小值点.故选D . 考点:函数的极值点. 5.D【解析】()()322()23,6661f x x x a f x x x x x '=-+∴=-=-Q ,令()0,f x '= 可得0,1x =,容易判断极大值为()06f a ==. 考点:函数的导数与极值. 复习与巩固 A 组 1.C【解析】由()f x '图象可知函数()f x 在(),c -∞上单调递增,在(),c e 上单调递减,在(),e +∞上单调递增,又(),,,a b c c ∈-∞,且a b c <<,故()()()f c f b f a >>. 考点:利用导数求函数单调性并比较大小. 2.B【解析】()2a f x x x '=+,由题意可得()121201af a '=⨯+=+=,2a ∴=-.故选B.考点:极值点问题. 3.D【解析】()e 1x f x '=-,令()0,f x '=得0x =.又()()()010e 01,1e 11,111,e f f f =-==->-=+>且11e 11e 2e e ⎛⎫--+=-- ⎪⎝⎭=2e 2e 10e--=>,所以()()max 1e 1,f x f ==-故选D.考点:利用导数求函数在闭区间上的最值.4.1,3⎡⎫+∞⎪⎢⎣⎭【解析】由题意得()0f x '≥在R 上恒成立,则()2320f x x x m '=++≥,即232m x x ≥--恒成立.令()232g x x x =--,则()max m g x ≥⎡⎤⎣⎦,因为()g x232x x =--为R 上的二次函数,所以()2max11333g x g ⎛⎫⎛⎫=-=-⨯-⎡⎤ ⎪ ⎪⎣⎦⎝⎭⎝⎭11233⎛⎫-⨯-= ⎪⎝⎭,则m 的取值范围是1,3⎡⎫+∞⎪⎢⎣⎭.5.0【解析】()()()()()2226e 3e 36e e x xxx x a x ax x a x a f x +-+-+-+'==, 由题意得()00f a '==. 考点:导数与极值. 6.1【解析】因为()e 1x f x '=-,()00,()00f x x f x x ''>⇒><⇒<,所以()f x 在[1,0]-单调递减,在[0,1]单调递增,从而函数()e x f x x =-在]1,1[-上的最小值是0(0)e 01f =-=.考点:函数的最值与导数.7.【解析】()21ln 2f x x x =-的定义域为()0,+∞,()211x f x x x x-'=-=,令()0f x '=,则1x =或1-(舍去).∴当01x <<时,()0f x '<,()f x 递减,当1x >时,()0f x '>,()f x 递增, ∴()f x 的递减区间是()0,1,递增区间是()1,+∞.考点:利用导数求函数的单调区间. 8.(1)14a ≤-(2)【解析】(1)函数(),1ln x f x ax x x =+>,则()2ln 1ln x f x a x-'=+,由题意可得()0f x '≤在()1,x ∈+∞上恒成立,∴2211111ln ln ln 24a x x x ⎛⎫≤-=-- ⎪⎝⎭, ∵()1,x ∈+∞,()ln 0,,x ∴∈+∞021ln 1=-∴x 时,函数2111ln 24t x ⎛⎫=--⎪⎝⎭取最小值41-,41-≤∴a ,(2)当2a =时,()2ln x f x x x =+,()22ln 12ln ln x x f x x -+'=, 令()0f x '=,得22ln ln 10x x +-=,解得21ln =x 或ln 1x =-(舍去),即x =当1x <<()0f x '<,当x >()0f x '>, ∴()f x的极小值为f =.B 组 1.D【解析】因为函数()213ln 22f x x x =-+在区间()1,1a a -+上不单调,所以()2141222x f x x x x-'=-=在区间()1,1a a -+上有零点,由()0f x '=,得12x =,则10,111,2a a a -≥⎧⎪⎨-<<+⎪⎩得312a ≤<,故选D . 考点:函数的单调性与导数的关系.2.C【解析】232y x a '=-,①当0a ≤时,0y '≥,所以32y x ax a =-+在()0,1上单调递增,在()0,1内无极值,所以0a ≤符合题意;②当0a >时,令0y '=,即2320x a -=,解得12,33x x =-=,当,x ⎛⎫∈-∞+∞ ⎪ ⎪⎝⎭⎝⎭U 时,0y '>,当x ⎛∈ ⎝⎭时,0y '<,所以32y x ax a =-+的单调递增区间为,,⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭,单调递减区间为⎛ ⎝⎭,当x =数取得极大值,当x =原函数取得极小值,要满足原函数在()0,1内无极值,1≥,解得32a ≥.综合①②得,a 的取值范围为(]3,0,2⎡⎫-∞+∞⎪⎢⎣⎭U ,故选C.考点:导函数,分类讨论思想. 3.C【解析】()()23331f x x x x x '=-=-,当()0f x '>时,1>x 或0<x ,当()0f x '<时,10<<x ,所以()f x 在区间[]1,0-上函数递增,在区间[]1,0上函数递减,所以当0=x 时,函数取得最大值()30==a f ,则()32332f x x x =-+,所以()211=-f ,()251=f ,所以最小值是()211=-f . 考点:利用导数求函数在闭区间上的最值.4.解析:由题意知f ′(x )=x +2a -1x ≥0在⎣⎢⎡⎦⎥⎤13,2上恒成立,即2a ≥-x +1x 在⎣⎢⎡⎦⎥⎤13,2上恒成立,∵⎝⎛⎭⎪⎫-x +1x max =83,∴2a ≥83,即a ≥43.答案:⎣⎢⎡⎭⎪⎫43,+∞5.解析:本题考查利用导数研究函数的极值及不等式的解法.由f ′(x )=3x 2-4ax +a 2=0得x 1=a3,x 2=a .又∵x 1<2<x 2,∴⎩⎨⎧a >2,a3<2,∴2<a <6.答案:(2,6)6.解析:∵f (x )=x 2-e x -ax ,∴f ′(x )=2x -e x -a , ∵函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,∴f ′(x )=2x -e x -a ≥0,即a ≤2x -e x 有解,设g (x )=2x -e x ,则g ′(x )=2-e x ,令g ′(x )=0,解得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增,当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a ≤2ln 2-2. 答案:(-∞,2ln 2-2)7.解:(1)由题意得x >0,f ′(x )=1-2x +ax2.由函数f (x )在定义域上是增函数,得f ′(x )≥0,即a ≥2x -x 2=-(x -1)2+1(x >0).因为-(x -1)2+1≤1(当x =1时,取等号),所以a 的取值范围是[1,+∞).(2)g ′(x )=e x ⎝ ⎛⎭⎪⎫2x -1+2ln x -x ,由(1)得a =2时,f (x )=x -2ln x -2x +1,且f (x )在定义域上是增函数,又f (1)=0,所以,当x ∈(0,1)时,f (x )<0,当x ∈(1,+∞)时,f (x )>0. 所以,当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0. 故当x =1时,g (x )取得最大值-e.8.解:(1)当k =1时,f (x )=(x -1)e x -x 2,f ′(x )=e x +(x -1)e x -2x =x e x -2x =x (e x -2),令f ′(x )=0,得x 1=0,x 2=ln 2. 当x 变化时,f ′(x ),f (x )的变化如下表:0],[ln 2,+∞).f (x )的极大值为f (0)=-1,极小值为f (ln 2)= -(ln 2)2+2ln 2-2.(2)f ′(x )=e x +(x -1)e x -2kx =x e x -2kx =x (e x -2k ), 当x <1时,f (x )<0,所以f (x )在(-∞,1)上无零点. 故只需证明函数f (x )在[1,+∞)上有且只有一个零点.①若k ∈⎣⎢⎡⎦⎥⎤0,e 2,则当x ≥1时,f ′(x )≥0,f (x )在[1,+∞)上单调递增.∵f (1)=-k ≤0,f (2)=e 2-4k ≥e 2-2e>0, ∴f (x )在[1,+∞)上有且只有一个零点.②若k ∈⎝ ⎛⎭⎪⎫e 2,+∞,则f (x )在[1,ln 2k ]上单调递减,在[ln 2k ,+∞)上单调递增.f (1)=-k <0,f (k +1)=k e k +1-k (k +1)2=k [e k +1-(k +1)2], 令g (t )=e t -t 2,t =k +1>2,则g ′(t )=e t -2t ,g ″(t )=e t -2,∵t>2,∴g″(t)>0,g′(t)在(2,+∞)上单调递增.∴g′(t)>g′(2)=e2-4>0,∴g(t)在(2,+∞)上单调递增.∴g(t)>g(2)=e2-4>0.∴f(k+1)>0.∴f(x)在[1,+∞)上有且只有一个零点.综上,当k∈[0,+∞)时,f(x)在R上有且只有一个零点.。

高三数学寒假作业专题05导数在函数中的应用学

高三数学寒假作业专题05导数在函数中的应用学

(寒假总动员) 年高三数学寒假作业 专题05 导数在函数中的应用(学) 学一学------基础知识结论 1.导数与函数单调性的关系 函数()y f x =在某个区间内可导①若'()0f x >,则()f x 在那个区间内单调递增②若'()0f x <,则()f x 在那个区间内单调递减例1.【2014泉州月考卷】若函数x x x f ln 2)(2-=在其概念域的一个子区间(),2t t +上不是单调函数, 则实数t 的取值范围是( )A .12t >B .102t ≤<C .3122t -<<D .32t <-2.函数的极值(1)极值点与极值设函数()f x 在点0x 及周围有概念,且在==双侧的单调性相反或导数值为零,则0x 为函数()f x 的极值点,0()f x 为函数的极值.(2)极大值点与极小值点①若先增后减(导数值先正后负),则0x 为极大值点; ②若先减后增(导数值先负后正),则0x 为极小值点.例2.已知函数3211()2(,R)32f x x ax bx a b =++∈,且函数()f x 在区间()0,1内取得极大值,在区间()1,2内取2269a b a +++ .函数的最值在闭区间[,]a b 上持续的函数()f x 在[,]a b 上必有最大值与最小值. 若函数()f x 在[,]a b 上单调递增,则()f a 为函数的最小值,()f b 为函数的最大值;若函数()f x 在[,]a b 上单调递减,则()f a 为函数的最大值,()f b 为函数的最小值.设函数()f x 在[,]a b 上持续,在(,)a b 内可导,求()f x 在[,]a b 上的最大值和最小值的步骤如下:①求()f x 在[,]a b 内的极值;②将()f x 的各极值与()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.例3.已知函数36)2(23)(23-++-=x x a ax x f .(I )当2>a 时,求函数)(x f 的极小值;(II )试讨论曲线)(x f y =与x 轴的公共点的个数利用导数解决实际生活中的优化问题分析实际问题中各变量之间的关系,成立实际问题的数学模型,写出相应的函数关系式==并确信概念域;求导数'()f x,解方程'()0f x=判定使'()0f x=的点是极大值点仍是极小值点;确信函数的最大值或最小值,还原到实际问题中作答.5.利用导数解决函数与方程问题研究函数图像的交点、方程的根、函数的零点,归根到底仍是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路,因此利用的知识仍是函数的单调性和极值的知识.6.导数与不等式相结合的问题求解不等式恒成立的问题时,能够考虑将从拿书分离出来,将参数范围转化为研究新函数的值域问题.学一学------方式规律技术一个条件f x在(,)a b上成立是()a b上单调递增(递减)的充分条件.'()0f x>(或'()0f x<)在(,)四点提示针对本讲的内容,利用导数解决问题时应注意以下两点:先求概念域;对参数的分类讨论要做到不重不漏.(3)注意实际问题中函数概念域的确信.(4)在实际问题中,若是函数在区间内只有一个极值点,那么只要依如实际意义判定最大值仍是最小值即可,没必要再与端点的函数值比较.。

高三数学寒假作业 专题05 导数在函数中的应用学 试题

高三数学寒假作业 专题05 导数在函数中的应用学 试题

〔寒假总发动〕2021年高三数学寒假作业专题05 导数在函数中的应用〔学〕创作人:历恰面日期:2020年1月1日学一学------根底知识结论1.导数与函数单调性的关系函数()y f x=在某个区间内可导①假设'()0f x>,那么()f x在这个区间内单调递增②假设'()0f x<,那么()f x在这个区间内单调递减例1.【2021月考卷】假设函数xxxf ln2)(2-=在其定义域的一个子区间(),2t t+上不是单调函数,那么实数t的取值范围是( )A.12t>B.12t≤<C.3122t-<<D.32t<-〔1〕极值点与极值设函数()f x在点0x及附近有定义,且在==两侧的单调性相反或者导数值为零,那么0x为函数()f x的极值点,0()f x为函数的极值.(2)极大值点与极小值点①假设先增后减〔导数值先正后负〕,那么0x 为极大值点; ②假设先减后增〔导数值先负后正〕,那么0x 为极小值点.例 2.函数3211()2(,R)32f x x ax bx a b =++∈,且函数()f x 在区间()0,1内获得极大值,在区间()1,2内获得极小值,那么2269a b a +++的取值范围是 .函数的最值在闭区间[,]a b 上连续的函数()f x 在[,]a b 上必有最大值与最小值.假设函数()f x 在[,]a b 上单调递增,那么()f a 为函数的最小值,()f b 为函数的最大值;假设函数()f x 在[,]a b 上单调递减,那么()f a 为函数的最大值,()f b 为函数的最小值.设函数()f x 在[,]a b 上连续,在(,)a b 内可导,求()f x 在[,]a b 上的最大值和最小值的步骤如下:①求()f x 在[,]a b 内的极值;②将()f x 的各极值与()f a ,()f b 比拟,其中最大的一个是最大值,最小的一个是最小值.36)2(23)(23-++-=x x a ax x f .〔I 〕当2>a 时,求函数)(x f 的极小值;〔II 〕试讨论曲线)(x f y =与x 轴的公一共点的个数利用导数解决实际生活中的优化问题分析实际问题中各变量之间的关系,建立实际问题的数学模型,写出相应的函数关系式==并确定定义域;求导数'()f x,解方程'()0f x=判断使'()0f x=的点是极大值点还是极小值点;确定函数的最大值或者最小值,复原到实际问题中答题.研究函数图像的交点、方程的根、函数的零点,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路,因此使用的知识还是函数的单调性和极值的知识.求解不等式恒成立的问题时,可以考虑将从拿书别离出来,将参数范围转化为研究新函数的值域问题.学一学------方法规律技巧一个条件f x在(,)a b上成立是()a b上单调递增〔递减〕的充分条f x<〕在(,)'()0f x>〔或者'()0件.四点提醒针对本讲的内容,利用导数解决问题时应注意以下两点:先求定义域;对参数的分类讨论要做到不重不漏.〔3〕注意实际问题中函数定义域确实定.〔4〕在实际问题中,假如函数在区间内只有一个极值点,那么只要根据实际意义断定最大值还是最小值即可,不必再与端点的函数值比拟.。

导数在研究函数中应用(含简答)

导数在研究函数中应用(含简答)

1.3 导数在研究函数中的应用导学案1.3.1 单调性一、学习要求了解函数的单调性与导数的关系;能利用导数研究函数的单调性;会求不超过三次的多项式函数的单调性二、学习重点与难点利用导数判定函数的单调性;求函数的单调区间;已知单调性求参数的范围 三、学习过程1.导数与函数的单调性问题1 函数2()43f x x x =-+的单调增区间为[2,)+∞ ,单调减区间为(,2)-∞ ;()f x '=24x -,由()0f x '>得x ∈(2,)+∞ ,由()0f x '<得x ∈(,2)-∞问题2 导数的符号与函数的单调性有怎样的关系在某个区间上,若导数大于0,则该区间为增区间;若导数小于0,则该区间为减区间问题3 如果()f x 在某区间上单调递增,那么在该区间上必有()0f x '>吗?不一定,也可能在一些孤立的点处导数等于0,如函数3()f x x =在(,)-∞+∞上为增函数,而(0)0f '=问题4 用导数判定函数的单调性或求函数的单调区间的步骤是什么?(1)确定定义域,求导函数 (2)令导数大于0,解得增区间令导数小于0,解得减区间(3)得结论,注意单调区间之间不可用并问题5 已知函数在某个区间上是单调的,那么它的导数符号怎样?如果已知某函数在某区间上为增函数,则其导数肯定是大于或等于0;如果是减函数,则其导数肯定小于或等于0 2.例题改编例2 求函数32()267f x x x =-++的单调减区间(,0),(2,)-∞+∞例3 求函数()sin ((0,2))f x x x π=∈的单调增区间3(0,),(,2)22πππ3.拓展探究(1)求函数()x f x x e =-单调减区间(0,)+∞(2)求函数2ln y x x =-的单调增区间1(,)2+∞ (3)求函数1()f x x=的单调区间 增区间(1,)+∞ 减区间(0,1)(4)求证:当1x >时,有13x>- (略)(5)判断函数()af x x x=+的单调性 (略)(6)若3()f x ax x =+恰有三个单调区间,试确定a 的取值范围,并求其单调区间0a <,略(7)函数21y x ax =-+在(0,)+∞上单调递增,则a 的取值范围是_____________(,0]-∞(8)若函数32()5f x ax x x =-+-在R 上单调递增,求实数a 的取值范围.13a ≥四、巩固提高1.求函数()ln f x x x =的递增区间1(,)e+∞ 2.若函数225y x bx =+-在区间(2,3)上为减函数,求b 的取值范围(,3]-∞-3.设a 为实数,函数322()(1)f x x ax a x =-+-在(,0)-∞和(1,)+∞上都是增函数,求a 的取值范围(,[1,)2-∞-⋃+∞ 4.函数2145ln 24a y x ax x +=-+是定义域上的增函数,求a 的取值范围5[,5]4- 1.3 导数在研究函数中的应用导学案1.3.2 极大值与极小值一、学习要求了解函数的极大(小)值与导数的关系;会求不超过三次的多项式函数的极大(小)值 二、学习重点与难点理解极值与导数符号的关系;明确求极值的方法步骤;会画多项式函数的简图;已知极值求参数 三、学习过程 1.函数极值的定义问题1 课本上是怎样对极值进行描述的?问题2 请分别从图形和代数的角度描述你对极值的理解?问题3 极大值一定比极小值大吗?问题4 闭区间端点对应的函数值是极值吗? 问题5 如果称取得极值的自变量的值为极值点,请,请说明极值与极值点含义? 2.导数与函数的极值问题1 判定函数的极值本质是就是在研究函数的什么性质?而该性质与导数又有怎样的关系? 问题2 由例1归纳出求函数极值的方法步骤是什么?问题3 函数在某处的导数为0是能在该处能取得极值的充要条件吗?3.例题改编例1 求2()4f x x x =-+的极值 (略)例2 求311()433f x x x =-++的极值(请尝试在同一坐标系中画出该函数及其导函数的简图并思考之间的联系) (略) 4.拓展探究(1)函数2()365f x x x =++在(,1)-∞-上是单调递减的,在区间(1,)-+∞上是单调递增的,当x=1-时,()f x 取得极小值,其极小值为2 (2)函数32()23f x x x a =-+的极大值为6,则a=6(3)已知()f x '的图像如下图,则()f x 的单调增区间为(4,0)-、(5,)+∞,极小值点为1(4)求函数21x y x=+的极值2x =-时有极大值4-,0x =时有极小值0(5)求函数()2sin f x x x =+在区间(0,2)π内的极值23x π=时有极大值23π+43x π=时有极小值43π-(6)设3()f x ax x =+恰有两个不同的极值点,试确定a 的取值范围,并求其单调区间. 0a <,略(7)已知函数322()f x x ax bx a =+++在1x =处的极值10,求,a b 的值4,11a b ==-(8)试研究函数3211()32f x ax bx cx d =+++ (0)a >的单调性、极值、简图(略)四、巩固提高1.如果函数32()3f x x x c =-+的极小值是3,求c 的值及()f x 极大值7,72. 函数32()1f x x mx x =+++在R 上无极值点,求的取值范围[3. 三次多项式函数当1x =时有极大值4,当3x =时有极小值0,且函数过原点,求此函数的解析式3269y x x x =-+4.已知函数32()32f x x ax bx =-+在1x =点处有极小值1-,试确定,a b 的值,并求出的单调区间11,32a b ==增区间1(1,),(,)3+∞-∞- 减区间1(,1)3-.1.3 导数在研究函数中的应用导学案1.3.3 最大值与最小值一、学习要求会求在指定区间上不超过三次的多项式函数的最大(小)值二、学习重点与难点会求函数在闭区间(开区间)上的最值;会画函数的简图;含参数函数最值的求解三、学习过程 1.最值的定义问题1 你对最值的理解是什么? 问题2 最值与极值有怎样的关系?问题3 定义域为闭区间的连续函数一定有最值吗?问题4 最大值一定比最小值大吗?问题5 定义域为开区间的函数一定没有最值吗? 2.导数与函数的最值问题1 由例1归纳出利用导数求最值的方法步骤是什么?问题2 利用导数求极值与求最值有怎样的关系? 问题3 不管求极值还是求最值都是利用导数研究函数的什么性质?求解过程中列表本质上是什么?3.例题改编例1 求2()43f x x x =-++在区间[1,4]-上最大值和最小值 (略) 例2 求1()cos 2f x x x =+在区间[0,2]π上的最大值与最小值并尝试作出该函数的简图 (略) 4.拓展探究 (1)求函数31()443f x x x =-+在[0,3]上的最大值与最小值0x =时有最大值4,2x =时有最小值43-(2)求函数1,[0,2]2x y x x -=∈+的值域 (略)(3)求4282y x x =-+在[1,3]x ∈-上的最大值 11(4)已知函数32()26f x x x m =-+(m 为常数)在[2,2]-上有最大值3,求此函数在[2,2]-上的最小值 37-(5)将正数a 分成两部分(均为正数),使其立方和为最小,求此时这两个部分的值,22a a (6)P 点是曲线2ln y x x =-上任意一点,求点P 到直线2y x =-的距离的最小值(7)已知函数ln ()xf x x=,求它在[,2](0)a a a >上的最小值02a <≤时,min ln ()()af x f a a == 2a >时,minln(2)()(2)2a f x f a a==(8)已知函数32()23(1)6f x x a x ax =-++,当[1,3]x ∈时,()f x 的最最小值为4,求a 的值 2a =四、巩固提高 1.求函数1()2f x x x=+在区间(0,2]上的最值 (略)2.已知函数2(),[1,3]xf x x e x -=∈-,求函数()f x 的最大值与最小值max ()(1)f x f e =-= min ()(0)0f x f ==3.已知函数32()39f x x x x a =-+++在区间[2,2]-上的最大值是20,求()f x 在该区间上的最小值 7-4.设23()252x f x x x =--+,当[1,2]x ∈-时,()f x m <恒成立,求实数m 的取值范围 (7,)+∞。

(寒假总动员)2020年高三数学寒假作业专题05导数在函数中的应用(练)(含解析)

(寒假总动员)2020年高三数学寒假作业专题05导数在函数中的应用(练)(含解析)

(寒假总动员)2020年高三数学寒假作业专题05导数在函数中的应用(练)(含解析)一•选择题21 .若函数f(X)2xln x在其定义域的一个子区间t,t 2上不是单调函数,则实数t的取值范围是()1 1 3 13t —0t t -t—A. 2B. 2C. 2 2D. 2【答案】E【解析】4Y:-1趨解析;丙为函数的导魏次八用7工1= 眇U)上封亂在(±7)谨增所以.Y x 220»故选B.苕帝1.1»的导数点函数的单嵋性.2•设f (x)是函数f(x)的导函数,将y f(x)和y f(X)的图象画在同一直角坐标系中,不可能正确的是【答索】【解析】试题解析:根据函数导数的正负性对应午碱的单调嶋・洋D不管那条曲銭菊原函数的韶不符合+故选D.考点,函隸的图傑与函数导函数的关系,4 on3若曲线y x的一条切线l与直线x 4y 8 0垂直,则l的方程为().【答案】C【解析】4x x 4y 5 C. 4x4y 3 0试题解析=由函数的导数可得》上4「林以丄■一 =4 JP A =1.所以切点天(1」)一所以所求的直集为4_Y T - 3 - 0 -所以选 C考点;1-函数的导数乜导数的几何意义甩淖込韦程痢表示*1 14•过抛物线y x 2上点M(2,4)的切线倾斜角是 A . 30°B . 45°C . 60°D . 90° 【答累】B【解析1试题解析土由于函数的导馥汽L 二2•.祈以过鼠w 用率洵1.所以切线的倾斜角洵-故选氐 1 .导数的几何庸义.2•特殊角的正t |【答案】C【解析】n —亡十―二1试題解忻’因次『(一1)工0丿(】)二0丿(0)二0 .所以4方+ \解得K 二一 1上工一2&工0.函数的导 数沟/=3JC : - 2bx-c 所以囲+ %: = - \ r xx 2所以丘一丘夕兰-故选C.学科囲3 "3 ' 亠 9考点’ 1-函数的图像的认识•比二次函藪旳圭这定璋丄-函敎曲&数几何意义.、填空题bx 2 . 2ex d 的大致图象,贝y X 1 2 X 2等于(6•若不等式X X a 2 1对一切非零实数x均成立,则实数a的取值范围是【答案】1 a 3【解析】试题解析:由题意可得卄?的最小狼是工所以可严卫一2|+1£2即1兰口勢一故填口一X]君輸:L不等式恒成立・2・絶对值的不等式.1 3 1 2f (x)-X —ax 2bx(a,b R)01 12 7•已知函数 3 2 ,且函数f (x)在区间0,1内取得极大值,在区间1,2内取得极小值,则b2 6a 9的取值范围是【答案】(半「2)【解析】试题解析:函数的导数粕3"-皿7乩依题意可得导函数册两根分别花叮叩1二)之间一所以要満足(fW“p + mo【广⑼二mo•所以苻合纽0条世是如圏阴黔小为范围.而后爲7二赢石二后司W[/<2)=4+2zi+2d>0表示naiu仍为囲&的半径的取值范甲,学科厨岸厂值是与声相切圜的半径丰,最大的是过原点CKK '所次&;十尸亠6迄十9的取值范围是(主,)考点:1•二次函数的根的分布2线性规划问题.3•圆的半径为参数.三•解答题28.已知函数f x alnx bx图象上一点P( 2, f(2))处的切线方程为y 3x 2ln 2 2•(I)求a,b的值;1[,e](n)若方程 f x m 0在e内有两个不等实根,求m的取值范围(其中e为自然对数的底,e 2.7 );【答案】(1 ) a = 2> = li (II> lsVX-2【解析】试题斜斤:C I)険的导数次广—2E又因*f (2) = -工所UA—骷=鼻一又因为X=-4 + 21ti 2BP-4 + 2 In 2 =^ln 2 -4h.BrQAca - 2 = 2.i II )由于/(x) = 21nx-x2.所很函罟厂.J在』丄虫増,在卩崗上递减所UA函数= /(I) = -1也=min{A-l;,yCe)} = 2所以2 弋乜-叨<.-L/. 1< w<e:-2.着点;!.导数的几何意义Q函数的单调性.乱函数的最值.。

专题05导数及其应用解答题(原卷版)

专题05导数及其应用解答题(原卷版)

大数据之十年高考真题(2013-2022)与优质模拟题(新高考卷与新课标理科卷)专题05导数及其应用解答题1.【2022年全国甲卷理科21】已知函数f(x)=e xx−lnx+x−a.(1)若f(x)≥0,求a的取值范围;(2)证明:若f(x)有两个零点x1,x2,则环x1x2<1.2.【2022年全国乙卷理科21】已知函数f(x)=ln(1+x)+axe−x(1)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若f(x)在区间(−1,0),(0,+∞)各恰有一个零点,求a的取值范围.3.【2022年新高考1卷22】已知函数f(x)=e x−ax和g(x)=ax−lnx有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.4.【2022年新高考2卷22】已知函数f(x)=x e ax−e x.(1)当a=1时,讨论f(x)的单调性;(2)当x>0时,f(x)<−1,求a的取值范围;(3)设n∈N∗,证明:1√12+1+1√22+2+⋯+1√n2+n>ln(n+1).5.【2021年全国甲卷理科21】已知a>0且a≠1,函数f(x)=x aa x(x>0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.6.【2021年新高考1卷22】已知函数f(x)=x(1−lnx).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且blna−alnb=a−b,证明:2<1a +1b<e.7.【2021年全国乙卷理科20】设函数f(x)=ln(a−x),已知x=0是函数y=xf(x)的极值点.(1)求a;真题汇总(2)设函数g(x)=x+f(x)xf(x).证明:g(x)<1.8.【2021年新高考2卷22】已知函数f(x)=(x −1)e x −ax 2+b . (1)讨论f(x)的单调性;(2)从下面两个条件中选一个,证明:f(x)有一个零点 ①12<a ≤e 22,b >2a ;②0<a <12,b ≤2a .9.【2020年全国1卷理科21】已知函数f(x)=e x +ax 2−x . (1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围. 10.【2020年全国2卷理科21】已知函数f (x )=sin 2x sin2x . (1)讨论f (x )在区间(0,π)的单调性; (2)证明:|f(x)|≤3√38; (3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22n x ≤3n4n .11.【2020年全国3卷理科21】设函数f(x)=x 3+bx +c ,曲线y =f(x)在点(12,f (12))处的切线与y 轴垂直.(1)求b .(2)若f(x)有一个绝对值不大于1的零点,证明:f(x)所有零点的绝对值都不大于1. 12.【2020年山东卷21】已知函数f(x)=ae x−1−lnx +lna .(1)当a =e 时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若f (x )≥1,求a 的取值范围.13.【2020年海南卷22】已知函数f(x)=ae x−1−lnx +lna .(1)当a =e 时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若f (x )≥1,求a 的取值范围.14.【2019年新课标3理科20】已知函数f (x )=2x 3﹣ax 2+b . (1)讨论f (x )的单调性;(2)是否存在a ,b ,使得f (x )在区间[0,1]的最小值为﹣1且最大值为1?若存在,求出a ,b 的所有值;若不存在,说明理由.15.【2019年全国新课标2理科20】已知函数f (x )=lnx −x+1x−1.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =lnx 在点A (x 0,lnx 0)处的切线也是曲线y =e x 的切线. 16.【2019年新课标1理科20】已知函数f (x )=sin x ﹣ln (1+x ),f ′(x )为f (x )的导数.证明: (1)f ′(x )在区间(﹣1,π2)存在唯一极大值点;(2)f (x )有且仅有2个零点.17.【2018年新课标1理科21】已知函数f (x )=1x −x +alnx . (1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f(x 1)−f(x 2)x 1−x 2<a ﹣2.18.【2018年新课标2理科21】已知函数f (x )=e x ﹣ax 2. (1)若a =1,证明:当x ≥0时,f (x )≥1; (2)若f (x )在(0,+∞)只有一个零点,求a .19.【2018年新课标3理科21】已知函数f (x )=(2+x +ax 2)ln (1+x )﹣2x . (1)若a =0,证明:当﹣1<x <0时,f (x )<0;当x >0时,f (x )>0; (2)若x =0是f (x )的极大值点,求a .20.【2017年新课标1理科21】已知函数f (x )=ae 2x +(a ﹣2)e x ﹣x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.21.【2017年新课标2理科21】已知函数f (x )=ax 2﹣ax ﹣xlnx ,且f (x )≥0. (1)求a ;(2)证明:f (x )存在唯一的极大值点x 0,且e ﹣2<f (x 0)<2﹣2.22.【2017年新课标3理科21】已知函数f (x )=x ﹣1﹣alnx . (1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,(1+12)(1+122)…(1+12n )<m ,求m 的最小值. 23.【2016年新课标1理科21】已知函数f (x )=(x ﹣2)e x +a (x ﹣1)2有两个零点. (Ⅰ)求a 的取值范围;(Ⅱ)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.24.【2016年新课标2理科21】(Ⅰ)讨论函数f (x )=x−2x+2e x 的单调性,并证明当x >0时,(x ﹣2)e x +x +2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=e x−ax−ax2(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.25.【2016年新课标3理科21】设函数f(x)=a cos2x+(a﹣1)(cos x+1),其中a>0,记|f(x)|的最大值为A.(Ⅰ)求f′(x);(Ⅱ)求A;(Ⅲ)证明:|f′(x)|≤2A.26.【2015年新课标1理科21】已知函数f(x)=x3+ax+14,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.27.【2015年新课标2理科21】设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.28.【2014年新课标1理科21】设函数f(x)=ae x lnx+be x−1x,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.29.【2014年新课标2理科21】已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<√2<1.4143,估计ln2的近似值(精确到0.001).30.【2013年新课标1理科21】已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y =g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.31.【2013年新课标2理科21】已知函数f(x)=e x﹣ln(x+m)(Ⅰ)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.1.已知函数f(x)=x22+cosx−1.(1)求函数f(x)的最小值;(2)证明:∑cos1k >n+12n−1nk=1.2.已知函数f(x)=e x(sinx+cosx)−asinx..(1)当a=1时,求函数f(x)在区间[0,2π]上零点的个数;(2)若函数y=f(x)在(0,2π)上有唯一的极小值点,求实数a的取值范围3.已知函数ℎ(x)=x−alnx(a∈R).(1)若ℎ(x)有两个零点,a的取值范围;(2)若方程x e x−a(lnx+x)=0有两个实根x1、x2,且x1≠x2,证明:e x1+x2>e2x1x2.4.已知函数f(x)=a2x2+(a−1)x−lnx(a∈R).(1)求函数f(x)的单调区间;(2)当a>4时,若方程f(x)=ax2−x+a2在(0,1)内存在唯一实根x0,求证:x0∈(14,1e).5.已知函数f(x)=e1−x+a(x2−1),a∈R.(1)若a=12,求f(x)的最小值;(2)若当x>1时,f(x)>1x+lnx恒成立,求a的取值范围.6.已知函数f(x)=2x3+3(1+m)x2+6mx(x∈R).(1)讨论函数f(x)的单调性;(2)若f(1)=5,函数g(x)=a(lnx+1)−f(x)x2≤0在(1,+∞)上恒成立,求整数a的最大值.7.已知函数f(x)=lnx+ax,a∈R.(1)当a=1时,求函数f(x)的单调递增区间;(2)设函数g(x)=f(x)−1x,若g(x)在[1,e2]上存在极值,求a的取值范围.8.设函数f(x)=a e x−x−1,a∈R.(1)当a=1时,求f(x)在点(0,f(0))处的切线方程;(2)当x∈R时,f(x)≥0恒成立,求a的取值范围;模拟好题(3)求证:当x∈(0,+∞)时,e x−1x>e x2.9.已知f(x)=34x2−x22lnx−a(x−1).(1)若f(x)恒有两个极值点x1,x2(x1<x2),求实数a的取值范围;(2)在(1)的条件下,证明f(x1)+f(x2)>32.10.已知函数f(x)=xsinx+cosx+12ax2,x∈[0,π].(1)当a=0时,求f(x)的单调区间;(2)当a>0时,讨论f(x)的零点个数.11.已知函数f(x)=xe x−1+(1−a)lnx,g(x)=lnx+ax.(1)当a=1时,求y=f(x)在点(1,f(1))处的切线方程;(2)当a=2时,对于在(0,1)中的任意一个常数b,是否存在正数x0,使得e g(x0+1)−3x0−2+b2x02<1,请说明理由;(3)设ℎ(x)=f(x)−g(x),x1是ℎ(x)的极小值点,且ℎ(x1)≥0,证明:ℎ(x1)≥2(x12−x13).12.已知函数f(x)=ax−2e x+3(a∈R),g(x)=lnx+x e x(e为自然对数的底数,e<259).(1)求函数f(x)的单调区间;(2)若a=−1,ℎ(x)=f(x)+g(x),当x∈[12,1]时,ℎ(x)∈(m,n),(m,n∈Z),求n−m的最小值.13.已知函数f(x)=a e xx+lnx−x(a∈R).(1)若f(x)在(1,+∞)上单调递增,求a的取值范围;(2)当a>1时,设F(x)=f(x)−(2lnx−x+1x ),求证:F(x)>ln(ax)x−lnx+e−1.14.设函数f(x)=m e x−1,g(x)=lnx+n,m、n为实数,若F(x)=g(x)x 有最大值为1e2(1)求n的值;(2)若f(x)e2>xg(x),求实数m的最小整数值.15.已知f(x)=34x2−x22lnx−a(x−1),a>0.(1)若f(x)在区间(1,+∞)上有且仅有一个极值点m,求实数a的取值范围;(2)在(1)的条件下,证明34<f(m)<e24.16.已知函数f(x)=ln(x−1)−mx(m∈R),g(x)=2x+n−2.(1)讨论函数f(x)的单调性;(2)当−1≤m≤e−2时,若不等式f(x)≤g(x)恒成立,求n−3的最小值.m+217.已知函数f(x)=e x2lnx(x>0).(1)求f(x)的极值点.(2)若有且仅有两个不相等的实数x1,x2(0<x1<x2)满足f(x1)=f(x2)=e k.(i)求k的取值范围(ⅱ)证明x2e2−2e≤e−e21.x118.已知函数f(x)=xlnx−a(x2−1),a∈R(1)当a=0时,求f(x)的单调区间;(2)若过原点作曲线y=f(x)的切线有两条,求a的取值范围,并证明这两条切线的斜率互为相反数.19.已知函数f(x)=e−x+sinx−ax,g(x)为f(x)的导函数.]内存在唯一的极值点x0,√2<2cosx0<√3;(1)证明:当a=0时,函数g(x)在区[0,π2(2)若f(x)在(0,π)上单调递减,求整数a的最小值.(x>0).20.已知函数f(x)=1+ln(x+1)x(1)试判断函数f(x)在(0,+∞)上单调性并证明你的结论;(2)若f(x)>k对于∀x∈(0,+∞)恒成立,求正整数k的最大值;x+1(3)求证:(1+1×2)(1+2×3)(1+3×4)⋯[1+n(n+1)]>e2n−3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(寒假总动员)年高三数学寒假作业专题05 导数在函数中的应用(学)
学一学------基础知识结论
1.导数与函数单调性的关系
函数
()
y f x
=在某个区间内可导
①若
'()0
f x>,则()
f x在这个区间内单调递增
②若
'()0
f x<,则()
f x在这个区间内单调递减
例1.【2014泉州月考卷】若函数
x
x
x
f ln
2
)
(2-
=在其定义域的一个子区间()
,2
t t+
上不是单调函数,
则实数t的取值范围是( )
A.
1
2
t>
B.
1
2
t≤<
C.
31
22
t
-<<
D.
3
2
t<-
2.函数的极值
(1)极值点与极值
设函数
()
f x在点0x及附近有定义,且在==两侧的单调性相反或导数值为零,则0x为函数()
f x的极值点,
()
f x
为函数的极值.
(2)极大值点与极小值点
①若先增后减(导数值先正后负),则0
x
为极大值点;
②若先减后增(导数值先负后正),则0
x
为极小值点.
例2.已知函数
32
11
()2(,R)
32
f x x ax bx a b
=++∈
,且函数
()
f x在区间()
0,1
内取得极大值,在区间
()
1,2 2269
a b a
+++.
函数的最值
在闭区间[,]
a b上连续的函数()
f x在[,]
a b上必有最大值与最小值.
若函数
()
f x在[,]
a b上单调递增,则()
f a为函数的最小值,()
f b为函数的最大值;若函数()
f x在[,]
a b
上单调递减,则
()
f a为函数的最大值,()
f b为函数的最小值.
设函数
()
f x在[,]
a b上连续,在(,)
a b内可导,求()
f x在[,]
a b上的最大值和最小值的步骤如下:
①求
()
f x在[,]
a b内的极值;
②将
()
f x的各极值与()
f a,()
f b比较,其中最大的一个是最大值,最小的一个是最小值.
例3.已知函数
3
6
)2
(
2
3
)
(2
3-
+
+
-
=x
x
a
ax
x
f
.
(I )当2>a 时,求函数)(x f 的极小值;
(II )试讨论曲线)(x f y =与x 轴的公共点的个数
利用导数解决实际生活中的优化问题
分析实际问题中各变量之间的关系,建立实际问题的数学模型,写出相应的函数关系式==并确定定义域; 求导数'()f x ,解方程'()0f x =
判断使'()0f x =的点是极大值点还是极小值点;
确定函数的最大值或最小值,还原到实际问题中作答.
5.利用导数解决函数与方程问题
研究函数图像的交点、方程的根、函数的零点,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路,因此使用的知识还是函数的单调性和极值的知识.
6.导数与不等式相结合的问题
求解不等式恒成立的问题时,可以考虑将从拿书分离出来,将参数范围转化为研究新函数的值域问题.
学一学------方法规律技巧
一个条件
a b上成立是()
a b上单调递增(递减)的充分条件.
f x在(,)
f x<)在(,)
f x>(或'()0
'()0
四点提醒
针对本讲的内容,利用导数解决问题时应注意以下两点:
先求定义域;
对参数的分类讨论要做到不重不漏.
(3)注意实际问题中函数定义域的确定.
(4)在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定最大值还是最小值即可,不必再与端点的函数值比较.。

相关文档
最新文档