湖北省荆州市松滋市2019-2020学年八年级上学期数学期中考试试卷及参考答案
2019-2020学年度第一学期期中八年级数学试卷及答案
2019-2020学年度第一学期期中八年级数学试卷及答案数学试题参考答案(人教版)1-6 A A B B C D 7-12 C D B A C B 13-14 A B15.(2;4) 16.30. 17.SSS 18.140°;719.解:∵∠2是△ADB 的一个外角;∴∠2=∠1+∠B ;∵∠1=∠B ;∴∠2=2∠1;∵∠2=∠C ;∴∠C=2∠1;∴∠BAC=180°-3∠1∵∠BAC=63°;∴∠1=39°;∴∠CAD=24°.20.解:(1)点A 1(-2;1.5)变换为(5;1.5);A 1(-2;1.5)不是不动点;A 2(1.5;0)变换为(1.5;0);A 2(1.5;0)是不动点;(2)A 1(a ;-3)变换为(3-a ;-3);由不动点;得a =3-a .解得a =1.5.21.解:上面证明过程不正确;错在第一步.正确过程如下:在△BEC 中;∵BE =CE ∴∠EBC =∠ECB 又∵∠ABE =∠ACE∴∠ABC =∠ACB ∴AB =AC .在△AEB 和△AEC 中;AE =AE ;BE =CE ;AB =AC ;∴△AEB ≌△AEC (SSS )∴∠BAE =∠CAE .22.解:设这个外角的度数是x °;则(5-2)×180-(180-x )+x =600;解得x =120.故这个外角的度数是120°.23.解:如图1所示:从A 到B 的路径AMNB 最短;【思考】如图2所示:从A 到B 的路径AMENFB 最短;【进一步的思考】如图3所示:从A 到B 的路径AMNGHFEB 最短;【拓展】如图3所示:从A 到B 的路径AMNEFB 最短.图2中有结论:DA-DB=2DE;图3中有结论:DB-DA=2DE.25. 解:(1)设点M、N运动x秒后;M、N两点重合;x×1+12=2x;解得:x=12;(2)设点M、N运动t秒后;可得到等边三角形△AMN;如图①;AM=t×1=t;AN=AB-BN=12-2t;∵三角形△AMN是等边三角形;∴t=12-2t;解得t=4;∴点M、N运动4秒后;可得到等边三角形△AMN.(3)当点M、N在BC边上运动时;可以得到以MN为底边的等腰三角形;由(1)知12秒时M、N两点重合;恰好在C处;如图②;假设△AMN是等腰三角形;∴AN=AM;∴∠AMN=∠ANM;∴∠AMC=∠ANB;∵AB=BC=AC;∴△ACB是等边三角形;∴∠C=∠B;∴△ACM≌△ABN;∴CM=BN;设当点M、N在BC边上运动时;M、N运动的时间y秒时;△AMN是等腰三角形;∵CM=y-12;NB=36-2y;∴y-12=36-2y;解得:y=16.故假设成立.∴当点M、N在BC边上运动时;能得到以MN为底边的等腰三角形AMN;此时M、N运动的时间为16秒.。
2019-2020学年第一学期八年级期中考试数学试卷含答案
2019-2020学年第一学期八年级期中考试数 学 试 卷(满分:150分;考试时间:120分钟)一、选择题(共10小题,每小题4分,满分40分) 1.下列图形中,不具有稳定性的图形是( )A .平行四边形B .等腰三角形C .直角三角形D .等边三角形 2.下列运算正确的是( ) A .1243a a a =⋅ B .()523a a = C .()632273a a = D .236a a a =÷3.下列长度的三条线段能组成三角形的是( ) A .2, 3, 4 B . 3, 6, 11 C .4, 6, 10 D . 5, 8, 14 4.一个凸多边形的内角和等于900°,则这个多边形的边数是( ) A .5 B .6 C .7 D .85.若等式22)()b a M b a +=+-(成立,则M 的值为( ) A .ab 2 B .ab 4 C .ab 4- D .-6.如图,在∠AOB 的两边上,分别取OM = ON,再分别过点M 、作OA 、OB 的垂线,交点为P ,画射线OP ,则OP 平分∠的依据是( )A .SSSB .SASC .AASD .HL7.若812+-kx x 是一个完全平方式,则k 的值为( ) A .±9B .18C .±18D .-188.已知,a , b , c 是△ABC 的三条边长,化简b a c c b a ----+的结果为( ) A .c b a 222-+ B .b a 22+ C .c 2 D .0 9.下列语句中,正确的是( )A .等腰三角形底边上的中线就是底边上的垂直平分线;B .等腰三角形的对称轴是底边上的高;C .一条线段可看作是以它的垂直平分线为对称轴的轴对称图形;D .等腰三角形的对称轴就是顶角平分线。
10.如图,在2×2的方格纸中有一个以格点为顶点的△ABC ,则 与△ABC 成轴对称且以格点为顶点的三角形共有( )个 A .3 B .4 C .5 D .6二、填空题(共6小题,每小题4分,满分24分)11.点(1,2)关于x 轴对称点的坐标是 .OCG12.已知射线OM ,以O 为圆心,任意长为半径画弧,与射线OM 交 于A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,如图所示,则∠AOB =°.13.如图,△ABC 中,∠ACB = 90°,沿CD 折叠△CBD ,使点B恰好落在AC 边上的点E 处。
2019-2020学年八年级上学期期中考试数学试卷(附解答)
2019-2020学年八年级上学期期中考试数学试卷一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.下列计算结果为x6的是()A.x3•x2B.x2+x4C.(x4)2D.x7÷x3.如图,已知△ADC中,AB=AC,BD=DC,则下列结论错误的是()A.∠BAC=∠B B.∠BAD=∠CAD C.AD⊥BC D.∠B=∠C4.下列计算正确的是()A.(x+y)2=x2+y2B.(2m2)3=6m6C.(x﹣2)2=x2﹣4 D.(x+1)(x﹣1)=x2﹣15.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC6.如图所示,AD=AE,AB=AC,∠BAC=∠DAE,B、D、E在同一直线上,∠1=22°,∠2=30°,求∠3的度数()A.42°B.52°C.62°D.72°7.(x+p)(x+5)=x2+rx﹣10,则p,r的值分别是()A.2,﹣3 B.2,3 C.﹣2,3 D.﹣2,﹣38.如图,AD是△ABC的角平分线,DF⊥AB于点F,且DE=DG,S△ADG=50,S△AED=38,则△DEF的面积为()A.6 B.12 C.4 D.89.如图,两个正方形边长分別为a,b,如果a+b=9,ab=12,则阴影部分的面积为()A.21.5 B.22.5 C.23.5 D.2410.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN =x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定二.填空题(共6小题)11.2x2y3•(﹣7x3y)=.12.点P(﹣3,4)关于原点对称的点的坐标是.13.如图,OP平分∠AOB,PD⊥OA于点D,点Q是射线OB上一个动点,若PD=2,则PQ的取值范围为.14.如图,在△ABC中,AB=AC,BE=CD,BD=CF,∠EDF=78°,则∠A的度数为.15.等腰三角形的其中两边长分别为(x+2)(2x﹣5),(x﹣1)2,已知这两边不相等,且x >5,则该等腰三角形的周长为(用含x的式子表示)16.计算:40372﹣8072×2019=.三.解答题(共9小题)17.计算:[(x+2y)2﹣(x﹣2y)(x+2y)]÷2y18.已知如图,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC,求证:AO⊥BC.19.如图AB⊥l于点B,CD⊥1于点D,点E,F在直线1上,且BF=DE,AE=CF.求证:AE∥CF.20.如图△ABC,请用尺规作出它的外角∠BAE的平分线AD,若AD∥BC,证明:AB=AC.21.如图在△ABC中,DE是AC的垂直平分线,AE=5,△ABD的周长为14,求△ABC的周长.22.长方形的长和宽分别是a厘米、b厘米,如果长方形的长和宽各减少2厘米.(1)新长方形的面积比原长方形的面积减少了多少平方厘米?(2)如果减少的面积恰好等于原面积的,试确定(a﹣6)(b﹣6)的值.23.我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,步骤如下:①把被除式、除式按某个字母作降幂接列,井把所块的项用零补齐;②用除式的第一项除以除式第一项,得到商式的第一项;③用商式的一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项;④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式,若余式为零,说明这个多项式能被另一个多项式整除.例如:计算(6x4﹣7x3﹣x2﹣1)÷(2x+1),可用竖式除法如图:所以6x4﹣7x3﹣x2﹣1除以2x+1,商式为3x3﹣5x2﹣2x﹣1,余式为0.根据阅读材料,请回答下列问题:(1)(x3﹣4x2+7x﹣5)÷(x﹣2)的商是,余式是;(2)x3﹣x2+ax+b能被x2+2x+2整除,求a,b的值.24.等边三角形△ABC,直线1过点C且垂直AC.(1)请在直线1上作出点D,使得△ABD的周长最小.(2)在(1)的条件下,连接AD,BD,求证,AD=2BD.25.已知,△ABC是等腰直角三角形,BC=AB,A点在x负半轴上,直角顶点B在y轴上,点C在x轴上方.(1)如图1所示,若A的坐标是(﹣3,0),点B的坐标是(0,1),点C的坐标为.(2)如图2,若OA平分∠BAC,BC与x轴交于点E,若点C纵坐标为m,求AE的长.(3)如图3,在(2)的条件下,点F在射线DM上,且∠ABF=∠ADF,AH⊥BF于点H,试探究BF、HFDF的数量关系.参考答案与试题解析一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不合题意.故选:C.2.下列计算结果为x6的是()A.x3•x2B.x2+x4C.(x4)2D.x7÷x【分析】分别根据同底数幂的乘法法则,合并同类项法则,幂的乘方法则以及同底数幂的除法法则逐一判断即可.【解答】解:A.x3•x2=x5,故本选项不合题意;B.x2与x4不是同类项,所以不能合并,故本选项不合题意;C.(x4)3=x8,故本选项不合题意;D.x7÷x=x6,故本选项符合题意.故选:D.3.如图,已知△ADC中,AB=AC,BD=DC,则下列结论错误的是()A.∠BAC=∠B B.∠BAD=∠CAD C.AD⊥BC D.∠B=∠C 【分析】证明△ADB≌△ADC即可解决问题.【解答】解:∵AB=AC,BD=DC,AD=AD,∴△ADB≌△ADC(SSS),∴∠B=∠C,∠BAD=∠CAD,∠ADB=∠ADC,∵∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°,∴AD⊥BC,故B,C,D正确,故选:A.4.下列计算正确的是()A.(x+y)2=x2+y2B.(2m2)3=6m6C.(x﹣2)2=x2﹣4 D.(x+1)(x﹣1)=x2﹣1【分析】各项化简得到结果,即可作出判断.【解答】解:A、原式=x2+2xy+y2,不符合题意;B、原式=8m6,不符合题意;C、原式=x2﹣4x+4,不符合题意;D、原式=x2﹣1,符合题意,故选:D.5.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC【分析】根据全等三角形的性质得出对应角相等,对应边相等,推出两三角形面积相等,周长相等,再逐个判断即可.【解答】解:A、∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项错误;B、∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项错误;C、∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB,∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项正确;D、∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD,∴AD∥BC,故本选项错误;故选:C.6.如图所示,AD=AE,AB=AC,∠BAC=∠DAE,B、D、E在同一直线上,∠1=22°,∠2=30°,求∠3的度数()A.42°B.52°C.62°D.72°【分析】由“SAS”可证△ABD≌△ACE,可得∠ABD=∠2=30°,由三角形外角性质可求解.【解答】解:∵∠BAC=∠DAE,∴∠1=∠CAE,且AD=AE,AB=AC,∴△ABD≌△ACE(SAS)∴∠ABD=∠2=30°,∴∠3=∠2+∠ABD=52°,故选:B.7.(x+p)(x+5)=x2+rx﹣10,则p,r的值分别是()A.2,﹣3 B.2,3 C.﹣2,3 D.﹣2,﹣3【分析】已知等式左边利用多项式乘多项式法则计算,利用多项式相等的条件求出p,r【解答】解:∵(x+p)(x+5)=x2+(p+5)x+5p=x2+rx﹣10,∴p+5=r,5p=﹣10,解得:p=﹣2,r=3.故选:C.8.如图,AD是△ABC的角平分线,DF⊥AB于点F,且DE=DG,S△ADG=50,S△AED=38,则△DEF的面积为()A.6 B.12 C.4 D.8【分析】过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,然后利用“HL”证明Rt△DEF和Rt△DGH全等,根据全等三角形的面积相等可得S△EDF=S△GDH,设面积为S,然后根据S△ADF=S△ADH列出方程求解即可.【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),∴S△EDF=S△GDH,设面积为S,同理Rt△ADF≌Rt△ADH,∴S△ADF=S△ADH,即38+S=50﹣S,故选:A.9.如图,两个正方形边长分別为a,b,如果a+b=9,ab=12,则阴影部分的面积为()A.21.5 B.22.5 C.23.5 D.24【分析】根据正方形和三角形的面积的和差即可求解.【解答】解:根据题意,得∵a+b=9,ab=12,∴(a+b)2=92∴a2+2ab+b2=81,∴a2+b2=81﹣24=57,∴阴影部分的面积为:a2﹣b(a﹣b)=(a2﹣ab+b2)=(57﹣12)=22.5.故选:B.10.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN =x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定【分析】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.想办法证明∠HCN=120°HN=MN=x即可解决问题;【解答】解:将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,∵∠MON=30°,∴∠ABM+∠CBN=30°,∴∠NBH=∠CBH+∠CBN=30°,∴∠NBM=∠NBH,∵BM=BH,BN=BN,∴△NBM≌△NBH,∴MN=NH=x,∵∠BCH=∠A=60°,CH=AM=n,∴∠NCH=120°,∴x,m,n为边长的三角形△NCH是钝角三角形,故选:C.二.填空题(共6小题)11.2x2y3•(﹣7x3y)=﹣14x5y4.【分析】原式利用单项式乘以单项式法则计算即可求出值.【解答】解:原式=﹣14x5y4,故答案为:﹣14x5y412.点P(﹣3,4)关于原点对称的点的坐标是(3,﹣4).【分析】本题比较容易,考查平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.【解答】解:根据中心对称的性质,得点P(﹣3,4)关于原点对称的点的坐标是(3,﹣4).13.如图,OP平分∠AOB,PD⊥OA于点D,点Q是射线OB上一个动点,若PD=2,则PQ的取值范围为PQ≥2 .【分析】根据垂线段最短可得PQ⊥OB时,PQ最短,再根据角平分线上的点到角的两边距离相等可得PQ=PD.【解答】解:由垂线段最短可得PQ⊥OB时,PQ最短,∵OP平分∠AOB,PD⊥OA,∴PQ=PD=2,即线段PQ的最小值是2.∴PQ的取值范围为PQ≥2,故答案为PQ≥2.14.如图,在△ABC中,AB=AC,BE=CD,BD=CF,∠EDF=78°,则∠A的度数为24°.【分析】由等腰三角形的性质可得∠B=∠C,由“SAS”可证△BED≌△CDF,可得∠CDF =∠BED,由三角形外角的性质可得∠EDF=∠B=70°,即可求∠A的度数.【解答】解:∵AB=AC∴∠B=∠C,又∵BE=CD,BD=CF∴△BED≌△CDF(SAS)∴∠CDF=∠BED∵∠EDC=∠B+∠BED=∠CDF+∠EDF∴∠EDF=∠B=78°∴∠C=∠B=78°∴∠A=180°﹣78°﹣78°=24°故答案为:24°.15.等腰三角形的其中两边长分别为(x+2)(2x﹣5),(x﹣1)2,已知这两边不相等,且x >5,则该等腰三角形的周长为5x2﹣4x﹣19 (用含x的式子表示)【分析】分为两种情况:①当三角形的三边是(x+2)(2x﹣5),(x+2)(2x﹣5),(x﹣1)2时,②当三角形的三边是(x+2)(2x﹣5),(x﹣1)2,(x﹣1)2时,看看是否符合三角形的三边关系定理,符合时求出即可.【解答】解:分为两种情况:①当等腰三角形的腰为(x+2)(2x﹣5)时,三角形的三边是(x+2)(2x﹣5),(x+2)(2x﹣5),(x﹣1)2,此时符合三角形的三边关系定理,此时三角形的周长是:(x+2)(2x﹣5)+(x+2)(2x﹣5)+(x﹣1)2=2x2﹣x﹣10+2x2﹣x﹣10+x2﹣2x+1=5x2﹣4x﹣19;②当等腰三角形的腰为(x﹣1)2时,三角形的三边是(x+2)(2x﹣5),(x﹣1)2,(x﹣1)2时,∵(x﹣1)2+(x﹣1)2=2x2﹣4x+2,(x+2)(2x﹣5)=2x2﹣x﹣10,x>5,∴(x﹣1)2+(x﹣1)2﹣(x+2)(2x﹣5)=(2x2﹣4x+2)﹣(2x2﹣x﹣10)=﹣3x+12<0,∴(x﹣1)2+(x﹣1)2<(x+2)(2x﹣5),∴此时不符合三角形的三边关系定理,此时不存在三角形.故答案为:5x2﹣4x﹣19.16.计算:40372﹣8072×2019= 1 .【分析】把8072×2019变为4038×4036,再套用平方差公式计算得结果.【解答】解:原式=40372﹣2×4036×2019=40372﹣4036×4038=40372﹣(4037﹣1)(4037+1)=40372﹣(40372﹣1)=1故答案为:1三.解答题(共9小题)17.计算:[(x+2y)2﹣(x﹣2y)(x+2y)]÷2y【分析】直接利用乘法公式进而化简,再利用整式的除法运算法则计算得出答案.【解答】解:原式=[x2+4y2+4xy﹣(x2﹣4y2)]÷2y=(8y2+4xy)÷2y=4y+2x.18.已知如图,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC,求证:AO⊥BC.【分析】延长AO交BC于点D,先证出△ABO≌△ACO,得出∠BAO=∠CAO,再根据三线合一的性质得出AO⊥BC即可.【解答】证明:延长AO交BC于点D,在△ABO和△ACO中,,∴△ABO≌△ACO(SSS),∴∠BAO=∠CAO,∵AB=AC,∴AO⊥BC.19.如图AB⊥l于点B,CD⊥1于点D,点E,F在直线1上,且BF=DE,AE=CF.求证:AE∥CF.【分析】证明△ABE≌△CDF(HL),推出∠AEB=∠CFD可得结论.【解答】证明:∵AB⊥l于点B,CD⊥1于点D,∴∠ABE=∠CDF=90°,∵BF=DE,∴DF=BE,∵AE=CF,∴Rt△ABE≌Rt△CDF(HL),∴∠AEB=∠CFD,∴AE∥CF.20.如图△ABC,请用尺规作出它的外角∠BAE的平分线AD,若AD∥BC,证明:AB=AC.【分析】用尺规作外角∠BAE的平分线AD,再进行证明即可.【解答】解:如图所示:AD即为所求作的图形.证明:∵AD∥BC,∴∠DAE=∠C,∠DAB=∠B,∵AD平分∠BAE,∴∠DAE=∠DAB,∴∠B=∠C,∴AB=AC.21.如图在△ABC中,DE是AC的垂直平分线,AE=5,△ABD的周长为14,求△ABC的周长.【分析】根据线段的垂直平分线的性质得到DA=DC,AE=CE=5,而AB+BDAD=14,从而得到△ABC的周长.【解答】解:∵DE是AC的垂直平分线,∴DA=DC,AE=CE=5,而△ABD的周长是14,即AB+BD+AD=14,∴AB+BC+AC=AB+BD+CD+AC=14+10=24,即△ABC的周长是24.22.长方形的长和宽分别是a厘米、b厘米,如果长方形的长和宽各减少2厘米.(1)新长方形的面积比原长方形的面积减少了多少平方厘米?(2)如果减少的面积恰好等于原面积的,试确定(a﹣6)(b﹣6)的值.【分析】(1)根据题意表示出原来长方形与新长方形的面积,相减即可得到结果;(2)根据题意列出等式,化简即可求出.【解答】解:(1)ab﹣(a﹣2)(b﹣2)=ab﹣(ab﹣2a﹣2b+4)=ab﹣ab+2a+2b﹣4=2a+2b﹣4,∴新长方形的面积比原长方形的面积减少了(2a+2b﹣4)平方厘米;(2)由题意知2a+2b﹣4=ab,∴ab=6a+6b﹣12,(a﹣6)(b﹣6)=ab﹣6a﹣6b+36=6a+6b﹣12﹣6a﹣6b+36=24.23.我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,步骤如下:①把被除式、除式按某个字母作降幂接列,井把所块的项用零补齐;②用除式的第一项除以除式第一项,得到商式的第一项;③用商式的一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项;④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式,若余式为零,说明这个多项式能被另一个多项式整除.例如:计算(6x4﹣7x3﹣x2﹣1)÷(2x+1),可用竖式除法如图:所以6x4﹣7x3﹣x2﹣1除以2x+1,商式为3x3﹣5x2﹣2x﹣1,余式为0.根据阅读材料,请回答下列问题:(1)(x3﹣4x2+7x﹣5)÷(x﹣2)的商是x2﹣2x+3 ,余式是 1 ;(2)x3﹣x2+ax+b能被x2+2x+2整除,求a,b的值.【分析】(1)根据整式除法的竖式计算方法,这个进行进行计算即可;(2)根据整式除法的竖式计算方法,要使x3﹣x2+ax+b能被x2+2x+2整除,即余式为0,可以得到a、b的值.【解答】解:(1)(x3﹣4x2+7x﹣5)÷(x﹣2)=x2﹣2x+3 (1)故答案为:x2﹣2x+3,1.(2)由题意得:∵x3﹣x2+ax+b能被x2+2x+2整除,∴a﹣2=﹣6,b=﹣6,即:a=﹣4,b=﹣6.24.等边三角形△ABC,直线1过点C且垂直AC.(1)请在直线1上作出点D,使得△ABD的周长最小.(2)在(1)的条件下,连接AD,BD,求证,AD=2BD.【分析】(1)作点A关于直线l的对称点A′,连接AA′交直线1于点D,此时使得△ABD的周长最小.(2)在(1)的条件下,连接AD,BD,根据对称性和30度角所对直角边等于斜边的一半即可证明AD=2BD.【解答】解:(1)如图所示:作点A关于直线l的对称点A′,连接AA′,与直线l交于点D,则点D即为所求作的点.(2)根据对称性可知:AC=A′C,AD=A′D,∵△ABC为等边三角形,∴AC=BC=AB,∠ACB=60°=∠BAC,∴A′C=BC,∴∠A′=∠A′BC=30°,∠A′=∠DAA′=30°,∴∠ABD=90°,∴AD=2BD.25.已知,△ABC是等腰直角三角形,BC=AB,A点在x负半轴上,直角顶点B在y轴上,点C在x轴上方.(1)如图1所示,若A的坐标是(﹣3,0),点B的坐标是(0,1),点C的坐标为(﹣1,4).(2)如图2,若OA平分∠BAC,BC与x轴交于点E,若点C纵坐标为m,求AE的长.(3)如图3,在(2)的条件下,点F在射线DM上,且∠ABF=∠ADF,AH⊥BF于点H,试探究BF、HFDF的数量关系.【分析】(1)作CH⊥y轴于H,如图1,易得OA=3,OB=1根据等腰直角三角形的性质得BA=BC,∠ABC=90°,再利用等角的余角相等得到∠CBH=∠BAO,则可根据“AAS”证明△ABO≌△BCH,得到OB=CH=1,OA=BH=3,所以C(﹣1,4);(2)如图2,过点C作CF⊥AO,交AB的延长线于H,由“ASA”可证△AFC≌△AFH,可得CF=FH=m,由“AAS”可证△ABE≌△CBH,可得AE=CH=2m;(3)如图3,过点A作AN⊥DF于点N,由“AAS”可证△ABH≌△ADN,可得AN=AH,BH =DN,由“HL”可证Rt△ANF≌Rt△AHF,可得NF=FH,即可得结论.【解答】解:(1)作CH⊥y轴于H,如图1,∵点A的坐标是(﹣3,0),点B的坐标是(0,1),∴OA=3,OB=1,∵△ABC是等腰直角三角形,∴BA=BC,∠ABC=90°,∴∠ABO+∠CBH=90°,∵∠ABO+∠BAO=90°,∴∠CBH=∠BAO,在△ABO和△BCH中,∴△ABO≌△BCH(AAS),∴OB=CH=1,OA=BH=3,∴OH=OB+BH=1+3=4,∴C(﹣1,4),故答案为:(﹣1,4);(2)如图2,过点C作CF⊥AO,交AB的延长线于H,∴∠CBH=90°,∵CF⊥AO,∴∠BCH+∠H=90°,而∠HAF+∠H=90°,∴∠BCH=∠HAF,且∠ABC=∠CBH=90°,AB=CB,∴△ABE≌△CBH(AAS),∴AE=CH,∵AO平分∠BAC,∴∠CAF=∠HAF,且AF=AF,∠AFH=∠AFC,∴△AFC≌△AFH(ASA)∴CF=FH=m,∴AE=CH=2m;(3)BF=2FH+DF,理由如下:如图3,过点A作AN⊥DF于点N,∵∠CAE=∠BAE,∠AOB=∠AOD,∴∠ADB=∠ABD,∴AD=AB,且∠ADF=∠ABF,∠AHB=∠AND=90°,∴△ABH≌△ADN(AAS)∴AN=AH,BH=DN,∵在Rt△ANF和Rt△AHF中,AN=AH,AF=AF,∴Rt△ANF≌Rt△AHF(HL)∴NF=FH,∵BF=BH+FH=DN+FH∴BF=DF+NF+FH=2FH+DF.。
2019-2020学年八年级数学上学期期中原创卷B卷(湖北)(参考答案)
2019-2020 学年上学期期中原创卷B 卷八年级数学·参考答案11.107° 12.2a 13.40°,70°,70°或 40°,40°,100° 14.315.3 16.0,4,12,1617.【解析】∵∠1=∠2+∠EDF ,∠1+∠3=180°,∠2=∠B ,∴∠B +∠EDF +∠3=180°,(4 分)∵∠3+∠B +∠DGB =180°,∴∠EDG =∠DGB .(8 分)18.【解析】(1)∵AD ,AE 分别是边 BC 上的中线和高,AE =3 cm ,S △ABC =12 cm 2, ∴S △ADC =6 cm 2,(2 分)∴ 1 ⨯ AE ⨯ CD = 6 ,2∴ 1 ⨯ 3⨯ CD = 6 ,2解得:CD =4(cm ).(4 分)(2)∵∠B =40°,∠C =50°,∴∠BAC =90°,又∵AD 为中线,∴ AD = 1BC = BD ,(6 分)2 ∴∠ADE =2∠B =80°,又∵AE ⊥BC ,∴∠DAE =10°.(8 分)19.【解析】(1)如图所示,△A ′B ′C ′即为所求,A '(2,5),B '(3,2),C '(1,1).(3 分)(4 分)⎨ ⎩ ⎨ ⎩⎪ 1 (2)△A ′B ′C ′的面积为:2×4- 21×1×2- 2 1 ×1×3- 2 ×1×4=8-1-1.5-2=3.5.(8 分) 20.【解析】(1)∵△ABC 和△BDE 是等边三角形,∴AB =BC =AC =2,BD =BE ,∠ABC =∠C =∠BAC =∠DBE =60°,∴∠ABC +∠ABD =∠DBE +∠ABD ,即∠CBD =∠ABE ,(2 分)⎧BC = AB 在△CBD 和△ABE 中, ∠CBD = ∠ABE , ⎪BD = BE∴△CBD ≌△ABE ,∴∠BAE =∠BCD =60°,∴∠EAD =180°–60°–60°=60°.(5 分)(2)∵△CBD ≌△ABE ,∴CD =AE ,∴AE –AD =CD –AD =AC =2.(8 分)21.【解析】(1)∵ ∠B = 90︒ , ∠ACB = 30︒ ,∴ ∠BAC = 60︒ ,∵ AB ∥DE ,∴ ∠EFC = ∠BAC = 60︒ ,(2 分)∵ ∠CDE = 30︒ ,∴ ∠FCD = ∠EFC - ∠CDE = 60︒ - 30︒ = 30︒,∴ ∠FCD = ∠FDC ,∴ FD = FC ,即△FCD 为等腰三角形.(4 分)(2)∵ DE ∥AB ,∴ ∠DEC = ∠B = 90︒,⎧∠CDE = ∠ACB 在△DCE 和△CAB 中, ⎪DE = BC , ⎪∠DEC = ∠B = 90︒ ∴△DCE ≌△CAB ,(6 分)⎨ ⎩ ⎪ ∴ CA = CD ,∴ ∠CAD = ∠ADC = 180︒ - 30︒= 75︒ .(8 分)2 22.【解析】(1)当△ADE 是直角三角形时,只有∠ADE =90°的情况,∵∠A =60°,∴∠AED =30°,∴AE =2AD ,(2 分)设 D 点运动时间为 t ,则 E 点运动时间也为 t ,∴AD =10-t ,AE =10+t ,10∴10+t =2(10-t ),解得 t = ,3 10所以当△ADE 是直角三角形时,D ,E 两点运动的时间为(2)如图,过点 D 作 DK ∥AB 交 BC 于点 K ,秒.(5 分)3∵△ABC 是等边三角形,∴∠C =∠CDK =∠CKD =60°,∴CD =DK =CK ,∠DKP =∠EBP =120°,设 D 、E 运动时间为 t 秒,则 CD =BE =t ,(7 分)⎧∠DPK = ∠EPB 在△DKP 和△EBP 中, ∠DKP = ∠EBP , ⎪DK = EB∴△DKP ≌△EBP ,∴PD =PE ,所以 P 始终为 DE 中点.(10 分)23.【解析】(1)∵∠ABC =90°,∴∠ABD +∠DBC =90°,∵CE ⊥BD ,∴∠BCE +∠DBC =90°,⎨ ⎩ ⎨ ⎩ ∴∠ABD =∠BCE ,∵AD ∥BC ,∴∠DAB =∠EBC ,(2 分)⎧∠ABD = ∠BCE 在△DAB 和△EBC 中, ⎪ AB = BC , ⎪∠DAB = ∠EBC∴△DAB ≌△EBC ,∴AD =BE .(4 分)(2) ∵E 是 AB 的中点,即 AE =BE ,∵BE =AD ,∴AE =AD ,∴点 A 在 ED 的垂直平分线上,∵AB =BC ,∠ABC =90°,∴∠BAC =∠BCA =45°,∵∠BAD =90°,∴∠BAC =∠DAC =45°,⎧ AE = AD 在△EAC 和△DAC 中, ⎪∠EAC = ∠DAC , ⎪ AC = AC∴△EAC ≌△DAC ,∴CE =CD ,∴点 C 在 ED 的垂直平分线上,∴AC 是线段 ED 的垂直平分线.(7 分)(3) △DBC 是等腰三角形,(8 分)∵△DAB ≌△EBC ,∴DB =EC ,∵△AEC ≌△ADC ,∴EC =DC ,∴DB =DC ,∴△DBC 是等腰三角形.(10 分)⎩⎨ ⎩24.【解析】(1)如图 1,过 D 作 DM ⊥AB 于 M ,∵A ,B 两点关于 y 轴对称,∴CA =CB ,∵∠ACB =90°,AD 是角平分线,∴CD =MD ,∠ABC =45°,∴∠BDM =45°,∴BM =DM ,∴BM =CD ,(2 分)⎧CD = MD在 Rt △ADC 和 Rt △ADM 中, ⎨ AD = AD , ∴Rt △ADC ≌Rt △ADM ,∴AC =AM ,∴AB =AM +BM =AC +CD ,即 AB =AC +CD .(4 分)1(2) 设∠ACB =α,则∠CAB =∠CBA =90°- α, 2在 AB 上截取 AK =AC ,连接 DK ,∵AB =AC +BD ,∴BK =BD ,∵AD 是角平分线,⎧ AC = AK ∴在△CAD 和△KAD 中, ⎪∠CAD = ∠KAD ,⎪ AD = AD ∴△CAD ≌△KAD ,(6 分)∴∠ACD =∠AKD =α,∴∠BKD =180°-α,∵BK=BD,∴∠BDK=180°-α,在△BDK 中,1180°-α+180°-α+90°-α=180°,2∴α=108°,∴∠ACB=108°.(8 分)(3)如图2,在AB 上截取AH=AD,连接DH,Array∵∠ACB=100°,AC=BC,∴∠CAB=∠CBA=40°,∵AD 是角平分线,∴∠HAD=∠CAD=20°,∴∠ADH=∠AHD=80°,在AB 上截取AK=AC,连接DK,由(1)得,△CAD≌△KAD,∴∠ACB=∠AKD=100°,CD=DK,∴∠DKH=80°=∠DHK,∴DK=DH=CD,(10 分)∵∠CBA=40°,∴∠BDH=40°,∴DH=BH,∴BH=CD,∵AB=AH+BH,∴AB=AD+CD.(12 分)。
湖北省荆州市松滋市南海中学2019-2020学年八年级上学期期中数学试卷 (有解析)
湖北省荆州市松滋市南海中学2019-2020学年八年级上学期期中数学试卷一、选择题(本大题共10小题,共30.0分)1.点P(1,−2)关于x轴的对称点是P1,P1关于y轴的对称点坐标是P2,则P2的坐标为()A. (1,−2)B. (−1,2)C. (−1,−2)D. (−2,−1)2.已知三角形的两边分别为5和8,则此三角形的第三边可能是()A. 2B. 3C. 5D. 133.如图多边形ABCDE的内角和是()A. 360°B. 540°C. 720°D.900°4.一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点F在CB的延长线上.若DE//CF,则∠BDF等于()A. 35°B. 30°C. 25°D. 15°5.如图,已知∠A=33°,∠B=75°,点C在直线AD上,则∠BCD为()A. 147°B. 108°C. 105°D. 以上答案都不对6.小明从镜子中看到对面电子钟示数如图所示,这时的时刻应是()A. 21:10B. 10:21C. 10:51D. 12:017.如图,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,则∠EDF等于()A. 58°B. 68°C. 78°D. 32°8.如图,BE、CF是△ABC的角平分线,∠A=50°,BE、CF相交于D,则∠BDC的度数是()A. 115°B. 110°C. 100°D. 90°9.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC的面积是28cm2,AB=20cm,AC=8cm,则DE的长是()A. 4cmB. 3cmC. 2cmD.1cm10.如图,D是AB边上的中点,将△ABC沿过D的直线折叠,使点A落在BC上F处,若∠B=50°,则∠EDF的度数为()A. 50°B. 40°C. 80°D. 60°二、填空题(本大题共8小题,共24.0分)11.如图,△ABC中,∠C=90°,AM平分∠CAB,CM=√2cm,AB=6cm,则△ABM的面积是______ .12.已知,如图在坐标平面内,OA⊥OC,OA=OC,A(√3,1),则C点坐标为______.13.如图,AC=BD,要证△ABC≌△DCB,只需要增加一个条件是______ .14.已知点P(a,b)与点Q(2,3)关于x轴对称,则a−b=____.15.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为_____.16.如图是两张全等的正方形,它们完全重合叠放在一起,按住下面的正方形不动,将上面的正方形绕点O顺时针旋转,至少旋转________º后,两张正方形构成的图形是中心对称图形。
荆州地区2019-2020学年八年级上期中考试数学试卷及答案
荆州地区2019-2020学年八年级上期中考试数学试卷及答案~学年度上学期期中考试八年级数学试卷一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案1、等腰三角形的一边长等于4,一边长等于9,则它的周长是A.17 B.22 C.17或22 D.132、已知等腰三角形的一个角为75°,则其顶角为A.30° B.75° C.105° D.30°或75°3、已知等腰△ABC的底边BC=8cm,│AC-BC│=2cm,则腰AC的长为()A.10cm或6cm B.10cm C.6cm D.8cm或6cm4、如图1,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)第5题第6题图第7题图5、如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不正确的等式是A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE6、已知:如图所示,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是A.∠A与∠D互为余角 B.∠A=∠2 C.△ABC≌△CED D.∠1=∠27、如图所示,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE,上述结论一定正确的是A.①②③B.②③④C.①③⑤D.①③④8、观察下列图案,在A、B、C、D四幅图案中,能通过图案(1)的平移得到的是( )9、如图,把图①中的ABC 经过一定的变换得到图②中的A B C ''',如果图①中ABC 上点P 的坐标为(),a b ,那么这个点在图②中的对应点P '的坐标为第10题图A .()2,3a b --B .()3,2a b --C .()3,2a b ++D .()2,3a b ++10、如图,由4个小正方形组成的田字格中,△ABC 的顶点都是小正方形的顶点。
2019学年湖北省八年级上期中数学试卷【含答案及解析】
2019学年湖北省八年级上期中数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形 B.五边形 C.六边形 D.八边形2. 张明的父母打算购买一种形状和大小都相同的正多边形瓷砖来铺地板,为了保证铺地板时既没缝隙,又不重叠,则所购瓷砖形状不能是()A.正三角形 B.正方形 C.正六边形 D.正八边形3. 如图,将Rt△ABC(其中∠B=34°,∠C=90°)绕A点按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角最小等于()A.56° B.68° C.124° D.180°4. 若三角形两边的长分别为7cm和2cm,第三边的长为奇数,则第三边的长为()A.3 B.5 C.7 D.95. 能使两个直角三角形全等的条件是()A.斜边相等 B.两直角边对应相等C.两锐角对应相等 D.一锐角对应相等6. 点P(2,﹣3)关于x轴的对称点是()A.(﹣2,3) B.(2,3) C.(﹣2,3) D.(2,﹣3)7. 已知:△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是()A.0<x<3 B.x>3 C.3<x<6 D.x>68. 如图,已知BE,CF分别为△ABC的两条高,BE和CF相交于点H,若∠BAC=50°,则∠BHC为()A.160° B.150° C.140° D.130°9. 如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2是()°.A.55 B.35 C.65 D.2510. 如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB,下列确定P点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P为∠A的角平分线与AB的垂直平分线的交点C.P为AC、AB两边上的高的交点D.P为AC、AB两边的垂直平分线的交点11. 小亮在镜中看到身后墙上的时钟如下,你认为实际时间最接近8:00的是()A. B. C. D.12. 如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()A.100° B.80° C.70° D.50°13. 在等腰△ABC中,AB=AC=9,BC=6,DE是AC的垂直平分线,交AB、AC于点D、E,则△BDC的周长是()A.6 B.9 C.12 D.1514. 一根直尺EF压在三角板30°的角∠BAC上,与两边AC,AB交于M、N.那么∠CME+∠BNF是()A.150° B.180° C.135° D.不能确定15. 如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4 B.3 C.6 D.5二、计算题16. 已知:如图,AB∥ED,点F、点C在AD上,AB=DE,AF=DC.求证:BC=EF.三、解答题17. 如图,已知DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC和∠BDC的度数.18. 如图所示,AD,AE是三角形ABC的高和角平分线,∠B=36°,∠C=76°,求∠DAE的度数.19. 如图,有一长方形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,求△CEF的面积.20. 如图,在△ABD和△ACD中,已知AB=AC,∠B=∠C,求证:AD是∠BAC的平分线.21. 如图,在△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于E,EF⊥AB于F,EG⊥AC交AC延长线于G.求证:BF=CG.22. 如图,已知锐角△ABC中,AB、AC边的中垂线交于点O(1)若∠A=α(0°<α<90°),求∠BOC;(2)试判断∠ABO+∠ACB是否为定值;若是,求出定值,若不是,请说明理由.23. 某公司有2位股东,20名工人、从2006年至2008年,公司每年股东的总利润和每年工人的工资总额如图所示.(1)填写下表:24. 年份2006年2007年2008年工人的平均工资/元5000股东的平均利润/元25000td四、计算题25. 在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】。
2019-2020第一学期八年级数学期中试卷(含答题卷)
第4题图第2题图第8题图第10题图 2019-2020学年度第一学期期中考试八年级数学科试题说明:1、全卷共 4 页,满分为 120 分,考试时间为 100 分钟。
2、答题前,考生务必将自己的姓名、班级、座号填在答题卷相应位置上。
一、选择题(每题3分,共30分)1.下列由数字组成的图形中,是轴对称图形的是( )。
2.如图,共有三角形的个数是( ) A . 3 B . 4 C . 5 D . 63.下列所给的各组线段,能组成三角形的是( )A . 10cm 、20cm 、30cmB . 20cm 、30cm 、40cmC . 10cm 、20cm 、40cmD . 10cm 、40cm 、50cm4.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是( )A .带①去B .带②去C 带③去D .①②③都带去 5.一个多边形的各内角都是120度,那么它是( )边形. A . 5 B . 6 C . 7 D . 8 6.下列说法正确的是( )A . 全等三角形是指形状相同大小相等的三角形B . 全等三角形是指面积相等的三角形C . 周长相等的三角形是全等三角形D . 所有的等边三角形都是全等三角形7.三角形一个外角小于与它相邻的内角,这个三角形( ) A . 是直角三角形 B . 是锐角三角形C . 是钝角三角形D . 属于哪一类不能确定8.如图,BD=DE=EF=FC ,那么( )是△ABE 的中线.A .ADB .AEC .AFD .以上都是9.根据下列条件画三角形,不能唯一确定三角形的是( ) A . 已知三个角 B . 已知三边C . 已知两角和夹边D . 已知两边和夹角10.如图,DE ⊥BC ,BE=EC ,且AB=5,AC=8,则△ABD 的周长为( )A .21B .18C .13D .9 二、填空题(每题4分,共24分)11.如图,△ABC ≌△DEF ,A 与D ,B 与E 分别是对应顶点,∠B=32°,∠A=68°,AB=13cm ,则∠F= 度,DE= cm .ABCD第13题图12.若∠B=∠A+∠C ,则△ABC 是 . 13.如图,∠1=14.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根 木条,这样做的道理是15在△ABC 中,AB=6,AC=8,那么BC 长的取值范围是 16.等腰三角形两内角的和是1000,则它的顶角是三、解答题(一)(每小题6分,共18分) 17、如图:(1)作出与△ABC 关于x 轴对称的图形△A 1B 1C 1;(2)若图中一个小正方形边长为一个单位长度,请写出各点的坐标:A 1__________;B 1__________;C 1__________.18.一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.19.若一个等腰三角形的两边长分别是3cm 和5cm ,求它的周长.第11题图第14题图20. 如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.第20题图21.如图,AB=AC,AD=AE,∠1=∠2,求证:BD=CE.第21题图22.如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证:BC=AD.第22题图23、如图所示,等边三角形ABC中,D为AC边的中点,E为BC延长线上一点,CE=CD,DM⊥BC于M,求证:M是BE的中点.24.如图,AB与CD相交于点O,∠ACO=∠BDO,OC=OD,CE是△ACO的角平分线.请你先作∠ODB的角平分线DF(用尺规作图,不要求写出作法与证明,但要保留作图痕迹);再证明CE=DF.第24题图25.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC 面积是28cm2,AB=20cm,AC=8cm,求DE的长.第25题图2019-2020学年度第一学期期中考试八年级 数学 答题卡一、选择题(每题3分,共30分)二、填空题(每题4分,共24分)11.∠F= 度,DE= cm 12.△ABC 是 13.∠1=14.道理是 15.BC 长的取值范围是 16.顶角是三、解答题(一)(每小题6分,共18分)17.(1) 作出与△ABC 关于x 轴对称的图形△A 1B 1C 1(2)写出各点的坐标:A 1 ;B 1;C 1 .18.19.四、解答题(二)(每小题7分,共21分)20.21.第20题图第21题图22.五、解答题(三)(每小题9分,共27分)23.第22题图24.25.第25题图第24题图。
2019-2020学年八年级上学期期中考试数学试卷含解析
2019-2020学年八年级上学期期中考试数学试卷一.选择题(共10小题)1.计算:=()A.2 B.﹣2 C.D.2.下列分式是最简分式的是()A.B.C.D.3.下列长度的各组线段中可组成三角形的是()A.1,2,3 B.2,5,8 C.6,2,2 D.3,5,34.把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.缩小2倍D.不变5.方程=1的解是()A.无解B.x=﹣1 C.x=0 D.x=16.化简a÷b•的结果是()A.B.a C.ab2D.ab7.如图,已知△ABC是等边三角形,点B、C,D、E在同一直线上,且CG=CD,DF=DE,则∠E=()A.30°B.20°C.15°D.100°8.下列命题的逆命题是真命题的是()A.对顶角相等B.同一三角形内等角对等边C.同角的余角相等D.全等三角形对应角相等9.某公司承担了制作600套校服的任务,原计划每天制作x套,实际上平均每天比原计划多制作了5套,因此提前6天完成任务.根据题意,下列方程正确的是()A.B.C.D.10.如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点F,连结CF和DE,若∠A=70°,∠DCF=50°,BC=8.则AB长为()A.4 B.2C.8 D.4二.填空题(共5小题)11.H7N9病毒的直径为30纳米(1纳米10﹣9米),30纳米用科学记数法可表示为米.12.计算(﹣)3的结果是.13.如图,已知AE=BE,DE是AB的垂直平分线,BF=12,CF=3,则AC=.14.已知x﹣=6,求x2+的值为.15.如图,△ABC中,AB=BD,点D,E分别是AC,BD上的点,且∠ABD=∠DCE,若∠BEC =105°,则∠A的度数是.三.解答题(共8小题)16.计算:(2m2n﹣3)2•3m﹣3n4.17.计算:+﹣118.解方程:.19.如图,△ABC中,BD=EC,AB=AC,∠B=∠C,求证:△ABE≌△ACD20.如图,点E在△ABC的外部,点D在BC上,DE交AC于点F,∠1=∠2=∠3,AB=AD.求证:△ABC≌△ADE.21.节能环保的油电混合动力汽车,既可用油做动力行驶,也可用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求汽车行驶中每千米用电费用是多少元?(2)甲、乙两地的距离是多少千米?22.如图,在△ABC中,∠C=90°,PD=PA,(1)尺规作图:作BD的垂直平分线交BC于点E,交BD于点F(不写作法,保留作图痕迹);(2)在(1)所作的图中,连接DE,求证:DE⊥DP.23.如图,在等边△ABC的顶点B、C处各有一只蜗牛,它们同时出发,分别都以每分钟1个单位的速度由C向A和由B向C爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、P处,请问:(1)在爬行过程中,BD和AP始终相等吗?(2)在爬行过程中BD与AP所成的∠DQA有变化吗?若无变化是多少度?参考答案与试题解析一.选择题(共10小题)1.计算:=()A.2 B.﹣2 C.D.【分析】根据负整数指数幂解答即可.【解答】解:=2,故选:A.2.下列分式是最简分式的是()A.B.C.D.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、该分式的分子、分母中含有公因数a,则它不是最简分式.故本选项错误;B、该分式的分子、分母中含有公因数3,则它不是最简分式.故本选项错误;C、该分式符合最简分式的定义.故本选项正确.D、分母为(x+1)(x﹣1),所以该分式的分子、分母中含有公因式(x+1),则它不是最简分式.故本选项错误;故选:C.3.下列长度的各组线段中可组成三角形的是()A.1,2,3 B.2,5,8 C.6,2,2 D.3,5,3【分析】根据三角形的三边满足两边之和大于第三边来进行判断.【解答】解:A、2+1=3,不能构成三角形,故不符合题意;B、2+5=7<8,不能构成三角形,故不符合题意;C、2+2=4<6,不能构成三角形,故不符合题意;D、3+3>5,可以构成三角形,故符合题意;故选:D.4.把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.缩小2倍D.不变【分析】先根据题意列出算式,再根据分式的性质进行化简,即可得出选项.【解答】解:=,即分式的值不变,故选:D.5.方程=1的解是()A.无解B.x=﹣1 C.x=0 D.x=1【分析】移项可得﹣1==0,可得x=0;【解答】解:=1,∴移项可得﹣1==0,∴x=0,经检验x=0是方程的根,∴方程的根是x=0;故选:C.6.化简a÷b•的结果是()A.B.a C.ab2D.ab【分析】分式的乘法法则:分式乘分式,用分子的积作积的分子,分母的积作积的分母.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.【解答】解:a÷b•=a••=,故选:A.7.如图,已知△ABC是等边三角形,点B、C,D、E在同一直线上,且CG=CD,DF=DE,则∠E=()A.30°B.20°C.15°D.100°【分析】由于△ABC是等边三角形,那么∠B=∠1=60°,而CD=CG,那么∠CGD=∠2,而∠1是△CDG的外角,可得∠1=2∠2,同理有∠2=2∠E,等量代换有4∠E=60°,解即可求∠E.【解答】解:如右图所示,∵△ABC是等边三角形,∴∠B=∠1=60°,∵CD=CG,∴∠CGD=∠2,∴∠1=2∠2,同理有∠2=2∠E,∴4∠E=60°,∴∠E=15°.故选:C.8.下列命题的逆命题是真命题的是()A.对顶角相等B.同一三角形内等角对等边C.同角的余角相等D.全等三角形对应角相等【分析】先交换原命题的题设与结论得到四个逆命题,然后判断它们的真假.【解答】解:A、对顶角相等的逆命题是相等的角是对顶角,是假命题;B、同一三角形内等角对等边的逆命题是同一三角形内等边对等角,是真命题;C、同角的余角相等的逆命题是余角相等的角是同角,也可以是等角,是假命题;D、全等三角形对应角相等的逆命题是对应角相等的三角形是全等三角形,是假命题;故选:B.9.某公司承担了制作600套校服的任务,原计划每天制作x套,实际上平均每天比原计划多制作了5套,因此提前6天完成任务.根据题意,下列方程正确的是()A.B.C.D.【分析】设原计划每天制作x套,实际平均每天制作(x+5)套,根据实际提前6天完成任务,列方程即可.【解答】解:设原计划每天制作x套,实际平均每天制作(x+5)套,由题意得,﹣=6.故选:C.10.如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点F,连结CF和DE,若∠A=70°,∠DCF=50°,BC=8.则AB长为()A.4 B.2C.8 D.4【分析】根据角平分线的定义得到∠ABD=∠CBD,根据线段垂直平分线的性质得到FB=FC,得到∠FCB=∠CBD,根据三角形内角和定理得到∠BCA=∠A,根据等腰三角形的判定定理解答.【解答】解:∵BD平分∠ABC,∴∠ABD=∠CBD,∵EF是BC的垂直平分线,∴FB=FC,∴∠FCB=∠CBD,∴∠ABD=∠CBD=∠FCB,∠ABD+∠CBD+∠FCB+∠A+∠DCF=180°,解得,∠FCB=20°,∴∠BCA=70°,∴∠BCA=∠A,∴AB=BC=8,故选:C.二.填空题(共5小题)11.H7N9病毒的直径为30纳米(1纳米10﹣9米),30纳米用科学记数法可表示为3×10﹣8米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:30纳米=30×10﹣9米=3×10﹣8米.故答案为:3×10﹣8.12.计算(﹣)3的结果是﹣.【分析】根据分式的乘方法则计算,得到答案.【解答】解:(﹣)3=﹣=﹣,故答案为:﹣.13.如图,已知AE=BE,DE是AB的垂直平分线,BF=12,CF=3,则AC=15 .【分析】利用垂直平分线的性质得出AF=BF,从而求出AC的长.【解答】解:∵DE是AB的垂直平分线,∴AF=BF∴AC=AF+CF=BF+CF=12+3=15.14.已知x﹣=6,求x2+的值为38 .【分析】把x﹣=6两边平方后化简整理解答即可.【解答】解:将x﹣=6两边平方,可得:,解得:,故答案为:38.15.如图,△ABC中,AB=BD,点D,E分别是AC,BD上的点,且∠ABD=∠DCE,若∠BEC =105°,则∠A的度数是85°.【分析】设∠A=∠BDA=x,∠ABD=∠ECD=y,构建方程组即可解决问题.【解答】解:∵BA=BD,∴∠A=∠BDA,设∠A=∠BDA=x,∠ABD=∠ECD=y,则有,解得x=85°,故答案为85°.三.解答题(共8小题)16.计算:(2m2n﹣3)2•3m﹣3n4.【分析】先算乘方,再根据单项式乘单项式的运算法则进行计算即可得出答案.【解答】解:(2m2n﹣3)2•3m﹣3n4=(4m4n﹣6)(3m﹣3n4)=12mn﹣2=.17.计算:+﹣1【分析】先把要求的式子进行变形,再根据分式的加减法则进行计算即可得出答案.【解答】解:+﹣1=﹣﹣1=1﹣1=0.18.解方程:.【分析】去分母,将分式方程转化为整式方程,即可解决问题.【解答】解:∵,∴1440﹣1260=6x,即180=6x,解得:x=30.经检验:x=30是原方程的解.19.如图,△ABC中,BD=EC,AB=AC,∠B=∠C,求证:△ABE≌△ACD【分析】利用SAS证明△ABE和△ACD全等即可.【解答】证明:∵BD=CE,∴BE=CD,在△ABE和△ACD中,∵,∴△ABE≌△ACD(SAS).20.如图,点E在△ABC的外部,点D在BC上,DE交AC于点F,∠1=∠2=∠3,AB=AD.求证:△ABC≌△ADE.【分析】根据角的和差和三角形的内角和得到∠BAC=∠DAE,∠C=∠E,然后根据全等三角形的判定定理即可得到结论.【解答】证明:∵∠1=∠2=∠3,∠AFE=∠CFD,∴∠1+∠DAF=∠2+∠DAF,∠C=180°﹣∠3﹣∠DFC,∠E=180°﹣∠2﹣∠AFE,∴∠BAC=∠DAE,∠C=∠E,在△ABC与△ADE中,,∴△ABC≌△ADE(AAS).21.节能环保的油电混合动力汽车,既可用油做动力行驶,也可用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求汽车行驶中每千米用电费用是多少元?(2)甲、乙两地的距离是多少千米?【分析】(1)直接利用行驶的路程不变得出方程进而得出答案;(2)利用(1)中所求即可得出答案.【解答】解:(1)设汽车行驶中每千米用电费用是x元,则每千米用油费用为(x+0.5)元,根据题意可得:=,解得:x=0.3,经检验得:x=0.3是原方程的解,答:汽车行驶中每千米用电费用是0.3元;(2)甲、乙两地的距离是:30÷0.3=100(千米).22.如图,在△ABC中,∠C=90°,PD=PA,(1)尺规作图:作BD的垂直平分线交BC于点E,交BD于点F(不写作法,保留作图痕迹);(2)在(1)所作的图中,连接DE,求证:DE⊥DP.【分析】(1)利用基本作图作BD的垂直平分线EF;(2)先由PA=PD得到∠A=∠PDA,再根据线段垂直平分线的性质得到EB=ED,则∠B =∠EDB,从而得到∠PDA+∠EDB=90°,从而可判断PD⊥DE.【解答】(1)解:如图,EF为所作;(2)证明:∵PA=PD,∴∠A=∠PDA,∵EF垂直平分BD,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠PDA+∠EDB=90°,∴∠PDE=180°﹣∠PDA﹣∠EDB=90°,∴PD⊥DE.23.如图,在等边△ABC的顶点B、C处各有一只蜗牛,它们同时出发,分别都以每分钟1个单位的速度由C向A和由B向C爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、P处,请问:(1)在爬行过程中,BD和AP始终相等吗?(2)在爬行过程中BD与AP所成的∠DQA有变化吗?若无变化是多少度?【分析】(1)根据等边三角形性质得出∠CAB=∠C=∠ABP=60°,AB=BC,根据SAS 推出△BDC≌△APB即可.(2)根据△BDC≌△APB得出∠CBD=∠BAP,根据三角形外角性质求出∠DQA=∠ABC,即可求出答案.【解答】解:(1)在爬行过程中,BD和AP始终相等,理由是:∵△ABC是等边三角形,∴∠CAB=∠C=∠ABP=60°,AB=BC,在△BDC和△APB中,,∴△BDC≌△APB(SAS),∴BD=AP.(2)蜗牛在爬行过程中BD与AP所成的∠DQA大小无变化,理由:∵△BDC≌△APB,∴∠CBD=∠BAP,∴∠DQA=∠DBA+∠BAP=∠DBA+∠CBD=∠ABC=60°,即蜗牛在爬行过程中BD与AP所成的∠DQA大小无变化,始终是60°.。
2019-2020学年八年级数学上学期期中原创卷A卷(湖北)(参考答案)
∴∠BED=180°-100°-25°=55°,
若∠BED=50°,
则∠ABE+∠BAE=50°,
∴∠ABC+∠BAC=2×50°=100°,
∴∠C=80°,
故答案为:55°;80°.
(2)∵AD,BE 分别是∠BAC,∠ABC 的角平分线,
1
1
∴∠ABE= ∠ABC,∠BAE= ∠BAC,(6 分)
2
2
1
1
1
∵∠BED=∠ABE+∠BAE= (∠ABC+∠BAC)= (180°-∠C)=90°- ∠C.(8 分)
2
2
2
21.【解析】(1)∵AD 平分∠BAC,DE⊥AB 于 E,DF⊥AC 于 F,
∴DE=DF,∠DEB=∠DFC=90°,
在
Rt△BED
和
Rt△CFD
中,
BD DE
∴△COQ≌△QGD,(10 分) ∴QC=QD,∠GQD=∠OCQ, ∵∠OCQ+∠CQO=90°, ∴∠GQD+∠CQO=90°,即∠CQD=90°, ∴QC⊥QD, 则 QC=QD,QC⊥QD.(12 分)
数学参考答案 第 6页(共 7页)
数学参答案 第 7页(共 7页)
∴∠ACB+∠AOB=180°,
∴∠OAC+∠OBC=180°.(8 分)
20.【解析】(1)55°;80°.(4 分)
∵∠C=70°,∠BAC=60°,
∴∠ABC=50°,
∵AD,BE 分别是∠BAC,∠ABC 的角平分线,
1
1
∴∠CAD= ∠BAC=30°,∠DBE= ∠ABC=25°,
2
2
2019--2020学年八年级上学期期中数学考试试题与答案
2019-2020学年第一学期期中测试八年级数学试题2019年10月(本试卷共25小题,4页,满分100分,附加题20分另计。
考试用时120分钟,不得使用....计算器)一、选择题(本题共10题,每小题2分,满分20分,在每小题给出的四个选项中,只有一项是正确的)1.下列选项中的三条线段长能组成三角形的是(*)A.2,2,6B. 1,2,3C. 4,5,6D. 8,3,22.下列选项中的汽车品牌标志图,不.是轴对称图形的是(*)3.如图,在Rt△ABC中,∠B=90°,D是BC延长线上一点,∠ACD=130°,则∠A等于(*)A.40°B. 50°C. 65°D. 90°4.若一个三角形三个内角度数的比为1:2:3,则其内角度数最大的是(*)A.60°B. 90°C. 120°D. 无法判断5.在平面直角坐标系xoy中,点P(2,1)关于y轴对称的点的坐标是(*)A.(﹣2,0)B.(﹣2,1)C.(﹣2,﹣1)D.(2,﹣1)6. 三角形内部一点到三边的距离相等,则该点是(*)A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点7.已知等腰三角形的一边长为4,另一边长为8,则它的周长是(*)A.12 B.16 C.20 D.16或208.如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=(*)A.80°B.70°C.40°D.20°9.如图,四边形ABCD,∠BDC=108°,若点D在AB、AC的垂直平分线上,则∠B+∠C大小为(*)A.108°B.126°C.120°D.132°10.如图,等腰三角形ABC的底边BC长为4,面积是20,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为(*)A.12B.8C.10D.14二、填空题(本题有6个小题,每小题2分,共12分)11.一个多边形的每一个外角均为30°,那么这个多边形的边数是__*__.12. 已知点A(a,2)和B(-3,b),点A和点B关于x轴对称,则a+b= _*_.13.如图,△AEB≌△DFC,AE⊥CB,DF⊥BC,垂足分别为E、F,且AE=DF,若∠C=28°,则∠A=___*___.14.如图,△ABC 中,AB=AC,CB=CD,AD=DE=EC,,则∠A=_*___.15.如图,点A,B,C在同一直线上,在这条直线同侧作等边△ABD和等边△BCE,连接AE和CD,交点为M,AE交BD于点P,CD交BE于点Q,连接PQ、BM,有4个结论:①CM平分∠BME②△DQB≌△ABP,③∠EAC=30°,④PQ//AC,请将所有正确结论的序号填在横线上___*__.16.如图∠BAC内部一点P,边AB与AC上动点M、N,∠BAC=36°,当△PMN周长最小时,∠MPN=__*__。
2019-2020学年八年级数学上学期期中原创卷B卷(湖北)(全解全析)
1.【答案】D 2019-2020 学年上学期期中原创卷B 卷八年级数学·全解全析【解析】选项A 有四条对称轴;选项B 有六条对称轴;选项C 有四条对称轴;选项D 有两条对称轴.综上所述,对称轴最少的是D 选项.故选D.2.【答案】D【解析】由题意得2+7>x>7–2,即9>x>5,故选D.3.【答案】C【解析】∵点(3+m,n-2)关于y 轴对称点的坐标是(3,2),∴3+m+3=0,n-2=2,解得:m=-6,n=4,故选C.4.【答案】C【解析】设所求n 边形边数为n,则(n–2)·180°=360°×3–180°,解得n=7,故选C.5.【答案】D【解析】当AB=A′B′,BC=B′C′,∠A=∠A′时,不能判定△ABC 和△A′B′C′全等,∠A 与∠A′不是已知两边的夹角;当∠A=∠A′,∠C=∠C′,AC=B′C′时,不能判定△ABC 和△A′B′C′全等,B′C′不是∠A′与∠C′的夹边;当∠A=∠A′,∠B=∠B′,∠C=∠C′时,不能判定△ABC 和△A′B′C′全等,不存在AAA 的方法;当AB=A′B′,BC=B′C′,∠B=∠B′时,能判定△ABC 和△A′B′C′全等,依据是SAS.故选D.6.【答案】B【解析】∵∠1=∠2,∠BAC=90°,DE⊥BC,∴DE=DA.在Rt△ADC 和Rt△EDC 中,∵AD=DE,DC=DC,∴Rt△ADC≌Rt△EDC,∴CE=CA=6.∵BE=EC,∴BE=AC,∴△BDE 的周长=BD+DE+BE=BD+DA+BE=AB+AC=16.故选B.7.【答案】D【解析】由折叠得:∠EOF=∠B,∠HOD=∠A,∠FOG=∠C,∵∠A+∠B+∠C=180°,∴∠HOD+∠EOF+∠FOG=180°,∵∠1+∠2+∠HOD+∠EOF+∠FOG =360°,∴∠1+∠2=180°,⎨ ⎩∵∠1=85°,∴∠2=180°–85°=95°,故选 D . 8.【答案】A【解析】作∠MBA =∠DBA ,交 CA 延长线于 M .∠ABD =∠ADB =α,∠BAC =2α,∴∠CAD =180°-4α,∴∠BAM =180°-2α,∠BAD =180°-2α, ∴△BAM ≌△BAD ,∴∠M =∠ADB =α,BM =BD =BC ,∴AB =AM , ∴∠ABM =∠M =α,∴∠ACB =∠M =α,设∠ACD =x ,则∠BDC =x +α,由八字形得 x +(x +α)=α+α+α, ∴x =α,∴∠BDC =2α.故选 A . 9.【答案】C【解析】∵AD ⊥BC ,BE ⊥AC ,∴∠BEA =∠ADC =∠ADB =90°,∴∠C +∠CBE =90°,∠C +∠CAD =90°,∴∠DBF =∠CAD ,∵∠ABC =45°,∴△ABD 是等腰直角三角形,∴AD =BD ,⎧∠BDF = ∠ADC = 90︒∵在△BFD 和△ACD 中, ⎪BD = AD⎪∠DBF =∠CAD ,∴△BFD ≌△ACD ,∴BF =AC ,∵∠CAD =30°,∠ADC =90°,∴BF =AC =2CD =8.故选 C .10. 【答案】B【解析】如图,取 BC 的中点 G ,连接 MG ,⎨ ⎩∵旋转角为 60°,∴∠MBH +∠HBN =60°,又∵∠MBH +∠MBC =∠ABC =60°,∴∠HBN =∠GBM , 1∵CH 是等边△ABC 的对称轴,∴HB = 2又∵MB 旋转到 BN ,∴BM =BN ,⎧BG = BHAB ,∴HB =BG ,在△MBG 和△NBH 中, ⎪∠MBG = ∠NBH ,∴△MBG ≌△NBH ,∴MG =NH ,⎪MB = NB 根据垂线段最短,当 MG ⊥CH 时,MG 最短,即 HN 最短,此时∠BCH = 1 1 1 ×60°=30°,CG = 2 211 AB = 2×24=12, ∴MG = 2CG = 2×12=6,∴HN =6,故选 B .11. 【答案】107°【解析】如图,∵∠1=∠A +∠B ,∠A =35°,∠B =72°,∴∠1=35°+72°=107°,故答案为:107°.12. 【答案】2a【解析】∵a ,b ,c 是三角形的三边,三角形任意两边之和大于第三边,任意两条边之差小于第三边,∴a +b -c >0,b -c -a <0,+= a + b - c - b + c + a = 2a .故答案为: 2a .13.【答案】40°,70°,70°或 40°,40°,100°【解析】当 140°为等腰三角形顶角的外角时,画出图形,如图所示:根据图形外角∠DAC=140°,∴∠BAC=180°–140°=40°,180︒- 40︒又AB=AC,∴∠B=∠C==70°,2则等腰三角形的三个内角分别为:40°,70°,70°;当140°为等腰三角形底角的外角时,画出图形,如图所示:根据图形外角∠ACD=140°,∴∠ACB=180°–140°=40°,又AB=AC,∴∠B=∠ACB=40°,∠A=180°–40°–40°=100°,则等腰三角形的三个内角分别为:40°,40°,100°,综上,等腰三角形的内角分别为:40°,70°,70°或40°,40°,100°.故答案为:40°,70°,70°或40°,40°,100°.14.【答案】3【解析】∵AC⊥BC,DE⊥AC,∴∠ACB=∠DEA=90°,∴∠B+∠BAC=90°,∵AD⊥AB,∴∠BAC+∠DAE=90°,∴∠B=∠DAE,∵BC=AE,AC⊥BC 于C,DE⊥AC 于E,∴△ABC≌△DAE,∴AC=DE=7,∴CE=AC–AE=3.故答案为:3.15.【答案】3【解析】如图,连接BD,CD,过点D 作DG⊥AC,交AC 的延长线于G,∵OD 垂直平分BC,∴BD=CD,∵AD 平分∠BAC,∴∠DAM=∠DAG,且AD=AD,∠AMD=∠AGD,∴△ADM≌△ADG,∴AM=AG,MD=DG,且BD=CD,∴Rt△BDM≌Rt△CDG,∴BM=CG,∵AB=AM+BM=AG+BM=AC+CG+BM=AC+2BM,∴10=4+2BM,∴BM=3,故答案为:3.16.【答案】0,4,12,16【解析】设点E 经过t 秒时,AE=3t,分情况讨论:(1)当点E 在点B 的左侧时,BE=24–3t=12,∴t=4;(2)当点E 在点B 的右侧时,①BE=AC 时,3t=24+12,∴t=12;②BE=AB 时,3t=24+24,∴t=16.(3)当点E 与A 重合时,AE=0,t=0.综上所述,因此,本题正确答案是:0,4,12,16.17.【解析】∵∠1=∠2+∠EDF,∠1+∠3=180°,∠2=∠B,∴∠B+∠EDF+∠3=180°,(4 分)∵∠3+∠B+∠DGB=180°,∴∠EDG=∠DGB.(8 分)18.【解析】(1)∵AD,AE分别是边BC上的中线和高,AE=3cm,S△ABC=12cm2,∴S△ADC=6cm2,(2分)∴1⨯AE ⨯CD = 6 ,2∴1⨯ 3⨯CD = 6 ,2解得:CD=4(cm).(4 分)(2)∵∠B=40°,∠C=50°,∴∠BAC=90°,又∵AD 为中线,⎨⎩⎪ ∴ AD = 1BC = BD ,(6 分)2∴∠ADE =2∠B =80°,又∵AE ⊥BC ,∴∠DAE =10°.(8 分)19.【解析】(1)如图所示,△A ′B ′C ′即为所求,A '(2,5),B '(3,2),C '(1,1).(3 分)(4 分)1 (2)△A ′B ′C ′的面积为:2×4- 21 ×1×2- 21 ×1×3- 2×1×4=8-1-1.5-2=3.5.(8 分)20.【解析】(1)∵△ABC 和△BDE 是等边三角形,∴AB =BC =AC =2,BD =BE ,∠ABC =∠C =∠BAC =∠DBE =60°,∴∠ABC +∠ABD =∠DBE +∠ABD ,即∠CBD =∠ABE ,(2 分)⎧BC = AB在△CBD 和△ABE 中, ∠CBD = ∠ABE , ⎪BD = BE ∴△CBD ≌△ABE ,∴∠BAE =∠BCD =60°,∴∠EAD =180°–60°–60°=60°.(5 分)(2)∵△CBD ≌△ABE ,∴CD =AE ,∴AE –AD =CD –AD =AC =2.(8 分)21.【解析】(1)∵ ∠B = 90︒ , ∠ACB = 30︒ ,∴ ∠BAC = 60︒ , ∵ AB ∥DE ,∴ ∠EFC = ∠BAC = 60︒ ,(2 分) ∵ ∠CDE = 30︒ ,∴ ∠FCD = ∠EFC - ∠CDE = 60︒ - 30︒ = 30︒,⎨⎩∴ ∠FCD = ∠FDC , ∴ FD = FC ,即△FCD 为等腰三角形.(4 分) (2)∵ DE ∥AB , ∴ ∠DEC = ∠B = 90︒,⎧∠CDE = ∠ACB在△DCE 和△CAB 中, ⎪DE = BC , ⎪∠DEC = ∠B = 90︒ ∴△DCE ≌△CAB ,(6 分) ∴ CA = CD , ∴ ∠CAD = ∠ADC =180︒ - 30︒= 75︒ .(8 分)222.【解析】(1)当△ADE 是直角三角形时,只有∠ADE =90°的情况,∵∠A =60°,∴∠AED =30°,∴AE =2AD ,(2 分)设 D 点运动时间为 t ,则 E 点运动时间也为 t ,∴AD =10-t ,AE =10+t , 10 ∴10+t =2(10-t ),解得 t =,310 所以当△ADE 是直角三角形时,D ,E 两点运动的时间为(2)如图,过点 D 作 DK ∥AB 交 BC 于点 K ,秒.(5 分)3∵△ABC 是等边三角形,∴∠C =∠CDK =∠CKD =60°,∴CD =DK =CK ,∠DKP =∠EBP =120°,设 D 、E 运动时间为 t 秒,则 CD =BE =t ,(7 分)⎨ ⎩⎨ ⎩⎨ ⎩⎧∠DPK = ∠EPB 在△DKP 和△EBP 中, ⎪∠DKP = ∠EBP ,⎪DK = EB ∴△DKP ≌△EBP ,∴PD =PE ,所以 P 始终为 DE 中点.(10 分)23.【解析】(1)∵∠ABC =90°,∴∠ABD +∠DBC =90°,∵CE ⊥BD ,∴∠BCE +∠DBC =90°,∴∠ABD =∠BCE ,∵AD ∥BC ,∴∠DAB =∠EBC ,(2 分)⎧∠ABD = ∠BCE在△DAB 和△EBC 中, ⎪AB = BC, ⎪∠DAB = ∠EBC ∴△DAB ≌△EBC ,∴AD =BE .(4 分)(2) ∵E 是 AB 的中点,即 AE =BE ,∵BE =AD ,∴AE =AD ,∴点 A 在 ED 的垂直平分线上,∵AB =BC ,∠ABC =90°,∴∠BAC =∠BCA =45°,∵∠BAD =90°,∴∠BAC =∠DAC =45°,⎧ AE = AD在△EAC 和△DAC 中, ⎪∠EAC = ∠DAC ,⎪ AC = AC ∴△EAC ≌△DAC ,∴CE =CD ,⎩∴点 C 在 ED 的垂直平分线上,∴AC 是线段 ED 的垂直平分线.(7 分)(3) △DBC 是等腰三角形,(8 分)∵△DAB ≌△EBC ,∴DB =EC ,∵△AEC ≌△ADC ,∴EC =DC ,∴DB =DC ,∴△DBC 是等腰三角形.(10 分)24.【解析】(1)如图 1,过 D 作 DM ⊥AB 于 M ,∵A ,B 两点关于 y 轴对称,∴CA =CB ,∵∠ACB =90°,AD 是角平分线,∴CD =MD ,∠ABC =45°,∴∠BDM =45°,∴BM =DM ,∴BM =CD ,(2 分)⎧CD = MD 在 Rt △ADC 和 Rt △ADM 中, ⎨ AD = AD ,∴Rt △ADC ≌Rt △ADM ,∴AC =AM ,∴AB =AM +BM =AC +CD ,即 AB =AC +CD .(4 分)1(2) 设∠ACB =α,则∠CAB =∠CBA =90°- α,2⎨ ⎩在 AB 上截取 AK =AC ,连接 DK ,∵AB =AC +BD ,∴BK =BD ,∵AD 是角平分线,⎧ AC = AK ∴在△CAD 和△KAD 中, ⎪∠CAD = ∠KAD ,⎪ AD = AD ∴△CAD ≌△KAD ,(6 分)∴∠ACD =∠AKD =α,∴∠BKD =180°-α,∵BK =BD ,∴∠BDK =180°-α,在△BDK 中,1 180°-α+180°-α+90°- 2∴α=108°,α=180°,∴∠ACB =108°.(8 分)(3) 如图 2,在 AB 上截取 AH =AD ,连接 DH ,∵∠ACB =100°,AC =BC ,∴∠CAB =∠CBA =40°,∵AD 是角平分线,∴∠HAD =∠CAD =20°,∴∠ADH =∠AHD =80°,在 AB 上截取 AK =AC ,连接 DK ,由(1)得,△CAD≌△KAD,∴∠ACB=∠AKD=100°,CD=DK,∴∠DKH=80°=∠DHK,∴DK=DH=CD,(10 分)∵∠CBA=40°,∴∠BDH=40°,∴DH=BH,∴BH=CD,∵AB=AH+BH,∴AB=AD+CD.(12 分)。
2019-2020学年八年级上学期期中考试数学试卷附参考答案
2019-2020学年八年级上学期期中考试数学试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求1.若分式的值不存在,则x的取值是()A.x=﹣2 B.x≠﹣2 C.x=3 D.x≠32.若分式的值等于0,则x的取值是()A.x=0 B.x=3 C.x=﹣3 D.x=3或x=﹣3 3.下列式子变形,正确的是()A.=B.=﹣C.=D.=4.下列分式中,是最简分式的是()A.B.C.D.5.用科学记数法表示:0.00002018是()A.2.018×10﹣5B.2.018×10﹣4C.201.8×10﹣7D.2018×10﹣56.计算:()﹣3的结果是()A.﹣B.C.D.﹣7.如图,图中三角形的个数共有()A.3个B.4个C.5个D.6个8.如图,CD是△ABC的角平分线,∠A=30°,∠B=66°,则∠BDC的度数是()A.96°B.84°C.76°D.72°9.下列语句:①你叫什么名字;②负数的绝对值等于它的相反数;③相等的角是对顶角;④明天下雨吗?属于命题的是()A.①②B.②③C.③④D.①②③④10.在△ABC和△DEF中,下列条件不能判断这两个三角形全等的是()A.AB=DE,AC=DF,∠A=∠D B.∠A=∠D,∠B=∠E,AB=DEC.AC=DF,BC=EF,∠B=∠E D.AB=DE,AC=DF,BC=EF11.如图,∠CAB=60°,CD垂直平分AB,垂足为点D,∠CAB的平分线交CD于点E,连接EB,则∠BEC的度数是()A.120°B.110°C.100°D.90°12.如图,∠ADB=∠ACB=90°,AC与BD相交于点O,且OA=OB,下列结论:①AD=BC;②AC=BD;③∠CDA=∠DCB;④CD∥AB,其中正确的有()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,每小题3分,共18分13.若分式的值为0,则x的值是.14.分式,,的最简公分母是.15.若3x=10,3y=5,则3x﹣y=.16.命题“等腰三角形的两个底角相等”的逆命题是.17.如图,在△ABC中,AC=BC,∠B=70°,EF是AC边的垂直平分线,垂足为E,交BC 于点F,则∠AFE的度数等于.18.已知ab=1,m=+,则﹣m2018的值等于.三、解答题:本大题共8小题,满分66分,解答应写出文字说明、证明过程或演算步骤19.先约分,再求值:,其中x=﹣2,y=﹣.20.计算:(1)•(2)÷(3)()2(4)()321.计算(1)()3•()2•()2(2)()4•()3÷()522.计算:(1)+﹣(2)﹣﹣23.如图,已知AB∥ED,CD∥BF,AE=CF.求证:AB=ED.24.如图,AB=CD,AD=BC,E、F分别是AC上的点,且AE=CF(1)求证:AB∥CD;(2)求证:BE=DF.25.如图,已知AD∥BC,点E是CD上一点,AE平分∠BAD,BF平分∠ABC,延长BE交AD 的延长线于点F(1)求证:△ABE≌△AFE;(2)若AD=2,BC=6,求AB的长.26.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用的时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水.(1)分别求甲、乙两种污水处理器的污水处理效率;(2)若某厂每天同时开甲、乙两种污水处理器处理污水共4小时,且甲、乙两种污水处理器处理污水每吨需要的费用分别30元和50元,问该厂每个月(以30天计)需要污水处理费多少?参考答案与试题解析一.选择题(共12小题)1.若分式的值不存在,则x的取值是()A.x=﹣2 B.x≠﹣2 C.x=3 D.x≠3【分析】直接利用分式有意义的条件得出x的值,进而得出答案.【解答】解:∵分式的值不存在,∴2x+4=0,解得:x=﹣2,则x的取值是:﹣2.2.若分式的值等于0,则x的取值是()A.x=0 B.x=3 C.x=﹣3 D.x=3或x=﹣3 【分析】直接利用分式的值为零则分子为零分母不为零,进而得出答案.【解答】解:∵分式的值等于0,∴|x|﹣3=0,2x﹣6≠0,解得:x=﹣3,故选:C.3.下列式子变形,正确的是()A.=B.=﹣C.=D.=【分析】根据分式的基本性质解答.【解答】解:A、原式=,故本选项错误;B、原式=﹣,故本选项正确;C、原式=,故本选项错误;D、原式=,故本选项错误;故选:B.4.下列分式中,是最简分式的是()A.B.C.D.【分析】根据最简分式的标准是分子,分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,然后对每一选项进行整理,即可得出答案.【解答】解:A.=,不符合题意;B.=,不符合题意;C.=,不符合题意;D.是最简分式,符合题意;5.用科学记数法表示:0.00002018是()A.2.018×10﹣5B.2.018×10﹣4C.201.8×10﹣7D.2018×10﹣5【分析】根据科学记数法的形式选择即可.【解答】解:0.00002018=2.018×10﹣5,故选:A.6.计算:()﹣3的结果是()A.﹣B.C.D.﹣【分析】先根据负整数指数幂的定义进行变形,再求出即可.【解答】解:()﹣3=()3=,故选:B.7.如图,图中三角形的个数共有()A.3个B.4个C.5个D.6个【分析】根据三角形的定义,找出图中所有的三角形,数出其个数即可得出结论.【解答】解:图中是三角形的有:△AOC、△BOD、△AOB、△ABC、△ABD.故选:C.8.如图,CD是△ABC的角平分线,∠A=30°,∠B=66°,则∠BDC的度数是()A.96°B.84°C.76°D.72°【分析】根据三角形内角和定理求出∠ACB的度数,再根据CD是△ABC的角平分线,即可求出∠ACD的度数;再根据三角形内角和外角的关系即可求出∠BDC的度数.【解答】解:∵∠A=30°,∠B=66°,∴∠ACB=180°﹣30°﹣66°=84°,∵CD是△ABC的角平分线,∴∠ACD=∠ACB=×84°=42°.∴∠BDC=∠A+∠ACD=30°+42°=72°.故选:D.9.下列语句:①你叫什么名字;②负数的绝对值等于它的相反数;③相等的角是对顶角;④明天下雨吗?属于命题的是()A.①②B.②③C.③④D.①②③④【分析】根据命题是判断性语句,可得答案.【解答】解:①你叫什么名字,没有作出判断,不是命题;②负数的绝对值等于它的相反数,正确,是命题;③相等的角是对顶角,正确,是命题;④明天下雨吗?是疑问句,不是命题,故选:B.10.在△ABC和△DEF中,下列条件不能判断这两个三角形全等的是()A.AB=DE,AC=DF,∠A=∠D B.∠A=∠D,∠B=∠E,AB=DEC.AC=DF,BC=EF,∠B=∠E D.AB=DE,AC=DF,BC=EF【分析】根据题意画出图形,再由全等三角形的判定定理对各选项进行逐一判断即可.【解答】解:如图所示,A、AB=DE,AC=DF,∠A=∠D,符合SAS定理,∴△ABC≌△DEF,故本选项正确;B、∠A=∠D,∠B=∠E,AB=DE,符合ASA定理,∴△ABC≌△DEF,故本选项正确;C、∵AC=DF,BC=EF,∠B=∠E,不符合全等三角形的判定定理,故本选项错误;D、∵AB=DE,AC=DF,BC=EF,符合SSS定理,∴△ABC≌△EFD,故本选项正确.故选:C.11.如图,∠CAB=60°,CD垂直平分AB,垂足为点D,∠CAB的平分线交CD于点E,连接EB,则∠BEC的度数是()A.120°B.110°C.100°D.90°【分析】根据三角形的外角的性质可知:∠BEC=∠B+∠EDB,想办法求出∠B,∠EDB即可解决问题;【解答】解:∵AE平分∠CAB,∠CAB=60°,∴∠EAD=∠CAB=30°,∵CD垂直平分线段AB,∴EA=EB,∠EDB=90°,∴∠B=∠EAD=30°,∴∠BEC=∠EDB+∠B=90°+30°=120°,故选:A.12.如图,∠ADB=∠ACB=90°,AC与BD相交于点O,且OA=OB,下列结论:①AD=BC;②AC=BD;③∠CDA=∠DCB;④CD∥AB,其中正确的有()A.1个B.2个C.3个D.4个【分析】由△ABC≌△BAD(AAS),推出AD=BC,AC=BD,故①②正确,再证明CO=OD,可得∠CDA=∠DCB,故③正确,由∠CDO=∠OAB,可得CD∥AB,故④正确;【解答】解:∵OA=OB,∴∠DAB=∠CBA,∵∠ACB=∠BDA=90°,AB=BA,∴△ABC≌△BAD(AAS),∴AD=BC,AC=BD,故①②正确,∵BC=AD,BO=AO,∴CO=OD,∴∠CDA=∠DCB,故③正确,∵∠COD=∠AOB,∴∠CDO=∠OAB,∴CD∥AB,故④正确,故选:D.二.填空题(共6小题)13.若分式的值为0,则x的值是0 .【分析】分式值为零的条件是分子等于零且分母不等于零.【解答】解:∵分式的值为0,∴x=0.将x=0代入x+1=1≠0.当x=0时,分式分式的值为0.故答案为:0.14.分式,,的最简公分母是12a2b2c.【分析】根据确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式确定;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:因为三分式中的常数项系数的最小公倍数是12,a的最高次幂是2,b的最高次幂是2,c的最高次幂是1,所以三分式的最简公分母是12a2b2c.故答案为:12a2b2c.15.若3x=10,3y=5,则3x﹣y= 2 .【分析】先根据同底数幂的除法进行变形,再代入求出即可.【解答】解:∵3x=10,3y=5,∴3x﹣y=3x÷3y=10÷5=2,故答案为:2.16.命题“等腰三角形的两个底角相等”的逆命题是两个角相等三角形是等腰三角形.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.【解答】解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“两个角相等三角形是等腰三角形”.17.如图,在△ABC中,AC=BC,∠B=70°,EF是AC边的垂直平分线,垂足为E,交BC 于点F,则∠AFE的度数等于50°.【分析】根据等腰三角形的性质得到∠CAB=∠B=70°,根据三角形的内角和得到∠C =180°﹣∠CAB﹣∠B=40°,根据线段垂直平分线的性质得到CF=AF,EF⊥AC,于是得到结论.【解答】解:∵AC=BC,∠B=70°,∴∠CAB=∠B=70°,∴∠C=180°﹣∠CAB﹣∠B=40°,∵EF是AC边的垂直平分线,∴CF=AF,EF⊥AC,∴∠EAF=∠C=40°,∴∠AFE=90°﹣40°=50°,故答案为:50°.18.已知ab=1,m=+,则﹣m2018的值等于﹣1 .【分析】先利用异分母分式的加减法法则,计算m的值,再求出﹣m2018的值.【解答】解:m=+==∵ab=1,∴m==1∴﹣m2018=﹣12018=﹣1故答案为:﹣1三.解答题(共8小题)19.先约分,再求值:,其中x=﹣2,y=﹣.【分析】先把分子分母因式分解,再约分得到原式=,然后把x、y的值代入计算即可.【解答】解:原式==,当x=﹣2,y=﹣时,原式==.20.计算:(1)•(2)÷(3)()2(4)()3【分析】(1)先分解因式,再根据分式的乘法法则求出即可;(2)先把除法变成乘法,再根据分式的乘法法则求出即可;(3)根据分式的乘方法则求出即可;(4)根据分式的乘方法则求出即可.【解答】解:(1)•=•=﹣2x(x+1)=﹣2x2﹣2x;(2)原式=•=;(3)()2=;(4)()3=﹣=﹣.21.计算(1)()3•()2•()2(2)()4•()3÷()5【分析】(1)先算乘方,再算乘法即可;(2)先算乘方,把除法变成乘法,再算乘法即可.【解答】解:(1)原式=••=;(2)原式=••=﹣.22.计算:(1)+﹣(2)﹣﹣【分析】(1)直接通分进而利用分时加减运算法则计算得出答案;(2)直接通分进而利用分时加减运算法则计算得出答案.【解答】解:(1)+﹣=+﹣=;(2)﹣﹣=﹣﹣==﹣.23.如图,已知AB∥ED,CD∥BF,AE=CF.求证:AB=ED.【分析】根据平行线性质得到∠A=∠DEC,∠C=∠AFB,根据全等三角形的性质即可得到结论.【解答】证明:∵AB∥ED,CD∥BF,∴∠A=∠DEC,∠C=∠AFB,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ABF与△EDC中,∴△ABF≌△EDC,(ASA),∴AB=ED.24.如图,AB=CD,AD=BC,E、F分别是AC上的点,且AE=CF(1)求证:AB∥CD;(2)求证:BE=DF.【分析】(1)由全等三角形的判定定理SSS证得△ABD≌△CDB,则该全等三角形的对应角相等,即∠ABD=∠CDB,故AB∥CD;(2)欲证明BE=DF,只需推知△ABE≌△CDF即可.【解答】证明:(1)在△ABD与△CDB中,,∴△ABD≌△CDB(SSS),∴∠ABD=∠CDB,∴AB∥CD;(2)由(1)知,AB∥CD,∴∠BAE=∠DCF,又AB=CD,AE=CF,∴△ABE≌△CDF(SAS),∴BE=DF.25.如图,已知AD∥BC,点E是CD上一点,AE平分∠BAD,BF平分∠ABC,延长BE交AD 的延长线于点F(1)求证:△ABE≌△AFE;(2)若AD=2,BC=6,求AB的长.【分析】(1)根据角平分线的定义可得∠BAE=∠EAF,∠ABF=∠EBC,再根据两直线平行,内错角相等可得∠EBC=∠F,然后求出∠ABF=∠F,再利用“角角边”证明△ABE 和△AFE全等即可;(2)根据全等三角形对应边相等可得BE=FE,然后利用“角边角”证明△BCE和△FDE 全等,根据全等三角形对应边相等可得BC=DF,然后根据AD+BC整理即可得证.【解答】证明:(1)∵AE、BE分别平分∠DAB、∠CBA,∴∠BAE=∠EAF,∠ABF=∠EBC,∵AD∥BC,∴∠EBC=∠F,∠ABF=∠F,在△ABE和△AFE中,,∴△ABE≌△AFE(AAS);(2)∵△ABE≌△AFE,∴BE=EF,在△BCE和△FDE中,,∴△BCE≌△FDE(ASA),∴BC=DF,∴AD+BC=AD+DF=AF=AB,即AD+BC=AB.∵AD=2,BC=6,∴AB=8.26.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用的时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水.(1)分别求甲、乙两种污水处理器的污水处理效率;(2)若某厂每天同时开甲、乙两种污水处理器处理污水共4小时,且甲、乙两种污水处理器处理污水每吨需要的费用分别30元和50元,问该厂每个月(以30天计)需要污水处理费多少?【分析】(1)首先设甲种污水处理器每小时处理污水x吨,则设乙种污水处理器每小时处理污水(x+20)吨,根据题意可得等量关系:甲种污水处理器处理25吨的污水=乙种污水处理器处理35吨的污水所用时间,根据等量关系,列出方程,再解即可.(2)根据题意列出计算式解答即可.【解答】解:(1)设甲种污水处理器每小时处理污水x吨,由题意得,,解之得,x=50,经检验,x=50是原方程的解,所以x=50,x+20=70,答,甲种污水处理器每小时处理污水50吨,乙种污水处理器每小时处理污水70吨.(2)30×4×50×30+30×4×70×50=180000+420000=600000(元),答:该厂每个月(以30天计)需要污水处理费600000元.。
2019-2020学年八年级上学期期中测试数学试卷(解析版)
2019-2020学年八年级上学期期中测试数学试卷一、选择题:(每小题4分,共60分)1.(4分)的值等于()A.3B.﹣3C.±3D.2.(4分)在﹣,﹣1.414,﹣5,3.212112111,2+,,,中,无理数的个数是()A.1个B.2个C.3个D.4个3.(4分)下列说法中:①+1在3和4之间;②二次根式中x的取值范围是x≥1;③的平方根是3;④﹣=﹣5;⑤=﹣3.正确的有()A.1个B.2个C.3个D.4个4.(4分)下列各式计算正确的是()A.+=B.2+=2C.3﹣=2D.=﹣5.(4分)若+|b+2|=0,则点M(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限6.(4分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)7.(4分)在平面直角坐标系中,点A关于x轴的对称点是点B,点B关于y轴的对称点是点C,若点C的坐标是(﹣2,3),则点A的坐标为()A.(﹣2,3)B.(﹣2,﹣3)C.(2,﹣3)D.(2,3)8.(4分)若函数y=(m﹣1)x|m|﹣5是一次函数,则m的值为()A.±1B.﹣1C.1D.29.(4分)下列关于一次函数y=﹣2x+4的说法错误的是()A.y随x的增大而减小B.直线不经过第三象限C.向下平移三个单位得直线y=﹣2x+1D.与x轴交点坐标为(0,4)10.(4分)已知直线y=﹣0.5x+b与直线y=x相交于(2,m),则b的值为()A.2B.3C.﹣0.5D.﹣211.(4分)甲乙两人同时沿着一条笔直的公路朝同一方向前行,开始时,乙在甲前2千米处,甲、乙两人行走的路程y(千米)与时间x(时)的函数图象如图所示,下列说法正确的是()①乙的速度为4千米/时②经过1小时,甲追上乙;③经过0.5小时,乙行走的路程约为2千米;④经过1.5小时,乙在甲的前面.A.①②③B.①②C.②③D.②12.(4分)两个一次函数y1=ax+b与y2=bx+a,它们在一直角坐标系中的图象可能是()A.B.C.D.13.(4分)如果是二元一次方程组的解,那么a,b的值是()A.B.C.D.14.(4分)如果方程组的解中的x与y互为相反数,那么k的值是()A.1B.﹣1C.D.﹣15.(4分)某商家在一次买卖中,同时卖出两只型号不同的计算器,每只都以60元出售,其中一只盈利25%,另一只亏本25%,则在这次买卖中,该商家的盈亏情况是()A.不亏不赚B.赚了8元C.亏了8元D.赚了15元二、填空题(每小题4分,共24分)16.(4分)﹣2的相反数是,绝对值是,倒数是.17.(4分)点A在直线y=2x﹣4上运动,当线段OA最短时,OA的长度为.18.(4分)已知A(﹣2,1),B(3,4),点P在x轴上,若P A与PB的和最小,则点P 的坐标为.19.(4分)一次函数y=kx+b的图象经过点A(1,﹣2)并且与正比例函数y=2x的图象平行,则k=,b=.20.(4分)定义运算“※”,规定x※y=ax2+by,其中a,b为常数,且1※2=5,2※1=6,则2※3=.21.(4分)已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),规定“把正方形ABCD先关于x轴对称,再向右平移1个单位”为一次交换,如此这样,连续经过2017次变换后,正方形ABCD的顶点D的坐标变为.三、解答题(本大题共7个小题,满分76分)22.(16分)计算:(1)(﹣2)×﹣6(2)(5﹣6+)÷.23.(8分)解下列方程组:(1)(2).24.(8分)观察下列等式(1)=(2)=2(3)=3(4)=4…(1)根据你发现的规律写出第5个等式;(2)根据你发现的规律写出第n个等式;(3)验证(2)等式的正确性.25.(8分)在当地农业技术部门指导下,小明家增加种植菠萝的投资,使今年的菠萝喜获丰收.下面是小明爸爸、妈妈的一段对话.请你用学过的知识帮助小明算出他家今年种植菠萝的投资和收入(收入﹣投资=净赚)26.(8分)小文家与学校相距1000米.某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校.下图是小文与家的距离y(米)关于时间x(分钟)的函数图象.请你根据图象中给出的信息,解答下列问题:(1)小文走了多远才返回家拿书?(2)求线段AB所在直线的函数解析式;(3)当x=8分钟时,求小文与家的距离.27.(8分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A (4,2),动点M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的时,求出这时点M的坐标.28.(9分)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B 品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器超出5个的部分按原价的七折销售,设购买x个A 品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x 的函数关系式;(3)当需要购买50个计算器时,买哪种品牌的计算器更合算?29.(11分)如图,平面直角坐标系中,直线AB:交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D 的上方,设P(1,n).(1)求直线AB的解析式和点B的坐标;(2)求△ABP的面积(用含n的代数式表示);(3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.参考答案与试题解析一、选择题:(每小题4分,共60分)1.【解答】解:∵=3,故选:A.2.【解答】解:﹣1.414,﹣5,3.212112111,是有理数,﹣,2+,是无理数,故选:C.3.【解答】解:∵3<<4,∴4<+1<5,故①错误;②二次根式中x的取值范围是x≥1,正确;③=9,9的平方根是±3,故③错误;④=5,故④错误;⑤=3,故⑤错误;正确的有1个,故选:A.4.【解答】解:A、与不是同类项,不能合并,故本选项错误;B、2与不是同类项,不能合并,故本选项错误;C、3﹣=(3﹣1)=2,故本选项正确;D、与不是同类项,不能合并,故本选项错误.故选:C.5.【解答】解:由题意得,a﹣3=0,b+2=0,解得a=3,b=﹣2,所以,点M的坐标为(3,﹣2),点M在第四象限.故选:D.6.【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.7.【解答】解:点A关于x轴的对称点为点B,点B关于y轴的对称点为点C,由点C坐标为(﹣2,3),则点B的坐标为(2,3),故点A的坐标为(2,﹣3).故选:C.8.【解答】解:根据题意得,|m|=1且m﹣1≠0,解得m=±1且m≠1,所以,m=﹣1.故选:B.9.【解答】解:A、由k=﹣2知y随x的增大而减小,此选项正确;B、直线过第一、二、四象限,不过第三象限,此选项正确;C、向下平移三个单位得直线y=﹣2x+1,此选项正确;D、与x轴交点坐标为(2,0),此选项错误;故选:D.10.【解答】解:因为直线y=﹣0.5x+b与直线y=x相交于(2,m),把x=2,y=m代入y=x,可得:m=2,把x=2,y=2代入y=﹣0.5x+b,可得:2=﹣1+b,解得:b=3,故选:B.11.【解答】解:①乙的速度为:(4﹣2)÷1=2千米/时,故①错误;②经过1小时,甲追上乙;故②正确;③根据题意得:乙的解析式为:y=2x+2,当x=0.5时,y=3,即乙行走的路程约为3﹣2=1(千米);故③错误;④由图象得:当x甲=x乙=1.5(h)时,y甲>y乙,即经过1.5小时,乙在甲的后面,故④错误.∴正确的只有②.故选:D.12.【解答】解:A、∵一次函数y1=ax+b的图象经过一三四象限,∴a>0,b<0;由一次函数y2=bx+a图象可知,b<0,a<0,两结论矛盾,故错误;B、∵一次函数y1=ax+b的图象经过一二三象限,∴a>0,b>0;由y2的图象可知,a>0,b<0,两结论相矛盾,故错误;C、∵一次函数y1=ax+b的图象经过一三四象限,∴a>0,b<0;由y2的图象可知,a>0,b<0,两结论不矛盾,故正确;D、∵一次函数y1=ax+b的图象经过一二三象限,∴a>0,b>0;由y2的图象可知,a<0,b<0,两结论相矛盾,故错误.故选:C.13.【解答】解:将x=1,y=2代入方程组得:,①×2﹣②得:3b=3,即b=0,将b=1代入①得:a=1,则.故选:B.14.【解答】解:由题意可知:x+y=0从而可知:解得:∴k=2x+3y=2﹣3=﹣1故选:B.15.【解答】解:设在这次买卖中原价都是x,则可列方程:(1+25%)x=60,解得:x=48,比较可知,第一件赚了12元;第二件可列方程:(1﹣25%)x=60,解得:x=80,比较可知亏了20元,两件相比则一共亏了12﹣20=﹣8元.故选:C.二、填空题(每小题4分,共24分)16.【解答】解:﹣2的相反数是2﹣,绝对值是2﹣,倒数是﹣﹣2,故答案为:2﹣,2﹣,﹣2﹣.17.【解答】解:当线段OA⊥直线y=2x﹣4时,线段OA最短,则直线OA的解析式为:y=﹣x,解得:,∴点A的坐标为(,﹣),∴OA的长度==,故答案为:.18.【解答】解:∵A(﹣2,1),∴点A关于x轴的对称点A′(﹣2,﹣1),设直线A′B的解析式为y=kx+b,∴,解得k=1,b=1,∴直线A′B的解析式为y=x+1,令y=0,解得,x=﹣1,∴P(﹣1,0).故答案为:(﹣1,0).19.【解答】解:∵一次函数y=kx+b的图象与正比例函数y=2x的图象平行,∴k=2,∴y=2x+b,把点A(1,﹣2)代入y=2x+b,得2+b=﹣2,解得b=﹣4;故答案为:2,﹣4.20.【解答】解:根据题意得:,解得:,则2※3=4+6=10.故答案为:1021.【解答】解:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴点D的坐标为(3,3),根据题意得:第1次变换后的点D的对应点的坐标为(3+1,﹣3),即(4,﹣3),第2次变换后的点D的对应点的坐标为:(4+1,3),即(5,3),第3次变换后的点D的对应点的坐标为(5+1,﹣3),即(6,﹣3),第n次变换后的点D的对应点的为:当n为奇数时为(3+n,﹣3),当n为偶数时为(3+n,3),∴连续经过2017次变换后,点D的坐标变为(2020,﹣3).故故答案为:(2020,﹣3).三、解答题(本大题共7个小题,满分76分)22.【解答】解:(1)(﹣2)×﹣6=3﹣6﹣6×=﹣6;(2)(5﹣6+)÷=(20﹣6×3+2)÷=4÷=4.23.【解答】解:(1),由①得:x=y+4③,把③代入②得:4y+16+2y=1,解得:y=﹣,把y=﹣代入③得:x=,则方程组的解为;(2),①×3+②×2得:13x=26,解得:x=2,把x=2代入①得:y=1,则方程组的解为.24.【解答】解:(1)第5个等式为=5;(2)第n个等式为=n;(3)等式左边===n=右边.25.【解答】解:设小明家去年种植菠萝的投资x元,收入y元,则小明家今年种植菠萝的投资(1+10%)x元,收入(1+35%)y元,依题意,得:,解得:,∴(1+10%)x=4400,(1+35%)y=16200.答:小明家今年种植菠萝的投资4400元,收入16200元.26.【解答】解:(1)200米(1分);(2)设直线AB的解析式为:y=kx+b(2分)由图可知:A(5,0),B(10,1000)∴(4分)解得(6分)∴直线AB的解析式为:y=200x﹣1000(7分);(3)当x=8时,y=200×8﹣1000=600(米)即x=8分钟时,小文离家600米.(9分)27.【解答】解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=﹣x+6;(2)在y=﹣x+6中,令x=0,解得:y=6,S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=,则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).28.【解答】解:(1)设A、B两种品牌的计算器的单价分别为x元、y元,根据题意得,,解得.答:A种品牌计算器30元/个,B种品牌计算器32元/个;(2)A品牌:y1=30x•0.8=24x;B品牌:0≤x≤5,y2=32x,x>5时,y2=5×32+32×(x﹣5)×0.7=22.4x+48,所以y1=24x,y2=;(3)当y1=y2时,24x=22.4x+48,解得x=30,购买30个计算器时,两种品牌都一样,购买超过30个计算器时,B品牌更合算,购买不足30个计算器时,A品牌更合算,∵需要购买50个计算器,∴买B种品牌的计算器更合算.29.【解答】解:(1)∵经过A(0,1),∴b=1,∴直线AB的解析式是.当y=0时,,解得x=3,∴点B(3,0).(2)过点A作AM⊥PD,垂足为M,则有AM=1,∵x=1时,=,P 在点D的上方,∴PD=n﹣,由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,∴,∴;(3)当S△ABP=2时,,解得n=2,∴点P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1种情况,如图1,∠CPB=90°,BP=PC,过点C作CN⊥直线x=1于点N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2种情况,如图2∠PBC=90°,BP=BC,过点C作CF⊥x轴于点F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2).第3种情况,如图3,∠PCB=90°,CP=EB,∴∠CPB=∠EBP=45°,在△PCB和△PEB中,∴△PCB≌△PEB(SAS),∴PC=CB=PE=EB=2,∴C(3,2).∴以PB为边在第一象限作等腰直角三角形BPC,点C的坐标是(3,4)或(5,2)或(3,2).。
2019-2020学年八年级上学期期中考试数学试卷含解析
2019-2020学年八年级上学期期中考试数学试卷一.选择题(共8小题)1.下列图案中,属于轴对称图形的是()A.B.C.D.2.16的平方根是()A.4 B.±4 C.D.±3.如图,在数轴上,与表示的点最接近的点是()A.点A B.点B C.点C D.点D4.满足下列条件的△ABC不是直角三角形的是()A.BC=1,AC=2,AB=B.BC=1,AC=2,AB=C.BC:AC:AB=3:4:5 D.∠A:∠B:∠C=3:4:55.如图,工人师傅常用“卡钳”这种工具测定工件内槽的宽.卡钳由两根钢条AA′、BB′组成,O为AA′、BB′的中点.只要量出A′B′的长度,由三角形全等就可以知道工件内槽AB的长度.那么判定△OAB≌△OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS6.如图,有一个池塘,其底面是边长为10尺的正方形,一个芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′.则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺7.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的中垂线,E、N在BC 上,则∠EAN=()A.58°B.32°C.36°D.34°8.如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′恰好落在CD上,若∠BAD=100°,则∠ACB的度数为()A.40°B.45°C.60°D.80°二.填空题(共10小题)9.比较大小: 2.10.下列五个数,2π,,,3.1415926中,是无理数的有.11.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积为249900m2,请将249900精确到万位,并用科学记数法表示为.12.如图,在△ABC中,∠B=∠C,AD平分∠BAC,AB=5,BC=6,则AD=.13.如图,已知点A、D、B、F在一条直线上,AC=EF,AB=DF,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.(只需填一个即可)14.如图,在Rt△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC、AB 于点M、N,再分别以M、N为圆心,任意长为半径画弧,两弧交于点O,作射线AO交BC 于点D,若CD=2,P为AB上一动点,则PD的最小值为.15.如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作MN∥BC,分别交AB、AC于点M、N.若△ABC的周长为15,BC=6,则△AMN的周长为.16.如图,∠ABC=90°,AD∥BC,以B为圆心,BC长为半径画弧,与射线AD相交于点E,连接BE,过点C作CF⊥BE,垂足为F.若AB=6,BC=10,则EF的长为.17.如图,两块完全一样的含30°角的直角三角板,将它们重叠在一起并绕其较长直角边的中点M转动,使上面一块三角板的斜边刚好过下面一块三角板的直角顶点C.已知AC =4,则这两块直角三角板顶点A、A′之间的距离等于.18.在△ABC中,∠B=30°,点D在BC边上,点E在AC边上,AD=BD,DE=CE,若△ADE 为等腰三角形,则∠C的度数为°.三.解答题(共8小题)19.求下列各式中的x的值:(1)4x2=9;(2)(x+1)3=﹣27.20.已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC.21.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.求证:∠ABC=∠ACB=∠DEF.22.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求证:CF⊥DE于点F.23.如图,在△ABC中,∠B=90°,AB=4,BC=8.(1)在BC上求作一点P,使PA+PB=BC;(尺规作图,不写作法,保留作图痕迹)(2)求BP的长.24.如图,在四边形ABCD中,∠ABC=∠ADC=90°,AB=AD,E是AC的中点.(1)求证:∠EBD=∠EDB.(2)若∠BED=120°,试判断△BDC的形状.25.(1)如图①,分别以△ABC的边AB、AC为一边向形外作正方形ABDE和正方形ACGF.求证S△AEF=S△ABC.(2)如图②,分别以△ABC的边AB、AC、BC为边向形外作正方形ABDE、ACGF、BCHI,可得六边形DEFGHI,若S正方形ABDE=17,S正方形ACGF=25,S正方形BCHI=16,求S六边形DEFGHI.26.“面积法”是指利用图形面积间的等量关系寻求线段间等量关系的一种方法.例如:在△ABC中,AB=AC,点P是BC所在直线上一个动点,过P点作PD⊥AB、PE⊥AC,垂足分别为D、E,BF为腰AC上的高.如图①,当点P在边BC上时,我们可得如下推理:∵S△ABC=S△ABP+S△ACP∴AC▪BF=AB▪PD+AC▪PE∵AB=AC∴AC▪BF=AC▪(PD+PE)∴BF=PD+PE(1)【变式】如图②,在上例的条件下,当点P运动到BC的延长线上时,试探究BF、PD、PE之间的关系,并说明理由.(2)【迁移】如图③,点P是等边△ABC内部一点,作PD⊥AB、PE⊥BC、PF⊥AC,垂足分别为D、E、F,若PD=1,PE=2,PF=4.求△ABC的边长.(3)【拓展】若点P是等边△ABC所在平面内一点,且点P到三边所在直线的距离分别为2、3、6.请直接写出等边△ABC的高的所有可能参考答案与试题解析一.选择题(共8小题)1.下列图案中,属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义求解可得.【解答】解:A,此图案不是轴对称图形,此选项不符合题意;B、此图案不是轴对称图形,此选项不符合题意;C、此图案是轴对称图形,符合题意;D、此图案不是轴对称图形,不符合题意;故选:C.2.16的平方根是()A.4 B.±4 C.D.±【分析】直接利用平方根的定义计算即可.【解答】解:∵±4的平方是16,∴16的平方根是±4.故选:B.3.如图,在数轴上,与表示的点最接近的点是()A.点A B.点B C.点C D.点D 【分析】依据被开方数越大,对应的算术平方根越大进行比较即可.【解答】解:∵12=1,22=4,∴12<3<22,∴1<<2.∴与表示的点最接近的点是D.故选:D.4.满足下列条件的△ABC不是直角三角形的是()A.BC=1,AC=2,AB=B.BC=1,AC=2,AB=C.BC:AC:AB=3:4:5 D.∠A:∠B:∠C=3:4:5 【分析】先求出两小边的平方和和最长边的平方,看看是否相等即可.【解答】解:A、∵12+()2=22,∴△ABC是直角三角形,故本选项不符合题意;B、∵12+22=()2,∴△ABC是直角三角形,故本选项不符合题意;C、∵32+42=52,∴△ABC是直角三角形,故本选项不符合题意;D、∵∠A+∠B+∠C=180°,∠A:∠B:∠C=3:4:5,∴∠A=45°,∠5=60°,∠C=75°,∴△ABC不是直角三角形,故本选项符合题意;故选:D.5.如图,工人师傅常用“卡钳”这种工具测定工件内槽的宽.卡钳由两根钢条AA′、BB′组成,O为AA′、BB′的中点.只要量出A′B′的长度,由三角形全等就可以知道工件内槽AB的长度.那么判定△OAB≌△OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS【分析】根据SAS证明△AOB≌△A′OB′(SAS)即可;【解答】解:∵O是AA′,BB′的中点,∴AO=A′O,BO=B′O,又∵∠AOB与∠A′OB′是对顶角,∴∠AOB=∠A′OB′,在△AOB和△A′OB′中,∵,∴△AOB≌△A′OB′(SAS),∴A′B′=AB,∴只要量出A′B′的长度,就可以知道工作的内径AB是否符合标准,∴判定△OAB≌△OA′B′的理由是SAS.故选:A.6.如图,有一个池塘,其底面是边长为10尺的正方形,一个芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′.则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺【分析】我们可以将其转化为数学几何图形,可知边长为10尺的正方形,则B'C=5尺,设出AB=AB'=x尺,表示出水深AC,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长和水深.【解答】解:设芦苇长AB=AB′=x尺,则水深AC=(x﹣1)尺,因为边长为10尺的正方形,所以B'C=5尺在Rt△AB'C中,52+(x﹣1)2=x2,解之得x=13,即水深12尺,芦苇长13尺.故选:D.7.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的中垂线,E、N在BC 上,则∠EAN=()A.58°B.32°C.36°D.34°【分析】先由∠BAC=106°及三角形内角和定理求出∠B+∠C的度数,再根据线段垂直平分线的性质求出∠B=∠BAE,∠C=∠CAN,即∠B+∠C=∠BAE+∠CAN,由∠EAN=∠BAC ﹣(∠BAE+∠CAN)解答即可.【解答】解:∵△ABC中,∠BAC=106°,∴∠B+∠C=180°﹣∠BAC=180°﹣106°=74°,∵EF、MN分别是AB、AC的中垂线,∴∠B=∠BAE,∠C=∠CAN,即∠B+∠C=∠BAE+∠CAN=74°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=106°﹣74°=32°.故选:B.8.如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′恰好落在CD上,若∠BAD=100°,则∠ACB的度数为()A.40°B.45°C.60°D.80°【分析】连接AB',BB',过A作AE⊥CD于E,依据∠BAC=∠B'AC,∠DAE=∠B'AE,即可得出∠CAE=∠BAD,再根据四边形内角和以及三角形外角性质,即可得到∠ACB=∠ACB'=90°﹣∠BAD.【解答】解:如图,连接AB',BB',过A作AE⊥CD于E,∵点B关于AC的对称点B'恰好落在CD上,∴AC垂直平分BB',∴AB=AB',∴∠BAC=∠B'AC,∵AB=AD,∴AD=AB',又∵AE⊥CD,∴∠DAE=∠B'AE,∴∠CAE=∠BAD=50°,又∵∠AEC=90°,∴∠ACB=∠ACB'=40°,故选:A.二.填空题(共10小题)9.比较大小:> 2.【分析】首先分别求出、2的立方的值各是多少;然后根据实数大小比较的方法:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,判断出、2的立方的大小关系,即可推得、2的大小关系.【解答】解:=9,23=8,∵9>8,∴>2.故答案为:>.10.下列五个数,2π,,,3.1415926中,是无理数的有2π,.【分析】根据无理数的定义逐个判断即可.【解答】解:无理数有2π,,故答案为:2π,.11.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积为249900m2,请将249900精确到万位,并用科学记数法表示为 2.5×105.【分析】根据四舍五入,可得精确到万位的数,根据科学记数法表示的方法,可得答案.【解答】解:将249900精确到万位,并用科学记数法表示为2.5×105,故答案为:2.5×105.12.如图,在△ABC中,∠B=∠C,AD平分∠BAC,AB=5,BC=6,则AD= 4 .【分析】证明△ADB≌△ADC,根据全等三角形的性质得到BD=CD=BC=3,∠ADB=∠ADC=90°,根据勾股定理计算.【解答】解:在△ADB和△ADC中,,∴△ADB≌△ADC(AAS)∴BD=CD=BC=3,∠ADB=∠ADC=90°,由勾股定理得,AD==4,故答案为;4.13.如图,已知点A、D、B、F在一条直线上,AC=EF,AB=DF,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是∠A=∠F或AC∥EF或BC=DE(答案不唯一)..(只需填一个即可)【分析】要判定△ABC≌△FDE,已知AC=FE,AB=DF,则AB=CF,具备了两组边对应相等,故添加∠A=∠F,利用SAS可证全等.(也可添加其它条件).【解答】解:增加一个条件:∠A=∠F,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等(答案不唯一).故答案为:∠A=∠F或AC∥EF或BC=DE(答案不唯一).14.如图,在Rt△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC、AB 于点M、N,再分别以M、N为圆心,任意长为半径画弧,两弧交于点O,作射线AO交BC 于点D,若CD=2,P为AB上一动点,则PD的最小值为 2 .【分析】作DP′⊥AB于P′,根据垂线段最短得到此时PD最小,根据角平分线的性质解答.【解答】解:如图,作DP′⊥AB于P′,则此时PD=P′D最小,由尺规作图可知,AD平分∠CAB,又∠C=90°,DP′⊥AB,∴DP′=CD=2,∴PD的最小值为2,故答案为:2.15.如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作MN∥BC,分别交AB、AC于点M、N.若△ABC的周长为15,BC=6,则△AMN的周长为9 .【分析】先根据角平分线的性质和平行线判断出OM=BM、ON=CN,也就得到三角形的周长就等于AB与AC的长度之和.【解答】解:如图,∵OB、OC分别是∠ABC与∠ACB的平分线,∴∠1=∠5,∠3=∠6,又∵MN∥BC,∴∠2=∠5,∠6=∠4,∴BM=MO,NO=CN,∴△AMN的周长=AM+AN+MN=MA+AN+MO+ON=AB+AC,又∵AB+AC+BC=15,BC=6,∴AB+AC=9,∴△AMN的周长=9,故答案为9.16.如图,∠ABC=90°,AD∥BC,以B为圆心,BC长为半径画弧,与射线AD相交于点E,连接BE,过点C作CF⊥BE,垂足为F.若AB=6,BC=10,则EF的长为 2 .【分析】由勾股定理的AE==8,证明△AEB≌△FBC(AAS),得出BF=AE =8,即可得出EF=BE﹣BF=10﹣8=2.【解答】解:∵∠ABC=90°,AD∥BC,∴∠A=180°﹣∠ABC=90°,∴∠AEB=∠FBC,∵BE=BC=10,∴AE===8,∵CF⊥BE,∴∠A=∠BFC=90°,在△AEB和△FBC中,,∴△AEB≌△FBC(AAS),∴BF=AE=8,∴EF=BE﹣BF=10﹣8=2;故答案为:2.17.如图,两块完全一样的含30°角的直角三角板,将它们重叠在一起并绕其较长直角边的中点M转动,使上面一块三角板的斜边刚好过下面一块三角板的直角顶点C.已知AC =4,则这两块直角三角板顶点A、A′之间的距离等于 2 .【分析】连接AA',由旋转的性质可得CM=C'M=2,AM=A'M=2,可证△AMA'是等边三角形,即可求AA'的长.【解答】解:如图,连接AA',∵点M是AC中点,∴AM=CM=AC=2,∵旋转,∴CM=C'M,AM=A'M∴A'M=MC=AM=2,∴∠C'A'B'=∠A'CM=30°∴∠AMA'=∠C'A'B'+∠MCA'=60°,且AM=A'M∴△AMA'是等边三角形∴A'A=AM=2故答案为:218.在△ABC中,∠B=30°,点D在BC边上,点E在AC边上,AD=BD,DE=CE,若△ADE 为等腰三角形,则∠C的度数为40或20 °.【分析】先根据三角形外角性质,得出∠ADC=60°,则设∠C=∠EDC=α,进而得到∠ADE=60°﹣α,∠AED=2α,∠DAE=120°﹣α,最后根据△ADE为等腰三角形,进行分类讨论即可.【解答】解:如图所示,∵AD=BD,∠B=30°,∴∠ADC=60°,∵DE=CE,∴可设∠C=∠EDC=α,则∠ADE=60°﹣α,∠AED=2α,根据三角形内角和定理可得,∠DAE=120°﹣α,分三种情况:①当AE=AD时,有60°﹣α=2α,解得α=20°;②当DA=DE时,有120°﹣α=2α,解得α=40°;③当EA=ED时,有120°﹣α=60°﹣α,方程无解,综上所述,∠C的度数为20°或40°,故答案为:20或40.三.解答题(共8小题)19.求下列各式中的x的值:(1)4x2=9;(2)(x+1)3=﹣27.【分析】(1)将x的系数化为1,然后两边同时直接开平方求解;(2)方程两边同时开立方即可求解.【解答】解:(1)∵x2=,∴x=±;(2)∵(x+1)3=﹣27,∴x+1=﹣3,x=﹣4.20.已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC.【分析】根据角平分线性质和已知求出∠ACB=∠DBC,根据ASA推出△ABC≌△DCB,根据全等三角形的性质推出即可.【解答】证明:∵AC平分∠BCD,BD平分∠ABC,∴∠DBC=∠ABC,∠ACB=∠DCB,∵∠ABC=∠DCB,∴∠ACB=∠DBC,∵在△ABC与△DCB中,,∴△ABC≌△DCB(ASA),∴AB=DC.21.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.求证:∠ABC=∠ACB=∠DEF.【分析】只要证明△DBE≌△CEF(SAS),可得∠BDE=∠CEF,由∠ABC+∠BDE+∠BED=∠BED+∠DEGF+∠CEF=180°,推出∠ABC=∠DEF即可解决问题;【解答】证明:∵AB=AC,∴∠ABC=∠ACB,在△DBE和△CEF中,∴△DBE≌△CEF(SAS),∴∠BDE=∠CEF,∵∠ABC+∠BDE+∠BED=∠BED+∠DEGF+∠CEF=180°,∴∠ABC=∠DEF,∴∠ABC=∠ACB=∠DEF.22.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求证:CF⊥DE于点F.【分析】根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【解答】证明:∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,∴△ACD≌△BEC(SAS),∴DC=CE,∵CF平分∠DCE,∴CF⊥DE.23.如图,在△ABC中,∠B=90°,AB=4,BC=8.(1)在BC上求作一点P,使PA+PB=BC;(尺规作图,不写作法,保留作图痕迹)(2)求BP的长.【分析】(1)作线段AC的中垂线,其与BC的交点即为所求;(2)设BP=x,则PA=CP=8﹣x,根据AB2+BP2=AP2求解可得.【解答】解:(1)如图所示,点P即为所求.(2)设BP=x,则CP=8﹣x,由(1)中作图知AP=CP=8﹣x,在Rt△ABP中,由AB2+BP2=AP2可得42+x2=(8﹣x)2,解得:x=3,所以BP=3.24.如图,在四边形ABCD中,∠ABC=∠ADC=90°,AB=AD,E是AC的中点.(1)求证:∠EBD=∠EDB.(2)若∠BED=120°,试判断△BDC的形状.【分析】(1)根据直角三角形的性质解答即可;(2)根据等边三角形的性质和判定、以及线段平分线的性质解答即可.【解答】证明:(1)在Rt△ABC中,∠ABC=90°,∵E是AC的中点,∴BE=EC=AC,同理可得:DE=EC=AC,∴BE=DE,∴∠EBD=∠EDB,(2)△DBC为等边三角形,∵BE=DE,∴点E在BD的中垂线上,∵AB=AD,∴点A在BD的中垂线上,∴AE垂直平分DB,∴BC=DC,在△DEB中,DE=BE,∵AE垂直平分BD,∴∠AEB=∠BED=60°,∴∠DBE=90°﹣∠BED=30°,∵BE=EC,∴∠EBC=∠ECB=30°,∴∠DBC=60°,∴△DBC为等边三角形.25.(1)如图①,分别以△ABC的边AB、AC为一边向形外作正方形ABDE和正方形ACGF.求证S△AEF=S△ABC.(2)如图②,分别以△ABC的边AB、AC、BC为边向形外作正方形ABDE、ACGF、BCHI,可得六边形DEFGHI,若S正方形ABDE=17,S正方形ACGF=25,S正方形BCHI=16,求S六边形DEFGHI.【分析】(1)作辅助线,证明△AMC≌△ANF(AAS),得CM=FN根据三角形面积公式可得结论;(2)同理得:S△AEF=S△ABC=S△BDI=S△CHG,设BO=x,则CO=4﹣x,根据勾股定理列方程得:17﹣x2=25﹣(4﹣x)2,解得:x=1,根据面积和可得S六边形DEFGHI.【解答】证明:(1)如图①,过点C作CM⊥AB,过F作FN⊥EA与EA的延长线交于点N,∴∠CMA=∠ANF=90°,∵四边形ABDE和四边形ACGF是正方形,∴AB=AE,AC=AF,∠BAE=∠CAF=90°,∴∠CAM+∠CAN=∠FAN+∠CAN=90°,∴∠CAM=∠FAN,在△AMC和△ANF中,∵,∴△AMC≌△ANF(AAS),∴CM=FN,∴AE•FN=,∴S△AEF=S△ABC.(2)由上题结论得:S△AEF=S△ABC=S△BDI=S△CHG,由题意得:AB=,AC=5,BC=4,过点O作AO⊥BC,设BO=x,则CO=4﹣x,在Rt△ABO和Rt△ACO中,AO2=AB2﹣BO2=AC2﹣CO2,即17﹣x2=25﹣(4﹣x)2,解得:x=1,∴AO=4,S六边形DEFGHI=S正方形ABDE+S正方形BCHI+S正方形ACGF+S△AEF+S△BDI+S△CHG+S△ABC,=17+25+16+4××4×4,=90.26.“面积法”是指利用图形面积间的等量关系寻求线段间等量关系的一种方法.例如:在△ABC中,AB=AC,点P是BC所在直线上一个动点,过P点作PD⊥AB、PE⊥AC,垂足分别为D、E,BF为腰AC上的高.如图①,当点P在边BC上时,我们可得如下推理:∵S△ABC=S△ABP+S△ACP∴AC▪BF=AB▪PD+AC▪PE∵AB=AC∴AC▪BF=AC▪(PD+PE)∴BF=PD+PE(1)【变式】如图②,在上例的条件下,当点P运动到BC的延长线上时,试探究BF、PD、PE之间的关系,并说明理由.(2)【迁移】如图③,点P是等边△ABC内部一点,作PD⊥AB、PE⊥BC、PF⊥AC,垂足分别为D、E、F,若PD=1,PE=2,PF=4.求△ABC的边长.(3)【拓展】若点P是等边△ABC所在平面内一点,且点P到三边所在直线的距离分别为2、3、6.请直接写出等边△ABC的高的所有可能【分析】(1)如图②,连接AP,根据三角形的面积公式列方程即可得到结论;(2)如图③,过A作AH⊥BC于H,连接PA,PB,PC,根据三角形的面积公式列方程得到AH=PD+PE+PF=7,根据等腰三角形的性质得到CH=BC=AC,根据勾股定理即可得到结论;(3)如图④,设等边△ABC的高为h,点P到△ABC的三边的距离为h1=2,h2=3,h3=6,分三种情况讨论即可得到结论.【解答】解:(1)BF=PD﹣PE,如图②,连接AP,∵S△ABC=S△ABP﹣S△ACP,∴AC•BF=AB•PD﹣AC•PE,∵AB=AC,∴BF=PD﹣PE;(2)如图③,过A作AH⊥BC于H,连接PA,PB,PC,∵S△ABC=S△ABP+S△ACP+S△BCP,AH•BC=PD•AB+PF•AC+PE•BC,∵△ABC是等边三角形,∴AB=AC=BC,∴AH=PD+PE+PF=7,∵AB=AC,AH⊥BC,∴CH=BC=AC,在Rt△AHC中,∠AHC=90°,∴AH2+CH2=AC2,∴AH=AC,∴AC=7,∴AC==;(3)如图④,设等边△ABC的高为h,点P到△ABC的三边的距离为h1=2,h2=3,h3=6,如图,当P在i区域时,h=h1+h2+h3=2+3+6=11;当P在ii区域时,h=h1+h3﹣h2=2+6﹣3=5,或h=h2+h3﹣h1=3+6﹣2=7,当P在iii区域时,h=h3﹣h2﹣h1=1,综上所述,等边△ABC的高的所有可能的值为11,7,5,1.。
2019-2020学年湖北省荆州市松滋市八年级(上)期中数学试卷(解析版)
2019-2020学年湖北省荆州市松滋市八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题只有唯一正确答案,每小题3分,共30分)1.(3分)在下图中,是轴对称图形的是()A.B.C.D.2.(3分)已知等腰三角形的一个内角为40︒,则这个等腰三角形的顶角为() A.40︒B.100︒C.40︒或70︒D.40︒或100︒3.(3分)在平面直角坐标系中,点(3,5)P关于x轴对称的点的坐标是() A.(3,5)B.(3,5)---C.(3,5)-D.(3,5)4.(3分)如图,在ABC∠=︒,BACC∠的平分线AD交BC于D,∠=︒,36∆中,72BAC则图中有等腰三角形()A.0个B.1个C.2个D.3个5.(3分)如图,在ABC∆的∆中,BC的垂直平分线分别交AC,BC于点D,E.若ABC 周长为22,4∆的周长为()BE=,则ABDA.14B.18C.20D.266.(3分)如图,在ABC∠=︒,将ABC∆沿着直线l折叠,点C落在点D的位置,C∆中,40则12∠-∠的度数是()A .40︒B .80︒C .90︒D .140︒7.(3分)如图,A B C D E F ∠+∠+∠+∠+∠+∠的度数为( )A .180︒B .270︒C .360︒D .720︒8.(3分)已知如图:ABC ∆中,AB AC =,BE CD =,BD CF =,则(EDF ∠= )A .2A ∠B .902A ︒-∠C .90A ︒-∠D .1902A ︒-∠ 9.(3分)如图所示,三角形ABC 的面积为21cm .AP 垂直B ∠的平分线BP 于P .则与三角形PBC 的面积相等的长方形是( )A .B .C .D .10.(3分)如图,AB CD ⊥,且A B C D =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若C E a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)若点(2,3)A m +与点(4,5)B n -+关于y 轴对称,则m n += .12.(3分)一个等腰三角形有两边分别为4和8,则周长是 .13.(3分)如图,已知点(,)A a b ,0是原点,1OA OA =,1OA OA ⊥,则点1A 的坐标是 .14.(3分)已知ABC ∆的三边分别是6,8,10,DEF ∆的三边分别是6,64x -,42x +,若两个三角形全等,则x 的值为 .15.(3分)如图,在Rt ABC ∆中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4CD =,15AB =,则ABD ∆的面积是 .16.(3分)如图,在Rt ABC ∆中,CM 平分ACB ∠交AB 于点M ,过点M 作//MN BC 交AC 于点N ,且MN 平分AMC ∠,若1AN =,则BC 的长为 .三、解答题(共8小题,满分72分)17.(8分)如图,在钝角ABC ∆中.(1)作钝角ABC ∆的高AM ,CN ;(2)若3CN =,6AM =,求BC 与AB 之比.18.(6分)如图所示的“钻石”型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你分别在甲、乙、丙三个图中涂黑一个小三角形,使它与阴影部分合起来所构成的图形是一个轴对称图形.19.(8分)如图,//AC EF ,AC EF =,点A 、D 、B 、F 在同一条直线上,AD FB =,试说明:ABC FDE ∆≅∆.20.(9分)如图,在ABC ∆中,AD ,BE 分别是BAC ∠,ABC ∠的角平分线.(1)若70C ∠=︒,60BAC ∠=︒,则BED ∠的度数是 ;若50BED ∠=︒,则C ∠的度数是 .(2)探究BED ∠与C ∠的数量关系,并证明你的结论.21.(9分)“综合与实践”学习活动准备制作一组三角形记这些三角形的三边分别为a ,b ,c ,用记号(a ,b ,)()c a b c 剟表示一个满足条件的三角形,如(2,4,4)表示边长分别为2,4,4个单位长度的一个三角形(1)若这些三角形三边的长度为大于0且小于3的整数个单位长度,请用记号写出所有满足条件的三角形;(2)如图,AD 是ABC ∆的中线,线段AB ,AC 的长度分别为2个,6个单位长度,且线段AD 的长度为整数个单位长度,过点C 作//CE AB 交AD 的延长线于点E①求AD 的长度;②请直接用记号表示ACE ∆.22.(10分)如图,ABC ∆中,90ACB ∠=︒,以AC 为边在ABC ∆外作等边三角形ACD ,过点D 作AC 的垂线,垂足为F ,与AB 相交于点E ,连接CE .(1)说明:AE CE BE ==;(2)若D A AB ⊥,6BC =,P 是直线DE 上的一点,则当P 在何处时,PB PC +最小,并求出此时PB PC +的值.23.(10分)已知:在ABC ∆中,90ACB ∠=︒,点P 是线段AC 上一点,过点A 作AB 的垂线,交BP 的延长线于点M ,MN AC ⊥于点N ,PQ AB ⊥于点Q ,AQ MN =. 求证:(1)APM ∆是等腰三角形;(2)PC AN =.24.(12分)已知,在平面直角坐标系中,(,0)A m、(0,)B n,m、n满足2-+=.C为AB的中点,P是线段AB上一动点,D是x轴正半轴上一点,m n m()|2|0且PO PD⊥于E.=,DE AB(1)求OAB∠的度数;(2)设4AB=,当点P运动时,PE的值是否变化?若变化,说明理由;若不变,请求PE 的值;(3)设4AB=,若45∠=︒,求点D的坐标.OPD2019-2020学年湖北省荆州市松滋市八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题只有唯一正确答案,每小题3分,共30分)1.(3分)在下图中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)已知等腰三角形的一个内角为40︒,则这个等腰三角形的顶角为() A.40︒B.100︒C.40︒或70︒D.40︒或100︒【分析】分这个角为底角和顶角两种情况,利用三角形内角和定理求解即可.【解答】解:当这个内角为顶角时,则顶角为40︒,当这个内角为底角时,则两个底角都为40︒,此时顶角为:1804040100︒-︒-︒=︒,故选:D.【点评】本题主要考查等腰三角形的性质,掌握等腰三角形的两底角相等是解题的关键.3.(3分)在平面直角坐标系中,点(3,5)P关于x轴对称的点的坐标是() A.(3,5)B.(3,5)---D.(3,5)-C.(3,5)【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数进行解答.【解答】解:点(3,5)P关于x轴对称的点的坐标为(3,5)-.故选:B.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4.(3分)如图,在ABC∠=︒,BACC∠的平分线AD交BC于D,∆中,72BAC∠=︒,36则图中有等腰三角形()A.0个B.1个C.2个D.3个【分析】根据三角形内角和和等腰三角形的判定解答即可.【解答】解:72∠=︒,CBAC∠=︒,36∴∠=︒,72ABC∴∠=∠,CAB ABC∴∆是等腰三角形,ABC∠的平分线AD交BC于D,BAC∴∠=∠=︒,36DAB CAD∴∠=∠,CAD C∴∆是等腰三角形,ACD∴∠=︒,72ADB∴∠=∠,ADB B∴∆是等腰三角形,ADB故选:D.【点评】此题考查等腰三角形的判定,关键是根据三角形的内角和得出各个角的度数.5.(3分)如图,在ABC∆的∆中,BC的垂直平分线分别交AC,BC于点D,E.若ABC 周长为22,4∆的周长为()BE=,则ABDA.14B.18C.20D.26【分析】根据线段的垂直平分线的性质得到DB DC==,根据三角形的周长BC BE=,28公式计算即可.【解答】解:DE 是BC 的垂直平分线,DB DC ∴=,28BC BE ==,ABC ∆的周长为22,22AB BC AC ∴++=,14AB AC ∴+=,ABD ∴∆的周长14AD BD AB AD CD AB AB AC =++=++=+=,故选:A .【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.6.(3分)如图,在ABC ∆中,40C ∠=︒,将ABC ∆沿着直线l 折叠,点C 落在点D 的位置,则12∠-∠的度数是( )A .40︒B .80︒C .90︒D .140︒【分析】由折叠的性质得到D C ∠=∠,再利用外角性质即可求出所求角的度数.【解答】解:由折叠的性质得:40D C ∠=∠=︒,根据外角性质得:13C ∠=∠+∠,32D ∠=∠+∠,则1222280C D C ∠=∠+∠+∠=∠+∠=∠+︒,则1280∠-∠=︒.故选:B .【点评】此题考查了翻折变换(折叠问题),以及外角性质,熟练掌握折叠的性质是解本题的关键.7.(3分)如图,A B C D E F ∠+∠+∠+∠+∠+∠的度数为( )A .180︒B .270︒C .360︒D .720︒【分析】根据三角形外角的性质和四边形内角和等于360︒可得A B C D E ∠+∠+∠+∠+∠+∠的度数.【解答】解:如图,1A C ∠=∠+∠,2B F ∠=∠+∠,12360D E ∠+∠+∠+∠=︒,360A B C D E F ∴∠+∠+∠+∠+∠+∠=︒.故选:C .【点评】此题考查三角形的内角和,角的和与差,掌握三角形的内角和定理是解决问题的关键.8.(3分)已知如图:ABC ∆中,AB AC =,BE CD =,BD CF =,则(EDF ∠= )A .2A ∠B .902A ︒-∠C .90A ︒-∠D .1902A ︒-∠ 【分析】由题中条件可得BDE CFD ∆≅∆,即BDE CFD ∠=∠,EDF ∠可由180︒与BDE ∠、CDF ∠的差表示,进而求解即可.【解答】解:AB AC =, B C ∴∠=∠,BD CF =,BE CD = BDE CFD ∴∆≅∆, BDE CFD ∴∠=∠,180()180()180(180)EDF BDE CDF CFD CDF C C ∠=︒-∠+∠=︒-∠+∠=︒-︒-∠=∠, 180A B C ∠+∠+∠=︒. 2180A EDF ∴∠+∠=︒, 1902EDF A ∴∠=︒-∠.故选:D .【点评】本题主要考查了等腰三角形的性质,三角形的内角和定理及全等三角形的判定及性质问题,能够熟练掌握.9.(3分)如图所示,三角形ABC 的面积为21cm .AP 垂直B ∠的平分线BP 于P .则与三角形PBC 的面积相等的长方形是( )A .B .C .D .【分析】过P 点作PE BP ⊥,垂足为P ,交BC 于E ,根据AP 垂直B ∠的平分线BP 于P ,即可求出ABP BEP ∆≅∆,又知APC ∆和CPE ∆等底同高,可以证明两三角形面积相等,即可证明三角形PBC 的面积.【解答】解:过P 点作PE BP ⊥,垂足为P ,交BC 于E ,AP 垂直B ∠的平分线BP 于P , ABP EBP ∠=∠,又知BP BP =,90APB BPE ∠=∠=︒,ABP BEP ∴∆≅∆, AP PE ∴=,APC ∆和CPE ∆等底同高, APC PCE S S ∆∆∴=,∴三角形PBC 的面积12=三角形ABC 的面积212cm =, 选项中只有B 的长方形面积为212cm ,故选:B .【点评】本题主要考查面积及等积变换的知识点,过P 点作PE BP ⊥是解答本题的关键,证明出三角形PBC 的面积和原三角形的面积之间的关系很重要,本题是一道非常不错的习题.10.(3分)如图,AB CD ⊥,且A B C D =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若C E a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-【分析】只要证明A B F C D ∆≅∆,可得A F C E a ==,BF DE b ==,推出()AD AF DF a b c a b c =+=+-=+-;【解答】解:AB CD ⊥,CE AD ⊥,BF AD ⊥,90AFB CED ∴∠=∠=︒,90A D ∠+∠=︒,90C D ∠+∠=︒, A C ∴∠=∠,AB CD =,ABF CDE ∴∆≅∆,AF CE a ∴==,BF DE b ==,EF c =,()AD AF DF a b c a b c ∴=+=+-=+-,故选:D .【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)若点(2,3)A m +与点(4,5)B n -+关于y 轴对称,则m n += 0 .【分析】根据“关于y 轴对称的点,纵坐标相同,横坐标互为相反数”列出方程求解即可. 【解答】解:点(2,3)A m +与点(4,5)B n -+关于y 轴对称, 24m ∴+=,35n =+,解得:2m =,2n =-, 0m n ∴+=,故答案为:0.【点评】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数; (2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数; (3)关于原点对称的点,横坐标与纵坐标都互为相反数.12.(3分)一个等腰三角形有两边分别为4和8,则周长是 20 .【分析】题目给出等腰三角形有两条边长为4和8,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形. 【解答】解:448+=∴腰的长不能为4,只能为8 ∴等腰三角形的周长28420=⨯+=.故填:20.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.(3分)如图,已知点(,)A a b ,0是原点,1OA OA =,1OA OA ⊥,则点1A 的坐标是 (,)b a - .【分析】本题用三角函数解答,由A 和1A 向坐标轴作垂线即可得解. 【解答】解:如图,从A 、1A 向x 轴作垂线,设1A 的坐标为(,)x y , 设AOX α∠=,1AOD β∠=,1A 坐标(,x y 则90sin cos αβαβ+=︒=cos sin αβ=sin cos αβ==同理cossin αβ=所以x b =-,y a =, 故1A 坐标为(,)b a -.【点评】重点理解三角函数的定义和求解方法,主要应用公式sin cos αβ=,cos sin αβ=. 14.(3分)已知ABC ∆的三边分别是6,8,10,DEF ∆的三边分别是6,64x -,42x +,若两个三角形全等,则x 的值为 2 .【分析】根据全等三角形对应边相等,分两种情况求出x 的值,再根据x 的值作出判断即可. 【解答】解:由全等三角形对应边相等得,①4210x +=,解得2x =, 648x -=,解得2x =,由于22=,所以,此种情况成立; ②428x +=,解得32x =, 6410x -=,解得73x =,由于37 23≠,所以该情况不成立综上所述,x的值为2.故答案是:2.【点评】本题考查了全等三角形对应边相等的性质,要注意两个方程求出的x的值必须相同.15.(3分)如图,在Rt ABC∆中,90C∠=︒,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若4CD=,15AB=,则ABD∆的面积是30.【分析】根据角平分线的性质得到4DE DC==,根据三角形的面积公式计算即可.【解答】解:作DE AB⊥于E,由基本尺规作图可知,AD是ABC∆的角平分线,90C∠=︒,DE AB⊥,4DE DC∴==,ABD∴∆的面积1302AB DE=⨯⨯=,故答案为:30.【点评】本题考查的是角平分线的性质、基本作图,掌握角的平分线上的点到角的两边的距离相等是解题的关键.16.(3分)如图,在Rt ABC∆中,CM平分ACB∠交AB于点M,过点M作//MN BC交AC 于点N,且MN平分AMC∠,若1AN=,则BC的长为6.【分析】根据题意,可以求得B ∠的度数,然后根据解直角三角形的知识可以求得NC 的长,从而可以求得BC 的长.【解答】解:在Rt ABC ∆中,CM 平分ACB ∠交AB 于点M ,过点M 作//MN BC 交AC 于点N ,且MN 平分AMC ∠,AMN NMC B ∴∠=∠=∠,NCM BCM NMC ∠=∠=∠, 2ACB B ∴∠=∠,NM NC =, 30B ∴∠=︒, 1AN =, 2MN ∴=,3AC AN NC ∴=+=, 6BC ∴=,故答案为6.【点评】本题考查含30︒角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答. 三、解答题(共8小题,满分72分) 17.(8分)如图,在钝角ABC ∆中. (1)作钝角ABC ∆的高AM ,CN ;(2)若3CN =,6AM =,求BC 与AB 之比.【分析】(1)过点A 作AM BC ⊥于M ,过点C 作CN AB ⊥于N ,则AM 、BN 为ABC ∆的高;(2)根据三角形面积公式得到1122AM BC CN AB =,然后利用比例性质求BC 与AB 的比值.【解答】解:(1)如图,AM 、CN 为所作;(2)AM 、BN 为ABC ∆的高, 1122ABC S AM BC CN AB ∆∴==, ∴3162BC CN AB AM ===. 【点评】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了三角形面积公式.18.(6分)如图所示的“钻石”型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你分别在甲、乙、丙三个图中涂黑一个小三角形,使它与阴影部分合起来所构成的图形是一个轴对称图形.【分析】根据轴对称的性质进行作图即可. 【解答】解:如图所示:.【点评】本题主要考查了利用轴对称设计图案以及等边三角形的性质,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.19.(8分)如图,//AC EF ,AC EF =,点A 、D 、B 、F 在同一条直线上,AD FB =,试说明:ABC FDE ∆≅∆.【分析】先利用平行线的性质得到A F ∠=∠,再由AD FB =得到AB FD =,然后根据“SAS ”可判断ABC FDE ∆≅∆. 【解答】证明://AC EF ,A F ∴∠=∠, AD FB =,AD BD BD FB ∴+=+,即AB FD =, 在ABC ∆和FDE ∆中 AB FD A F AC FE =⎧⎪∠=∠⎨⎪=⎩, ()ABC FDE SAS ∴∆≅∆.【点评】本题考查了全等三角形的判定:灵活应用全等三角形的判定方法. 20.(9分)如图,在ABC ∆中,AD ,BE 分别是BAC ∠,ABC ∠的角平分线.(1)若70C ∠=︒,60BAC ∠=︒,则BED ∠的度数是 55︒ ;若50BED ∠=︒,则C ∠的度数是 .(2)探究BED ∠与C ∠的数量关系,并证明你的结论.【分析】(1)根据三角形的内角和得到50ABC ∠=︒,根据角平分线的定义得到1302CAD BAC ∠=∠=︒,1252DBE ABC ∠=∠=︒,根据三角形的内角和即可得到结论;(2)根据角平分线的定义和三角形的内角和即可得到结论.【解答】解:(1)70C ∠=︒,60BAC ∠=︒, 50ABC ∴∠=︒,AD ,BE 分别是BAC ∠,ABC ∠的角平分线,1302CAD BAC ∴∠=∠=︒,1252DBE ABC ∠=∠=︒,100ADB DAC C ∠=∠+∠=︒, 1801002555BED ∴∠=︒-︒-︒=︒, 50BED ∠=︒, 50ABE BAE ∴∠+∠=︒,250100ABC BAC ∴∠+∠=⨯︒=︒, 80C ∴∠=︒;故答案为:55︒,80︒; (2)AD ,BE 分别是BAC ∠,ABC ∠的角平分线,12ABE ABC ∴∠=∠,12BAE BAC ∠=∠,111()(180)90222BED ABE BAE ABC BAC C C ∠=∠+∠=∠+∠=︒-∠=︒-∠.【点评】本题考查了三角形的内角和,角平分线的定义,三角形的外角的性质,熟练掌握三角形的内角和是解题的关键.21.(9分)“综合与实践”学习活动准备制作一组三角形记这些三角形的三边分别为a ,b ,c ,用记号(a ,b ,)()c a b c 剟表示一个满足条件的三角形,如(2,4,4)表示边长分别为2,4,4个单位长度的一个三角形(1)若这些三角形三边的长度为大于0且小于3的整数个单位长度,请用记号写出所有满足条件的三角形;(2)如图,AD 是ABC ∆的中线,线段AB ,AC 的长度分别为2个,6个单位长度,且线段AD 的长度为整数个单位长度,过点C 作//CE AB 交AD 的延长线于点E ①求AD 的长度;②请直接用记号表示ACE ∆.【分析】(1)由三角形的三边关系即可得出结果;(2)①由平行线的性质得出ABD ECD ∠=∠,BAD CED ∠=∠,证明ABD ECD ∆≅∆,得出AD ED =,2AB CE ==,因此2AE AD =,在ACE ∆中,由三角形的三边关系得出AC CE AE AC CE -<<+,得出24AD <<,由题意即可得出结果;②26AE AD ==,2CE =,6AC =,用记号表示ACE ∆为(2,6,6). 【解答】解:(1)由三角形的三边关系得:所有满足条件的三角形为(1,1,1),(1,2,2),(2,2,2); (2)①//CE AB ,ABD ECD ∴∠=∠,BAD CED ∠=∠,AD 是ABC ∆的中线,BD CD ∴=,在ABD ∆和ECD ∆中,ABD ECDBAD CEDBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABD ECD AAS ∴∆≅∆,AD ED ∴=,2AB CE ==, 2AE AD ∴=,在ACE ∆中,AC CE AE AC CE -<<+, 62262AD ∴-<<+,24AD ∴<<,线段AD 的长度为整数个单位长度, 3AD ∴=;②26AE AD ==,用记号表示ACE ∆为(2,6,6).【点评】本题考查了全等三角形的判定与性质、三角形的三边关系等知识;熟练掌握三角形的三边关系,证明三角形全等是解题的关键.22.(10分)如图,ABC∆外作等边三角形ACD,∠=︒,以AC为边在ABCACB∆中,90过点D作AC的垂线,垂足为F,与AB相交于点E,连接CE.(1)说明:AE CE BE==;(2)若D A AB⊥,6+最小,并BC=,P是直线DE上的一点,则当P在何处时,PB PC求出此时PB PC+的值.【分析】(1)首先证明EA EC=,再证明EC EB=即可解决问题.(2)当PB PC+最小,即P,B,A共线时最小,推出当点P与+最小时,也就是PB PA点E共点时,PB PC+的值最小,最小值为12.【解答】解:(1)ADC⊥,∆是等边三角形,DF AC∴垂直平分线段AC,DF∴=,AE EC∴∠=∠,ACE CAE90∠=︒,ACB∴∠+∠=︒=∠+∠=︒,9090ACE BCE CAE B∴∠=∠,BCE BCE EB∴=,∴==.AE CE BE(2)连接PA,PB,PC.⊥,DA ABDAC∠=︒,∴∠=︒,60DAB90∴∠=︒,CAB30B∴∠=︒,60∴====.6BC AE EB CE12AB ∴=, DE 垂直平分AC ,PC AP ∴=,PC PB PA ∴=+,∴当PB PC +最小时,也就是PB PA +最小,即P ,B ,A 共线时最小,∴当点P 与点E 共点时,PB PC +的值最小,最小值为12.【点评】本题考查轴对称-最短问题,等腰三角形的判定和性质,解题的关键是学会用转化的思想思考问题,属于中考常考题型.23.(10分)已知:在ABC ∆中,90ACB ∠=︒,点P 是线段AC 上一点,过点A 作AB 的垂线,交BP 的延长线于点M ,MN AC ⊥于点N ,PQ AB ⊥于点Q ,AQ MN =. 求证:(1)APM ∆是等腰三角形;(2)PC AN =.【分析】(1)要点是确定一对全等三角形AQP MNA ∆≅∆,得到AP AM =;(2)利用(1)中的全等三角形的性质得到AN PQ =;然后推出BP 为角平分线,利用角平分线的性质得到PC PQ =;从而得到PC AN =.【解答】证明:(1)BA AM ⊥,MN AC ⊥,90BAM ANM ∴∠=∠=︒,90PAQ MAN MAN AMN ∴∠+∠=∠+∠=︒,PAQ AMN ∴∠=∠,PQ AB ⊥ M N A C⊥, 90PQA ANM ∴∠=∠=︒,∴在PQA ∆与ANM ∆中,PAQ AMN AQ MN AQP ANM ∠=∠⎧⎪=⎨⎪∠=∠⎩,()PQA ANM ASA ∴∆≅∆AP AM ∴=,APM ∴∆是等腰三角形;(2)由(1)知,PQA ANM ∆≅∆,AN PQ ∴= A M A P=, AMB APM ∴∠=∠APM BPC ∠=∠,90BPC PBC ∠+∠=︒,90AMB ABM ∠+∠=︒ABM PBC ∴∠=∠PQ AB ⊥,PC BC ⊥PQ PC ∴=(角平分线的性质), PC AN ∴=.【点评】本题是考查了等腰三角形的判定和性质,全等三角形的判定与性质、角平分线性质等重要知识点.解题时,需要认真分析题意,以图形的全等为主线寻找解题思路.24.(12分)已知,在平面直角坐标系中,(,0)A m 、(0,)B n ,m 、n 满足2()|2|0m n m -+=.C 为AB 的中点,P 是线段AB 上一动点,D 是x 轴正半轴上一点,且PO PD =,DE AB ⊥于E .(1)求OAB ∠的度数;(2)设4AB =,当点P 运动时,PE 的值是否变化?若变化,说明理由;若不变,请求PE 的值;(3)设4AB =,若45OPD ∠=︒,求点D 的坐标.【分析】(1)根据非负数的性质分别求出m 、n ,根据等腰直角三角形的性质求出OAB ∠的度数;(2)根据等腰直角三角形的性质得到45AOC BOC ∠=∠=︒,OC AB ⊥,证明POC DPE ∆≅∆,根据全等三角形的性质得到OC PE =,得到答案;(3)证明POB DPA ∆≅∆,得到PA OB ==DA PB =,根据坐标与图形性质解答即可.【解答】解:(1)根据题意得:00m n m -=⎧⎪⎨-=⎪⎩,解得,m n ==,OA OB ∴=,90AOB ∠=︒,AOB ∴∆为等腰直角三角形,45OAB ∴∠=︒;(2)PE 的值不变.理由如下:AOB ∆为等腰直角三角形,AC BC =,45AOC BOC ∴∠=∠=︒,OC AB ⊥,PO PD =,POD PDO ∴∠=∠, D 是x 轴正半轴上一点,∴点P 在BC 上,45POD POC ∠=︒+∠,45PDO DPE ∠=︒+∠,POC DPE ∴∠=∠,在POC ∆和DPE ∆中,POC DPE OCP PED PO PD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()POC DPE AAS ∴∆≅∆,OC PE ∴=,122OC AB ==, 2PE ∴=;(3)OP PD =,1804567.52POD PDO ︒-︒∴∠=∠==︒, 22.5APD PDO A ∴∠=∠-∠=︒,9022.5BOP POD ∠=︒-∠=︒,APD BOP ∴∠=∠,在POB ∆和DPA ∆中,OB OA BOP APD OP PD =⎧⎪∠=∠⎨⎪=⎩,()POB DPA SAS ∴∆≅∆,PA OB ∴==,DA PB =,4DA PB ∴==-,(44OD OA DA ∴=-=-=,∴点D的坐标为4,0).【点评】本题考查的是全等三角形的判定和性质、等腰直角三角形的性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.。
2019~2020学年度八年级数学上册期中试卷及答案
2019~2020学年度第一学期期中考试八年级数学试题(考试时间∶120分钟 试卷总分∶150分 )第Ⅰ卷 (本卷满分100分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.现有长度为4cm 和7cm 的两根小棒,请你再找一根小棒,并以这三根小棒为边围成一个三角形,则下列长度的小棒可选的是A .2cmB .3cmC .5cmD .12cm 2.下列多边形中,对角线是5条的多边形是A .四边形B .五边形C .六边形D .七边形 3.下列运算中,正确的是 A .236a a a ⋅=B .()325a a = C .()3326a a =D .()23a a a -⋅=4.图中两个三角形全等,则1∠等于A .40︒B .50︒C .60︒D .80︒第4题图 第5题图5.如图,AD 是ABC ∆的高,AD 也是ABC ∆的中线,则下列结论不一定成立.....的是 A .AB =AC B .AD =BC C .B C ∠=∠ D .BAD CAD ∠=∠ 6.如图,已知A ,D ,B ,E 在同一条直线上,且AD =BE ,AC =DF ,补充下列其中一个条件后,不一定...能得到△ABC ≌△DEF 的是A .BC EF =B .AC ∥DF C .C F ∠=∠D .BAC EDF ∠=∠DCBA1656560°80°FEDC BA第6题图7.下列条件中能判断△ABC 为直角三角形的是A .ABC ∠+∠=∠ B .A B C ∠=∠=∠ C .90A B ∠-∠=︒D .23A B C ∠=∠=∠ 8.若x 2+kx +4是一个完全平方式,则k 的值是A .4B .4±C .8D .8±9.计算210011004996-⨯=A .2017-B .2017C .2019-D .201910.如图1,将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若该纸盒的容积为24a b ,则图2中纸盒底部长方形的周长为 A .4ab B .8ab C .4a b + D .82a b +二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答题卷指定的位置. 11.计算:()21233a a a -÷= .12.一个多边形的内角和比它的外角和多180°,则这个多边形的边数是 .第13题图 第14题图 第15题图13.如图,已知B 处在A 处的南偏西44°方向,C 处在A 处的正南方向,B 处在C 处的南偏西80°方向,则ABC ∠的度数为 .14.如图,点E ,F 分别是四边形AB ,AD 上的点,已知△EBC ≌△DFC ,且80A ∠=︒,则B C F∠的度数是 .15.如图,△ABC 的边BC 上有一点D ,取AD 的中点E ,连接BE ,CE ,如果△ABC 的面积为2,则图中阴影部分的面积为 .图2图1第10题图16.如图,边长为n 的正方形纸片剪出一个边长为3n -的正方形之后,剩余部分可剪拼成一个长方形,若该长方形一边的长为3,则另一边的长为 .三、解答题(共5小题.第17至20题,每小题10分,第21题12分,共52分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形. 17.(本题10分)(1)计算:()()2341a a a a --÷;(2)解不等式:()()()()2311x x x x +->+-.18.(本题10分)如图,BD 是△ABC 的角平分线,AE ⊥BD 交BD 的延长线于点E ,72ABC ∠=︒,C ∠:ADB ∠=2:3,求∠BAC 和∠DAE 的度数.19.(本题10分)已知5xy =,()216x y -=,求22x y +和x y +的值.20.(本题10分)如图,点B 为AC 上一点,AD ∥CE ,ADB CBE ∠=∠,BD =EB . 求证:(1)△ABD ≌△CEB ;(2)AC= AD+CE .nn -33第16题图EDCBA第18题图EDCBA已知等腰三角形的周长是13. (1)如果腰长是底边长的45,求底边的长; (2)若该三角形其中两边的长为3x 和25x +,求底边的长.第Ⅱ卷(本卷满分50分)四、填空题(共4小题,每小题4分,共16分)下列各题不需要写出解答过程,请将结果直接填在答题卷指定的位置.22.已知2n a =,3n b =,n 是正整数,则用含有a ,b 的式子表示26n 的值为 . 23.如图,四边形ABCD 中,=90A B ∠∠=︒,AB 边上有一点E ,CE 、DE 分别是BCD ∠和ADC∠的角平分线,如果△CDE 的面积是12,CD =8,那么AB 的长度为 .第23题图 第25题图24.在△ABC 中,AD 是高,AE 是角平分线,已知70ACB ∠=︒,15EAD ∠=︒,则ABC ∠的度数为 .25.如图,AB ⊥CD 于点E ,且AB CD AC ==,若点I 是△ACE 的角平分线的交点,点F 是BD 的中点.下列结论:①135AIC ∠=︒;②BD BI =;③AIC BID S S ∆∆=;④IF ⊥AC .其中正确的是 (填序号).五、解答题(共3小题.第26题10分,第27题12分,第28题12分共34分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形.EDCBA FIEDCBA如图,已知()0,A a ,(),0B b ,(),0C c 是平面直角坐标系中三点,且a ,b 满足2690a b a a -+-+=,3c <.(1)求A 、B 两点的坐标; (2)若△ABC 的面积为6.①在图中画出△ABC ;②若△ABP 与△ABC 全等,直接写出所有符合条件的P 点的坐标;(3)已知MAB ABC ∠=∠,BM AC =,若满足条件的M 点有且只有两个,直接写出此时c 的取值范围.27.(本题12分)以下关于x 的各个多项式中,a ,b ,c ,m ,n 均为常数. (1)根据计算结果填写下表:(2)已知()()223x x mx n +++既不含二次项,也不含一次项,求m n +的值.(3)多项式M 与多项式231x x -+的乘积为43223x ax bx cx +++-,则2a b c ++的值为 .第26题图已知,点(),1A t 是平面直角坐标系中第一象限的点,点B ,C 分别是y 轴负半轴和x 轴正半轴上的点,连接AB ,AC ,BC .(1)如图1,若1OB =,32OC =,且A ,B ,C 在同一条直线上,求t 的值; (2)如图2,当1t =,180ACO ACB ∠+∠=︒时,求BC OC OB +-的值;(3)如图3,点(),H m n 是AB 上一点,90A OHA ∠=∠=︒,若OB OC =,求m n +的值.图1 图2 图32019~2020学年度第一学期期中考试 八年级数学参考答案及评分标准卷I :一、选择题:1.C 2.B 3.D 4.A 5.C 6.C 7.A 8.B 9.B 10.D 二、填空题:11.41a - 12.5 13.36︒ 14.100︒ 15.1 16.23n - 三、解答题:17.(1)解:原式= 22a a a -- ……………………………… 4分= a - ……………………………… 5分(2)解:2261x x x -->- ……………………………… 4分5x <- ……………………………… 5分18.解:∵C ∠:ADB ∠=2:3∴32ADB C ∠=∠ ………………………………1分 在BCD ∆中,3122DBC ADB C C C C ∠=∠-∠=∠-∠=∠ ……… 2分∵BD 是△ABC 中的角平分线 ∴11723622ABD DBC ABC ∠=∠=∠=⨯︒=︒ ……………………… 3分 ∴223672C DBC ∠=∠=⨯︒=︒ ……………………………… 4分在ABC ∆中,18036BAC ABC ACB ∠=︒-∠-∠=︒ ……………………… 6分∵AE ⊥BD ,∴90AEB ∠=︒ ……………………… 7分∴9054BAE ABE ∠=︒-∠=︒ ……………………… 8分 ∴18DAE BAE BAC ∠=∠-∠=︒ ……………………… 10分19.解:∵()2222x y x y xy -=+-∴221625x y =+-⨯∴2226x y += ………………………………5分 又∵()2222261036x y x y xy +=++=+=∴6x y +=± ……………………………… 10分20.(1)证明:∵AD ∥CE∴A C ∠=∠ ………………………………2分 在ABD ∆和CEB ∆中A CADB CBE BD EB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABD CEB ∆≅∆ ………………………………7分 (2)证明:∵ABD CEB ∆≅∆∴AD CB =,AB CE = ………………………………9分 ∴AB CB AD CE +=+即AC= AD+CE . ………………………………10分 21.(1)解:设底边长为x ,则腰长为45x 441355x x x ++= 解得 5x = 答:底边长为5. ……………………………… 3分 (2)解:①当325x x =+,即这两边都为腰时5x =∴31513x =>(不合题意,舍去) ………………………………6分 ②当3x 为底边时∵()322513x x ++= 解得37x = ∴937x =……………………………… 9分 ③当25x +为底时∵232513x x ⋅++= 解得1x = ∴257x +=,33x =∵337+<(不合题意,舍去) ∴该等腰三角形的底边为97. ……………………………… 12分 卷II :四、填空题:22.22a b 23.6 24.40︒或100︒ 25.①③④ 五、解答题:26.解:(1)∵2690a b a a -+-+=∴()230a b a -+-= ………………2分 又∵0a b -≥,()230a -≥ ∴()230a b a -=-= ∴3a b ==即()0,3A ,()3,0B ………………4分(2)①()1,0C - ………………5分 ②()4,3或()0,1-或()3,4 ………………8分 (3)0c =或3c ≤- ………………10分 27.(1)………………3分(2)∵()()()()2222369x x mx n x x x mx n+++=++++∴二次项系数为:69m n ++,一次项系数为:96m n + …………5分 ∵该多项式不含二次项和一次项∴690960m n m n ++=⎧⎨+=⎩ ………………7分 解得:23m n =-⎧⎨=⎩∴1m n += ………………9分 (3)4- ………………12分28.(1)解:作AH ⊥x 轴于H ,则90AHC BOC ∠=∠=︒,1AH BO ==在AHC ∆和BOC ∆中ACH BCO AHC BOC AH BO ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AHC BOC ∆≅∆ ………………………………2分∴32HC OC ==∴3t = (3)(2)作AM ⊥y 轴,AN ⊥x 轴,AH ⊥BC ,垂足分别是M ,N ,H ,则1AM AN OM ON ====∵180ACO ACB ACB ACH ∠+∠=︒=∠+∠∴ACO ACH ∠=∠∴AN AH AM == ……………………4分 可证ABM ABH ∆≅∆,得BM BH = …………5分 可证AHC ANC ∆≅∆,得CN CH = …………6分∴BC OC OB BC ON CN OB BC CH OB ON +-=++-=+-+2BH OB ON BM OB ON OM ON =-+=-+=+= ……………………7分 (3)作AQ ⊥CA 交CA 的延长线于Q ,EH ⊥y 轴于E ,AF ⊥x 轴交EH 于点F证OHB OQC ∆≅∆得OH=OQ 又∵OH ⊥AB ,OQ ⊥CA∴45OAH OAQ ∠=∠=︒ ……………………9分 再证OEH HFA ∆≅∆ ……………………11分 ∴EH FA = ∴1m n =-即1m n += ……………………12分。
湖北省荆州市2019-2020学年八年级上期中数学试卷及答案
湖北省荆州市2019-2020学年八年级(上)期中试卷数学一.细心选一选(共10小题,每小题3分,计30分)1.点P(2,﹣3)关于x轴的对称点是()A.(﹣2,3) B.(2,3)C.(﹣2,3) D.(2,﹣3)2.若三角形两边的长分别为7cm和2cm,第三边为奇数,则第三边的长为()A.3 B.5 C.7 D.93.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形4.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=35°,则∠2等于()A.35°B.45°C.55°D.65°5.如图,已知BE,CF分别为△ABC的两条高,BE和CF相交于点H,若∠BAC=50°,则∠BHC为()A.160°B.150°C.140°D.130°6.如图是一只停泊在平静水面上的小船,它的“倒影”应是图中的()A.B.C.D.7.如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()A.100°B.80°C.70°D.50°8.如图,一根直尺EF压在三角形30°的角∠BAC上,与两边AC、AB交于M、N,那么∠CME+∠BNF是()A.135°B.150°C.180°D.不能确定9.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S △ABC=7,DE=2,AB=4,则AC长是()A.4 B.3 C.6 D.510.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC 沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.40°B.35°C.30°D.25°二、用心填空题(共8个小题,每小题3分,共24分11.如图△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.12.已知如图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,则∠EAB是度.13.如图,CD=CA,EC=BC,欲证△ABC≌△DEC,则需增加条件.14.等腰三角形的边长分别为6和8,则周长为.15.如图,∠1+∠2+∠3+∠4+∠5= °.16.如图,△ABC中,BD是∠ABC的角平分线,DE∥BC交AB于E,∠A=60°,∠BDC=95°,则∠BED的度数是.17.如图是一个风筝的图案,它是轴对称图形,EF是对称轴.∠A=90°,∠AED=130°,∠C=45°,则∠BFC的度数为.18.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为.三、解答题(本大题共7小题,计66分)19.(7分)一个多边形的内角和等于它的外角和的6倍,它是几边形?20.(7分)认真观察图中的4个图中阴影部分构成的图案,请在下面图中设计出你心中最美丽的图案,使它也具备前述四个图形所具有的至少两个共同特征:21.(9分)如图,AD为∠BAC的平分线,DF⊥AC于F,∠B=90°,DE=DC,试说明:BE=CF.22.(9分)已知:如图,AB∥ED,点F、点C在AD上,AB=DE,AF=DC.求证:BC=EF.23.(10分)如图,A(﹣2,3)、B(﹣5,0)、C(﹣1,0).(1)请在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出A1、B1的坐标A1,B1;(3)若△DBC与△ABC全等,则D的坐标为.24.(12分)已知:如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,以AD为斜边在△ABC外作等腰直角三角形AED,连结BE、EC.试猜想线段BE和EC有何关系,并证明你的猜想.25.(12分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN 于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,请写出新的结论并说明理由.湖北省荆州市八年级(上)期中数学试卷参考答案与试题解析一.细心选一选(共10小题,每小题3分,计30分)1.点P(2,﹣3)关于x轴的对称点是()A.(﹣2,3) B.(2,3)C.(﹣2,3) D.(2,﹣3)【考点】关于x轴、y轴对称的点的坐标.【分析】根据平面直角坐标系中对称点的规律解答.【解答】解:点P(2,﹣3)关于x轴的对称点坐标为:(2,3).故选:B.【点评】此题主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2.若三角形两边的长分别为7cm和2cm,第三边为奇数,则第三边的长为()A.3 B.5 C.7 D.9【考点】三角形三边关系.【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出第三边的范围,再根据第三边为奇数选择.【解答】解:∵7+2=9,7﹣2=5,∴5<第三边<9,∵第三边为奇数,∴第三边长为7.故选C.【点评】本题主要考查三角形的三边关系,熟练掌握并灵活运用是解题的关键.3.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形【考点】多边形内角与外角.【分析】此题可以利用多边形的外角和和内角和定理求解.【解答】解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.【点评】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于360°,多边形的内角和为(n ﹣2)•180°.4.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=35°,则∠2等于()A.35°B.45°C.55°D.65°【考点】平行线的性质;余角和补角.【分析】根据平行线的性质,可得∠2=∠3,又根据互为余角的定义,可得∠1+∠3=90°,解答出即可.【解答】解:如图,∵∠1+∠3=90°,∠1=35°,∴∠3=90°﹣∠1=90°﹣35°=55°,又∵直尺的两边平行,∴∠2=∠3,∴∠2=55°.故选C.【点评】本题主要考查了平行线的性质和余角,熟练掌握两直线平行,同位角相等.5.如图,已知BE,CF分别为△ABC的两条高,BE和CF相交于点H,若∠BAC=50°,则∠BHC为()A.160°B.150°C.140°D.130°【考点】三角形的外角性质.【分析】先根据直角三角形两锐角互余求出∠ABE,再根据三角形外角性质即可求出∠BHC的度数.【解答】解:∵BE为△ABC的高,∠BAC=50°,∴∠ABE=90°﹣50°=40°,∵CF为△ABC的高,∴∠BFC=90°,∴∠BHC=∠ABE+∠BFC=40°+90°=130°.故选D.【点评】本题考查直角三角形两锐角互余和三角形的一个外角等于和它不相邻的两内角的和.6.如图是一只停泊在平静水面上的小船,它的“倒影”应是图中的()A.B.C.D.【考点】镜面对称.【分析】根据镜面对称的性质求解,在平面镜中的像与现实中的事物恰好左右或上下顺序颠倒,且关于镜面对称.【解答】解:这两个图应关于水面对称,旗子的方向应该朝左,船头应该向右.故选:B.【点评】此题主要考查了镜面对称的性质,解决本题的关键是根据所给图形的特征利用轴对称得到相应图形.7.如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()A.100°B.80°C.70°D.50°【考点】三角形的外角性质;三角形内角和定理.【分析】如果延长BD交AC于E,由三角形的一个外角等于与它不相邻的两个内角的和,得∠BDC=∠DEC+∠ECD,∠DEC=∠ABE+∠BAE,所以∠BDC=∠ABE+∠BAE+∠ECD,又DA=DB=DC,根据等腰三角形等边对等角的性质得出∠ABE=∠DAB=20°,∠ECD=∠DAC=30°,进而得出结果.【解答】解:延长BD交AC于E.∵DA=DB=DC,∴∠ABE=∠DAB=20°,∠ECD=∠DAC=30°.又∵∠BAE=∠BAD+∠DAC=50°,∠BDC=∠DEC+∠ECD,∠DEC=∠ABE+∠BAE,∴∠BDC=∠ABE+∠BAE+∠ECD=20°+50°+30°=100°.故选A.【点评】本题考查三角形外角的性质及等边对等角的性质,解答的关键是沟通外角和内角的关系.8.如图,一根直尺EF压在三角形30°的角∠BAC上,与两边AC、AB交于M、N,那么∠CME+∠BNF是()A.135°B.150°C.180°D.不能确定【考点】三角形内角和定理.【分析】根据三角形内角和可以求得∠AMN+∠ANM的度数,然后根据对顶角相等,从而可以求得∠CME+∠BNF的度数.【解答】解:∵∠A+∠AMN+∠ANM=180°,∠A=30°,∴∠AMN+∠ANM=180°﹣∠A=180°﹣30°=150°,∵∠AMN=∠CME,∠ANM=∠BNF,∴∠AMN+∠ANM=150°,故选B.【点评】本题考查三角形内角和定理、对顶角的性质,解题的关键是明确三角形内角和,利用数形结合的思想解答.9.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S △ABC=7,DE=2,AB=4,则AC长是()A.4 B.3 C.6 D.5【考点】角平分线的性质;三角形的面积.【分析】首先由角平分线的性质可知DF=DE=2,然后由S△ABC =S△ABD+S△ACD及三角形的面积公式得出结果.【解答】解:∵AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F,∴DF=DE=2.又∵S△ABC =S△ABD+S△ACD,AB=4,∴7=×4×2×AC×2,∴AC=3.故选B.【点评】本题主要考查了角平分线的性质;利用三角形的面积求线段的大小是一种很好的方法,要注意掌握应用.10.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC 沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.40°B.35°C.30°D.25°【考点】三角形内角和定理;翻折变换(折叠问题).【分析】先根据三角形内角和定理求出∠B的度数,再由图形翻折变换的性质得出∠CB′D的度数,再由三角形外角的性质即可得出结论.【解答】解:∵在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠B=90°﹣25°=65°,∵△CDB′由△CDB反折而成,∴∠CB′D=∠B=65°,∵∠CB′D是△AB′D的外角,∴∠ADB′=∠CB′D﹣∠A=65°﹣25°=40°.故选:A.【点评】本题考查的是图形的翻折变换及三角形外角的性质,熟知图形反折不变性的性质是解答此题的关键.二、用心填空题(共8个小题,每小题3分,共24分11.如图△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是5 .【考点】角平分线的性质;勾股定理.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,再利用三角形的面积公式列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=2,∴△ABD的面积=AB•DE=×5×2=5.故答案为:5.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并求出AB边上的高是解题的关键.12.已知如图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,则∠EAB是35 度.【考点】角平分线的性质.【分析】过点E作EF⊥AD,证明△ABE≌△AFE,再求得∠CDE=90°﹣35°=55°,进而得到∠CDA和∠DAB的度数,即可求得∠EAB的度数.【解答】解:过点E作EF⊥AD,∵DE平分∠ADC,且E是BC的中点,∴CE=EB=EF,又∵∠B=90°,且AE=AE,∴△ABE≌△AFE,∴∠EAB=∠EAF.又∵∠CED=35°,∠C=90°,∴∠CDE=90°﹣35°=55°,∴∠CDA=110°,∵∠B=∠C=90°,∴DC∥AB,∴∠CDA+∠DAB=180°,∴∠DAB=70°,∴∠EAB=35°.故答案为:35.【点评】本题考查了角平分线的性质,解答此题的关键是根据题意作出辅助线EF⊥AD,构造出全等三角形,再由全等三角形的性质解答.13.如图,CD=CA,EC=BC,欲证△ABC≌△DEC,则需增加条件DE=AB .【考点】全等三角形的判定.【分析】此题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.【解答】解:DE=AB,理由是:∵在△ABC和△DEC中∴△ABC≌△DEC(SSS),故答案为:DE=AB.【点评】本题考查了全等三角形的判定定理的应用,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.14.等腰三角形的边长分别为6和8,则周长为20或22 .【考点】等腰三角形的性质;三角形三边关系.【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【解答】:①6是腰长时,三角形的三边分别为6、6、8,能组成三角形,周长=6+6+8=20,②6是底边长时,三角形的三边分别为6、8、8,能组成三角形,周长=6+8+8=22,综上所述,这个等腰三角形的周长是20或22.故答案为:20或22.【点评】本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.15.如图,∠1+∠2+∠3+∠4+∠5= 540 °.【考点】多边形内角与外角.【分析】连接∠2和∠5,∠3和∠5的顶点,可得三个三角形,根据三角形的内角和定理即可求出答案.【解答】解:连接∠2和∠5,∠3和∠5的顶点,可得三个三角形,根据三角形的内角和定理,∠1+∠2+∠3+∠4+∠5=540°.故答案为540.【点评】本题主要考查三角形的内角和为180°定理,需作辅助线,比较简单.16.如图,△ABC中,BD是∠ABC的角平分线,DE∥BC交AB于E,∠A=60°,∠BDC=95°,则∠BED的度数是110°.【考点】平行线的性质;三角形内角和定理.【分析】由三角形的外角性质得出∠ABD=35°,由角平分线的定义求出∠ABC=2∠ABD=70°,再由平行线的性质得出同旁内角互补∠BED+∠ABC=180°,即可得出结果.【解答】解:∵∠BDC=∠A+∠ABD,∴∠ABD=95°﹣60°=35°,∵BD是∠ABC的角平分线,∴∠ABC=2∠ABD=70°,∵DE∥BC,∴∠BED+∠ABC=180°,∴∠BED=180°﹣70°=110°.故答案为:110°.【点评】本题考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质,运用三角形的外角性质求出∠ABD的度数是解决问题的关键.17.如图是一个风筝的图案,它是轴对称图形,EF是对称轴.∠A=90°,∠AED=130°,∠C=45°,则∠BFC的度数为140°.【考点】轴对称图形.【分析】利用轴对称图形的性质结合四边形内角和定理得出答案.【解答】解:∵一个风筝的图案,它是轴对称图形,EF是对称轴.∠A=90°,∠A ED=130°,∠C=45°,∴∠D=90°,∠MED=65°,∴∠DEF=115°,∴∠CFN=360°﹣115°﹣90°﹣45°=110°∴∠BFC的度数为:2(180°﹣110°)=140°.故答案为:140°.【点评】此题主要考查了轴对称图形的性质以及四边形内角和定理,熟练应用轴对称图形的性质是解题关键.18.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为6 .【考点】线段垂直平分线的性质.【分析】运用线段垂直平分线定理可得BE=CE,再根据已知条件“△EDC的周长为24,△ABC与四边形AEDC的周长之差为12”表示出线段之间的数量关系,联立关系式后求解.【解答】解:∵DE是BC边上的垂直平分线,∴BE=CE.∵△EDC的周长为24,∴ED+DC+EC=24,①∵△ABC与四边形AEDC的周长之差为12,∴(AB+AC+BC)﹣(AE+ED+DC+AC)=(AB+AC+BC)﹣(AE+DC+AC)﹣DE=12,∴BE+BD﹣DE=12,②∵BE=CE,BD=DC,∴①﹣②得,DE=6.故答案为:6.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.三、解答题(本大题共7小题,计66分)19.一个多边形的内角和等于它的外角和的6倍,它是几边形?【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°与外角和等于360°列出方程,然后求解即可.【解答】解:设多边形的边数是n,根据题意得,(n﹣2)•180°=6×360°,解得n=14.故答案为:它是十四边形.【点评】本题考查了多边形的内角和公式与外角和定理,任何多边形的外角和都等于360°,与边数无关.20.认真观察图中的4个图中阴影部分构成的图案,请在下面图中设计出你心中最美丽的图案,使它也具备前述四个图形所具有的至少两个共同特征:【考点】利用轴对称设计图案.【分析】由所给图形可知图形都为轴对称图形,且面积都相等,据此可画出图形.【解答】解:由题目所给图形可知:都是轴对称图形,且阴影部分的面积都相等(4个单位面积),如图所示.【点评】本题主要考查了利用轴对称设计图案,解答本题需要我们熟练掌握轴对称的定义,较容易.21.如图,AD为∠BAC的平分线,DF⊥AC于F,∠B=90°,DE=DC,试说明:BE=CF.【考点】角平分线的性质.【分析】先由角平分线的性质就可以得出DB=DF,再证明△BDE≌△FDC就可以求出结论.【解答】解:∵∠B=90°,∴BD⊥AB.∵AD为∠BAC的平分线,且DF⊥AC,∴DB=DF.在Rt△BDE和Rt△FDC中,,∴Rt△BDE≌Rt△FDC(HL),∴BE=CF.【点评】本题考查了角平分线的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.22.已知:如图,AB∥ED,点F、点C在AD上,AB=DE,AF=DC.求证:BC=EF.【考点】全等三角形的判定与性质.【分析】由已知AB∥ED,AF=DC可以得出∠A=∠D,AC=DF,又因为AB=DE,则我们可以运用SAS来判定△ABC≌△DEF,根据全等三角形的对应边相等即可得出BC=EF.【解答】证明:∵AB∥ED,∴∠A=∠D,又∵AF=DC,∴AC=DF.在△ABC与△DEF中,∴△ABC≌△DEF.∴BC=EF.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.23.(10分)(2016秋•监利县校级期中)如图,A(﹣2,3)、B(﹣5,0)、C(﹣1,0).(1)请在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出A1、B1的坐标A1(2,3),B1(5,0);(3)若△DBC与△ABC全等,则D的坐标为(﹣4,3)或(﹣2,﹣3)或(﹣4,﹣3).【考点】作图﹣轴对称变换;全等三角形的判定.【分析】(1)分别作出各点关于y轴的对称点,再顺次连接即可;(2)根据各点在坐标系中的位置写出其坐标即可;(3)根据全等三角形的性质即可得出D点坐标.【解答】解:(1)如图,△A1B1C1即为所求;(2)由图可知,A1(2,3),B1(5,0).故答案为:(2,3),(5,0);(3)如图,D点坐标为:(﹣4,3)或(﹣2,﹣3)或(﹣4,﹣3).故答案为:(﹣4,3)或(﹣2,﹣3)或(﹣4,﹣3).【点评】本题考查的是作图﹣轴对称变换,熟知关于y轴对称的点的坐标特点是解答此题的关键.24.(12分)(2016秋•监利县校级期中)已知:如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,以AD为斜边在△ABC外作等腰直角三角形AED,连结BE、EC.试猜想线段BE和EC有何关系,并证明你的猜想.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】由条件可求得AB=CD、DE=AE,且∠BAE=∠EDC=135°,可证明△ABE≌△DCE,再利用∠AEB=∠DEC,可证得BE⊥CE.【解答】解:猜想:BE=CE,BE⊥CE.证明如下:∵AC=2AB,D是AC的中点,∴CD=AB,∵△AED为等腰直角三角形,∴AE=DE,且∠EAD=∠EDA=45°,∴∠BAE=∠CDE=135°,在△ABE和△DCE中∴△ABE≌△DCE(SAS),∴BE=CE,∠AEB=∠DEC,∴∠BED+∠DEC=∠AEB+∠BED=∠AED=90°,∴BE⊥CE,即BE和CE的关系为相等且垂直.【点评】本题主要考查全等三角形的判定和性质及等腰直角三角形的判定和性质,由条件证得△ABE≌△DCE是解题的关键,注意利用等腰直角三角形的性质.25.(12分)(2016秋•监利县校级期中)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,请写出新的结论并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)首先证明∠DAC=∠BCE,进而利用AAS定理证明△DAC≌△ECB,问题即可解决.(2)首先证明∠DAC=∠BCE,进而利用HL定理证明△ACD≌△CBE,问题即可解决.【解答】解:(1)如图1,∵∠ACB=90°,AD⊥MN于D,BE⊥MN于E,∴∠DAC+∠DCA=∠BCE+∠DCA,∴∠DAC=∠BCE;在△DAC与△ECB中,∵,∴△DAC≌△ECB(AAS),∴AD=CE,DC=BE,∴DE=AD+BE.(2)如图2,(1)中的结论不成立;新的结论为:DE=AC﹣BE;∵∠ACB=90°,AD⊥MN,∴∠DAC+∠ACD=∠ACD+∠BCE,∴∠DAC=∠BCE;在△ACD与△CBE中,∵,∴△ACD≌△CBE(AAS),∴AC=CE,CD=BE,∴DE=CE﹣CD=AC﹣BE;即DE=AC﹣BE.【点评】该命题在考查全等三角形的判定及其性质定理的同时,还渗透了对旋转变换的考查;解题的关键是灵活运用全等三角形的判定定理解题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14. 已知△ABC的三边分别是6,8,10,△DEF的三边分别是6,6x-4,4x+2,若两个三角形全等,则x的值为________.
15. 如图,在
中,CM平分
交AB于点M,过点M作
交AC于点N,且MN平分
,若
,则∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M 、N为圆心,大于 MN的长半径画弧,两弧交于点P,作射线AP,交边BC于点D,若CD=4,AB=15,则△ABD的面积 是________.
求证:
(1) △APM是等腰三角形; (2) PC=AN. 24. 已知,在平面直角坐标系中,A(m,0)、B(0,n),m、n满足(m-n)2+|m上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.
|=0.C为AB的中点,P是线段AB
(1) 求∠OAB的度数; (2) 设AB=4,当点P运动时,PE的值是否变化?若变化,说明理由;若不变,请求PE的值; (3) 设AB=4,若∠OPD=45°,求点D的坐标. 参考答案 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.
21. “综合与实践”学习活动准备制作一组三角形,记这些三角形分别为
,用记号
表示一个满足
条件的三角形,如(2,4,4)表示边长分别为2,4,4个单位长度的一个三角形.
(1) 若这些三角形三边的长度为大于0且小于3的整数个单位长度,请用记号写出所有满足条件的三角形;
(2) 如图, 是
的中线,线段
的长度分别为2个,6个单位长度,且线段 的长度为整数个单位
19. 如图,已知AC=FE,BC=DE,点A,D,B,F在一条直线上,AB=FD,证明△ABC≌△FDE. 20. 如图,在△ABC中,AD,BE分别是∠BAC,∠ABC的角平分线.
(1) 若∠C=70°,∠BAC=60°,则∠BED的度数是;若∠BED=50°,则∠C的度数是.
(2) 探究∠BED与∠C的数量关系,并证明你的结论.
湖北省荆州市松滋市2019-2020学年八年级上学期数学期中考试试卷
一、单选题
1. 在下图中,是轴对称图形的是( )
A.
B.
C.
D.
2. 已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为( )
A . 40° B . 100° C . 40°或100° D . 70°或50° 3. 在平面直角坐标系中,点P(3,5)关于 轴对称的点的坐标是( ) A . (3,5) B . (3,-5) C . (-3,5) D . (-3,-5) 4. 如图,在△ABC 中,∠BAC=72°,∠C=36°,∠BAC 的平分线 AD 交 BC 于 D, 则图中有等腰三角形( )
A . a+c B . b+c C . a﹣b+c D . a+b﹣c 10. 如图所示,三角形ABC的面积为1cm2 . AP垂直∠B的平分线BP于P.则与三角形PBC的面积相等的长方形是( )
A.
B.
C.
D.
二、填空题
11. 若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=________. 12. 如果等腰三角形的两边长分别是4、8,那么它的周长是________. 13. 如图,已知点A(a,b),0是原点,OA=OA1 , OA⊥OA1 , 则点A1的坐标是________.
A. 0 个 B . 1 个 C . 2 个 D . 3 个
5. 如图,在△ABC中,BC的垂直平分线分别交AC , BC于点D , E . 若△ABC的周长为22,BE=4,则△ABD的
周长为( )
A . 14 B . 18 C . 20 D . 26 6. 如图,在△ABC中,∠C=40°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1-∠2的度数是( )
长度,过点 作
交 的延长线于点 .
①求 的长度;
②请直接用记号表示
.
22. 如图,△ABC中,∠ACB=90°,以AC为边在△ABC外作等边三角形ACD,过点D作AC的垂线,垂足为F,与AB 相交于点E,连接CE.
(1) 证明:AE=CE=BE; (2) 若DA⊥AB,BC=6,P是直线DE上的一点.则当P在何处时,PB+PC最小,并求出此时PB+PC的值. 23. 已知:在△ABC中,∠ACB=90°,点P是线段AC上一点,过点A作AB的垂线,交BP的延长线于点M,MN⊥AC于 点N,PQ⊥AB于点Q,AQ=MN.
三、解答题
17. 如图,在钝角△ABC中.
(1) 作钝角△ABC的高AM,CN; (2) 若CN=3,AM=6,求BC与AB之比. 18. 如图所示的“钻石”型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分 表示),请你分别在甲、乙、丙三个图中涂黑一个小三角形,使它与阴影部分合起来所构成的图形是一个轴对称图形.
A . 40° B . 80° C . 90° D . 140° 7. 如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为( )
A . 180° B . 270° C . 360° D . 720°
8. 已知如图:△ABC中,AB=AC , BE=CD , BD=CF , 则∠EDF=( )
A . 2∠A B . 90°﹣2∠A C . 90°﹣∠A D . 90°﹣ ∠A 9. 如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为( )
12. 13. 14. 15. 16. 17.
18.
19. 20.
21.
22. 23.
24.