吉林大学离散数学课后习题答案

合集下载

离散数学(第二版)课后习题答案详解(完整版)

离散数学(第二版)课后习题答案详解(完整版)

离散数学(第⼆版)课后习题答案详解(完整版)习题⼀1.下列句⼦中,哪些是命题?在是命题的句⼦中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四⼤发明.答:此命题是简单命题,其真值为 1.(2)5 是⽆理数.答:此命题是简单命题,其真值为 1.(3)3 是素数或 4 是素数.答:是命题,但不是简单命题,其真值为1.(4)2x+ <3 5 答:不是命题.(5)你去图书馆吗?答:不是命题.(6)2 与3 是偶数.答:是命题,但不是简单命题,其真值为0.(7)刘红与魏新是同学.答:此命题是简单命题,其真值还不知道.(8)这朵玫瑰花多美丽呀!答:不是命题.(9)吸烟请到吸烟室去!答:不是命题.(10)圆的⾯积等于半径的平⽅乘以π.答:此命题是简单命题,其真值为 1.(11)只有6 是偶数,3 才能是2 的倍数.答:是命题,但不是简单命题,其真值为0.(12)8 是偶数的充分必要条件是8 能被3 整除.答:是命题,但不是简单命题,其真值为0.(13)2008 年元旦下⼤雪.答:此命题是简单命题,其真值还不知道.2.将上题中是简单命题的命题符号化.解:(1)p:中国有四⼤发明.(2)p: 是⽆理数.(7)p:刘红与魏新是同学.(10)p:圆的⾯积等于半径的平⽅乘以π.(13)p:2008 年元旦下⼤雪.3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.(1)5 是有理数.答:否定式:5 是⽆理数. p:5 是有理数.q:5 是⽆理数.其否定式q 的真值为1.(2)25 不是⽆理数.答:否定式:25 是有理数. p:25 不是⽆理数. q:25 是有理数. 其否定式q 的真值为1.(3)2.5 是⾃然数.答:否定式:2.5 不是⾃然数. p:2.5 是⾃然数. q:2.5 不是⾃然数. 其否定式q 的真值为1.(4)ln1 是整数.答:否定式:ln1 不是整数. p:ln1 是整数. q:ln1 不是整数. 其否定式q 的真值为1.4.将下列命题符号化,并指出真值.(1)2 与5 都是素数答:p:2 是素数,q:5 是素数,符号化为p q∧,其真值为 1.(2)不但π是⽆理数,⽽且⾃然对数的底e 也是⽆理数.答:p:π是⽆理数,q:⾃然对数的底e 是⽆理数,符号化为p q∧,其真值为1.(3)虽然2 是最⼩的素数,但2 不是最⼩的⾃然数.答:p:2 是最⼩的素数,q:2 是最⼩的⾃然数,符号化为p q∧? ,其真值为1.(4)3 是偶素数.答:p:3 是素数,q:3 是偶数,符号化为p q∧,其真值为0.(5)4 既不是素数,也不是偶数.答:p:4 是素数,q:4 是偶数,符号化为? ∧?p q,其真值为0.5.将下列命题符号化,并指出真值.(1)2 或3 是偶数.(2)2 或4 是偶数.(3)3 或5 是偶数.(4)3 不是偶数或4 不是偶数.(5)3 不是素数或4 不是偶数.答: p:2 是偶数,q:3 是偶数,r:3 是素数,s:4 是偶数, t:5 是偶数(1)符号化: p q∨,其真值为1.(2)符号化:p r∨,其真值为1.(3)符号化:r t∨,其真值为0.(4)符号化:? ∨?q s,其真值为1.(5)符号化:? ∨?r s,其真值为0.6.将下列命题符号化.(1)⼩丽只能从筐⾥拿⼀个苹果或⼀个梨.答:p:⼩丽从筐⾥拿⼀个苹果,q:⼩丽从筐⾥拿⼀个梨,符号化为: p q∨ .(2)这学期,刘晓⽉只能选学英语或⽇语中的⼀门外语课.答:p:刘晓⽉选学英语,q:刘晓⽉选学⽇语,符号化为: (? ∧∨∧?p q)(p q) .7.设p:王冬⽣于1971 年,q:王冬⽣于1972 年,说明命题“王冬⽣于1971 年或1972年”既可以化答:列出两种符号化的真值表:合命题可以发现,p 与q 不可能同时为真,故上述命题有两种符号化⽅式.8.将下列命题符号化,并指出真值., 就有;(1)只要, 则;, 才有;(3)只有, 才有;(4)除⾮, 否则;(5)除⾮(6)仅当.答:设p: , 则: ; 设q: , 则: .(1);(2);;(3);(4);(5);(6);(7).答:根据题意,p 为假命题,q 为真命题.(1);(2);(3);(4).答:根据题意,p 为真命题,q 为假命题.(1)若2+2=4,则地球是静⽌不动的;(2)若2+2=4,则地球是运动不⽌的;(3)若地球上没有树⽊,则⼈类不能⽣存;(4)若地球上没有⽔,则是⽆理数.12.将下列命题符号化,并给出各命题的真值:(1)2+2=4 当且仅当3+3=6;(2)2+2=4 的充要条件是3+3 6;(3)2+2 4 与3+3=6 互为充要条件;(4)若2+2 4,则3+3 6,反之亦然.答:设p:2+2=4,q:3+3=6.(1)若今天是星期⼀,则明天是星期⼆;(2)只有今天是星期⼀,明天才是星期⼆;(3)今天是星期⼀当且仅当明天是星期⼆;(4)若今天是星期⼀,则明天是星期三.答:设p:今天是星期⼀,q:明天是星期⼆,r:明天是星期三.(1)刘晓⽉跑得快,跳得⾼;(2)⽼王是⼭东⼈或者河北⼈;(3)因为天⽓冷,所以我穿了⽻绒服;(4)王欢与李乐组成⼀个⼩组;(5)李欣与李末是兄弟;(6)王强与刘威都学过法语;(7)他⼀⾯吃饭,⼀⾯听⾳乐;(8)如果天下⼤⾬,他就乘班车上班;(9)只有天下⼤⾬,他才乘班车上班;(10)除⾮天下⼤⾬,否则他不乘班车上班;(11)下雪路滑,他迟到了;(12)2 与4 都是素数,这是不对的;(13)“2 或 4 是素数,这是不对的”是不对的.答:q:⼤熊猫产在中国.r:太阳从西⽅升起. 求下列符合命题的真值:(1)(2)(3)(4)解:p真值为1,q 真值为1,r 真值为0.(1)0,(2)0,(3)0,(4)116.当p,q 的真值为0,r,s 的真值为1 时,求下列各命题公式的真值:(1)(2)(3)(4)解:(1)0,(2)0,(3)0,(4)117.判断下⾯⼀段论述是否为真:“ 是⽆理数.并且,如果3 是⽆理数,则也是⽆理数.另外,只有6 能被2 整除,6 才能被4 整除.”解:p: 是⽆理数q: 3 是⽆理数r:是⽆理数s: 6 能被2 整除t:6 能被 4 整除符号化为: ,该式为重⾔式,所以论述为真。

离散数学习题答案.docx

离散数学习题答案.docx

精品文档离散数学习题答案习题一及答案:( P14-15 )14、将下列命题符号化:( 5)李辛与李末是兄弟解:设 p:李辛与李末是兄弟,则命题符号化的结果是p( 6)王强与刘威都学过法语解:设 p:王强学过法语; q:刘威学过法语;则命题符号化的结果是p q ( 9)只有天下大雨,他才乘班车上班解:设 p:天下大雨; q:他乘班车上班;则命题符号化的结果是q p( 11)下雪路滑,他迟到了解:设 p:下雪; q:路滑; r :他迟到了;则命题符号化的结果是( p q)r15、设 p: 2+3=5.q:大熊猫产在中国 .r:太阳从西方升起 .求下列复合命题的真值:( 4)(p q r )(( p q)r )解: p=1, q=1,r=0 ,(p q r )(110)1,((p q)r )((11)0)(00)1(p q r )(( p q)r ) 1 1119、用真值表判断下列公式的类型:( 2)( p p)q解:列出公式的真值表,如下所示:p q p qp) ( p p)q( p001111011010100101110001由真值表可以看出公式有 3 个成真赋值,故公式是非重言式的可满足式。

20、求下列公式的成真赋值:精品文档( 4)( p q)q解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:( p q)1p0q0q0所以公式的成真赋值有: 01,10, 11。

习题二及答案:( P38)5、求下列公式的主析取范式,并求成真赋值:( 2)(p q) (q r )解:原式( p q) q r q r( p p) q r( p q r ) ( p q r )m3m7,此即公式的主析取范式,所以成真赋值为011, 111。

6、求下列公式的主合取范式,并求成假赋值:( 2)( p q) ( p r )解:原式( pp r ) ( p q r )( p q r )M 4,此即公式的主合取范式,所以成假赋值为 100。

离散数学课后习题答案(第三章)(doc)

离散数学课后习题答案(第三章)(doc)
R={<a,b>,<b,a>,<b,c>,<c,d>}
a) 用矩阵运算和作图方法求出 R 的自反、对称、传递闭包; b) 用 Warshall 算法,求出 R 的传递闭包。
解 a) 0 1 00
MR= 1 0 1 0 0 0 01
0 0 00
R 的关系图如图所示。
a
b
d
c
MR+MIA=
0 1 00 1 0 10
反之,若 S∩ScIX,设<x,y>∈S 且 <y,x>∈S,则 <x,y>∈S∧<x,y>∈Sc <x,y>∈S∩Sc <x,y>∈IX 故 x=y,即 S 是反对称的。
3-7.3 设 S 为 X 上的关系,证明若 S 是自反和传递的,则 S○S=S,其逆为真 吗?
证明 若 S 是 X 上传递关系,由习题 3-7.2a)可知(S○S)S, 令<x,y>∈S,根据自反性,必有< x,x> ∈S, 因此有< x,y >∈S○S, 即 SS○S。得到 S=S○S.
自反的; b)若 R1 和 R2 是反自反的,则 R1○R2 也
是反自反的; c)若 R1 和 R2 是对称的,则 R1○R2 也是
对称的; d)若 R1 和 R2 是传递的,则 R1○R2 也是
传递的。
证明 a)对任意 a∈A,设 R1 和 R2 是自 反的,则<a,a>∈R1,<a,a>∈R2 所以,<a,a>∈R1○R2,即 R1○R2 也是 自反的。
解:L= {<1,2>,<1,3>,<1,6>,<2,3>,<2,6>, <3,6>,<1,1>,<2,2>,<3,3>,<6,6>} D={<1,2>,<1,3>,<1,6>, <2,6>,<3,6>,<1, 1>,<2,2>,<3,3>,<6,6>} L∩D= {<1,2>,<1,3>,<1,6>,<2,6>,<3,6>,<1,1>, <2,2>,<3,3>,<6,6>}

离散数学课后答案详细

离散数学课后答案详细

第一章命题逻辑基本概念课后练习题答案4.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.5.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;6.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.7.因为p与q不能同时为真.13.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

离散数学课后习题答案

离散数学课后习题答案

1-1,1-2(1) 解:a) 是命题,真值为T。

b) 不是命题。

c) 是命题,真值要根据具体情况确定。

d) 不是命题。

e) 是命题,真值为T。

f) 是命题,真值为T。

g) 是命题,真值为F。

h) 不是命题。

i) 不是命题。

(2) 解:原子命题:我爱北京天安门。

A(3) 解:a) (┓P ∧R)→Qb) Q→Rc) ┓Pd) P→┓Q(4) 解:a)设Q:我将去参加舞会。

R:我有时间。

P:天下雨。

Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。

b)设R:我在看电视。

Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。

c) 设Q:一个数是奇数。

R:一个数不能被2除。

(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。

(5) 解:a) 设P:王强身体很好。

Q:王强成绩很好。

P∧Qb) 设P:小李看书。

Q:小李听音乐。

P∧Qc) 设P:气候很好。

Q:气候很热。

P∨Qd) 设P: a和b是偶数。

Q:a+b是偶数。

P→Qe) 设P:四边形ABCD是平行四边形。

Q :四边形ABCD的对边平行。

PQf) 设P:语法错误。

Q:程序错误。

R:停机。

(P∨ Q)→ R(6) 解:a) P:天气炎热。

Q:正在下雨。

P∧Qb) P:天气炎热。

R:湿度较低。

P∧Rc) R:天正在下雨。

S:湿度很高。

R∨Sd) A:刘英上山。

B:李进上山。

A∧Be) M:老王是革新者。

N:小李是革新者。

M∨Nf) L:你看电影。

M:我看电影。

┓L→┓Mg) P:我不看电视。

Q:我不外出。

R:我在睡觉。

P∧Q∧Rh) P:控制台打字机作输入设备。

Q:控制台打字机作输出设备。

P∧Q1-3(1)解:a) 不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b) 是合式公式c) 不是合式公式(括弧不配对)d) 不是合式公式(R和S之间缺少联结词)e) 是合式公式。

(2)解:a) A是合式公式,(A∨B)是合式公式,(A→(A∨B)) 是合式公式。

离散数学及其应用图论部分课后习题答案

离散数学及其应用图论部分课后习题答案

作业答案:图论部分P165:习题九1、 给定下面4个图(前两个为无向图,后两个为有向图)的集合表示,画出它们的图形表示。

(1)111,G V E =<>,112345{,,,,}V v v v v v =,11223343345{(,),(,),(,),(,),(,)}E v v v v v v v v v v = (2)222,G V E =<>,21V V =,11223344551{(,),(,),(,),(,),(,)}E v v v v v v v v v v = (3)13331,,,D V E V V =<>=31223324551{,,,,,,,,,}E v v v v v v v v v v =<><><><><> (4)24441,,,D V E V V =<>=31225523443{,,,,,,,,,}E v v v v v v v v v v =<><><><><> 解答: (1)(2)10、是否存在具有下列顶点度数的5阶图?若有,则画出一个这样的图。

(1)5,5,3,2,2;(2)3,3,3,3,2;(3)1,2,3,4,5;(4)4,4,4,4,4 解答:(1)(3)不存在,因为有奇数个奇度顶点。

14、设G 是(2)n n ≥阶无向简单图,G 是它的补图,已知12(),()G k G k δ∆==,求()G ∆,()G δ。

解答:2()1G n k ∆=--;1()1G n k δ=--。

15、图9.19中各对图是否同构?若同构,则给出它们顶点之间的双射函数。

解答:(c )不是同构,从点度既可以看出,一个点度序列为4,3,3,3,3而另外一个为4,4,3,3,1(d )同构,同构函数为12()345x a x bf x x c x d x e=⎧⎪=⎪⎪==⎨⎪=⎪=⎪⎩ 16、画出所有3条边的5阶简单无向图和3条边的3阶简单无向图。

大学_《离散数学》课后习题答案

大学_《离散数学》课后习题答案

《离散数学》课后习题答案《离散数学》简介1、集合论部分:集合及其运算、二元关系与函数、自然数及自然数集、集合的基数2、图论部分:图的基本概念、欧拉图与哈密顿图、树、图的矩阵表示、平面图、图着色、支配集、覆盖集、独立集与匹配、带权图及其应用3、代数结构部分:代数系统的基本概念、半群与独异点、群、环与域、格与布尔代数4、组合数学部分:组合存在性定理、基本的计数公式、组合计数方法、组合计数定理5、数理逻辑部分:命题逻辑、一阶谓词演算、消解原理离散数学被分成三门课程进行教学,即集合论与图论、代数结构与组合数学、数理逻辑。

教学方式以课堂讲授为主,课后有书面作业、通过学校网络教学平台发布课件并进行师生交流。

《离散数学》学科内容随着信息时代的到来,工业革命时代以微积分为代表的连续数学占主流的地位已经发生了变化,离散数学的重要性逐渐被人们认识。

离散数学课程所传授的思想和方法,广泛地体现在计算机科学技术及相关专业的诸领域,从科学计算到信息处理,从理论计算机科学到计算机应用技术,从计算机软件到计算机硬件,从人工智能到认知系统,无不与离散数学密切相关。

由于数字电子计算机是一个离散结构,它只能处理离散的或离散化了的数量关系,因此,无论计算机科学本身,还是与计算机科学及其应用密切相关的现代科学研究领域,都面临着如何对离散结构建立相应的数学模型;又如何将已用连续数量关系建立起来的数学模型离散化,从而可由计算机加以处理。

离散数学是传统的逻辑学,集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系理论,图论与树,抽象代数(包括代数系统,群、环、域等),布尔代数,计算模型(语言与自动机)等汇集起来的一门综合学科。

离散数学的应用遍及现代科学技术的诸多领域。

离散数学也可以说是计算机科学的基础核心学科,在离散数学中的有一个著名的典型例子-四色定理又称四色猜想,这是世界近代三大数学难题之一,它是在1852年,由英国的一名绘图员弗南西斯格思里提出的,他在进行地图着色时,发现了一个现象,“每幅地图都可以仅用四种颜色着色,并且共同边界的国家都可以被着上不同的颜色”。

离散数学课后习题答案 (2)

离散数学课后习题答案 (2)

离散数学课后习题答案1. 第一章习题答案1.1 习题一答案1.1.1 习题一.1 答案根据题意,设集合A和B如下:Set A and BSet A and B在此情况下,我们可以得出以下结论:•A的幂集为{ {}, {a}, {b}, {a, b} };•B的幂集为{ {}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} };•A和B的笛卡尔积为{ (a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3) }。

因此,习题一.1的答案为:•A的幂集为{ {}, {a}, {b}, {a, b} };•B的幂集为{ {}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} };•A和B的笛卡尔积为{ (a, 1), (a, 2), (a, 3), (b, 1), (b,2), (b, 3) }。

1.1.2 习题一.2 答案根据题意,集合A和B如下所示:Set A and BSet A and B根据集合的定义,习题一.2要求我们判断以下命题的真假性:a)$A \\cap B = \\{ 2, 3 \\}$b)$\\emptyset \\in B$c)$A \\times B = \\{ (a, 2), (b, 1), (b, 3) \\}$d)$B \\subseteq A$接下来,我们来逐个判断这些命题的真假性。

a)首先计算集合A和B的交集:$A \\cap B = \\{ x\\,|\\, x \\in A \\, \\text{且} \\, x \\in B \\} = \\{ 2, 3 \\}$。

因此,命题a)为真。

b)大家都知道,空集合是任意集合的子集,因此空集合一定属于任意集合的幂集。

根据题意,$\\emptyset \\in B$,因此命题b)为真。

c)计算集合A和B的笛卡尔积:$A \\times B = \\{ (x, y) \\,|\\, x \\in A \\, \\text{且} \\, y \\in B \\} = \\{ (a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3) \\}$。

离散数学课后习题参考答案(可编辑)

离散数学课后习题参考答案(可编辑)

习题参考解答习题1.11、(3)P:银行利率降低Q:股价没有上升P∧Q(5) P:他今天乘火车去了北京Q:他随旅行团去了九寨沟(7) P:不识庐山真面目Q:身在此山中Q→P,或 ~P→~Q(9) P:一个整数能被6整除Q:一个整数能被3整除R:一个整数能被2整除T:一个整数的各位数字之和能被3整除P→Q∧R ,Q→T2、(1)T (2)F (3)F (4)T (5)F(6)T (7)F (8)悖论习题 1.31(3)(4)2、不, 不, 能习题 1.4主合取范式主析取范式3、解:根据给定的条件有下述命题公式:(A→(CD))∧~(B∧C)∧~(C∧D)(~A∨(C∧~D)∨(~C∧D))∧(~B∨~C)∧(~C∨~D) ((~A∧~B)∨(C∧~D∧~B)∨(~C∧D∧~B)∨(~A∧~C)∨(C∧~D∧~C)∨(~C∧D∧~C))∧(~C∨~D) ((~A∧~B)∨(C∧~D∧~B)∨(~C∧D∧~B)∨(~A∧~C)∨(~C∧D∧~C)) ∧(~C∨~D)(~A∧~B∧~C)∨(C∧~D∧~B∧~C)∨(~C∧D∧~B∧~C)∨ (~A∧~C∧~C)∨(~C∧D∧~C∧~C)∨(~A∧~B∧~D)∨(C∧~D∧~B∧~D)∨(~C∧D∧~B∧~D)∨(~A∧~C∧~D)∨(~C∧D∧~C∧~D)(由题意和矛盾律)(~C∧D∧~B)∨(~A∧~C)∨(~C∧D)∨(C∧~D∧~B)(~C∧D∧~B∧A)∨ (~C∧D∧~B∧~A)∨ (~A∧~C∧B)∨(~A∧~C∧~B)∨ (~C∧D∧A)∨ (~C∧D∧~A)∨(C∧~D∧~B∧A)∨(C∧~D∧~B∧~A)(~C∧D∧~B∧A)∨ (~A∧~C∧B∧D)∨ (~A∧~C∧B∧~D)∨(~A∧~C∧~B∧D)∨ (~A∧~C∧~B∧~D)∨(~C∧D∧A∧B)∨ (~C∧D∧A∧~B)∨ (~C∧D∧~A∧B)∨ (~C∧D∧~A∧~B)∨(C∧~D∧~B∧A)∨(C∧~D∧~B∧~A) (~C∧D∧~B∧A)∨ (~A∧~C∧B∧D)∨ (~C∧D∧A∧~B)∨(~C∧D∧~A∧B) ∨(C∧~D∧~B∧A)(~C∧D∧~B∧A)∨ (~A∧~C∧B∧D)∨(C∧~D∧~B∧A) 三种方案:A和D、 B和D、A和C习题 1.51、 (1)需证为永真式(3)需证为永真式为永真式。

吉林大学离散数学课后习题答案

吉林大学离散数学课后习题答案

第一章集合论基础§1.1 基本要求1. 掌握集合、子集、超集、空集、幂集、集合族的概念。

懂得两个集合间相等和包含关系的定义和性质,能够利用定义证明两个集合相等。

熟悉常用的集合表示方法。

2. 掌握集合的基本运算:并、交、余、差、直乘积、对称差的定义以及集合运算满足的基本算律,能够利用它们来证明更复杂的集合等式。

3. 掌握关系、二元关系、空关系、全域关系、相等关系、逆关系的概念以及关系的性质:自反性、对称性、反对称性、传递性。

会做关系的乘积。

了解关系的闭包运算:自反闭包、对称闭包、传递闭包。

4. 掌握等价关系、等价类、商集的概念,了解等价关系和划分的内在联系。

5. 掌握部分序关系、部分序集、全序关系、全序集的概念以及部分序集中的特殊元素:最大元、最小元、极大元、极小元、上确界、小确界的定义。

能画出有限部分序集的Hasse 图,并根据图讨论部分序集的某些性质。

6. 掌握映射、映像、1-1映射等概念,会做映射的乘积。

了解可数集合的概念,掌握可数集合的判定方法。

7. 了解关系在数据库中的应用(数据的增、删、改)以及划分在计算机中的应用。

§1.2 主要解题方法1.2.1 证明集合的包含关系方法一.用定义来证明集合的包含关系是最常用也是最基本的一种方法。

要证明A⊆B,首先任取x∈A,再演绎地证出x∈B成立。

由于我们选择的元素x是属于A的任何一个,而非特指的一个,故知给出的演绎证明对A中含有的每一个元素都成立。

当A是无限集时,因为我们不能对x∈A,逐一地证明x∈B成立,所以证明时的假设“x是任取的”就特别重要。

例1.2.1 设A,B,C,D是任意四个非空集合,若A⊆C,B⊆D,则A×B⊆C×D。

证明:任取(x,y) ∈A×B,往证(x,y) ∈C×D。

由(x,y) ∈A×B知,x∈A,且y∈B。

又由A⊆C,B⊆D知,x∈C,且y∈D,因此,(x,y) ∈C×D。

离散数学课后习题答案

离散数学课后习题答案

离散数学课后习题答案离散数学课后习题答案离散数学是计算机科学中的一门重要课程,它涵盖了诸多数学概念与技巧,为计算机科学的理论基础打下了坚实的基础。

在学习离散数学的过程中,课后习题是巩固知识、提高能力的重要途径。

然而,有时候我们会遇到一些难以解答的问题,需要参考一些答案来进行思考与学习。

本文将为大家提供一些离散数学课后习题的答案,希望能对大家的学习有所帮助。

一、集合论1. 设A={1,2,3},B={2,3,4},求A∪B和A∩B的结果。

答案:A∪B={1,2,3,4},A∩B={2,3}。

2. 证明:任意集合A和B,有(A-B)∪(B-A)=(A∪B)-(A∩B)。

答案:首先,对于任意元素x,如果x属于(A-B)∪(B-A),那么x属于A-B或者x属于B-A。

如果x属于A-B,那么x属于A∪B,但x不属于A∩B;如果x属于B-A,同样有x属于A∪B,但x不属于A∩B。

所以(A-B)∪(B-A)属于(A∪B)-(A∩B)。

另一方面,对于任意元素x,如果x属于(A∪B)-(A∩B),那么x属于A∪B,但x不属于A∩B。

所以x属于A或者x属于B。

如果x属于A,但x不属于B,那么x属于A-B;如果x属于B,但x不属于A,那么x属于B-A。

所以x属于(A-B)∪(B-A)。

所以(A∪B)-(A∩B)属于(A-B)∪(B-A)。

综上所述,(A-B)∪(B-A)=(A∪B)-(A∩B)。

证毕。

二、逻辑与证明1. 证明:如果p为真命题,那么¬p为假命题。

答案:根据命题的定义,命题要么为真,要么为假,不存在其他情况。

所以如果p为真命题,那么¬p为假命题。

2. 证明:对于任意整数n,如果n^2为偶数,则n为偶数。

答案:假设n为奇数,即n=2k+1(k为整数)。

那么n^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1。

根据偶数的定义,2(2k^2+2k)为偶数,所以n^2为奇数。

离散数学习题答案1-2-6-7-8-9章-2009-12-17

离散数学习题答案1-2-6-7-8-9章-2009-12-17

习题1:1. 解 (1){2,3,5,7,11,13,17,19}(2){x|x=20*k,k 是自然数}(3){2,-1}2. 解 (1){2,4}(2){1,2,3,4,5}(3){1,3}(4){1,3,5}3. 解 (1){1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}(2)φ(3)全体自然数(4){0,2,4,6,8,10,12,14,16,18,20}(5)1,3,5,7,9,11,13,15,17,19}4. 解 (1)正确(2)正确(3)错误(4)正确5. 解 (1)A={1},B={{1}},C={{1}}(2)A={1},B={{1}},C={{{1}}}6. 解 (1)正确。

由子集的定义。

(2) 不一定。

如:A={1},B={{1}},C={{1}}。

(3)不一定。

如:A={1},B={1,2},C={{1,2}}(4)不一定。

如:A={1},B={1,2},C={{1,2}}。

7. 解 A={1,2},B={1},C={2},有B A ≠,但是C B C A =成立。

A={1,2},B={1},C={1},有B A ≠,但是C B C A =成立。

8. 解 (1)φ(2){φ}(3){{φ}}(4){φ,{φ}}9. 解 (1){1,2,3,4,5,6,7,8,9}(2){0,1,2,3,4,5,6,7,8,9,10}(3){0,3,6,7,8,9}10. 解 33311. 解 2512. 解(1)454(2)124(3)22013. 解 (1){φ}(2){φ,{a}}(3){φ,{φ},{a},{φ,a}}(4){φ,{φ},{{φ}},{{φ},φ}}(5){φ,{{φ}},{φ},{a},{{φ},φ},{{φ},a},{φ,a},{{φ},φ,a}}14. 证明:假设B ≠C ,则至少存在一元素x ∈B 且x ∉C 。

离散数学习题解答 祝清顺版

离散数学习题解答 祝清顺版

祝清顺习题一(第1章集合)1.(1)A={0, 1, 2, 3};(2)A={(-2, 3), (-1, 0), (0, -1), (1, 0), (2, 3)};(3)A={-1, -2, -3};(4)A={1, 2, 3, 4, 5};(5) A={-6, 1}.2.(1) {x | x=2k, k∈N+, k≤50};(2) {x | x=6k, k∈Z};(3) {(x, y) | (x-x0)2+(y-y0)2=r2};(4) {x | 15<x<40, x为素数}.3.(1)c=a或c=b;(2)a, b为任意值;(3)a=c=∅, b={∅};(4)b=c=d.4.当a=0时, 解得x=2/3满足题意; 当a≠0时, 由∆=9-8a≤0, 得a≥9/8.综上, 满足条件的a的范围是: {a | a≥9/8或a=0}.5.(1)∅, {a}, {{b}}, {c}, {a, {b}}, {a, c}, {{b}, c}, {a, {b}, c};(2)∅, {∅};(3)∅.6.(1) 2n;(2) 2n-1, n≥1, 当n=0时不存在;(3) 没有. 因为集合只有n个元素, 其子集所含元素个数不可能比整个集合的元素个数多.7.(1) 成立; (2) 不成立; (3) 成立; (4) 成立.8.(1) 不正确, 例如A={a}, B={a, b}, C={{a}, {b}}, 从而A∈B且B∈C, 但A∈C.(2) 不正确, 例子同(1);(3) 不正确, 例如, A={1}, B={{1}, 2}, C={{1}, 3};(4) 不正确, 例如, A={1}, B={1, 2}, C={{1}, {1, 2}}.9.(1) 错误; (2) 正确; (3) 正确; (4) 错误; (5) 错误; (6) 错误; (7) 正确; (8) 正确; (9) 错误; (10) 错误.10.(1) {d }; (2) {a , c , e }; (3) {a , b , c , e }; (4) {b , d , e }. 11.各集合的文氏图如图所示(阴影部分).12.(a) B ∩(C -A );(b) (A -(B ∪C )∪(B ∩(C -A )); (c) C B A ∪(B ∩(C -A )). 13.A ∩B ={2, 3}; A ∪B ={1, 2, 3, 4, 5}; A -B ={1, 4}; B -A ={5}; A ⊕B ={1, 4, 5}. 14.(1) 不一定. 例如, A ={1, 2, 3}, B ={2, 3}, C ={1, 3}, 则A ∪B =A ∪C , 但是B ≠C . (2) 不一定; 例如, A ={1, 2, 3}, B ={2, 3}, C ={2, 3, 4}, 则A ∩B =A ∩C , 但是B ≠C . (3) 一定. 由条件有A ⊕(A ⊕B )=A ⊕(A ⊕C ), 利用对称差的结合律, 有(A ⊕A )⊕B = (A ⊕A )⊕C ,因为A ⊕A = ∅, 有∅⊕B = ∅⊕C , 故有B =C .15.(1) 正确, 证明: 因为A ∩C ⊆ A ⊆ B , A ∩C ⊆ C ⊆ D , 故A ∩C ⊆ B ∩D . (2) 错误, 如A =C ={1}, B ={1, 2}, D ={1, 3}. 16.(1) {0, 1, 2, 3, 4, 5, 6, 7, 8}; (2) {1, 2}; (3) {4, 5}; (4) N . 17.由于A ∪B =B , 故有A ⊆B , 而B ={x | x >3}, 故a ≥3. 18.由题意可得 x =3是x 2+cx +15=0的根, 故有9+3c +15=0, 解之得c = -8, x 2+cx +15=0即x 2-8x +15=0, 解之得 x =3或x =5, 故B ={3, 5}.由已知条件可得A ={3}, 故有9+3a+b =0, 且 a 2-4b =0. 解之得a = -6, b = 9. 综上可得 a =-6, b =9, c =-8. 19.(1) 因为集合B ={x | x 2-5x +6=0}={2, 3}. 又A ∩B =A ∪B , 故集合A ={x | x 2-ax +(A ∩B )∪C B EA BA B E A C C B A -⊕)( B A C B E A C )()(B C B A -a2-19=0} ={2, 3}, 由根与系数的关系, 有2+3=a, 即a=5.(2) 因为集合C={x | x2+2x-8=0}={2, -4}, 而∅⊊A∩B, A∩C=∅, 所以3∈A, 2∉A. 故9-3a+a2-19=0, 4-2a+a2-19≠0; 解之得, a = -2.20.因为A∩B={-3}, 所以-3∈B, 而x2+1>-3, 所以只可能x-3= -3或2x-1= -3.若x-3 = -3, 则x=0, 此时A={-3, 0, 1}, B={-3, -1, 1}, 故A∩B={-3, 1}, 不合题意.若2x-1= -3, 则x = -1, 此时A={-3, 1, 0}, B={-4, -3, 2}, 故A∩B={-3}, 满足题意.综上所述, x = -1, 且A∪B={-4, -3, 0, 1, 2}.21.由于B=(A∩B)∪(A∩B), 故B={1}∪{3}={1, 3}, B={2, 4}. 由此知A∩B={3}, 3∈A, 1∉A; 由A∩B={2}知, 2∈A, 4∉A, 从而2∉A, 4∈A, 故A={3, 4}.22.A- (B-C)=)A=)B(CAB(C=)A=(A-B)∪(A∩C).B()(CA23.(1) ((A∪(B-C))∩A)∪(B- (B-A)) = ((A∪(B∩C))∩A)∪(B∩)B )(A= A∪(B∩(B∪A))= A∪(∅∪(B∩A))=A.(2) ((A∪B)∩B)-(A∪B) = ((A∪B)∩B)∩)A(B= ((A∪B)∩B)∩(A∩B)= (A∪B)∩B∩A∩B=∅(3) ((A∪B∪C)-( B∪C))∪A = ((A∪B∪C) ∩)(CB )∪A= ((A∪B∪C) ∪A) ∩(CB ∪A)= (A∪B∪C) ∩()B )∪A)(C= A∪((B∪C) ∩)(CB )= A∪∅=A.24.将不超过100的正整数排列如下:1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 27 28 29 3031 32 33 34 35 36 37 38 39 4041 42 43 44 45 46 47 48 49 5051 52 53 54 55 56 57 58 59 6061 62 63 64 65 66 67 68 69 7071 72 73 74 75 76 77 78 79 8081 82 83 84 85 86 87 88 89 9091 92 93 94 95 96 97 98 99 100可以依次得到素数2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.25.由恒等式mq + np = (mn + pq) − (m− p)(n−q)及条件(m-p) | (mn+pq)可知, (m-p) | (mq+np).26.设n=2k+1, n2-1=(2k+1)2-1=4k(k+1). 因为k(k+1)是相邻两个自然数的乘积, 必然是2的倍数, 所以原式是8的倍数.27.101小于11的平方, 这样就可以只用2、3、5、7这四个质数来验证. 101无法被2、3、5、7整除, 所以101是质数.28.240=2⋅120=22⋅60=23⋅30=24⋅15=24⋅3⋅5.504=2⋅252=22⋅121=22⋅112.654=2⋅327=2⋅3⋅109=2⋅3⋅7⋅1751480 = 2⋅25740 = 22⋅12870 = 23⋅6435= 23⋅5⋅1287 = 23⋅5⋅3⋅429 = 23⋅5⋅32⋅143 = 23⋅32⋅5⋅11⋅13.29.(1) 因为258=21⨯12+6, 所以q=21, r=6.(2) 因为258=(-39)⨯( -15)+12, 所以q= -39, r=12.(3) 因为-367=(-16)⨯24+17, 所以q= -16, r=17.(4) 因为-334=26⨯(-13) +4, 所以q= 26, r=4.30.4475÷8=559⋅8+3559÷8=69⋅8+769÷8=8⋅8+58÷8=1⋅8+01÷8=0⋅8+1所以4475=(10573)8.31.(1) 运用辗转相除法可得934 = 4 ∙ 195 + 154195 = 1 ∙ 154 + 41 154 = 3 ∙ 41 + 31 41 = 1 ∙ 31 +10 31 = 3 ∙ 10 +1 10=10 ∙ 1 +0所以, gcd(934, 195) = 1. 代回去, 有gcd(540, 168) = 1 = 31 - 3 ∙ 10 = 31 - 3 ∙ (41 - 1∙31) = 4 ∙ 31 - 3 ∙ 41 = 4 ∙ (154 - 3 ∙ 41) - 3 ∙ 41 = 4 ∙ 154 - 15 ∙ 41= 4 ∙ 154 - 15 ∙ (195-1 ∙ 154) = 19 ∙ 154 - 15 ∙ 195 = 19 ∙ (934 - 4 ∙ 195) - 15 ∙ 195 = 19 ∙ 934 - 91 ∙ 195故gcd(540, 168) = 19 ∙ 934 - 91 ∙ 195, 其中m =19, n = - 91.(2) 方法同(1). 计算可得:gcd(369, 25) = 1, gcd(369, 25)= 4 ∙ 369 - 59 ∙ 25, 其中m =4, n = - 59. (3) 方法同(1). 计算可得:gcd(369, 25) = 33, gcd(369, 25)= 8 ∙ 165 - 1 ∙ 1287, 其中n =8, m = - 1. (4) 方法同(1). 计算可得:gcd(369, 25) = 2, gcd(369, 25)= 17 ∙ 42 - 2 ∙ 256, 其中n =8, m = - 1. 32.由定理1.3.8, 可得ab =lcm(a , b )⋅gcd(a , b )=24 ∙ 144. 由已知条件a +b =120, 根据根与系数的关系可构造一个一元二次方程x 2-120x +24 ∙ 144=0解之得, x 1=72, x 2=48. 由此可得a =72, b =48或a =48, b =72.33.(1) 运用辗转相除法可得10920 = 1 ∙ 8316 + 2604 8316 = 3 ∙ 2604 + 504 2604 = 5 ∙ 504 + 84 504 = 6 ∙ 84 +0所以, gcd(934, 195) = 84.(2) 对于(1)中各式回代过去, 有gcd(10920, 8316) = 84 = 2604 - 5 ∙ 504 = 2604 - 5 ∙ (8316 - 3 ∙ 2604)= 16 ∙ 2604 - 5 ∙ 8316= 16 ∙ (10920- 1 ∙ 8316) - 5 ∙ 8316 = 16 ∙ 10920- 21 ∙ 8316故gcd(10920, 8316) = - 21 ∙ 8316+16 ∙ 10920, 其中m = - 21, n =16.(3) 由最大公因子与最小公倍数的关系, 有84109208316),gcd(),(lcm ⨯==b a ab b a =1081080.34.记gcd(a , b )=d , 则有d | a 且d | b , 从而d | (ma+nb ), 即d | 1, 所以d =1. 35.由容斥原理, 得| A ∪B ∪C |=| A |+| B |+| C |-| A ∩B |-| A ∩C |-| B ∩C |+| A ∩B ∩C | | A ∩B ∩C |=| A ∪B ∪C |-(| A |+| B |+| C |-| A ∩B |-| A ∩C |-| B ∩C |)=11-(6+8+6-3-2-5) = 1.36.设A , B 分别表示在第一次和第二次考试中得5分的学生的集合, 那么有|S |=50, |A |=26, |B |=21, |)|B A =17. 由|)|B A = |S | – (|A | + |B |) + |A ∩B |, 得|A ∩B | =|)|B A – |S | + (|A | + |B |) = 17 – 50 + 26 + 21=14故有14人两次考试都得5分.37.令A ={修数学的学生}, B ={修物理的学生}, C={修化学的学生}, 则|A |=170, |B |=130, |C|=120, | A ∩B |=45, | A ∩C |=20, | B ∩C |=22, | A ∩B ∩C |=3, 故由容斥原理| A ∪B ∪C |=| A |+| B |+| C |-| A ∩B |-| A ∩C |-| B ∩C |+| A ∩B ∩C |=170+130+120-45-20-22+3=336.38.设A 3={被3整除的数}, A 5={被5整除的数}, 则|A 3|=166, |A 5|=100, |A 3∩A 5| = 33, 所以由容斥原理, 有| A 3∪A 5 |=| A 3 |+| A 5 |-| A 3∩A 5|=166+100-33=233. 39.(1) 取全集S = {1, 2,…, 1000}, 令A 1 = { i ︱i ∈S 且5整除i }, A 2 = { i ︱i ∈S 且6整除i }, A 3 ={ i ︱i ∈S 且8整除i }, 于是|A 1| =⎥⎦⎤⎢⎣⎡51000=200, |A 2| =⎥⎦⎤⎢⎣⎡61000=166, |A 3| =⎥⎦⎤⎢⎣⎡81000=125, |A 1∩A 2| =⎥⎦⎤⎢⎣⎡⨯651000=33,|A 1∩A 3| =⎥⎦⎤⎢⎣⎡⨯851000=25, |A 2∩A 3| =⎥⎦⎤⎢⎣⎡}8,6{lcm 1000=41, | A 1∩A 2∩A 3| =⎥⎦⎤⎢⎣⎡}8,6,5{lcm 1000=8, 则由容斥原理得| A 1∪A 2∪A 3 |=|A 1|+|A 2|+|A 3|-|A 1∩A 2|-|A 1∩A 3|-|A 2∩A 3|+|A 1∩A 2∩A 3 | = 200+166+125-33-25-41+8=400.(2) |1A ∩2A ∩3A |=|S |-| A 1∪A 2∪A 3 |=1000-400=600.即在1, 2, …, 1000中不能被5, 6和8中的任何一个数整除的数的个数为400个40.设U ={到游乐场去玩的儿童}, A ={骑旋转木马的儿童}, B ={坐滑行轨道的儿童}, C ={乘宇宙飞船的儿童}. 由题意得|U |=75, | A ∩B ∩C |=20, | A ∩B |+ |A ∩C |+ |B ∩C|-2| A ∩B ∩C |=55, 得| A∩B|+ A∩C|+ |B∩C|=55+2| A∩B∩C |=55+40=95,由700÷5=140知| A|+|B|+ |C|=140.| A∪B∪C |=| A |+| B |+| C |-| A∩B |-| A∩C |-| B∩C |+| A∩B∩C |=140-95+20=65.|A∩B∩C|=|U|-| A1∪A2∪A3|=75-65=10.因此有10名儿童没有玩过其中任何一种玩具.41.设U={被调查的大学生}, A={选修线性代数课程}, B={选修概率课程}, C={选修计算机科学课程}. 由题意得|U|=260, |A|=64, |B|=94, |C|=58, | A∩B|=26, |A∩C|=28, |B∩C|=22, | A∩B∩C |=14.利用容斥原理, 得(1) |A∩B∩C|=|U|-| A∪B∪C |=|U|-(| A |+| B |+| C |-| A∩B |-| A∩C |-| B∩C |+| A∩B∩C|)=260-(64+94+58-26-28-22+14)=106.即三门课程都不选修的学生有106人.(2) |A∩B∩C|=|B|-| A∩B |-| B∩C |+| A∩B∩C|)=94-26-22+14=60.即只选计算机科学课程的学生有60人.42.(1){∅, {a}, {{a}}, {a, {a}}}; (2){ ∅, {{1, {2, 3}}}};(3){∅, {∅}, {a}, {{b}}, {∅, a}, {∅, {b}}, {a, {b}}, {∅, a, {b}}}; (4){∅, {∅}};(5){∅, {∅}, {{∅}}, {∅, {∅}}}.43.A={m, n}.44.(1) C∈ρ(A)∩ρ(B) ⇔C∈P(A)∧C∈ρ(B)⇔C ⊆A∧C⊆B⇔C ⊆A∩B⇔C∈ρ(A∩B)所以, ρ(A)∩ρ(B)=ρ(A∩B).(2) 由幂集的定义易知, B∈ρ(A) ⇔B⊆A. …..(*)必要性:对任意的C∈ρ(A), 则由(*)得C⊆A. 又A⊆B, 所以C ⊆ B. 再由(*)得B∈ρ(B). 所以, ρ(A) ⊆ρ(B).充分性:若ρ(A) ⊆ρ(B), 则由A∈ρ(A)得A∈ρ(B), 再由(*)得A⊆B.(3) 因为C∈ρ(A)∪ρ(B) ⇒C∈ρ(A) 或C∈ρ(B)⇒C ⊆A或C⊆B⇒C ⊆A∪B⇒C∈ρ(A∪B)所以, ρ(A)∪ρ(B) ⊆ρ(A∪B).例如, 设A={1}, B={2}, 则P(A)={∅, {1}}, ρ(B)={∅, {2}}, ρ(A)∪ρ(B)={∅, {1}, {2}}. 而A∪B={1, 2}, ρ (A∪B)={∅, {1}, {2}, {1, 2}}, 所以ρ(A)∪ρ(B) ≠ρ(A∪B).45.(1) A×B×C ={〈a, 1, α〉, 〈a, 1, β〉, 〈a, 2, α〉, 〈a, 2, β〉, 〈a, 4, α〉, 〈a, 4, β〉, 〈b, 1, α〉, 〈b, 1, β〉, 〈b, 2, α〉, 〈b, 2, β〉, 〈b, 4, α〉, 〈b, 4, β〉, 〈c, 1, α〉, 〈c, 1, β〉, 〈c, 2, α〉, 〈c, 2, β〉, 〈c, 4, α〉, 〈c, 4, β〉};(2) B×A ={〈1, a〉, 〈1, b〉, 〈1, c〉, 〈2, a〉, 〈2, b〉, 〈2, c〉, 〈4, a〉, 〈4, b〉, 〈4, c〉};(3)A×B2={〈a, 〈1, 1〉〉, 〈a, 〈1, 2〉〉, 〈a, 〈1, 4〉〉, 〈a, 〈2, 1〉〉, 〈a, 〈2, 2〉〉, 〈a, 〈2, 4〉〉, 〈a, 〈4, 1〉〉, 〈a, 〈4, 2〉〉, 〈a, 〈4, 4〉〉, 〈b, 〈1, 1〉〉, 〈b, 〈1, 2〉〉, 〈b, 〈1, 4〉〉, 〈b, 〈2, 1〉〉, 〈b, 〈2, 2〉〉, 〈b, 〈2, 4〉〉, 〈b, 〈4, 1〉〉, 〈b, 〈4, 2〉〉, 〈b, 〈4, 4〉〉, 〈c, 〈1, 1〉〉, 〈c, 〈1, 2〉〉, 〈c, 〈1, 4〉〉, 〈c, 〈2, 1〉〉, 〈c, 〈2, 2〉〉, 〈c, 〈2, 4〉〉, 〈c, 〈4, 1〉〉, 〈c, 〈4, 2〉〉, 〈c, 〈4, 4〉〉};(4)A×C={〈a, α〉, 〈b, α〉, 〈c, α〉, 〈a, β〉, 〈b, β〉, 〈c, β〉}×{〈a, α〉, 〈b, α〉, 〈c, α〉, 〈a, β〉, 〈b, β〉, 〈c, β〉}.(A×C)2={〈〈a, α〉, 〈a, α〉〉, 〈〈a, α〉, 〈b, α〉〉, 〈〈a, α〉, 〈c, α〉〉, 〈〈a, α〉, 〈a, β〉〉, 〈〈a, α〉, 〈b, β〉〉, 〈〈a, α〉, 〈c, β〉〉, 〈〈b, α〉, 〈a, α〉〉, 〈〈b, α〉, 〈b, α〉〉, 〈〈b, α〉, 〈c, α〉〉, 〈〈b, α〉, 〈a, β〉〉, 〈〈b, α〉, 〈b, β〉〉, 〈〈b, α〉, 〈c, β〉〉, 〈〈c, α〉, 〈a, α〉〉, 〈〈c, α〉, 〈b, α〉〉, 〈〈c, α〉, 〈c, α〉〉, 〈〈c, α〉, 〈a, β〉〉, 〈〈c, α〉, 〈b, β〉〉, 〈〈c, α〉, 〈c, β〉〉, 〈〈a, β〉, 〈a, α〉〉, 〈〈a, β〉, 〈b, α〉〉, 〈〈a, β〉, 〈c, α〉〉, 〈〈a, β〉, 〈a, β〉〉, 〈〈a, β〉, 〈b, β〉〉, 〈〈a, β〉, 〈c, β〉〉, 〈〈b, β〉, 〈a, α〉〉, 〈〈b, β〉, 〈b, α〉〉, 〈〈b, β〉, 〈c, α〉〉, 〈〈b, β〉, 〈a, β〉〉, 〈〈b, β〉, 〈b, β〉〉, 〈〈b, β〉, 〈c, β〉〉, 〈〈c, β〉, 〈a, α〉〉, 〈〈c, β〉, 〈b, α〉〉, 〈〈c, β〉, 〈c, α〉〉, 〈〈c, β〉, 〈a, β〉〉, 〈〈c, β〉, 〈b, β〉〉, 〈〈c, β〉, 〈c, β〉〉}46.(1) 对于任意a∈A, b∈B, 使得〈a, b〉∈A×B. 由于A ⊆C, B ⊆D, 故〈a, b〉∈ C×D, 即A×B ⊆C×D.(2) 对于任意a∈A, 因为〈a, a〉∈A×A, 而A×A=B×B, 所以〈a, a〉∈B×B, 即a∈B, 从而有A⊆B. 反之, 类似地可以证明B ⊆ A, 因此A=B.(3) 对于任意a∈A∪B, b∈A∩B, 使得〈a, b〉∈(A∪B)×(A∩B). 由于a∈A∪B, b∈A∩B, 而A∩B≠∅, 则有a∈A或a∈B, 从而〈a, b〉∈A×A或〈a, b〉∈B×B, 因此〈a, b〉∈(A×A)∪(B×B), 亦即(A∪B)×(A∩B) ⊆ (A×A)∪(B×B)成立.(4) 对于任意a∈ A∩B, b∈C∩D, 使得〈a, b〉∈(A∩B)×(C∩D). 由于a∈ A∩B, b∈C∩D,则有a∈A且a∈B, b∈C且b∈D, 从而〈a, b〉∈A×C且〈a, b〉∈B×D, 因此〈a, b〉∈(A×C)∩(B×D), 亦即(A∩B)×(C∩D)⊆ (A×C)∩(B×D)成立.类似地, 可以证明(A×C)∩(B×D)⊆(A∩B)×(C∩D)也成立. 故(A∩B)×(C∩D)=(A×C)∩(B×D).习题 二 (第2章 关系)1.(1) R ={〈0, 0〉, 〈0, 2〉, 〈2, 0〉, 〈2, 2〉}; (2) R ={〈1, 1〉, 〈4, 2〉};(3) R ={〈5, 6〉, 〈5, 7〉, 〈5, 9〉, 〈4, 25〉, 〈4, 7〉, 〈4 9〉, 〈35, 6〉, 〈35, 9〉, 〈49, 6〉, 〈49, 25〉, 〈49, 9〉};(4) R ={〈2, 6〉, 〈4, 6〉, 〈5, 3〉, 〈5, 7〉, 〈11, 3〉, 〈11, 7〉}.2.dom(R )={a | a =2k , k ∈Z }, ran(R )={b | b =3k , k ∈Z }. 3.(1) 〈25, 5〉∈R ; (2) 〈1, 7〉∉R ; (3) 〈8, 2〉∈R ; (4) 〈3, 3〉∈R ; (5) 〈216, 6〉∈R . 4.(1) M R =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0001100010000010, 关系图为: (2) M R =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0000011100111001110011100, 关系图为:(3) M R =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡000000100000, 关系图为:(4) M R =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡0000000100000000000001110000111100000000000000000, 关系图为: 5.R ={〈x , y 〉 | x ∈R , y ∈R 且0≤x ≤3, 0≤y ≤2}. 6.R ={〈b , a 〉, 〈b , d 〉, 〈b , e 〉, 〈c , c 〉, 〈c , a 〉, 〈c , e 〉, 〈d , f 〉, 〈d , c 〉, 〈f , e 〉}. 关系矩阵为:3∙14562 ∙0 ∙∙∙∙∙4 ∙ ∙ 1 23 ∙ ∙ ∙∙∙∙1 2 34 ∙0∙ ∙ ∙ ∙ 3 5 27 ∙ 6 8 1 ∙ ∙M R =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡010000000000100100010101011001000000.7.(1) 对于任意x ∈dom(R ∪S ), 有x ∈dom(R ∪S ) ⇔ 存在y 使得〈x , y 〉∈ R ∪S ⇔存在y 使得〈x , y 〉∈R 或〈x , y 〉∈S⇔ 存在y 使得〈x , y 〉∈R 或存在y 使得〈x , y 〉∈S ⇔ x ∈ dom(R ) 或 x ∈ dom(S ) ⇔ x ∈dom(R )∪dom(S ).(2) 设b ∈ ran (R ∩S ), 则必存在a ∈A , 使得〈a , b 〉 ∈ R ∩S , 于是〈a , b 〉 ∈ R 且〈a , b 〉 ∈ S , 因此b ∈ran(R )且b ∈ran(S ), 由交集的定义, b ∈ran(R )∩ran(S ), 故ran(R ∩S ) ⊆ ran(R )∩ ran(S ).但是ran (R )∩ran (S )⊄ran (R ∩S ).设A ={1, 2, 3}, B ={2, 4, 5}, 且令R ={〈1, 2〉, 〈1, 4〉}, S ={〈3, 2〉, 〈1, 4〉, 〈3, 5〉}, 则R ∩S ={〈1, 4〉}. 于是ran(R )={2, 4}, ran(S )={2, 4, 5}, 因此ran(R )∩ran (S )={2, 4}, 而ran(R ∩S ) ={4}, 所以ran (R )∩ran (S )⊄ran (R ∩S ).8.(1) R ∪S ={〈1, 2〉, 〈1, 3〉, 〈2, 4〉, 〈3, 4〉, 〈4, 4〉, 〈4, 2〉, 〈4, 3〉}; R ∩S ={〈2, 4〉};R -S ={〈1, 2〉, 〈3, 4〉, 〈4, 4〉}, R -1={〈1, 2〉, 〈2, 4〉, 〈3, 4〉, 〈4, 4〉}.(2) dom(R )={1, 2, 3, 4}, ran R ={2, 4}, dom(R S )={2}, ran(R S )={4}. 9.R S ={〈1, 3〉 〈1, 2〉, 〈2, 4〉, 〈3, 3〉, 〈3, 2〉}, S R ={〈1, 1〉, 〈1, 3〉, 〈2, 4〉, 〈3, 4〉},R 2={〈1, 1〉, 〈1, 2〉, 〈1, 4〉, 〈3, 1〉, 〈3, 2〉, 〈3, 4〉}, R -1={〈1, 1〉, 〈2, 1〉, 〈4, 2〉, 〈1, 3〉, 〈3, 3〉}, S -1={〈3, 1〉, 〈2, 2〉, 〈2, 3〉, 〈4, 4〉}, R -1 S -1={〈1, 1〉, 〈4, 2〉, 〈4, 3〉, 〈3, 1〉}. 各关系图如下:R S S RR 2 R -1∙∙∙∙3 2 4 1 ∙∙∙∙1 3 4 2 1 23 ∙∙4∙∙∙∙∙∙3 1 2 4∙ ∙ ∙ ∙1 32 4 ∙ ∙ ∙ ∙1 32 4 ∙ ∙ ∙ ∙1 3 42 R -1 S -1 S -1 10.由已知条件, 可得关系R 1={〈0, 0〉, 〈0, 1〉, 〈1, 2〉, 〈2, 3〉, 〈2, 1〉}, R 2={〈2, 0〉, 〈2, 1〉}. 经计算得:R 1R 2={〈1, 0〉, 〈2, 1〉};R 2R 1={〈2, 0〉, 〈2, 1〉, 〈3, 2〉}; R 1R 2R 1={〈1, 0〉, 〈1, 1〉, 〈2, 3〉};21R ={〈0, 0〉, 〈0, 1〉, 〈0, 2〉, 〈1, 3〉, 〈1, 1〉, 〈2, 2〉}; 22R =∅.11.(1) R 1R 2={〈b , a 〉, 〈b , d 〉}, R 2R 1={〈d , a 〉}.(2) 写出相应R 1, R 2的关系矩阵为: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00000001011000001R M , ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=01001001000100002R M , 计算 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0000000101100000121R R R M ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0100100100010000⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000101100000=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000000000= O . =21R M ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000101100000⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000101100000=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000001110000. =32R M ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0100100100010000⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0100100100010000⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0100100100010000=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0100100100000000 由此可得, R 1 R 2 R 1=∅, 21R ={〈b , a 〉, 〈b , b 〉, 〈b , c 〉}, 32R ={〈c , a 〉, 〈c , d 〉, 〈d , c 〉}.(3) 由关系R 1, R 2可得其逆关系为: 1-1R ={〈b , b 〉, 〈c , b 〉, 〈a , c 〉}, 1-2R ={〈a , b 〉, 〈d , c 〉, 〈a , c 〉, 〈c , d 〉}, 由(1)得(R 1R 2)-1={〈a , b 〉, 〈d , b 〉}, 从而有关系矩阵:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000100010010011-R M , ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=010010000000011012-R M , ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-0010000000000010121)(R R M . 12.(1) R ={〈1, 3〉, 〈2, 2〉, 〈3, 1〉, 〈4, 4〉}, 关系图:︒︒︒︒︒︒︒(2) 依次计算出R 的各次幂.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=10000001001001001R M , ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=10000001001001002R M ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000000100100100=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000010000100001=E 4 (单位矩阵), =3R M ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000010000100001⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000000100100100=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000000100100100=M R , =4R M E 4. 故有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000010000100001nR M , n =2k , k ∈N ; ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000000100100100n R M , n =2k +1, k ∈N . 13.(1) 设〈x , y 〉∈ R 1 R 3, 则存在z ∈A , 使得〈x , z 〉∈ R 1且〈z , y 〉∈R 3, 由于R 1 ⊆ R 2, 所以〈x , z 〉∈ R 2, 由关系复合的定义, 有〈x , y 〉∈ R 2 R 3, 从而有R 1 R 3⊆ R 2 R 3.(2) 类似于(1)的方法证明. 14.写出相应R , S 的关系矩阵为: ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0000000000010000001000010R M , ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0000000010000011000000010S M , 计算M R ∩S =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0000000000000000000000010, M R ∪S =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡000000010010011001000010, M R S =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0000000000000101000010000.15.由R , S 可得R -1={〈x , x 〉, 〈z , x 〉, 〈x , y 〉, 〈y , y 〉, 〈x , z 〉, 〈y , z 〉, 〈z , z 〉}, S -1={〈a , x 〉, 〈d , x 〉, 〈a , y 〉, 〈c , y 〉, 〈e , y 〉, 〈b , z 〉, 〈d , z 〉}, (R S )-1={〈a , x 〉, 〈a , y 〉, 〈a , z 〉, 〈b , x 〉, 〈b , z 〉, 〈c , y 〉, 〈c , z 〉, 〈d , x 〉, 〈d , y 〉, 〈d , z 〉, 〈e , y 〉, 〈e , z 〉}.写出相应的矩阵为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-1011101111R M , ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=-011010101000111S M , ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=-1101111101011111)(S R M ,o x y 11 o x y1 -1 o x y 11 -1 -1 而⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⨯--1101111101011111011101110110101010001111R S M M 所以111)(---⨯=R S S R M M M .16.R 是自反的; S 是反自反的; T 既不是自反的也不是反自反的. 17.R 既是对称的也是反对称的; S 是对称的但不是反对称的; T 是反对称的但不是对称的; U 既不是对称的也不是反对称的.18.对于任意a ∈A , (a -a )/2=0, 所以〈a , a 〉∈R , 即R 是自反的.对于任意〈a , b 〉∈R , 则(a -b )/2是整数, 因为整数的相反数也是整数, 所以(b -a )/2是整数, 即〈b , a 〉∈R , 亦即R 是对称的.对于任意〈a , b 〉∈R , 〈b , c 〉∈R , 则(a -b )/2, (b -c )/2都是整数. 设(a -b )/2=m , (b -c )/2=k , 则a -b =2m , b -c =2k , 从而有a -c =2(m -k ), 即(a -c )/2=m -k , 故〈a , c 〉∈R , 因此R 是传递的.19.(1) 例如, 〈1, 2〉, 〈2,1〉∈R , 但〈1,1〉∉R , 故R 是不可传递的.(2) 例如, R 1={〈1,1〉, 〈1, 2〉, 〈2, 1〉, 〈2, 2〉, 〈3, 1〉, 〈3, 2〉, 〈4, 1〉, 〈4, 2〉, 〈4, 3〉}, 是包含R 且具有传递性的关系.(3) 因为R 1并非全域关系(否则, 当R 1是全域关系时, 就找不到了), 所以只要取R 2=A ×A 是A 上的全域关系就可满足R 2⊇R , R 2≠R , 并且全域关系R 2显然是一个传递关系.当然这样的R 2可以构造多个, 如, R 2={〈1,1〉, 〈1, 2〉, 〈2,1〉, 〈2, 2〉, 〈3, 1〉, 〈3, 2〉, 〈3, 3〉, 〈4, 1〉, 〈4, 2〉, 〈4, 3〉}也是满足R 2⊇R , R 2≠R 是一个传递关系.20.(1) 如图(a), 满足: 自反性, 对称性, 反对称性, 传递性. (2) 如图(b), 满足: 反对称性和传递性. (3) 如图(c), 满足: 传递性.(a) (b) (c )21.(1) 满足: 自反性、对称性与传递性, 不满足: 反自反性与反对称性. (2) 满足: 反自反性、反对称性与传递性, 不满足: 自反性、对称性.∙ ∙∙b c a (3) 不满足: 自反性、反自反性、对称性、反对称性、传递性.(4) 满足: 自反性、对称性、反对称性与传递性, 不满足: 反自反性. (5) 不满足: 自反性、反自反性、对称性、反对称性、传递性. 22.图2.26满足: 反对称性与传递性, 不满足: 自反性、反自反性与对称性. 图2.27满足: 反自反性、反对称性与传递性, 不满足: 自反性与对称性. 23.R 是反自反的, 既不是自反的, 对称的, 也不是反对称的, 也不具有传递性. R 的关系图如图所示.24.(1) 如, R ={〈1, 2〉, 〈2, 1〉, 〈4, 2〉, 〈2, 4〉}∪I A . (2) 如, R ={〈2, 1〉, 〈4, 2〉, 〈4, 1〉}∪I A . (3) 如, R ={〈4, 1〉, 〈1, 2〉}∪I A .(4) 如, R ={〈1, 1〉, 〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈2, 2〉, 〈2, 3〉, 〈2, 4〉, 〈3, 3〉, 〈3, 4〉, 〈4, 4〉}. 25.(1) 对于R 的关系矩阵M R , 由于对角线上全为0, R 是反自反的, 但不是自反的; 由于矩阵是对称的, 所以R 是对称的, 而M R 关于对角线对称位置上的元素不同时为1, 故R 是反对称的.经过计算可得, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=10101101101111012R M , 故R 2⊄R , 因此R 不具有传递性. (2) 对于R 的关系矩阵, 由于对角线上不全为1, R 不是自反的; 由于对角线上元素全部非0元, R 不是反自反的; 由于矩阵是对称的, 所有R 是对称的; 因为R -1∩R =R ⊄ I A , 所以R 不是反对称的.经过计算可得, =2R M ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000010000110011=M R , 故R 2=R , 所以R 是传递的. 26.(1) 取最小集合A ={1, 2}, A 上关系R ={〈1, 1〉, 〈1, 2〉}, R 既不是自反的也不是反自反的.(2) 取最小集合A ={1, 2, 3}, A 上关系R ={〈1, 2〉, 〈2, 1〉, 〈2, 3〉}, R 既不是对称的也不是反对称的.(3) 空集合上的关系既是自反的, 又是反自反的; 既是对称的, 又是反对称的. 因此, 结果同(1), (2).(1) 设R 是自反的, 对任意的a ∈A , 〈a , a 〉∈R , 则〈a , a 〉∈R -1, 故R -1也是自反的.(2) 设R 是传递的. 对于任意〈a , b 〉∈R -1, 〈b , c 〉∈R -1. 所以〈c , b 〉∈R , 〈b , a 〉∈R ; 又因为R 是传递的, 所以〈c , a 〉∈R , 因此〈a , c 〉∈R -1, 故R -1也是传递的.(3) 设R 是反自反的, 对任意的a ∈A , 〈a, a 〉∉R , 则〈a, a 〉∉R -1, 故R -1也是自反的. (4) 对于任意的〈a, b 〉∈ R -1, 则〈b , a 〉∈R , 因为R 是对称的, 故〈a, b 〉∈R , 所以〈b , a 〉∈ R -1. 因此R -1是对称的.(5) 反证法证明. 设R -1不是反对称的, 则存在〈a , b 〉∈R -1, 〈b , a 〉∈R -1, a ≠b , 则〈a , b 〉∈ R , 〈b , a 〉∈R , 与R 是反对称的矛盾.28.(1) 因为R 和S 是自反的, 对任意的a ∈A , 〈a , a 〉∈R 并且〈a , a 〉∈S , 则〈a , a 〉∈R ∩S , 〈a , a 〉∈R ∪S , 故R ∩S 和R ∪S 也是自反的.(2) 对任意的a , b ∈A , a ≠b , 使得〈a , b 〉∈R ∩S . 因为〈a , b 〉∈R ∩S , 所以〈a , b 〉∈R 并且〈a , b 〉∈S ; 因为R 和S 是对称的, 所以〈b , a 〉∈R 并且〈b , a 〉∈S , 则〈b , a 〉∈R ∩S , 〈b , a 〉∈R ∪S , 故R ∪S 和R ∩S 也是对称的.(3) 任意的〈a, b 〉∈R ∩S , 〈b , c 〉∈R ∩S , 则〈a , b 〉∈ R , 〈a , b 〉∈S , 〈b , c 〉∈R , 〈b , c 〉∈S , 因为R 和S 是传递的, 因此〈a , c 〉∈R , 〈a , c 〉∈S , 所以〈a , c 〉∈ R ∩S , 即R ∩S 也是传递的.29.由关系R 可直接写出r (R )和s (R )r (R )={〈1, 1〉, 〈1, 2〉, 〈2, 2〉, 〈2, 3〉, 〈3, 1〉, 〈3, 3〉}. s (R )={〈1, 2〉, 〈2, 1〉, 〈2, 3〉, 〈3, 2〉, 〈3, 1〉, 〈1, 3〉}. 由关系R 写出关系矩阵M R , 并依次计算其幂为:M R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001100010, 2R M =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010001100, 3R M =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001, M t (R )=M R +2R M +3R M =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111111111, 亦即t (R )为A 上的全域关系. 故t (R )={〈1, 1〉, 〈1, 2〉, 〈1, 3〉, 〈2, 1〉, 〈2, 2〉, 〈2, 3〉, 〈3, 1〉, 〈3, 2〉, 〈3, 3〉}. 30.由关系R 写出关系矩阵M R 并依次计算其幂为:M R =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000010000111001, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=10000100101110012R M =3R M =4R M . M t (R )=M R +2R M +3R M +4R M =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000010010111001, 故 t (R )={〈1, 1〉, 〈1, 4〉, 〈2, 1〉, 〈2, 2〉, 〈2, 4〉, 〈3, 3〉, 〈4, 4〉}.由关系R 的关系矩阵M R , 经计算得M r (R )=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1101010111100101, M s (R )=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0111111111001101, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=01010101010101012R M =3R M =4R M , M t (R )=M R +2R M =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0101010101010101. 32.(a) 自反闭包为: ; 对称闭包 ; 传递闭包 .(b) 自反闭包为: ; 对称闭包为: ; 传递闭包为: .(c) 自反闭包为: ; 对称闭包为: ; 传递闭包为: . 33.由关系R 的关系矩阵M R , 可直接写出r (R )和s (R )r (R ) =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1010001110001111011011001, s (R ) =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1011100111111111110011101.依次计算关系矩阵M R 的各次幂得2R M =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1011110111111111011111111, 3R M =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1111111111111111111111111=4R M =5R M ,因此有M t (R )=M R +2R M +3R M +4R M +5R M =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1111111111111111111111111, 亦即t (R )为A 上的全域关系.34.∙ ∙ ∙∙ ∙∙∙∙∙∙∙ ∙∙∙∙ ∙ ∙ ∙∙∙∙(1) r (R ), s (R ), t (R )的关系图如图所示.R 的自反闭包 R 的对称闭包 R 的传递闭包(2) r (R )={〈a , c 〉, 〈b , d 〉}∪I A ;s (R )={〈a , a 〉, 〈a , c 〉, 〈c , a 〉, 〈b , d 〉, 〈d , b 〉}; t (R )={〈a , a 〉, 〈b , d 〉, 〈a , c 〉}. 35.(1) 因为R 自反, 得r (R )=R , 即R ∪I A =R ,r (s (R ))=s (R )∪I A =(R ∪R -1)∪I A = (R ∪I A )∪R -1=r (R )∪R -1 =R ∪R -1 =s (R ),所以s (R )自反的.类似可以证明t (R )也是自反的. (2) 证明t (R )对称:(t (R ))-1=(R ∪R 2∪…∪R n ∪…)-1= R -1∪(R 2)-1 ∪…∪(R n )-1∪… = R -1∪(R -1)2 ∪…∪(R -1)n ∪…=R ∪R 2∪…∪R n ∪… (∵R 对称,∴R -1 =R ) =t (R )所以t (R )是对称的. 类似可以证明r (R )也是对称的.(3) 证明r (R )传递: 先用归纳法证明下面结论:(R ∪I A )i = I A ∪R ∪R 2∪…∪R i .(i) 当i =1时, R ∪I A = I A ∪R , 结论成立. (ii) 假设i ≤k 时结论成立, 即(R ∪I A )k = I A ∪R ∪R 2∪…∪R k .(iii) 当i =k +1时(R ∪I A )k +1=(R ∪I A )k (R ∪I A )= (I A ∪R ∪R 2∪…∪R k )(I A ∪R )= (I A ∪R ∪R 2∪…∪R k )∪(R ∪R 2∪…∪R k +1) = I A ∪R ∪R 2∪…∪R k ∪R k +1所以结论成立.t (r (R ))=t (R ∪I A )= (R ∪I A )∪(R ∪I A )2∪(R ∪I A )3∪…=(I A ∪R )∪(I A ∪R ∪R 2)∪(I A ∪R ∪R 2∪R 3)∪… = I A ∪R ∪R 2∪R 3∪…= I A ∪t(R ) = I A ∪R (R 传递t(R )=R ) =r (R )所以r (R )是传递的.∙∙ ∙∙a c b d ∙∙a cb ∙ ∙d ∙∙ ∙∙a c b d36.(1) 左边= r (R 1∪R 2)=R 1∪R 2 ⋃I A右边= r (R 1)∪r (R 2) =R 1∪I A ∪R 2∪I A =R 1∪R 2∪I A(1)式得证.(2) 左边=s (R 1∪R 2)=(R 1∪R 2)∪(R 1∪R 2)-1= R 1∪R 2∪R 1-1∪R 2-1= (R 1∪R 1-1)∪(R 2∪R 2-1)=s (R 1)∪s (R 2)(2)式得证.(3) 证明t (R 1∪R 2)⊇t (R 1)∪t (R 2).t (R 1∪R 2)=(R 1∪R 2)∪(R 1∪R 2)2∪┄∪(R 1∪R 2)n而 (R 1∪R 2)2= (R 1∪R 2)o(R 1∪R 2)=((R 1∪R 2)o R 1)∪((R 1∪R 2)o R 2)= R 12∪R 2o R 1∪R 1o R 2∪R 22 ⊇R 12∪R 22 ………(R 1∪R 2)n ⊇R 1n ∪R 2n . 于是有(R 1∪R 2)∪(R 1∪R 2)2 ∪…∪(R 1∪R 2)n ⊇R 1∪R 12∪…∪R 1n ∪R 2∪R 22∪R 22…∪R 2n 即t (R 1∪R 2) ⊇ t (R 1)∪t (R 2), (3)式得证.37.(1) 不满足自反性、反对称性, 所以不是偏序关系; (2) 是偏序关系;(3) 不是偏序关系. 因为若取a =2, 则22|/2, 所以〈2, 2〉∉R , 即R 不具有自反性.38.(a) R={〈5, 2〉, 〈5, 3〉, 〈5, 4〉, 〈5, 1〉, 〈2, 3〉, 〈2, 4〉, 〈1, 3〉, 〈1, 4〉, 〈3, 4〉} I A ; 关系矩阵为:M R =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡11111010*******0111001101.(b) R={〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈5, 2〉, 〈5, 3〉, 〈5, 4〉, 〈3, 4〉, 〈2, 4〉} I A ; 关系矩阵为: M R =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1111001000011000101001111.39. . 40. (a) ; (b) ; (c), 全序关系.∙∙∙∙∙12345∙∙∙∙1234∙∙∙∙1234∙∙∙∙123441. 哈斯图为:(1) ; (2) ; (3) ; (4) ,其中(2)、(3)是全序关系.42.因为R 1不满足自反性, 但满足反自反性和传递性, 因而R 1是拟序关系; 而R 2, R 3满足自反性, 反对称性和传递性, 故R 2, R 3是偏序关系.43.(1) 因为R 是S 上的偏序, 所以R 是自反的、反对称的、传递的. 因而对于任意x ∈S , 〈x , x 〉∈R , 又对于任意x ∈S ', 有〈x , x 〉∈ S '⨯S '. 所以对于任意x ∈S ', 有〈x , x 〉∈ R ', 所以R '是自反的.设〈x , y 〉∈ R ', 〈y , x 〉∈ R ', 则〈x , y 〉∈ R , 〈y , x 〉∈ R , 由R 是反对称的, 故x =y . 因而若R 是反对称的, 则R '也是反对称的.若R 在S 上是传递的, 则由〈a , b 〉∈ R ', 〈b , c 〉∈ R ', 有〈a , b 〉∈ R , 〈a , b 〉∈ S '⨯S ', 〈b , c 〉∈ R ', 〈b , c 〉∈ S '⨯S ', 故〈a , c 〉∈ R , 〈a , c 〉∈ S '⨯S ', 因此〈a , c 〉∈ R ', 即R '是传递的, 因此R 是也是传递的, 所以R '是偏序.(2) 因为R 是S 上的拟序, 所以R 是反自反的、传递的. 因而对于任意x ∈ S ', 〈x , x 〉∉R ,所以〈x , x 〉∉ R ', 因而R '也是反自反的. 由(1)的证明过程可以知道, R '是传递的, 因此R '是拟序.(3) 若R 是线序的, 则R 是偏序的, 且对于任意的a , b ∈S , 或者〈a , b 〉∈ R 或者〈b , a 〉∈ R .因而对于任意的x , y ∈ S ', 也有〈x , y 〉∈ R 或〈y , x 〉∈ R . 但〈x , y 〉∈ S '⨯S ', 〈y , x 〉∈ S '⨯S ', 所以, 或者〈x , y 〉∈ R '或者〈y , x 〉∈ R '. 因而S '上任一元素是可比较的, 又由(1)知R '也是偏序, 所以R '是S '上的线序.44.对于任意x ∈N , 则x 为自然数, 所以x ≥x , 所以〈x , x 〉∈ R ≥, 即为自反关系. 若〈x , y 〉∈ R ≥, 〈y , x 〉∈ R ≥, 则x ≥y 且y ≥x , 故x=y , 因此R ≥是反对称的. 若〈x , y 〉∈ R ≥, 〈y , z 〉∈ R ≥, 则x ≥y 且y ≥z , 故x ≥z , 因此R ≥是可传递的.综上所述, 关系R ≥是一种偏序关系. 又在N 上任意两个自然数都可以比较大小, 也就是在N 上关于关系R ≥都是可比较的, 因此R ≥是全序关系.45.由于包含关系R ⊆是一种偏序关系, 对于ρ的元素按照包含关系有:∅⊆{a }⊆{a , b }⊆{a , b , c }.由此可知ρ的元素按照包含关系存在一条链, 因此R ⊆是全序关系.46.在集合A ={x | x 是一个实数且-5≤x ≤20}中, 因为任意一个实数自身不会小于自身, 所以小于关系是反自反的; 又因为小于关系具有传递性; 所以小于关系是A 上的拟∙∙∙∙∙24816 32 ∙∙∙∙∙3612 36 72 ∙∙∙∙24 36 2 ∙ ∙ 36 12 ∙∙ 10 3 2 6 4 12∙ ∙ ∙ ∙ ∙130 ∙序关系.47.因为I A ⊆R , 所以R 具有自反性. R 的关系矩阵为:M R =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡1000000011000000001000000011000000101000001111000011101000000001. 由关系矩阵可知, r ij +r ji ≤1, 故R 是反对称的; 可计算对应的关系矩阵为:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=10000000110000000010000000110000001010000011110000111010000000012R M = M R 由以上矩阵可知R 是传递的. 所以, R 是偏序关系, 即〈A , R 〉是偏序集. 所对应的哈斯图如图所示:极大元:a , f , h ; 极小元:a , b , c , g.48.哈斯图为:(1) 上界12, 24, 36, 下界2; (2) 无上界, 下界2, 4, 6, 12. 49.(1) 哈斯图和关系图如图所示:∙ ∙ ∙∙ f c d b ∙ e ∙∙g h a∙∙∙ ∙ ∙ 24 2 4 8 ∙∙612 36 ∙(2) 没有最小元素 最大元素为a ; (3) 极小元为d , e , 极大元为a ;(4) 各子集的上界、下界, 最小上界、最大下界情况如下表:子集 上界 下界 最小上界最大下界{b , c , d } a , c d , c c d {c , d , e } a , c 不存在 c 不存在 {a , b , c }ab , dab50.最大元:9, 极大元:9, 上界:27, 18, 9, 最小上界:9, 最小元:3, 极小元:3, 下界:3, 最大下界:3.51.上界为f , 下界为a , b , 最大上界为f , 最小下界不存在. 52.B 的极大元为19, 极小元为2, 最大元为19, 最小元为2. 53.哈斯图如图所示. 对于集合B : 无最小元素, 最大元素, 下界和最大下界为1, 上界和最小上界不存在, 极大元不存在, 极小元为1.54.(1) 等价关系;(2) 不是等价关系; 因为〈2, 1〉, 〈1, 3〉∈R , 但〈2, 3〉∉R , 即传递性不成立. (3) 等价关系; (4) 等价关系; (5) 等价关系. 55.(1) 等价关系. 因为M R 主对角线上元素全为1, 所以R 是自反的; 又M R 是对称矩阵, 所以关系R 是对称的; 又⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1101100012R M=M R , 亦即R 2=R , 故R 具有传递性, 所以R ∙∙ ∙∙ a c b d e ∙ ∙ ∙ ∙ 5 13 6 ∙24∙∙ c ∙ ∙ ∙a eb d ∙是等价关系.(2) 不是等价关系. 因为M R不是对称矩阵, 所以关系R不具有对称性, 故R不是等价关系.56.(1) 不是A上等价关系. 因为A×A-R1不再满足自反性. 例如, A={a, b}, R1={〈a, a〉, 〈b, b〉}, 则A×A-R1={〈a, b〉, 〈b, a〉}, 显然A×A-R1不是A上等价关系.(2) 不是A上等价关系. 因为R1-R2不再满足自反性. 例如, A={a, b, c}, R1={〈a, b〉, 〈b, a〉, 〈b, c〉, 〈c, b〉, 〈a, c〉, 〈c, a〉, 〈a, a〉, 〈b, b〉, 〈c, c〉}, R2={〈b, c〉, 〈c, b〉, 〈a, a〉, 〈b, b〉, 〈c, c〉}, 则R1-R2={〈a, b〉, 〈b, a〉, 〈a, c〉, 〈c, a〉}, 显然R1-R2不是A上等价关系.(3) 21R是A上等价关系. (见67题证明)(4) r (R1-R2)不一定是A上等价关系. 例如, (2)中所设R1和R2是集合A上的等价关系, 但r (R1-R2)={〈a, b〉, 〈b, a〉, 〈a, c〉, 〈c, a〉, 〈a, a〉, 〈b, b〉, 〈c, c〉}不是A上等价关系.例如, A={a, b}, R1={〈a, b〉, 〈b, a〉, 〈a, a〉, 〈b, b〉}, R2={〈a, a〉, 〈b, b〉}, 则r (R1-R2)={〈a, b〉, 〈b, a〉, 〈a, a〉, 〈b, b〉}是A上等价关系.(5) 不是A上等价关系, 因为R1 R2不再满足对称性. 例如, A={a, b}, R1={〈a, b〉}, R2={〈b, a〉}, 则R1 R2={〈a, a〉}, 显然R1 R2不是A上等价关系.57.若任取〈x, y〉∈A, 因为|x-y|=|x-y|, 故〈x, y〉R〈x, y〉, 所以R是自反的;任取〈x, y〉,〈u, v〉∈A, 使得〈x, y〉R〈u, v〉, 则|x-y|=|u-v|, 故〈u, v〉 R〈x, y〉, 所以R是对称的;任取〈x, y〉, 〈u, v〉, 〈w, z〉∈A, 使得〈x, y〉R〈u, v〉, 〈u, v〉R〈w, z〉, 则有|x-y|=|u-v |, |u-v| = |w-z|, 从而有|x-y|= |w-z|, 即〈x, y〉R〈w, z〉, 所以R是传递的.综上, R是等价关系.A/R={{〈1, 1〉, 〈2, 2〉, 〈3, 3〉}, {〈1, 2〉, 〈2, 1〉, 〈2, 3〉, 〈3, 2〉, 〈3, 4〉}, {〈1, 3〉, 〈2, 4〉, 〈3, 1〉}, {〈1, 4〉}}.58.(1) 对于任意〈a, b〉∈A, 有a2+b2= a2+b2, 故〈a, b〉R〈a, b〉, 自反性成立.对于任意〈a, b〉∈A, 有a2+b2= a2+b2, 则有〈a, b〉R〈b, a〉, 对称性成立.若任意〈a, b〉, 〈c, d〉, 〈e, f〉∈A, 有〈a, b〉R〈c, d〉, 〈c, d〉R〈e, f〉, 即a2+b2= c2+d 2, c2+d 2= e2+f 2, 故a2+b2= e2+f 2, 则必有〈a, b〉R〈e, f〉, 传递性成立.综上R是A上等价关系.(2)A/R的等价类是以(0, 0)为中心的无穷多个同心圆, 包括半径为0的圆.59.(1) 由关系矩阵可知: 对角线元素全为1, 故R自反性成立; M R是对称矩阵, 故R是对称的; 又因为因为对于任意的a ij = 1, a jk = 1, 有a ik = 1, 故R传递性成立.综上R是等价关系.(2) 由等价关系可得其等价类为:[1]R= [2]R = [3]R =[5]R ={1, 2, 3, 5}, [4]R ={4}, 故A/R={{1, 2, 3, 5}, {4}}.(1)A上最大的等价关系是全域关系R=A×A={〈a, b〉 | a, b∈A}, 因此有n2个元素在A 上的最大的等价关系R中, 因为所有n2个二元组都在R=A×A中.(2) A上的最大的等价关系R的秩是1. 这是因为A中任何两个元素都有全域关系R= A×A, 因此R的等价块包含了A的所有元素, 即A的所有元素都在同一个等价块中. 所以商集只有一个等价块{A}, 它包含了A的所有元素.(3) A上的最小的等价关系是恒等关系I A={〈a, a〉 | a∈A }, 它中有n个元素, 即n个自反对.(4) A上的最小的等价关系的商集包含n个元素, 因为恒等关系的每一个元素都自成一个等价块, 每一等价块中也只有一个元素.61.等价关系R的等价类为[1]=[5]={1, 5}, [2]=[4]={2, 4}, [3]=[6]={3, 6}, 故R诱导的划分π={{1, 5}, {2, 4}, {3, 6}}.62.(1) 不是划分; 因为A≠{1, 3, 6}∪{2, 8, 10}∪{4, 5, 7}.(2) 不是划分; 因为{1, 5, 7}∩{3, 5, 6, 10}={5}≠∅.(3) 是划分, 它诱导的等价关系为:R={1, 2, 7}⨯{1, 2, 7}∪{3, 5, 10}⨯{3, 5, 10}∪{4, 6, 8}⨯{4, 6, 8}∪{9}⨯{9}={〈1, 1〉, 〈1, 2〉, 〈1, 7〉, 〈2, 1〉, 〈2, 2〉, 〈2, 7〉, 〈7, 1〉, 〈7, 2〉, 〈7, 7〉, 〈3, 3〉, 〈3, 5〉, 〈3, 10〉, 〈5, 3〉, 〈5, 5〉, 〈5, 10〉, 〈10, 3〉, 〈10, 5〉, 〈10, 10〉, 〈4, 4〉, 〈4, 6〉, 〈4, 8〉, 〈6, 4〉, 〈6, 6〉, 〈6, 8〉, 〈8, 4〉, 〈8, 6〉, 〈8, 8〉, 〈9, 9〉}.(4) 是划分, 它诱导的等价关系为:R={1, 2, 5}⨯{1, 2, 5}∪{3, 4}⨯{3, 4}∪{6, 7, 8}⨯{6, 7, 8}∪{9, 10}⨯{9, 10}={〈1, 1〉, 〈1, 2〉, 〈1, 5〉, 〈2, 1〉, 〈2, 2〉, 〈2, 5〉, 〈5, 1〉, 〈5, 2〉, 〈5, 5〉, 〈3, 3〉, 〈3, 4〉, 〈4, 3〉, 〈4, 4〉, 〈6, 6〉, 〈6, 7〉, 〈6, 8〉, 〈7, 6〉, 〈7, 7〉, 〈7, 8〉, 〈9, 9〉, 〈9, 10〉, 〈10, 9〉, 〈10, 10〉}.63.只要求出A上的全部划分, 即为等价关系.划分为一个块的情况: 1种, 即{a, b, c, d};划分为两个块的情况: 7种, 即{{a, b}, {c, d}}, {{a, c}, {b, d}}, {{a, d}, {b, c}}, {{a}, {b, c, d}}, {{b}, {a, c, d}}, {{c}, {a, b, d}}, {{d},{a, b, c}};划分为三个块的情况: 6种, 即{{a, b}, {c}, {d}}, {{a, c}, {b}, {d}}, {{a, d}, {b}, {c}}, {{a}, {b}, {c, d}}, {{a}, {c}, {b, d}}, {{a}, {d}, {b, c}};划分为四个块的情况: 1种, 即{{a}, {b}, {c}, {d}},因此, 共有15种不同的等价关系.。

离散数学课后答案

离散数学课后答案

离散数学课后答案第一章离散数学基础题目1问题:证明集合A和集合B的笛卡尔积的基数等于集合A 和集合B的基数的乘积。

答案:设集合A的基数为|A|,集合B的基数为|B|。

我们要证明集合A和集合B的笛卡尔积的基数等于集合A和集合B的基数的乘积,即|(A x B)| = |A| * |B|。

首先,我们可以将集合A x B表示为{(a, b) | a∈A, b∈B}。

由于A和B是两个集合,集合A x B中的元素可以看作是将A 中每个元素与B中每个元素组成的有序对。

因此,集合A x B 中的元素个数等于A中元素的个数乘以B中元素的个数,即|(A x B)| = |A| * |B|。

题目2问题:对任意两个集合A和B,证明A∩(A∪B) = A。

答案:要证明A∩(A∪B) = A,首先我们需要理解集合的交和并的定义。

- 集合的交:集合A∩B表示同时属于集合A和集合B的元素组成的集合。

- 集合的并:集合A∪B表示属于集合A或集合B的元素组成的集合。

现在,我们开始证明。

首先,根据集合的并的定义,A∪B 表示属于集合A或集合B的元素组成的集合。

因此,任意属于集合A的元素也一定属于A∪B,即A⊆A∪B。

其次,根据集合的交的定义,A∩(A∪B)表示同时属于集合A和集合A∪B的元素组成的集合。

由于A⊆A∪B,所以A中的元素一定属于A∪B,因此A∩(A∪B) = A。

综上所述,对任意两个集合A和B,A∩(A∪B) = A成立。

第二章命题逻辑题目1问题:证明合取命题的真值表达式。

答案:合取命题的真值表达式表示命题P和命题Q同时为真时合取命题为真,否则为假。

假设命题P和命题Q的真值分别为真(T)或假(F),那么合取命题的真值可以通过以下真值表得出:P Q P∧QT T TT F FF T FF F F从上述真值表可以看出,只有P和Q都为真时,合取命题才为真。

如果其中一个或两个命题为假,则合取命题为假。

题目2问题:证明命题的等价关系。

大学离散数学课后答案

大学离散数学课后答案

9.1.1 解:⑴ 几何图表示如右。

⑵ deg(v 1)=3 deg(v 2)=4 deg(v 3)=3 deg(v 4)=3 deg(v 5)=1 deg(v 6)=0 奇度数结点数为 4。

⑶ (v 2,v 2) 为自环;(v 1,v 3) 与 (v 3,v 1) 为平行边;(v 4,v 5) 为悬挂边;v 5 为悬挂点;v 6 为孤立点。

该图为伪图。

9.1.2 证:⑴ n 个结点的所有图中,完全图边数最多。

每点n-1度,n 个点的总度数为:2m=∑=n i i v 1)deg(=n(n-1) ∴ m=n(n-1)/2n 个结点的任一图的边数≤完全图的边数,∴ m ≤n(n-1)/2 ※ ⑵ ∵ 在简单有向完全图中,任二点之间有两条方向相反的边,∴ 每点的度数为 2(n-1),∴ 总度数为 2m=2(n-1)n ,∴ m=n(n-1)。

※ 9.1.3 解:⑴ 去掉 v 点后,有 n-1个结点,m-d 条边。

⑵ 去掉 e 边后,有 n 个结点,m-1条边。

9.1.4 证:假设n 个结点的度数皆不相同∵ 在简单无向图中,一个结点的最大度数为n-1,最小度数为0。

∴ 它们只能为 0,1,…,n-1 n 个值。

∵ 0度点不与其它任何结点相邻,而n-1度点与其它任何结点相邻,∴ 二者产生一个矛盾。

※ 9.1.5 解:仅考虑无向图。

⑴ 可构成图,图如右。

⑵ 否。

奇度数结点数为奇数。

⑶ 否。

n 个结点的简单无向图中,结点的最大度数为n-1,5不可。

⑷ 否。

后三点均与其它各点有边,故第一点也应三度。

⑸ 否。

后二点均与其它各点有边,故第一点至少应为二度。

9.1.6 解:2m=nk m=nk/2 。

9.1.7 证:⑴ 当图G 中n 个点的度数都为 δ(G)时,总度数为 2m=n δ(G)。

但一般情况下,δ(G) 为最小度数,而并非所有结点的度数都为 δ(G)时, 必有 2m ≥n δ(G), ∴ 2m/n ≥δ(G) 。

吉林大学离散数学课后习题答案

吉林大学离散数学课后习题答案

第二章命题逻辑§2.2 主要解题方法2.2.1 证明命题公式恒真或恒假主要有如下方法:方法一.真值表方法。

即列出公式的真值表,若表中对应公式所在列的每一取值全为1,这说明该公式在它的所有解释下都是真,因此是恒真的;若表中对应公式所在列的每一取值全为0,这说明该公式在它的所有解释下都为假,因此是恒假的。

真值表法比较烦琐,但只要认真仔细,不会出错。

例2.2.1 说明 G= (P∧Q→R)∧(P→Q)→(P→R)是恒真、恒假还是可满足。

解:该公式的真值表如下:表2.2.1由于表2.2.1中对应公式G所在列的每一取值全为1,故G恒真。

方法二.以基本等价式为基础,通过反复对一个公式的等价代换,使之最后转化为一个恒真式或恒假式,从而实现公式恒真或恒假的证明。

例2.2.2 说明 G= ((P→R) ∨⌝ R)→ (⌝ (Q→P) ∧ P)是恒真、恒假还是可满足。

解:由(P→R) ∨⌝ R=⌝P∨ R∨⌝ R=1,以及⌝ (Q→P) ∧ P= ⌝(⌝Q∨ P)∧ P = Q∧⌝ P∧ P=0知,((P→R) ∨⌝ R)→ (⌝ (Q→P) ∧ P)=0,故G 恒假。

方法三.设命题公式G含n个原子,若求得G的主析取范式包含所有2n个极小项,则G是恒真的;若求得G的主合取范式包含所有2n个极大项,则G是恒假的。

方法四. 对任给要判定的命题公式G,设其中有原子P1,P2,…,P n,令P1取1值,求G的真值,或为1,或为0,或成为新公式G1且其中只有原子P2,…,P n,再令P1取0值,求G真值,如此继续,到最终只含0或1为止,若最终结果全为1,则公式G恒真,若最终结果全为0,则公式G恒假,若最终结果有1,有0,则是可满足的。

例子参见书中例2.4.3。

方法五. 注意到公式G蕴涵公式H的充要条件是:公式G→H是恒真的;公式G,H等价的充要条件是:公式G↔H是恒真的,因此,如果待考查公式是G→H型的,可将证明G→H 是恒真的转化为证明G蕴涵H;如果待考查公式是G↔H型的,可将证明G↔H是恒真的转化为证明G和H彼此相蕴涵。

离散数学课后答案精编版

离散数学课后答案精编版

( P, Q, R) = (T , T ,×), ( F ,×,×) 。
(3) (¬¬P ∧ Q ) → ((Q → R ) ↔ ¬P ) 解 当P =T 时 原式= (¬¬T ∧ Q ) → ((Q → R ) ↔ ¬T ) = Q → ((Q → R ) ↔ F ) = Q → ¬(Q → R ) 当Q = T 时
( P, Q, R) = (T , T , F ) ,存在成假解释 ( P, Q, R) = (T , T , T ) ,故公式可满足,但非永真。
1.3 试求下列公式的成真解释和成假解释 (1) ¬(( P → Q ) → R ) ↔ (Q ∨ R ) 解 当Q = T 时 原式= ¬(( P → T ) → R ) ↔ (T ∨ R ) = ¬(T → R ) ↔ T = ¬R 当 R = T 时,上式= F ,当 R = F 时,上式= T 。 当Q = F 时 原式= ¬(( P → F ) → R ) ↔ ( F ∨ R ) = ¬(¬P → R ) ↔ R 当R =T 时 上式= ¬(¬P → T ) ↔ T = ¬T ↔ T =F 当R = F 时 上式= ¬(¬P → F ) ↔ F
P ∧ Q = ¬( P → ¬Q)
所以,联结词集合 {¬, →}可以表示集合 {¬,∧,∨}。 又因为,联结词集合 {¬,∧,∨} 是完备的,即 {¬,∧,∨} 可以表示任何一个命题演算公式, 所以 {¬, →}可以表示任何一个命题演算公式,故联结词集合 {¬, →}是完备的。 1.6 试证明联结词集合 {∧}, {→} 不是完备的。 证明 设 集 合
( P, Q, R) = (T , T , T ) 。
(4) (¬¬P → ¬Q ) ∧ (Q ∨ (¬R ∧ P )) 解 当P =T 时 原式= (¬¬T → ¬Q ) ∧ (Q ∨ (¬R ∧ T )) = (T → ¬Q ) ∧ (Q ∨ ¬R ) = ¬Q ∧ (Q ∨ ¬R ) 当Q = T 时 上式= ¬T ∧ (T ∨ ¬R ) =F ∧T =F 当Q = F 时 上式= ¬F ∧ ( F ∨ ¬R ) = T ∧ ¬R
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章命题逻辑§2.2 主要解题方法2.2.1 证明命题公式恒真或恒假主要有如下方法:方法一.真值表方法。

即列出公式的真值表,若表中对应公式所在列的每一取值全为1,这说明该公式在它的所有解释下都是真,因此是恒真的;若表中对应公式所在列的每一取值全为0,这说明该公式在它的所有解释下都为假,因此是恒假的。

真值表法比较烦琐,但只要认真仔细,不会出错。

例2.2.1 说明 G= (P∧Q→R)∧(P→Q)→(P→R)是恒真、恒假还是可满足。

解:该公式的真值表如下:表2.2.1由于表2.2.1中对应公式G所在列的每一取值全为1,故G恒真。

方法二.以基本等价式为基础,通过反复对一个公式的等价代换,使之最后转化为一个恒真式或恒假式,从而实现公式恒真或恒假的证明。

例2.2.2 说明 G= ((P→R) ∨⌝ R)→ (⌝ (Q→P) ∧ P)是恒真、恒假还是可满足。

解:由(P→R) ∨⌝ R=⌝P∨ R∨⌝ R=1,以及⌝ (Q→P) ∧ P= ⌝(⌝Q∨ P)∧ P = Q∧⌝ P∧ P=0知,((P→R) ∨⌝ R)→ (⌝ (Q→P) ∧ P)=0,故G 恒假。

方法三.设命题公式G含n个原子,若求得G的主析取范式包含所有2n个极小项,则G是恒真的;若求得G的主合取范式包含所有2n个极大项,则G是恒假的。

方法四. 对任给要判定的命题公式G,设其中有原子P1,P2,…,P n,令P1取1值,求G的真值,或为1,或为0,或成为新公式G1且其中只有原子P2,…,P n,再令P1取0值,求G真值,如此继续,到最终只含0或1为止,若最终结果全为1,则公式G恒真,若最终结果全为0,则公式G恒假,若最终结果有1,有0,则是可满足的。

例子参见书中例2.4.3。

方法五. 注意到公式G蕴涵公式H的充要条件是:公式G→H是恒真的;公式G,H等价的充要条件是:公式G↔H是恒真的,因此,如果待考查公式是G→H型的,可将证明G→H 是恒真的转化为证明G蕴涵H;如果待考查公式是G↔H型的,可将证明G↔H是恒真的转化为证明G和H彼此相蕴涵。

例2.2.3 证明 G= (P→R) → ( (Q→ R) →(( P∨Q) →R))恒真。

证明:要证明(P→R) → ( (Q→ R) →(( P∨Q) → R))恒真,只需证明(P→R) ⇒( (Q→ R) →(( P∨Q) → R))。

我们使用形式演绎法。

(1)P→R 规则1(2)Q→ R 附加前提(3)⌝P∨ R 规则2,根据(1)(4)⌝Q∨ R 规则2,根据(2)(5)(⌝P∨ R)∧(⌝Q∨ R)规则2,根据(3)、(4)(6)(⌝P∧⌝Q)∨ R 规则2,根据(5)(7)⌝(P∨ Q)∨ R 规则2,根据(6)(8)(P∨Q)→ R 规则2,根据(7)(9)(Q→R) →(( P∨Q) →R) 规则3,根据(2)、(8)2.2.2 公式蕴涵的证明方法主要有如下方法:给出两个公式A,B,证明A蕴涵B,我们有如下几种方法:方法一.真值表法。

将公式A和公式B同列在一张真值表中,扫描公式A所对应的列,验证该列真值为1的每一项,它所在行上相应公式B所对应列上的每一项必为1(真),则公式A蕴涵B。

例2.2.4 设A= (P∧Q→R)∧(P→Q),B=(P→R),证明:A⇒B。

证明:表2.2.2由表2.2.2可以看出,使A为真的解释均使B亦为真,因此,A⇒B。

方法二.证明A→B是恒真公式。

由例2.2.1知,(P∧Q→R)∧(P→Q)→(P→R)恒真,因此,立即可得到例2.2.4中的结论:(P∧Q→R)∧(P→Q)⇒(P→R),即A⇒B。

例2.2.5 设A、B和C为命题公式,且A⇒B。

请分别阐述(肯定或否定)下列关系式的正确性。

(1)(A∧C) ⇒ (B∧C);(2)(A→C) ⇒( B→C)。

解:由A⇒B知,A→B是恒真公式,故A=1时,B不可能为0。

真值表如下:表2.2.3从真值表可以看出,(A∧C) → (B∧C)是恒真公式,所以,(A→C) ⇒( B→C) (A∧C) ⇒(B∧C)正确;(A→C) →( B→C)不是恒真公式,所以,(A→C) ⇒( B→C)不正确。

例2.2.6 设A=(R→ P) → Q,B= P→ Q,证明A蕴涵B。

证明:我们来证明A→B恒真。

((R→ P) → Q) →( P→ Q)= ⌝ (⌝ ( ⌝R∨P) ∨Q) ∨(⌝P∨Q)=((⌝R∨P) ∧⌝ Q) ∨(⌝P∨Q) =(⌝R∧⌝ Q) ∨( P ∧⌝ Q) ∨⌝( P ∧⌝ Q)=1方法三.利用一些基本等价式及蕴涵式进行推导。

对于例2.2.6,由基本等价式可得:A=(R→ P) → Q=⌝ ( ⌝R∨P) ∨Q= (R∧⌝ P) ∨Q=( R∨Q) ∧(⌝ P∨Q)=( R∨Q) ∧( P→ Q)由教材中基本蕴涵式2. P∧Q⇒Q可知,( R∨Q) ∧( P→ Q) ⇒(P→ Q),即A蕴涵B。

方法四.任取解释I,若I满足A,往证I满足B。

例2.2.7 设A= P→ Q,B=(R→Q) →((P∨R)→ Q),证明A蕴涵B。

证明:任取解释I,若I满足A,则有如下两种情况:(1)在解释I下,P为假,这时,B等价于(R→Q) →(R→ Q),因此,I亦满足B。

(2)在解释I下,P为真,Q为真,所以,P∨R→ Q 为真,故B为真,即,I满足B。

综上,I满足B,因此,A蕴涵B。

方法五.反证法,设结论假,往证前提假。

对于例2.2.6,证明(R→ P) → Q蕴涵 P→ Q,若使用方法三,是很烦琐的,而使用方法四,就很简单。

假设存在解释I使P→ Q为假,则只有一种情形,P在I下为真,且Q 在I下为假,这时R→ P在I下为真,故I弄假(R→ P) →Q。

因此,(R→ P) → Q蕴涵 P→ Q。

方法六.分别将公式A和公式B转化为它们各自的主析取范式或主合取范式。

若公式A的主析取范式所包含的所有极小项也包含在公式B的主析取范式中;或者,公式B的主合取范式中所包含的极大项均包含在公式A的主合取范式中,则公式A蕴涵公式B。

使用这种方法需要注意,当公式A和公式B中包含的原子不完全相同时,在求两公式的极小项或极大项时,要考虑该两公式包含命题原子的并集中的所有原子。

在例2.2.6中,A和B的主析取范式分别为:A= (⌝ P∧⌝ Q∧R) ∨(⌝ P∧Q∧⌝R) ∨(⌝ P∧Q∧R) ∨ (P∧Q∧⌝R) ∨ ( P∧Q∧R),B= (⌝ P∧⌝ Q∧⌝R) ∨ (⌝ P∧⌝ Q∧R) ∨ (⌝ P∧Q∧⌝R) ∨ (⌝ P∧Q∧R) ∨ (P∧Q∧⌝R) ∨ ( P∧Q∧R),可见,A⇒B。

A和B的主合取范式分别为:A=(P∨Q∨R) ∧(⌝ P∨Q∨R) ∧(⌝ P∨Q∨⌝R) ,B=(⌝ P∨Q∨R) ∧(⌝ P∨Q∨⌝R)可见,A⇒B。

另外若给出前提集合S={G1,…,G k},公式G,证明S⇒G 有如下两种方法:1. G1∧…∧ G k⇒G2. 形式演绎法:根据一些基本等价式和基本蕴涵式,从S出发,演绎出G。

教材中已经给出了这方面的例子,在此不再赘述。

2.2.3 求主合取范式和主析取范式1. 极小项与极大项的性质以3个原子为例,则对应极小项和极大项的表为:表2.2.4由表2.2.4可知,对n 个命题原子P 1,…,P n ,极小项有如下性质:(1)n 个命题原子P 1,…,P n 有n 2个不同的解释,每个解释对应P 1,…,P n 的一个极小项。

(2)对P 1,…,P n 的任意一个极小项m ,有且只有一个解释使m 取1值,若使极小项取1的解释对应的二进制数为i ,则m 记为m i ,于是关于P 1,…,P n 的全部极小项为m 0,m 1,…,12-nm 。

(3)任意两个不同的极小项的合取式恒假:m i ∧ m j =0,i≠j。

(4)所有极小项的析取式恒真:i i m n ∨-=120=1。

极大项有如下性质:(1)n 个命题原子P 1,…,P n 有n 2个不同的解释,每个解释对应P 1,…,P n 的一个极大项。

(2)对P 1,…,P n 的任意一个极大项M ,有且只有一个解释使M 取0值,若使极大项取0的解释对应的二进制数为i ,则M 记为M i ,于是关于P 1,…,P n 的全部极大项为M 0,M 1,…,12-nM 。

(3)任意两个不同的极大项的析取式恒真:M i ∨ M j =1,i≠j。

(4)所有极大项的合取式恒假:i i M n ∧-=120=0。

2. 主合取范式与主析取范式之间的关系由极小项和极大项的定义可知,二者有如下关系:m i =⌝ M i ,M i =⌝m i由此可知,若P ∨Q ∨R 为一公式G 的主合取范式,则G =⌝⌝G=⌝⌝ M 0= ⌝ (M 1∧ M 2∧…∧ M 6) = ⌝M 1∨⌝M 2∨…∨⌝M 6 = m 1∨ m 2∨…∨ m 6 为G 的主析取范式。

若(⌝P ∧ Q )∨(⌝ P ∧⌝ Q )∨( P ∧ Q )为一公式H 的主析取范式,则H=⌝⌝H=⌝⌝((⌝P ∧ Q )∨(⌝ P ∧⌝ Q )∨( P ∧ Q ))=⌝(⌝(m 0∨ m 1∨ m 3))= ⌝ (m 2) =M 2= ⌝P ∨Q 为H 的主合取范式。

一般地,若公式A 中含n 个命题原子,且A 的主析取范式中含有k 个极小项:ki i m m ,...,1,则⌝A 的主析取范式中必含有其余的n 2-k 个极小项,不妨设为:kn jj m m -21,...,,即⌝A=knj jm m -∨∨21...。

因此,A=⌝⌝A = ⌝(knj jm m -∨∨21...)=knj j m m -⌝∧∧⌝21...=knj jM M -∧∧21...。

由此可知,从一公式A 的主析取范式求其主合取范式的步骤如下:(1)求出A 的主析取范式中没有包含的所有极小项。

(2)求出与(1)中极小项下标相同的极大项。

(3)将(2)求出的所有极大项合取起来,即得A 的主合取范式。

类似地,从一公式A 的主合取范式求其主析取范式的步骤为: (1)求出A 的主合取范式中没有包含的所有极大项。

(2)求出与(1)中极大项下标相同的极小项。

(3)将(2)求出的所有极小项析取起来,即得A 的主析取范式。

3. 求主合取范式和主析取范式的方法方法一. 真值表法。

主析取范式恰好是使得公式为真的解释所对应的极小项的析取组成,主合取范式恰好是使得公式为假的解释所对应的极大项的合取组成。

方法二. 公式推导法。

设命题公式G 中所有不同原子为P 1,…,P n ,则G 的主析取范式的求法如下: (a) 将公式G 化为析取范式。

(b) 删去析取范式中所有恒假的短语。

(c) 用等幂律将短语中重复出现的同一文字化简为一次出现,如,P ∧P=P 。

相关文档
最新文档