物理化学第五章化学平衡小结

合集下载

物理化学核心教程(第二版)思考题习题答案—第5章 化学平衡

物理化学核心教程(第二版)思考题习题答案—第5章 化学平衡

第五章 化学平衡一.基本要求1.掌握化学反应等温式的各种形式,并会用来判断反应的方向和限度。

2.了解标准平衡常数的定义,掌握标准平衡常数的各种表示形式和计算方法。

3.掌握标准平衡常数K 与r m G ∆在数值上的联系,熟练用热力学方法计算r m G ∆,从而获得标准平衡常数的数值。

4.了解标准摩尔生成Gibbs 自由能f m G ∆的定义和它的应用。

5.掌握温度对化学平衡的影响,记住van ’t Hoff 公式及其应用。

6.了解压力和惰性气体对化学平衡的影响。

二.把握学习要点的建议把本章放在多组分系统之后的目的,就是要利用多组分系统中介绍的化学势的概念和各种表示方式,来导出化学反应等温式,从而用来判断化学反应的方向与限度。

本章又用到了反应进度的概念,不过其值处在0 1 mol -的区间之内。

因为在利用化学势的表示式来计算反应的Gibbs 自由能的变化值时,是将化学势看作为一个定值,也就是在有限的反应系统中,化学进度为d ξ,如果在一个很大的系统中, 1 mol ξ=。

严格讲,标准平衡常数应该用绝对活度来定义,由于本教材没有介绍绝对活度的概念,所以利用标准态化学势来对标准平衡常数下定义,其含义是一样的。

从标准平衡常数的定义式可知,标准平衡常数与标准化学势一样,都仅是温度的函数,因为压力已指定为标准压力。

对于液相反应系统,标准平衡常数有其相应的形式。

对于复相化学反应,因为纯的凝聚态物质本身就作为标准态,它的化学势就是标准态化学势,已经归入r m G ∆中,所以在计算标准平衡常数时,只与气体物质的压力有关。

学习化学平衡的主要目的是如何判断反应的方向和限度,知道如何计算平衡常数,了解温度、压力和惰性气体对平衡的影响,能找到一个经济合理的反应条件,为科研和工业生产服务。

而不要过多地去考虑各种浓度表示式和各种平衡常数表示式之间的换算,否则会把自己搞糊涂了,反而没抓住主要内容。

由于标准平衡常数与r m G ∆在数值上有联系,r m ln p G RT K ∆=-,所以有了r m G ∆的值,就可以计算p K 的值。

物理化学 第五章 化学平衡

物理化学 第五章 化学平衡
B
压力商Jp: 前式中的后一项的加和Σ υ BRTln(pB/pθ )可以用 乘积的形式表示: Σ υ BRTln(pB/pθ )=RTΣ υ Bln(pB/pθ ) B B =RTlnП (pB/pθ )υ B B 式中,П (pB/pθ )υ B为各反应物及反应产物的 B (pB/pθ )υ B的连乘积,称为压力商,用Jp表示。
←Δ rGm=(əG/əξ )T,p
0
1
图5.1.1 恒温、恒压下G随ξ 的变化
由图中曲线可以看出,在反应开始即ξ =0时,G 值最大;随着反应的进行,反应系统的G值逐渐 降低。曲线上任一点处的斜率(əG/əξ )T,p代表 在 T、p一定且反应进度为ξ 处的反应Δ rGm: Δ rGm=(əG/əξ )T,p 随着反应的进行,ξ 渐渐增大,曲线斜率的绝对 值渐渐变小。反应达平衡时,Δ rGm=0,即反应系 统的G达到极小。所以,恒温恒压不作非体积功 条件下,化学反应的平衡条件为: Δ rGm=(əG/əξ )T,p=0
代入摩尔反应吉布斯函数的关系式中,可得: Δ rGm=(əG/əξ )T,p=Σ υ Bμ θ B+Σ υ BRTln(pB/pθ ) B B 标准摩尔反应吉布斯函数Δ rGθ m: 上式中Σ υ Bμ θ B为各反应组分均处于标准态 B (pθ =100kPa的纯理想气体)时每摩尔反应进度吉 布斯函数变,以Δ rGθ m表示,称为标准摩尔反应 吉布斯函数,即: Δ rGθ m=Σ υ Bμ θ B
调节Jp改变反应方向和反应产率的局限性: Jp的可调性提供了控制、甚至改变反应方向的可 能性。但是对于Δ rGθ m«0的反应,Kθ »1,反应达 到平衡时反应物的分压几乎为0,因此可以认为 反应能进行到底;而Δ rGθ m»0的反应,Kθ «1,反 应达到平衡时反应产物的分压几乎为0,可以认 为反应不能发生;只有Δ rGθ m接近于0的反应, Kθ 与1相差不太大时,才有可能通过调节Jp来改 变化学反应的方向和影响反应的产率。

化学平衡相关知识点总结

化学平衡相关知识点总结

化学平衡相关知识点总结1864年,古德伯格(G.M.Guldberg)提出化学平衡常数,成为化学平衡的动力学真实图像。

下面给大家带来一些关于化学平衡相关知识点总结,希望对大家有所帮助。

一.化学平衡常数是指在一定温度下,可逆反应无论从正反应开始,还是从逆反应开始,也不考虑反应物起始浓度大小,最后都达到平衡,这时各生成物浓度的化学计量数次幂的乘积与各反应物浓度的化学计量数次幂的乘积的比值是个常数,用K表示,这个常数叫化学平衡常数。

平衡常数一般有浓度平衡常数和压强平衡常数。

二.注意问题在书写平衡常数表达式时,要注意以下问题:① 在应用平衡常数表达式时,稀溶液中的水分子浓度可不写。

因为稀溶液的密度接近于1 g/mL。

水的物质的量浓度为55.6 mol/L。

在化学变化过程中,水量的改变对水的浓度变化影响极小,所以水的浓度是一个常数,此常数可归并到平衡常数中去。

对于不以水为溶剂的溶液中的反应,溶剂的浓度同样是常数。

② 当反应中有固体物质参加时,分子间的碰撞只能在固体表面进行,固体的物质的量浓度对反应速率和平衡没有影响,因此,固体的“浓度”作为常数,在平衡常数表达式中,就不写固体的浓度。

③ 化学平衡常数表达式与化学方程式的书写方式有关。

同一个化学反应,由于书写的方式不同,各反应物、生成物的化学计量数不同,平衡常数就不同。

但是这些平衡常数可以相互换算。

④ 不同的化学平衡体系,其平衡常数不一样。

平衡常数大,说明生成物的平衡浓度较大,反应物的平衡浓度相对较小,即表明反应进行得较完全。

因此,平衡常数的大小可以表示反应进行的程度。

⑤一般认为K>10^5反应较完全(即不可逆反应),K<10^(-5)反应很难进行(即不反应)。

平衡常数的数值大小可以判断反应进行的程度三.测定方法平衡常数可以用实验方法测定,也可以利用热力学数据计算而得。

实验方法通常有化学方法和物理方法。

化学方法化学方法是通过化学分析法测定反应达到平衡时各物质的浓度。

高中化学平衡的知识点总结

高中化学平衡的知识点总结

高中化学平衡的知识点总结高中化学平衡的知识1化学平衡的移动1.化学平衡的移动(1)定义达到平衡状态的反应体系,条件改变,引起平衡状态被破坏的过程。

(2)化学平衡移动的过程2.影响化学平衡移动的因素(1)温度:在其他条件不变的情况下,升高温度,化学平衡向吸热反应方向移动;降低温度,化学平衡向放热反应方向移动。

(2)浓度:在其他条件不变的情况下,增大反应物浓度或减小生成物浓度,化学平衡向正反应方向移动;减小反应物浓度或增大生成物浓度,化学平衡向逆反应方向移动。

(3)压强:对于反应前后总体积发生变化的化学反应,在其他条件不变的情况下,增大压强,化学平衡向气体体积减小的方向移动;减小压强,化学平衡向气体体积增大的方向移动。

(4)催化剂:由于催化剂能同时同等程度地增大或减小正反应速率和逆反应速率,故其对化学平衡的移动无影响。

3.勒夏特列原理在密闭体系中,如果改变影响化学平衡的一个条件(如温度、压强或浓度等),平衡就向能够减弱这种改变的方向移动。

高中化学平衡的知识2外界条件对化学平衡移动的影响1.外界条件的变化对速率的影响和平衡移动方向的判断在一定条件下,浓度、压强、温度、催化剂等外界因素会影响可逆反应的速率,但平衡不一定发生移动,只有当v正≠v逆时,平衡才会发生移动。

2.浓度、压强和温度对平衡移动影响的几种特殊情况(1)改变固体或纯液体的量,对平衡无影响。

(2)当反应混合物中不存在气态物质时,压强的改变对平衡无影响。

(3)对于反应前后气体体积无变化的反应,压强的改变对平衡无影响。

但增大(或减小)压强会使各物质的浓度增大(或减小),混合气体的颜色变深(或浅)。

(4)恒容时,同等程度地改变反应混合物中各物质的浓度时,应视为压强的影响,增大(减小)浓度相当于增大(减小)压强。

(5)在恒容容器中,当改变其中一种气态物质的浓度时,必然会引起压强的改变,在判断平衡移动的方向和物质的转化率、体积分数变化时,应灵活分析浓度和压强对化学平衡的影响。

高中化学平衡的归纳总结

高中化学平衡的归纳总结

高中化学平衡的归纳总结高中化学平衡的归纳总结考点归纳:1. 化学反应速率:⑴. 化学反应速率的概念及表示方法:通过计算式:v =Δc /Δt来理解其概念:①化学反应速率与反应消耗的时间(Δt)和反应物浓度的变化(Δc)有关;②在同一反应中,用不同的物质来表示反应速率时,数值可以相同,也可以是不同的。

但这些数值所表示的都是同一个反应速率。

因此,表示反应速率时,必须说明用哪种物质作为标准。

用不同物质来表示的反应速率时,其比值一定等于化学反应方程式中的化学计量数之比。

如:化学反应mA(g) + nB(g) pC(g) + qD(g) 的:v(A)∶v(B)∶v(C)∶v(D) = m∶n∶p∶q③一般来说,化学反应速率随反应进行而逐渐减慢。

因此某一段时间内的化学反应速率,实际是这段时间内的平均速率,而不是瞬时速率。

⑵. 影响化学反应速率的因素:I. 决定因素(内因):反应物本身的性质。

Ⅱ. 条件因素(外因)(也是我们研究的对象):①. 浓度:其他条件不变时,增大反应物的浓度,可以增大活化分子总数,从而加快化学反应速率。

值得注意的是,固态物质和纯液态物质的浓度可视为常数;②. 压强:对于气体而言,压缩气体体积,可以增大浓度,从而使化学反应速率加快。

值得注意的是,如果增大气体压强时,不能改变反应气体的浓度,则不影响化学反应速率。

③. 温度:其他条件不变时,升高温度,能提高反应分子的能量,增加活化分子百分数,从而加快化学反应速率。

④. 催化剂:使用催化剂能等同地改变可逆反应的正、逆化学反应速率。

⑤. 其他因素。

如固体反应物的表面积(颗粒大小)、光、不同溶剂、超声波等。

2. 化学平衡:⑴. 化学平衡研究的对象:可逆反应。

⑵. 化学平衡的概念(略);⑶. 化学平衡的特征:动:动态平衡。

平衡时v正=v逆≠0等:v正=v逆定:条件一定,平衡混合物中各组分的百分含量一定(不是相等);变:条件改变,原平衡被破坏,发生移动,在新的条件下建立新的化学平衡。

大学课程《物理化学》各章节知识点汇总

大学课程《物理化学》各章节知识点汇总
3.在一可逆过程发生后,沿原过程途径相反方向进行, 可使系统和环境都复原,而没有任何耗散效应。是以无 限小的变化进行,系统始终无限接近平衡态。
第一定律的数学表达式
U Q W
对微小变化: dU Q W
等容热效应
dU Q W W pdV 0
dU QV
CV
QV
dT
U T
V
U QV ,
U nB
S ,V ,n j B
H nB
S, p,nj B
F nB
T ,V ,n j B
B
G nB
T , p,n j B
n B
S ,V ,n j B
F f (T ,V , n1, n2 )
H f (S, p, n1, n2 )
组成可变系统的热力学基本关系式:
dU TdS pdV BdnB
Q和W都不是状态函数,其数值与变化途径有关。
§1-4 可逆过程和体积功
一、体积功
因系统的体积变化而引起的系统与环境之间交换的功称
为体积功。 pe
W Fedl ( pe A)dl
ped ( Al) pedV
A
dl
pi
二、功与过程
功不是状态函数,其数值与过程有关。系统由同一始态 经不同的过程变化到同一终态,则体统对环境或环境对 体系所作的功不同。
p2 dp
压缩
p1
p1
p2 , V2
p1, V1
p2
V1
V2
W
V1 V2
pedV
( p V1
V2
i
dp)dV
V1 V2
pi dV
三、可逆过程
某系统经一系列的过程后,如果系统回到初始状态叫做 系统的复原;环境在经历一些的变化后,如果既没有功 的得失也没有热的得失就叫做环境的复原。

化学平衡知识点总结

化学平衡知识点总结

化学平衡 一、化学平衡 1、可逆反应 ⑴定义:在同一条件下,既能向正反应方向进行,同时又能向逆反应方向进行的反应叫做可逆反应。

用“”代替“==”。

⑵可逆反应中所谓的正反应、逆反应是相对的,一般把向右进行的反应叫做正反应,向左进行的反应叫做逆反应。

⑶在不同条件下能向两个方向进行的反应不叫可逆反应。

如: 2H 2 + O 22H 2O ;2H 2O2H 2↑+ O 2↑⑷可逆反应不能进行到底,在一定条件下只能进行到一定程度后达到平衡状态。

2、化学反应的限度 ⑴化学反应的限度就是研究可逆反应在一定条件下所能达到的最大限度。

⑵反应的转化率 反应物的转化率:α=%100 该反应物起始量反应物的转化量3、化学平衡 ⑴化学平衡状态:在一定条件下的可逆反应里,正反应速率和逆反应速率相等,反应物和生成物的浓度保持不变的状态,叫做化学平衡状态,简称化学平衡。

①化学平衡的微观标志(即本质):v 正=v 逆 ②化学平衡的宏观标志:反应混合物中各组分的浓度和体积分数保持不变,即随时间的变化,保持不变。

③可逆反应无论从正反应开始,还是从逆反应开始,或正、逆反应同时开始,都能达到化学平衡。

⑵化学平衡的特征 ①逆:化学平衡研究的对象是可逆反应。

②动:化学平衡是动态平衡,反应处于平衡态时,化学反应仍在进行,反应并没有停止。

③等:化学反应处于化学平衡状态时,正反应速率等于逆反应速率,且都不等于零。

④定:化学反应处于化学平衡状态时,反应混合物中各组分的浓度保持一定,体积分数保持一定。

对反应物,有一定的转化率,对生成物,有一定的产率。

⑤变:化学平衡是有条件的平衡,当外界条件变化,原有的化学平衡被破坏,在新的条件下,平衡发生移动,最终又会建立新的化学平衡。

二、判断可逆反应达到平衡的标志以可逆反应mA(g) + nB(g) pC(g) + qD(g)为例 1、直接标志 ⑴v 正=v 逆。

具体可以是:①A 、B 、C 、D 中任一种在单位时间内的生成个数等于反应掉的个数。

物理化学第五章化学平衡

物理化学第五章化学平衡
G ξ = A = r Gm T , P
G ξ = ∑ν B B = r Gm B T ,P
B
化学反应的亲和势,用A来表示,A只取决于系统的始、终态,是系统的强 度性质 二、化学平衡的热力学原因 在一定的条件下,自发的化学反应总是向着一定的方向进行,并进行到一 定的限度即达到平衡为止
r m p
J p (气) 只包括气体组分的分压商 平衡时
r Gm = 0
§5-2 等温方程及标准平衡常数
0 r Gm = RTLnJ p (平衡,g )
定义:
0 r Gm K ≡ exp RT 0
PB (g , 平衡) γ B ) 0 P PL 0 P = a PA 0 P
( ξ 增大),则系统的Gibbs函数降低,这就是说,此时反应的倾向是自左 而右进行,即向生成产物的方向进行。 G G 若 > ,表明反应在反应进度 ξ 时,若反应继续正向进行,( ξ 增 0
ξ T , P
大),则系统的Gibbs函数增大,此时反应不能向右进行,只能向左进行, 即向生成反应物的方向进行。 G 若 ξ = 0时,表明反应向右进行和向左进行的趋势相等,此时反应将达
§5-2 等温方程及标准平衡常数
0 Ky
0
PB = P y B
P K = ∏ B 0 BP
γB
K y = ∏ yB
B
P yB = ∏ P0 B
γB
γB
∑B ∑ P P γB = 0 ∏ yB = 0 P P B
γ
γB
Ky
Kn
PB = P
nB ∑ nB
P K = ∏ B 0 B P
§5-1 化学反应的方向和限度 一、化学反应的摩尔Gibbs函变 多组分封闭系统发生微小变化 ,系统的Gibbs函变表示为:

物理化学第五章化学平稳小结

物理化学第五章化学平稳小结

第四章 化学平稳核心内容: 恒T 、p 、W ˊ=0下,化学反映自发0,,><=∆∑='B B W p T G μν 平稳反向自发要紧内容:化学反映△G 、K 的计算及进程方向的判定。

一、内容提要一、化学反映自发进行和达到平稳的条件自发0,,><=∆∑='B B W p T G μν 平稳反向自发其中,B ν为B 的化学计量数,关于产物B ν取正值,关于反映物B ν取负值。

二、理想气体化学反映的等温方程(分压的阻碍)和反映方向的具体判据P m r m r Q RT G G ln +∆=∆θθp Q RT K RT ln ln +-=θθKQ RT pln= <0 自发 (Qp <θK ) =0 平稳 (Q p=θK )>0 反向自发(Qp >θK )式中:θθμνB B m r G ∑=∆为标准摩尔反映吉布斯函数转变,θK 为标准平稳常数,)ex p(RT G K mr θθ∆-==B p p eqB Bνθ)(∏=f(T)3、理想气体化学反映平稳常数的其他表示法及其彼此关系除标准平稳常数外,实际应用中经常使用体会平稳常数K P 、K C 、K n 、K y(1)K P :θK =∑∏=∏-BB B p p p p eq B BeqB B νθννθ)()()( θK =∑-B p K P νθ)( θK 仅是温度的函数,K P 也只与温度有关。

(2)K C :理想气体P B V=n B RT p B =RT c RT V n B B=θK =∑∏=∏=∏BB B B pRT c p RT c p p B B B B eqB B νθννθνθ)()()( ∑=BpRT K K C νθθ)( K C 也只与温度有关(3)K y :p B =py B=θK∑∏=∏=∏B BB B pp y p y p p p B B B B eqB B νθννθνθ)()()( ∑=Bpp K K y νθθ)(总 K y 与温度和总压有关(4)K n :∑=BB B B n n pp =θK BB BB BeqB Bn npp pp ννθυθ)()()(∑∏=∏=∑∑B npp K n νθ)(K n 与温度、总压和惰性气体有关。

第五章化学平衡要点

第五章化学平衡要点

K = B(pB /p )B K c = B(cB /c )B K y = B yB B Kn = B nB B
(c = 1moldm-3)
K K c : K = B(pB /p ) B
K = B ((cB /c) c RT/p )B = K c (c RT / p ) B
2. 摩尔反应Gibbs函数与化学反应进度的 关系,平衡条件
对任一反应 0 BB
B
设恒T、p且W’ = 0,有 dG μBdnB
B
因为:dnBBdξ
所以: d G T,p = (BB B ) d
( G / ) T,p = BB B
= rG m
对如下反应: N2 (g) + H2 (g) = NH3(g)
式中第二项 BB RT ln (pB/p )
= RT BB ln (pB/p )
= RT lnB (pB /p )B

压力商Jp = B (pB /p )B
rG m = BB B + BB RT ln (pB/p ) = rG m + RT ln Jp
此即理想气体反应的等温方程。
2.标准平衡常数
K Ky: K = B(pB /p ) B = B(ptotal yB /p ) B = B yB B (ptotal /p ) B = K y (ptotal /p ) B (ptotal为总压)
K Kn: K = B(pB /p ) B = B(ptotal yB /p ) B
Jp = K 处于平衡;
Jp > K 反应逆向进行。
K 与化学计量式的写法有关。例如合成氨:
1. N2(g)+3H2(g) = 2NH3(g);

物理化学课程讲义-第五章1

物理化学课程讲义-第五章1
B
(b)
热力学基本方程
这两个公式适用条件: (1)等温、等压、不作非膨胀功的一个化学反应; (2)反应过程中,各物质的化学势 µ B保持不变。
公式(a)表示有限体系中发生微小的变化; 公式(b)表示在大量的体系中发生了反应进度等于1 mol的变化。这时各物质的浓度基本不变,化学势也 保持不变。
化学反应的方向与限度
物理化学课程讲义
—— 第五章 化学平衡
化学反应体系
化学反应体系:封闭的单相体系,不作非膨胀功, 发生了一个化学反应,设为:
dD + eE + ⋅ ⋅ ⋅ → fF + gG + ⋅ ⋅ ⋅
各物质的变化量必须满足:
0 = ∑ν B B
B
根据反应进度的定义,可以得到:
dξ =
dn B
νB
dnB = ν Bdξ
$ m $ f
下标 m 表示反应进度为 1 mol 时的标准Gibbs自 由能的变化值。显然,化学反应方程中计量系数呈 ∆ $ 倍数关系, r Gm (T ) 的值也呈倍数关系,而 K $ 值则 f 呈指数的关系。 例如: (1) H 2 (g) + I 2 (g) = HI(g) ∆ r G
1 2 1 2
$ $ 对吸热反应, ∆ r H m > 0 ,升高温度, K p 增加, 对正反应有利。
$ ∆r H m < 0 对放热反应,
K $ 降低, ,升高温度, p
对正反应不利。
温度对化学平衡的影响
$ ∆ r H m 可视为常数,得定积分式为: 若温度区间不大,
∆r H 1 1 ln $ = ( − ) R T1 T2 K p (T1 ) K $ (T2 ) p

化学平衡的知识点总结

化学平衡的知识点总结

化学平衡的知识点总结一、化学平衡的概念。

1. 定义。

- 在一定条件下的可逆反应里,当正反应速率与逆反应速率相等时,反应混合物中各组分的浓度保持不变的状态,叫做化学平衡状态。

例如,对于可逆反应N_2(g)+3H_2(g)⇌2NH_3(g),在一定温度、压强和催化剂等条件下,反应进行到一定程度时,正反应生成NH_3的速率和逆反应NH_3分解的速率相等,体系中N_2、H_2、NH_3的浓度不再发生变化,此时就达到了化学平衡状态。

2. 特征。

- 动:化学平衡是动态平衡,即达到平衡状态时,正、逆反应仍在进行,只是v_正=v_逆≠0。

例如在上述合成氨反应达到平衡时,N_2和H_2仍在不断反应生成NH_3,同时NH_3也在不断分解成N_2和H_2。

- 等:正反应速率等于逆反应速率,这是化学平衡状态的本质特征。

- 定:反应混合物中各组分的浓度保持不变,各组分的质量分数、物质的量分数、体积分数等也保持不变。

- 变:化学平衡状态是在一定条件下建立的,当外界条件(如温度、压强、浓度等)改变时,平衡可能会发生移动。

二、化学平衡常数。

1. 定义。

- 对于一般的可逆反应aA + bB⇌ cC + dD,在一定温度下达到化学平衡时,反应的平衡常数K=([C]^c[D]^d)/([A]^a[B]^b),其中[A]、[B]、[C]、[D]分别表示平衡时各物质的浓度。

例如对于反应2SO_2(g)+O_2(g)⇌2SO_3(g),其平衡常数K =frac{[SO_3]^2}{[SO_2]^2[O_2]}(温度一定)。

2. 意义。

- K值的大小可以反映反应进行的程度。

K值越大,说明反应进行得越完全,反应物的转化率越高;K值越小,说明反应进行的程度越小,反应物的转化率越低。

- 对于同一可逆反应,K只与温度有关,与反应物或生成物的浓度无关。

3. 应用。

- 判断反应进行的方向:通过比较某一时刻反应的浓度商Q=([C]^c[D]^d)/([A]^a[B]^b)(Q与K表达式相同,但Q是任意时刻的)与K的大小关系来判断反应进行的方向。

化学平衡知识归纳总结

化学平衡知识归纳总结

化学平衡知识归纳总结一、化学平衡化学平衡的涵义1、可逆反应:在同一条件下同时向正方向又向逆反应方向进行的反应。

注意:“同一条件”“同时进行”。

同一体系中不能进行到底。

2、化学平衡状态在一定条件下的可逆反应里,正反应速率和逆反应速率相同时,反应混合物中各组分的浓度保持不变的状态叫化学平衡状态。

要注意理解以下几方面的问题:(1)研究对象:一定条件下的可逆反应(2)平衡实质:V正=V逆≠0 (动态平衡)(3)平衡标志:反应混合物各组分的含量保持不变,可用六个字概括——逆、等、定、动、变、同。

3、化学平衡状态的特征:(1)逆:化学平衡状态只对可逆反应而言。

(2)等:正反应速率和逆反应速率相等,即同一物质的消耗速率与生成速率相等。

(3)定:在平衡混合物中,各组分的浓度保持一定,不在随时间的变化而变化。

(4)动:化学平衡从表面上、宏观上看好像是反应停止了,但从本质上、微观上看反应并非停止,只不过正反应速率于逆反应速率相等罢了,即V正=V逆≠0,所以化学平衡是一种动态平衡。

(5)变:化学平衡实在一定条件下建立的平衡。

是相对的,当影响化学平衡的外界条件发生变化时,化学平衡就会发生移动。

(6)同:化学平衡状态可以从正逆两个方向达到,如果外界条件不变时,不论采取何种途径,即反应是由反应物开始或由生成物开始,是一次投料或多次投料,最后所处的化学平衡是相同的。

即化学平衡状态只与条件有关而与反应途径无关。

可逆反应达到平衡的标志1、同一种物质V正=V逆≠02、各组分的物质的量、浓度(包括物质的量的浓度、质量分数等)、含量保持不变。

等效平衡1、等效平衡原理:相同条件下,同一可逆反应体系,不管从正反应开始,还是从逆反应开始,只要按反应方程式中的化学计量数之比投入反应物或生成物,建立起的平衡状态都是相同,这就是等效平衡的原理。

由于化学平衡状态与条件有关,而与建立平衡的途径无关。

因而,同一可逆反应,从不同的状态开始,只要达到平衡时条件(温度、浓度、压强等)完全相同,则可形成等效平衡。

物理化学-第五章化学平衡

物理化学-第五章化学平衡

ΔG1=0
ΔG2=RTln(bθ/b)
C4H6O4(饱和溶液, b=0.715 mol/kg)
G
f
G
θ m
(aq)
f
G
θ m
(s)
G1
G2
ΔfG
θ m
(aq)
Δf
G
θ m
(s)
RTln(bθ /b)
5.4 各种因素对化学平衡的影响 问题:
1. 对于已经达到平衡的反应,可否改变其平衡位置?
2. 如何选择最适宜的反应条件? 工业合成氨 3H2(g) + N2(g) = 2NH3(g) 工业生产中的工艺条件一般是在520ºC, 30MPa,
B
pBeq
vB

平衡分压积
标准平衡常数, 简称平衡常数
rGmθ RT ln K θ 标准平衡常数Kθ热
力学定义式
K θ exp( rGmθ )
适用于任何类型的 化学反应
RT
任意化学反应
0 B BB
当化学反应处于平衡时:rGmeq
v
B
eq
B
0
B
化学势通式:
μB μBθ RTlnaB FB
(1) 根据反应的ΔrHmθ 和ΔrSmθ 计算
rGmθ
r
H
θ m
Tr Smθ
其中:
r
H
θ m
vB
f
H
θ m,
B
标准摩尔生成焓
B
Δr Smθ
vB Smθ , B
B
标准摩尔规定熵
由表中298.15K数据如何求T 下的ΔrGmθ?
T
r
H
θ m

物理化学 第5章 化学平衡-讲稿

物理化学     第5章 化学平衡-讲稿

∆rG (T) 反应的标准摩尔Gibbs函数变化值,与标准化学势 反应的标准摩尔Gibbs函数变化值 标准摩尔Gibbs函数变化值, m
一样, 一样,仅是温度函数
Qp
称为压力商, 称为压力商,由参与反应的气体的压力决定
§5.2 化学反应等温方程式
(∆ r Gm), p = ∆ r Gm (T ) + RT ln Qp T
∑ν
B
B
∑ν
B
B
µB > 0
§5.2 化学反应等温方程式
1、理想气体反应系统: 理想气体反应系统:
dD ( p D ) + eE ( p E ) = fF ( p F ) + gG ( p G )
等温等压下, 等温等压下,
∆ rG m =
∅ B
∑ν
B
B
µB
组分B在反应条件的化学势为: 组分B在反应条件的化学势为:
aB = γ B xB = xB
∅ K x = ∏ ( xB )ν B = K x e B
即以液相物质的量分数代替活度 代入标准平衡常数定义式: 代入标准平衡常数定义式: ▲
该式为理想液态混合物反应的标准平衡常数 该式为理想液态混合物反应的标准平衡常数
化学反应等温式的用途: 化学反应等温式的用途:若已知 ∆ r Gm (T ) 和 Q p ,就可以 来判断反应的方向和限度。 计算 (∆ r Gm), p,来判断反应的方向和限度。 T
( 只能用 ∆ r G m) , p 来判断反应的方向和限度,不能用 来判断反应的方向和限度, T ∆r Gm (T ) 来判断反应的方向和限度,除非系统都处于标准 来判断反应的方向和限度, 态。 是一个绝对值较大的负数时, 当 ∆ r Gm (T ) 是一个绝对值较大的负数时,基本上决定 的正、负号, 了 ∆ r Gm), p 的正、负号,可近似用来判断反应的方向和 ( T 限度。 限度。

大学物理化学-化学平衡的总结

大学物理化学-化学平衡的总结
B
∑ ∆ rHθm =- ν B∆ CHθm (B)
B
∑ ∆ rSθm = ν BSθm (B)
B
B
3)由有关反应的 ∆ rGθm 来求所需
化学反应的∆ rGθm
因为,G 是状态函数。所以若在某一温度下,几个 化学反 应具有加和性时,这些反应的 ∆ rGθm 也有加和关系。
等压方程

⎜ ⎝
∂ ln Kθ ∂T

⎟ ⎠p
=
∆r
H
θ m
RT 2
此式为范特霍夫等压方程。它表明温度对标 准平衡常数的影响,与反应的标准摩尔反应 焓有关。
①升温有利于吸热反应,降温有利于放热反应
②改变温度使平衡发生移动是因为改变了 Kθ。
定积分式: ln
K
θ 2
K1θ
=

Δr
H
θ m
R
⎛1
⎜ ⎝
T2

Байду номын сангаас
1 T1
⎞ ⎟ ⎠
若已知
ΔrH
θ m
在恒T、恒V下,加入惰性气体对反 应无影响。
在恒T、恒P下,加入惰性气体对反应有 影响,且有利于的Σν B>0 反应
真实气体混合物中组分B的化学势:
∫ µ∗ B
=
µθ B
+
RTln(
PB
/
pθ )+
p
0 (VB
− RT
/
P)d p
= µθB
+ RT ln(
f
/
pθ )
f:气体的逸度(f = γp ,校正压力) 对理想气体:γ = 1 or f = p
以及
T1下

物理化学第五章化学平衡小结 (2)

物理化学第五章化学平衡小结 (2)

第四章 化学平衡核心内容: 恒T 、p 、W ˊ=0下,化学反应自发0,,><=∆∑='B B W p T G μν平衡 反向自发主要内容:化学反应△G、K的计算及过程方向的判断。

一、内容提要1、化学反应自发进行与达到平衡的条件自发0,,><=∆∑='B B W p T G μν 平衡反向自发其中,B ν为B 的化学计量数,对于产物B ν取正值,对于反应物B ν取负值。

2、理想气体化学反应的等温方程(分压的影响)与反应方向的具体判据P m r m r Q RT G G ln +∆=∆θθp Q RT K RT ln ln +-=θθK Q RT pln= <0 自发 (Q p<θK )=0 平衡 (Q p=θK ) >0 反向自发(Qp>θK )式中:θθμνB B m r G ∑=∆为标准摩尔反应吉布斯函数变化,θK 为标准平衡常数,)ex p(RT G K mr θθ∆-==B p p eqB Bνθ)(∏=f(T)3、理想气体化学反应平衡常数的其她表示法及其相互关系除了标准平衡常数外,实际应用中常用经验平衡常数KP 、K C 、K n 、K y(1)K P :θK =∑∏=∏-BB B p p p p eq B BeqB B νθννθ)()()(θK =∑-B p K P νθ)( θK 仅就是温度的函数,K P 也只与温度有关。

(2)KC :理想气体PB V=n B RT pB=RT c RT Vn B B= θK =∑∏=∏=∏BB B B pRT c p RT c p p B B B B eqB B νθννθνθ)()()( ∑=BpRT K K C νθθ)( KC 也只与温度有关(3)K y:p B=py B=θK∑∏=∏=∏B BB B pp y p y p p p B B B B eqB B νθννθνθ)()()( ∑=Bpp K K y νθθ)(总K y 与温度与总压有关(4)K n :∑=BB BB n n pp =θK BB BB BeqB Bn npp pp ννθυθ)()()(∑∏=∏=∑∑B npp K n νθ)(K n 与温度、总压与惰性气体有关。

高三化学平衡知识点汇总

高三化学平衡知识点汇总

高三化学平衡知识点汇总一、化学平衡的基本概念在化学反应中,如果反应物转化成产物的速度与产物转化成反应物的速度相等,就说反应达到了化学平衡。

化学平衡是指在一定条件下反应物与产物浓度保持恒定的状态。

二、平衡态和平衡常数平衡态是指反应物与产物浓度保持不变的状态。

在化学平衡中,可以根据反应方程式写出平衡常数表达式,用于描述平衡系统中各种物质浓度的关系。

平衡常数K是一个恒定的值,与反应的速率无关。

三、热力学和化学平衡热力学原理对化学平衡具有重要影响。

根据热力学原理,反应的熵增大于零时,反应趋向于向正向方向进行;而反应的熵增小于零时,反应趋向于向逆向方向进行。

四、影响化学平衡的因素1. 温度:温度的升高会使反应速率增加,同时也会改变反应的平衡常数。

2. 压力(气相反应):改变气相反应的压强可以改变反应平衡的位置。

3. 浓度:改变反应物或产物的浓度会改变反应平衡的位置。

4. 催化剂:催化剂可以加速反应速率,但不改变反应的平衡常数。

五、平衡常数的计算平衡常数的计算可以通过实验数据和反应方程式来确定。

通过反应物和产物的浓度可以计算出平衡常数。

六、离子平衡离子平衡是指溶液中离子浓度达到稳定的状态。

溶液中的离子浓度可以通过平衡常数和溶解度积来计算。

七、酸碱平衡酸碱平衡是指酸和碱在溶液中形成盐和水的反应。

酸碱平衡的平衡常数可以通过酸碱离子浓度比值来计算。

八、溶解度平衡溶解度平衡是指溶质在溶剂中形成饱和溶液达到动态平衡的过程。

溶解度平衡的平衡常数可以通过溶解度积来计算。

九、氧化还原平衡氧化还原平衡是指电子在化学反应中的转移和交换过程。

氧化还原反应的平衡常数可以通过电子传递系数和浓度比值来计算。

总结:化学平衡是化学反应中的一种特殊状态,平衡态下反应物与产物浓度保持恒定。

平衡常数是描述平衡系统中物质浓度关系的值。

热力学原理对化学平衡有重要影响。

影响化学平衡的因素包括温度、压力、浓度和催化剂。

离子平衡、酸碱平衡、溶解度平衡和氧化还原平衡是常见的平衡类型。

高中化学化学平衡知识点总结

高中化学化学平衡知识点总结

高中化学化学平衡知识点总结高中化学化学平衡知识点总结(一)定义篇一1、定义:化学平衡状态:一定条件下,当一个可逆反应进行到正逆反应速率相等时,更组成成分浓度不再改变,达到表面上静止的一种“平衡”,这就是这个反应所能达到的限度即化学平衡状态。

2、化学平衡的特征逆(研究前提是可逆反应)等(同一物质的正逆反应速率相等)动(动态平衡)定(各物质的浓度与质量分数恒定)变(条件改变,平衡发生变化)3、判断平衡的依据判断可逆反应达到平衡状态的方法和依据高二化学平衡知识点归纳总结篇二化学平衡1、化学平衡状态(1)溶解平衡状态的建立:当溶液中固体溶质溶解和溶液中溶质分子聚集到固体表面的结晶过程的速率相等时,饱和溶液的浓度和固体溶质的质量都保持不变,达到溶解平衡。

溶解平衡是一种动态平衡状态。

小贴士:①固体溶解过程中,固体的溶解和溶质分子回到固体溶质表面这两个过程一直存在,只不过二者速率不同,在宏观上表现为固体溶质的减少。

当固体全部溶解后仍未达到饱和时,这两个过程都不存在了。

②当溶液达到饱和后,溶液中的固体溶解和溶液中的溶质回到固体表面的结晶过程一直在进行,并且两个过程的速率相等,宏观上饱和溶液的浓度和固体溶质的质量都保持不变,达到溶解平衡状态。

(2)可逆反应与不可逆反应①可逆反应:在同一条件下,同时向正、反两个方向进行的化学反应称为可逆反应。

前提:反应物和产物必须同时存在于同一反应体系中,而且在相同条件下,正、逆反应都能自动进行。

②不可逆反应:在一定条件下,几乎只能向一定方向(向生成物方向)进行的反应。

(3)化学平衡状态的概念:化学平衡状态指的是在一定条件下的可逆反应里,正反应速率和逆反应速率相等,反应混合物中各组分的浓度保持不变的状态。

理解化学平衡状态应注意以下三点:①前提是“一定条件下的可逆反应” ,“一定条件” 通常是指一定的温度和压强。

②实质是“正反应速率和逆反应速率相等” ,由于速率受外界条件的影响,所以速率相等基于外界条件不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


四章 化学平衡
核心内容: 恒T 、p 、W ˊ=0下,化学反应
自发
0,,><
=∆∑='B B W p T G μν 平衡
反向自发
主要内容:化学反应△G 、K 的计算及过程方向的判断。

一、内容提要
1、化学反应自发进行和达到平衡的条件
自发
0,,><
=∆∑='B B W p T G μν 平衡
反向自发
其中,B ν为B 的化学计量数,对于产物B ν取正值,对于反应物B ν取负值。

2、理想气体化学反应的等温方程(分压的影响)
和反应方向的具体判据
P m r m r Q RT G G ln +∆=∆θ
θ
p Q RT K RT ln ln +-=θ
θ
K Q RT p
ln
= <0 自发 (Qp <θ
K )
=0 平衡 (Qp=θ
K ) >0 反向自发(Qp >θ
K )
式中:θ
θμνB B m r G ∑=∆为标准摩尔反应吉布斯函数变化,θ
K 为标准平衡常数,
)ex p(RT G K m r θ
θ
∆-==B p p eq
B B
νθ)(∏=f(T)
3、理想气体化学反应平衡常数的其他表示法及其相互关系
除了标准平衡常数外,实际应用中常用经验平衡常数K P 、K C 、K n 、K y
(1)K P :θK =∑∏=∏-B
B B p p p p eq B B
eq
B B νθννθ)()()(
θK =∑
-
B p K P νθ)( θ
K 仅是温度的函数,K P 也只与温度有关。

(2)K C :理想气体P B V=n B RT p B =RT c RT V n B B
=
θK =∑∏=∏=∏B
B B B p
RT c p RT c p p B B B B eq
B B νθννθνθ)()()( ∑=B
p
RT K K C νθθ
)
( K C 也只与温度有关
(3)K y :p B =py B

K
∑∏=∏=∏B B
B B p
p y p y p p p B B B B eq
B B νθννθνθ)()()( ∑=B
p
p K K y νθθ
)
(总 K y 与温度和总压有关
(4)K n :
∑=B
B B
B n n p
p =
θ
K B
B B
B B
eq
B B
n n
p
p p
p ννθ
υθ
)
()(
)
(
∑∏=∏
=
∑∑B n
p
p K n νθ
)
(
K n 与温度、总压和惰性气体有关。

综合以上各式得:
θ
K =
∑=∑=∑=∑∑B B B B n
p p K p p K p
RT K p K n y C P νθνθνθνθ
)()()()( 当∑=0B ν时,θK =K p =K c =K y =K n
4、有纯凝聚态物质参加的理想气体反应的标准平衡常数
若理想气体化学反应中有纯固态或纯液态参加时,由于常压下纯凝聚态物质的化学势可近似为标准态化学势,即)()(cd cd B B θ
μμ=(cd 表示凝聚态)
因此
P m r m r Q RT G G ln +∆=∆θ
其中 ∑=∆ϑ
θ
μνB B m
r G 即对参加反应的所有
物质包括凝聚态物质求和。

)
()()
()
(
g eq
g B g B B p
p
K νθ
θ
∏=
即θ
K 只考虑气相组分的平衡分压。

5、真实气体化学反应的标准平衡常数
真实气体的化学势表达式为
)ln(θθ
μμp p RT B
B B +=,
代入∑=∆B B rGm μν可得:
B
B
B p
p p f K eq
B B eq B B eq
B B νθννθθ
ϕ)
()()(∏⨯∏∏= B p ~ 为组分B 在指定条件下的逸度,
B B B p f ϕ=,eq
B
ϕ为B 的逸度因子,它是温度和
总压的函数,B
eq B
B νϕ)(∏也是温度和压力的函
数,对于理想气体
B eq B
B
νϕ)
(∏=1
B
p
p
K eq
B B νθθ
)
(∏=。

6、液态混合物或溶液的化学平衡常数 对于液态混合物(或溶液)中的化学反应,由于任一组分的化学势为
B B B a RT ln +=θ
μμ,代入∑=∆B B r G m
μν可得:
B B
eq B
eq B B
B B B eq B B
a a K ννθ
χγχγ)
()(∏=∏=
B B eq B
B
eq B B
K ννθ
χγ)
()(∏∏=
若反应系统为理想液态混合物或理想稀溶液,则
B γ=1,1=∏B
B B
νγ
7、标准摩尔吉布斯函数变θ
m r G ∆的计算方法 由于θ
θ
K RT G m r ln -=∆,因此由θ
m r G ∆可求
得θ
K 。

θ
m r G ∆的计算主要有以下三种方法:
①由θm f G ∆计算θ
m r G ∆:θ
θνm f B m r G G ∆∑=∆
②θ
θθ
m r m r m
r S T H G ∆-∆=∆计算
θ
θ
νm f B m r H H ∆∑=∆
θ
θ
νm f B m r S S ∆∑=∆
③由相关反应计算θ
m r G ∆
8、化学反应的等压方程(温度的影响)
2)ln (RT
H T K
m r P θ
θ∆=∂∂
上式是范特霍夫方程的微分式,由此式可进行以下讨论:
若0>∆θ
m r H ,即吸热反应,0)ln (>∂∂P T K θ
,说明
标准平衡常数随温度升高而增大,平衡右移,有利于反应正向进行。

若0<∆θ
m r H ,即放热反应,0)ln (<∂∂P T
K θ
,说明标准平衡常数随温度升高而减小,平衡左移,不利于反应正向进行。

对范特霍夫方程的微分式进行积分,可进行有关计算:
①若温度变化范围不大,或0,=∑θ
υm P B C ,
θ
m r H ∆可看作常数时
不定积分式 C T
R H K m r +∆-=1
ln θ
θ
定积分式 )
11(ln 1212
T T R H K K m r -∆-=θ
θθ
)
11()()(121122T T H T T G T T G m r m r m r -∆=∆-∆θθ
θ
与前两式皆
为等价式。

②若温度变化范围不大,或0,≠∑θυm P B C ,θm r H ∆不能看作常数时
dT RT T H K K m r T T 212)(ln 21θ
θθ∆=⎰ 9、平衡移动原理
(1)升高温度,反应向吸热的方向进行;降低
温度,反应向放热的方向进行;
(2)升高压力,反应向分子数减少的方向进行;
降低压力,反应向分子数增多的方向进行;
(3)引入惰性气体(总压不变),反应向分子数
增多的方向进行;
(4)反应物的摩尔比对平衡转化率的影响
当反应物的摩尔比等于化学计量系数之此时,产物的含量最大,但绝对值不一定最大。

1
225.40),(-⋅-=∆mol kJ s S Ag G m f θ。

相关文档
最新文档