第26章练习
初三数学26章二次函数小题训练练习测试
《第26章二次函数》中午小题训练1(班级姓名:学号:)一、精心选一选3.把二次函数y=3x2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次4.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a>0;②c>0;③b2﹣4ac>0,其中正确的个数是()5.根据下列表格中的二次函数y=ax2+bx+c(a≠0,a、b、c为常数)的自变量x与函数y的对应值,227.如图,已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为()二、细心填一填(2,3,4,5写过程)1.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是_________.2.将抛物线:y=x2﹣2x向上平移3个单位,再向右平移4个单位得到的抛物线是_________.3.将抛物线y=2x2﹣12x+10绕它的顶点旋转180°,所得抛物线的解析式是_________..已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是?5.y=﹣2x2﹣bx+3的对称轴是直线x=1,则b的值为_________.三、解答题1.已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).(1)求出b,c的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y为正数时,自变量x的取值范围.2.如图,已知二次函数y=ax2﹣4x+c的图象与坐标轴交于点A(﹣1,0)和点B(0,﹣5).(1)求该二次函数的解析式;(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标.3.随着近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,如图①所示;种植花卉的利润y2与投资量x成二次函数关系,如图②所示(注:利润与投资量的单位:万元)(1)分别求出利润y1与y2关于投资量x的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润,他能获取的最大利润是多少?4.如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣2,4),过点A作AB⊥y轴,垂足为B,连接OA.(1)求△OAB的面积;(2)若抛物线y=﹣x2﹣2x+c经过点A.①求c的值;②将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界),求m的取值范围.。
华师版九年级数学下册作业课件 第26章二次函数 二次函数的图象与性质 二次函数y=ax2的图象与性质
26.2 二次函数的图象与性质 26.2.1 二次函数y=ax2的图象与性质
知识点❶:二次函数y=ax2的图象 1.如图,函数y=2x2的图象大致是(C )
2.(2022·黑龙江)若二次函数y=ax2的图象经过点P(-2,4),则该图象必经过 点( A )
A.(2,4) B.(-2,-4) C.(-4,2) D.(4,-2) 3.已知函数y=kxk2-2k-6是二次函数,当k=-__2__时,图象开口向下.
(0,2),∴OC=2,∴S△AOB=S△AOCቤተ መጻሕፍቲ ባይዱS△BOC=12 ×2×2+12 ×2×4=6
(3)过OC的中点,作AB的平行线交抛物线于点P1,P2,此时△P1AB的面积和 △P2AB的面积等于△AOB的面积的一半,作直线P1P2关于直线AB的对称直线, 交抛物线于点P3,P4,此时△P3AB的面积和△P4AB的面积等于△AOB的面积的一 半,所以这样的点P共有4个,故答案为4
14.如图所示,某桥洞的截面是抛物线形,在图中建立的平面直角坐标系中, 抛物线所对应的二次函数的表达式为 y=-14 x2,当桥洞中水面宽 AB 为 12 米 时,求水面到桥拱顶点 O 的距离.
解:由题意可知 A,B 两点关于 y 轴对称,且 AB 平行于 x 轴,设点 A 的坐标为 (m,n),则点 B 的坐标为(-m,n),则有-2m=12,m=-6,把点 A 代入 y =-14 x2,可得 n=-9.所以水面到桥拱顶点 O 的距离为 9 米
6.(郸城月考)抛物线 y=2x2,y=-2x2,y=12 x2 共有的性质是( B ) A.开口向下 B.图象对称轴是y轴 C.都有最低点 D.y随x的增大而减小
7.(常州中考)已知二次函数y=(a-1)x2,当x>0时,y随x增大而增大,则实数
中级会计师-中级会计实务-基础练习题-第26章民间非营利组织会计-第一节民间非营利组织会计概述
中级会计师-中级会计实务-基础练习题-第26章民间非营利组织会计-第一节民间非营利组织会计概述[单选题]1.下列关于民间非营利组织会计的一般会计原则(江南博哥)的说法中,不正确的是()。
A.会计基本假设包括会计主体、持续经营、会计分期和货币计量B.以收付实现制为基础进行会计核算C.分为资产、负债、净资产、收入和费用五大会计要素D.对于一些特殊的交易事项引入公允价值计量基础正确答案:B参考解析:所有非营利组织的会计核算都以权责发生制为基础。
[单选题]3.下列各项中,不属于民间非营利组织的会计要素的是()。
A.负债B.净资产C.利润D.费用正确答案:C参考解析:民间非营利组织的会计要素划分为反映财务状况的会计要素和反映业务活动情况的会计要素。
反映财务状况的会计要素包括资产、负债和净资产;反映业务活动情祝的会计要素包括收入和费用。
[多选题]1.下列关于民间非营利组织的相关表述中,正确的有()。
A.民间非营利组织不以营利为宗旨和目的B.民间非营利组织的会计要素包括资产、负债、净资产、收入和支出C.民间非营利组织的会计核算基础是收付实现制D.民间非营利组织的会计报表应当包括资产负债表、业务活动表和现金流量表三张基本会计报表正确答案:AD参考解析:选项B,民间非营利组织的会计要素包括资产、负债、净资产、收入和费用;选项C,民间非营利组织的会计核算基础是权责发生制。
[多选题]2.下列关于民间非营利组织的会计原则中,正确的有()。
A.会计目标是满足会计信息使用者的信息需要B.所有核算应当以权责发生制为基础C.会计要素分为资产、负债、净资产、收入和支出、利润D.会计基本假设包括会计主体、持续经营、会计分期和货币计量正确答案:ABD参考解析:选项C,民间非营利组织的会计要素划分为资产、负债、净资产、收入和费用,不包括支出、利润和所有者权益等会计要素。
[多选题]3.下列关于民间非营利组织会计的说法中,不正确的有()。
沪科版初中九年级下册数学 第26章 概率初步 26.3 用频率估计概率 2
26.3 用频率估计概率练习沪科版数学九年级下册一、单选题1.王师傅对某批零件的质量进行了随机抽查,并将抽查结果绘制成如下表格,请你根据表格估计,若从该批零件中任取一个,为合格零件的概率为()A.0.9 B.0.8 C.0.5 D.0.1 2.某人在做抛掷硬币试验中,抛掷n次,正面朝上有m次,若正面朝上的频率是P m,则下列说法正确的是( )nA.P一定等于0.5 B.多投一次,P更接近0.5 C.P一定不等于0.5 D.投掷次数逐渐增加,P稳定在0.5附近3.不透明的袋子中装有10个黑球和若干个白球,这些球除颜色外无其他差别.从袋子中随机摸出一球记下其颜色,再把它放回袋子中摇匀,重复上述过程,共试验400次,其中有300次摸到白球,由此估计袋子中的白球大约有( )A.6个B.10个C.15个D.30个4.数学社团的同学做了估算π的实验.方法如下:第一步:请全校同学随意写出两个实数x、y(x、y可以相等),且它们满足:0<x <1,0<y <1;第二步:统计收集上来的有效数据,设“以x ,y ,1为三条边长能构成锐角三角形”为事件A ;第三步:计算事件A 发生的概率,及收集的本校有效数据中事件A 出现的频率;第四步:估算出π的值.为了计算事件A 的概率,同学们通过查阅资料得到以下两条信息: ①如果一次试验中,结果落在区域D 中每一个点都是等可能的,用A 表示“试验结果落在区域D 中一个小区域M 中”这个事件,那么事件A 发生的概率为P(A)=MD ;②若x ,y ,1三个数据能构成锐角三角形,则需满足份数据中能和“1”成锐角三角形的数据有n 份,则可以估计π的值为( )A .42n m m +B .2n mC .4nmD .44m nm- 5.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,估算袋中的白棋子数量为()A.60枚B.50枚C.40枚D.30枚6.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在0.15和0.45,则布袋中白色球的个数可能是()A.24 B.18 C.16 D.67.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如下表,若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.200 B.300 C.500 D.800 8.“十一”长假期间,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动,顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据:下列说法错误的是()A.转动转盘20次,一定有6次获得“文具盒”铅笔文具盒B.转动转盘一次,获得“铅笔”的概率大约是0.70C.再转动转盘100次,指针落在“铅笔”区域的次数不一定是68次D.如果转动转盘3000次,指针落在“文具盒”区域的次数大约有900次9.一个不透明的袋子中装有除颜色外均相同的4个白球和若干个绿球,每次摇均匀后随机摸出一个球,记下颜色后再放回袋中,经大量试验,发现摸到绿球的频率稳定在0.2,则摸到绿球的概率约为()A.0.2 B.0.5 C.0.6 D.0.8 10.在一个不透明的袋子里装有红球、黄球共40个,这些球除颜色外都相同,小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中黄球的个数最有可能是()A.10 B.15 C.20 D.30二、填空题11.某射手在相同条件下进行射击训练,当射击次数很大时,该射手击中靶心的频率在常数0.9附近摆动,则在这种条件下,该射手射击一次击中靶心的概率的估计值是________.12.某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:根据表中数据,估计这种幼树移植成活率的概率为___(精确到0.1).13.社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里装有几十个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象如图所示,经分析可以推断盒子里个数比较多的是___________(填“黑球”或“白球”).14.如图是康康的健康绿码示意图,用黑白打印机打印于边长为10cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.65左右,据此可以估计黑色部分的总面积约为___cm2.三、解答题15.某水果公司新进一批柑橘,销售人员首先从所有的柑橘中随机抽取若干柑橘,进行“柑橘损坏率”统计,并把获得的数据记录在下表中.(1)柑橘损坏的概率约为______(精确到0.1);(2)当抽取柑橘的总质量n=kg时,损坏柑橘质量m最有可能是______.A.99.32kg B.203.45kg C.486.76kg D.894.82kg(3)若水果公司新进柑橘的总质量为10000kg,成本价是1.8元/kg,公司希望这些柑橘能够获得利润5400元,那么在出售柑橘(去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?16.某种油菜籽在相同条件下的发芽试验的结果如下:(1)上表中a=,b=;(2)请估计,当n很大时,频率将会接近;(3)这种油菜籽发芽的概率的估计值是多少?请简要说明理由;(4)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10000粒该种油菜籽估计可得到油菜秧苗多少棵?17.在一个不透明的袋子中装有红、黄两种颜色的球共20个,每个球除颜色外完全相同.某学习兴趣小组做摸球试验,将球搅匀后从中随机摸出1个球,记下颜色后再放回袋中,不断重复.下表是活动进行中的部分统计数据.(1)完成上表;(2)“摸到红球”的概率的估计值.(精确到0.1)(3)试估算袋子中红球的个数.18.对某篮球运动员进行3分球投篮测试的结果如下表:(1)将表格补充完整;(2)这个运动员投篮命中的概率约是______;(3)估计这个运动员3分球投篮15次能得多少分.参考答案:1.A2.D3.D4.D5.C6.A7.C8.A9.A10.D11.0.912.0.913.白球14.6515.(1)0.1(2)B(3)2.6元16.(1)0.70;0.70(2)0.70(3)0.70,在相同条件下,当实验次数很大时,事件发生的频率可作为概率的近似值(4)630017.(1)0.64,0.58(2)0.6(3)1218.(1)0.6,0.6;(2)0.6(3)27分。
第 26章 反比例函数——图像上点的坐标特征 同步练习 2021—2022学年人教版数学九年级下册
反比例函数——图像上点的坐标特征一.选择题(共16小题)1.如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数y=kx在第一象限内的图象与△ABC有交点,则k的取值范围是()A.2≤k≤494B.6≤k≤10C.2≤k≤6D.2≤k≤2522.如图,点A的坐标是(﹣2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′BC′.若反比例函数y=kx的图象恰好经过A′B的中点D,则k的值是()A.9B.12C.15D.183.如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=kx(k>0,x>0)的图象经过矩形对角线的交点E.若点A(2,0),D(0,4),则k的值为()A.16B.20C.32D.404.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D (﹣2,3),AD =5,若反比例函数y =kx(k >0,x >0)的图象经过点B ,则k 的值为( )A .163B .8C .10D .3235.如图,已知点A 、B 分别在反比例函数y =1x(x >0),y =−4x(x >0)的图象上,且OA ⊥OB ,则OB OA的值为( )A .√2B .2C .√3D .46.已知点A 在双曲线y =−2x 上,点B 在直线y =x ﹣4上,且A ,B 两点关于y 轴对称.设点A 的坐标为(m ,n ),则m n+n m的值是( )A .﹣10B .﹣8C .﹣6D .47.如图,平面直角坐标系中,A (﹣8,0),B (﹣8,4),C (0,4),反比例函数y =kx 的图象分别与线段AB ,BC 交于点D ,E ,连接DE .若点B 关于DE 的对称点恰好在OA 上,则k =( )A .﹣20B .﹣16C .﹣12D .﹣88.如图,点D 是▱OABC 内一点,CD 与x 轴平行,BD 与y 轴平行,BD =√2,∠ADB =135°,S △ABD =2.若反比例函数y =kx (x >0)的图象经过A 、D 两点,则k 的值是( )A.2√2B.4C.3√2D.69.如图,在直角坐标系中,以坐标原点O(0,0),A(0,4),B(3,0)为顶点的Rt△AOB,其两个锐角对应的外角角平分线相交于点P,且点P恰好在反比例函数y=kx的图象上,则k的值为()A.36B.48C.49D.6410.如图,在平面直角坐标系中,一次函数y=43x+4的图象与x轴、y轴分别相交于点B,点A,以线段AB为边作正方形ABCD,且点C在反比例函数y=kx(x<0)的图象上,则k的值为()A.﹣12B.﹣42C.42D.﹣2111.若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=kx(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1B.﹣1<a<1C.a>1D.a<﹣1或a>112.若点A(﹣3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y=−12x的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y1<y2C.y1<y2<y3D.y3<y2<y1 13.若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为()A.6B.﹣6C.12D.﹣1214.已知A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=2x上的三点,若x1<x2<x3,y2<y1<y3,则下列关系式不正确的是()A.x1•x2<0B.x1•x3<0C.x2•x3<0D.x1+x2<015.已知点A(x1,y1),B(x2,y2),C(x3,y3)都在反比例函数y=kx(k<0)的图象上,且x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y2>y3D.y3>y1>y216.若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=−6x的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y2>y1二.填空题(共16小题)17.如图,四边形OABC是平行四边形,点C在x轴上,反比例函数y=kx(x>0)的图象经过点A(5,12),且与边BC交于点D.若AB=BD,则点D的坐标为.18.如图,在Rt△ABC中,∠ABC=90°,C(0,﹣3),CD=3AD,点A在反比例函数y=k x图象上,且y轴平分∠ACB,求k=.19.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC 上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=kx(k≠0)的图象恰好经过点A′,B,则k的值为.20.在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(1x,1y)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=kx的图象上.若AB=2√2,则k=.21.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=kx的图象上,OA=1,OC=6,则正方形ADEF的边长为.22.在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=k1x上,点A关于x轴的对称点B在双曲线y=k2x,则k1+k2的值为.23.如图,已知直线y=−13x+1与坐标轴交于A,B两点,矩形ABCD的对称中心为M,双曲线y=kx(x>0)正好经过C,M两点,则直线AC的解析式为:.24.如图,将一个含30°角的三角尺ABC放在直角坐标系中,使直角顶点C与原点O重合,顶点A,B分别在反比例函数y=−4x和y=kx的图象上,则k的值为.25.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y=kx(k≠0)的图象经过其中两点,则m的值为.26.如图,在平面直角坐标系中,正方形ABCD的顶点A与D在函数y=kx(x>0)的图象上,AC⊥x轴,垂足为C,点B的坐标为(0,2),则k的值为.27.如图,已知矩形ABCD的顶点A、B分别落在双曲线y=kx上,顶点C、D分别落在y轴、x轴上,双曲线y=kx经过AD的中点E,若OC=3,则k的值为.28.如图,在平面直角坐标系中,一次函数y=﹣4x+4的图象与x轴、y轴分别交于A、B两点.正方形ABCD的顶点C、D在第一象限,顶点D在反比例函数y=kx(k≠0)的图象上.若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图象上,则n的值是.29.如图,过原点的直线与反比例函数y=2x(x>0)、反比例函数y=6x(x>0)的图象分别交于A、B两点,过点A作y轴的平行线交反比例函数y=6x(x>0)的图象于C点,以AC为边在直线AC的右侧作正方形ACDE,点B恰好在边DE上,则正方形ACDE的面积为.30.设A,B,C,D是反比例函数y=kx图象上的任意四点,现有以下结论:①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是.(写出所有正确结论的序号)31.如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D都在反比例函数y=6x(x>0)的图象上,则矩形ABCD的周长为.32.已知P1(x1,y1),P2(x2,y2)两点都在反比例函数y=2x的图象上,且x1<x2<0,则y1y2(填“>”或“<”).三.解答题(共7小题)33.如图,已知菱形ABCD的对称中心是坐标原点O,四个顶点都在坐标轴上,反比例函数y=kx(k≠0)的图象与AD边交于E(﹣4,12),F(m,2)两点.(1)求k,m的值;(2)写出函数y=kx图象在菱形ABCD内x的取值范围.34.如图,在平面直角坐标系中,正六边形ABCDEF的对称中心P在反比例函数y=kx(k>0,x>0)的图象上,边CD在x轴上,点B在y轴上,已知CD=2.(1)点A是否在该反比例函数的图象上?请说明理由;(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标;(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.35.阅读下面的材料:如果函数y =f (x )满足:对于自变量x 的取值范围内的任意x 1,x 2, (1)若x 1<x 2,都有f (x 1)<f (x 2),则称f (x )是增函数; (2)若x 1<x 2,都有f (x 1)>f (x 2),则称f (x )是减函数. 例题:证明函数f (x )=6x (x >0)是减函数. 证明:设0<x 1<x 2, f (x 1)﹣f (x 2)=6x 1−6x 2=6x 2−6x 1x 1x 2=6(x 2−x 1)x 1x 2. ∵0<x 1<x 2,∴x 2﹣x 1>0,x 1x 2>0. ∴6(x 2−x 1)x 1x 2>0.即f (x 1)﹣f (x 2)>0.∴f (x 1)>f (x 2).∴函数f (x )=6x(x >0)是减函数. 根据以上材料,解答下面的问题: 已知函数f (x )=1x 2+x (x <0), f (﹣1)=1(−1)2+(﹣1)=0,f (﹣2)=1(−2)2+(﹣2)=−74(1)计算:f (﹣3)= ,f (﹣4)= ; (2)猜想:函数f (x )=1x 2+x (x <0)是 函数(填“增”或“减”); (3)请仿照例题证明你的猜想. 36.已知反比例函数y =−3x.(1)若点(﹣t +52,﹣2)在此反比例函数图象上,求t 的值. (2)若点(x 1,y 1)和(x 2,y 2)是此反比例函数图象上的任意两点, ①当x 1>0,x 2>0,且x 1=x 2+2时,求y 2−y 1y 1y 2的值;②当x 1>x 2时,试比较y 1,y 2的大小.37.小明根据学习函数的经验,参照研究函数的过程与方法,对函数y=x−2x(x≠0)的图象与性质进行探究.因为y=x−2x=1−2x,即y=−2x+1,所以可以对比函数y=−2x来探究.列表:(1)下表列出y与x的几组对应值,请写出m,n的值:m=,n=;x…﹣4﹣3﹣2﹣1−12121234…y=−2x…1223124﹣4﹣2﹣1−23−12…y=x−2x…325323m﹣3﹣10n12…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=x−2x相应的函数值为纵坐标,描出相应的点,如图所示:(2)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(3)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而;(填“增大”或“减小”)②函数y=x−2x的图象是由y=−2x的图象向平移个单位而得到.③函数图象关于点中心对称.(填点的坐标)38.小明根据学习函数的经验,对函数y=1x−1+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=1x−1+1的自变量x的取值范围是;(2)如表列出了y与x的几组对应值,请写出m,n的值:m=,n=;x…−32﹣1−1201232252372…y (3)5m130﹣1n2533275…(3)在如图所示的平面直角坐标系中,描全上表中以各对对应值为坐标的点,并画出该函数的图象.(4)结合函数的图象,解决问题:①写出该函数的一条性质:.②当函数值1x−1+1>32时,x的取值范围是:.39.如图,边长为2的正方形ABCD的顶点A,B在x轴正半轴上,反比例函数y=kx在第一象限的图象经过点D,交BC于E.(1)当点E的坐标为(3,n)时,求n和k的值;(2)若点E是BC的中点,求OD的长.答案一.选择题(共16小题)1.【解答】解:反比例函数和三角形有交点的第一个临界点是交点为A , ∵过点A (1,2)的反比例函数解析式为y =2x , ∴k ≥2.随着k 值的增大,反比例函数的图象必须和线段BC 有交点才能满足题意, 经过B (2,5),C (6,1)的直线解析式为y =﹣x +7, {y =−x +7y =k x,得x 2﹣7x +k =0 根据△≥0,得k ≤494 综上可知2≤k ≤494. 故选:A .2.【解答】解:作A ′H ⊥y 轴于H .∵∠AOB =∠A ′HB =∠ABA ′=90°,∴∠ABO +∠A ′BH =90°,∠ABO +∠BAO =90°, ∴∠BAO =∠A ′BH , ∵BA =BA ′,∴△AOB ≌△BHA ′(AAS ), ∴OA =BH ,OB =A ′H ,∵点A 的坐标是(﹣2,0),点B 的坐标是(0,6), ∴OA =2,OB =6,∴BH =OA =2,A ′H =OB =6, ∴OH =4, ∴A ′(6,4), ∵BD =A ′D , ∴D (3,5),∵反比例函数y =kx的图象经过点D , ∴k =15. 故选:C .3.【解答】解:∵BD ∥x 轴,D (0,4), ∴B 、D 两点纵坐标相同,都为4, ∴可设B (x ,4).∵矩形ABCD 的对角线的交点为E , ∴E 为BD 中点,∠DAB =90°. ∴E (12x ,4).∵∠DAB =90°, ∴AD 2+AB 2=BD 2,∵A (2,0),D (0,4),B (x ,4), ∴22+42+(x ﹣2)2+42=x 2, 解得x =10, ∴E (5,4).∵反比例函数y =kx (k >0,x >0)的图象经过点E , ∴k =5×4=20. 故选:B .4.【解答】解:过D 作DE ⊥x 轴于E ,过B 作BF ⊥x 轴,BH ⊥y 轴, ∴∠BHC =90°,∵点D (﹣2,3),AD =5, ∴DE =3,∴AE =√AD 2−DE 2=4, ∵四边形ABCD 是矩形, ∴AD =BC ,∴∠BCD =∠ADC =90°,∴∠DCP +∠BCH =∠BCH +∠CBH =90°, ∴∠CBH =∠DCH ,∵∠DCP +∠CPD =∠APO +∠DAE =90°, ∠CPD =∠APO , ∴∠DCP =∠DAE , ∴∠CBH =∠DAE , ∵∠AED =∠BHC =90°,∴△ADE ≌△BCH (AAS ), ∴BH =AE =4, ∵OE =2, ∴OA =2, ∴AF =2,∵∠APO +∠P AO =∠BAF +∠P AO =90°, ∴∠APO =∠BAF , ∴△APO ∽△BAF , ∴OP AF=OA BF,∴12×32=2BF,∴BF =83, ∴B (4,83),∴k =323, 故选:D .5.【解答】解:过点A 作AM ⊥y 轴于点M ,过点B 作BN ⊥y 轴于点N , ∴∠AMO =∠BNO =90°, ∴∠AOM +∠OAM =90°, ∵OA ⊥OB ,∴∠AOM +∠BON =90°, ∴∠OAM =∠BON , ∴△AOM ∽△OBN ,∵点A ,B 分别在反比例函数y =1x (x >0),y =−4x(x >0)的图象上, ∴S △AOM :S △BON =1:4, ∴AO :BO =1:2, ∴OB :OA =2. 故选:B .6.【解答】解:∵点A 的坐标为(m ,n ),A 、B 两点关于y 轴对称, ∴B (﹣m ,n ),∵点A 在双曲线y =−2x 上,点B 在直线y =x ﹣4上, ∴n =−2m,﹣m ﹣4=n ,即mn =﹣2,m +n =﹣4,∴原式=(m+n)2−2mn mn=16+4−2=−10. 故选:A .7.【解答】解:过点E 作EG ⊥OA ,垂足为G ,设点B 关于DE 的对称点为F ,连接DF 、EF 、BF ,如图所示: 则△BDE ≌△FDE ,∴BD =FD ,BE =FE ,∠DFE =∠DBE =90° 易证△ADF ∽△GFE ∴AF EG=DF FE,∴AF :EG =BD :BE ,∵A (﹣8,0),B (﹣8,4),C (0,4), ∴AB =OC =EG =4,OA =BC =8, ∵D 、E 在反比例函数y =kx的图象上, ∴E (k4,4)、D (﹣8,−k 8)∴OG =EC =−k 4,AD =−k8, ∴BD =4+k8,BE =8+k4 ∴BD BE=4+k 88+k 4=12=DF FE=AF EG,∴AF =12EG =2,在Rt △ADF 中,由勾股定理:AD 2+AF 2=DF 2 即:(−k8)2+22=(4+k8)2解得:k=﹣12故选:C.8.【解答】解:作AM⊥y轴于M,延长BD,交AM于E,设BC与y轴的交点为N,∵四边形OABC是平行四边形,∴OA∥BC,OA=BC,∴∠AOM=∠CNM,∵BD∥y轴,∴∠CBD=∠CNM,∴∠AOM=∠CBD,∵CD与x轴平行,BD与y轴平行,∴∠CDB=90°,BE⊥AM,∴∠CDB=∠AMO,∴△AOM≌△CBD(AAS),∴OM=BD=√2,∵S△ABD=12BD⋅AE=2,BD=√2,∴AE=2√2,∵∠ADB=135°,∴∠ADE=45°,∴△ADE是等腰直角三角形,∴DE=AE=2√2,∴D的纵坐标为3√2,设A(m,√2),则D(m﹣2√2,3√2),∵反比例函数y=kx(x>0)的图象经过A、D两点,∴k=√2m=(m﹣2√2)×3√2,解得m=3√2,∴k=√2m=6.故选:D.9.【解答】解:过P 分别作AB 、x 轴、y 轴的垂线,垂足分别为C 、D 、E ,如图, ∵A (0,4),B (3,0), ∴OA =4,OB =3, ∴AB =√32+42=5,∵△OAB 的两个锐角对应的外角角平分线相交于点P , ∴PE =PC ,PD =PC , ∴PE =PC =PD , 设P (t ,t ),则PC =t ,∵S △P AE +S △P AB +S △PBD +S △OAB =S 矩形PEOD ,∴12×t ×(t ﹣4)+12×5×t +12×t ×(t ﹣3)+12×3×4=t ×t ,解得t =6, ∴P (6,6),把P (6,6)代入y =kx得k =6×6=36. 故选:A .10.【解答】解:∵当x =0时,y =0+4=4, ∴A (0,4), ∴OA =4;∵当y =0时,0=43x +4, ∴x =﹣3,∴B (﹣3,0), ∴OB =3;过点C 作CE ⊥x 轴于E ,∵四边形ABCD 是正方形, ∴∠ABC =90°,AB =BC ,∵∠CBE +∠ABO =90°,∠BAO +∠ABO =90°, ∴∠CBE =∠BAO . 在△AOB 和△BEC 中, {∠CBE =∠BAO ∠BEC =∠AOB BC =AB, ∴△AOB ≌△BEC (AAS ), ∴BE =AO =4,CE =OB =3, ∴OE =3+4=7,∴C 点坐标为(﹣7,3),∵点C 在反比例函数y =kx (x <0)的图象上, ∴k =﹣7×3=﹣21. 故选:D .11.【解答】解:∵k <0,∴在图象的每一支上,y 随x 的增大而增大, ①当点(a ﹣1,y 1)、(a +1,y 2)在图象的同一支上, ∵y 1>y 2, ∴a ﹣1>a +1, 此不等式无解;②当点(a ﹣1,y 1)、(a +1,y 2)在图象的两支上, ∵y 1>y 2,∴a ﹣1<0,a +1>0, 解得:﹣1<a <1, 故选:B .12.【解答】解:当x=﹣3,y1=−12−3=4;当x=﹣2,y2=−12−2=6;当x=1,y3=−121=−12,所以y3<y1<y2.故选:B.13.【解答】解:设反比例函数的解析式为y=k x,把A(3,﹣4)代入得:k=﹣12,即y=−12 x,把B(﹣2,m)代入得:m=−12−2=6,故选:A.14.【解答】解:∵反比例函数y=2x中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3,y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2>0,x1•x3<0,x2•x3<0,x1+x2<0,故选:A.15.【解答】解:∵反比例函数y=x(k<0)的图象分布在第二、四象限,在每一象限y随x的增大而增大,而x1<x2<0<x3,∴y3<0<y1<y2.即y2>y1>y3.故选:A.16.【解答】解:∵点A(﹣1,y1)、B(2,y2)、C(3,y3)在反比例函数y=−6x的图象上,∴y1=−6−1=6,y2=−62=−3,y3=−63=−2,又∵﹣3<﹣2<6,∴y1>y3>y2.故选:C.二.填空题(共16小题)17.【解答】解法1:如图,连接AD并延长,交x轴于E,由A(5,12),可得AO=√52+122=13,∴BC =13,∵AB ∥CE ,AB =BD ,∴∠CED =∠BAD =∠ADB =∠CDE , ∴CD =CE ,∴AB +CE =BD +CD =13,即OC +CE =13, ∴OE =13, ∴E (13,0),由A (5,12),E (13,0),可得AE 的解析式为y =−32x +392, ∵反比例函数y =kx(x >0)的图象经过点A (5,12), ∴k =12×5=60,∴反比例函数的解析式为y =60x ,解方程组{y =−32x +392y =60x ,可得{x =5y =12,{x =8y =152, ∴点D 的坐标为(8,152).解法2:如图,过D 作DH ⊥x 轴于H ,过A 作AG ⊥x 轴于G , ∵点A (5,12),∴OG =5,AG =12,AO =13=BC ,∵∠AOG =∠DCH ,∠AGO =∠DHC =90°, ∴△AOG ∽△DCH ,∴可设CH =5k ,DH =12k ,CD =13k , ∴BD =13﹣13k , ∴OC =AB =13﹣13k , ∴OH =13﹣13k +5k =13﹣8k , ∴D (13﹣8k ,12k ),∵反比例函数y =kx (x >0)的图象经过点A (5,12)和点D , ∴5×12=(13﹣8k )×12k , 解得k =58,k =1(舍去), ∴D 的坐标为(8,152).故答案为:(8,152).18.【解答】解:过A 作AE ⊥x 轴,垂足为E ,∵C (0,﹣3),∴OC =3,∵∠AED =∠COD =90°,∠ADE =∠CDO∴△ADE ∽△CDO ,∴AE CO =DE OD =AD CD =13, ∴AE =1;又∵y 轴平分∠ACB ,CO ⊥BD ,∴BO =OD ,∵∠ABC =90°,∴∠OCD =∠DAE =∠ABE ,∴△ABE ∽△DCO ,∴AE OD =BE OC设DE =n ,则BO =OD =3n ,BE =7n ,∴13n =7n 3, ∴n =√77∴OE =4n =4√77∴A (4√77,1)∴k =4√77×1=4√77. 故答案为:4√77.19.【解答】解:∵四边形ABCO 是矩形,AB =1,∴设B (m ,1),∴OA =BC =m ,∵四边形OA ′B ′D 与四边形OABD 关于直线OD 对称,∴OA ′=OA =m ,∠A ′OD =∠AOD =30°,∴∠A ′OA =60°,过A ′作A ′E ⊥OA 于E ,∴OE =12m ,A ′E =√32m ,∴A ′(12m ,√32m ), ∵反比例函数y =k x (k ≠0)的图象恰好经过点A ′,B ,∴12m •√32m =m , ∴m =4√33,∴k =4√33. 故答案为:4√33.20.【解答】解:(方法一)设点A (a ,﹣a +1),B (b ,﹣b +1)(a <b ),则A ′(1a ,11−a ),B ′(1b ,11−b ),∵AB =√(b −a)2+[(−b +1)−(−a +1)]2=√2(b −a)2=√2(b ﹣a )=2√2,∴b ﹣a =2,即b =a +2.∵点A ′,B ′均在反比例函数y =k x 的图象上,∴{b =a +2k =1a(1−a)=1b(1−b), 解得:k =−43.(方法二)∵直线y =﹣x +1上有两点A 、B ,且AB =2√2,∴设点A 的坐标为(a ,﹣a +1),则点B 的坐标为(a +2,﹣a ﹣1),点A ′的坐标为(1a ,11−a ),点B ′的坐标为(1a+2,−1a+1).∵点A ′,B ′均在反比例函数y =k x 的图象上,∴{11−a =ak −1a+1=k(a +2), 解得:{a =−12k =−43. 故答案为:−43.21.【解答】解:∵OA =1,OC =6,∴B 点坐标为(1,6),∴k =1×6=6,∴反比例函数解析式为y =6x ,设AD =t ,则OD =1+t ,∴E 点坐标为(1+t ,t ),∴(1+t )•t =6,整理为t 2+t ﹣6=0,解得t 1=﹣3(舍去),t 2=2,∴正方形ADEF 的边长为2.故答案为:2.22.【解答】解:∵点A (a ,b )(a >0,b >0)在双曲线y =k1x 上,∴k 1=ab ;又∵点A 与点B 关于x 轴的对称,∴B (a ,﹣b )∵点B 在双曲线y =k 2x 上, ∴k 2=﹣ab ;∴k 1+k 2=ab +(﹣ab )=0;故答案为:0.23.【解答】解:在y =−13x +1中,令x =0,得y =1,令y =0,x =3,∴A (3,0),B (0,1),∴OA =3,OB =1,过C 作CE ⊥y 轴于E ,∵四边形ABCD 是矩形,∴∠CBA =90°,∴∠CBE +∠OBA =∠OBA +∠BAO =90°,∴∠CBE =∠BAO ,∵∠BEC =∠AOB =90°,∴△BCE ∽△ABO ,∴OB OA =CE BE =13, 设CE =x ,则BE =3x ,∴C (x ,3x +1),∵矩形ABCD 对称中心为M ,∴M (x+32,3x+12), ∵双曲线y =k x (x >0)正好经过C ,M 两点,∴x (3x +1)=x+32⋅3x+12, 解得:x 1=1,x 2=−13(舍)∴C (1,4),设直线AC 的解析式为:y =kx +b ,把A (3,0)和C (1,4)代入得:{3k +b =0k +b =4, 解得:{k =−2b =6, ∴直线AC 的解析式为:y =﹣2x +6,故答案为:y =﹣2x +6.24.【解答】解:过A 作AE ⊥y 轴于E 过B 作BF ⊥y 轴于F ,∵∠AOB =90°,∠ABC =30°,∴tan30°=OA OB =√33, ∵∠OAE +∠AOE =∠AOE +∠BOF =90°,∴∠OAE =∠BOF ,∴△AOE ∽△BOF ,∴AE OF =OE BF =OA OB =√33, 设A (m ,−4m ),∴AE =﹣m ,OE =−4m,∴OF =√3AE =−√3m ,BF =√3OE =−4√3m , ∴B (4√3m ,√3m ), ∴k =√3m •4√3m=12. 故答案为:12.25.【解答】解:∵点A (﹣2,1),B (3,2),C (﹣6,m )分别在三个不同的象限,点A(﹣2,1)在第二象限,∴点C (﹣6,m )一定在第三象限,∵B (3,2)在第一象限,反比例函数y =k x(k ≠0)的图象经过其中两点,∴反比例函数y =k x (k ≠0)的图象经过B (3,2),C (﹣6,m ),∴3×2=﹣6m ,∴m =﹣1,故答案为:﹣1.26.【解答】解:连接BD ,与AC 交于点O ′,∵四边形ABCD 是正方形,AC ⊥x 轴,∴BD 所在对角线平行于x 轴,∵B (0,2),∴O ′C =2=BO ′=AO ′=DO ′,∴点A 的坐标为(2,4),∴k =2×4=8,故答案为:8.27.【解答】解:设A 点坐标为(a ,b ),则k =ab ,y =ab x,如图, 过点A 作AM ⊥x 轴于点M ,过点B 作BN ⊥y 轴于点N ,过点E 作EF ⊥x 轴于点F , ∵四边形ABCD 是矩形,∴AD =BC ,∠ADM +∠CDO =90°,∠BCN +∠DCO =90°,∵∠CDO +∠DCO =90°,∴∠ADM +∠BCN =90°,∵∠ADM +∠DAM =90°,∴∠BCN =∠DAM ,在△ADM 和△CBN 中,{∠DAM =∠BCN ∠AMD =∠CNB =90°AD =CB,∴△ADM ≌△CBN (AAS ),∴CN =AM =b ,BN =MD ,∴ON=3﹣b,即y B=b﹣3,且B在y=abx图象上,∴B(abb−3,b﹣3),∴BN=DM=|x B|=ab3−b,∵点E是AD的中点,∴MF=ab6−2b,OF=a+ab6−2b,OD=a+ab3−b,∴E(a+ab6−2b,12b),∵双曲线y=kx经过AD的中点E,∴(a+ab6−2b)•12b=ab,解得b=2,∴A(a,2),B(﹣2a,﹣1,D(3a,0),而C(0,﹣3),且矩形ABCD有AC=BD,∴(a﹣0)2+(2+3)2=(﹣2a﹣3a)2+(﹣1﹣0)2,解得a=1或a=﹣1(舍去),∴A(1,2),代入y=kx得:k=2.故答案为:2.28.【解答】解:过点D作DE⊥x轴,过点C作CF⊥y轴,∵AB⊥AD,∴∠BAO=∠ADE,∵AB=AD,∠BOA=∠DEA,∴△ABO≌△DAE(AAS),∴AE=BO,DE=OA,易求A(1,0),B(0,4),∴D(5,1),∵顶点D在反比例函数y=kx上,∴y=5 x,易证△CBF≌△BAO(AAS),∴CF=4,BF=1,∴C(4,5),∵C向左移动n个单位后为(4﹣n,5),∴5(4﹣n)=5,∴n=3,故答案为3;29.【解答】解:设直线AB的解析式为y=kx,A(m,2m ),B(n,6n),C(m,6m)∴{2m =km6 n =kn,∴k=2m2=6n2,∴n=√3m,∵AC=AE,即6m −2m=n﹣m,∴4m=√3m−m,解得:4m2=√3−1,∵S正方形=AC2=(4m )2=4×4m2=4(√3−1)=4√3−4;30.【解答】解:如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.由对称性可知,OA =OC ,OB =OD ,∴四边形ABCD 是平行四边形,当直线AC 和直线BD 关于直线y =x 对称时,此时OA =OC =OB =OD ,即四边形ABCD 是矩形.∵反比例函数的图象在一,三象限,∴直线AC 与直线BD 不可能垂直,∴四边形ABCD 不可能是菱形或正方形,故选项①④正确,故答案为:①④.31.【解答】解:∵四边形ABCD 是矩形,点A 的坐标为(2,1),∴点D 的横坐标为2,点B 的纵坐标为1,当x =2时,y =62=3,当y =1时,x =6,则AD =3﹣1=2,AB =6﹣2=4,则矩形ABCD 的周长=2×(2+4)=12,故答案为:12.32.【解答】解:在反比例函数y =2x 中k =2>0,∴x <0时,y 的值随着x 的增加而减小,∵x 1<x 2<0,∴y 1>y 2.故答案为:>.三.解答题(共7小题)33.【解答】解:(1)∵点E (﹣4,12)在y =k x 上, ∴k =﹣2,∴反比例函数的解析式为y =−2x ,∵F (m ,2)在y =−2x上, ∴m =﹣1.(2)函数y =k x 图象在菱形ABCD 内x 的取值范围为:﹣4<x <﹣1或1<x <4.34.【解答】解:(1)过点P 作x 轴垂线PG ,连接BP ,∵P 是正六边形ABCDEF 的对称中心,CD =2,∴BP =2,G 是CD 的中点,∴PG =√3,∴P (2,√3),∵P 在反比例函数y =k x 上,∴k =2√3,∴y =2√3x ,由正六边形的性质,A (1,2√3),∴点A 在反比例函数图象上;(2)D (3,0),E (4,√3),设DE 的解析式为y =mx +b ,∴{3m +b =04m +b =√3, ∴{m =√3b =−3√3, ∴y =√3x ﹣3√3,联立方程{y =2√3x y =√3x −3√3解得x =3+√172, ∴Q 点横坐标为3+√172;(3)A (1,2√3),B (0,√3),C (1,0),D (3,0),E (4,√3),F (3,2√3), 设正六边形向左平移m 个单位,向上平移n 个单位,则平移后点的坐标分别为 ∴A (1﹣m ,2√3+n ),B (﹣m ,√3+n ),C (1﹣m ,n ),D (3﹣m ,n ),E (4﹣m ,√3+n ),F (3﹣m ,2√3+n ),①将正六边形向左平移两个单位后,E (2,√3),F (1,2√3);则点E 与F 都在反比例函数图象上;②将正六边形向右平移一个单位,再向上平移√3个单位后,C (2,√3),B (1,2√3) 则点B 与C 都在反比例函数图象上;35.【解答】解:(1)∵f(x)=1x2+x(x<0),∴f(﹣3)=1(−3)2−3=−269,f(﹣4)=1(−4)2−4=−6316故答案为:−269,−6316(2)∵﹣4<﹣3,f(﹣4)<f(﹣3)∴函数f(x)=1x2+x(x<0)是增函数故答案为:增(3)设x1<x2<0,∵f(x1)﹣f(x2)=1x12+x1−1x22−x2=(x1﹣x2)(1−x1+x2x12x22)∵x1<x2<0,∴x1﹣x2<0,x1+x2<0,∴f(x1)﹣f(x2)<0∴f(x1)<f(x2)∴函数f(x)=1x2+x(x<0)是增函数36.【解答】解:(1)把点(﹣t+52,﹣2)代入反比例函数y=−3x得,(﹣t+52)×(﹣2)=﹣3,解得,t=1;(2)①当x1>0,x2>0,且x1=x2+2时,这两个点在第四象限,y2−y1 y1y2=1y1−1y2=−x13+x23=x2−x13=−23;②根据函数的图象可知,Ⅰ)当0>x1>x2时,y1>y2>0,Ⅱ)当x1>0>x2时,y1<0<y2,Ⅲ)当x1>x2>0时,0>y1>y2,37.【解答】解:(1)x=−12时,y=−2x+1=5,∴m=5,x =3时,y =−2x +1=13,∴n =13;故答案为:5,13; (2)把y 轴左边各点和右边各点,分别用条光滑曲线顺次连接起来,如图:(3)根据图象可得:①在y 轴左边,y 随x 增大而增大,故答案为:增大;②函数y =x−2x 的图象是由y =−2x 的图象向上平移1个单位得到的, 故答案为:上,1;③函数图象关于点 (0,1)中心对称,故答案为:(0,1).38.【解答】解:(1)由分式的分母不为0得:x ﹣1≠0,∴x ≠1;故答案为:x ≠1.(2)当x =﹣1时,y =1x−1+1=12,当x =32时,y =1x−1+1=3, ∴m =12,n =3, 故答案为:12,3. (3)如图:(4)①观察函数图象,可知:函数图象经过原点且关于点(1,1)对称,故答案为:函数图象经过原点且关于点(1,1)对称.②观察函数图象,可知:当函数值1x−1+1>32时,x的取值范围是1<x<3,故答案为:1<x<3.39.【解答】解:(1)∵正方形ABCD的边长为2,点E的坐标为(3,n),∴OB=3,AB=AD=2,∴D(1,2),∵反比例函数y=kx在第一象限的图象经过点D,∴k=1×2=2,∴反比例函数的解析式为:y=2 x,∵反比例函数y=kx在第一象限的图象交BC于E,∴n=2 3;(2)设D(x,2),∵点E是BC的中点,∴E(x+2,1),∵反比例函数y=kx在第一象限的图象经过点D、点E,∴2x=x+2,解得x=2,∴D(2,2),∴OA=AD=2,∴OD=√OA2+AD2=2√2.。
2022年强化训练沪科版九年级数学下册第26章概率初步专项练习试题(含详细解析)
沪科版九年级数学下册第26章概率初步专项练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件B.某次抽奖活动中奖的概率为1100,说明每买100张奖券,一定有一次中奖C.想了解某市城镇居民人均年收入水平,宜采用抽样调查D.我区未来三天内肯定下雪2、某十字路口的交通信号灯,每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的可能性大小为()A.112B.13C.512D.123、把形状完全相同风景不同的两张图片全部从中剪断,再把四张形状相同的小图片混合在一起,从四张图片中随机摸取两张,则这两张小图片恰好合成一张完整图片的概率为()A.12B.13C.14D.234、下列说法正确的是()A.“经过有交通信号的路口遇到红灯”是必然事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.“心想事成,万事如意”描述的事件是随机事件D.天气预报显示明天为阴天,那么明天一定不会下雨5、一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,这些球除颜色外完全相同,其中有3个黄球,2个蓝球.则随机摸出一个红球的概率为()A.14B.13C.12D.496、在进行一个游戏时,游戏的次数和某种结果出现的频率如表所示,则该游戏是什么,其结果可能是什么?下面分别是甲、乙两名同学的答案:甲:掷一枚质地均匀的骰子,向上的点数与4相差1;乙:在“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”()A.甲正确,乙错误B.甲错误,乙正确C.甲、乙均正确D.甲、乙均错误7、同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率是()A.14B.13C.12D.348、下列事件是必然事件的是()A.明天会下雨B.抛一枚硬币,正面朝上C.通常加热到100℃,水沸腾D .经过城市中某一有交通信号灯的路口,恰好遇到红灯9、经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,甲、乙两辆汽车经过这个十字路口时,一辆车向左转,一辆车向右转的概率是( )A .16B .12C .29 D .4910、某学校九年级为庆祝建党一百周年举办“歌唱祖国”合唱比赛,用抽签的方式确定出场顺序.现有8根形状、大小完全相同的纸签,上面分别标有序号1、2、3、4、5、6、7、8.下列事件中是必然事件的是( )A .一班抽到的序号小于6B .一班抽到的序号为9C .一班抽到的序号大于0D .一班抽到的序号为7第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已如一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.若往口袋中再放入2个白球,求从口袋中随机取出一个白球的概率________2、不透明的袋子里装有一个黑球,两个红球,这些球除颜色外无其它差别,从袋子中取出一个球,不放回,再取出一个球,记下颜色,两次摸出的球是一红—黑的概率是________.3、有6张除数字外无差别的卡片,上面分别写着1,2,3,4,5,6.随机抽取一张记作a ,放回并混合在一起,再随机抽一张记作b ,组成有序实数对(),a b ,则点(),a b 在直线2y x =+上的概率为______4、在一个不透明袋子中,装有3个红球和一些白球,这些球除颜色外无其他差别,从袋中随机摸出一个球是红球的概率为13,则袋中白球的个数是________.5、从1、-1、0三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是_________.三、解答题(5小题,每小题10分,共计50分)1、一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.甲从口袋中随机摸取一个小球,记下标号m ,然后放回,再由乙从口袋中随机摸取一个小球,记下标号n ,组成一个数对(m,n).(1)用列表法或画树状图法,写出(m,n)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各摸取一个小球,小球上标号之和为奇数则甲赢,小球上标号之和为偶数则乙赢.你认为这个游戏规则公平吗?请说明理由.2、林肇路某路口南北方向红绿灯的设置时间为:红灯57s,绿灯60s,黄灯3s,小明的爸爸由北往南开车随机地行驶到该路口.(1)他遇到红灯、绿灯、黄灯的概率各是多少?(2)我国新的交通法规定:汽车行驶到路口时,绿灯亮时才能通过,如果遇到黄灯亮或红灯亮时必须在路口外停车等候,问小明的爸爸开车随机到该路口,按照交通信号灯直行停车等候的概率是多少?3、某商家销售一批盲盒,每一个看上去无差别的盲盒内含有A,B,C,D四种玩具中的一种,抽到玩具B的有关统计量如表所示:(1)估计从这批盲盒中任意抽取一个是玩具B的概率是;(结果保留小数点后两位)(2)小明从分别装有A,B,C,D四种玩具的四个盲盒中随机抽取两个,请利用画树状图或列表的方法,求抽到的两个玩具恰为玩具A和玩具C的概率.4、数字“122”是中国道路交通事故报警电话.为推进“文明交通行动计划”,公安部将每年的12月2日定为“交通安全日”.班主任决定从4名同学(小迎,小冬,小奥,小会)中通过抽签的方式确定2名同学去参加宣传活动.抽签规则:将4名同学的姓名分别写在4张完全相同的卡片正面,把4张卡片的背面朝上,洗匀后放在桌子上,班主任先从中随机抽取一张卡片,记下名字,再从剩余的3张卡片中随机抽取一张,记下名字.(1)“小冬被抽中”是________事件,“小红被抽中”是________事件(填“不可能”、“必然”、“随机”),第一次抽取卡片抽中小会的概率是________;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出小奥被抽中的概率.5、新冠病毒在全球肆虐,疫情防控刻不容缓.某校为了解学生对新冠疫情防控知识的了解程度,组织七、八年级学生开展新冠疫情防控知识测试(满分为10分).学校学生处从七、八年级学生中各随机抽取了20名学生的成绩进行了统计.下面提供了部分信息.抽取的20名七年级学生的成绩(单位:分)为:10,10,9,9,9,9,9,9,8,8,8,8,8,8,8,7,7,6,5,5.抽取的40名学生成绩分析表:请根据以上信息,解答下列问题:(1)直接写出上表中a,b的值;(2)该校七、八年级共有学生2000人,估计此次测试成绩不低于9分的学生有多少人?(3)在所抽取的七年级与八年级得10分的学生中,随机抽取2名学生在全校学生大会上进行新冠疫情防控知识宣讲,求所抽取的2名学生恰好是1名七年级学生和1名八年级学生的概率.-参考答案-一、单选题1、C【分析】根据必然事件,随机事件的定义,判断全面调查与抽样调查,逐项分析判断即可,根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.【详解】A. “打开电视,正在播放《新闻联播》”是随机事件,故该选项不正确,不符合题意;B. 某次抽奖活动中奖的概率为1100,说明每买100张奖券,不一定有一次中奖,故该选项不正确,不符合题意;C. 想了解某市城镇居民人均年收入水平,宜采用抽样调查,故该选项正确,符合题意;D. 我区未来三天内不一定下雪,故该选项不正确,不符合题意;故选C【点睛】本题考查了必然事件,随机事件,判断全面调查与抽样调查,掌握以上知识是解题的关键.2、C【分析】用绿灯亮的时间除以三种灯亮总时间即可解答.【详解】解:除以三种灯亮总时间是30+25+5=60秒,绿灯亮25秒,所以绿灯的概率是:255= 6012.故选C.【点睛】本题主要考查了概率的基本计算,掌握概率等于所求情况数与总情况数之比是解答本题的关键.3、B【分析】设四张小图片分别用A,a,B,b表示,画树状图,然后根据树状图找出满足条件的结果即可得出概率.【详解】解:设四张小图片分别用A,a,B,b表示,画树状图得:由图可得,共有12种等可能的结果,其中摸取两张小图片恰好合成一张完整图片的结果共有4种,∴摸取两张小图片恰好合成一张完整图片的概率为:41123P==,故选:B.【点睛】题目主要考查利用树状图或列表法求概率问题,理解题意,熟练运用树状图或列表法是解题关键.4、C【详解】解:A、“经过有交通信号的路口遇到红灯”是随机事件,故本选项不符合题意;B、已知某篮球运动员投篮投中的概率为0.6,则他投10次不一定可投中6次,故本选项不符合题意;C、“心想事成,万事如意”描述的事件是随机事件,故本选项符合题意;D、天气预报显示明天为阴天,那么明天可能不会下雨,故本选项符合题意;故选:C【点睛】本题考查的是对随机事件和必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.5、D【分析】在一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,其中有3个黄球,2个蓝球,得出红球的个数,再根据概率公式即可得出随机摸出一个红球的概率.【详解】解:在一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,其中有3个黄球,2个蓝球,∴红球有:9324--=个,则随机摸出一个红球的概率是:49.故选:D.【点睛】本题主要考查了概率公式的应用,解题的关键是掌握:概率=所求情况数与总情况数之比.6、C【分析】由表可知该种结果出现的概率约为13,对甲乙两人所描述的游戏进行判断即可.【详解】由表可知该种结果出现的概率约为1 3∵掷一枚质地均匀的骰子,向上的点数有1、2、3、4、5、6 ∴向上的点数与4相差1有3、5∴掷一枚质地均匀的骰子,向上的点数与4相差1的概率为21 63∴甲的答案正确又∵“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”概率为1 3∴乙的答案正确综上所述甲、乙答案均正确.故选C.【点睛】本题考查了用频率估计概率,其做法是取多次试验发生的频率稳定值来估计概率.7、A【分析】首先利用列举法可得所有等可能的结果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案.【详解】解:∵抛掷两枚质地均匀的硬币,两枚硬币落地后的所有等可能的结果有:正正,正反,反正,反反,∴正面都朝上的概率是:14.故选A.【点睛】本题考查了列举法求概率的知识.此题比较简单,注意在利用列举法求解时,要做到不重不漏,注意概率=所求情况数与总情况数之比.8、C【分析】根据必然事件就是一定发生的事件逐项判断即可.【详解】A.明天会下雨,属于随机事件,故该选项不符合题意;B.抛一枚硬币,正面朝上,属于随机事件,故该选项不符合题意;C.通常加热到100℃,水沸腾,属于必然事件,故该选项符合题意;D.经过城市中某一有交通信号灯的路口,恰好遇到红灯,属于随机事件,故该选项不符合题意;故选C.【点睛】本题主要考查了必然事件的概念,掌握必然事件指在一定条件下一定发生的事件是解答本题的关键.9、C【分析】可以采用列表法或树状图求解:可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.【详解】画“树形图”如图所示:∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,;∴一辆向右转,一辆向左转的概率为29故选C.【点睛】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解10、C【分析】必然事件,是指在一定条件下一定会发生的事件;根据必然事件的定义对几个选项进行判断,得出答案.【详解】解:A中一班抽到的序号小于6是随机事件,故不符合要求;B中一班抽到的序号为9是不可能事件,故不符合要求;C中一班抽到的序号大于0是必然事件,故符合要求;D中一班抽到的序号为7是随机事件,故不符合要求;故选C.【点睛】本题考察了必然事件.解题的关键在于区分必然、随机与不可能事件的含义.二、填空题1、5 9【分析】先确定口袋中的球数,任意取出一个,求出等可能的所有情况,再从中找出满足条件的白球的可能情况,让后利用概率公式计算即可.【详解】解:往口袋中再放入2个白球,此时口袋中一共有球9个,任取一个球出现等可能情况一共有9中可能,其中有白球5个,任取一个球是白球的共有5中情况,∴从口袋中随机取出一个白球的概率P=59,故答案为:59.【点睛】本题考查列举法求简单概率,掌握列举法求简单概率,抓住列举所有等可能情况,与满足条件的情况,记住概率公式是解题关键.2、2 3【分析】根据题意列出表格,可得6种等可能结果,其中一红—黑的有4种,再利用概率公式,即可求解.【详解】解:根据题意列出表格如下:得到6种等可能结果,其中一红—黑的有4种, 所以两次摸出的球是一红—黑的概率是4263= . 故答案为:23【点睛】本题主要考查了求概率,能够利用画树状图或列表格的方法解答是解题的关键.3、19【分析】画树状图表示所有等可能的结果,再计算点(),a b 在直线2y x =+上的概率.【详解】解:画树状图为:共有36种机会均等的结果,其中组成有序实数对(),a b ,则点(),a b 在直线2y x =+上的有4种,所以点(),a b 在直线2y x =+上的概率为41=369, 故答案为:19.【点睛】本题考查用树状图或列表法表示概率,是重要考点,难度较小,掌握相关知识是解题关键. 4、6【分析】随机摸出一个球是红球的概率是133n=,可以得到球的总个数,进而得出白球的个数. 【详解】解:记摸出一个球是红球为事件A 13()3P A n== 9n ∴=∴白球有936-=个 故答案为:6.【点睛】本题考察了概率的定义.解题的关键与难点在于理解概率的定义,求出球的总数.5、23【分析】根据题意列表得出所有等可能的情况数,找出刚好在坐标轴上的点个数,即可求出所求的概率.【详解】解:列表得:所有等可能的情况有6种,其中该点刚好在坐标轴上的情况有4种,所以该点在坐标轴上的概率4263==.故答案为:23.【点睛】本题考查列表法与树状图法和点的坐标特征,注意掌握通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.三、解答题1、(1)见解析;(2)这个游戏不公平,理由见解析【分析】(1)根据题意画出树状图进行求解即可;(2)根据(1)所画树状图,先得到所有的等可能性的结果数,然后分别得到小球标号之和为奇数和偶数的结果数,最后分别求出甲乙两人赢的概率即可得到答案.【详解】解:(1)列树状图如下所示:由树状图可知(m,n)所有可能出现的结果为:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3);(2)由(1)得一共有9种等可能性的结果数,其中小球上标号之和为奇数的结果数有(1,2),(2,1),(2,3),(3,2),4种等可能性的结果数,其中小球上标号之和为偶数的结果数有(1,1),(1,3),(2,2),(3,1),(3,3),5种等可能性的结果数,∴甲赢的概率为49,乙赢的概率为59,∴这个游戏不公平.【点睛】本题主要考查了画树状图和游戏的公平性,解题的关键在于能够熟练掌握画树状图的方法.2、(1)他遇到红灯、绿灯、黄灯的概率各是1940、12、140;(2)12.【分析】(1)根据红灯、绿灯、黄灯的时间求出总时间,再利用概率公式即可得;(2)将遇到红灯和黄灯的概率相加即可得.【详解】解:(1)红灯、绿灯、黄灯的总时间为57603120()s++=,则他遇到红灯的概率是5719 12040=,遇到绿灯的概率是601 1202=,遇到黄灯的概率是31 12040=,答:他遇到红灯、绿灯、黄灯的概率各是1940、12、140;(2)1911 40402+=,答:按照交通信号灯直行停车等候的概率是12.【点睛】本题考查了简单事件的概率,熟练掌握概率公式是解题关键.3、(1)0.28;(2)1 6【分析】(1)由表中数据可判断频率在0.28左右摆动,利用频率估计概率可判断任意抽取一个毛绒玩具是优等品的概率为0.28;(2)先列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.(1)解:从这批盲盒中任意抽取一个是玩具B的概率是0.28,故答案为0.28.(2)列表为:由上表可知,从四种玩具的四个盲盒中随机抽取两个共有12种等可能结果,其中恰为玩具A和玩具C的结果有2种,所以恰为玩具A和玩具C的概率P=21 126.【点睛】本题考查了利用频率估计概率及用列表法或树状图法求概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.4、(1)随机;随机;1 4(2)12【分析】(1)根据随机事件和不可能事件的概念及概率公式解答可得;(2)列举出所有情况,看所求的情况占总情况的多少即可.(1)解:“小冬被抽中”是随机事件,“小红被抽中”是随机事件, 第一次抽取卡片抽中小会的概率是14; (2)解:根据题意可列表如下:(A 表示小迎,B 表示小冬,C 表示小奥,D 表示小会)由表可知,共有12种等可能结果,其中小奥被抽中(含有C )的有6种结果,所以小月被选中的概率=61122=. 【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏地列出所有可能的结果,适用于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.5、(1)8,9a b ==(2)850(3)35【分析】(1)根据众数和中位数的概念求解可得;(2)用总人数乘以样本中七、八年级不低于9分的学生人数和所占比例即可得,(3)根据列表法求概率即可.(1)根据抽取的20名七年级学生的成绩找到第10个和第11个成绩都是8,则中位数为8,即8a =, 根据条形统计图可知9分的有6人,人数最多,则众数为9,即9b =(2)解:∵此次测试成绩不低于9分的七年级学生有8人,八年级学生有9人∴此次测试成绩不低于9分的学生有89200085040+⨯=(人) (3)解:∵七年级得10分的有2人,八年级得10分的有3人设七年级的2人分别为12,A A ,八年级的3人分别123,,B B B列表如下,根据列表可知,共有20种等可能结果,其中1名七年级学生和1名八年级学生的情形有12钟则所抽取的2名学生恰好是1名七年级学生和1名八年级学生的概率为123 205【点睛】本题考查了求中位数,众数,根据样本估计总体,列表法求概率,掌握以上知识是解题的关键.。
第26章 专题04二次函数系数、对称和最值重难点专练(学生版)
专题04二次函数系数、对称和最值重难点专练(学生版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2021·上海九年级一模)如图所示是二次函数()20y ax bx c a =++≠图像的一部分,那么下列说法中不正确的是( ).A .0ac <B .抛物线的对称轴为直线1x =C .0a b c -+=D .点()12,y -和()22,y 在拋物线上,则12y y >2.(2021·上海九年级专题练习)己知二次函数()20y ax bx c a =++≠的图象如图所示,那么a 、c 满足( )A .a >0,c >0B .a >0,c <0C .a <0,c >0D .a <0,c <03.(2020·上海市曹杨二中附属江桥实验中学九年级期中)如果二次函数2(0)y ax bx c a =++≠的图像如图所示,那么( )A .a 0,b 0,c 0<>>B .0,0,0a b c >>>C .0,0,0a b c ><<D .0,0,0a b c >><4.(2019·上海九年级一模)如果抛物线()22y a x =+开口向下,那么a 的取值范围为( ) A .2a >B .2a <C .2a >-D .2a <-5.(2019·上海市民办新北郊初级中学九年级期中)在同一直角坐标系中,函数y mx m =+和222y mx x =-++的图象可能是( )A .B .C .D .6.(2020·上海民办华二浦东实验学校九年级期中)如果二次函数2y ax bx c =++的图像如图所示,那么下列判断正确的是( )A .0a <,0b <,0c <B .0a <,0b <,0c >C .0a <,0b >,0c <D .0a <,0b >,0c >7.(2021·上海九年级专题练习)抛物线y =ax 2+bx +c (a ≠0)对称轴为直线x =﹣1,其部分图象如图所示,则下列结论: ①b 2﹣4ac >0;①2a =b ;①t (at +b )≤a ﹣b (t 为任意实数); ①3b +2c <0; ①点(﹣72,y 1),(32-,y 2),(54,y 3)是该抛物线上的点,且y 1<y 3<y 2, 其中正确结论的个数是( )A .5B .4C .3D .28.(2020·上海九年级月考)已知点(2,)A a -,(2,)B b ,(4,)C c 是抛物线24y x x =-上的三点,则a ,b ,c 的大小关系为( ) A .b c a >> B .b a c >> C .c a b >> D .a c b >>二、填空题9.(2019·上海市民办新竹园中学九年级月考)已知抛物线2y x bx c =++经过点()0,5A、()4,5B ,那么此抛物线的对称轴是___________.10.(2021·上海九年级专题练习)如果一条抛物线经过点A (2,5),B (﹣3,5),那么它的对称轴是直线_____.11.(2020·上海九年级一模)如果抛物线经过点(1,0)A -和点()5,0B ,那么这条抛物线的对称轴是直线___________.12.(2020·上海)已知二次函数2228y a x a x a =++(a 是常数,a ≠0),当自变量x 分别取-6、-4时,对应的函数值分别为y 1、y 2,那么y 1、y 2的大小关系是:y 1__ y 2(填“>”、“<”或“=”).13.(2019·上海中考模拟)若点A (﹣1,7)、B (5,7)、C (﹣2,﹣3)、D (k ,﹣3)在同一条抛物线上,则k 的值等于_____.14.(2020·上海九年级专题练习)如果抛物线经过点 A (2,5) 和点 B (-4,5) ,那么这条抛物线的对称轴是直线_____.15.(2018·上海虹口区·中考模拟)如果点A (2,﹣4)与点B (6,﹣4)在抛物线y=ax 2+bx+c(a≠0)上,那么该抛物线的对称轴为直线_____.16.(2021·上海九年级一模)如果抛物线l 经过点()2,0A -和()5,0B ,那么该抛物线的对称轴是直线________.17.(第三章函数与分析(4)函数的图像和性质-备战2021年中考数学考点一遍过(上海专用))二次函数2y ax bx c =++(0a ≠)中,函数y 与自变量x 的部分对应值如下表,则m 的值为 _________.18.(2021·上海)方程()200++=≠ax bx c a 的两根为-5和3,那么抛物线()20y ax bx c a =++≠的对称轴是直线________.19.(2020·上海市静安区实验中学九年级课时练习)二次函数(2)(4)y x x =-+-图像的顶点坐标是__________________.20.(2021·上海九年级专题练习)如图,正方形ABCD 的边长为1,点E 为BC 边上的一动点(不与B ,C 重合),过点E 作EF AE ⊥,交CD 于F .则线段CF 长度的最大值为__________.21.(2020·上海民办华二浦东实验学校九年级期中)抛物线24y x x =+的最低点坐标是__________.22.(2021·上海九年级一模)二次函数22y x x m =++图像上的最低点的横坐标为_________________.23.(2019·上海同济大学实验学校)关于x 的代数式24x x m -++有最大值2,则m =______,取得最大值时x =______.24.(2020·江苏徐州市·)在平面直角坐标系中,点A 的坐标为(1,0),点B 的坐标为(m ,5﹣m),当AB 的长最小时,m 的值为_____25.(2019·上海八年级课时练习)已知实数x 、y 满足2210x x y ++-=,则2x y +的最大值为______26.(2019·上海中考模拟)如果抛物线y =(3﹣m )x 2﹣3有最高点,那么m 的取值范围是_____.27.(2020·上海普陀区·九年级月考)沿着x 轴正方向看,如果抛物线2(2)y a x =-在对称轴左侧的部分是下降的,那么a 的取值范围是__________.28.(2021·上海九年级专题练习)如果抛物线()223y a x x a =-++的开口向下,那么a的取值范围是_________ .29.(2020·上海市静安区实验中学九年级课时练习)二次函数2()y a x m =++k 的大致图像如图,那么a_____0,m____0(填“>”或“<”).30.(2021·上海九年级专题练习)已知二次函数y =ax 2+bx +c 的图象如图所示,对称轴为直线x =1,则下列结论: ①abc >0;①方程ax 2+bx +c =0的两根是x 1=﹣1,x 2=3; ①2a +b =0; ①4a 2+2b +c <0,其中正确结论的序号为_____.三、解答题31.(专题12二次函数背景下的相似三角形-决胜2020年中考数学压轴题全揭秘精品(上海专用))如图,已知抛物线y=ax2+bx+c经过原点O(0,0)、A(2,0),直线y=2x 经过抛物线的顶点B,点C是抛物线上一点,且位于对称轴的右侧,联结BC、OC、AB,过点C作CE①x轴,分别交线段OB、AB于点E、F.(1)求抛物线的表达式;(2)当BC=CE时,求证:①BCE①①ABO;(3)当①CBA=①BOC时,求点C的坐标.32.(2019·上海江湾初级中学九年级三模)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求①APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使①ANM的周长最小.若存在,请求出M点的坐标和①ANM周长的最小值;若不存在,请说明理由.33.(2017·上海奉贤区·中考模拟)如图,在平面直角坐标系xOy 中,抛物线2y x bx c =-++经过点A(3,0)和B (2,3).过点A 的直线与y 轴的负半轴相交于点C ,且tan CAO ∠=13. (1)求这条抛物线的表达式及对称轴; (2)连接AB 、BC ,求ABC ∠的正切值;(3)若点D 在x 轴下方的对称轴上,当ABC S ∆=ADC S ∆时,求点D 的坐标.34.(2019·上海市位育实验学校九年级一模)抛物线y=﹣x 2+bx+c 经过点A 、B 、C ,已知A (﹣1,0),C (0,3). (1)求抛物线的解析式;(2)如图1,P 为线段BC 上一点,过点P 作y 轴平行线,交抛物线于点D ,当①BDC 的面积最大时,求点P 的坐标;(3)如图2,抛物线顶点为E ,EF①x 轴于F 点,M (m ,0)是x 轴上一动点,N 是线段EF 上一点,若①MNC=90°,请指出实数m 的变化范围,并说明理由.35.(2021·上海九年级专题练习)某企业接到了一批零件加工任务,要求在20天内完成,这批零件的出厂价为每个6元,为按时完成任务,该企业招收了新工人.6天的培训期内,新工人小李第x天能加工80x个零件;培训后小李第x天加工的零件数量为()50200+x个.(1)小李第几天加工零件数量为650个?(2)如图,设第x天每个零件的加工成本是P元,P与x之间的关系可用图中的函数图象来刻画.若小李第x天创造的利润为w元,求w与x的函数表达式,并求出第几天的利润最大,最大利润是多少?(利润=出厂价-成本价)36.(2020·上海宝山区·九年级期中)如图,在平面直角坐标系中,抛物线223(0)y ax ax a a=>﹣﹣与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:y kx b=+与y轴交于点C,与抛物线的另一个交点为D,且4CD AC=.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a的式子表示).(2)点E为直线l下方抛物线上一点,当ADE的面积的最大值为254时,求抛物线的函数表达式;(3)设点P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否为矩形?若能,求出点P的坐标;若不能,请说明理由.。
人教版九年级数学下册第26章《实际问题与反比例函数》课时练习题(含答案)
人教版九年级数学下册第26章《2.实际问题与反比例函数》课时练习题(含答案)一、单选题1.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.则这个反比例函数的解析式为( )A .24I R =B .36I R =C .48I R =D .64I R= 2.港珠澳大桥桥隧全长55千米,其中主桥长29.6千米,一辆汽车从主桥通过时,汽车的平均速度 v (千米/时)与时间 t (小时)的函数关系式为( )A .55t v =B .25.4v t =C .v =29.6tD .29.6v t= 3.研究发现,近视镜的度数y (度)与镜片焦距x (米)成反比例函数关系,小明佩戴的400度近视镜片的焦距为0.25米,经过一段时间的矫正治疗加之注意用眼健康,现在镜片焦距为0.4米,则小明的近视镜度数可以调整为( )A .300度B .500度C .250度D .200度 4.在显示汽车油箱内油量的装置模拟示意图中,电压U 一定时,油箱中浮子随油面下降而落下,带动滑杆使滑动变阻器滑片向上移动,从而改变电路中的电流,电流表的示数对应油量体积,把电流表刻度改为相应油量体积数,由此知道油箱里剩余油量.在不考虑其他因素的条件下,油箱中油的体积V 与电路中总电阻0R R R R =+总总()是反比例关系,电流I 与R 总也是反比例关系,则I 与V 的函数关系是( )A .反比例函数B .正比例函数C .二次函数D .以上答案都不对 5.在压力不变的情况下,某物体所受到的压强P (Pa )与它的受力面积S (2m )之间成反比例函数关系,且当S =0.1时,P =1000.下列说法中,错误..的是( ) A .P 与S 之间的函数表达式为100P S =B .当S =0.4时,P =250C .当受力面积小于20.2m 时,压强大于500PaD .该物体所受到的压强随着它的受力面积的增大而增大6.学校的自动饮水机,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降.此时水温y (℃)与通电时间(min)x 成反比例关系.当水温降至20℃时,饮水机再自动加热,若水温在20℃时接通电源,水温y 与通电时间x 之间的关系如图所示,则下列说法中正确的是( )A .水温从20℃加热到100℃,需要7minB .水温下降过程中,y 与x 的函数关系式是400y x= C .上午8点接通电源,可以保证当天9:30能喝到不超过40℃的水D .水温不低于30℃的时间为77min 37.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min 的集中药物喷洒,再封闭宿舍10min ,然后打开门窗进行通风,室内每立方米空气中含药量()3mg /m y 与药物在空气中的持续时间(min)x 之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )A .经过5min 集中喷洒药物,室内空气中的含药量最高达到310mg /mB .室内空气中的含药量不低于38mg /m 的持续时间达到了11minC .当室内空气中的含药量不低于35mg /m 且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D .当室内空气中的含药量低于32mg /m 时,对人体才是安全的,所以从室内空气中的含药量达到32mg /m 开始,需经过59min 后,学生才能进入室内8.如图,点C 在反比例函数y=k x(x>0)的图象上,过点C 的直线与x 轴,y 轴分别交于点A ,B ,且AB=BC ,△AOB 的面积为1,则k 的值为( )A .1B .2C .3D .4二、填空题9.列车从甲地驶往乙地.行完全程所需的时间()h t 与行驶的平均速度()km/h v 之间的反比例函数关系如图所示.若列车要在2.5h 内到达,则速度至少需要提高到__________km/h .10.如图,一块长方体大理石板的A 、B 、C 三个面上的边长如图所示,如果大理石板的A 面向下放在地上时地面所受压强为m 帕,则把大理石板B 面向下放在地上时,地面所受压强是________m 帕.11.某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空.现在排水量为平均每小时Q立方米,那么将满池水排空所需要的时间为t(小时),写出时间t (小时)与Q之间的函数表达式_____.12.对于函数2yx=,当函数值y<﹣1时,自变量x的取值范围是_______________.13.随着私家车的增加,城市的交通也越来越拥挤,通常情况下,某段高架桥上车辆的行驶速度y(千米/时)与高架桥上每百米拥有车的数量x(辆)的关系如图所示,当10x≥时,y与x成反比例函数关系,当车速度低于20千米/时,交通就会拥堵,为避免出现交通拥堵,高架桥上每百米拥有车的数量x应该满足的范围是________.三、解答题14.某市政府计划建设一项水利工程,工程需要运送的土石方总量为610立方米,某运输公司承担了运送土石方的任务.(1)设该公司平均每天运送土石方总量为y立方米,完成运送任务所需时间为t天.①求y关于t的函数表达式.②若080t<≤时,求y的取值范围.(2)若1辆卡车每天可运送土石方210立方米,工期要求在80天内完成,公司至少要安排多少辆相同型号卡车运输?15.心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课时间的变化而变化.学生的注意力指数y随时间x(分)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)上课后的第5分钟与第30分钟相比较,_______分钟时学生的注意力更集中.(2)分别求出线段AB和双曲线CD的函数关系式.(3)一道数学题,需要讲18分钟,为了学生听课效果较好,要求学生的注意力指数不低于40,那么经过适当的时间安排,教师能否在学生注意力达到所需状态下讲完这道题?16.为加强生态文明建设,某市环保局对一企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AC表示前3天的变化规律,第3天时硫化物的浓度降为4.5mg/L.从第3天起,所排污水中硫化物的浓度y与时间x满足下面表格中的关系:时间x(天) 3 5 6 9 ……硫化物的浓度y(mg/L) 4.5 2.7 2.25 1.5 ……(1)在整改过程中,当0≤x<3时,硫化物的浓度y与时间x的函数表达式;(2)在整改过程中,当x≥3时,硫化物的浓度y与时间x的函数表达式;(3)该企业所排污水中硫化物的浓度能否在15天以内不超过最高允许的1.0mg/L ?为什么?17.设函数y 1=k x ,y 2=﹣k x(k >0). (1)当2≤x ≤3时,函数y 1的最大值是a ,函数y 2的最小值是a ﹣4,求a 和k 的值.(2)设m ≠0,且m ≠﹣1,当x =m 时,y 1=p ;当x =m +1时,y 1=q .圆圆说:“p 一定大于q ”.你认为圆圆的说法正确吗?为什么?18.当下教育主管部门提倡加强高效课堂建设,要求教师课堂上要精讲,把时间、思考、课堂还给学生.通过实验发现:学生在课堂上听课注意力指标随上课时间的变化而变化,上课开始后,学生的学习兴趣递增,中间一段时间,学生的兴趣保持平稳高效状态,后阶段注意力开始分散.学生注意力指标y 随时间x (分钟)变化的函数图象如图所示,当010x ≤<和1020x ≤<时,图象是线段,当2045x ≤≤时,图象是反比例函数的一部分.(1)求点A 对应的指标值.(2)如果学生在课堂上的注意力指标不低于30属于学习高效阶段,请你求出学生在课堂上的学习高效时间段。
华东师大版九年级下册数学习题课件 第26章 二次函数y=a(x-h)2的图象与性质
九年级下册 华师版
第26章 二次函数
26.2.2 二次函数y=ax2+bx+c的图象与性质
第2课时 二次函数y=a(x-h)2的图象与性质
1.如果将抛物线y=x2向右平移1个单位,
那么所得的抛物线的表达式是( C )
A.y=x2-1
B.y=x2+1
C.y=(x-1)2
D.y=(x+1)2
2得.到把的抛抛物物线线y=所1对 2 (应x-的1二)2向次左函平数移的3表个达单式位为,y_=__12__(_x_+__2_)_2_.
3.抛物线y=12 (x+3)2的开口向___上_;对称轴是直线___x_=___-_;3 当x=_-___3时,y有最__小__值,这个值为___0_; 当x<__-__时3 ,y随x的增大而减小.
4.已知函数y=-(x-1)2的图象上两点A(2,y1),B(a,y2),
其中a>2,则y1与y2的大小关系是y1_>___y2.(填“<”“>”或“=”)
∴M(-2,0).∴S△MAB=12 ×|4-(-2)|×|-48|=144
19.(南阳实验中学模拟)如图,已知二次函数y=(x+2)2的图象与x轴 交于点A,与y轴交于点B. (1)写出点A,B的坐标; (2)求S△AOB的值; (3)求抛物线的对称轴; (4)在对称轴上是否存在一点P,使以P,A,O,B为顶点的四边形 为平行四边形?若存在,求出P点的坐标;若不存在,请说明理由.
8.在平面直角坐标系中,函数y=-x+1与y=-32 (x-1)2的图象大致 是( D )
9.(教材练习第1题变式)在平面直角坐标系中画出函数 y=-12 (x-3)2的图象. (1)指出该函数图象的开口方向、对称轴和顶点坐标; (2)说明该函数图象与二次函数y=-12 x2的图象的关系; (3)根据图象说明,何时y随x的增大而减小.
2022年精品解析沪科版九年级数学下册第26章概率初步同步练习练习题(精选含解析)
沪科版九年级数学下册第26章概率初步同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法中正确的是()A.一组数据2、3、3、5、5、6,这组数据的众数是3B.袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是0.1C.为了解长沙市区全年水质情况,适合采用全面调查D.画出一个三角形,其内角和是180°为必然事件2、将7个分别标有数字﹣3,﹣2,﹣1,0,1,2,3的小球放到一个不透明的袋子里,它们大小相同,随机摸取一个小球将其标记的数字记为m,则使得二次函数y=﹣12x2﹣3x+m﹣2与x轴有交点,且关于x的分式方程11133mxx x-+=--有解的概率是()A.67B.57C.47D.373、做随机抛掷一枚纪念币的试验,得到的结果如下表所示:下面有3个推断:①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.其中所有合理推断的序号是()A.②B.①③C.②③D.①②③4、下列事件中,是必然事件的是()A.如果a2=b2,那么a=bB.车辆随机到达一个路口,遇到红灯C.2021年有366天D.13个人中至少有两个人生肖相同5、一个不透明的盒子中装有2个白球,5个红球,这些球除颜色外其他都相同.则在下列说法中正确的是()A.无放回的从中连续摸出三个红球是随机事件B.从中摸出一个棕色球是随机事件C.无放回的从中连续摸出两个白球是不可能事件D.从中摸出一个红色球是必然事件6、下列事件中是必然事件的是()A.小菊上学一定乘坐公共汽车B.某种彩票中奖率为1%,买10000张该种票一定会中奖C .一年中,大、小月份数刚好一样多D .将豆油滴入水中,豆油会浮在水面上7、下列事件是必然事件的是( )A .明天一定是晴天B .购买一张彩票中奖C .小明长大会成为科学家D .13人中至少有2人的出生月份相同8、若随意向如图所示的正方形内抛一粒石子,则石子落在阴影部分的概率是( )A .2π-1 B .14π- C .2π D .19、明明和强强是九年级学生,在本周的体育课体能检测中,检测项目有跳远,坐位体前屈和握力三项.检测要求三选一,并且采取抽签方式取得,那么他们两人都抽到跳远的概率是( ).A .13 B .19 C .23 D .2910、投掷一枚质地均匀的硬币m 次,正面向上n 次,下列表达正确的是( )A .n m 的值一定是12B .n m 的值一定不是12C .m 越大,n m 的值越接近12D .随着m 的增加,n m 的值会在12附近摆动,呈现出一定的稳定性 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、从﹣2,1两个数中随机选取一个数记为m ,再从﹣1,0,2三个数中随机选取一个数记为n ,则m 、n 的取值使得一元二次方程x 2﹣mx +n =0有两个不相等的实数根的概率是 _____.2、在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出两个球,则摸到两个都是红球的概率是_______.3、某射击运动员在同一条件下的射击成绩记录如下:通过计算频率,估计这名运动员射击一次时“射中9环以上”的概率是______(结果保留小数点后一位).4、从3,π11这四个数中选一个数,选出的这个数是无理数的概率为___. 5、袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3,绿色卡片两张,标号分别为1,2,若从五张卡片中任取两张,则两张卡片的颜色不同且标号之和小于4的概率为______.三、解答题(5小题,每小题10分,共计50分)1、同时掷两枚质地均匀的骰子,两枚骰子分别记为第1枚和第2枚,下表列举出了所有可能出现的结果.(1)由上表可以看出,同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性______(填“相等”或者“不相等”);(2)计算下列事件的概率:①两枚骰子的点数相同;②至少有一枚骰子的点数为3.2、已知关于x的一元二次方程14x2+bx+c=0.(1)c=2b﹣1时,求证:方程一定有两个实数根.(2)有甲、乙两个不透明的布袋,甲袋中装有3个除数字外完全相同的小球,分别标有数字1,2,3,乙袋中装有4个除数字外完全相同的小球,分别标有数字1,2,3,4,从甲袋中随机抽取一个小球,记录标有的数字为b,从乙袋中随机抽取一个小球,记录标有的数字为c,利用列表法或者树状图,求b、c的值使方程14x2+bx+c=0有两个相等的实数根的概率.3、某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A、B、C依次表示这三个诵读材料),将A、B、C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小华和小敏参加诵读比赛,比赛时小华先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小敏从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小华诵读《弟子规》的概率是.(2)请用列表法或画树状图法求小华和小敏诵读两个不同材料的概率.4、某商家销售一批盲盒,每一个看上去无差别的盲盒内含有A,B,C,D四种玩具中的一种,抽到玩具B的有关统计量如表所示:(1)估计从这批盲盒中任意抽取一个是玩具B的概率是;(结果保留小数点后两位)(2)小明从分别装有A,B,C,D四种玩具的四个盲盒中随机抽取两个,请利用画树状图或列表的方法,求抽到的两个玩具恰为玩具A和玩具C的概率.5、长沙作为新晋的网红城市,旅游业快速发展,岳麓区共有A、B、C、D、E等网红景点,区旅游部门统计绘制出2021年“国庆”长假期间旅游情况统计图(不完整)如下所示,根据相关信息解答下列问题:(1)2021年“国庆”长假期间,岳麓区旅游景点共接待游客万人.并补全条形统计图;(2)在等可能性的情况下,甲、乙两个旅行团在A、B、C、D四个景点中选择去同一景点的概率是多少?请用画树状图或列表加以说明.-参考答案-一、单选题1、D【分析】根据统计调查、事件的发生可能性与概率的求解方法即可依次判断.【详解】A. 一组数据2、3、3、5、5、6,这组数据的众数是3和5,故错误;B. 袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是111,故错误; C. 为了解长沙市区全年水质情况,适合采用抽样调查,故错误;D. 画出一个三角形,其内角和是180°为必然事件,正确;故选D .【点睛】此题主要考查统计调查、概率相关知识,解题的关键是熟知概率公式的求解.2、B【分析】根据抛物线与x 轴有交点,计算出52m ≥-,根据分式方程11133mx x x -+=--有解,计算出1m ≠-,再在3,2,1,0,1,2,3---中找出满足的数,利用概率公式求解. 【详解】 解:21322y x x m =--+-与x 轴有交点, 则21(3)4(2)02m ⎛⎫=--⨯--≥ ⎪⎝⎭, 解得:52m ≥-, 11133mx x x -+=--有解, 则5(1)m x =+,即1m ≠-,在3,2,1,0,1,2,3---中,满足52m ≥-且1m ≠-有:2,0,1,2,3-,共5个, 有概率公式知概率为:57=P , 故选:B .【点睛】本题考查了二次函数与坐标轴交点的问题、分式方程、概率,解题的关键是求出m 的取值范围后,确定满足条件的个数.3、C【分析】根据概率公式和图表给出的数据对各项进行判断,即可得出答案.【详解】解:①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在什么数值附近摆动,才能用频率估计概率,故错误; ②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;正确;③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.正确;故选:C .【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.4、D【分析】在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件;利用概念逐一分析即可得到答案.【详解】=±,原说法是随机事件,故A不符合题意;解:如果a2=b2,那么a b车辆随机到达一个路口,遇到红灯,是随机事件,故B不符合题意;2021年是平年,有365天,原说法是不可能事件,故C不符合题意;13个人中至少有两个人生肖相同,是必然事件,故D符合题意,故选:D.【点睛】本题考查的是必然事件的概念,不可能事件,随机事件的含义,掌握“必然事件的概念”是解本题的关键.5、A【分析】随机事件是在一定条件下,可能发生,也可能不发生的事件,必然事件是一定会发生的,不受外界影响的,发生概率是100%,不可能事件一定不会发生,概率是0根据事件的定义与分类对各选项进行辨析即可.【详解】无放回的从中连续摸出三个红球可能会发生,也可能不会发生是随机事件,故选项A正确;一个不透明的盒子中装有2个白球,5个红球,没有棕色球,从中摸出一个棕色球是不可能事件,故选项B不正确;无放回的从中连续摸出两个白球可能会发生,也可能不会发生是随机事件,故选项C不正确;一个不透明的盒子中装有2个白球,5个红球,从中摸出一个红色球可能会发生,也可能不会发生是随机事件,故选项D不正确.故选A.【点睛】本题考查随机事件,必然事件,不可能事件,掌握事件识别方法与分类标准是解题关键.6、D【分析】必然事件就是一定发生的事件,根据定义即可解答.【详解】解:A、小菊上学乘坐公共汽车是随机事件,不符合题意;B、买10000张一定会中奖也是随机事件,尽管中奖率是1%,不符合题意;C、一年中大月份有7个,小月份有5个,不相等,是不可能事件,不符合题意;D、常温下油的密度<水的密度,所以油一定浮在水面上,是必然事件,符合题意.故选:D.【点睛】用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、D【分析】必然事件是在一定条件下,一定会发生的事件;根据定义对选项进行判断,得出结果.【详解】解:A、B、C选项中的事件都是随机事件,不符合要求;D选项中13人中至少有2人的出生月份相同是必然事件,符合要求;故选D.【点睛】本题考查了必然事件.解题的关键在于正确理解必然事件与随机事件的定义.8、A【分析】设正方形ABCD 的边长为a ,然后根据石子落在阴影部分的概率即为阴影部分面积与正方形面积的比,由此进行求解即可.【详解】解:如图所示,设正方形ABCD 的边长为a ,∵四边形ABCD 是正方形,∴∠C =90°,∴()=2BCD BCD S S S -△阴影扇形22901=23602a a π⎛⎫︒⋅⋅- ⎪︒⎝⎭ 222a a π=-, ∴222212ABCD a a S S a ππ-==-阴影, ∴石子落在阴影部分的概率是12π-, 故选A .【点睛】本题主要考查了几何概率,正方形的性质,扇形面积公式,解题的关键在于能够根据题意得到石子落在阴影部分的概率即为阴影部分面积与正方形面积的比.9、B【分析】根据题意,采用列表法或树状图法表示出所有可能,然后找出满足条件的可能性,即可得出概率.【详解】解:分别记跳远为“跳”,坐位体前屈为“坐”,握力为“握”,列表如下:由表中可知,共有9种不同得结果,两人都抽到跳远的只有1种可能,则两人抽到跳远的概率为:19P ,故选:B.【点睛】题目主要考查利用树状图或列表法求概率,熟练掌握树状图法或列表法是解题关键.10、D【分析】根据频率与概率的关系以及随机事件的定义判断即可【详解】投掷一枚质地均匀的硬币正面向上的概率是12,而投掷一枚质地均匀的硬币正面向上是随机事件,n m 是它的频率,随着m的增加,nm的值会在12附近摆动,呈现出一定的稳定性;【点睛】本题考查对随机事件的理解以及频率与概率的联系与区别.解题的关键是理解随机事件是都有可能发生的时间.二、填空题1、1 3【分析】先画树状图列出所有等可能结果,从中找到使方程有两个不相等的实数根,即m>n的结果数,再根据概率公式求解可得.【详解】解:画树状图如下:由树状图知,共有12种等可能结果,其中能使方程x2-mx+n=0有两个不相等的实数根,即m2-4n>0,m2>4n的结果有4种结果,∴关于x的一元二次方程x2-mx+n=0有两个不相等的实数根的概率是41 123,故答案为:13.【点睛】本题是概率与一元二次方程的根的判别式相结合的题目.正确理解列举法求概率的条件以及一元二次方程有根的条件是关键.2、1 6先用列表法分析所有等可能的结果和摸到两个都是红球的结果数,然后根据概率公式求解即可.【详解】解:记红球为12,a a ,白球为12,b b ,列表得:∵一共有12种情况,摸到两个都是红球有2种,∴P (两个球都是红球)21==126, 故答案是16. 【点睛】本题主要考查了用列表法或画树状图法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.3、0.8【分析】重复试验次数越多,其频率越能估计概率,求出射击1000次时的频率即可.【详解】解:由题意可知射击1000次时,运动员射击一次时“射中9环以上”的频率为8010.8011000= ∴用频率估计概率为0.801,保留小数点后一位可知概率值为0.8故答案为:0.8.【点睛】 本题考查了概率.解题的关键在于明确频率估计概率时要在重复试验次数尽可能多的情况下. 4、12【分析】确定无理数的个数,利用概率公式计算.【详解】解:3,π11这四个数中无理数有π ∴选出的这个数是无理数的概率为2142=, 故答案为:12.【点睛】此题考查了无理数的定义,概率的计算公式,正确判断无理数的解题的关键.5、310 【分析】从五张卡片中任取两张的所有可能情况,用列举法求得有10种情况,其中两张卡片的颜色不同且标号之和小于4的有3种情况,从而求得所求事件的概率.【详解】从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1绿1,红1绿2,红2红3,红2绿1,红2绿2,红3绿1,红3绿2,绿1绿2.其中两张卡片的颜色不同且标号之和小于4的有3种情况:红1绿1,红1绿2,红2绿1.故所求的概率为P=3 10;故答案为:3 10.【点睛】本题考查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,应用列举法来解题是这一部分的最主要思想,属于基础题.三、解答题1、(1)相等;(2)①16;②1136【分析】(1)根据两枚骰子质地均匀,可知同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相等;(2)①先根据表格得到两枚骰子的点数相同(记为事件A)的结果有6种,然后利用概率公式求解即可;②先根据表格得到至少有一枚骰子的点数为3(记为事件B)的结果有11种,然后利用概率公式求解即可.【详解】解:(1)∵两枚骰子质地均匀,∴同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相等;故答案为:相等;(2)①由表格可知两枚骰子的点数相同(记为事件A)的结果有6种,即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),∴()61366P A == ②由表格可知至少有一枚骰子的点数为3(记为事件B )的结果有11种,∴()1136P B =. 【点睛】本题主要考查了列表法求解概率,熟知列表法求解概率是解题的关键.2、(1)证明见解析;(2)16. 【分析】(1)把c =2b ﹣1代入14x 2+bx +c =0.利用一元二次方程根的判别式即可得答案; (2)根据方程14x 2+bx +c =0有两个相等的实数根,利用判别式可得b 与c 的关系,画出树状图,得出所有可能情况数及符合b 与c 的关系的情况数,利用概率公式即可得答案.【详解】(1)∵c =2b ﹣1, ∴14x 2+bx +c =14x 2+bx +2b 1-=0. ∵214(21)4b b -⨯-=221b b -+=2(1)b -≥0, ∴方程一定有两个实数根.(2)∵方程14x 2+bx +c =0有两个相等的实数根, ∴2144b c -⨯=0, ∴2c b =,画树状图如下:由树状图可知:所有可能情况数为12种,符合2c b =的情况数为2种,∴b 、c 的值使方程14x 2+bx +c =0有两个相等的实数根的概率为212=16. 【点睛】本题考下一元二次方程的根的判别式及树状图法或列表法求概率,对于一元二次方程20ax bx c ++=(0a ≠),根的判别式为△=24b ac -,当△>0时,方程有两个不相等的实数根,当△=0时,方程有两个相等的实数根,当△<0时,方程没有实数根;熟练掌握根的判别式及概率公式是解题关键.3、(1)13;(2)23【分析】(1)直接根据概率公式求解;(2)利用列表法展示所有9种等可能性结果,再找出小华和小敏诵读两个不同材料的结果数,然后根据概率公式求解.【详解】解:(1)小华诵读《弟子规》的概率=13; 故答案为:13;(2)列表得:由表格可知,共有9种等可能性结果,其中小华和小敏诵读两个不同材料的结果有6种,∴P(小华和小敏诵读两个不同材料)=62 93【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.4、(1)0.28;(2)1 6【分析】(1)由表中数据可判断频率在0.28左右摆动,利用频率估计概率可判断任意抽取一个毛绒玩具是优等品的概率为0.28;(2)先列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.(1)解:从这批盲盒中任意抽取一个是玩具B的概率是0.28,故答案为0.28.(2)列表为:由上表可知,从四种玩具的四个盲盒中随机抽取两个共有12种等可能结果,其中恰为玩具A和玩具C的结果有2种,所以恰为玩具A和玩具C的概率P=21 126.【点睛】本题考查了利用频率估计概率及用列表法或树状图法求概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.5、(1)50,见解析;(2)14,见解析【分析】(1)由A类景区有15万人,占比30%,从而可得游客的总人数,再由总人数乘以B类的占比得到B 类的人数,再补全图形即可;(2)先画树状图得到选择的所有的等可能的结果数16种,同时得到选择同一景区的等可能的结果数有4种,再利用概率公式计算即可.【详解】解:(1)岳麓区旅游景点共接待游客15÷30%=50(万人),B景点的人数为50×24%=12(万人),补全条形图如下:(2)画树状图如图所示:∵共有16种等可能出现的结果,其中甲、乙两个旅行团在A、B、C、D四个景点中选择去同一景点的结果有4种,∴甲、乙两个旅行团在A、B、C、D四个景点中选择去同一景点的概率=41 164.【点睛】本题考查的是从条形图与扇形图中获取信息,补全条形图,利用列表法或画树状图求简单随机事件的概率,熟练的掌握统计与概率中的基础知识是解题的关键.。
2022年沪科版九年级数学下册第26章概率初步章节测评练习题(含详解)
沪科版九年级数学下册第26章概率初步章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、以下事件为随机事件的是()A.通常加热到100℃时,水沸腾B.篮球队员在罚球线上投篮一次,未投中C.任意画一个三角形,其内角和是360°D.半径为2的圆的周长是42、在一个不透明的盒子中装有红球、白球、黑球共40个,这些球除颜色外无其他差别,在看不见球的条件下,随机从盒子中摸出一个球记录颜色后放回.经过多次试验,发现摸到红球的频率稳定在30%左右,则盒子中红球的个数约为()A.12 B.15 C.18 D.233、任意掷一枚骰子,下列事件中:①面朝上的点数小于1;②面朝上的点数大于1;③面朝上的点数大于0,是必然事件,不可能事件,随机事件的顺序是()A.①②③B.①③②C.③②①D.③①②4、下列事件是必然事件的是()A.抛一枚硬币正面朝上B.若a为实数,则a2≥0C.某运动员射击一次击中靶心D.明天一定是晴天5、某学校九年级为庆祝建党一百周年举办“歌唱祖国”合唱比赛,用抽签的方式确定出场顺序.现有8根形状、大小完全相同的纸签,上面分别标有序号1、2、3、4、5、6、7、8.下列事件中是必然事件的是()A.一班抽到的序号小于6 B.一班抽到的序号为9C.一班抽到的序号大于0 D.一班抽到的序号为76、“2022年春节期间,中山市会下雨”这一事件为()A.必然事件B.不可能事件C.确定事件D.随机事件7、一个不透明的袋子里装有黄球18个和红球若干,小明通过多次摸球试验后发现摸到红球的频率稳定在0.4左右,则袋子里有红球()个.A.12 B.15 C.18 D.548、成语“守株待兔”描述的这个事件是()A.必然事件B.确定事件C.不可能事件D.随机事件9、在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中黑球1个,红球2个,从中随机摸出一个小球,则摸出的小球是黑色的概率是()A.12B.13C.23D.1610、为了深化落实“双减”工作,促进中小学生健康成长,教育部门加大了实地督查的力度,对我校学生的作业、睡眠、手机、读物、体质“五项管理”要求的落实情况进行抽样调查,计划从“五项管理”中随机抽取两项进行问卷调查,则抽到“作业”和“手机”的概率为()A.14B.15C.110D.225第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个不透明的袋子装有除颜色外其余均相同的2个红球和m个黄球,随机从袋中摸出个球记录下颜色,再放回袋中摇匀大量重复试验后,发现摸出红球的频率稳定在0.2附近,则m的值为_________.2、社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里,装有20个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后,从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象,如图所示,经分析可以推断“摸出黑球”的概率约为_______.3、在不透明的袋中装有仅颜色不同的一个红球和一个蓝球,从此袋中随机摸出一个小球,然后放回,再随机摸出一个小球,则两次摸出的球颜色不同的概率是______4、在一个不透明袋子中有3个红球和2个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则取出红球的概率是________.5、如图,一个可以自由转动且质地均匀的转盘,被分成6个大小相同的扇形,指针是固定的,当转盘停止时,指针指向任意一个扇形的可能性相同(指针指向两个扇形的交线时,当作指向右边的扇形).把部分扇形涂上了灰色,则指针指向灰色区域的概率为______.三、解答题(5小题,每小题10分,共计50分)1、如图,转盘黑色扇形和白色扇形的圆心角分别为120°和240°.(1)让转盘自由转动一次,指针落在白色区域的概率是多少?(2)让转盘自由转动两次,请用树状图或者列表法求出两次指针都落在白色区域的概率.(注:当指针恰好指在分界线上时,无效重转)2、已知关于x的一元二次方程14x2+bx+c=0.(1)c=2b﹣1时,求证:方程一定有两个实数根.(2)有甲、乙两个不透明的布袋,甲袋中装有3个除数字外完全相同的小球,分别标有数字1,2,3,乙袋中装有4个除数字外完全相同的小球,分别标有数字1,2,3,4,从甲袋中随机抽取一个小球,记录标有的数字为b,从乙袋中随机抽取一个小球,记录标有的数字为c,利用列表法或者树状图,求b、c的值使方程14x2+bx+c=0有两个相等的实数根的概率.3、为提高学生的安全意识,学校就学生对校园安全知识的了解程度,对部分学生进行了问卷调查,将收集信息进行统计分成A、B、C、D四个等级,其中A:非常了解;B:基本了解;C:了解很少;D:不了解.并将结果绘制成两幅不完整的统计图.请你根据统计信息解答下列问题:(1)接受问卷调查的学生共有人;(2)求扇形统计图中“D”等级的扇形的圆心角的度数,并补全条形统计图;(3)全校约有学生1500人,估计“A”等级的学生约有多少人?(4)九年一班从“A”等级的甲、乙、丙、丁4名同学中随机抽取2人参加学校竞赛,请用列表或树状图的方法求出恰好抽到甲、丁同学的概率.4、苗木种植不仅绿了家园,助力脱贫攻坚,也成为乡村增收致富的“绿色银行”.小王承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它的成活率如下表所示:根据以上信息,回答下列问题:(1)当移植的棵数是7000时,表格记录成活数是________,那么成活率x是________(2)随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是________(3)若小王移植10000棵这种树苗,则可能成活________;(4)若小王移植20000棵这种树苗,则一定成活18000棵.此结论正确吗?说明理由.5、“双减”意见下,各级教育行政部门都对课后作业作了更明确的要求.为了解某学校七年级学生课后作业时长情况,某部门针对某校七年级学生进行了问卷调查,调查结果分四类显示:A表示“40分钟以内完成”,B表示“40—70分钟以内完成”,C表示“70—90分钟以内完成”,D表示“90分钟以上完成”.根据调查结果,绘制成两种不完整的统计图.请结合统计图,回答下列问题.(1)这次调查的总人数是人;(2)扇形统计图中,B类扇形的圆心角是°;(3)在D类学生中,有2名男生和2名女生,再需从这4名学生中抽取2名学生作进一步访谈调查,请用树状图或列表的方法,求所抽2名学生恰好是1名男生和1名女生的概率.-参考答案-一、单选题1、B【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A.通常加热到100℃时,水沸腾是必然事件;B.篮球队员在罚球线上投篮一次,未投中是随机事件;C.任意画一个三角形,其内角和是360°是不可能事件;D.半径为2的圆的周长是4 是必然事件;故选:B.【点睛】考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、A【分析】由题意可设盒子中红球的个数x ,则盒子中球的总个数x ,摸到红球的频率稳定在30%左右,根据频率与概率的关系可得出摸到红球的概率为30%,再根据概率的计算公式计算即可.【详解】解:设盒子中红球的个数x ,根据题意,得:30%40x 解得x =12,所以盒子中红球的个数是12,故选:A .【点睛】本题主要考查了利用频率估计概率以及概率求法的运用,利用概率的求法估计总体个数,利用如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=n m ;频率与概率的关系生:一般地,在大量的重复试验中,随着试验次数的增加,事件A 发生的频率会稳定于某个常数p ,我们称事件A 发生的概率为p .3、D【分析】必然事件是一定会发生的事件;不可能事件是一定不会发生的事件;随机事件是某次试验中可能发生也可能不发生的事件;面朝上可能结果为点数123456、、、、、;根据要求判断,进而得出结论. 【详解】解:①中面朝上的点数小于1是一定不会发生的,故为不可能事件;②中面朝上的点数大于1是有可能发生有可能不发生的,故为随机事件;③中面朝上的点数大于0是一定会发生的,故为必然事件.依据要求进行排序为③①②故选D.【点睛】本题考察了事件.解题的关键在于区分各种事件的概念.4、B【分析】根据必然事件的定义对选项逐个判断即可.【详解】解:A、抛一枚硬币正面朝上,是随机事件,不符合题意;B、若a为实数,则a2≥0,是必然事件,符合题意;C、某运动员射击一次击中靶心,是随机事件,不符合题意;D、明天一定是晴天,是随机事件,不符合题意,故选:B【点睛】本题主要考查了必然事件的定义,熟练掌握必然事件,在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件是解题的关键.5、C【分析】必然事件,是指在一定条件下一定会发生的事件;根据必然事件的定义对几个选项进行判断,得出答案.【详解】解:A中一班抽到的序号小于6是随机事件,故不符合要求;B中一班抽到的序号为9是不可能事件,故不符合要求;C中一班抽到的序号大于0是必然事件,故符合要求;D中一班抽到的序号为7是随机事件,故不符合要求;故选C.【点睛】本题考察了必然事件.解题的关键在于区分必然、随机与不可能事件的含义.6、D【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:“2022年年春节期间,中山市会下雨”这一事件为随机事件,故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、A【分析】根据“大量重复试验中事件发生的频率逐渐稳定到的常数可以估计概率”直接写出答案即可.【详解】解:设有红色球x个,根据题意得:0.418x x=+, 解得:x =12,经检验,x =12是分式方程的解且符合题意.故选:A【点睛】本题考查了利用频率估计概率的知识,解题的关键是能够根据摸到红球的频率求得红球的个数.8、D【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【详解】解:“守株待兔”是随机事件.故选D .【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、B【分析】用黑色的小球个数除以球的总个数即可解题.【详解】解:从中摸出一个小球,共有3种可能,其中摸出的小球是黑色的情况只有1种, 故摸出的小球是黑色的概率是:13故选:B.【点睛】本题考查概率公式,解题关键是掌握随机事件发生的概率.10、C【分析】根据列表法或树状图法表示出来所有可能,然后找出满足条件的情况,即可得出概率.【详解】解:将作业、睡眠、手机、读物、体质“五项管理”简写为:业、睡、机、读、体,利用列表法可得:根据表格可得:共有20种可能,满足“作业”和“手机”的情况有两种,∴ 抽到“作业”和“手机”的概率为:212010P==,故选:C.【点睛】题目主要考查列表法或树状图法求概率,熟练掌握列表法或树状图法是解题关键.二、填空题1、8【分析】首先根据题意可取确定摸出红球的概率为0.2,然后根据概率公式建立方程求解即可.【详解】解:∵大量重复试验后,发现摸出红球的频率稳定在0.2附近,∴摸出红球的概率为0.2,由题意,20.22m=+,解得:8m=,经检验,8m=是原方程的解,且符合题意,故答案为:8.【点睛】本题考查由频率估计概率,以及已知概率求数量;大量重复试验后,某种情况出现的频率稳定在某个值附近时,这个值即为该事件发生的概率,掌握概率公式是解题关键.2、0.2【分析】根据“摸出黑球的频率”与“摸球的总次数”的关系图象,即可得出“摸出黑球”的概率.【详解】解:由图可知,摸出黑球的概率约为0.2,故答案为:0.2.【点睛】本题主要考查用频率估计概率,需要注意的是试验次数要足够大,次数太少时不能估计概率.3、12【分析】根据题意,列表分析所有可能,然后运用概率公式求解即可.【详解】解:列表如下,R表示红球,B表示蓝球总共4种情况,两次摸出的球颜色不同的2种.所以两次摸出的球颜色不同的概率是21 42故答案是:12.【点睛】本题考查了列表法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果数,概率=所求情况数与总情况数之比.4、35##【分析】用列举的方法一一列出可能出现的情况,进而即可求得恰好是红球的概率.【详解】解:根据题意,可能出现的情况有:红球;红球;红球;黑球;黑球;则恰好是红球的概率是35,故答案为:35.【点睛】本题主要考查了简单概率的计算,通过列举法进行计算是解决本题的关键.5、12【分析】指针指向灰色区域的概率就是灰色区域的面积与总面积的比值,计算面积比即可.【详解】解:观察转盘灰色区域的面积与总面积的比值为12故答案为:12.【点睛】本题考查几何概率.解题的关键在于求出所求事件的面积与总面积的比值.三、解答题1、(1)23;(2)见解析,49【分析】(1)将120°作为1份,可知白色扇面占2份,黑色扇面占1份,利用概率公式计算即可;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出概率可得.【详解】解:(1)将120°作为1份,可知白色扇面占2份,黑色扇面占1份,它们发生的可能性相同,让转盘自由转动一次,共三种可能,指针落在白色区域有2种,所以,概率是23;(2)设白色扇形两块和黑色扇形的一块分别为1,2,3,画树状图得:由树状图知共有9种等可能结果,其中指针一次落在白色区域,另一次落在黑色区域的有4种结果,所以指针一次落在白色区域,另一次落在黑色区域的概率为49.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.2、(1)证明见解析;(2)16.【分析】(1)把c=2b﹣1代入14x2+bx+c=0.利用一元二次方程根的判别式即可得答案;(2)根据方程14x2+bx+c=0有两个相等的实数根,利用判别式可得b与c的关系,画出树状图,得出所有可能情况数及符合b与c的关系的情况数,利用概率公式即可得答案.【详解】(1)∵c=2b﹣1,∴14x2+bx+c=14x2+bx+2b1 =0.∵214(21)4b b -⨯-=221b b -+=2(1)b -≥0, ∴方程一定有两个实数根.(2)∵方程14x 2+bx +c =0有两个相等的实数根, ∴2144b c -⨯=0, ∴2c b =,画树状图如下:由树状图可知:所有可能情况数为12种,符合2c b =的情况数为2种,∴b 、c 的值使方程14x 2+bx +c =0有两个相等的实数根的概率为212=16. 【点睛】本题考下一元二次方程的根的判别式及树状图法或列表法求概率,对于一元二次方程20ax bx c ++=(0a ≠),根的判别式为△=24b ac -,当△>0时,方程有两个不相等的实数根,当△=0时,方程有两个相等的实数根,当△<0时,方程没有实数根;熟练掌握根的判别式及概率公式是解题关键.3、(1)40;(2)72°,见解析;(3)225人;(4)16【分析】(1)C 组:了解很少这个小组有16人,占比40%,由1640%40÷=可得答案;(2)利用D 组占比乘以360︒即可得到D 组所占的圆心角的大小,再求解B 组人数,补全图形即可;(3)由1500乘以A 组的占比即可得到答案;(4)先列表,可得所有的等可能的结果有12种,刚好抽到甲和丁同学的情况有2种,再利用概率公式可得答案.【详解】解:(1)C组:了解很少这个小组有16人,占比40%,∴接受问卷调查的学生共有1640%40÷=人,故答案为:40;(2)D组占比:8=20%, 40∴扇形统计图中“D”等级的扇形的圆心角的度数为:20%360=72⨯︒︒,B组人数为:40616810,所以补全条形统计图如下:(3)全校约有学生1500人,估计“A”等级的学生约有:61500=22540(人);(4)列表如下:所有的等可能的结果有12种,刚好抽到甲和丁同学的情况有2种,所以刚好抽到甲和丁同学的概率是:21=126.【点睛】本题考查的是从条形图与扇形图中获取信息,扇形的圆心角的计算,补画条形图,利用样本估计总体,利用列表法求解简单随机事件的概率,掌握以上基础知识是解题的关键.4、(1)6335;0.905;(2)0.900;(3)9000棵;(4)此结论不正确,理由见解析【分析】(1)根据表格中的数据求解即可;(2)随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900;(3)利用成活数=总数×成活概率即可得到答案;(4)根据概率只是用来衡量在一定条件下,某事件发生的可能性大小,并不代表事件一定会发生,即可得到答案.(1)解:由表格可知,当移植的棵数是7000时,表格记录成活数是6335,∴成活率63350.9057000x==,故答案为:6335;0.905;(2)解:∵大量重复试验下,频率的稳定值即为概率值,∴可以估计树苗成活的概率是0.900,故答案为:0.900;(3)解:由题意得:若小王移植10000棵这种树苗,则可能成活100000.9009000⨯=课树苗,故答案为:9000棵;(4)解:若小王移植20000棵这种树苗,则一定成活18000棵.此结论不正确,理由如下:∵概率只是用来衡量在一定条件下,某事件发生的可能性大小,并不代表事件一定会发生,∴若小王移植20000棵这种树苗,不一定能成活18000棵,只能说是可能成活18000棵.【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.5、(1)40;(2)108;(3)2 3【分析】(1)根据A类别人数及其所占百分比可得被调查的总人数;(2)用360°乘以B类别人数所占比例即可;(3)画树状图,共有12种等可能的结果,其中恰好选中1名男生和1名女生的结果数为8种,再根据概率公式求解即可.【详解】解:(1)参加这次调查的学生总人数为6÷15%=40(人);故答案为:40;(2)扇形统计图中,B部分扇形所对应的圆心角是360°×1240=108°,故答案为:108;(3)画树状图为:共有12种等可能的结果,其中恰好选中1名男生和1名女生的结果为8种,∴所抽取的2名学生恰好是1名男生和1名女生的概率为82123.【点睛】本题考查了列表法与树状图法,正确画树状图是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.也考查了统计图.。
2022年必考点解析华东师大版九年级数学下册第26章 二次函数专项训练练习题(无超纲)
华东师大版九年级数学下册第26章 二次函数专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将抛物线y =x 2先向右平移1个单位长度,再向上平移2个单位长度,再次平移后得到的抛物线的表达式为( )A .y =(x ﹣1)2﹣2B .y =(x +1) 2﹣2C .y =(x ﹣1) 2+2D .y =(x +1) 2+22、将二次函数262y x x =+-化成()2y x h k =-+的形式应为( )A .()237y x =++B .()2311y x =-+ C .()2311y x =+- D .()224y x =++ 3、抛物线221y x x =+-的对称轴是( )A .直线2x =B .直线1x =C .直线1x =-D .直线2x =- 4、已知函数()22y x =--的图象上有11,2A y ⎛⎫- ⎪⎝⎭,()21,B y ,()34,C y 三点,则1y ,2y ,3y 的大小关系( )A .123y y y <<B .132y y y <<C .312y y y <<D .321y y y <<5、已知P 1(x 1,y 1),P 2(x 2,y 2)是抛物线y =ax 2+4ax +5上的点,且y 1>y 2.下列命题正确的是( )A .若|x 1+2|<|x 2+2|,则a <0B .若|x 1﹣2|>|x 2﹣2|,则a >0C .若|x 1+2|>|x 2+2|,则a <0D .若|x 1﹣2|<|x 2﹣2|,则a >0 6、抛物线()21232y x =--的顶点坐标是( ) A .()2,3- B .()2,3 C .()2,3- D .()2,3--7、已知方程()()112x b x c x ----=的根是1x m =,2x n =,且m n <.若10b c <-<<,则下列式子中一定正确的是( )A .m b n c <<<B .b m n c <<<C .m n b c <<<D .m b c n <<<8、如图,在Rt ABC 中,90ACB ∠=︒,10AB =,8AC =,E 是ABC 边上一动点,沿A C B →→的路径移动,过点E 作ED AB ⊥,垂足为D .设AD x =,ADE 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )A .B .C .D .9、如图,已知二次函数2(0)y ax bx c a =++≠的图像与x 轴交于点(1,0)-,对称轴为直线1x =.结合图象分析下列结论:①0abc >;②420a b c -+<;③20a c +<;④一元二次方程20cx bx a ++=的两根分别为123,1x x =-=;⑤若(,)m n m n <为方程(1)(3)10a x x +-+=的两个根,则1m <-且3n >.其中正确的结论个数是( )A .2个B .3个C .4个D .5个10、在同一平面直角坐标系xOy 中,一次函数y =2x 与二次函数2y ax a =-的图象可能是( )A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,设点P 是抛物线()231y x =--+的顶点,则点P 到直线3y kx =-的距离的最大值为________.2、从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是()230506h t t t =-≤≤.小球运动的时间是___________s 时,小球最高;小球运动中的最大高度是___________m .3、如图,在平面直角坐标系中,Q 是直线132y x =+上的一个动点,将Q 绕点P (0,1)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为_________.4、已知函数()2211y x =++,当x ______时,y 随x 的增大而减少. 5、已知点()11,y -,()22,y 在抛物线22y x x c =-+上,则1y ,2y 的大小关系是1y ______2y (填“>”,“<”或“=”).6、已知抛物线()20y ax bx c a =++≠上部分点的横坐标x ,纵坐标y 的对应值如下表:那么该抛物线的顶点坐标是______.7、如图,小明在一次高尔夫球训练中,从山坡下P点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD为12米时,球移动的水平距离PD为9米.已知AC PC),洞口A离点P的水平距离PC为12米,则小明这一杆球移动到山坡PA的坡度为1:2(即:洞口A正上方时离洞口A的距离AE为______米.8、已知二次函数y=x2+bx+3图象的对称轴为x=2,则b=________;顶点坐标是________.9、某地的药材批发公司指导农民养植和销售某种药材,经市场调研发现1-8月份这种药材售价(元)与月份之间存在如下表所示的一次函数关系,同时,每千克的成本价(元)与月份之间近似满足如图所示的抛物线,观察两幅图表,试判断_____ 月份出售这种药材获利最大.10、设抛物线2(1)y x a x a =+++,其中a 为实数.将抛物线2(1)y x a x a =+++向上平移2个单位,所得抛物线顶点的纵坐标的最大值是__________三、解答题(5小题,每小题8分,共计40分)1、已知二次函数y =a 2x +2x +c 的图象经过A (﹣1,0),C (0,3).(1)求该二次函数的解析式;(2)结合函数图象直接写出:①当﹣1<x <2时,y 的取值范围;②当y ≤3时,x 的取值范围.2、二次函数y =ax 2+bx +c (a ≠0)的图象经过(3,0)点,当x =1时,函数的最小值为-4.(1)求该二次函数的解析式并画出它的图象;(2)当0<x <4时,结合函数图象,直接写出y 的取值范围;(3)直线x =m 与抛物线y =ax 2+bx +c (a ≠0)和直线y =x -3的交点分别为点C ,点D ,点C 位于点D 的上方,结合函数的图象直接写出m 的取值范围.3、已知抛物线y =﹣x 2﹣2x +a (a ≠0)与y 轴相交于A 点,顶点为M ,直线y =12x a -分别与x 轴、y 轴相交于B 、C 两点,并且与直线MA 相交于N 点.(1)若直线BC 和抛物线有两个不同交点,求a 的取值范围,并用a 表示交点M 、A 的坐标.(2)将NAC 沿着y 轴翻转,若点N 的对称点P 恰好落在抛物线上,AP 与抛物线的对称轴相交于点D ,连接CD ,求a 的值及PCD 的面积.4、王叔叔在某商场销售一种商品,他以每件40元的价格购进这种商品,在销售过程中发现这种商品每天的销售量y (件)与每件的销售单价x (元)满足一次函数关系:2140(40)=-+>y x x .(1)若设利润为w 元,请求出w 与x 的函数关系式.(2)若每天的销售量不少于44件,则销售单价定为多少元时,此时利润最大,最大利润是多少?5、在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质及其应用的过程.以下是我们研究函数y =251x +﹣1的性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在给出的图中补全该函数的大致图象;(2)请根据这个函数的图象,写出该函数的一条性质;(3)已知函数332y x=-+的图象如图所示,请你根据函数的图象,直接写出不等式2353121xx-+<-+的解集,(近似值保留一位小数,误差不超过0.2)-参考答案-一、单选题1、C【解析】【分析】先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到对应点的坐标为(1,2),然后根据顶点式写出平移后的抛物线解析式即可.【详解】解:抛物线y =x 2的顶点坐标为(0,0),点(0,0)先向右平移1个单位长度,再向上平移2个单位长度所得对应点的坐标为(1,2),所以新抛物线的解析式为y =(x ﹣1)2+2,故选:C .【点睛】本题主要考查了二次函数图象的平移,将二次函数图象的平转化为顶点的平移是解答本题的关键.2、C【解析】【分析】利用配方法把二次函数的一般式化为顶点式,判断即可.【详解】解:y =x 2+6x -2=x 2+6x +9-9-2=(x +3)2-11,故选:C .【点睛】本题考查的是二次函数的三种形式,掌握利用配方法把二次函数的一般式化为顶点式的一般步骤是解题的关键.3、C【解析】【分析】抛物线()20y ax bx c a =++≠的对称轴为:2b x a=-,根据公式直接计算即可得. 【详解】解:221y x x =+-,其中:1a =,2b =,1c =-,21221b x a =-=-=-⨯, 故选:C .【点睛】本题考查的是抛物线的对称轴,掌握抛物线的对称轴的公式是解本题的关键,注意对称轴是直线.4、B【解析】【分析】根据抛物线的对称性,增减性,即可得出y 1、y 2、y 3的大小关系.【详解】解:二次函数y =-(x -2)2的图象开口向下,对称轴为直线x =2,∴C (4,y 3)关于对称轴的对称点为(0,y 3),∵-12<0<1<2,∴y 1<y 3<y 2,故选:B .【点睛】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点,熟练掌握二次函数的增减性、对称性是解此题的关键.5、A【解析】【分析】根据题目中的抛物线和二次函数的性质,利用分类讨论的方法可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:解:∵抛物线y=ax2+4ax+5,∴该抛物线的对称轴是直线x=-42aa=-2,A选项:∵|x1+2|<|x2+2|,即|x1-(-2)|<|x2-(-2)|,且y1>y2,∴与对称轴的距离越近,函数值越大,∴a<0,故该选项不符合题;B选项:∵|x1+2|>|x2+2|,即|x1-(-2)|>|x2-(-2)|,且y1>y2,∴与对称轴的距离越近,函数值越小,∴a>0,故该选项不符合题;C、D选项中,P1、P2与对称轴的距离跟本题无关,故两选项均不符合题;故选:A.【点睛】本题考查了二次函数的性质,解答本题的关键是明确题意,观察点到对称轴的距离,结合函数值的大小,进而确定开口方向.6、A【解析】【分析】根据二次函数y=a(x-h)2+k的性质解答即可.【详解】解:抛物线()21232y x =--的顶点坐标是()2,3-, 故选A .【点睛】 本题考查了二次函数y =a (x -h )2+k (a ,h ,k 为常数,a ≠0)的性质,熟练掌握二次函数y =a (x -h )2+k 的性质是解答本题的关键. y =a (x -h )2+k 是抛物线的顶点式,a 决定抛物线的形状和开口方向,其顶点是(h ,k ),对称轴是x =h .7、A【解析】【分析】 将()()112x b x c x ----=看作二次函数()()12y x b x c =---与一次函数1y x =+的交点横坐标为m ,n ,结合图像即可得m b n c <<<.【详解】 将()()112x b x c x ----=变形为 ()()112x b x c x ---=+ 则可理解为二次函数()()12y x b x c =---与一次函数1y x =+的交点横坐标为m ,n 二次函数()()12y x b x c =---与x 轴交点横坐标为b 和c . 如图所示由图象、题意可知c >n ,n >b ,由二次函数、一次函数性质可知1mn k =,1nb k <故m <b则m b n c <<<故选:A .【点睛】 本题考查了二次函数和一次函数图像综合问题,将将()()112x b x c x ----=看作二次函数()()12y x b x c =---与一次函数1y x =+的交点横坐标为m ,n ,再结合图象判断是解题的关键. 8、D【解析】【分析】分两种情况分类讨论:当0≤x ≤6.4时,过C 点作CH ⊥AB 于H ,利用△ADE ∽△ACB 得出y 与x 的函数关系的图象为开口向上的抛物线的一部分;当6.4<x ≤10时,利用△BDE ∽△BCA 得出y 与x 的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.【详解】解:∵90ACB ∠=︒,10AB =,8AC =,∴BC 6=,过CA 点作CH ⊥AB 于H ,∴∠ADE =∠ACB =90°, ∵11681022CH ⨯⨯=⨯⋅, ∴CH =4.8,∴AH 6.4=,当0≤x ≤6.4时,如图1,∵∠A =∠A ,∠ADE =∠ACB =90°,∴△ADE ∽△ACB , ∴AD DE AC BC =,即86x DE =,解得:x =34x , ∴y =12•x •34x =38x 2; 当6.4<x ≤10时,如图2,∵∠B=∠B,∠BDE=∠ACB=90°,∴△BDE∽△BCA,∴BD DE BC AC,即1068x DE-=,解得:x=4043x-,∴y=12•x•4043x-=222033x x-+;故选:D.【点睛】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用分类讨论的思想求出y与x的函数关系式.9、C【解析】【分析】根据图像,确定a,b,c的符号,根据对称轴,确定b,a的关系,当x=-1时,得到a-b+c=0,确定a,c的关系,从而化简一元二次方程20cx bx a++=,求其根即可,利用平移的思想,把y=(1)(3)a x x+-的图像向上平移1个单位即可,确定方程的根.【详解】∵抛物线开口向上,∴a >0,∵抛物线与y 轴的交点在y 轴的负半轴上,∴c <0,∵抛物线的对称轴在y 轴的右边,∴b <0,∴0abc >,故①正确;∵二次函数2(0)y ax bx c a =++≠的图像与x 轴交于点(1,0)-,∴a -b +c =0,根据对称轴的左侧,y 随x 的增大而减小,当x =-2时,y >0即420a b c -+>,故②正确; ∵12b a-=,∴b = -2a ,∴3a +c =0,∴2a +c =2a -3a = -a <0,故③正确;根据题意,得2320ax ax a --+=,∴23210x x +-=, 解得121,13x x ==-,故④错误;∵(1)(3)a x x +-=0,∴123,1x x ==-,∴y =(1)(3)a x x +-向上平移1个单位,得y =(1)(3)a x x +-+1,∴(,)m n m n <为方程(1)(3)10a x x +-+=的两个根,且1m <-且3n >.故⑤正确;故选C .【点睛】本题考查了抛物线的图像与系数的符号,抛物线的对称性,抛物线与一元二次方程的关系,抛物线的增减性,平移,熟练掌握抛物线的性质,抛物线与一元二次方程的关系是解题的关键.10、C【解析】【分析】先由一次函数的性质判断,然后结合二次函数中a >0时,a <0时,分别进行判断,即可得到答案.【详解】解:∵一次函数y =2x ,∴一次函数的图像经过原点,且y 随x 的增大而增大,故排除A 、B 选项; 在二次函数2y ax a =-中,当a >0时,开口向上,且抛物线顶点在y 的负半轴上,当a <0时,开口向下,且抛物线顶点在y 的负半轴上,∴D 不符合题意,C 符合题意;故选:C【点睛】此题主要考查了二次函数与一次函数图象,利用二次函数的图象和一次函数的图象的特点求解.二、填空题1、5【解析】【分析】根据抛物线解析式求出点P 坐标,由直线解析式可知直线3y kx =-恒过点B (0,-3),当PB 与直线3y kx =-垂直时,点P 到直线3y kx =-的距离最大,根据两点间距离公式可出最大距离.【详解】解:∵()231y x =--+∴P (3,1)又直线3y kx =-恒过点B (0,-3),如图,∴当PB 与直线3y kx =-垂直时,点P 到直线3y kx =-的距离最大,此时,5PB =∴点P 到直线3y kx =-的距离的最大值为5故答案为:5.【点睛】本题主要考查了二次函数的性质,以及点到直线间的距离,熟练掌握二次函数的性质是解答本题的关键.2、 3 45【解析】【分析】求得二次函数2305h t t =-的顶点坐标即可.【详解】()223055345h t t t =-=--+,∵-5<0,06t ≤≤,∴当t =3时,h 有最大值,最大值为45.故答案为:3,45.【点睛】本题考查了二次函数的应用,理解题意后将实际问题转换为数学问题是解题的关键.3【解析】【分析】利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.【详解】解:作QM ⊥y 轴于点M ,Q ′N ⊥y 轴于N ,∵∠PMQ =∠PNQ ′=∠QPQ ′=90°,∴∠QPM +∠NPQ ′=∠PQ ′N +∠NPQ ′,∴∠QPM =∠PQ ′N ,在△PQM 和△Q ′PN 中,90PMQ PNQ QPM PQ NPQ PQ ∠=∠'=︒⎧⎪∠=∠'⎨⎪='⎩, ∴△PQM ≌△Q ′PN (AAS ),∴PN =QM ,Q ′N =PM ,设Q (m ,12m +3),∴PM =|12m +2|,QM =|m |,∴ON =|1-m |,∴Q ′(12m +2,1−m ),∴OQ ′2=(12m +2)2+(1−m )2=54m 2+5,当m =0时,OQ ′2有最小值为5,∴OQ【点睛】本题考查的是一次函数图象上点的坐标特征,一次函数的性质,三角形全等,坐标与图形的变换−旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键.4、1<-【解析】【分析】解析式为顶点式,可求得其对称轴,再利用二次函数的增减性可求得答案.【详解】解:()2211y x =++∴抛物线开口向上,对称轴为x =-1,∴当x <-1时,y 随x 的增大而减小,故答案为:1<-.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,其顶点坐标为(h ,k ),对称轴为x=h .5、>【解析】【分析】首先求得抛物线的对称轴和开口方向,可知开口向上对称轴为1x =,根据点与对称轴的距离越远函数值越大即可判断1y ,2y 的大小关系.【详解】解:∵22y x x c =-+中,10a =>,开口向上,对称轴为1x =,∴点与对称轴的距离越远函数值越大点()11,y -,()22,y 在抛物线22y x x c =-+上, ()112,211--=-=12y y ∴>故答案为:>【点睛】本题考查了二次函数2(0)y ax bx c a =++≠的性质,掌握二次函数图象的性质是解题的关键.6、()1,4-【解析】【分析】 观察表格可知该抛物线的对称轴为直线1312x -+==,根据二次函数图像的顶点坐标在对称轴上,在表格中查取点坐标即可.【详解】解:观察表格并由抛物线的图像与性质可知 该抛物线的对称轴为直线1312x -+== ∵顶点坐标在对称轴上∴由表格可知该抛物线的顶点坐标为()1,4- 故答案为:()1,4-.【点睛】本题考查了二次函数的图像与性质.解题的关键在于正确把握二次函数的图像与性质.7、143##243【解析】【分析】分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式,在Rt △PAC 中,利用PA 的坡度为1:2求出AC 的长度,把点A 的横坐标x =12代入抛物线解析式,求出CE ,最后利用AE =CE -AC 得出结果.【详解】解:以P 为原点,PC 所在直线为x 轴建立如图所示的平面直角坐标系,可知:顶点B(9,12),抛物线经过原点,设抛物线的解析式为y=a(x-9)2+12,将点P(0,0)的坐标代入可得:0=a(0-9)2+12,求得a=−427,故抛物线的解析式为:y=-427(x−9)²+12,∵PC=12,:AC PC=1:2,∴点C的坐标为(12,0),AC=6,即可得点A的坐标为(12,6),当x=12时,y=−427(12−9)²+12=323=CE,∵E在A的正上方,∴AE=CE-AC=323-6=143,故答案为:143.【点睛】本题考查了二次函数的应用及解直角三角形的知识,涉及了待定系数法求函数解析式的知识,注意建立数学模型,培养自己利用数学知识解决实际问题的能力,难度一般.8、 4 (2,7)【解析】【分析】由对称轴公式即可求得b ,把解析式化成顶点式即可求得顶点坐标.【详解】解:∵二次函数y =x 2+bx +3图象的对称轴为x =2,∴−2(1)b ⨯-=2, ∴b =4,∴二次函数y =−x 2+4x +3,∵y =−x 2+4x +3=−(x −2)2+7,∴顶点坐标是(2,7),故答案为:4,(2,7).【点睛】本题考查了二次函数的图象和性质,熟知对称轴公式和二次函数解析式的三种表现形式是解题的关键.9、5【解析】【分析】分别求出售价与月份之间的函数关系式、成本与月份之间的函数关系式以及利润与售价、成本之间的关系,根据二次函数的性质即可得到结论.【详解】解:设每千克的售价是y 元,月份为x ,则可设y kx b =+把(3,8),(6,6)代入得,3866k b k b +=⎧⎨+=⎩解得,2310k b ⎧=-⎪⎨⎪=⎩ ∴2103y x =-+ 设每千克成本是z 元,根据图象可设2(6)1z a x =-+把(3,4)代入2(6)1z a x =-+,得2(36)1=4a -+ ∴13a = ∴214133z x x =-+ ∴设利润为w ,则有:222111610(413)(5)3333w y z x x x x =-=-+--+=--+ ∵103-< ∴2116(5)33w x =--+有最大值, ∴当x =5时,w 有最大值,∴5月份出售这种药材获利最大.故答案为:5【点睛】本题主要考查二次函数的应用,熟练掌握待定系数求函数解析式、由相等关系得出利润的函数解析式、利用二次函数的图象与性质是解题的关键.10、2【解析】【分析】先将抛物线配方为顶点式,然后根据(左加右减,上加下减)将抛物线平移,得出解析式()2211224a a y x a ++⎛⎫=+-++ ⎪⎝⎭,求出顶点的纵坐标()2124a a +-++配方得出()()221121244a a a +-++=--+即可. 【详解】 解:抛物线()22211(1)24a a y x a x a x a ++⎛⎫=+++=+-+ ⎪⎝⎭, 将抛物线2(1)y x a x a =+++向上平移2个单位,解析式为()2211224a a y x a ++⎛⎫=+-++ ⎪⎝⎭, ∴顶点纵坐标为:()()221121244a a a +-++=--+, ∵104-<, ∴a =1时,最大值为2.故答案为2.【点睛】本题考查抛物线配方顶点式,抛物线平移,顶点的纵坐标,掌握抛物线配方顶点式,抛物线平移,顶点的纵坐标是解题关键.三、解答题1、 (1)y =﹣2x +2x +3(2)①0<y <4;②x ≤0或x ≥2【解析】【分析】(1)把点的坐标代入解析式,转化为a ,c 的二元一次方程组,求解即可;(2)根据函数的解析式,求得函数值,结合函数图像,利用函数的增减性解答即可.(1)∵y =a 2x +2x +c 的图象经过A (﹣1,0),C (0,3),∴203a c c -+=⎧⎨=⎩, 解得:13a c =-⎧⎨=⎩. ∴该二次函数的解析式为y =﹣2x +2x +3.(2)①∵当x =﹣1时,y =0,当x =2时,y =3,又∵y =﹣2x +2x +3=﹣2(1)x -+4,故当x =1时函数有最大值4,∴结合图象,2、 (1)223y x x =--(2)45y -≤<(3)0m <或3m >【解析】【分析】(1)由已知可设二次函数的顶点式,再把点(3,0)的坐标代入顶点式中即可求得a 的值,从而求得解析式;根据解析式画出函数图象即可;(2)求出当x =0及x =4时的函数值,考虑抛物线的性质,结合函数图象即可完成;(3)观察图象知,抛物线与直线y =x -3的交点坐标分别为(0,−3)及(3,0),即当m =0或m =3时,点C 与点D 重合,结合图象即可求得m 的取值范围.(1)∵当x =1时,函数的最小值为-4,即抛物线的顶点坐标为(1,−4)∴设函数解析式为2(1)4y a x =--∵(3,0)点在抛物线上∴440a -=∴1a =∴2(1)4y x =--即223y x x =--其图象如下:(2)当x =0时,y =−3;当x =4时,y =5由图象知,当0<x <4时,45y -≤<(3)如图所示,抛物线与直线y =x -3的交点坐标分别为(0,−3)及(3,0)由图知,当0m <或3m >时,满足题目要求【点睛】本题是二次函数与一次函数的综合,考查了待定系数法求函数解析式,画二次函数图象,二次函数的性质,二次函数与一次函数的关系等知识,数形结合是解题的关键.3、故y 的取值范围为:0<y <②令y =3,则﹣2x +2x +3=3.解得:1x =0,2x =2.∴结合图象,故x的取值范围为:x≤0或x≥2.【点睛】本题考查了待定系数法确定抛物线的解析式,配方法确定函数的最值,一元二次方程的解法,数形结合思想,不等式解集的确定,熟练掌握抛物线的图像与性质是解题的关键.4.(1)M(﹣1,a+1),A(0,a)(2)94,92【解析】【分析】(1)联立直线BC和抛物线,根据有2个不同交点,则判别式大于0,即可求得a的范围;(2)待定系数法求得直线MA解析式,进而联立BC,求得点N的坐标,根据对称性即可求得点P的坐标,代入抛物线解析式求得a的值,进而即可求得,,A C M的坐标,进而根据三角形面积公式求解即可.(1)由题意联立2212y x x ay x a⎧=--+⎪⎨=-⎪⎩,整理得:2x2+5x﹣4a=0,由∆=25+32a>0,解得:2532 a>-,∵a≠0,∴2532a>-且a≠0,当x =0时,y =a ,∴A (0,a ),∵y =﹣x 2﹣2x +a =﹣(x +1)2+a +1,∴M (﹣1,a +1).(2)设直线MA 为:y =kx +b ,代入A (0,a ),M (﹣1,a +1)得,1a k b a b +=-+⎧⎨=⎩, 解得:1k b a=-⎧⎨=⎩, 所以直线MA 为y =﹣x +a , 联立12y x a y x a =-+⎧⎪⎨=-⎪⎩,解得433a x a y ⎧=⎪⎪⎨⎪=-⎪⎩, 所以:N (43a ,3a -), ∵点P 是N 关于y 轴的对称点,∴P (﹣43a ,3a -),代入y =﹣x 2﹣2x +a ,得2168393a a a a -=-++, 解得:a =94,或a =0(舍去),∴抛物线为y =﹣x 2﹣2x +94,直线BC 为y =12x ﹣94, 当x =0时,y =﹣94,∴C (0,﹣94),A (0,94),M (﹣1,134), ∴|AC |=92, ∴S △PCD =S △PAC ﹣S △DAC =12|AC |×|xp |﹣12|AC |×|xD | =12×92×3﹣12×92×1=92 【点睛】本题考查了直线与二次函数交点问题,一元二次方程根的判别式,关于坐标轴对称的点的坐标特征,直线与坐标轴交点问题,待定系数法求解析式,掌握二次函数的图形的性质是解题的关键.4、 (1)w =﹣2x 2+220x ﹣5600(x >40)(2)销售单价定为48元时,利润最大,最大利润是352元【解析】【分析】(1)根据利润=销售数量×每件的利润可得w =y •(x ﹣40),把y =﹣2x +140代入整理即可得w 与x 的函数关系式;(2)由每天的销售量不少于44件,可得y =﹣2x +140 ≥44,进而可求出x ≤48;由于(1)已求w =﹣2x 2+220x ﹣5600,整理可得w =﹣2(x ﹣55)2+450,有二次函数的性质a =-2<0可知,当x <55时,w 随x 的增大而增大,所以当x =48时,w 有最大值,最大值为:﹣2×482+220×48﹣5600=352.(1)解:由题意得:w=y•(x﹣40)=(﹣2x+140)(x﹣40)=﹣2x2+220x﹣5600,∴w与x的函数关系式为w=﹣2x2+220x﹣5600(x>40);(2)解:∵y≥44,∴﹣2x+140≥44,解得:x≤48;w=﹣2x2+220x﹣5600=﹣2(x﹣55)2+450,∵a=-2<0,∴当x<55时,w随x的增大而增大,∵x≤48,∴当x=48时,w有最大值,最大值为:﹣2×482+220×48﹣5600=352.∴销售单价定为48元时,利润最大,最大利润是352元.【点睛】本题主要考查了二次函数的应用及二次函数求最值问题的知识,根据题意列出w与x的函数关系式是解题的关键.5、 (1)见解析(2)函数图象是轴对称图形,它的对称轴为y轴(3)-0.4<x<1或x>2【解析】【分析】(1)将x=-2,0,3分别代入解析式即可得y的值,再画出函数的图象;(2)结合图象即可求得;(3)根据图象求得即可.(1)解:补充完整下表为:画出函数的图象如图:(2)该函数图象是轴对称图形,它的对称轴为y轴,故答案为:函数图象是轴对称图形,它的对称轴为y轴.(3)由图象可知:不等式2353121x x -+<-+的解集为-0.4<x <1或x >2. 【点睛】本题主要考查一次函数的图象和性质,一次函数与一元一次方程,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键.。
语法 第26章. 介词词组(课后练习注解)
语法第26章介词和介词词组26A1.Be generous with 不吝啬2.Get mad at sb 很生气,气愤3.Be agreeable to sth 欣然同意4.Be attentive to sth 对…关心的,肯帮忙的5.Be rich in sth 大量含有6.Be quick at sth 学…很快7.Be awkward at doing sth8.Be eligible for sth 有资格做…,具备条件做…9.Be safe with sb 对…是安全的10.Be identical with sth 和…完全一样的11.Be quick at sth 很容易看出12. Be deaf to sth 不愿听,不去注意13. Be orthodox in sth 对…正统的14 .Presumptuous of sb 自作主张15 .be deficient in sth 缺少,缺乏16 .be favourable for 合适的17 .be exempt from sth 被豁免18 .be exclusive of 不包括19 .noted for 以…而闻名20 .averse to sth 反对,不喜欢21 .devoid of 没有,毫无…22 .be sensible of 察觉到23 .be destructive to 造成毁坏或严重破坏24 .be alive with 充满25 .inseparable from sb/sth 分不开的,不可分的26 .be impatient with sb 不耐烦27. be particular about sth 讲究的,挑剔的28. be sick with 患….病的29. be related by 有….关系的30. be evident from sth 清楚的,显而易见的31.be critical of 批评的,批判性的32. be useless at 不行的,差劲的,不擅长的33 be right about (意见或判断)准确,确切,恰当34. be marvellous at 极好的,非凡的35. be liberal in 自由主义的,允许变革的36. be perfect for 正合适的37. be positive of 有绝对把握的,确信的38. be repugnant to 使反感的,不得人心的39.convenient for 近便的,容易到达的40.independent of 自食其力的41.susceptible to 易受影响的,敏感42.envious of 羡慕,嫉妒43.homesick for 思乡44.honest with 坦率,坦诚45.suspicious of 不信任,持怀疑态度46.enthusiastic about 满腔热忱的47.hard of hearing 耳背,听力弱48.peculiar to 特有的,特殊的49.guilty of 犯…罪50.parallel to 平行26B1.entitle sb to sth 使享有权利;使符合资格2.vary with (根据情况)变化,变更,改变3.admit sb/sth to/into sth 准许进入某处;准许加入(俱乐部,组织)4.derive from sth 从……衍生出;起源于;来自5trouble oneself about6swear on the Bible 手按《圣经》宣誓swear at sb/sth 咒骂,诅咒;说脏话7rule on sth 决定;裁定;判决8blame sth/sb for sth 把……归咎于;责怪;职责blame sth on sth/sb 把……归咎于;责怪;职责9assign somebody to sth 指定;指派assign sb to sth 委派;派遣10operate on sb for sth 动手术11hint at sth 暗示;透露;示意12admit of sth 容许,有…可能(指解决办法.解释)13. point at sb. (用手指头或物体)指,指向14. join with sb. in doing sth. 跟某人一起参加,加入(活动)15. conceal sb. from 隐藏,隐瞒,掩盖16. disapprove of sb. 不同意,不赞成,反对17.plan on 打算做(或有),想要18.exempt sb. from sth. 免除,豁免19.consult sb. on sth. 与某人商量,商议20.substitute for sb. 代替,替代21.surrender oneself to sth. /sb. 任由某人(或感觉等)控制22.crash…into…猛烈碰撞,撞击23.correspond to 与…相似,类似24.dissuade…from 阻止,劝阻25.go for sb. 袭击某人,抨击或攻击某人26.see through sth. 看透,识破27.tell on sb. 告发,打---的小报告,告---的状28.get over sth 从疾病或震惊中恢复常态29.see to sth. 办理,照管,照料30.dote on/upon sb 溺爱,宠爱,过分喜爱31.provide for sb. 提供生活所需32.inculcate sb.with sth. 谆谆教导,反复灌输33.break oneself of doing sth. 使某人戒掉pare sb.to sth. 将某人比作35.arm oneself against 武装,防备36.deal in sth. 经营某一产品;作为---的依据加以接受37consist in 存在于;在于38 drink to 为…干杯39 acquit of 宣判…无罪40 reckon on 指望;依赖41 taste of 有…的味道42 result from (因…)发生;(随…)产生43 account for ①解释,说明②是…的说明③占44 dawn on 使开始明白45 enter into ①着手处理②积极参加③成为…的一部分46 boast of 自夸,自吹自擂47 come by (sth) ①受到,得到②设法得到(sb)48 go with ①与某事物相配②一部分,附属于③同意接受(某事物)49 shoot at 射杀,射伤50 treat of 论述26C1. keep on with 继续2. check up on 审查3. bear up against / under 忍住4.Talk back to 顶嘴5.Carry on with 继续做,坚持干6.Cut in on 打断(谈话),插嘴7.Hold on to 抓紧,不放开8.Break in on 打断9.Wait up for 熬夜等待10.Fill in for 顶替11.Look out for 注意察看,留意12.get away with 逃脱惩罚13.get ahead of 领先胜过14.stand up for 坚持15. go through with 将某事进行到底16.go back on 违背约定或承诺17.fall back on 求助于18.live up to 实践19.put up with 忍受忍耐20.do away with 摆脱废除21:make up for 弥补,补救22:bring ....along 把某人或某物带来23:bring...back 把...送回, 归还24:bring sb in 请...做,让...参与25:bring sth around to sth 把话题引到26:bring sb up against sth 使面对27:fix up with sth 为...安排好28:put up sth 向...提议29:take sth up with sb 向...提出30:fill us in con st 向我们提供31:keep sb on 让…继续做…32:bring sb around to 说服……去做……33:deck sb out in 穿上34:fill sb in on sth 向……提供最新的消息35:fob sb off with (用虚假的解释或借口)搪塞36:let sb in on 让……知道37:put sth down to 把……推给38:put sb up to 唆使(煽动)…做愚蠢(危险)的事39:take sb up to 向……发泄不满拿……出气40:put sb up for 提名……为后选人26D1.have attraction for对…...有吸引力2. (be) in the mood for有做某事的心思或兴趣3. get a degree 获得…...学位4. patience with对…...有信心5 .there is no point in doing 做…...也没有用eg:There is not point in complaining, they never take any notice.6. make a point of doing sth 认为做某事有必要7.take pride in认真做某事8. hope of希望;期望9.have had enough of不能或不再忍受某人/某事10. talent for特殊的能力,才能,才干,天才11. effect on效应,效果,后果12.the idea of 对某事物的看法13.marriage to…...的婚姻14.The reason for……的原因15.the confusion about 关于……的疑惑16.the effect of……的影响17.the key to……的钥匙,……的关键18. immunity from免除19.a limit to……的限制20.a substitute for……代替者21.buy for用……买22.an expression for一种……的表达23.a narrow escape from death 死里逃生24.the familiarity with 熟悉……,通晓……25.a ban on 关于……禁令26.the chance of ……的机会27.feel a repugnance to sth. 对...感到不情愿28.an invitation for sth ...的邀请29.exception to sth. ...的例外30.proof of sth. ...的证据,证明31.satisfaction in doing sth. 满足32.influence on/upon sth/sb 对...的影响33.have the privilege of doing sth 有幸做某事34.have sympathy for sb 同情某人35.expert in/at/on sth/doing sth ...专家36.shelter from sth. 躲避...37.different between a and b a和b的不同38.provision for sb/sth (为将来做的)准备39.credit to sb/sth 为……赢得尊重的人(或事物)40.access to sth (使用或见到的)机会,权利41.punishment for sth 惩罚,处罚,刑罚42.prevension of sth ……预防,防止,防范43.affinity with密切的关系,类同affinity to/for 喜爱, 喜欢44.a disgrace to sb/sth 令人感到羞耻的人(或事)45.give expression to 表现出……46.liking for sb/sth 喜欢,爱好,嗜好,乐趣dislike to反感47.stain on sth (名声上的)污点prejudice against sb/sth 偏见,成见48.key to sth 关键,要诀49.reputation for sth/for doing sth 名誉,名声50.forbearance for宽容26E1. by accident 偶然,意外地by chance 偶然,碰巧,意外地2. in suspense 担心焦虑3.in general 通常,大体上,总得来讲in haste 匆忙,急速4. in ruins 毁坏,严重受损,破败不堪5. get in 进入,抵达,收获,收税,插入,陷入6. in a sense 从某种意义上来说7. in view of 鉴于,考虑到,由于on view 在展出,陈列着,展览着8. take sb by surprise 使某人惊诧,出乎某人意料in turn 依次,轮流,逐个9. with regret 感到遗憾in reply to 回复答复10.be in good taste 适度,得体11.by word of mouth 口头上,经口述12.in theory 理论上,按理说in practice 实际上,事实上13.to all intents and purposes 实际上,基本上14. be engaged in/on sth. 忙于,从事于15.on the spur of the moment 一时冲动之下,心血来潮16.be beyond/above suspicion 无可置疑17.a man of honor 品德高尚的人18.be under the impression that 以为...;误认为...19.in the/sb’s way 妨碍,挡着....的路20.in evidence 明显的21.to the admiration of 令某人钦佩的22.in the afternoon 在下午23.at lunchtime 在午饭时间24.at Christmas 在圣诞节25.in a ... manner 以一个...的方式26.on the expiry of ... ...的满期27.much to regret 深感遗憾28.by degrees 逐渐地29.at a given signal 收到了已经安排好的信号后30.to all appearances 从一切迹象来看31.a man of one’s character 名声好的人32.at all hazards 处于危险之中33.be of value = valuable 很重要的34.to one’s knowledge 据某人所知35.on the second thoughts 进一步考虑之后36.at the latest 最迟,最晚37.on the return from 从——回来38.to sb’s liking 适合某人的胃口,中某人的意39.in+adj. hours 在……时间40.in error 错误地,无意地(=by mistake)41.with sb’s permission 经某人许可42.sing to…随着……唱43.at the crossroads 在十字路口At midnight 在午夜44.from…to…从……开始至……结束With an hour 用一个小时An hour for lunch 一个小时午餐时间Of+age ……岁的Under+age 未满……岁Till+some time 直到……时候45.by fortune 凭运气46.to one’s benefit 对……有利47.at the best :at sb’s/sth’s best/worst etc. 处于最佳(或最差等)状态,在全盛(或谷底等)时期48.for a change 为了改变一下49.at the cost of 以……为代价50.for certain 肯定,确定,无疑26 F1——6:Due to 因为Next to 紧挨着,依靠着Thanks to 归功于,归咎于(愤怒或幽默的语气);由于,因为Up to 多达,高达;一直到;胜任(工作等),有资格做,适于;达到(标准等);干坏事;偷偷地干In the way of 挡路,碍事In case of 要是……;在……的时候In spite of 尽管,不顾In the event of 万一In terms of 在…方面,根据…来解释In return for (作为…)交换/回报In search of 寻找In the pay of sb./sth. (贬)受雇于(某事物)In the wake of 随事物之后到来But for 要不是因为As for sb/sth 至于Thanks to : Thanks to 归功于,归咎于(愤怒或幽默的语气);由于,因为For the sake of sth/doing sth 为获得或保持某事物By reason of (文)因为或由于某事物By means of 用某办法;借助于某事物7.a) in view of 鉴于,考虑到,由于b)in/with reference to 关于c)with a view of 指望d) with an eye to 目的在于,着眼于,试图8. a)with a view of 指望b)with respect to 至于,关于,就…而言c)in/with regard to 至于,关于d)in the process of 在从事某事的过程中9. a) in view of 鉴于,考虑到,由于b)in terms of 谈及,就…而言,在…方面c)with a view of 指望d)for the sake of 为…起见,因…缘故10. a)in the event of 如果…发生b)in the pay of 秘密为…工作,被…收买c)in the wake of 随…之后而来d)in the care of 由…照管11.a)in case of 如果,假设b)in the teeth of 不管,不顾(困难,反对)c)in danger of (坏事发生的)可能性,危险d)in defiance of 不顾某人某事,无视某人某事12.a)under the auspices of 在…帮助,支持,保护下b)under the care of 在…掩护或保护下c)with the exception of 除…之外,不包括…在内d) with respect to 至于,关于,就…而言13. A. except for 除…之外;除了B. save for 除…之外C. along with 与…同样地;除…之外还D. in addition to 除…之外还14 A.by way of 路经;经过B. by means of 借…手段; 依靠…方法C. for lack of 缺少;短缺D. in case of 如果;假使15 A. thanks to 幸亏;由于;多亏B. except for 除…之外C. what with 由于;因为D. along with 除…之外还16 A.in consequence of 由于;作为…的结果B.in defiance of 违抗;反抗;拒绝服从C.in danger of 有…危险D.in the event of 如果…发生;万一;倘若17 A.in the teeth of 不管;不顾B. in search of 搜索;查找;搜查C.in connection with 与…有关D.in consequence of 由于;作为…的结果18 A.in connection with 与…有关B.in contrast with 与…对比;比照C.in comparison with 与…相比较D.in the interest of 为了;为帮助19.A.in comparison with 与...比较;相比而言B.in excess of 超过例:a population in excess of two million 200万以上的人口C.in contrast to 与...成反比D.in connection with 1.与...有关;关于2.(公共交通工具)与...衔接(或联运)20.A.in place of 代替;交换B.at variance with 有分歧;不一致例;What he did was at variance with companypolicy.他的所作所为和公司的政策不相符合.C.in consequence of 由于...的缘故D.in terms of1.用...的话,以...的措词例:speak of sth in termsof praise 以赞美的话谈某事2.根据,按照,用...的思想方法例:think in termsof materialist dialectics 按照唯物辨证法进行思考3.在...方面,从...方面(说来) 例in terms ofmanpower 在人力方面21.D.in the way of 1.按照2.属于...种类22.A.with a view to 1.以...为目的,指望于 2.关于3.鉴于,考虑到,由于B.with an eye to 着眼于,考虑到,注意到,有...的企图,试图,期待例with an eye to the future 考虑到将来C.in the care of 由...照管例:The child was left in the care of friends.小孩被留下由朋友照管D.in view of 1.鉴于,考虑到,由于2.在...看得见的地方,在...能看见的范围内23.A.in point of 就...而言,关于24.A.up to1.从事于,忙于例He is up to his old games again.他又在耍弄老花招了2.达到,及得上,胜任,适于例be up to standard 符合标准3.取决于,该由..., 轮到... 例It is up to you .取决于你.4.直到up to now 直到现在B.thanks to 幸亏,由于C.as to 至于,关于D.due to 1.应归于2.由于25.Abut for 倘没有,要不是C. owing to 由于补充词组1.get over sth./sb. 从疾病(或震惊、断绝关系等)中恢复常态get over sth. 克服;控制get away 度假;休假get off / get off sb (尤用于告诉别人)别碰,走远点get off /get sb. off(使某人)离开,出发,动身;(使)入睡get off/get off sth.. 经允许离开工作;下班get across(to sb.)/get sth.. across(to sb.) 被传达;被理解;把…讲清楚get about 传播;流传;各处走动get on (谈及后问及某人)进展,进步;获得成功;事业有成;对付,处理get through sth. 消耗掉,用完,耗尽;(设法)处理,完成;顺利通过(考试等)get in 到达;当选;被录取,被接受入学get on with (谈及或问及工作情况)进展,进步;(尤指中断后)继续做某事get away with 偷携某物潜逃;偷走get in on 参加(活动) 2.get down to开始做某事;开始认真注意(对待)某事take up with 开始结交(尤指名声不好的人) get off with(sb.) (与某人) 发生性关系,谈恋爱put down to 把…归因于3.put sth. over (to sb) 交流,沟通(思想、感情等) put off 取消(与某人的会晤或安排);使反感,使疏远;搅扰,使分神put sth off 推迟;延迟put up sth. (在战斗或竞赛中)显示;提出(意见等) put sb. up 留某人住在家中;推荐;提名put by(=put sth. aside) 攒钱;积蓄4.entitle sb. to do / sth. 使享有权利;使符合资格5.hand in 提交;呈交;上交(尤指书面材料或失物) hand out 分发某物;提出,给予(建议或惩罚等) hand down 把某物传下去;传给(后代);正式宣布hand over 把(权利或责任)移交给(某人)6.carry on 继续移动;争吵,吵闹;继续做carry off 赢得,获得;对付,不费劲地处理(大多数人难以对付的事)be /get carried away 变得很激动;失去自制力e to 恢复知觉;苏醒come round 恢复知觉,苏醒;再度发生,再次出现come on 登台,出场;改进,改善;加油come up 长出地面;破土而出;(太阳)升起;发生8 draw on: (时光)渐渐过去,荏苒;凭借,利用draw back: 移开,后退,退缩,撤回draw out: (天黑得)渐晚,(白昼)渐长,使畅所欲言,拖延draw up: (车辆)到达某处停下,停止9 look up: 好转,改善(生意,某人的情况),在低头看某物时抬头向上看,查阅,检查pay up: 总算付清全部欠款keep up: (天气)持续不变,齐步前进,并驾齐驱,使不低落stand up: 站立,站起,支持,维护, 10 throw off: 摆脱,甩掉,匆匆脱掉(衣服)throw away: 扔掉,丢弃,失去,浪费throw down: 扔下, 使倒下, 摧毁throw over: 同某人绝交,抛弃某人11 pull up: 停车,停止pull through: (大病后)康复,痊愈,完成,做成十分困难的事pull out: (车辆或司机)驶离路边,驶出,出站pull back: 撤退,撤离,退出,挽回12 bring forward: 将日期或时间)提前,提议,提出讨论bring about: 导致,引起bring on: 帮助学习者进步,促使提高bring up: 抚养,养育,提出,呕吐13 dispose of: 去掉,清除,销毁,应付处理14 admit of: 容许,有可能(指解决办法,解释等)admit to: 承认,容许进入,接收(入学) 15 do over: 重新整理,重做,猛击,痛打do with: 处理do up: 固定住,扣上,绑紧,装饰,梳妆打扮16 preside over: 主持会议,担任(会议)主席17 work out: 锻炼身体;做运动;成功的发展;计算;计算出fall through 落空;失败;成为泡影catch on: 受欢迎;流行起来;变得时髦;理解18 be reduced to: 减少;缩小(尺寸数目价格等)19 part with 放弃;交出(尤指不愿交出的东西)20 as regards 关于;至于21 by chance 碰巧by heart 单凭记忆;能背诵by sightby experience 从经验中22 in comparison with 与…相比较in proportion to 关于(或涉及到)…的23 without fail 务必;一定24 on his account 为某人的缘故on his behalf 代表(或代替)某人for his part 由某人所为in his interest 为了自己的好处25 reach agreement with 和….达成一致reach agreement upon 在…..方面达成一致26 for lack of 因缺乏;由于没有in lack of 不足;不够;没有27 by half 减轻一半28 in all probability 很可能29 be guilty 犯了罪;有过失的;有罪责的。
沪科版数学 九年级下册 第26章 概率初步 课后练习题
一、单选题1. 下列事件是随机事件的是()A.太阳从西边升起B.任意画一个三角形,其内角和一定是C.内错角相等D.袋中有6个黑球和2个白球,摸一次一定摸到红球2. 下列说法正确的是()A.“经过有交通信号的路口遇到红灯”是必然事件B.若某篮球运动员投篮投中的概率为0.5,则他投10次一定可投中5次C.投掷一枚硬币正面朝上是随机事件D.明天太阳从东方升起是随机事件3. 在一个不透明的口袋中有6个除颜色外其余都相同的小球,其中1个白球,2个红球,3个黄球.从口袋中任意摸出一个球是红球的概率是:【】A.B.C.D.4. 在-2,,,这4个数中随机选择2个数,至少有一个无理数的概率是().A.B.C.D.5. 下列事件,是必然事件的是()A.投掷一枚硬币,向上一面是正面B.射击一次,击中靶心C.天气热了,新冠病毒就消失了D.任意画一个多边形,其外角和是360°二、填空题6. 如图,正方形的边长为2,分别以正方形的四条边为直径向内做半圆,随机向正方形内投一粒米,则米粒落在阴影部分的概率为________________.7. 在五个完全相同的小球上分别写上1,2,3,4,5这五个数字,然后装入一个不透明的口袋内觉匀,从口袋内随机取出一个球,记下数字后放回袋中搅匀,然后再从口袋中随机取出一个球,记下数字,则两次取到的球上的数字相同的概率是_____.8. 有4张卡片(形状、大小、质地都相同),上面分别画有下列图形:①平行四边形;②菱形;③矩形;④正方形;将卡片背面朝上洗匀,从中抽取一张,正面图形既是轴对称图形,又是中心对称图形的概率是______.三、解答题9. 已知直线∥,点A,B,C在直线上,点E,F,G在直线上,任取三个点连成一个三角形,求:(1)连成△ABE的概率;(2)连成的三角形的两个顶点在直线上的概率.10. 在一个不透明的口袋中有三个完全相同的小球,小明把它们分别标号-1,0,1.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.(1)请用画树状图的方法表示两次摸出小球上的标号的所有结果.(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.(3)如果小明随机摸出一个小球记下标号后不放回,再从中随机摸出一个小球记下标号.试用列表法求出两次摸出的小球标号之和为0的概率.11. 某市为加快推进生活垃圾分类工作,对分类垃圾桶实行统一外型、型号、颜色等,其中,可回收物用蓝色收集桶,有害垃圾用红色收集桶,厨余垃圾用绿色收集桶,其他垃圾用灰色收集桶,为了解学生对垃圾分类知识的掌握情况,某校宣传小组就“用过的餐巾纸应投放到哪种颜色的收集桶”在全校随机调查部分学生;根据调查结果,绘制了如图所示的两幅不完整的统计图.根据以上信息,解答下列问题:(1)此次共调查了多少名学生?扇形统计图中“灰”所在扇形的圆心角的度数是多少度?(2)将条形统计图补充完整;(3)若该校有2400名学生,估计该校学生将用过的餐巾纸投放到红色收集桶的人数;(4)王老师计划从A,B,C,D四位学生中随机抽取两人参加学校的垃圾分类知识抢答赛,请用树状图或列表法求出恰好抽中A,B两人的概率.。
中级会计师-中级会计实务-强化练习题-第26章民间非营利组织会计
中级会计师-中级会计实务-强化练习题-第26章民间非营利组织会计[单选题]1.下列关于民间非营利组织的会计要素,下列表述中错误的是()。
A.反映(江南博哥)财务状况的会计要素包括资产、负债和所有者权益B.反映业务活动情况的会计要素包括收入和费用C.净资产包括限定性净资产和非限定性净资产D.费用按照其功能分为业务活动成本、管理费用、筹资费用和其他费用正确答案:A参考解析:反映财务状况的会计要素包括资产、负债和净资产,选项A错误。
[单选题]5.2×18年12月31日,某民间非营利组织“捐赠收入”科目的账面余额为520000元,其中“限定性收入”明细科目账面余额为420000元,“非限定性收入”明细科目账面余额为100000元,年初该民间非营利组织“限定性净资产”结余60000元,“非限定性净资产”结余50000元,则结账后年末“限定性净资产”余额和“非限定性净资产”余额分别达到()元。
A.480000;150000B.580000;50000C.470000;160000D.520000;110000正确答案:A参考解析:结账后年末“限定性净资产”余额=60000+420000=480000(元);“非限定性净资产”余额=50000+100000=150000(元)。
[单选题]6.下列报表中,不属于民间非营利组织编制的会计报表的是()。
A.资产负债表B.利润表C.现金流量表D.业务活动表正确答案:B参考解析:民间非营利组织的会计报表至少应当包括资产负债表、业务活动表和现金流量表三张基本报表,同时民间非营利组织还应当编制会计报表附注。
[单选题]7.下列关于民间非营利组织的净资产的说法中,不正确的是()。
A.按照净资产是否受到限制,民间非营利组织净资产分为限定性净资产和非限定性净资产B.调整以前期间非限定性收入、费用项目应该直接通过收入、费用科目核算C.满足一定条件可以将限定性净资产重分类为非限定性净资产D.同受两项或多项限制的限定性净资产只有在限定性净资产的最后一项限制解除时,才能认为其限制已经解除正确答案:B参考解析:选项B,应该通过非限定性净资产核算。
二次函数的图象和性质练习题(含参考答案)
新华师大版九年级下册数学第26章 二次函数的图象和性质练习题姓名____________ 时间: 90分钟 满分:120分 总分____________一、选择题(每小题3分,共30分)1. 在二次函数122++-=x x y 的图象中,若y 随x 的增大而增大,则x 的取值范围是 【 】 (A )1<x (B )1>x (C )1-<x (D )1->x2. 若二次函数142-++=m x mx y 的最小值是2,则m 的值是 【 】 (A )4 (B )3 (C )1- (D )4或1-3. 已知二次函数m x x y +-=32(m 为常数)的图象与x 轴的一个交点为(1 , 0),则关于x 的一元二次方程032=+-m x x 的两个实数根是 【 】 (A )1,121-==x x (B )2,121==x x (C )0,121==x x (D )3,121==x x4. 如图,由二次函数c bx ax y ++=2的图象可知,不等式02<++c bx ax 的解集是 【 】 (A )13<<-x (B )1>x (C )3-<x 或1>x (D )3-<x第 4 题图第 5 题图5. 如图是抛物线c bx ax y ++=2的一部分,它的对称轴是直线1=x ,若抛物线x 轴的一个交点为A (3 , 0),则不等式02<++c bx ax 的解集是 【 】 (A )3>x (B )3<x (C )30<<x (D )31<<-x6. 若一次函数()a x a y ++=1的图象过第一、三、四象限,则二次函数ax ax y -=2 【 】(A )有最大值4a (B )有最大值4a - (C )有最小值4a (D )有最小值4a-7. 将抛物线216212+-=x x y 向左平移2个单位后,所得新抛物线的解析式为 【 】(A )()58212+-=x y (B )()54212+-=x y(C )()38212+-=x y (D )()34212+-=x y8. 二次函数的部分图象如图所示,对称轴是直线1-=x ,则这个二次函数的表达式为 【 】 (A )322++-=x x y (B )322++=x x y (C )322-+-=x x y (D )322+--=x x y第 8 题图第 9 题图9. 如图,若二次函数c bx ax y ++=2(0≠a )图象的对称轴为直线1=x ,与y 轴交于点C ,与x 轴交于点A 、点B ()0,1-,则①二次函数的最大值为c b a ++; ②0<+-c b a ;③042<-ac b ; ④当0>y 时,31<<-x .其中正确的个数是 【 】 (A )1 (B )2 (C )3 (D )410. 若二次函数12+=ax y 的图象经过点()0,2-,则关于x 的方程()0122=+-x a 的实数根为 【 】 (A )4,021==x x (B )6,221=-=x x (C )25,2321==x x (D )0,421=-=x x 二、填空题(每小题3分,共30分)11. 若抛物线()12-++=m m x y 的对称轴是直线1=x ,则它的顶点坐标是_________.12. 若抛物线c bx ax y ++=2(0≠a )与抛物线342+-=x x y 关于y 轴对称,则函数c bx ax y ++=2的关系式为________________.13. 已知二次函数c bx ax y ++=2(0≠a ),其中c b a ,,满足0=++c b a 和039=+-c b a ,则该二次函数图象的对称轴是直线_________.14. 若二次函数n x x y +-=42的图象与x 轴只有一个公共点,则实数n 的值为_________. 15. 二次函数542++=x x y ,当3-≤x ≤0的最小值为_________.16. 如果将抛物线122-+=x x y 向上平移,使它经过点()3,0A ,那么所得新抛物线的表达式为________________.17. 经过A (4 , 0),)0,2(-B ,C (0 , 3)三点的抛物线的解析式是___________.18. 若二次函数c bx ax y ++=2(0<a )的图象经过点(2 , 0),且其对称轴为直线1-=x ,则使函数值0>y 成立的x 的取值范围是__________.19. 将一条抛物线向上平移4个单位,再向左平移2个单位后,得到新的抛物线为442++=x x y ,则原抛物线的解析式为________________.20. 已知抛物线c bx ax y ++=2(0≠a )与x 轴交于A 、B 两点,若点A 为()0,2-,抛物线的对称轴为直线2=x ,则线段AB 的长为_________. 三、解答题(共60分)21.(10分)如图,抛物线122++=ax ax y 与x 轴仅有一个公共点A ,经过点A 的直线交该抛物线于点B ,交y 轴交于点C ,且点C 是线段AB 的中点. (1)求这条抛物线的函数解析式; (2)求直线AB 的函数解析式.yxCA BO22.(10分)如图所示,二次函数m x x y ++-=22的图象与x 轴的一个交点为A (3 , 0),另一个交点为B ,且与y 轴交于点C . (1)求m 的值; (2)求点B 的坐标;(3)若点D 为x 轴上方该函数图象上的一点,且ABC ABD S S ∆∆=,求点D 的坐标.yxCBAO23.(10分)如图,一次函数b kx y +=的图象与x 轴和y 轴分别交于A (6 , 0)和()32,0B ,线段AB 的垂直平分线交x 轴于点C ,交AB 于点D . (1)求一次函数的关系式;(2)求过A、B 、C 三点的抛物线的函数关系式.x24.(10分)如图,二次函数c bx ax y ++=2的图象与x 轴交于A 、B 两点,其中点A 的坐标为()0,1-,与y 轴交于点C (0 , 5),另抛物线经过点(1 , 8),点M 是抛物线的顶点.(1)求抛物线的解析式; (2)求△MCB 的面积.y xMCBA O25.(10分)已知二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点,其中点A 的坐标为()0,3-,与y 轴交于点C ,点()3,2--D .(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P ,求出PD PA +的最小值.yxD C AB OFPyx备用图D C AB O FP 26.(10分)如图所示,抛物线c bx x y ++=2与直线1-=x y 交于A 、B 两点,点A 的纵坐标为4-,点B 在y 轴上,直线AB 与x 轴交于点F ,点P 是线段AB 下方的抛物线上一动点,横坐标为m ,过点P 作PC x ⊥轴于C ,交直线AB 于D .(1)求抛物线的解析式;(2)当m 取何值时,线段PD 的长度取得最大值,其最大值是多少?(3)是否存在点P ,使△P AD 是直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.新华师大版九年级下册数学第26章 二次函数的图象和性质练习题参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共30分)11. ()2,1- 12. 342++=x x y 13. 1-=x 14. 4 15. 1 16. 322++=x x y 17. ()()4283-+-=x x y 18. 24<<-x 19. 42-=x y 20. 8三、解答题(共60分)21.(10分)如图,抛物线122++=ax ax y 与x 轴仅有一个公共点A ,经过点A 的直线交该抛物线于点B ,交y 轴交于点C ,且点C 是线段AB 的中点.(1)求这条抛物线的函数解析式; (2)求直线AB 的函数解析式.yxCA BO解:(1) ∵抛物线122++=ax ax y 与x 轴仅有一个公共点A∴()0422=-=∆a a……………………………………………2分 ∴02=-a a 解之得:1,021==a a……………………………………………4分 ∵0≠a ∴1=a……………………………………………5分 ∴这条抛物线的函数解析式为()22112+=++=x x x y ;(2)∵点A 为抛物线()21+=x y 的顶点∴()0,1-A……………………………………………6分 ∵点C 是线段AB 的中点∴点B 的横坐标为1对于()21+=x y ,当1=x 时,4=y∴B (1 , 4)……………………………………………7分 设直线AB 的函数解析式为b kx y += 把()0,1-A , B (1 , 4)分别代入b kx y +=得:⎩⎨⎧=+=+-40b k b k 解之得:⎩⎨⎧==22b k∴直线AB 的函数解析式为22+=x y . 附 中点坐标公式中点坐标公式在平面直角坐标系中,如果线段AB 的端点A 、B 的坐标分别为A ),(11y x 、B ),(22y x ,则其中点P ),(n m 的坐标为⎪⎪⎩⎪⎪⎨⎧+=+=222121y y n x x m 图形说明如图(1)所示.图(1)22.(10分)如图所示,二次函数m x x y ++-=22的图象与x 轴的一个交点为A (3 , 0),另一个交点为B ,且与y 轴交于点C .(1)求m 的值; (2)求点B 的坐标;(3)若点D 为x 轴上方该函数图象上的一点,且ABC ABD S S ∆∆=,求点D 的坐标.yxCBAO解:(1)把A (3 , 0)代入m x x y ++-=22得:069=++-m解之得:3=m……………………………………………3分 ∴该抛物线的解析式为322++-=x x y ; (2)令0=x ,则0322=++-x x 解之得:3,121=-=x x ∴点B 的坐标为()0,1-;……………………………………………6分 (3)令0=x ,则3=y∴C (0 , 3)……………………………………………7分∵ABC ABD S S ∆∆=∴点C 与点D 的纵坐标相等 令3=y ,则3322=++-x x 解之得:2,021==x x ∴点D 的坐标为(2 , 3).…………………………………………10分 23.(10分)如图,一次函数b kx y +=的图象与x 轴和y 轴分别交于A (6 , 0)和()32,0B ,线段AB 的垂直平分线交x 轴于点C ,交AB 于点D .(1)求一次函数的关系式;(2)求过A 、B 、C 三点的抛物线的函数关系式.解:(1)把A (6 , 0)和()32,0B 分别代入b kx y +=得:⎩⎨⎧==+3206b b k 解之得:⎪⎩⎪⎨⎧=-=3233b k∴一次函数的关系式为3233+-=x y ; ……………………………………………4分 (2)连结BC.∵直线CD 是线段AB 的垂直平分线 ∴BC AC =∵A (6 , 0)()32,0B ∴32,6==OB OA设x BC AC ==,则x AC OA OC -=-=6 在Rt △BOC 中,由勾股定理得:222BC OC OB =+∴()()222632x x =-+解之得:4=x ∴4=AC∴246=-=-=AC OA OC ∴C (2 , 0)……………………………………………7分设过A 、B 、C 三点的抛物线的函数关系式为()()62--=x x a y把()32,0B 代入()()62--=x x a y 得:()()326020=--⨯a解之得:63=a ∴抛物线的解析式为()()6263--=x x y . …………………………………………10分x第(2)问另解: ∵A (6 , 0)()32,0B ∴32,6==OB OA 在Rt △AOB 中 ∵33632tan ===∠OA OB BAO ∴︒=∠30BAO……………………………………………5分 ∴342==OB AB∵直线CD 是线段AB 的垂直平分线 ∴3221==AB AD 在Rt △ACD 中 ∵233230cos ===︒AC AC AD ∴4=AC∴246=-=-=AC OA OC ∴C (2 , 0)……………………………………………7分 设过A 、B 、C 三点的抛物线的函数关系式为()()62--=x x a y把()32,0B 代入()()62--=x x a y 得:()()326020=--⨯a解之得:63=a ∴抛物线的解析式为()()6263--=x x y . …………………………………………10分 注意:若抛物线与x 轴交于A )0,(1x 、B )0,(2x 两点,则可设抛物线的解析式为:()()21x x x x a y --=.24.(10分)如图,二次函数c bx ax y ++=2的图象与x 轴交于A 、B 两点,其中点A 的坐标为()0,1-,与y 轴交于点C (0 , 5),另抛物线经过点(1 , 8),点M 是抛物线的顶点. (1)求抛物线的解析式; (2)求△MCB 的面积.解:(1)把()0,1-,(0 , 5),(1 , 8)分别代入c bx ax y ++=2得:⎪⎩⎪⎨⎧=++==+-85c b a c c b a 解之得:⎪⎩⎪⎨⎧==-=541c b a∴该抛物线的解析式为542++-=x x y ;……………………………………………4分 (2)∵542++-=x x y ∴()922+--=x y……………………………………………5分∵点M 是抛物线()922+--=x y 的顶点∴M (2 , 9)……………………………………………6分 令0=y ,则()0922=+--x解之得:5,121=-=x x ∴B (5 , 0)……………………………………………7分 作y ME ⊥轴 ∴9,2==OE ME∴459=-=-=OC OE CE ∴BOC MCE MEOB MCB S S S S ∆∆∆--=梯形()552124212529⨯⨯-⨯⨯-+⨯=15=…………………………………………10分 25.(10分)已知二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点,其中点A 的坐标为()0,3-,与y 轴交于点C ,点()3,2--D . (1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P ,求出PD PA +的最小值.解:(1)把A ()0,3-、()3,2--D 分别代入c bx x y ++=2得:⎩⎨⎧-=+-=+-324039c b c b 解之得:⎩⎨⎧-==32c b∴抛物线的解析式为322-+=x x y ; ……………………………………………4分 (2)令0=y ,则0322=-+x x 解之得:3,121-==x x ∴B (1 , 0),1=OB……………………………………………6分 ∵A 、B 两点是抛物线322-+=x x y 与x 轴的两个交点∴A 、B 两点关于直线1-=x 对称如图,连结BD ,与直线1-=x 的交点即为PD PA +的值最小时,点P 的位置,作x DE ⊥轴,并连结P A .∴PB PA =∴BD PD PB PD PA =+=+……………………………………………7分∵()3,2--D ∴2,3==OE DE∴321=+=+=OE OB BE 在Rt △BDE 中,由勾股定理得:23332222=+=+=DE BE BD∴PD PA +的最小值为23.…………………………………………10分关于两条线段之和取得最小值的问题有许多几何问题都涉及到两条线段之和最小的问题,解决这类问题的主要方法是依据“两点之间线段最短”,将两条线段的和转化为一条线段,该线段的长度即为两条线段之和的最小值.怎么转化是解决问题的关键-----借助于图形变换中的轴对称可以实现转化.另外还要用到线段垂直平分线的性质定理、勾股定理等知识,有些题目还与函数知识相结合,难度较高.也有部分几何问题涉及到三条线段之和最小,情形比较复杂,但解决问题的依据和思路基本上是不变的.要求:(1)会作出一个点关于某条直线的对称点. (2)熟悉并掌握线段垂直平分线的性质定理.(3)通过合理添加辅助线构造直角三角形,使用勾股定理求解线段(边)的长度. (4)掌握两点关于坐标轴对称时坐标之间的关系,如两点关于y轴对称时,它们的横坐标互为相反数,纵坐标相等.(5)学会并掌握用待定系数法求一次函数的关系式.26.(10分)如图所示,抛物线cbxxy++=2与直线1-=xy交于A、B两点,点A的纵坐标为4-,点B在y轴上,直线AB与x轴交于点F,点P是线段AB下方的抛物线上一动点,横坐标为m,过点P作PC x⊥轴于C,交直线AB于D.(1)求抛物线的解析式;(2)当m取何值时,线段PD的长度取得最大值,其最大值是多少?(3)是否存在点P,使△P AD是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.yxDC FABOP解:(1)对于1-=xy令4-=y,则41-=-x,解之得:3-=x∴()4,3--A令0=x,则1-=y∴()1,0-B把()4,3--A 和()1,0-B 分别代入c bx x y ++=2得:⎩⎨⎧-=-=+-1439c c b 解之得:⎩⎨⎧-==14c b∴抛物线的解析式为142-+=x x y ; ……………………………………………3分 (2)∵点P 是线段AB 下方的抛物线上一动点,横坐标为m∴()14,2-+m m m P (03<<-m ) ∵PC x ⊥轴,点D 在直线1-=x y ∴()1,-m m D ∵点D 在点P 的上方∴()m m m m m PD 314122--=-+--=∴49232+⎪⎭⎫ ⎝⎛+-=m PD……………………………………………5分∴当23-=m 时,线段PD 的长度取得最大值,最大值为49;……………………………………………6分 (3)存在点P ,使△P AD 是直角三角形. 对于1-=x y 令0=y ,则01=-x 解之得:1=x ∴F (1 , 0)∴1==OF OB∴△BOF 和△DCF 都是等腰直角三角形 ∴︒=∠=∠45ADP CDF分为两种情况:①当︒=∠90PAD 时,△P AD 是等腰直角三角形 作PC AE ⊥ ∴()m m PD AE 321212--==∵()4,3--A ,()0,m C ∴()m m AE +=--=33 ∴()m m m +=--33212 整理得:0652=++m m 解之得:3,221-=-=m m ∵03<<-m ∴2-=m∴()()512421422-=--⨯+-=-+m m∴()5,2--P ;……………………………………………8分 ②当︒=∠90APD 时,PD PA =∴()m m m 332--=-- 整理得:0342=++m m 解之得:3,121-=-=m m ∵03<<-m ∴1-=m∴()()411411422-=--⨯+-=-+m m∴()4,1--P ;…………………………………………10分 综上所述,存在点P ,使△P AD 是直角三角形,点P 的坐标为()5,2--或()4,1--.yxDCFABO P注意:对于讨论的第①种情况,我们还可以用下面的方法予以求解,希望借此拓宽大家的视野.先补充知识点: 对于两条直线:222111::b x k y l b x k y l +=+=若21l l ⊥,则121-=k k .注意 此结论通常用来求一次函数的解析式.例如:直线1l 的解析式为2+-=x y ,直线2l 与1l 垂直,且直线2l 经过点)2,1(-,求直线2l 的解析式.解:由题意可设直线2l 为:b x y +=∵其图象经过点)2,1(- ∴3,21-=-=+b b∴直线2l 的解析式为3-=x y . 回到本题:①当︒=∠90PAD 时,AB AP ⊥ 设直线AP 为n mx y += ∵直线AB 为1-=x y ∴1-=m∴n x y +-= 把()4,3--A 代入n x y +-=得:43-=+n∴7-=n∴直线AP 为7--=x y 解方程7342--=-+x x x 得:3,221-=-=x x (不合题意,舍去)∴()5,2--P .学生整理用图。
九年级数学下册 第26章 二次函数 26.3 实践与探究 第1课时 物体的运动轨迹等问题同步练习 (
26.3 物1s关于t2=-x2+4xA.(2C.(23.系y=图K-9-2A.10 m B.15 mC.20 m D.22.5 m4.斜向上发射一枚炮弹,炮弹飞行x秒后的高度为y米,且飞行时间与高度的关系式为y=ax 2+bx .若此炮弹在第7秒与第14秒时的高度相等,则下列哪一个时间的高度是最高的( )A .第8秒B .第10秒C .第12秒D .第15秒5.如图K -9-3,花坛水池中央有一喷泉,水管OP 的高度为3 m ,水从喷头P 喷出后呈抛物线状先向上至最高点后落下,若最高点距水面4 m ,P 距抛物线对称轴1 m ,则为使水不落到池外,水池半径最小为( )A .6A .C .913 m D 7.),图K -9-58.一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (m)与时间t (s)之间的部分数据如下表:则s 关于t ) 链接听课例2归纳总结9.某炮弹从炮口射出后飞行的高度h (m)与飞行的时间t (s)之间的函数关系式为h =12v 0t -5t 2,其中v 0是发射的初速度,当v 0=300 m/s 时,炮弹飞行的最大高度为________m ,该炮弹在空中飞行了________s 后落到地面上.三、解答题10.其杂技团在人民广场进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的运动路线是抛物线y =-35x 2+3x +1的一部分,如图K -9-6.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,则这次表演是否能够成功?请说明理由.链接听课例1归纳总结11K -9-7之间(1)当(2)Q图K -9-71.[解析] B 函数的图象是由函数的关系式和自变量的取值范围所决定的,题中s =12gt 2是二次函数,a =12g>0,故图象开口向上,而自变量t 不能取负值.故选B .2.[解析] D 通过配方法或顶点坐标公式求得球的最高点的坐标.3.[解析] B 根据题意知,抛物线y =ax 2+bx +c(a ≠0)经过点(0,54.0),(40,46.2),(20,57.9),则⎩⎪⎨⎪⎧c =54.0,1600a +40b +c =46.2,400a +20b +c =57.9,解得⎩⎪⎨⎪⎧a =-0.0195,b =0.585,c =54.0, 所以x =-b 2a =-0.5852×(-0.0195)=15.故选B .4.[解析] B 对称轴为直线x =(7+14)÷2=10.5,当x =10.5时炮弹达到最高点.∵四个选项中,10秒最接近10.5秒,故四个选项中,在第10秒的高度是最高的. 5.[解析] D 建立如图所示的坐标系.抛物线的顶点坐标是(1,4),设抛物线的关系式是y=a(x -1)2+4,把(0,3)代入,得a +4=3,解得a =-1.则抛物线的关系式是y =-(x -1)2+4.当y =0时,-(x -1)2+4=0,解得x 1=3,x 2=-1(舍去).则水池的最小半径是3 m .故选D .6.[解析] D ∵y =-256⎝ ⎛⎭⎪⎫x 2-45x =-256⎝ ⎛x -)⎭⎪⎫252+23,∴抛物线的顶点坐标是⎝ ⎛⎭⎪⎫25,23,∴运动员在空中运动的最大高度离水面的距离为10+23=1023(m ).故选D .7.[答案] 48.[答案] s =2t 29.[答案] 1125 30[解析] 将v 0=300 m /s 代入h =12v 0t -5t 2,得h =150t -5t 2,根据抛物线的顶点坐标公式可求得炮弹飞行的最大高度为1125 m .令h =0,则0=150t -5t 2,所以t 1=0(舍去),t 2=30,所以该炮弹在空中飞行了30 s 后落地.10.解:(1)将二次函数y =-35x 2+3x +1化成y =-35(x -52)2+194,∴当x =52时,y 有最大值,y 最大值=194=4.75,因此演员弹跳离地面的最大高度是4.75米.(2)这次表演能够成功.理由:当x =4时,y =-35×42+3×4+1=3.4.即点B(4,3.4)在抛物线y =-35x 2+3x +1上,因此这次表演能够成功.11.解:(1)①当a =-124时,y =-124(x -4)2+h.由题意易知点P 的坐标为(0,1).将(0,代入上式,得-1×=5②把x ∵(2)把⎩⎪⎨⎪⎧16a +9a +h。
第26章二次函数同步练习(一)及答案
第26章二次函数 同步学习检测(一)班级 _______________座号 姓名 ___ 得分_____一、填空题:(每小题2分,共80分)1、(2009年北京市)若把代数式223x x --化为()2x m k -+的形式,其中,m k 为常数,则m+k= __________ .2、(2009年安徽)已知二次函数的图象经过原点及点(12-,14-),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为3、(2009 黑龙江大兴安岭)当=x 时,二次函数222-+=x x y 有最小值.4、(2009年郴州市)抛物线23(1)5y x =--+的顶点坐标为_______________________. 5、(2009年上海市)将抛物线22y x =-向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是 ______________ .6、(2009年内蒙古包头)已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是 ____ 个. 7、(2009湖北省荆门市)函数(2)(3)y x x =--取得最大值时,x =____________. 8、(2009年齐齐哈尔市)当x =_____________时,二次函数222y x x =+-有最小值. 9、(2009年贵州省黔东南州)二次函数322--=x x y 的图象关于原点O (0, 0)对称的图象的解析式是_________________。
10、已知二次函数2122y x x =-+, 当x______________时,y 随x 的增大而增大. 11、(2009襄樊市)抛物线2y x bx c =-++的图象如图所示,则此抛物线的解析式为 .12、(2009年娄底)如图,⊙O 的半径为2,C 1是函数y =12x 2的图象,C 2是函数y =-12x 2的图象,则阴影部分的面积是 .13、(2009年甘肃庆阳)如图为二次函数2y ax bx c =++的图象,给出下列说法: ①0ab <;②方程20ax bx c ++=的根为1213x x =-=,;③0a b c ++>;④当1x >时,y 随x 值的增大而增大;⑤当0y >时,13x -<<.其中,正确的说法有 .(请写出所有正确说法的序号)14、(2009年甘肃定西)抛物线2y x bx c =-++的部分图象如图所示,请写出与其关系式、图象相关的2个正确结论: , .(对称轴方程,图象与x 正半轴、y 轴交点坐标例外)15、(2009年鄂州)把抛物线y =ax+bx+c 的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y =x -3x+5,则a+b+c=__________16、(2009年包头)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm 2.17、(2009年黄石市)若抛物线23y ax bx =++与232y x x =-++的两交点关于原点对称,则a b 、分别为 .18.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元。
2019年精选沪科版初中数学九年级下册第26章 概率初步26.3 用频率估计概率课后练习九十三
2019年精选沪科版初中数学九年级下册第26章概率初步26.3 用频率估计概率课后练习九十三第1题【单选题】在做“抛掷两枚硬币实验”时,有部分同学没有硬币,因而需要用别的实物来替代进行实验,在以下所选的替代物中,你认为较合适的是( )A、两张扑克牌,一张是红桃,另一张是黑桃B、两个乒乓球,一个是黄色,另一个是白色C、两个相同的矿泉水瓶盖D、四张扑克牌,两张是红桃,另两张是黑桃【答案】:【解析】:第2题【单选题】某班一些学生作图钉随机抛掷的实验,求图钉尖触地还是图钉面触地的概率,下列做法正确的是( )A、甲做了4000次,得出针尖触地的频率约为42%,于是他断定在做第4001次时,针尖肯定不会触地B、乙认为一次一次做,速度太慢,他拿来了大把材料,形状及大小都完全一样的图钉,随意朝上轻轻抛出,然后统计针尖触地的个数,这样大大提高了速度C、老师安排每位同学回家做实验,各人的图钉大小、质地均匀程度都不一样,同学交来的结果,老师进行统计D、老师安排同学回家做实验,图钉统一发(完全一样的图钉),同学交来的结果,老师进行统计【答案】:【解析】:第3题【单选题】A、试验1500次摸到白球的频率比试验800次的更接近0.6B、从该盒子中任意摸出一个小球,摸到白球的频率约为0.6C、当试验次数n为2000时,摸到白球的次数m一定等于1200D、这个盒子中的白球定有28个【答案】:【解析】:第4题【单选题】在一次数学课上,第一小组做投掷一枚均匀硬币的实验,若实验次数为50次,那么一定出现的情况是( )A、25次正面朝上,25次背面朝下B、背面朝上次数大于正面朝上次数C、正面朝上次数大于背面朝上次数D、不确定【答案】:【解析】:第5题【单选题】在一个不透明的布袋中装有40个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.30左右,则布袋中黄球可能有( )A、12个B、14个C、18个D、28个【答案】:【解析】:第6题【单选题】一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有125次摸到白球,因此小亮估计口袋中的红球大约有( )个.A、100个B、90个C、80个D、70个【答案】:【解析】:第7题【填空题】在四个完全相同的小球上分别写上1,2,3,4四个数字,然后装入一个不透明的口袋内搅匀,从口袋内取出一个球记下数字后作为点P的横坐标x,放回袋中搅匀,然后再从袋中取出一个球记下数字后作为点P的纵坐标y,则点P(x,y)落在直线y=﹣x+5上的概率是______.【答案】:【解析】:第8题【填空题】【答案】:【解析】:第9题【填空题】随机抛掷一枚图钉10000次,其中针尖朝上的次数为2500次,则抛掷这枚图钉1次,针尖朝上的概率是______.【答案】:【解析】:第10题【解答题】【答案】:【解析】:第11题【解答题】一个口袋中有黑球10个,白球若干个,小明从袋中随机一次摸出10只球,记下其中黑球的数目,再把它们放回,搅均匀后重复上述过程20次,发现共有黑球18个,由此你能估计出袋中的白球是多少个吗?【答案】:【解析】:第12题【解答题】【答案】:【解析】:第13题【综合题】请估计:当次数s很大时,摸到白球的频率将会接近______;假如你去摸一次,你摸到白球的概率是______(精确到0.1).试估算口袋中红球有多少只?解决了上面的问题后请你从统计与概率方面谈一条启示.【答案】:【解析】:第14题【综合题】请估计:当n很大时,摸到白球的频率将会接近______.(精确到0.1)假如你摸一次,你摸到白球的概率P(白球)=______试估算盒子里黑、白两种颜色的球各有多少只?【答案】:无【解析】:第15题【综合题】在一个不透明的盒子里装有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是“摸到白色球”的频率折线统计图.请估计:当n很大时,摸到白球的概率将会接近______(精确到0.01),假如你摸一次,你摸到白球的概率为______试估算盒子里白、黑两种颜色的球各有多少个?在上述条件下如果要使摸到白球的概率为有误,需要往盒子里再放入多少个白球?【答案】:无【解析】:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1题:资产的特征不包括()。
A过去的交易或事项形成的 B企业日常活动形成的经济利益总流入C企业拥有或者控制的 D能够给企业带来未来的经济利益A B C D标准答案:B答案解析:资产是指过去的交易、事项形成并由企业拥有或者控制的,能以货币计量并且预期会给企业带来经济利益的资源。
第2题:现代会计以()为核心。
A行政单位会计 B事业单位会计 C企业会计 D国库会计A B C D标准答案:C答案解析:现代会计以企业会计为核心。
第3题:现代会计形成的标志是()。
A财务会计的产生 B管理会计的产生 C企业会计的产生 D行政事业单位会计的产生A B C D标准答案:B答案解析:现代会计的两大分支是财务会计和管理会计。
管理会计的产生标志着现代会计的形成。
第4题:财务会计的目标是为会计信息的外部使用者服务,从这个意义上讲,财务会计又称为()A盈利会计 B外部会计 C内部会计 D决策会计A B C D标准答案:B答案解析:财务会计主要为外部会计信息使用者提供信息,所以财务会计又称为外部会计;管理会计称为内部会计。
本教材并没有明确提出“外部会计”和“内部会计”,但依据财务会计和管理会计的概念可知财务会计是外部会计,管理会计是内部会计。
第5题:在经济事项发生之前、经济事项进行当中和经济事项发生之后,会计利用预算、检查、考核、分析等手段,对单位的会计核算及其经济活动的真实性、完整性、合规性和有效性进行指导与控制。
这是会计的()职能。
A.核算B.检查C.反映D.监督A B C D标准答案:D答案解析:考核会计监督的概念,见教材第26章第1节。
第6题:企业资金运动的起点是()。
A资金投入 B资金退出 C资金周转 D资金循环A B C D标准答案:A答案解析:资金运动的过程分析资金投入、资金周转与循环、资金的退出。
其中资金投入是企业资金运动的起点。
第7题:反映企业经营成果的会计要素不包括()A.收入B.费用C.利润D.负债A B C D标准答案:D答案解析:企业会计要素分为六类。
反映经营成果的会计要素包括收入、费用和利润;反映财务状况的会计第8题:有关企业财务状况的信息,通过()来反映;A现金流量表 B利润表 C资产负债表 D所有者权益变动表A B C D标准答案:C答案解析:有关企业财务状况的信息,通过资产负债表来反映;有关企业经营成果的信息,通过利润表来反映;有关企业现金流量的信息,通过现金流量表来反映第9题:负债是指企业由于过去的交易或事项形成的()A过去义务 B现时义务 C将来义务 D永久义务A B C D标准答案:B答案解析:负债是指企业由于过去的交易或事项形成的,预期会导致经济利益流出企业的现时义务。
负债强调的是“现在承担的义务”即“现时义务”。
第10题:会计核算上,企业将融资租入的设备计入固定资产,体现了()的要求。
A.一致性B.谨慎性C.实质重于形式D.重要性A B C D标准答案:C答案解析:对于融资租入的设备,企业虽然没有所有权,但能够实际控制,按实质重于形式的原则,应当将其作为企业资产予以确认。
不过一般情况下,判断某项资源是否属于企业的资产,主要从企业对该资源是否拥有所有权、是否可按自己的意愿使用或处置来判定。
第11题:在会计核算的基本前提中,界定会计工作和会计信息的空间范围的是()。
A.会计主体B.持续经营C.会计期间D.货币计量A B C D标准答案:A答案解析:会计主体确立了会计核算的空间范围,持续经营与会计分期确立了会计核算的时间长度,而货币计量则为会计核算提供了必要手段。
第12题:过去的交易、事项形成并由企业拥有或者控制的,能以货币计量并且预期会给企业带来经济利益的资源称为()A负债 B所有者权益 C资产 D收入A B C D标准答案:C答案解析:考核资产的含义。
资产是指过去的交易、事项形成并由企业拥有或者控制的,能以货币计量并且预期会给企业带来经济利益的资源。
第13题:我国会计准则规定,企业的会计核算应当以()为基础。
A.实地盘存制B.永续盘存制C.收付实现制D.权责发生制A B C D标准答案:D答案解析:企业的会计核算应当以权责发生制为基础。
行政单位会计核算以收付实现制为基础。
第14题:所有者权益又称为股东权益是指()后由所有者享有的剩余收益。
A流动资产扣除流动负债 B资产扣除负债 C收入扣除费用 D资产扣除长期负债A B C D标准答案:B答案解析:考核所有者权益的含义。
所有者权益是指企业资产扣除负债后由所有者享有的剩余收益,是投资人在企业中享有的经济利益。
第15题:按照权利义务是否发生来确定收益和费用归属期的会计处理原则是()A收付实现制 B权责发生制 C配比原则 D历史成本原则A B C D标准答案:B答案解析:收付实现制:按照款项实际收到或付出的日期来确定收益和费用的归属期权责发生制:按照权利和义务是否发生来确定收益和费用的归属期。
第16题:对应收账款计提坏账准备,体现了会计核算的()要求。
A谨慎性 B相关性 C历史成本 D实质重于形式A B C D标准答案:A答案解析:考核谨慎性要求的应用。
对应收款项计提坏账准备、在物价持续上涨时对发出存货采用后进先出法计价、对固定资产采用加速折旧法计提折旧、对可能发生的各项资产损失计提资产减值准备均是谨慎性的体现。
第17题:待摊费用、预提费用账户是以()为基础设置的。
A谨慎原则 B重要性原则 C权责发生制原则 D配比原则A B C D标准答案:C答案解析:本题有些超纲,待摊费用用以核算本期支付的应由以后各期负担的费用;预提费用核算应由本期负担,但以后实际支付的费用。
这两个账户是根据权责发生制原则设置的。
第18题:我国会计法规体系以()为核心A《中华人民共和国会计法》 B《企业会计准则》 C《金融企业会计制度》 D具体会计准则A B C D标准答案:A答案解析:我国会计法规体系以《中华人民共和国会计法》为核心,以《企业会计准则》为主要内容。
第19题:有关企业经营成果的信息,主要通过()来反映。
A.现金流量表B.利润表C.成本报表D.资产负债表A B C D标准答案:B答案解析:反映企业经营成果的会计报表是利润表。
第20题:将收益性支出按资本性支出进行账务处理会导致()。
A.少计费用多计资产B.多计费用少计资产C.少计费用少计资产D.多计费用多计资产A B C D标准答案:A答案解析:(1)将资本性支出误计入收益性支出,就会多计费用而少计资产价值,会低估资产和当期收益;(2)将收益性支出误计入资本性支出,就会少计费用多计资产价值,会高估资产和当期收益。
A.支付管理人员的薪酬B.购置固定资产C.企业支付的营业税D.支付生产工人劳动保险费A B C D标准答案:B答案解析:本题需要依据资本性支出与收益性支出的含义判断。
资本性支出是指为当期发生的不但与本期收益有关,而且与以后会计期间收益有关的,应当在以后若干会计期间的收益中得到补偿的支出。
与固定资产、无形资产等长期资产的取得有关的支出均属于资本性支出。
第22题:下列项目中属于流动资产的是()。
A预收账款 B预付账款 C工程物资 D应付股利A B C D标准答案:B答案解析:AD属于流动负债;C属于非流动资产。
第23题:在企业会计核算中,对支出的效益只涉及当期的,应作为()处理。
A企业经营收入 B收益性支出 C资本性支出 D当期利润A B C D标准答案:B答案解析:(1)支出的效益仅惠及本会计年度(或一个营业周期)的,应当作为收益性支出,如:营业费用、管理费用、财务费用等。
收益性支出作为费用列入利润表中;(2)凡支出的效益惠及几个会计年度(或几个营业周期)的,应当作为资本性支出。
如购入固定资产和无形资产的支出,固定资产更新改造支出,它应当作为资产列入资产负债表中。
该支出通过折旧、摊销等逐期转化为各期的费用。
第24题:下列各项中,属于会计要素确认计量原则的是()。
A.会计主体B.设置账簿C.权责发生制D.规定会计报表格式A B C D标准答案:C答案解析:会计要素确认和计量基本原则包括:权责发生制原则;配比原则;历史成本原则;划分收益性支出与资本性支出原则。
第25题:会计核算中产生权责发生制和收付实现制两种记账基础的前提是()A会计主体 B持续经营 C货币计量 D会计分期A B C D标准答案:D答案解析:明确了会计期间的前提,才产生了本期与非本期的区别,才产生了收付实现制和权责发生制,才能正确贯彻配比原则。
第26题:由财政部制定的规范事业单位财务活动的一般规则称为()A企业会计准则 B行政单位财务规则C事业单位财务规则 D事业单位会计准则A B C D标准答案:C答案解析:《事业单位财务规则》是财政部为了进一步规范事业单位的财务行为,加强事业单位财务管理和监督,提高资金使用效益,保障事业单位健康发展,由财政部制定的规范事业单位财务活动的一般规则。
《事业单位会计准则》是财政部制定的规范事业单位会计核算,保证会计信息质量的原则性规定。
主要对事业单位会计核算的目标、前提、会计要素、会计信息质量要求、财务会计报告等作出的规定。
A核算 B预测 C评价 D监督 E决策A B C D E标准答案:A, D答案解析:会计基本职能包括会计核算及会计监督职能第28题:下列各项,属于资产必须具备的基本特征有()。
A.预期会给企业带来经济利益B.被企业拥有或控制C.由过去的交易或事项形成D.具有可辨认性E.能以货币计量A B C D E标准答案:A, B, C, E答案解析:资产是指由于过去的交易、事项形成的并由企业拥有或者控制的资源,该资源预期会给企业带来经济利益。
其特征是:必须是企业拥有或者控制的资源;必须是预期能够直接或间接给企业带来经济利益;必须是现实的资产;必须能以货币计量.第29题:反映企业财务状况的会计要素包括()。
A、资产B、负债C、所有者权益D、收入E、费用A B C D E标准答案:A, B, C答案解析:DE属于反映企业经营成果的会计要素第30题:利润的确认主要依赖于()的确认。
A收入 B费用 C利得 D损失 E所有者权益A B C D E标准答案:A, B, C, D答案解析:利润包括收入减去费用后的净额、直接计入当期利润的利得和损失等。
利润的确认主要依赖于收入和费用以及利得和损失的确认。
第31题:下列项目中,不符合“资产”定义的有()A技术上被淘汰的机器 B已确认收不回的应收账款C临时出租的固定资产 D未到期的应收账款E临时租入的固定资产A B C D E标准答案:A, B, E答案解析:AB预期不会给企业带来经济利益,因此不属于资产E企业既不拥有所有权也不能实际控制,因此不属于资产第32题:下列各项中,构成企业所有者权益的有()A资本公积 B盈余公积 C未分配利润 D实收资本 E货币资金A B C D E标准答案:A, B, C, D答案解析:所有者权益包括实收资本(股本)、资本公积、盈余公积、未分配利润。