1.1.3 集合的基本运算教案

合集下载

1.1.3 集合的基本运算 补集教案

1.1.3 集合的基本运算 补集教案

1.1.3 集合的基本运算第二课时 补集及综合应用一、全集的定义及表示1、定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.2、符号表示:全集通常记作U.3、对全集概念的理解“全集”是一个相对的概念,并不是固定不变的,它是依据具体的问题来加以选择的.例如:我们常把实数集R 看作全集,而当我们在整数范围内研究问题时,就把整数集Z 看作全集.二、补集1、定义:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对全集U 的补集,简称为集合A 的补集,记作——A U C2、符号语言:AU C ={x| x ∈U ,且x ∉A}3、图形语言:4、性质:(1)A U C ⊆U ;(2)U U C =∅,φU C =U ;(3)()AU C U C =A ;(4)A ∪(A U C )=U ;A ∩(A U C )=∅ 5、理解补集应关注三点(1)补集既是集合之间的一种关系,同时也是集合之间的一种运算.求集合A 的补集的前提是A 是全集U 的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.(2)∁U A 包含三层意思:①A ⊆U ;②∁U A 是一个集合,且∁U A ⊆U ;③∁U A 是由U 中所有不属于A 的元素构成的集合.(3)若x ∈U ,则x ∈A 或x ∈∁U A ,二者必居其一.题型一、补集的运算[例1] (1)设全集U =R ,集合A ={x |2<x ≤5},则∁U A =________.(2)设U ={x |-5≤x <-2,或2<x ≤5,x ∈Z},A ={x |x 2-2x -15=0},B ={-3,3,4},则∁U A=________,∁U B =________.[解析] (1)用数轴表示集合A 为图中阴影部分∴∁U A ={x |x ≤2或x >5}.(2)法一:在集合U 中,∵x ∈Z ,则x 的值为-5,-4,-3,3,4,5,∴U ={-5,-4,-3,3,4,5}.又A ={x |x 2-2x -15=0}={-3,5},∴∁U A={-5,-4,3,4},∁U B={-5,-4,5}.[活学活用]设全集U={1,3,5,7,9},A={1,|a-5|,9),∁U A={5,7},则a的值为________.解析:∵A={1,|a-5|,9},∁U A={5,7},A∪(∁U A)={1,5,7,9,|a-5|}=U,∴|a-5|=3.解得a-5=±3,即a=8或a=2.题型二、集合的交、并、补的综合运算[例2]已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(∁A)U∪B,A∩(∁U B),∁U(A∪B).[解]如图所示.∵A={x|-2<x<3},B={x|-3≤x≤2},U={x|x≤4},∴∁U A={x|x≤-2,或3≤x≤4},∁U B={x|x<-3,或2<x≤4}.A∩B={x|-2<x≤2},A∪B={x|-3≤x<3}.故(∁U A)∪B={x|x≤2,或3≤x≤4},A∩(∁U B)={x|2<x<3}.∁U(A∪B)={x|x<-3,或3≤x≤4}.[活学活用]已知全集U={x|x<10,x∈N*},A={2,4,5,8},B={1,3,5,8},求∁U(A∪B),∁U(A∩B),(∁U A)∩(∁B),(∁U A)∪(∁U B).U解:∵A∪B={1,2,3,4,5,8},U={1,2,3,4,5,6,7,8,9},∴∁U(A∪B)={6,7,9}.∵A∩B={5,8},∴∁U(A∩B)={1,2,3,4,6,7,9}.∵∁U A={1,3,6,7,9},∁U B={2,4,6,7,9}.∴(∁U A)∩(∁U B)={6,7,9},(∁U A)∪(∁U B)={1,2,3,4,6,7,9}.作出Venn图,如图所示,由图形也可以直接观察出来结果.题型三、补集的综合应用[例3]设全集U=R,M={x|3a<x<2a+5},P={x|-2≤x≤1},若M∁P,求实数a的取U值范围.[解]∁P={x|x<-2,或x>1},∵M∁U P,U∴分M=∅,M≠∅两种情况讨论.(1)M ≠∅时,如图可得⎩⎪⎨⎪⎧ 3a <2a +5,2a +5≤-2或⎩⎪⎨⎪⎧3a <2a +5,3a ≥1. ∴a ≤-72或13≤a <5. (2)M =∅时,应有3a ≥2a +5⇒a ≥5.综上可知,a ≥13或a ≤-72. [活学活用]1、已知集合A ={x |x <a },B ={x <-1,或x >0},若A ∩(∁R B )=∅,求实数a 的取值范围.解:∵B ={x |x <-1,或x >0},∴∁R B ={x |-1≤x ≤0},因而要使A ∩(∁R B )=∅,结合数轴分析(如图),可得a ≤-1.2、已知集合A ={x |2m -1<x <3m +2},B ={x |x ≤-2,或x ≥5},是否存在实数m ,使A ∩B ≠∅?若存在,求实数m 的取值范围;若不存在,请说明理由.解:若A ∩B =∅,分A =∅和A ≠∅讨论:(1)若A =∅,则2m -1≥3m +2,解得m ≤-3,此时A ∩B =∅.(2)若A ≠∅,要使A ∩B =∅,则应有⎩⎪⎨⎪⎧ 2m -1<3m +2,2m -1≥-2,3m +2≤5,即⎩⎪⎨⎪⎧ m >-3,m ≥-12,m ≤1.所以-12≤m ≤1. 综上,当A ∩B =∅时,m ≤-3或-12≤m ≤1. 所以当m >1或-3<m <-12时,A ∩B ≠∅. 课堂练习1.已知U ={1,2,3,4,5,6,7,8},A ={1,3,5,7},B ={2,4,5},则∁U(A ∪B)=( )A .{6,8}B .{5,7}C .{4,6,7}D .{1,3,5,6,8}解析:A ∪B ={1,2,3,4,5,7},则∁U(A ∪B)={6,8},选A.答案:A2.已知全集U =R ,集合A ={x|-2≤x ≤3},B ={x|x <-1,或x>4},那么集合A ∩(∁UB)等于 ( )A .{x|-2≤x <4}B .{x|x ≤3,或x ≥4}C .{x|-2≤x <-1}D .{x|-1≤x ≤3}解析:由题意可得,∁UB={x|-1≤x≤4},A={x|-2≤x≤3},所以A∩(∁UB)={x|-1≤x ≤3}.答案:D3.已知集合A={3,4,m},集合B={3,4},若∁AB={5},则实数m=________.解析:∵∁AB={5},∴5∈A,且5∉B.∴m=5.答案:54.已知全集U=R,M={x|-1<x<1},∁UN={x|0<x<2},那么集合M∪N=________.解析:∵U=R,∁UN={x|0<x<2},∴N={x|x≤0或x≥2}∴M∪N={x|-1<x<1}∪{x|x≤0或x≥2}={x|x<1或x≥2}.5.设U=R,已知集合A={x|-5<x<5},B={x|0≤x<7},求(1)A∩B;(2)A∪B;(3)A∪(∁UB);(4)B∩(∁UA);(5)(∁UA)∩(∁UB).解:如图(1).(1)A∩B={x|0≤x<5}.(2)A∪B={x|-5<x<7}.(3)如图(2).∁U B={x|x<0,或x≥7},∴A∪(∁U B)={x|x<5,或x≥7}.(4)如图(3).(3)∁U A={x|x≤-5,或x≥5},B∩(∁U A)={x|5≤x<7}.课时跟踪检测(五) 补集及综合应用一、选择题1.设全集U={1,2,3,4,5},A={1,3,5},B={2,4,5},则(∁U A)∩(∁U B)=( ) A.∅B.{4}C.{1,5} D.{2,5}2.设全集U=R,集合A={x|0<x<9},B={x∈Z|-4<x<4},则集合(∁U A)∩B中的元素的个数为( )A.3 B.4C.5 D.63.已知三个集合U,A,B及集合间的关系如图所示,则(∁U B)∩A=( )A.{3} B.{0,1,2,4,7,8}C.{1,2} D.{1,2,3}4.图中阴影部分所表示的集合是( )A.B∩(∁U(A∪C)) B.(A∪B)∪(B∪C)C.(A∪C)∩(∁U B) D.(∁U(A∩C))∪B5.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∁U(A∪B)中元素的个数为( )A.1 B.2C.3 D.4二、填空题6.设全集U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)=________7.已知集合A={x|x<a},B={x|1<x<2},A∪(∁R B)=R,则实数a的取值范围是________.8.全集U=R,A={x|x<-3或x≥2},B={x|-1<x<5},则集合C={x|-1<x<2}=________(用A、B或其补集表示).三、解答题9.已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠∅,求a的取值范围.10.已知全集U={不大于20的素数},M,N为U的两个子集,且满足M∩(∁U N)={3,5},(∁U M)∩N={7,19},(∁U M)∩(∁U N)={2,17},求M,N.答案课时跟踪检测(五)1.选A ∵∁U A={2,4},∁U B={1,3},∴(∁U A)∩(∁U B)=∅,故选A.2.选B 因U=R,A={x|0<x<9},又因B={x∈Z|-4<x<4},所以∁U A={x|x≤0或x≥9},所以(∁U A)∩B={x∈Z|-4<x≤0}={-3,-2,-1,0}共4个元素.3.选C 由Venn图可知U={0,1,2,3,4,5,6,7,8},A={1,2,3},B={3,5,6},所以(∁U B)∩A={1,2}.4.选A 阴影部分位于集合B内,且位于集合A、C的外部,故可表示为B∩(∁U(A∪C)).故选A.5.选B A={1,2},B={x|x=2a,a∈A}={2,4},∴A∪B={1,2,4},∴∁U(A∪B)={3,5},故选B.6.解析:∵U=R,B={x|x>1},∴∁U B={x|x≤1}.又∵A={x|x>0},∴A∩(∁U B)={x|x>0}∩{x|x≤1}={x|0<x≤1}.答案:{x|0<x≤1}7.解析:∵B={x|1<x<2},∴∁R B={x|x≤1或x≥2}.又∵A∪(∁R B)=R,A={x|x<a}.观察∁R B与A在数轴上表示的区间,如图所示:可得当a≥2时,A∪(∁R B)=R.答案:{a|a≥2}8.解析:如图所示,由图可知C⊆∁U A,且C⊆B,∴C=B∩(∁U A).答案:B∩(∁U A)9.解:(1)因为A={x|2≤x<7},B={x|3<x<10},所以A∪B={x|2≤x<10}.因为A={x|2≤x<7},所以∁R A={x|x<2,或x≥7},则(∁R A)∩B={x|7≤x<10}.(2)因为A={x|2≤x<7},C={x|x<a},且A∩C≠∅,所以a>2.10.解:法一:U={2,3,5,7,11,13,17,19},如图,∴M={3,5,11,13},N={7,11,13,19}.法二:∵M∩(∁U N)={3,5},∴3∈M,5∈M且3∉N,5∉N.又∵(∁U M)∩N={7,19},∴7∈N,19∈N且7∉M,19∉M.又∵(∁U M)∩(∁U N)={2,17},∴∁U(M∪N)={2,17},∴M={3,5,11,13},N={7,11,13,19}.。

1.1.3集合的基本运算教案教学教材

1.1.3集合的基本运算教案教学教材
解:∵A∩B ={9},∴9A 所以a2 = 9或2a-1= 9,解得a = 3或a = 5 当a = 3时,A={9,5,-4},B ={-2,-2,9},B中元素违 背了互异性,舍去.
当a=-3时,A={9,-7,-4},B={-8,4,9},A∩B={9} 满足题意,故A∪B={-7,-4,-8,4,9}. 当a=5时,A={25,9,-4},B={0,-4,9},此时A∩B= {-4,9},与A∩B={9}矛盾,故舍去. 综上所述,a=3且A∪B={-7,-4,-8,4,9}.
一般地,由所有属于集合A或属于集合B的元素 所组成的集合,称为集合A与B的并集,记作A∪B(读
作“A并B”),即 A∪B={x | x∈ A, 或x∈ B}
用Venn图表示:
A
B
A∪B
注意:求两个集合的并集时,
例 设A={a,b,c}, B={a,它c,d们,f}的,求公A共∪元B.素在并集中只 解: A∪B={a,b,c} ∪ {a能,c,d出,f现} 一次.如:a,c.
1.1.3集合的基本运算教案
1.1.3 集合的基本运算
A AB B AUB
请观察A,B,C这些集合之间是什么关系?
x是有a,b理数 集合A
x是c无,d理数
集合B
A
B
xa是,b实,c,d数 集合C
-2
2 4 6 8 10
C 集合C是由所有属于集合A或属于集合B的元素组成.
知识要 点
1.并集
∁U N={x|x<0且x≥1}.
教材习题答案
1.A B = {5, 8}, A B = {3, 4, 5, 6, 7, 8}; 2.因 为 A = {-1,5}, B = {-1,1}, 所 以 A B = {-1,1, 5}, A B = {-1}; 3.A B = {x x是 等 腰 直 角 三 角 形 }; A B = {x x是 等 腰 三 角 形 或 直 角 三 角 形 }; 4.因 为 C U A = {1, 3, 6, 7}, C UB = {2, 4, 6}, 所 以 A∩ (C U B) = {2, 4}, (C U A)∩(C UB) = {6}.

集合的基本运算(教案)

集合的基本运算(教案)

§1.1.3 集合的基本运算(教案)一、并集(重点)定义:一般地,由所有属于集合A 或属于集合B 的所有元素所组成的集合,称为集合A 与集合B 的并集(union set ),记作A B (读作“A 并B ”), 其数学语言表示形式为:{|AB x x A =∈,或}.x B ∈注意1:两个集合求并集,实际上也是一种运算,结果还是一个集合,是由集合A 与B 的所有元素组成的集合(重复元素只看成一个元素)。

例子:{3,5,6,8},{4,5,7,8}A B ==,则{3,4,5,6,7,8}A B =,而不是{3,5,6,8,4,5,7,8}.A B = 用Venn 图表示两个集合间的“并”运算(求并集):与子集的联系:A AB ⊆,B A B ⊆性质:由并集的定义及韦氏图不难看出,并集具有以下性质: ○1A A A =(吸收律); ○2A ∅=A ; ○3A B B A =(交换律); ○4()()A B C A B C =(结合律)..例1、(1)设集合{1,2,3},{2,3,4,5}A B ==,求AB ; {1,2,3,4,5}(2)设集合{|35}A x x =-<≤,{26}B x =<≤,求AB . {|36}.x x -<≤二、交集(重点)、定义:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集(intersection set ),记作A B (读作“A 交B ”), 其数学语言表示形式为:{|,AB x x A =∈且}.x B ∈注意2:正如并集一样,两个集合的交集仍然是一个集合,所不同的是交集是由两个集合中的共同元素所组成的集合.也就是说,交集是由那些既属于集合A 又属于集合B 的所有元素组成的. 例子:{1,2,3,4,5},{2,4,5,8,9}A B ==,{2,4,5}.AB =用Venn 图表示两个集合间的“交”运算(求交集):A ∪B与子集的联系:AB A ⊆,A B B ⊆性质:由交集的定义及韦氏图不难看出,交集具有以下性质: ○1A A A =(吸收律); ○2A ∅=∅; ○3A B B A =(交换律); ○4()()A B C A B C =(结合律). 随堂练习1: 把例1中的“求AB ”改为“求A B ”重做{2,3};{|25}.x x <≤例2、(1)集合A={x|x 2+5x -6≤0},B={x|x 2+3x>0},求A ∪B 和A∩B . (2)集合A={x |x 是等腰三角形}, B={x |x 是直角三角形}, 求A ∩B, A ⋃B解:(1)∵A={x|x 2+5x -6≤0}={x|-6≤x≤1}, B={x|x 2+3x>0}={x|x<-3或x>0}.A ∪B=R .AB {|63x x=-≤<-或01}.x <≤(2)A ∩B={x |x 是等腰三角形}∩{x |x 是直角三角形}={x |x 是等腰直角三角形},A ∪B={x |x 是等腰三角形}∪{x |x 是直角三角形}={x |x 是等腰三角形或直角三角形} 三、补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(universe set),通常记作.U补集:对于一个集合A,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集(complementanry set),简称为集合A 的补集,记作U A ð,读作全集U 中集合A 的补集. 其数学语言表示形式为:{|,U A x x U =∈ð且}x A ∉,例子:历史老师? 注意3:(1)全集并不是一成不变的,它是依据所研究问题的来加以选择的。

§1.1.3集合的基本运算教案

§1.1.3集合的基本运算教案

1.1.3集合的基本运算三维目标一、知识与技能1.理解并集、交集的概念和意义.2.掌握有关集合并集、交集的术语和符号,并会用它们正确地表示一些简单的集合,能用图示法表示集合之间的关系.3.掌握两个较简单集合的并集、交集的求法. 二、过程与方法1.自主学习,了解并集、交集来源于生活、服务于生活,又高于生活.2.通过对并集、交集概念的讲解,培养学生观察、比较、分析、概括等能力,使学生认识由具体到抽象的思维过程.3.探究数学符号化表示问题的简洁美. 三、情感态度与价值观 认识共性存在于个性之间,“并”能够产生特殊的集体,有包容现象,小集体可合成大集体. 教学重点并集、交集的概念. 教学难点并集、交集的概念、符号之间的区别与联系. 教学过程一、创设情景,引入新课师:同学们,今天我们来做一些统计,符合条件的同学请举手. 第一项统计:“我班45名同学中爱好数学的同学请举手”(喜欢数学的同学举起了手).师:我们可以用集合A 来表示我班45名同学中爱好数学的同学. 第二项统计:请爱好物理的同学举手”(喜欢物理的同学举起了手). 师:我们可以用集合B 来表示我班45名同学中爱好物理的同学.师:第三项统计:请我班同学中爱好数学或爱好物理的同学举手(喜欢数学或喜欢物理的同学举起了手).师:同样,我们可以用集合C 来表示我班45名同学中喜欢数学或喜欢物理的同学上面的描述我们可以用图来表示,我们看下图 图中的阴影部分表示什么?我班喜欢数学的同学我班喜欢物理的同学生:集合A 、B 合并在一起.师:阴影部分的周界线是一条封闭曲线,它的内部(阴影部分)当然表示一个新的集合,试问这个新集合中的元素与集合A 、B 的元素有何关系? 生:它的元素属于集合A 或属于集合B.师:对!我们把所有属于集合A 或属于集合B 的元素构成的集合,称为A 与BA ∪B B A的并集.由此引入并集的概念. 二、讲解新课 1. 并集一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集(Union )【助学】“所有”的含义是A 与B 的公共元素一个不能少. 记作:A ∪B 读作:“A 并B ” 即: A ∪B={x|x ∈A ,或x ∈B} 【助学】概念的描述 :“列举法还是描述法?” 答:描述法.【助学】并集定义的数学表达式中“或”字的意义应引起注意,用它连接的并列成分之间不一定是互相排斥的.x ∈A ,或x ∈B 包括如下三种情况:①x ∈A ,但x B ;②x ∈B ,但x A ;③x ∈A ,且x ∈B. 由集合A 中元素的互异性知,A 与B 的公共元素在A ∪B 中只出现一次,因此,A ∪B 是由所有至少属于A 、B 两者之一的元素组成的集合Venn图表示:说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。

2024-2025学年高中数学第一章预备知识1集合1.1.3集合的基本运算教案北师大版必修第一册

2024-2025学年高中数学第一章预备知识1集合1.1.3集合的基本运算教案北师大版必修第一册
3. 多元化教学评价:完善教学评价体系,不仅仅依赖笔试成绩,还要结合学生的课堂表现、实践操作能力等多方面进行综合评价。例如,可以设立课堂表现评价、小组讨论评价等,全面客观地评价学生的学习效果。
八、重点题型整理
1. 集合的基本概念
a) 求解集合的元素个数
例题:集合A={1, 2, 3, 4, 5},求集合A的元素个数。
答案:交集A∩B={2, 3},并集A∪B={1, 2, 3, 4},补集A'={1, 4}。
2. 集合的基本运算
a) 求解集合的交集
例题:集合A={1, 2, 3},集合B={2, 3, 4},求集合A和集合B的交集。
答案:交集A∩BΒιβλιοθήκη {2, 3}。b) 求解集合的并集
例题:集合A={1, 2, 3},集合B={2, 3, 4},求集合A和集合B的并集。
具体到每个章节内容,学生学习效果如下:
1. 学生能够准确理解集合、元素、集合之间的关系等基本概念,并能运用这些概念进行正确的集合表示和运算。
2. 学生能够掌握集合的基本运算方法,包括交集、并集、补集等,并能运用这些运算解决实际问题。
3. 学生能够理解集合运算的性质,如交换律、结合律等,并能运用这些性质简化集合运算过程。
2024-2025学年高中数学 第一章 预备知识 1 集合 1.1.3 集合的基本运算教案 北师大版必修第一册
课题:
科目:
班级:
课时:计划1课时
教师:
单位:
一、教学内容
本节课的教学内容来自于北师大版必修第一册,高中数学第一章预备知识,1.1.3节“集合的基本运算”。本节课的主要内容有:
1. 理解并掌握集合的交集、并集、补集等基本运算概念;
(2)新课讲授:运用PPT展示集合的基本运算图示,如交集、并集、补集等,结合讲解,让学生直观地理解和掌握集合运算的概念和性质。

数学教学设计_1.1.3集合的基本运算

数学教学设计_1.1.3集合的基本运算

§1.1.3集合的基本运算课型:新授课教学目标:(1)知识与技能:理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能用Venn图表达集合的关系及运算。

体会直观图示对理解抽象概念的作用。

(2)过程与方法:类比实数的加法运算,学习集合的并运算,进一步学习集合的交运算,一个子集的补集。

(3)情感态度与价值观:培养独立思考的精神,积极发言的习惯,发展全面看问题,思考问题的思维方式。

教学重难点:(1)重点:集合的交集、并集、补集的概念。

(2)难点:如何求集合的交集、并集、补集。

教学过程:【问题1】请同学们思考讨论课本第9页的问题。

(在此,添加了以下两个小问(3)A={x|-3<x<1},B={x|-1<x<5},C={x|-3<>x<5};(4)A={x|x是小于6的正整数},B={x|x是小于9的正整数},C={x|x 是不大于8的正整数}.)【设计意图】引出两个集合并集的含义。

剖析含义中的关键词“所有”、“或”。

【问题2】前面我们已经学习了Venn图,请同学们用Venn图表示前面4个例子的并集。

【设计意图】强调两个集合的并集有三种情况:1.集合A与B没有公共元素;2.集合A与B有部分公共元素;3.集合A包含于集合B中。

【问题3】例4的讲解。

【设计意图】帮助学生学会如何求两个集合的并集,强调在求两个集合的并集时,它们的公共元素在并集中只能出现一次。

说明A∪A=A,A∪∅=A,A∪B= B∪A.【问题4】两个集合的并集有三种情况其中有两种情况是集合A与B 有公共元素的。

那么,我么么如何来描述集合A与B的公共元素呢?请同学们思考课本第10页的问题。

(在此,添加一个小问(3)A={x|-3<x<5},B={x|-1<x<2},C={x|-1<x<2}) 【设计意图】引出两个集合交集的含义。

高中数学1.1.3集合的基本运算教案新必修1

高中数学1.1.3集合的基本运算教案新必修1

1.1.3 集合间的基本运算教学目标:1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;2.理解在给定集合中一个子集的补集的含义,会求给定子集的补集;3.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用;4.认识由具体到抽象的思维过程,并树立相对的观点。

教学重点:交集与并集概念、补集的概念、数形结合的运用。

教学难点:理解交集与并集概念、符号之间的区别与联系,补集的有关运算教学方法:发现式教学法教学过程:(I)复习回顾⊆与A=B的意义;问题1: (1)分别说明A B(2)说出集合{1,2,3}的子集、真子集个数及表示;(II)讲授新课图1—5(1)给出了两个集合A、B;图(2)阴影部分是A与B公共部分;图(3)阴影部分是由A、B组成;图(4)集合A是集合B的真子集;图(5)集合B是集合A的真子集;指出:图(2)阴影部分叫集合A与B的交集;图(3)阴影部分叫集合A与B的并集.的公共部分,记作4.例题解析 (师生共同活动)∩∪B={x|-1<x<2}图1—3阴影部分即表示A 在U 中补集C U A 。

7.举例说明12,(III )课堂练习:(1)课本P 12练习1—5;(2)补充练习:1.已知M={1},N={1,2},设A={(x ,y )|x ∈M ,y ∈N},B={(x ,y )|x ∈N ,y ∈M},求A ∩B ,A ∪B 。

[A ∩B={(1,1)},A ∪B={(1,1),(1,2),(2,1)}]2.已知集合M ⊆{4,7,8},且M 中至多有一个偶数,则这样的集合共有( );A 3个B 4个C 6个 D5个3.设集合A={-1,1}, B={x|x 2-2ax+b=0}, 若B ∅≠, 且B A ⊆, 求a, b 的值。

(IV) 课时小结1.在并交问题求解过程中,充分利用数轴、文恩图。

2.能熟练求解一个给定集合的补集;3.注重一些特殊结论在以后解题中应用。

1.1.3_集合的基本运算_教案(内含五份教案,人教A版)

1.1.3_集合的基本运算_教案(内含五份教案,人教A版)

2011-2012学年上学期高一数学备课组教案主备课教师:备课组老师:教案二1.1.3 集合的基本运算(第一课时)一,教学目标1, 知识与技能:(1) 理解并集和交集的含义,会求两个简单集合的交集与并集(2) 能够使用Venn 图表达两个集合的运算,体会直观图像对抽象概念理解的作用 2, 过程与方法(1) 进一步体会类比的作用(2) 进一步树立数形结合的思想 3, 情感态度与价值观集合作为一种数学语言,让学生体会数学符号化表示问题的简洁美.二,教学重点与难点教学重点:并集与交集的含义教学难点:理解并集与交集的概念,符号之间的区别与联系三,教学过程1, 创设情境(1) 通过师生互动的形式来创设问题情境,把学生全体作为一个集合,按学科兴趣划分子集,让他们亲身感受,激起他们的学习兴趣。

(2) 用Venn 图表示(阴影部分)2, 探究新知(1)通过Venn 图,类比实数的加法运算,引出并集的含义:一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 和集合B 的并集。

记作:A ∪B ,读作:A 并B ,其含义用符号表示为:{|,}A B x x A x B =∈∈ 或.(2)解剖分析: 1> “所有”:不能认为A ∪B 是由A 的所有元素和B 的所有元素组成的集合,即简单平凑,要满足集合的互异性,相同的元素即A 和B 的公共元素只能算作并集中的一个元素 2> “或”:“B x A x ∈∈或”这一条件,包括下列三种情况: B x A x ∉∈但;A B ∉∈x x 但;B x A x ∈∈且3> 用Venn 图表示A ∪B :(3) 完成教材P8的例4和例5(例4是较为简单的不用动笔,同学直接口答即可;例5必须动笔计算的,并且还要通过数轴辅助解决,充分体现了数形结合的思想。

)(4) 思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?(具体画出A 与B 相交的Venn 图)(5) 交集的含义:一般地,由属于集合A 和集合B 的所有元素组成的集合,称为A 与B 的交集,记作:A ∩B ,读作:A 交B ,其含义用符号表示为{|,}.A B x x A x B =∈∈ 且(6) 解剖分析: 1>“且”2>用Venn 图表示A ∩B :B A A 与B 相交(有公共元素) A 与B 分离(无公共元素)B A A 与B 相交(有公共元素) A 与B 分离(无公共元素)(7) 完成教材P9的例6(口述)(8) B A },52|{B }41|{A ⋂≤<=≤<-=求,x x x x (运用数轴,答案为4}x 2|{x B A ≤<=⋂)3, 巩固练习(1) 教材P9的例7 (2) 教材P11 #1 #24, 小结作业:(1) 小结:1> 并集和交集的含义及其符号表示 2> 并集与交集的区别(符号等) (2) 作业:1> 必做题:教材P12 #6 #7 2> 选做题:已知}2{B A },1,52{B A },|{},2|{A 22-=⋂-=⋃++=--=,且r qx x x B px x x ,的值。

高中数学 1.1.3集合的基本运算教案 新人教A版必修1

高中数学 1.1.3集合的基本运算教案 新人教A版必修1

浙江省嘉兴市北京师范大学南湖附属学校高中数学 1.1.3集合的基本运算教案新人教A版必修1教学目的:1、深刻理解并掌握交集与并集的概念及有关性质;2、掌握全集与补集的概念及其表示法.教学重难点:交集与并集的概念、性质及运算教学过程:(一)复习:子集的概念及有关符号与性质提问(板演):用列举法表示集合:A={6的正约数},B={10的正约数},C={6与10的正公约数},并用适当的符号表示它们之间的关系.解: A={1,2,3,6}, B={1,2,5,10}, C={1,2} C⊆A,C⊆B(二)全集定义:如果集合S含有我们所要研究的各个集合的全部元素,集合就可以看作一个全集.通常用U来表示.如:把实数R看作全集U, 则有理数集Q的补集C U Q是全体无理数的集合.(三)补集1、实例:S是全班同学的集合,集合A是班上所有参加校运会同学的集合,集合B是班上所有没有参加校运动会同学的集合.集合B是集合S中除去集合A之后余下来的集合.A⊆),由S中所有不属于A的元素组成结论:设S是一个集合,A是S的一个子集(即S的集合,叫做S中子集A的补集记作: C s A 即 C s A ={x | x∈S且 x∉A}2.例:S={1,2,3,4,5,6} A={1,3,5} C s A ={2,4,6}(四)并集与交集1、实例: A={a,b,c,d} B={a,b,e,f}公共部分 A∩B 合并在一起 A∪B2、定义:(1)交集:由属于集合A且属于集合B的所有元素所组成的集合,称为集合A和集合B的交集,记作A∩B,即A∩B ={x|x∈A且x∈B}.(2)并集:由所有属于集合A或属于集合B的元素所组成的集合,称为集合A和集合B的并集,记作A∪B ,即A∪B={x|x∈A或x∈B}.(五)例题与练习例1、(1) 若S={2,3,4},A={4,3},则CsA= .(2) 若S={三角形},A={锐角三角形} ,则CsA= 。

集合的基本运算教案

集合的基本运算教案

1.1.3 集合的基本运算法一、 教学目标:1、 知识目标:让学生清楚把握并集,交集,补集的概念;2、能力目标:把握如何求出并集,交集,补集;让学生能清楚区分并集,交集,补集;并把握他们之间的关系。

二、 教学重点、难点:1、 重点:把握如何并集,交集,补集的概念;2、 难点:把握如何求出并集,交集,补集。

三、 教具,设备:黑板,粉笔,教课书,尺子。

四、 教法:启法,分析法,图示法。

五、 教学过程: 一、导入:我们知道实数有加法运算,集合是否也可以“相加”呢?那我们今天就来研究一下集合的基本运算。

二、新课教学:1、能说出集合C 与集合B A ,之间的关系吗?{}5,3,1=A , {}6,4,2=B , {}6,5,4,3,2,1=C{}是有理数x x A =, {}是无理数x x B =, {}是实数x x C =;这两个问题我们可以知道集合C 与集合B A ,之间的关系。

集合C 是有所有属于集合A 或属于集合B 的元素组成,那么像这样由所属于集合A 或集合B 的元素组成的集合我们称为集合B A 与的并集,记作为:B A ⋃,读作为:B A 并;即{}B x A x x B A ∈∈=⋃或,; ; 韦恩图表示为这样,在上面的两个问题中,集合B A 与的并集是C ,即 B A C ⋃=·例4.设{}8,6,5,4=A , {}8,7,5,3=B , 求B A ⋃. 解:B A ⋃{}{}8,7,5,38,6,5,4⋃= {}8,7,6,5,4,3=.例5.设集合{}21 x x A -=,集合{}31 x x B =,求B A ⋃. 解:B A ⋃={}{}3121 x x x x ⋃- ={}31 x x -.例5让学生清楚用数轴表示出集合,并能从数轴上看出集合的并集。

2、考察下面的问题,集合B A ,与集合C 之间有什么关系? {}{}{}8,12,8,5,3,10,8,6,4,2===C B A ;{}月在校的女同学年是新华中学92004x x A ={}月在校的高一年级同学年是新华中学92004x x B =, {}学月在校的高一年级女同年是新华中学92004x x C =;这两个问题我们可以知道集合C 的元素由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作为B A ⋂,读作为交A 交B ;即有 B A ⋂={}B x A x x ∈∈且;韦恩图表示为这样,在上述问题中,.例6.新华中学开运动会,设{}加百米赛跑的同学是新华中学高一年级参x x A =, {}加跳高比赛的同学是新华中学高一年级参x x B =,求B A ⋂.解:B A ⋂就是新华中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合。

集合的基本运算教案

集合的基本运算教案

1.1.3集合的基本运算一、[教学目标]1、知识与技能理解集合并集、交集与补集的定义和各自的求解。

培养学生类比、分析、归纳的能力,能使用Venn图表达集合的运算。

2、过程与方法通过探究问题情境,归纳概括并集、交集与补集的定义;通过学习Venn图画法,进一步培养学生树立数形结合的思想。

3、情感态度与价值观通过集合运算解决学生身边实际具体事情,使学生感受到数学的魅力,培养数学的敏感性,激发学生学习数学的兴趣。

二、[教学重点]理解交集、并集与补集的定义、表达方式和各自的求解,以及他们之间的区别和联系。

三、[教学重点]交集、并集与补集的定义概括和各自求解。

四、[教学方法]1、教法根据本节课的教学目标以及学生的实际情况,为了更有效地突出重点、突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以启发式引导法为主,问答式教学法、反馈式评价法为辅。

教学中,教师精心设计一个又一个带有启发性和思考性的问题,创设问题情境,诱导学生思考,通过学习Venn图画法,培养学生树立数形结合的思想,最终掌握本节课的教学目标。

2、学法新课程标准要求教师转换角色,不仅关注教授学生的具体知识,更应关注教授学生学习的策略。

在教学活动中要以学生为主体,充分发挥学生的在学习活动中的作用。

因此本节课学生学习的主要方式是:自主探究法,观察发现法、归纳总结法。

让学生在老师的引导下进行“观察—归纳—检验—应用”的学习过程,启发学生学习思维,最终掌握知识。

五、[教学过程]1、导入新课采用类比思想,在集合和实数之间关系相似的情况下,联想实数的基本运算,引导学生发现问题:集合是否也能进行基本运算?从而激发学生思维的主动性,加强新旧知识的联系,然后观察以下实例,探索集合C与集合A、B之间的关系:(1)A={x|x是高一年级男同学},B={x|x是高一年级女同学},C={x|x是高一年级的同学}(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}2、讲授新课(1)并集的定义讲解在同学们对上述集合有一定的认识后,老师提出从集合元素的角度出发,要求学生根据其共同特征,归纳概括并集的定义,此环节为本节课的重点之一,教师可通过引导和补充等启发式教学方法带引学生进行突破。

1.1.3集合的基本运算说课稿

1.1.3集合的基本运算说课稿

课题介绍(集合的基本运算)选自人教A版《普通高中课程标准实验教科书数学必修1》第一章第一节第三部分集合的基本运算.一、教材分析1、本节在教材的地位与作用此部分是第一课时,主要介绍集合的两类基本运算——并集和交集,是对集合基本知识的深入研究.在此,通过适当的问题情境,使学生感受、认识并掌握集合的两种基本运算.集合作为现代数学的基本语言。

只有学会用集合语言表示有关数学对象,才能进一步刻画函数概念.可见,此部分的学习是以后研究函数的必然要求.二、目标分析根据新课程标准要求及本节的地位和作用,我从以下几方面来确定教学目标:#(1)知识目标:结合集合的图形表示,理解并集与交集的定义,掌握并集和交集的表示法以及求解两个集合并与交的方法.(2)能力目标:通过对并集、交集定义的学习,培养学生观察、比较、分析、概括的能力,使学生认识由具体到抽象的思维过程.(3)情感目标:积极引导学生主动参与学习的过程,培养自主探究与合作交流的意识.3、教学重点与难点依据教学目标,我确定如下教学重难点:(1)教学重点:并集和交集的定义、符号,以及各自的区别与联系.(2)教学难点:并集和交集定义的概括,并集和交集的求解.引导学生观察、比较、分析,并概括出并集与交集的定义.在此基础上,应用数学知识解决数学问题,进而加深他们对数学概念本质的理解.!三、教学过程1、情景引入采用类比思想,在集合之间关系和实数之间关系相似的情况下,联想实数的基本运算,引导学生发现问题:集合是否也能进行基本运算从而激发学生思维的主动性,且加强新旧知识的联系.然后观察以下实例,探索集合C与集合A、B之间的关系:(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数};2、展示新知(1)在同学们对给出的几组集合有一定的认识之后,老师提出从集合元素的角度出发,要求学生根据其共同特征,归纳概括并集的定义.此环节为本堂课的难点之一,重在考察学生的抽象思维,培养学生的分类归纳能力,可通过引导和补充等启发式教学方法带引学生进行突破.给出定义之后,及时提出问题:怎样将这个定义理解透彻让学生分析定义,指出需要抓住定义的重点,比如一些关键词:所有、或.引出并集的概念。

1.1.3 集合的基本运算(教案)

1.1.3  集合的基本运算(教案)

§1.1 集合§1.1.3 集合的基本运算【教学目标】l.知识与技能(1)理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn 图表达集合的运算,体会直观图示对理解抽象概念的作用。

2. 过程与方法学生通过观察和类比,借助Venn 图理解集合的基本运算。

3. 情感态度与价值观(1)进一步树立数形结合的思想;(2)进一步体会类比的作用;(3)感受集合作为一种语言,在表示数学内容时的简洁和准确。

【教学重点】交集与并集,全集与补集的概念。

【教学难点】理解交集与并集的概念;符号之间的区别与联系。

【教学方法】学生借助Venn 图,通过观察、类比、思考、交流和讨论等,理解集合的基本运算。

【教学过程】【导入新课】思路:我们知道,实数有加法运算。

类比实数的加法运算,集合是否也可以“相加”呢?请同学们考察下列各个集合,你能说出集合C 与集合,A B 之间的关系吗?(1){1,3,5},{2,4,6},{1,2,3,4,5,6};A B C ===(2){|},{|},{|}A x x B x x C x x ===是理数是无理数是实数引导学生通过观察、类比、思考和交流,得出结论。

教师强调集合也有运算,这就是我们本节课所要学习的内容。

【推进新课】【新知探究】【知识点1】1、并集的定义:文字语言:一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与集合B 的并集。

记作:A B (读作:“A 并B ”)。

符号语言:{},A B x x A x B =∈∈ 或。

图形语言:【说明】(1)A B 仍是一个集合,由所有属于集合A 或属于集合B 的元素组成。

(2)“或”的数学内涵:(3)对于A B ,不能认为是由A 的所有元素和B 的所有元素所组成的集合,因为A 与B 可能有公共元素,公共元素只能算一次。

1.1.3集合的基本运算教案

1.1.3集合的基本运算教案

(2) A={x|1<x<6},B={ x|4<x<8},C={ x|4<x<6}; 集合C是由那些既属于集合A且又属于集合B的所 有元素组成.
知识要 点
2.交集
一般地,由属于集合A且属于集合B的所有元素 组成的集合,称为A与B的交集,记作A∩B,(读作“A交 B”),即 A∩B={x|x∈A,且x∈B} 用Venn图表示: A A∩B B
补运算
ð U A = x x U且x A
进行以不等式描述的或以区间形式出现的 集合间的并、交、补运算时,一定要画数轴帮 助分析.
课后作业
• 习题1.1A组7,9题。
难点
理解交集与并集的概念、符号之间的区别与联系.
新课导入
集合之间的基本关系是类比实数之间的关系 得到的,同样类比实数的运算,能否得到集合之 间的运算呢?
想一想
实数有加法运算,那么
集合是否也有“加法”呢?
学导式教学阅读提纲:
1.类比实数之间的运算,集合之 间有些什么运算呢? 2.什么叫做两个集合的并,交集? 3.如何进行两个集合的并,交集 运算呢? 4.什么叫全集,补集,如何计算 集合的补集呢?
x是有理数 a,b
x是无理数 c,d
x 是实数 a,b,c,d
集合A
集合B
A
-2 2 4
集合C
B
6 8 10
C 集合C是由所有属于集合A或属于集合B的元素组成.
知识要 点
1.并集
一般地,由所有属于集合A或属于集合B的元素 所组成的集合,称为集合A与B的并集,记作A∪B(读 作“A并B”),即 A∪B={x | x∈ A或x∈ B} 用Venn图表示:
例 设A={x|x>-1},B={x|x<1},求A∩B.

教学设计1:1.3 集合的基本运算

教学设计1:1.3 集合的基本运算

1.3集合的基本运算教材分析本节是新人教A版高中数学必修1第1章第1节第3部分的内容。

在此之前,学生已学习了集合的含义以及集合与集合之间的基本关系,这为学习本节内容打下了基础。

本节内容主要介绍集合的基本运算一并集、交集、补集。

是对集合基木知识的深入研究。

在此,通过适当的问题情境,使学生感受、认识并掌握集合的三种基本运算。

本节内容是函数、方程、不等式的基础,在教材中起着承上启下的作用。

本节内容是高中数学的主要内容,也是高考的对象,在实践中应用广泛,是高中学生必须掌握的重点。

教学目标与核心素养教学重难点1.教学重点:交集、并集、补集的运算;2.教学难点:交集、并集、补集的运算性质及应用,符号之间的区别与联系。

课前准备:多媒体.教学过程(2)“或”的理解:三层含义:的并集。

与是的所有元素组成的集合,,由且。

即:又属于元素既属于但。

即:但不属于元素属于但。

即:但不属于元素属于B A B A B x A x B A A x B x x A B B x A x x B A 321}{.3},{.2},{.1⋂=∈∈∉∈∉∈(3)思考:下列关系式成立吗? ①=AA A ; ②ϕ=A A .【答案】成立(4)思考:若⊆,A B ,则A ∪B 与B 有什么关系? 【答案】 ⊆=若,A B A B B.3.典型例题例1 设A ={4,5,6,8},B ={3,5,7,8},求AUB .}8,7,6,5,4,3{}8,7,5,3{}8,6,5,4{== B A 解:例2 设集合A ={x |-1<x <2},B ={x |1<x <3}, 求A ∪B . 解:A ∪B ={x |-1<x <3} .注意:由不等式给出的集合,研究包含关系或进行运算,常用数轴. 探究二 交集的含义1.思考:考察下面的问题,集合C 与集合A 、B 之间有什么关系吗?(1) A ={2,4,6,8,10}, B ={3,5,8,12}, C ={8}. (2)A ={x |x 是立德中学今年在校的女同学}, B ={x |x 是立德中学今年在校的高一年级同学}, C ={x |x 是立德中学今年在校的高一年级女同学}.【答案】 集合C 是由那些既属于集合A 且又属于集合B 的所有元B.A B就是立德中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合.所以,A B=高比赛的同学}思考:下列关系式成立吗?=A Aϕϕ=.【答案】成立探究三:补集的概念在研究问题时,我们经常需要研究对象的范围,在不同范围研究同一问题,可能有不同的结果.B4{}=<)B x x .()U C A 2)ϕ=()U A C A. {0,1,2,3},集合,则A ∩B =(A.(2,3) B.[-1,5] C.(-1,5) D.(-1,5]【解析】∵集合A={x|-1≤x<3},B={x|2<x≤5},∴A∪B={-1≤x≤5}.故选B.【答案】B3.已知A={x|x+1>0},B={-2,-1,0,1},则(∁R A)∩B=() A.{-2,1}B.{-2}C.{-1,0,1} D.{0,1}【解析】因为集合A={x|x>-1},所以∁R A={x|x≤-1},则(∁R A)∩B ={x|x≤-1}∩{-2,-1,0,1}={-2,-1}.【答案】A4.已知全集U={x|1≤x≤5},A={x|1≤x<a},若∁U A={x|2≤x≤5},则a=________.【解析】∵A={x|1≤x<a},∁U A={x|2≤x≤5},∴A∪(∁U A)=U={x|1≤x≤5},且A∩(∁U A)=∅,因此a=2.【答案】25.已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<3或x≥7},求:(1)A∪B;(2)C∩B.解:(1)由集合A={x|3≤x<7},B={x|2<x<10},把两集合表示在数轴上如图所示:得到A∪B={x|2<x<10}.(2)由集合B={x|2<x<10},C={x|x<3或x≥7},则C∩B={x|2<x<3或7≤x<10}.四、小结教学反思这节课的教学设计始终以《新课标》的基本理念为指导,师生互动,生生互动,充分体现学生在教学活动的主体地位。

02 教学设计_ 集合的基本运算1

02 教学设计_ 集合的基本运算1

1.1.3 集合的基本运算教案
教学目标
1.理解两个集合的并集与交集的含义,能求两个集合的并集与交集。

2.理解在给定集合中一个子集的补集的含义,能求给定子集的补集。

3.能使用Venn图表达集合的基本关系与基本运算,体会图形对理解抽象概念的作用
【核心素养】
1.数学抽象:集合的描述具有空间图形,结合集合的基本运算进行考核。

2.逻辑推理:集合的基本运算。

3.数学建模:通过生活的例子,建立相应地补集模型。

4.直观想象:对交集、并集、全集、补集的描述建立Venn图、数轴。

5.数学运算:对给出的两个或两个以上集合能写出其交集、并集、补集。

6.数据分析:对给出对应集合的元素进行分析,求其交集、并集、补集。

教学重难点
重点是交,并,补的运算;难点是补集概念的理解和补集的运算。

涉及的核心素养
数学抽象、逻辑推理。

涉及的数学思想方法
数形结合、分类讨论、类比归纳。

教学过程
1.交集
实数有加减乘除,我们已经学习了集合的基本概念了,那么集合是否也有相应的四则运算呢?
【情境引入】
某学校高一年级准备成立一个科学兴趣小组,召募成员时要求同时满足下列条件:(1)中考的数学成绩不得低于80分(百分制)
(2)中考的物理成绩不得低于70分(百分制)
如果满足条件(1)的同学组成的集合记做集合P,满足条件(2)的同学组成的集合记做集合Q,而能成为科学兴趣小组的同学的集合记做R,那么这三个集合之间有什么关系呢?
1. 练习A:1-1A5-10以及1-1B
2. 交集部分中集合的元素个数的探索与研究。

1.1.3集合的基本运算教学设计

1.1.3集合的基本运算教学设计

课题:1.1.3 并集与交集教学目标:1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;2.能使用Venn 图表示集合的并集与交集;3.灵活运用并集与交集的含义与性质解题.教学重点:理解运用并集与交集的含义与性质解题.教学难点:理解“或”的含义.教学类型:新课.教学方法:引导发现法,小组合作学习.学情分析:本课是高一上期学生学习了集合的含义与表示,集合的基本关系后,学习的集合的基本运算的第一课时--------并集与交集,第二课时为补集. 学生刚进入高中,学习兴趣比较浓厚,虽然本班学生中考成绩属于中等类型,但他们还是在努力学习. 学校正进行“小组合作学习”的课程改革,本课也是以“小组合作方式”进行引导发现式教学,这种教学方式调动了同学们的学习热情,课堂也变得生动有趣,像在游戏中学到了知识一样.教学过程:一、抽问引出新课:教师请学生拿出课本和导学案,通过提问等方式检查学生的课前预习情况.抽问:什么是并集?并集的符号?并集如何表示?关键词是什么?二、并集概念的建构:1.并集:A x x B A ∈=|{ 或}B x ∈教师画出Venn 图用阴影表示两个集合并集,说明并集是表示集合B A ,中的全体元素组成的集合.抽问:并集的性质填空:___,___,______,=∅== A A A B A .___________,B A A A B A ⇔=教师重点分析._______⇔=A B A 画出Venn 图分析得出结论A B ⊆. 三、并集的应用:教师请学生在导学案上动笔解答例1(1).例1(1)设集合},8,6,5,4{=M 集合}8,7,5,3{=N ,那么集合=N M ( )}8,7,6,5,4,3.{A }8,5.{B }8,7,5,3.{C }8,6,5,4.{D抽问回答答案,并说明理由.教师加以点拨.教师请学生动笔计算例1(2).例1(2)若集合},22|{},1|{<<-=->=x x B x x A 则=B A ( )}2|.{->x x A }1|.{->x x B }12|.{-<<-x x C }21|.{<<-x x D提醒同学们借助于数轴分析. 请1-2位学生到黑板上板演. 让同学们点评板演的结果,教师再点拨.四、并集的练习:教师请学生动笔计算变式训练1.变式训练1. 若集合},,4,1{},,1{},,4,1{2x B A x B x A === 则满足条件的实数x 的个数为( ).A 1个 .B 2个 .C 3个 4.D 个先独立完成,2分钟后进行小组讨论,3-5分钟后请5位同学到黑板上板演. 板演后教师点评板演结果并总结本题的关键步骤是检验集合的互异性.五、交集概念的建构:教师抽问请学生回答交集的定义,符号,表示方法,关键词. 检查学生的预习情况.2. 交集:A x x B A ∈=|{ 且}B x ∈教师引导学生用Venn 图表示两个集合的交集,说明交集是集合B A ,的公共部分.抽问回答交集的性质:___,___,______,=∅== A A A B A _______,⇔=A B A.__,__,__B B A A B A B A B A教师引导学生重点分析_______,⇔=A B A 学生类比于并集的性质得出结论B A ⊆.六、交集的应用:教师请学生解答例2(1)(2).例2(1)若},3|{},3,2,1,0{A a a x x B A ∈===,则=B A ( )}2,1.{A }1,0.{B }3,0.{C }3.{D(2)设集合},40|{},21|{≤≤=≤≤-=x x B x x A 则=B A ( )}20|.{≤≤x x A }21|.{≤≤x x B }40|.{≤≤x x C }41|.{≤≤x x D例2(1)抽问回答,教师点拨. 例2(2)板演后,教师点拨.七、交集的练习:教师请学生解答变式训练2,请2名同学板演.变式训练2. 已知},3,,1{},13,2,1{2a N a a M -=--=},3{=N M 求实数a 的值.教师对板演答案进行点评.八、由学生小结本课内容, 同学补充,教师最后点拨.本课学习了并集与交集的含义性质和应用.A x xB A ∈=|{ 或}B x ∈,A x x B A ∈=|{ 且}B x ∈.A B A B A ⊆⇔= ,B A A B A ⊆⇔= .它们的关键词分别为“或”,“且”.“或”指的是全体集合B A ,中的元素组成的集合;“且”指的是公共部分.例题和练习题中的问题是可以借助于Venn图和数轴直观看出两个集合的并集和交集,已知交并关系求参数时,还要注意检验集合的元素的互异性.九、作业分必做题和选做题布置.。

新课标数学教案·必修1_§1.1.3集合的基本运算

新课标数学教案·必修1_§1.1.3集合的基本运算

课题:§1.3集合的基本运算教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

课型:新授课教学重点:集合的交集与并集、补集的概念;教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;教学过程:一、引入课题我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?思考(P9思考题),引入并集概念。

二、新课教学1.并集一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A 与B的并集(Union)记作:A∪B 读作:“A并B”即:A∪B={x|x∈A,或x∈B}Venn图表示:说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。

例题(P9-10例4、例5)说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。

问题:在上图中我们除了研究集合A 与B 的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A 与B 的交集。

2. 交集一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集(intersection )。

记作:A ∩B 读作:“A 交B ”即: A ∩B={x|∈A ,且x ∈B}交集的Venn 图表示说明:两个集合求交集,结果还是一个集合,是由集合A 与B 的公共元素组成的集合。

例题(P 9-10例6、例7)拓展:求下列各图中集合A 与B 的并集与交集说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集3. 补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe ),通常记作U 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.3 集合的基本运算
学习目标: (1)理解交集与并集的概念;
(2)掌握两个较简单集合的交集、并集的求法;
(3)通过对交集、并集概念的讲解,培养学生观察、比较、分析、概括、等能力,使
学生认识由具体到抽象的思维过程;
(4)通过对集合符号语言的学习,培养学生符号表达能力,培养严谨的学习作风,养
成良好的学习习惯。

教学重点:交集和并集的概念
教学难点:交集和并集的概念、符号之间的区别与联系
合作探究展示:
一、 问题衔接
我们知道两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,
两个集合是否也可以“相加”呢?
思考(P8思考题),引入并集概念。

二、新课教学
1. 并集
一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并
集(Union )
记作:A ∪B 读作:“A 并B ”
即: A ∪B={x|x ∈A ,或x ∈B}
Venn 图表示:
说明:两个集合求并集,结果还是一个集合,是由集合A 与B 的所有元素组成的集合
(重复元素只看成一个元素)。

例题(P 8-9例4、例5)
说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。

问题:在上图中我们除了研究集合A 与B 的并集外,它们的公共部分(即问号部分)
还应是我们所关心的,我们称其为集合A 与B 的交集。

2. 交集
一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集
(intersection )。

记作:A ∩B 读作:“A 交B ”
即: A ∩B={x|∈A ,且x ∈B}
交集的Venn 图表示 A ∪B B A ?
说明:两个集合求交集,结果还是一个集合,是由集合A 与B 的公共元素组成的集合。

例题(P 9-10例6、例7)
拓展:求下列各图中集合A 与B 的并集与交集
说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交

3. 探索研究
A ∩
B ⊆A ,A ∩B ⊆B ,A ∩A=A ,A ∩∅=∅,A ∩B=B ∩A
A ⊆A ∪
B ,B ⊆A ∪B ,A ∪A=A ,A ∪∅=A,A ∪B=B ∪A
三、归纳小结(略)
四、作业布置
书面作业:P 12习题1.1,第6-8题
拓展提高:
题型一 已知集合的交集、并集求参数问题
例1 已知集合{}{}22,1,3,3,21,1A a a B a a a =+-=--+,若{}3A B =-,
求实数a 的值
解:∵{}3A B =-,∴3B -∈,而213a +≠-,
∴当{}{}33,0,0,1,3,3,1,1a a A B -=-==-=--,
这样{}3,1A B =-与{}3A B =-矛盾;
当213,1,a a -=-=-符合{}3A
B =- ∴1a =-
练习1已知集合{}
{},9,1,5,,1a 2,42a a B a A --=--=若{},9=⋂B A 求a 的值 答案 a=-3
例2.已知{}{}
,51,32>-<=+≤≤=x x x B a x a x A 或若,φ=⋂B A 求a 的取值范围.
解(1)若,,φφ=⋂=B A A 由此时332>∴+>a a a A B A(B) A B B A B A
(2)若221325312,
,≤≤-⎪⎩
⎪⎨⎧+≤≤+-≥∴=⋂≠a a a a a B A A 解得由φφ 综上所述,a 的取值范围是.3221⎭
⎬⎫⎩⎨⎧
>≤≤-a a a 或 练习2上题中若的取值范围求a R B A ,=⋃。

答案 :不存在
题型二 交集、并集性质的运用
例3 设222{40},{2(1)10}A x x x B x x a x a =+==+++-=,其中x R ∈,
如果A B B =,求实数a 的取值范围
解:由A B B B A =⊆得,而{}4,0A =-,224(1)4(1)88a a a ∆=+--=+
当880a ∆=+<,即1a <-时,B φ=,符合B A ⊆;
当880a ∆=+=,即1a =-时,{}0B =,符合B A ⊆;
当880a ∆=+>,即1a >-时,B 中有两个元素,而B A ⊆{}4,0=-;
∴{}4,0B =-得1a =
∴11a a =≤-或 练习3设集合{}{}
,,04,02322A B A a x x x B x x x A =⋃=+-==+-=若求实数a 的取值范围.
答案:4≥a
随堂检验:
1.满足{}{}的个数是的集合A A 5,11=⋃ ( B )
(A )1 (B)2 (C)3 (D)4
2.已知集合{}{}
,1,x ,4,x x >∈=≤∈=x N x B X N A 那么B A ⋂等于 ( B ) (A){
}4,3,2,1 (B){}4,3,2 (C){}3,2 (D){}R x x x ∈≤<,41 3.已知集合{}{}
,,2,,22R x x y y N R x x y y M ∈+-==∈+-==那么=⋂N M ( D ) (A)(0,2)(1,1) (B){})1,1)(2,0( (C){}2,1 (D){}2≤y y 新课标第一网
4.已知集合{}{}的集合为则实数若a B A a x x B x x A ,,21φ≠⋂≥=<≤-={}
2<a a
5.已知集合{}{}
{},65,,,51≤<=⋂=⋃≤≤=><=x B A R B A b x a x B x x x A 且或则=-b a 2 -4
6.已知集合{}{}
,1212,52+≤≤-=≤≤-=m x m x B x x A 若,A B A =⋃求实数m 的取值范围 22
1≤≤-m 。

相关文档
最新文档