人教版九年级数学上册专题训练(八) 巧用旋转进行计算与证明
巧用旋转法解几何题资料讲解
巧用旋转法解几何题将一个图形绕着某一点旋转一个角度的图形变换叫做旋转,由旋转的性质可知旋转前后的图形全等,对应点到旋转中心的连线所组成的夹角等于旋转角。
旋转法是在图形具有公共端点的相等的线段特征时,可以把图形的某部分绕相等的线段的公共端点,旋转另一位置的引辅助线的方法,主要用途是把分散的元素通过旋转集中起来,从而为证题创造必要的条件。
旋转方法常用于等腰三角形、等边三角形及正方形等图形中。
现就旋转法在几何证题中的应用举例加以说明,供同学们参考。
例1.如图,在Rt△ABC中,∠C=90°,D是AB的中点,E,F分别AC和BC上,且DE⊥DF,求证:EF2=AE2+BF2分析:从所证的结论来看,令人联想到勾股定理,但注意到EF,AE,BF三条线段不在同一个三角形中,由于D是中点,我们可以考虑以D为旋转中心,将BF旋转到和AE相邻的位置,构造一个直角三角形,问题便迎刃而解。
证明:延长FD到G,使DG=DF,连接AG,EG∵AD=DB,∠ADG=∠BDF∴⊿ADG≌⊿BDF(SAS)∴∠DAG=∠DBF,BF=AG∴AG∥BC∵∠C=90°∴∠EAG=90°∴EG2=AE2+AG2=AE2+BF2∵DE⊥DF∴EG=EF∴EF2=AE2+BF2例2,如图2,在⊿ABC中,∠ACB=90°,AC=BC,P是⊿ABC内一点,且PA=3,PB=1,PC=2,求∠BPC的度数.分析:题目已知条件中给出了三条线段的长度和一个直角,但已知的三条线段不在同一三角形中,故可考虑通过旋转变换移至一个三角形中,由于⊿ACB是等腰直角三角形,宜以直角顶点C为旋转中心。
解:作MC⊥CP,使MC=CP,连接PM,BM∵∠ACB=90°,∠PCM=90°∴∠1=∠2∵AC=BC , ∴⊿CAP ≌⊿CBM (SAS )∴MB=AP=3∵PC=MC ,∠PCM=90°∴∠MPC=45°由勾股定理PM==22MC PC =22PC =22, 在⊿MPB 中,PB 2+PM 2=(22)2+12=9=BM 2∴⊿MPB 是直角三角形∴∠BPC=∠CPM+∠MPB=45°+90°=135°例3,如图3,直角三角形ABC 中,AB=AC ,∠BAC=90°,∠EAF=45°,求证:EF 2=BE 2+CF 2分析:本题求证的结论和例1十分相似,无法直接用勾股定理,可通过旋转变换将BE ,CF 转移到同一个直角三角形中,由于⊿BAC 是等腰直角三角形,不妨以A 为旋转中心,将∠BAE 和∠CAF 合在一起,取零为整。
人教版2019秋九年级数学上册专题 10.解题技巧专题:巧用旋转进行计算
解题技巧专题:巧用旋转进行计算——体会旋转中常见解题技巧◆类型一利用旋转结合等腰(边)三角形、垂直、平行的性质求角度1.如图,在Rt△ABC中,∠BAC=90°,将△ABC 绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32°B.64°C.77°D.87°第1题图第2题图2.(2016·株洲中考)如图,在三角形ABC中,∠ACB =90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC,A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°3.如图,在梯形ABCD中,AD∥BC,将这个梯形绕点D按顺时针方向旋转,使点C落在边AD上的点C′处,点B落在点B′处,如果直线B′C′经过点C,那么旋转角等于__________度.◆类型二利用旋转结合特殊三角形的判定、性质或勾股定理求长度4.如图,△ABC为等腰直角三角形,∠ACB=90°,将△ABC绕点A逆时针旋转75°,得到△AB′C′,过点B′作B′D⊥CA,交CA的延长线于点D.若AC=6,则AD 的长为【方法13】()A.2 B.3 C.2 3 D.32第4题图第5题图5.(2016·黔西南州中考)如图,矩形ABCD绕点B 逆时针旋转30°后得到矩形A1BC1D1,C1D1与AD交于点M,延长DA交A1D1于点F.若AB=1,BC=3,则AF 的长度为()A.2- 3 B.3-13C.3-33 D.3-16.(2016·巴彦淖尔中考)如图,在Rt△ABC中,∠B =90°,AB=BC=2,将△ABC绕点C顺时针旋转60°,得到△DEC,求AE的长.◆类型三利用旋转计算面积7.如图,将正方形纸片ABCD绕着点A按逆时针方向旋转30°后得到正方形AB′C′D′.若AB=23cm,则图中阴影部分的面积为【方法13】()A.6cm2B.(12-63)cm2C.33cm2D.43cm2第7题图第8题图8.如图,在△ACB中,∠BAC=90°,AC=2,AB =3,现将△ACB绕点A逆时针旋转90°得到△AC1B1,则阴影部分的面积为________.答案:。
人教版九年级数学上册第23章 巧用旋转进行计算专项训练(包含答案)
巧用旋转进行计算类型之一利用旋转构造等腰三角形由旋转性质1:对应点到旋转中心的距离相等,可得对应点与旋转中心所构成的三角形是等腰三角形.1.如图1,在△ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到△A′B′C,若点B′恰好落在线段AB上,AC,A′B′相交于点O,则∠COA′的度数是( )图1A.50°B.60°C.70°D.80°2.如图2,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为( )图2A.90°-αB.αC.180°-αD.2α3.如图3,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C是由△ABC绕点C顺时针旋转得到的,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且点A,B′,A′在同一条直线上,则AA′的长为( )图3A.6 B.4 3 C.3 3 D.34.如图4,△COD是由△AOB绕点O顺时针旋转40°后得到的图形.若点C恰好落在AB 上,且∠AOD的度数为90°,则∠B的度数是________.图4类型之二利用旋转构造等腰直角三角形如果旋转角为90°,那么对应点与旋转中心构成的三角形是等腰直角三角形.5.如图5,将Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,连接BB′.若∠A′B′B=20°,则∠A的度数是________.图56.如图6,已知正方形ABCD的边长为3,E为CD边上一点,DE=1.把△ADE以点A为中心顺时针旋转90°,得△ABE′,连接EE′,则EE′的长等于________.图6类型之三利用旋转构造等边三角形如果旋转角是60°,那么对应点与旋转中心构成的三角形是等边三角形.7.如图7所示,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n(n<90)度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n 的大小和图中阴影部分的面积分别为( )图7A.30,2 B.60,2 C.60,32D.60, 38.如图8所示,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,将△ABC绕点C 逆时针旋转至△A′B′C的位置,使得点A′恰好落在AB上,连接BB′,则BB′的长为________.图89.如图9,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D 的对应点恰好与点A重合,得到△ACE,若AB=3,BC=4,则BD=________.图910.如图10,O是等边三角形ABC内一点,∠AOB=105°,∠BOC等于α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)求∠OAD的度数;(3)探究:当α为多少度时,△AOD是等腰三角形?图1011.如图11,在等边三角形ABC中,D为△ABC内的一点,∠ADB=120°,∠ADC=90°,将△ABD绕点A逆时针旋转60°得△ACE,连接DE.(1)求证:AD=DE;(2)求∠DCE的度数;(3)若BD=1,求AD,CD的长.图1112.请阅读下列材料:问题:如图12①,在等边三角形ABC内有一点P,且PA=2,PB=3,PC=1,求∠BPC 的度数和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图②),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,进而求出等边三角形ABC的边长为7,问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图③,在正方形ABCD内有一点P,且PA=5,PB=2,PC=1.求∠BPC的度数和正方形ABCD的边长.图121.B [解析] ∵在△ABC 中,∠ACB =90°,∠B =50°, ∴∠A =180°-∠ACB -∠B =40°. 由旋转的性质可知BC =B ′C , ∴∠B =∠BB ′C =50°.又∵∠BB ′C =∠A +∠ACB ′=40°+∠ACB ′, ∴∠ACB ′=10°,∴∠COA ′=∠OB ′C +∠ACB ′=∠B +∠ACB ′=60°.2.C [解析] 由题意可得,∠ABE =α,BE =BA ,∴∠BAE =∠E =12(180°-∠ABE)=12(180°-α)=90°-12α,∴∠BAC =90°-12α,∴∠CAD =∠BAC +∠BAE =180°-α,故选C.3.A [解析] ∵在Rt △ABC 中,∠ACB =90°,∠B =60°,∴∠CAB =30°.∵BC =2,∴AB =4.∵△A ′B ′C 由△ABC 绕点C 顺时针旋转得到的,其中点A ′与点A 是对应点,点B ′与点B 是对应点,且点A ,B ′,A ′在同一条直线上,∴AB =A ′B ′=4,AC =A ′C ,∠A ′B ′C =∠B =60°,∴∠A ′=30°.又∵AC =A ′C ,∴∠CAA ′=∠A ′=30°,∴∠ACB ′=∠A ′B ′C -∠CAA ′=60°-30°=30°,则∠ACB ′=∠B ′AC ,∴AB ′=B ′C =2,∴AA ′=2+4=6.4.60° [解析] 由旋转的性质,得∠AOC =∠BOD =40°,OA =OC ,则∠A =∠ACO =70°. 由∠AOD =90°,得∠BOC =∠AOD -(∠AOC +∠BOD)=10°.∴∠B =∠ACO -∠BOC =70°-10°=60°.5.65° [解析] ∵Rt △ABC 绕直角顶点C 顺时针旋转90°得到△A ′B ′C ,∴△BCB ′是等腰直角三角形,∴∠CBB ′=45°.∴∠B ′A ′C =∠A ′B ′B +∠CBB ′=20°+45°=65°.由旋转的性质得∠A =∠B ′A ′C =65°.6.2 5 [解析] ∵DE =1,AD =3,∠D =90°,∴AE 2=AD 2+DE 2=32+12=10. 由旋转的性质得∠EAE ′=90°,AE =AE ′,∴EE ′2=AE 2+AE ′2=10+10=20,即EE ′=2 5.7.C [解析] ∵△ABC 是直角三角形,∠ACB =90°,∠A =30°,BC =2, ∴∠B =60°,AB =2BC =4,AC =AB 2-BC 2=2 3. ∵△EDC 是由△ABC 绕点C 按顺时针方向旋转得到的, ∴CD =BC =2,∠CDE =∠B =60°. ∵∠B =60°,∴△BCD 是等边三角形,∴∠BCD =60°,∴∠DCF =30°, ∴∠DFC =90°, 即DE ⊥AC ,∴DE ∥BC. ∵BD =BC =12AB =2,∴DF 是△ABC 的中位线,∴DF =12BC =12×2=1,CF =12AC =12×2 3=3,∴S 阴影=12DF ·CF =12×1×3=32.故选C.8. 3 [解析] ∵Rt △ABC 中,∠ACB =90°,∠ABC =30°,AC =1,∴A ′C =AC =1,AB =2,BC = 3.∵∠A =60°,∴△AA ′C 是等边三角形, ∴AA ′=12AB =1,∴A ′C =A ′B ,∴∠A ′CB =∠A ′BC =30°. ∵△A ′B ′C 是由△ABC 旋转而成的, ∴∠A ′CB ′=90°,BC =B ′C , ∴∠B ′CB =90°-30°=60°,∴△BCB ′是等边三角形,∴BB ′=BC = 3. 9.5 [解析] 连接BE.∵△DCB 绕点C 顺时针旋转60°得到△ACE ,AB =3,BC =4,∠ABC =30°, ∴∠BCE =60°,CB =CE ,AE =BD , ∴△BCE 是等边三角形, ∴∠CBE =60°,BE =BC =4,∴∠ABE =∠ABC +∠CBE =30°+60°=90°,∴AE=AB2+BE2=32+42=5.又∵AE=BD,∴BD=5.10.解:(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得到△ADC,∴△BOC≌△ADC,∠OCD=60°,∴OC=CD,∴△OCD是等边三角形.(2)∵∠AOB=105°,∠BOC=α,∴∠AOC=360°-∠AOB-∠BOC=360°-105°-α.∵将△BOC绕点C按顺时针方向旋转60°得到△ADC,∴△BCO≌△ACD,∴∠ADC=∠BOC=α.∴∠OAD=360°-∠AOC-∠OCD-∠ADC=360°-(360°-105°-α)-60°-α=45°.(3)∵由(1)知△COD是等边三角形,∴∠COD=60°.由(2)知∠OAD=45°.若△AOD是等腰三角形,则分以下三种情况讨论:当OA=OD时,∠AOD=90°,α=360°-105°-60°-90°=105°;当OA=AD时,∠AOD=67.5°,α=360°-105°-60°-67.5°=127.5°;当AD=OD时,∠AOD=45°,α=360°-105°-60°-45°=150°.综上所述,当α=105°,127.5°或150°时,△AOD是等腰三角形.11.解:(1)证明:∵将△ABD绕点A逆时针旋转60°得△ACE,∴△ABD≌△ACE,∠BAC=∠DAE,∴AD=AE,BD=CE,∠AEC=∠ADB=120°.∵△ABC为等边三角形,∴∠BAC=60°,∴∠DAE=60°,∴△ADE为等边三角形,∴AD=DE.(2)∵∠ADC=90°,∠AEC=120°,∠DAE=60°,∴∠DCE=360°-∠ADC-∠AEC-∠DAE=90°.(3)∵△ADE为等边三角形,∴∠ADE=60°,∴∠CDE=∠ADC-∠ADE=30°.又∵∠DCE=90°,∴DE=2CE=2BD=2.∴AD=DE=2.在Rt△DCE中,CD=DE2-CE2=22-12= 3.12.解:将△BPC绕点B逆时针旋转90°,得△BP′A,则△BPC≌△BP′A. ∴AP′=PC=1,BP′=PB= 2.连接PP′,如图.在Rt△BP′P中,∵PB=BP′=2,∠PBP′=90°,∴PP′=2,∠BP′P=45°.在△AP′P中,AP′=1,PP′=2,PA=5,∵12+22=(5)2,即AP′2+PP′2=PA2,∴△AP′P是直角三角形,即∠AP′P=90°.∴∠AP′B=135°,∴∠BPC=∠AP′B=135°.过点B作BE⊥AP′,交AP′的延长线于点E,则△BEP′是等腰直角三角形,∴∠EP′B=45°.又∵BP′=2,∴EP′=BE=1,∴AE=2.在Rt△ABE中,∵BE=1,AE=2,∴由勾股定理,得AB= 5.综上可得,∠BPC=135°,正方形ABCD的边长为 5.。
最新部编人教版九年级数学上册基础训练旋转(讲义及答案)打印版.doc
旋转(讲义)课前预习1.平移是,只改变图形的,不改变图形的.2.平移与轴对称知识点睛1.旋转(1)旋转的定义在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为,这个定点称为,转动的角称为.旋转不改变图形的和.(2)旋转的性质对应点到旋转中心的距离;对应点与旋转中心所连线段的夹角等于;旋转前、后的图形.2.中心对称(1)中心对称的定义把一个图形绕着某一点旋转°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或,这个点叫做(简称中心).这两个图形在旋转后能重合的对应点叫做关于对称中心的., (2)中心对称的性质中心对称的两个图形,对称点所连线段都经过 ,而且被对称中心所.中心对称的两个图形是.3. 中心对称图形把一个图形绕着某一个点旋转 180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.如果一条直线经过中心对称图形的对称中心,那么这条直线将该中心对称图形分割成面积相等的两部分.4. 坐标系中的对称点(1)平面直角坐标系中,两个点关于原点对称时,它们的坐标符号相反,即点 P (x ,y )关于原点的对称点为 P ′( , ).(2)平面直角坐标系中,若两个点 A (x 1,y 1),B (x 2,y 2)关于点 C 对称,则点 C 为线段 AB 的中点,此时点 C 的坐标为 (x 1 + x 2 y 1+ y 2 ) . 2 2精讲精练1.如图,在网格纸中有一 Rt △ABC .(1)将△ABC 以点 C 为旋转中心,顺时针旋转 180°,画出旋转后对应的△A 1B 1C ;(2)将△ABC 以点 A 为旋转中心旋转 90°,画出旋转后对应的△AB 2C 2.BC2.如图,在 4×4 的正方形网格中,△MNP 绕某点旋转一定的角度得到△M 1N 1P 1,则其旋转中心可能是( ) A .点 A B .点 B C .点 C D .点 DN 1M 13.如图,△OAB 绕点 O 逆时针旋转 80°到△OCD 的位置,已知∠AOB =45°,则∠AOD = .ADE ACBOD第 3 题图 第 4 题图4. 如图,将△ABC 绕点 A 逆时针旋转一定角度,得到△ADE .若 ∠CAE =65°,∠E =70°,且 AD ⊥BC ,∠BAC 的度数为 .5.如图,在△ABC 中,∠CAB =70°.在同一平面内,将△ABC 绕点 A 旋转到△AB ′C ′的位置,使得 CC ′∥AB ,则∠BAB ′= ( ) A .30°B .35°C .40°D .50°B'C'CABDO6.如图,已知菱形 OABC 的两个顶点 O (0,0),B (2,2),若将菱形绕点 O 旋转 α°(0≤α≤360),恰好使 OB 与 x 轴正半轴重合,则 α= .7.如图,点 O 是等边三角形 ABC 内一点,∠A OB =110°,∠B OC = 145°.将△BOC 绕点 C 按顺时针方向旋转 60°得到△ADC , 连接 OD ,则∠AOD =( ) A .40° B .45° C .50° D .55°AB'B 第 7 题图 第 8 题图8.如图,将等腰 Rt △ABC 绕点 A 逆时针旋转 15°后得到△AB ′C ′, 若 AC =1,则图中阴影部分的面积为( ) A .3 3B .3 C . 6D . 3 9.下列图形:①线段;②平行四边形;③等边三角形;④等腰直角三角形;⑤菱形;⑥长方形;⑦正方形;⑧圆.其中是中心对称图形的有.10. 下列图案中,既是中心对称又是轴对称图形的个数有()A .1B .2C .3D .43311. 如图,在□ABCD 中,AC ,BD 为对角线,BC =6,BC 边上的高为 4,则图中阴影部分的面积为( ) A .3 B .6 C .12 D .2412. 如图,在平面直角坐标系中,四边形 ABCO 是正方形,点 B 的坐标为(4,4),直线 y = mx - 2 恰好把正方形 ABCO 分成面积相等的两部分,则 m 的值为.第 12 题图 第 13 题图13. 如图,在平面直角坐标系中,已知多边形 OABCDE 的顶点坐标分别是 O (0,0),A (0,6),B (4,6),C (4,4),D (6,4), E (6,0).若直线 l 经过点 M (2,3),且将多边形 OABCDE 分成面积相等的两部分,则下列各点在直线 l 上的是( )A .(4,3)B .(5,2)C .(6,2)D .(0, 10)314. 已知点 A (2a -3b ,-1)与 B (-2,3a -2b )关于坐标原点对称,则5a -b = .15. 在同一平面直角坐标系中,点 A ,B 分别是函数 y =x -1 与 y =-3x +5 的图象上的点,且点 A ,B 关于原点对称,则点 A 的横坐标为 .16.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)将△ABC 绕着点O按顺时针方向旋转90°得到△A1B1C1,写出A1,B1 的坐标;(2)若△ABC 和△A2B2C2 关于原点O 中心对称,画出对应图形,并写出△A2B2C2 各顶点坐标;(3)若△ABC 和△A3B3C3 关于点D(1,0)中心对称,画出对应图形,并写出△A3B3C3 各顶点坐标.【参考答案】课前预习1.全等变换;位置;形状和大小.2.平行四边形;垂直平分.知识点睛1.(1)旋转;旋转中心;旋转角;形状;大小.(2)相等;旋转角;全等.2.(1)180;中心对称;对称中心;对称点.(2)对称中心;平分;全等图形.4. -x;-y精讲精练1.略2. B3. 35°4. 85°5. C6. 45°7. B8. B9. ①②⑤⑥⑦⑧10.B11.C12. 213.B114.515. -116. (1)A1(5,3),B1(1,2)(2)A2(3,-5),B2(2,–1),C2(1,–3)A3(5,–5),B3(4,–1),C3(3,–3)赠送相关资料考试答题的技巧拿到试卷之后,可以总体上浏览一下,根据以前积累的考试经验,大致估计一下试卷中每部分应该分配的时间。
专题(九) 利用旋转证明或计算课件(人教版)
解:(1)∠ABD=30°-α2 (2)△ABE 是等边三角形.证明:连 接 AD,CD,∠DBC=60°,BD=BC,∴△BDC 是等边三角 形,∠BDC=60°,BD=DC,又∵AB=AC,AD=AD,∴△ ABD≌△ACD,∴∠ADB=∠ADC,∴∠ADB=150°,∵∠ ABE=∠DBC=60°,∴∠ABD=∠EBC,又∵BD=BC,∠ADB =∠ECB=150°,∴△ABD≌△EBC,∴AB=EB,∴△ABE 是等边三角形 (3)∵BDC 是等边三角形,∴∠BCD=60°,∴ ∠DCE=∠BCE-∠BCD=90°,又∵∠DEC=45°,∴CE= CD=BC,∴∠EBC=15°.∵∠EBC=∠ABD=30°-α2,∴α =30°
解:(1)由旋转可知,AB=AF,∠BAM=∠FAN,∠B=∠F= 60°,∴△ABM≌△AFN(ASA),∴AM=AN (2)当旋转角α= 30°时,四边形ABPF是菱形.理由:连接AP,∵∠α=30°, ∴∠FAN=30°,∴∠FAB=120°,∵∠B=60°,∴AF∥BP, ∴∠F=∠FPC=60°,∴∠FPC=∠B=60°,∴AB∥FP,∴四 边形ABPF是平行四边形,∵AB=AF,∴平行四边形ABPF是 菱形
2.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段 BC绕点B逆时针旋转60°得到线段BD. (1)如图①,直接写出∠ABD的大小;(用含α的式子表示) (2)如图②,∠BCE=150°,∠ABE=60°,判断△ABE的形状 并加以证明; (3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.
4.(1)如图①,△ABC 中,BA=BC,D,E 是 AC 边上的两
点,且满足∠DBE=1∠ABC(0°<∠CBE<1∠ABC).以点 B
九年级数学上册 第二十三章 旋转 专题训练(八)巧用旋转进行计算与证明
(2)∵∠ACB=90°,AC=BC,∴∠A=45°, 由(1)得△ACD≌△BCE,∴AD=BE,∠CBE=∠A=45°, 又∵AD=BF,∴BE=BF,∴∠BEF=∠BFE=180°- 2 45° =67.5°
第六页,共二十一页。
4.(桂林中考)如图,在正方形 ABCD 中,AB=3,点 M 在 CD 的边上, 且 DM=1,△AEM 与△ADM 关于 AM 所在的直线对称, 将△ADM 按顺时针方向绕点 A 旋转 90°得到△ABF,连接 EF, 则线段 EF 的长为( C ) A.3 B.2 3 C. 13 D. 15
A.(
2 2
,-
2 2
)
B.(1,0)
C.(-
2 2
,-
2 2
)
D.(0,-1)
第十四页,共二十一页。
9.如图,△ABC为等腰三角形,AB=AC,D为△ABC内一点, 连接(liánjiē)AD,将线段AD绕点A旋转至AE,使得∠DAE=∠BAC, F,G,H分别为BC,CD,DE的中点,连接BD,CE,GF,GH. (1)求证:GH=GF; (2)试说明∠FGH与∠BAC互补.
第十一页,共二十一页。
第十二页,共二十一页。
7.(2019·荆门)如图,Rt△OCB 的斜边在 y 轴上,OC= 3 ,
含 30°角的顶点与原点重合,直角顶点 C 在第二象限,
将 Rt△OCB 绕原点顺时针旋转 120°后得到△OC′B′,
则 B 点的对应点 B′的坐标是( A )
A.( 3 ,-1) B.(1,- 3 )
证明:(1)证△ABD≌△ACE(SAS),∴BD=CE,∵F,G,H 分别为 BC, CD,DE 的中点,∴HG∥CE,GF∥BD,且 GH=12 CE,GF=12 BD, ∴GH=GF
解题技巧专题:巧用旋转进行计算或证明
解题技巧专题:巧用旋转进行计算或证明——体会旋转中常见解题技巧◆类型一利用旋转结合等腰(边)三角形、垂直、平行的性质求角度1.(2016·合肥校级模拟)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC于点F,则∠BAC的度数为()A.60°B.85°C.75°D.90°第1题图第2题图第3题图2.(2016·株洲中考)如图,在△ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C 沿顺时针方向旋转后得到△A′B′C.若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°3.如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为________.4.如图,P是正三角形ABC内的一点,且P A=5,PB=12,PC=13,若将△P AC绕点A逆时针旋转后,得到△P′AB,求点P与点P′之间的距离及∠APB的度数.◆类型二利用旋转结合特殊三角形判定、性质或勾股定理求长度或证明5.如图,△ABC为等腰直角三角形,∠ACB=90°,将△ABC绕点A逆时针旋转75°,得到△AB′C′,过点B′作B′D⊥CA,交CA的延长线于点D,若AC=6,则AD的长为() A.2 B.3 C.2 3 D.3 26.如图,Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,那么BM的长是________.7.(2016·娄底中考)如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别交于点E,F.(1)求证:△BCF≌△BA1D;(2)当∠C=α度时,判定四边形A1BCE的形状,并说明理由.◆类型三利用旋转计算面积8.如图,边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转,则这两个正方形重叠部分的面积是()A.2-1B.2+1C. 2D. 3第8题图第9题图9.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则△DCE的面积为________.【方法3】参考答案与解析1.B 解析:∵△ABC 绕点A 逆时针旋转得到△ADE ,∴∠C =∠E =70°,∠BAC =∠DAE .∵AD ⊥BC ,∴∠AFC =90°,∴∠CAF =90°-∠C =90°-70°=20°,∴∠DAE =∠CAF +∠EAC =20°+65°=85°,∴∠BAC =∠DAE =85°.2.B3.90° 解析:∵将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,∴∠BAB ′=∠CAC ′=120°,AB =AB ′,∴∠AB ′B =12(180°-120°)=30°.∵AC ′∥BB ′,∴∠C ′AB ′=∠AB ′B =30°,∴∠CAB ′=∠CAC ′-∠C ′AB ′=120°-30°=90°.4.解:连接PP ′.∵△ABC 为等边三角形,∴AB =AC ,∠BAC =60°.∵△P AC 绕点A 逆时针旋转后,得到△P ′AB ,∴∠P ′AP =∠BAC =60°,AP ′=AP ,BP ′=CP =13,∴△AP ′P 为等边三角形,∴PP ′=AP =5,∠APP ′=60°.在△BPP ′中,∵PP ′=5,BP =12,BP ′=13,∴PP ′2+BP 2=BP ′2,∴△BPP ′为直角三角形,∠BPP ′=90°,∴∠APB =∠APP ′+∠BPP ′=60°+90°=150°.即点P 与点P ′之间的距离为5,∠APB 的度数为150°.5.D 解析:在Rt △ABC 中,AB =AC 2+BC 2=62+62=62,则AB ′=AB =6 2.在Rt △B ′AD 中,∠B ′AD =180°-∠BAC -∠BAB ′=180°-45°-75°=60°.则AD =AB ′·cos ∠B ′AD =62×12=3 2. 6.2+6 解析:连接AM ,由题意,得CA =CM ,∠ACM =60°,∴△ACM 为等边三角形,∴AM =CM ,∠MAC =∠MCA =∠AMC =60°.∵∠ABC =90°,AB =BC =2,∴AC =CM =2 2.∵AB =BC ,CM =AM ,∴BM 垂直平分AC ,∴BO =12AC =2,OM =CM ·sin60°=6,∴BM =BO +OM =2+ 6.7.(1)证明:∵△ABC 是等腰三角形,∴AB =BC ,∠A =∠C .∵将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,∴A 1B =AB =BC ,∠A =∠A 1=∠C ,∠A 1BD =∠CBC 1.在△BCF 与△BA 1D 中,⎩⎪⎨⎪⎧∠A 1=∠C ,A 1B =BC ,∠A 1BD =∠CBF ,∴△BCF ≌△BA 1D ; (2)解:四边形A 1BCE 是菱形.理由如下:∵将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,∴∠A 1=∠A .∵∠ADE =∠A 1DB ,∴∠AED =∠A 1BD =α,∴∠DEC =180°-α.∵∠C =α,∴∠A 1=α,∴∠A 1BC =360°-∠A 1-∠C -∠A 1EC =180°-α,∴∠A 1=∠C ,∠A 1BC =∠A 1EC ,∴四边形A 1BCE 是平行四边形.∵A 1B =BC ,∴四边形A 1BCE 是菱形.8.A 解析:连接AE ,∵四边形ABCD 为正方形,∴AB =BC =1,且∠B =90°,∠D ′CE =45°,由勾股定理得AC =12+12= 2.由题意,得AD ′=AB =1,∠AD ′E =90°,∴D ′C =2-1,∠D ′EC =∠D ′CE =45°,∴D ′E =D ′C =2-1,∴S △D ′EC =12(2-1)2=32-2,∴S 阴影=S △ABC -S △D ′EC =12×1×1-⎝⎛⎭⎫32-2=2-1. 9.1547 解析:由旋转的性质得△ACE ≌△ABD ,∴AE =AD =5,CE =BD =6,∠DAE =60°,∴DE =5.作EH ⊥CD 垂足为H .设DH =x .由勾股定理得EH 2=CE 2-CH 2=DE 2-DH 2,即62-(4-x )2=52-x 2,解得x =58,∴DH =58.由勾股定理得EH =DE 2-DH 2=52-⎝⎛⎭⎫582=1587,∴△DCE 的面积=12CD ·EH =1547.。
人教版九年级数学上册图形的旋转同步练习题及答案8(含知识点)
旋转同步练习附答案1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?3.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B•对应点的位置,以及旋转后的三角形.4.如图,四边形ABCD是边长为1的正方形,且DE=14,△ABF是△ADE的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连结EF,那么△AEF是怎样的三角形?5.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M•在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.答案:1. 解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.2. (1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)•画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.(3)旋转前、后的图形全等.3.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,•又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.解:(1)连结CD(2)以CB为一边作∠BCE,使得∠BCE=∠ACD(3)在射线CE上截取CB′=CB则B′即为所求的B的对应点.(4)连结DB′则△DB′C就是△ABC绕C点旋转后的图形.4. 分析:由△ABF是△ADE的旋转图形,可直接得出旋转中心和旋转角,要求AF•的长度,根据旋转前后的对应线段相等,只要求AE的长度,由勾股定理很容易得到.•△ABF与△ADE 是完全重合的,所以它是直角三角形.解:(1)旋转中心是A 点.(2)∵△ABF 是由△ADE 旋转而成的∴B 是D 的对应点 ∴∠DAB=90°就是旋转角(3)∵AD=1,DE=14∴=4∵对应点到旋转中心的距离相等且F 是E 的对应点 ∴AF=4 (4)∵∠EAF=90°(与旋转角相等)且AF=AE ∴△EAF 是等腰直角三角形.5. 分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明. 解:∵四边形ABCD 、四边形AKLM 是正方形∴AB=AD ,AK=AM ,且∠BAD=∠KAM 为旋转角且为90°∴△ADM 是以A 为旋转中心,∠BAD 为旋转角由△ABK 旋转而成的∴BK=DM以下不需要可以删除人教版初中数学知识点总结必备必记目 录七年级数学(上)知识点 (1)第一章 有理数 (1)第二章 整式的加减 (3)第三章 一元一次方程 (4)第四章 图形的认识初步 (5)七年级数学(下)知识点 (6)第五章 相交线与平行线 (6)第六章 平面直角坐标系 (8)第七章 三角形 (9)第八章 二元一次方程组 (12)第九章 不等式与不等式组 (13)第十章 数据的收集、整理与描述 (13)八年级数学(上)知识点 (14)第十一章 全等三角形 (14)第十二章 轴对称 (15)第十三章 实数 (16)第十四章一次函数 (17)第十五章整式的乘除与分解因式 (18)八年级数学(下)知识点 (19)第十六章分式 (19)第十七章反比例函数 (20)第十八章勾股定理 (21)第十九章四边形 (22)第二十章数据的分析 (23)九年级数学(上)知识点 (24)第二十一章二次根式 (24)第二十二章一元二次根式 (25)第二十三章旋转 (26)第二十四章圆 (27)第二十五章概率 (28)九年级数学(下)知识点 (30)第二十六章二次函数 (30)第二十七章相似 (32)第二十八章锐角三角函数 (33)第二十九章投影与视图 (34)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数> 0,小数-大数< 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a-b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次与近似数370的精确度一样.1、错。
2021年秋人教版九年级上学期数学作业课件:专题训练巧用旋转进行计算与证明
交于点O,则∠COA′的度数是(
)
B
A.50° B.60° C.70° D.80°
4.如图所示,在正方形ABCD内有一点P,PA=1,PD=2,PC=3,求∠APD 的度数.
解:将三角形APD绕点D沿逆时针旋转90°到达△CDQ的位置;则∠PDQ=90°, QD=PD=2,QC=AP=1;由勾股定理得:PQ2=22+22=8;而CQ2=1,PC2= 32=9,∴PC2=PQ2+CQ2,∠PQC=90°,∵∠PQD=45°,∴∠CQD=135°, ∴∠APD=∠CQD=135°
2021年秋人教版九年级 上学期数学作业课件: 专题训练巧用旋转进行
计算与证明
2020/9/17
类型之一 通过旋转计算角度
1.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E
=70°,且AD⊥BC,∠BAC的度数为( )
C
A.60° B.75° C.85° D.90°
14.(莱芜中考)如图,△ABC为等腰三角形,AB=AC,D为△ABC内一点,连接 AD,将线段AD绕点A旋转至AE,使得∠DAE=∠BAC,F,G,H分别为BC,CD, DE的中点,连接BD,CE,GF,GH.
(1)求证:GH=GF; (2)试说明∠FGH与∠BAC互补.
类型之五 利用旋转进行证明 13.如图,在△ABC中,AB=AC.D是BC上一点,且AD=BD.将△ABD绕点A逆 时针旋转得到△ACE. (1)求证:AE∥BC; (2)连接DE,判断四边形ABDE的形状,并说明理由.
解:(1)证明:由旋转性质得∠BAD=∠CAE,∵AD=BD,∴∠B=∠BAD,∵AB= AC,∴∠B=∠DCA,∴∠CAE=∠DCA,∴AE∥BC (2)解:四边形ABDE是平行四 边形.理由:由旋转性质得AD=AE,∵AD=BD,∴AE=BD,又∵AE∥BC,∴四 边形ABDE是平行四边形
人教版九年级数学旋转知识点总结与练习
人教版九年级数学旋转知识点总结与练习旋转知识点总结与练知识点1:旋转的定义旋转是指将平面图形绕着平面内某一点O转动一个角度的图形变换,其中点O称为旋转中心,旋转角为旋转的角度。
旋转的三个要素是旋转中心、旋转方向和旋转角度。
1.如图,将正方形图案绕中心O旋转180°后,得到的图案是()。
2.如图2,该图形围绕自己的旋转中心,按下列角度旋转后,不能与其自身重合的是()。
知识点1:旋转的性质旋转具有以下性质:1)对应点到旋转中心的距离不变;2)对应点与旋转中心所连的线段的夹角等于旋转角度;3)旋转前后的两个图形全等。
图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转。
3.如图,将△XXX绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()。
4.如图,直线y=-4x+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO' B',则点B'的坐标是()。
知识点1:旋转的作图在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形。
5.在下图4×4的正方形网格中,△XXX绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()。
知识点2:中心对称中心对称是指将一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,旋转后能够重合的对应点叫做关于对称中心的对称点。
中心对称的两个图形能够完全重合,即形状大小都相同,位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合。
6.如图所示,在下列四组图形中,右边图形与左边图形成中心对称的有()。
中心对称的性质是,中心对称的两个图形,对称点所连线段经过对称中心,并且被对称中心所平分。
新人教版九年级数学上册小专题旋转性质的运用
新人教版九年级数学上册小专题旋转性质的运用题组1 运用旋转性质进行计算1.(南京中考)如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为α(0°<α<90°).若∠1=110°,则∠α=____2.(西宁中考)如图,是两块完全一样的含30°角的直角三角板,分别记作△ABC和△A1B1C1,现将两块三角板重叠在一起,设较长直角边的中点为M,绕中点M转动上面的三角板ABC,使其直角顶点C恰好落在三角板A1B1C1的斜边A1B1上.当∠A=30°,AC=10时,则此时两直角顶点C、C1的距离是____.3.(海南中考)如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数为90°,则∠B的度数是____.4.如图,△ABC中,∠BAC=120°,以BC为边向外作等边△BCD,把△ABD绕着点D按顺时针方向旋转60°到△ECD 的位置,若AB=3,AC=2,求∠BAD的度数和AD的长.5.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6 cm,DC=7 cm.把三角板DCE 绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O,与D1E1相交于点F.(1)求∠OFE1的度数;(2)求线段AD1的长;(3)若把三角形D1CE1绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部、外部、还是边上?说明理由.题组2 运用旋转性质进行作图或证明1.我们学习过:在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动叫做旋转,这个定点称为旋转中心.(1)如图1,△ABC≌△DEF.△DEF能否由△ABC通过一次旋转得到?若能,请用直尺和圆规画出旋转中心,若不能,试简要说明理由;(2)如图2,△ABC≌△MNK.△MNK能否由△ABC通过一次旋转得到?若能,请用直尺和圆规画出旋转中心,若不能,试简要说明理由.(保留必要的作图痕迹)2.在平面直角坐标系中,△ABC的顶点坐标是A(-7,1),B(1,1),C(1,7).线段DE的端点坐标是D(7,-1),E(-1,-7).(1)试说明如何平移线段AC,使其与线段ED重合;(2)将△ABC绕坐标原点O逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;(3)画出(2)中的△DEF,并和△ABC同时绕坐标原点O逆时针旋转90°.画出旋转后的图形.3.(娄底中考)某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图1所示位置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图2,AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,四边形ABPE是什么样的特殊四边形?并说明理由.参考答案题组11.20°2.53.60°4.由∠BAC=120°知∠ABC+∠ACB=60°,又∵∠ABD=∠ABC+∠CBD=∠DCE ,∠CBD=∠BCD=60°,∴∠ACB+∠BCD+∠DCE=∠ACB+∠BCD+∠ABC+∠CBD=180°,即点A 、C 、E 在一条直线上.又∵AD=ED ,∠ADE=60°,∴△ADE 为等边三角形.∴∠BAD=∠E=60°,AD=AE=AC+CE=AC+AB=5.5.(1)设BC 与E 1F 相交于点H.∵∠BCE 1=15°,∠E 1=90°,∴∠BHF=∠CHE 1=75°.又∵∠B=45°,∴∠OFE 1=∠B+∠ BHF=75°+45°=120°.(2)∵∠OFE 1=120°,∴∠D 1FO=60°.∵∠CD 1E 1=30°,∴∠BOC=90°.又∵AC=BC ,AB=6,∴OA=OB=3.∵∠ACB=90°,∴CO=21AB=21×6=3.又∵CD 1=7,∴OD 1=CD 1-OC=7-3=4.在Rt △AD 1O 中,AD 1=212OD OA +=2243+=5. (3)点B 在△D 2CE 2内部.理由:设BC(或延长线)交D 2E 2于点P ,则∠PCE 2=15°+30°=45°.在Rt △PCE 2中,CP=2CE 2=227,∵CB=32<227,即CB<CP ,∴点B 在△D 2CE 2内部. 题组21.(1)能.;(2)能..2.(1)将线段AC 先向右平移6个单位,再向下平移8个单位(答案不唯一).(2)F(-1,-1).(3).3.(1)证明:∵∠α+∠EAC=90°,∠NAF+∠EAC=90°,∴∠α=∠NAF.又∵∠B=∠F,AB=AF ,∴△ABM ≌△AFN (ASA ).∴AM=AN.(2)四边形ABPF 是菱形.理由:∵∠α=30°,∠EAF=90°,∴∠BAF=120°.又∵∠B=∠F=60°,∴∠B+∠BAF=60°+120°=180°,∠F+∠BAF=60°+120°=180°.∴AF ∥BC ,AB ∥EF.∴四边形ABPF 是平行四边形.又∵AB=AF ,∴四边形ABPF 是菱形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.(宁波中考)如图,在△ABC中,∠ACB=90°,AC=BC, D是AB边上一点(点D与A,B不重合),连接CD, 将线段CD绕点C按逆时针方向旋转90°得到线段CE, 连接DE交BC于点F,连接BE. (1)求证:△ACD≌△BCE; (2)当AD=BF时,求∠BEF的度数.
解:(1)证明:∵线段 CD 绕点 C 按逆时针方向旋转 90°得到线段 CE, ∴∠DCE=90°,CD=CE,又∵∠ACB=90°,∴∠ACB=∠DCE, ∴∠ACB-∠BCD=∠DCE-BCD,即∠ACD=∠BCE, 在△ACD 和△BCE 中,
C∠DA=CDCE=,∠BCE, ∴△ACD≌△BCE(SAS) AC=BC,
(2)∵∠ACB=90°,AC=BC,∴∠A=45°, 由(1)得△ACD≌△BCE,∴AD=BE,∠CBE=∠A=45°, 又∵AD=BF,∴BE=BF,∴∠BEF=∠BFE=180°- 2 45° =67.5°
4.(桂林中考)如图,在正方形 ABCD 中,AB=3,点 M 在 CD 的边上, 且 DM=1,△AEM 与△ADM 关于 AM 所在的直线对称, 将△ADM 按顺时针方向绕点 A 旋转 90°得到△ABF,连接 EF, 则线段 EF 的长为( C ) A.3 B.2 3 C. 13 D. 15
解:(1)连接 BD 交 AC 于 O,如图所示:∵四边形 ABCD 是菱形, ∴CD=AB=2,∠BCD=∠BAD=60°, ∠ACD=∠BAC=12 ∠BAD=30°,OA=OC,AC⊥BD,
∴OB=12 AB=1,∴OA= 3 OB= 3 ,∴AC=2 3
(2)由旋转的性质得:AE=AB=2,∠EAG=∠BAD=60°, ∴CE=AC-AE=2 3 -2,∵四边形 AEFG 是菱形,∴EF∥AG, ∴∠CEP=∠EAG=60°,∴∠CEP+∠ACD=90°,
10.如图,在△ABC中,AB=AC,D是BC上一点,且AD=BD, 将△ABD绕点A逆时针旋转得到△ACE. (1)求证:AE∥BC; (2)连接DE,判断四边形ABDE的形状,并说明理由.
解:(1)证明:由旋转的性质,得∠BAD=∠CAE,∵AD=BD, ∴∠B=∠BAD,∵AB=AC,∴∠B=∠DCA, ∴∠CAE=∠DCA,∴AE∥BC (2)四边形ABDE是平行四边形.理由:由旋转性质,得AD=AE, ∵AD=BD,∴AE=BD,又∵AE∥BC,∴四边形ABDE是平行四边形.
证明:(1)证△ABD≌△ACE(SAS),∴BD=CE,∵F,G,H 分别为 BC, CD,DE 的中点,∴HG∥CE,GF∥BD,且 GH=12 CE,GF=12 BD, ∴GH=GF
(2)∵△ABD≌△ACE,∴∠ABD=∠ACE,∵HG∥CE,GF∥BD, ∴∠HGD=∠ECD,∠GFC=∠DBC, ∴∠HGD=∠ACD+∠ECA=∠ACD+∠ABD, ∠DGF=∠GFC+∠GCF=∠DBC+∠GCF, ∴∠FGH=∠DGF+∠HGD=∠DBC+∠GCF+∠ACD+∠ABD= ∠ABC+∠ACB=180°-∠BAC,∴∠FGH与∠BAC互补
A.(
2 2
,-
2 2
)
B.(1,0)
C.(-
2 2
,-
2 2
)
D.(0,-1)
9.如图,△ABC为等腰三角形,AB=AC,D为△ABC内一点, 连接AD,将线段AD绕点A旋转至AE,使得∠DAE=∠BAC, F,G,H分别为BC,CD,DE的中点,连接BD,CE,GF,GH. (1)求证:GH=GF; (2)试说明∠FGH与∠BAC互补.
人教版
第二十三章 旋转
专题训练(八) 巧用旋转进行计算与证明
1.如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°
得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为( )
D
A.45° B.60° C.70° D.90°
2.(大连中考)如图,将△ABC绕点B逆时针旋转α,得到△EBD, 若点A恰好在ED的延长线上,则∠CAD的度数为( C) A.90°-α B.α C.180°-α D.2α
5.(阜新中考)如图,在△ABC中,AC=BC, 将△ABC绕点A逆时针旋转60°,得到△ADE. 若AB=2,∠ACB=30°,则线段CD的长度为__2__.
6.(梧州中考改编)如图,在菱形ABCD中,AB=2,∠BAD=60°, 将菱形ABCD绕点A逆时针方向旋转,对应得到菱形AEFG, 点E在AC上,EF与CD交于点P. (1)求线段AC的长;(2)求线段DP的长.
11.(江汉油田中考)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上 一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC, 则线段BC,DC,EC之间满足的等量关系式为____B_C__=__D_C__+__E_C_____;
探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE, 将△ADE绕点A旋转,使点D落在BC边上, 试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论; 应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°. 若BD=9,CD=3,求AD的长.
∴∠CPE=90°,∴PE=12 CE= 3 -1,PC= 3 PE=3- 3 , ∴D2019·荆门)如图,Rt△OCB 的斜边在 y 轴上,OC= 3 ,
含 30°角的顶点与原点重合,直角顶点 C 在第二象限,
将 Rt△OCB 绕原点顺时针旋转 120°后得到△OC′B′,
则 B 点的对应点 B′的坐标是( A )
A.( 3 ,-1) B.(1,- 3 )
C.(2,0)
D.( 3 ,0)
8.(张家界中考)如图,在平面直角坐标系中, 将边长为 1 的正方形 OABC 绕点 O 顺时针旋转 45°后 得到正方形 OA1B1C1,依此方式, 绕点 O 连续旋转 2019 次得到正方形 OA2019B2019C2019, 那么点 A2019 的坐标是( A )