初一数学应用题拔高
人教版七年级数学上册第三章《一元一次方程》应用题解答题拔高训练(三)
第三章《一元一次方程》应用题解答题拔高训练(三)1.元旦节前几天,两家商店的同一种彩电的价格相同.元旦节两家商店都有降价促销活动,甲商店的这种彩电降价500元,乙商店的这种彩电打9折.(1)若原价是2000元/台,到哪一家商店买更便宜?(2)当原价是多少时,降价后两家商店的价格仍然相等?2.某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲乙进价(元/件)22 30售价(元/件)29 40(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?3.公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?4.某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?5.为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?6.某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳16套,乙每天修桌凳比甲多8套,甲单独修完这些桌凳比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)问该中学库存多少套桌凳?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你认为哪种方案省时又省钱,为什么?7.如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是.(2)经过几秒,点M、点N分别到原点O的距离相等?(3)当点M运动到什么位置时,恰好使AM=2BN?8.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?9.甲、乙两支“徒步队”到野外沿相同路线徒步,徒步的路程为24千米.甲队步行速度为4千米/时,乙队步行速度为6千米/时.甲队出发1小时后,乙队才出发,同时乙队派一名联络员跑步在两队之间来回进行一次联络(不停顿),他跑步的速度为10千米/时.(1)乙队追上甲队需要多长时间?(2)联络员从出发到与甲队联系上后返回乙队时,他跑步的总路程是多少?(3)从甲队出发开始到乙队完成徒步路程时止,何时两队间间隔的路程为1千米?10.某车间有60个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件24个或乙种零件12个.已知每2个甲种零件和3个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?11.十一期间,各大商场掀起购物狂潮,现有甲、乙、丙三个商场开展的促销活动如表所示:商场优惠活动甲全场按标价的6折销售乙实行“满100元送100元的购物券”的优惠,购物券可以在再购买时冲抵现金(如:顾客购衣服220元,赠券200元,再购买裤子时可冲抵现金,不再送券)丙实行“满100元减50元的优惠”(比如:某顾客购物220元,他只需付款120元)根据以上活动信息,解决以下问题:(1)三个商场同时出售一件标价290元的上衣和一条标价270元的裤子,王阿姨想买这一套衣服,她应该选择哪家商场?(2)黄先生发现在甲、乙商场同时出售一件标价380元的上衣和一条标价300多元的裤子,最后付款额也一样,请问这条裤子的标价是多少元?(3)丙商场又推出“先打折”,“再满100减50元”的活动.张先生买了一件标价为630元的上衣,张先生发现竟然比没打折前多付了18.5元钱,问丙商场先打了多少折后再参加活动?12.如图,在数轴上点A表示﹣3,点B表示5,点C表示m.(1)若点A与点B同时出发沿数轴负方向运动,两点在点C处相遇,点A的运动速度为1单位长度/秒,点B的运动速度为3单位长度/秒,求m;(2)若A,C两点之间的距离为2,求B、C两点之间的距离;(3)若m=0,在数轴上是否存在一点P,使P到A、B、C的距离和等于12?若存在,请求点P对应的数;若不存在,请说明理由.13.列方程解应用题:油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?14.松雷中学原计划加工一批校服,现有甲、乙两个工厂都想加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天能加工这种校服24件.且单独加工这批校服甲厂比乙厂要多用20天.在加工过程中,学校需付甲厂每天费用80元、付乙厂每天费用120元.(1)求这批校服共有多少件?(2)为了尽快完成这批校服,先由甲、乙两厂按原生产速度合作一段时间后,甲工厂停工了,而乙工厂每天的生产速度也提高25%,乙工厂单独完成剩余部分.且乙工厂的全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂共加工多少天?(3)经学校研究制定如下方案:方案一:由甲厂单独完成;方案二:由乙厂单独完成;方案三:按(2)问方式完成;并且每种方案在加工过程中,每个工厂需要一名工程师进行技术指导,并由学校提供每天10元的午餐补助费,请你通过计算帮学校选择一种既省时又省钱的加工方案.15.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每幅定价30元,乒乓球每盒定价5元,经洽谈后,甲店买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒)问:(1)当购买乒乓球多少盒时,在甲、乙两店所需支付的费用一样?(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店买,为什么?16.育才中学组织七年级师生去春游,如果单租45座客车若干辆,则刚好坐满;如果单租60座的客车,则少租一辆,且余15个座位.(1)求参加春游的师生总人数;(2)已知一辆45座客车的租金每天250元,一辆60座客车的租金每天300元,问单租哪种客车省钱?(3)如果同时租用这两种客车,那么两种客车分别租多少辆最省钱?(只写出租车方案即可)17.用正方形硬纸板做三棱柱盒子,如图,每个盒子由3个长方形侧面和2个三边均相等的三角形底面组成,硬纸板以如图2两种方法裁剪(裁剪后边角料不再利用),现有19张硬纸板,裁剪时x张用了A方法,其余用B方法.(1)用含x的式子分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?18.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么账肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的账算错了.19.已知数轴上三点M,O,N对应的数分别为﹣2,0,4,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M、点N的距离相等,那么x的值是;(2)数轴上是否存在点P,使点P到点M、点N的距离之和是7?如果存在,求出x的值;如果不存在,请说明理由;(3)如果点P以每秒钟6个单位长度的速度从点O向右运动时,点M和点N分别以每秒钟1个单位长度和每秒钟3个单位长度的速度也向右运动,且三点同时出发,那么经过几秒钟,点P到点M、点N的距离相等.20.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?参考答案1.解:(1)甲商店降价后每台彩电的价钱=2000﹣500=1500(元),乙商店打折后每台彩电的价钱=2000×0.9=1800(元).∴到甲商店买更便宜.(2)设当原价是x元时,降价后两家商店的价格仍然相等.依题意得x﹣500=0.9x,移项,得x﹣0.9x=500,合并同类项,得0.1x=500,系数化为1,得x=5000.答:当原价是5000元时,降价后两家商店的价格仍然相等.2.解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据题意得:22x+30(x+15)=6000,解得:x=150,∴x+15=90.答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.(3)设第二次乙种商品是按原价打y折销售,根据题意得:(29﹣22)×150+(40×﹣30)×90×3=1950+180,解得:y=8.5.答:第二次乙商品是按原价打8.5折销售.3.解:(1)设初一(1)班有x人,则有13x+11(104﹣x)=1240或13x+9(104﹣x)=1240,解得:x=48或x=76(不合题意,舍去).即初一(1)班48人,初一(2)班56人;(2)1240﹣104×9=304,∴可省304元钱;(3)要想享受优惠,由(1)可知初一(1)班48人,只需多买3张,51×11=561,48×13=624>561∴48人买51人的票可以更省钱.4.解:设原计划每小时生产x个零件,由题意得:26x+60=24(x+5),解得:x=30,所以原计划生产零件个数为:26x=780,答:原计划生产780零件.5.解:设乙工程队再单独需x个月能完成,由题意,得2×++x=1.解得x=1.答:乙工程队再单独需1个月能完成.6.解:(1)设该中学库存x套桌凳,甲需要天,乙需要天,由题意得:﹣=20,解方程得:x=960.经检验x=960是所列方程的解,答:该中学库存960套桌凳;(2)设①②③三种修理方案的费用分别为y1、y2、y3元,则y1=(80+10)×=5400y2=(120+10)×=5200y3=(80+120+10)×=5040综上可知,选择方案③更省时省钱.7.解:(1)OB=3OA=30.故B对应的数是30;(2)设经过x秒,点M、点N分别到原点O的距离相等①点M、点N在点O两侧,则10﹣3x=2x,解得x=2;②点M、点N重合,则3x﹣10=2x,解得x=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等;(3)设经过y秒,恰好使AM=2BN.①点N在点B左侧,则3y=2(30﹣2y),解得y=,3×﹣10=;②点N在点B右侧,则3y=2(2y﹣30),解得y=60,3×60﹣10=170;即点M运动到或170位置时,恰好使AM=2BN.故答案为:30.8.解:设分配x名工人生产螺母,则(22﹣x)人生产螺钉,由题意得2000x=2×1200(22﹣x),解得:x=12,则22﹣x=10,答:应安排生产螺钉和螺母的工人10名,12名.9.解:(1)设乙队追上甲队需要x小时,根据题意得:6x=4(x+1),解得:x=2.答:乙队追上甲队需要2小时.(2)设联络员追上甲队需要y小时,10y=4(y+1),∴y=,设联络员从甲队返回乙队需要a小时,6(+a)+10a=×10,解得a=,∴联络员跑步的总路程为10(+)=答:他跑步的总路程是千米.(3)要分三种情况讨论:设t小时两队间间隔的路程为1千米,则①当甲队出发不到1h,乙队还未出发时,甲队与乙队相距1km.由题意得4t=1,解得t=0.25.②当甲队出发1小时后,相遇前与乙队相距1千米,由题意得:6(t﹣1)﹣4(t﹣1)=4×1﹣1,解得:t=2.5.③当甲队出发1小时后,相遇后与乙队相距1千米,由题意得:6(t﹣1)﹣4(t﹣1)═4×1+1,解得:t=3.5.④当乙队到达,甲队与完成徒步路程相距1千米,由题意得:6(t﹣1)═24﹣1,解得:t=(舍去).答:0.25小时或2.5小时或3.5小时两队间间隔的路程为1千米.10.解:设分配x人生产甲种零件,则共生产甲零件24x个和乙零件12(60﹣x),依题意得方程:,解得x=15,60﹣15=45(人).答:应分配15人生产甲种零件,45人生产乙种零件,才能使每天生产的这两种零件刚好配套.11.解:(1)选甲商城需付费用为(290+270)×0.6=336(元);选乙商城需付费用为290+(270﹣200)=360(元);选丙商城需付费用为290+270﹣5×50=310(元).∵310<336<360,∴选择丙商城最实惠.(2)设这条裤子的标价为x元,根据题意得:(380+x)×0.6=380+x﹣100×3,解得:x=370,答:这条裤子的标价为370元.(3)设丙商场先打了x折后再参加活动,折后减50n(0≤n<6且n为整数),根据题意得:(630×﹣50n)﹣(630﹣6×50)=18.5,整理得63x﹣50n=348.5,当n=0时,63x=348.5,可再优惠3×50=150元,与n=0矛盾,舍去当n=1时,63x=398.5,可再优惠3×50=150元,与n=1矛盾,舍去当n=2时,63x=448.5,可再优惠4×50=200元,与n=2矛盾,舍去当n=3时,63x=498.5,可再优惠4×50=200元,与n=3矛盾,舍去当n=4时,63x=548.5,可再优惠5×50=250元,与n=4矛盾,舍去当n=5时,63x=598.5,满足题意,此时x=9.5答:丙商场先打了9.5折后再参加活动.12.解:(1)设用了t秒,点A与点B在点C处相遇,则﹣3﹣t=5﹣3t∴2t=8t=4∴m=﹣3﹣4=﹣7;(2)∵|AC|=2,A表示﹣3∴C表示﹣5或﹣1又∵B表示5∴|BC|=5﹣(﹣5)=10或|BC|=5﹣(﹣1)=6.∴B、C两点之间的距离为10或6;(3)设P表示x①当P在点A左侧时|PA|+|PB|+|PC|=﹣3﹣x+5﹣x﹣x=2﹣3x若2﹣3x=12,则x=﹣;②当点P在AC之间时|PA|+|PB|+|PC|=x+3+5﹣x﹣x=8﹣x若8﹣x=12,则x=﹣4∵﹣4<﹣3∴x=﹣4不符合题意;③当P在BC之间时|PA|+|PB|+|PC|=x+3+5﹣x+x=x+8若x+8=12,则x=4;④当P在B右侧时|PA|+|PB|+|PC|=x+3+x﹣5+x=3x﹣2若3x﹣2=12,则x=∵x=<5∴x=不符合题意综上所述,当P表示﹣或4时,P到A、B、C的距离和等于12.13.解:设生产圆形铁片的工人为x人,则生产长方形铁片的工人为42﹣x人,根据题意可列方程:120x=2×80(42﹣x),解得:x=24,则42﹣x=18.答:生产圆形铁片的有24人,生产长方形铁片的有18人.14.解:(1)设这个公司要加工x件新产品,由题意得:﹣=20,解得:x=960.答:这批校服共有960件;(2)设甲工厂加工a天,则乙工厂共加工(2a+4)天,依题意有(16+24)a+24×(1+25%)(2a+4﹣a)=960,解得a=12,2a+4=24+4=28.故乙工厂共加工28天;(3)①由甲厂单独加工:需要耗时为960÷16=60天,需要费用为:60×(10+80)=5400元;②由乙厂单独加工:需要耗时为960÷24=40天,需要费用为:40×(120+10)=5200元;③由两加工厂共同加工:需要耗时为28天,需要费用为:12×(10+80)+28×(10+120)=4720元.所以,按(3)问方式完成既省钱又省时间.15.解:(1)设购买x盒乒乓球时,两种优惠办法付款一样,根据题意有:30×5+(x﹣5)×5=(30×5+5x)×0.9,解得x=20,答:购买20盒乒乓球时,两种优惠办法付款一样.(2)①当购买15盒时,甲店需付款30×5+(15﹣5)×5=200元.乙店需付款(30×5+15×5)×0.9=202.5元.因为200<202.5,所以去甲店合算.②当购买30盒时,甲店需付款30×5+(30﹣5)×5=275元.乙店需付款(30×5+30×5)×0.9=270元.因为275>270,去乙店合算.16.解:(1)设单租45座客车x辆,则参加春游的师生总人数为45x人.根据题意得:45x=60(x﹣1)﹣15,解得:x=5.所以参加春游的师生总人数为45x=225人;(2)单租45座客车的租金:250×5=1250(元),单租60座客车的租金:300×4=1200(元),∵1200<1250,∴以单租60座客车省钱;(3)解:设租45座客车x辆,60座客车y辆.∴45x+60y=225.∵x,y均为正整数,解得:x=1,y=3.租45座客车1辆,60座客车3辆最省钱.17.解:(1)∵裁剪时x张用了A方法,∴裁剪时(19﹣x)张用了B方法.∴侧面的个数为:6x+4(19﹣x)=(2x+76)个,底面的个数为:5(19﹣x)=(95﹣5x)个;(2)由题意,得3(95﹣5x)=2(2x+76),解得:x=7,则盒子的个数为:(2x+76)÷3=30.答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.18.解:(1)设钢笔的单价为x元,则毛笔的单价为(x+4)元.由题意得:30x+45(x+4)=1755解得:x=21则x+4=25.答:钢笔的单价为21元,毛笔的单价为25元.(2)设单价为21元的钢笔为y支,所以单价为25元的毛笔则为(105﹣y)支.根据题意,得21y+25(105﹣y)=2447.解得:y=44.5 (不符合题意).所以王老师肯定搞错了.19.解:(1)∵数轴上三点M,O,N对应的数分别为﹣2,0,4,点P到点M、点N的距离相等,∴点P是线段MN的中点,∴x=(﹣2+4)÷2=1.故答案为:1;(2)存在;设P表示的数为x,①当P在M点左侧时,PM+PN=7,﹣2﹣x+4﹣x=7,解得x=﹣2.5,②当P点在N点右侧时,x+2+x﹣4=7,解得:x=4.5;答:存在符合题意的点P,此时x=﹣2.5或4.5.(3)设经过t秒点P到点M、点N的距离相等,则P点表示的数是6t,M点表示的数是﹣2+t,N点表示的数是4+3t,由题意,得PM=PN,则6t﹣(﹣2+t)=|4+3t﹣6t|,解得t=.答:经过秒钟,点P到点M、点N的距离相等.20.解:设应分配x人生产甲种零件,12x×2=23(62﹣x)×3,解得x=46,62﹣46=16(人).故应分配46人应分配46人生产甲种零件,16人生产乙种零件才能使每天生产的甲种零件和乙种零件刚好配套.。
七年级上册数学拔高试卷
一、选择题(每题5分,共50分)1. 已知二次函数y=ax^2+bx+c(a≠0)的图象与x轴有两个交点A、B,且A(1,0),B(-3,0),则下列说法正确的是()A. a>0,函数图象开口向上B. a<0,函数图象开口向上C. a>0,函数图象开口向下D. a<0,函数图象开口向下2. 已知函数y=2x-3,下列说法正确的是()A. 函数图象是一条斜率为2的直线B. 函数图象是一条斜率为-3的直线C. 函数图象是一条斜率为2,y截距为-3的直线D. 函数图象是一条斜率为-3,y截距为2的直线3. 已知a,b是实数,且a+b=2,则下列说法正确的是()A. a^2+b^2=5B. a^2+b^2=4C. a^2+b^2=6D. a^2+b^2=34. 已知正方形的对角线长度为10,则该正方形的面积是()A. 25B. 50C. 100D. 2005. 已知一个等腰三角形的底边长为6,腰长为8,则该三角形的面积是()A. 24B. 30C. 36D. 406. 已知一次函数y=kx+b(k≠0)的图象经过点A(1,2)和点B(3,-4),则下列说法正确的是()A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<07. 已知一个等边三角形的边长为a,则该三角形的面积是()A. a^2√3/4B. a^2√3/3C. a^2√3/2D. a^2√38. 已知一元二次方程x^2-4x+3=0的两个根分别为m和n,则下列说法正确的是()A. m+n=4,mn=3B. m+n=3,mn=4C. m+n=4,mn=1D. m+n=3,mn=19. 已知函数y=|x-1|,则下列说法正确的是()A. 函数图象是一条斜率为1的直线B. 函数图象是一条斜率为-1的直线C. 函数图象是一条斜率为1,y截距为1的直线D. 函数图象是一条斜率为-1,y截距为1的直线10. 已知一个长方形的面积是12,长是3,则该长方形的宽是()A. 4B. 2C. 6D. 3二、填空题(每题5分,共50分)11. 已知二次函数y=ax^2+bx+c(a≠0)的图象与x轴有两个交点A、B,且A(2,0),B(-1,0),则该二次函数的解析式为______。
人教版七年级数学上册第三章《一元一次方程》应用题拔高训练(二)
第三章《一元一次方程》应用题专项拔高训练1.有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价的8折以96元出售,很快就卖掉了,则这次生意的赢亏情况为()A.亏4元B.亏24元C.赚6元D.不亏不赚2.某商品进价200元,标价300元,打n折(十分之n)销售时利润率是5%,则n的值是()A.5 B.6 C.7 D.83.甲、乙两运动员在长为400m的环形跑道上进行匀速跑训练,两人同时从起点出发,同向而行,若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后500s内,两人相遇的次数为()A.0 B.1 C.2 D.34.互联网“微商”经营已经成为大众创业的一种新途径,某互联网平台上一件商品的标价为200元,按标价的六折销售,仍可获利20%,则这件商品的进价为()A.80元B.90元C.100元D.110元5.如图是某月的日历表,在此日历表上可以用一个长方形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的和为32,则这9个数的和为()A.32 B.126 C.135 D.1446.某款服装进价120元/件,标价x元/件,商店对这款服装推出“买两件,第一件原价,第二件打六折”的促销活动,按促销方式销售两件该款服装,商店仍获利48元,则x的值为()A.185 B.190 C.180 D.1957.某长方形的长与宽的和是12,长与宽的差是4,这个长方形的长宽分别为()A.10和2 B.8和4 C.7和5 D.9和38.将一笔资金按一年定期存入银行,设年利率为2%,到期支取时,得本息和7 140元,则这笔资金是()A.6 000元B.6 500元C.7 000元D.7 100元9.一个两位数的十位数字与个位数字之和是7,如果这两位数加上45,恰巧等于原数的个位数字与十位数字对调后所得的两位数,则原来的两位数为()A.25 B.16 C.61 D.3410.如图是某商品价格标签的一部分.那么它的原价是()A.25元B.24元C.26元D.27元11.甲与乙比赛登楼,他俩从36层的某大厦底层(0层)出发,当甲到达6层时,乙刚到达5层,按此速度,当甲到达顶层时,乙可达()A.31层B.30层C.29层D.28层12.某船顺流而下的速度是20千米/时,逆流航行的速度为16千米/时,则船在静水中的速度是()千米/时.A.2 B.4 C.18 D.3613.甲、乙两班分别有48人和52人,现从外校转来30人,插入甲、乙两班,已知插入后,甲班学生人数与乙班学生人数相等,插入甲班多少人()A.13 B.15 C.17 D.1914.有一个两位数,十位上的数字比个位上的数字大3,把个位数字与十位数字对调之后所得数与原数之和是77,则这个两位数是()A.41 B.42 C.51 D.5215.甲乙两人骑摩托车从相距170千米的A,B两地相向而行,2小时相遇,如果甲比乙每小时多行5千米,则乙每小时行()A.30千米B.40千米C.50千米D.45千米16.张华同学以八折的优惠价格购买了一件物品,节省了10元,那么他买这件物品实际用了()A.30元B.40元C.50元D.75元17.布凯姆(Bookem)城有一组十分奇怪的限速规定:在离城1公里处有一个120公里/小时的标牌,在离城公里处有一个60公里/小时的标牌,在离城公里处有一个40公里/小时的标牌,在离城公里处有一个30公里/小时的标牌,在离城公里处有一个24公里/小时的标牌,在离城公里处有一个20公里/小时的标牌.如果你从120公里/小时的标牌处出发一直以限定时速行驶,那么到达布凯姆城需要的时间是()A.30秒B.1分13.5秒C.1分42秒D.2分27秒18.一个水池,单独打开进水管,3小时可将水池注满,单独打开出水管,4小时可将水池中的水放完,若同时打开两管,则需几小时才能将水池注满()A.7小时B.9小时C.12小时D.以上答案都不对19.张大爷经营一家小商店,一天,一位顾客拿来一张50元的人民币买烟,因为没钱找,张大爷到隔壁的书店换了零钱回来.一盒烟16元,张大爷找了顾客34元钱.过了一会,书店的老板找来,原来刚才那张50元钱是假币,张大爷只好把50元假币收回来.若张大爷卖一盒烟能赚2元钱,在这笔买卖中张大爷赔了()A.100元B.102元C.48元D.84元20.某商场的服装按原价九折出售,要使销售总收入不变,那么销售量应增加()A.B.C.D.21.一艘轮船从A港到B港顺水航行,需6小时,从B港到A港逆水航行,需8小时,若在静水条件下,从A港到B港需()A.7小时B.7小时C.6小时D.6小时22.在一张挂历上,任意圈出同一列上的三个数的和不可能是()A.14 B.33 C.66 D.6923.日历中,2×2的正方形中,最小的数为x,则最大数表示为()A.x+7 B.x+1 C.x+2 D.x+824.王华把400元存入银行,年利率为6.66%,到期时王华得到利息133.20元,她一共存了()A.6年B.5年C.4年D.3年25.甲、乙两种衣服售价均为60元,其中一件衣服赢利20%,另一件衣服亏损20%.当商家同时卖出这两种衣服各一件时()A.不赢不亏B.赢利5元C.亏损5元D.赢利6元参考答案1.根据题意:设未知进价为x,可得:x•(1+20%)•(1﹣20%)=96解得:x=100;有96﹣100=﹣4,即亏了4元.故选:A.2.解:商品是按标价的n折销售的,根据题意列方程得:(300×0.1n﹣200)÷200=0.05,解得:n=7.则此商品是按标价的7折销售的.故选:C.3.解:设甲、乙同向而跑,经过xs时间甲乙能相遇,依题意有:(5﹣4)x=400,解得x=400.由于1<=<2.所以两人相遇的次数为1.故选:B.4.解:设这件商品的进价为x元,根据题意得:200×0.6﹣x=20%x,解得:x=100.答:这件商品的进价为100元.故选:C.5.解:设这9个数中最大的数为x,依题意有x﹣16+x=32,解得x=24.所以x﹣16+x﹣15+x﹣14+x﹣9+x﹣8+x﹣7+x﹣2+x﹣1+x=9x﹣72=144.故选:D.6.解:设标价x元/件,依题意有x+0.6x﹣120×2=48,解得x=180.故选:C.7.解:设这个长方形的长是x,根据题意列方程得:x﹣(12﹣x)=4,解得x=8,则宽就是12﹣8=4.这个长方形的长宽分别为8和4.故选:B.8.解:设这笔资金为x元,由题意得,x×(1+2%)=7140,解得:x=7 000.故选:C.9.解:设十位数字为x,则个位数字为(7﹣x),由题意,得10x+(7﹣x)+45=10(7﹣x)+x,解得:x=1,7﹣x=7﹣1=6,故原来的两位数为16.故选:B.10.解:设原价x元/台,由题意得:60%x=15,解得:x=25.即:原价为25元.故选:A.11.解:设乙可达x层.根据两人的速度比不变,可列方程:5:4=35:x﹣1,解得x=29选C.12.解:设船在静水中的速度是x千米/时,20﹣x=x﹣16,解得x=18,故选:C .13.解:插入甲班x 人,依题意有48+x =52+(30﹣x ),解得x =17.答:插入甲班17人.故选:C .14.解:设原个位数字为x ,则十位数字为3+x ,由题意得:(10x +3+x )+10(3+x )+x =77,解之得:x =2,则原数为10(3+2)+2=52.答:这个两位数是52.故选:D .15.解:设乙每小时行x 千米,则甲每小时走(x +5)千米,则2x +2(x +5)=170,解得x =40,故选:B .16.解:设实际价格为x 元,则原价为x ÷80%,∴x ÷80%=x +10,解得x =40.故选:B .17.解:t 1=,t 2=,t 3=,t 4=,t 5=,t 6=, 则t =t 1+t 2+t 3+t 4+t 5=1分13.5秒.故选:B .18.解:设需x 小时才能将水池注满,列方程得=1解得:x =12,则需12小时才能将水池注满.故选:C .19.解:一盒烟16元,张大爷卖一盒烟能赚2元钱,则烟的进价=16﹣2=14元;张大爷找给顾客34元钱和属于赔钱的范围,则张大爷在这次买卖中赔的钱数=14+34=48(元).故选:C.20.解:设销售量增加x,根据题意得:90%(1+x)=1解得:x=故选:C.21.解:设静水行完全程需t小时.则﹣=﹣解得:t=.故选:C.22.解:设圈出的第一个数为x,则第二数为x+7,第三个数为x+14,∴三个数的和为:x+(x+7)+(x+14)=3(x+7),∴三个数的和为3的倍数,由四个选项可知只有A不是3的倍数.故选:A.23.解:日历中最小的数在正方形的左上方,最大的数在右下方;又知日历中横行上相邻两个数相差为1,右边的比左边的大1,日历中竖列上相邻两个数相差为7,下边的比上边的大7;那么最小数右边与它相邻的数是(x+1),最大的数是在(x+1)的下方,它们相隔为7,所以最大数应表示为(x+8).故选:D.24.解:设一共存了x年,由题意得:400×6.66%×x=133.20,解得x=5,故选:B.25.解:设盈利20%的那件衣服的进价是x元,根据进价与得润的和等于售价列得方程:x+0.20x=60,解得:x=50,类似地,设另一件亏损衣服的进价为y元,它的商品利润是﹣20%y元,列方程y+(﹣20%y)=60,解得:y=75.那么这两件衣服的进价是x+y=125元,而两件衣服的售价为120元.∴120﹣125=﹣5元,所以,这两件衣服亏损5元.故选:C.。
苏科版七年级数学上册第4章《一元一次方程》应用题综合拔高训练(三)
第4章《一元一次方程》应用题综合拔高训练(三)一.选择题1.某种出租车的收费标准是:起步价7元(即行驶距离不超过3km都需付7元车费);超过3km以后,每增加1km,加收2.4元(不足1km按1km计),某人乘出租车从甲地到乙地共支付车费19元,则此人从甲地到乙地经过的路程()A.正好8km B.最多8km C.至少8km D.正好7km2.在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌,并且从10千米处开始,每隔9千米经过一个速度监控仪,刚好在19千米处第一次同时经过这两种设施,那么,第二次同时经过这两种设施是在()千米处.A.36 B.37 C.55 D.913.如图,水平桌面上有个内部装水的长方体箱子,箱内有一个与底面垂直的隔板,且隔板左右两侧的水面高度为别为40公分,50公分,今将隔板抽出,若过程中箱内的水量未改变,且不计箱子及隔板厚度,则根据图中的数据,求隔板抽出后水面静止时,箱内的水面高度为多少公分()A.43 B.44 C.45 D.464.某商人一次卖出两件衣服,一件赚了10%,一件亏了10%,卖价都为198元,在这次生意中商人()A.亏了4元B.赚了6元C.不赚不亏空D.以上都不对5.某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知某用户4月份的煤气费平均每立方米0.88元,那么4月份该用户应交煤气费()A.60元B.66元C.75元D.78元6.某市出租车起步价是5元(3公里及3公里以内为起步价),以后每公里收费是1.6元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能为()A.5.5公里B.6.9公里C.7.5公里D.8.1公里7.阿伟的游戏机充满电后,可用来连续播放音乐36个小时或连续玩游戏6个小时.若游戏机在早上7点充满电后,阿伟马上使用游戏机播放音乐直到下午3点,并从下午3点继续使用游戏机玩游戏直到它没电,则他的游戏机何时没电?()A.晚上7点20分B.晚上7点40分C.晚上8点20分D.晚上8点40分8.某商人一次卖出两件衣服,一件赚了15%,另一件赔了15%,卖价都是1955元,在这次生意中商品经营()A.不赚不赔B.赚90元C.赚100元D.赔90元9.已知面包店的面包一个15元,小明去此店买面包,结账时店员告诉小明:“如果你再多买一个面包就可以打九折,价钱会比现在便宜45元”,小明说:“我买这些就好了,谢谢.”根据两人的对话,判断结账时小明买了多少个面包?()A.38 B.39 C.40 D.4110.陈华以8折的优惠价钱买了一双鞋子,节省了20元,那么他买鞋子时实际用了()A.60元B.80元C.100元D.150元二.填空题11.如图是某超市中某种洗发水的价格标签,一名服务员不小心将标签损坏,使得原价无法看清,请帮忙算一算该种洗发水的原价是元/瓶.12.有4名同学,他们得到的苹果数恰好是一个比一个多1个,而他们的苹果数的乘积是5040,那么他们得到的苹果数之和是.13.小华以8折的优惠价钱买了一双鞋子,比不打折时节省了20元,则他买这双鞋子实际花了元.14.一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了道题.15.现在是4点5分,再过分钟,分针和时针第一次重合.16.某物品的标价为132元,若以9折出售,仍可获利10%,则该物品的进价是.三.解答题17.“五•一”长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?18.某超市为了回馈广大新老客户,元旦期间决定实行优惠活动.优惠一:非会员购物所有商品价格可获九折优惠;优惠二:交纳200元会费成为该超市的一员,所有商品价格可优惠八折优惠.(1)若用x(元)表示商品价格,请你用含x的式子分别表示两种购物优惠后所花的钱数;(2)当商品价格是多少元时,两种优惠后所花钱数相同;(3)若某人计划在该超市购买价格为2700元的一台电脑,请分析选择那种优惠更省钱?19.一家商店因换季将某种服装打折销售.如果每件服装按标价的5折出售亏20元,而按标价的8折出售将赚40元.问:(1)每件服装的标价、成本各是多少元?(2)为保证不亏本,最多能打几折?20.小华、小颖、小明相约到“心连心”超市调查“农夫山泉”矿泉水的日销售情况.如图是调查后三位同学进行交流的情景,请你根据上述对话,解答下列问题:(1)该超市的每瓶“农夫山泉”矿泉水的标价为多少元?(2)该超市今天销售了多少瓶“农夫山泉”矿泉水?21.如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C 一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?22.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?23.李明家要修建一个长方形养鸡场,养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成.现有长为35米的竹篱笆,小王建议李明用它来围成一个长比宽多5米的鸡场,小华建议李明用它来围成一个长比宽多2米的鸡场,你认为谁的建议符合实际?按照他的建议,鸡场的面积是多少?24.某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?参考答案一.选择题1.解:可设此人从甲地到乙地经过的路程为xkm,根据题意可知:(x﹣3)×2.4+7=19,解得:x=8.即此人从甲地到乙地经过的路程最多为8km.故选:B.2.解:4和9的最小公倍数为36,19+36=55,∴第二次同时经过这两种设施是在55千米处.故选:C.3.解:设长方形的宽为x公分,抽出隔板后之水面高度为h公分,长方形的长为130+70=200(公分)×40+×50=200•x•h,解得:h=44,故选:B.4.解:①设赚了10%的衣服进价x元,则:(1+10%)x=198,解得:x=180,则实际赚了18元;②设赔了10%的衣服是y元,则(1﹣10%)y=198,解得:y=220,则:实际赔了22元,22﹣18=4,即赔了4元.故选:A.5.解:设4月份用了煤气x立方,则60×0.8+(x﹣60)×1.2=0.88×x,解得:x=75,75×0.88=66元,故选:B.6.解:设人坐车可行驶的路程最远是xkm,根据题意得:5+1.6(x﹣3)=11.4,解得:x=7.观察选项,只有B选项符合题意.故选:B.7.解:设他的游戏机还需要x小时没电.则依题意得×8=1﹣x,解得x=小时=4小时40分钟.所以,他的游戏机到晚上7点40分没电.故选:B.8.解:(1)设赚了15%的衣服是x元,则:(1+15%)x=1955解得:x=1700则实际赚了255元.(2)设赔了15%的衣服是y元,则(1﹣15%)y=1955,解得:y=2300则:实际赔了345元,又255<345,所以赔了90元.故选:D.9.解:小明买了x个面包.则15x﹣15(x+1)×90%=45解得x=39故选:B.10.解:根据题意可得:设鞋子的原价为x元,则:x﹣x×80%=20,解得:x=100,所以买鞋子的实际用了x×80%=80.故选:B.二.填空题(共6小题)11.解:设原价为x元.则可列方程:80%x=16解得:x=20(元)故答案是:20.12.解:设第一名同学有x个苹果,依题意得:x(x+1)(x+2)(x+3)=5040解之得:x=7则他们得到的苹果数之和是7+8+9+10=34.13.解:设鞋子标价为x元,则小华实际花费了0.8x元,依题意得x﹣0.8x=20,解得:x=100,0.8x=80.故他买这双鞋子实际花了80元.故答案为80.14.解:设他做对了x道题,则他做错了(25﹣x)道题,根据题意得:4x﹣(25﹣x)=70,解得:x=19.故答案为:19.15.解:假设过x分时,分针与时针重合,则0.5x+90°+0.5°×5=6x,解得x=16.故答案为:16.16.解:设进价是x元,则(1+10%)x=132×0.9,解得x=108.则这件衬衣的进价是108元.故答案为108元.三.解答题(共8小题)17.解:设哥哥追上弟弟需要x小时.由题意得:6x=2+2x,解这个方程得:.∴弟弟行走了=1小时30分<1小时45分,未到外婆家,答:哥哥能够追上.18.解:(1)由题意可得:优惠一:付费为:0.9x,优惠二:付费为:200+0.8x;(2)当两种优惠后所花钱数相同,则0.9x=200+0.8x,解得:x=2000,答:当商品价格是2000元时,两种优惠后所花钱数相同;(3)∵某人计划在该超市购买价格为2700元的一台电脑,∴优惠一:付费为:0.9x=2430,优惠二:付费为:200+0.8x=2360,答:优惠二更省钱.19.解:(1)设每件服装的成本为x元,则标价为2(x﹣20)元,根据题意得:0.8×2(x﹣20)﹣x=40,解得:x=120,∴2(x﹣20)=200.答:每件服装的标价为200元,成本为120元.(2)120÷200=0.6.答:为保证不亏本,最多能打六折.20.解:(1)设该超市的每瓶矿泉水的标价为x元80%x﹣1=1×20%解得:x=1.5答:该超市的每瓶矿泉水的标价为1.5元.(2)由(1)知售价为:1.5×80%=1.2元∴销售量==300(瓶)答:该超市今天销售了300瓶“农夫山泉”矿泉水.21.解:(1)设点A的速度为每秒t个单位,则点B的速度为每秒4t个单位,由题意,得3t+3×4t=15,解得:t=1,∴点A的速度为每秒1个单位长度,则点B的速度为每秒4个单位长度.如图:(2)设x秒时原点恰好在A、B的中间,由题意,得3+x=12﹣4x,解得:x=1.8.∴A、B运动1.8秒时,原点就在点A、点B的中间;(3)由题意,得B追上A的时间为:15÷(4﹣1)=5,∴C行驶的路程为:5×20=100单位长度.22.解:设应分配x人生产甲种零件,12x×2=23(62﹣x)×3,解得x=46,62﹣46=16(人).故应分配46人应分配46人生产甲种零件,16人生产乙种零件才能使每天生产的甲种零件和乙种零件刚好配套.23.解:设鸡场的宽为x米,则长为(x+5)米或(x+2)米,根据题意得:2x+x+5=35或2x+x+2=35,解得:x=10或x=11.当x=10时,x+5=15>14,∴依小王的检验,鸡场的长为14米,宽为9米,此时鸡场的面积S=14×9=126(平方米);当x=11时,x+2=13,∴依小华的建议,鸡场的长为13米,宽为11米,此时鸡场的面积S=13×11=143(平方米).∵126<143,∴小华的建议符合实际,按照他的建议,鸡场的面积是143平方米.24.解:设甲种票买了x张,则乙种票买了(35﹣x)张.由题意,得24x+18(35﹣x)=750,解得x=20,所以35﹣x=15.答:甲种票买了20张,乙种票买了15张.。
苏科版七年级数学上册第4章《一元一次方程》应用题综合拔高训练(四)
第4章《一元一次方程》应用题综合拔高训练(四)一.选择题1.一轮船往返于A、B两港之间,逆水航行需3小时,顺水航行需2小时,水速是3千米/时,则轮船在静水中的速度是()A.18千米/时B.15千米/时C.12千米/时D.20千米/时2.某种商品若按标价的八折出售,可获利20%,若按原标价出售,可获利()A.25% B.40% C.50% D.66.7%3.某班进行一次标准化测试,试卷由25道选择题组成,每题答对得4分,不答得0分,答错扣1分.那么下列分数中不可能的是()A.95 B.89 C.79 D.754.如图,自行车每节链条的长度为2.5cm,交叉重叠部分的圆的直径为0.8cm,如果某种型号自行车的链条(没有安装前)共有60节链条组成,那么链条的总长度是()A.100 cm B.85.8 cm C.85 cm D.102.8 cm5.某商场出售甲、乙两种不同价格的笔记本电脑,其中甲电脑因供不应求,连续两次提价10%,而乙电脑因外观过时而滞销,只得连续两次降价10%,最后甲、乙两种电脑均以9801元售出.若商场同时售出甲、乙电脑各一台与价格不升不降比较,商场的盈利情况是()A.前后相同B.少赚598元C.多赚980.1元D.多赚490.05元6.银行教育储蓄的年利率如下表:一年期二年期三年期2.25 2.43 2.70小明现正读七年级,今年7月他父母为他在银行存款30000元,以供3年后上高中使用.要使3年后的收益最大,则小明的父母应该采用()A.直接存一个3年期B.先存一个1年期的,1年后将利息和自动转存一个2年期C.先存一个1年期的,1年后将利息和自动转存两个1年期D.先存一个2年期的,2年后将利息和自动转存一个1年期7.杭州湾跨海大桥于5月1日23时58分开始试运行,大桥全长36千米,按规定桥上最低时速为60千米,最高时速为100千米,两辆汽车从桥的南北两端同时出发,正常行驶时到它们在途中交会所需时间可能为()A.36分钟B.22分钟C.15分钟D.7分钟8.商场的自动扶梯在匀速上升,一男孩与一女孩在这自动扶梯上往上爬,已知男孩往上爬的速度是女孩往上爬的速度的2倍,男孩爬了27级到楼上,女孩爬18级到楼上,则从楼下到楼上自动扶梯的级数是()A.108 B.54 C.45 D.369.中百超市推出如下优惠方案:(1)一次性购物不超过100元,不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.王波两次购物分别付款80元、252元,如果他将这两次所购商品一次性购买,则应付款()A.288元B.332元C.288元或316元D.332元或363元10.某块手表每小时比准确时间慢3分钟,若在清晨4点30分与准确时间对准,则当天上午该手表指示时间为10点50分时,准确时间应该是()A.11点10分B.11点9分C.11点8分D.11点7分11.一杯可乐售价1.8元,商家为了促销,顾客每买一杯可乐获一张奖券,每三张奖券可兑换一杯可乐,则每张奖券相当于()A.0.6元B.0.5元C.0.45元D.0.3元二.填空题12.代数式4x+8与3x﹣7的值互为相反数,则x的值等于.13.如图长方形MNPQ是菜市民健身广场的平面示意图,它是由6个正方形拼成的长方形,中间最小的正方形A的边长是1,观察图形特点可知长方形相对的两边是相等的(如图中MN=PQ).正方形四边相等.请根据这个等量关系,试计算长方形MNPQ的面积,结果为.14.为使某项工程提前20天完成任务,需将原定工作效率提高25%,则原计划完成这项工程需要天.15.某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是%(注:利润率=×100%).16.现在弟弟的年龄恰好是哥哥年龄的,而九年前弟弟的年龄,只是哥哥年龄的,则哥哥现在的年龄是岁.17.如果日历上爸爸的生日的那天上、下、左、右四个日期的和为96,那么爸爸的生日是日.18.小麦在磨成面粉后,质量要减少25%,为了得到600kg面粉,需要小麦kg.三.解答题19.某空调厂的装配车间原计划用2个月时间(每月30天计),每天组装150台空调.(1)从组装空调开始,组装的台数m(单位:台/天)与生产的时间t(单位:天)之间有怎样的函数关系?(2)由于气温提前升高、厂家决定这批空调提前十天上市,那么装配车间每天至少要组装多少空调?20.一队学生去校外进行军事野营训练,他们以6千米/时的速度行进,在他们走了一段时间后,学校要将一个紧急通知传给队长,通讯员从学校出发,以10千米/时的速度按原路追上去,用了15分钟追上了学生队伍,问通讯员出发前,学生走了多少时间?21.雅丽服装厂童装车间有40名工人,缝制一种儿童套装(一件上衣和两条裤子配成一套).已知1名工人一天可缝制童装上衣3件或裤子4件,问怎样分配工人才能使缝制出来的上衣和裤子恰好配套?22.某学校班主任暑假带领该班三好学生去旅游,甲旅行社说:“如果教师买全票一张,其余学生享受半价优惠;”乙旅行社说:“教师在内全部按票价的6折优惠;”若全部票价是240元;(1)如果有10名学生,应参加哪个旅行社,并说出理由;(2)当学生人数是多少时,两家旅行社收费一样多?23.春节快到了,移动公司为了方便学生上网查资料,提供了两种上网优惠方法:A.计时制:0.05元/分钟,B.包月制:50元/月(只限一台电脑上网),另外,不管哪种收费方式,上网时都得加收通讯费0.02元/分.(1)设小明某月上网时间为x分,请写出两种付费方式下小明应该支付的费用.(2)什么时候两种方式付费一样多?(3)如果你一个月只上网15小时,你会选择哪种方案呢?24.某超市计划购进甲、乙两种商品共1200件,这两种商品的进价、售价如下表:进价(元/件)售价(元/件)甲25 30乙45 60 (1)超市如何进货,进货款恰好为46000元;(2)为确保乙商品畅销,在(1)的条件下,商家决定对乙商品进行打折出售,且全部售完后,乙商品的利润率为20%,请问乙商品需打几折?25.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,两张圆形铁片与一张长方形铁片可配套成一个密封圆桶,问每天如何安排工人生产圆形和长方形铁片能合理地将铁片配套?26.已知数轴上点A、B表示的数分别为﹣1、3、P为数轴上一动点,其表示的数为x.(1)若P到A、B的距离相等,则x=;(2)是否存在点P,使PA+PB=6?若存在,写出x的值;若不存在,请说明理由;(3)若点M、N分别从A、B同时出发,沿数轴正方向分别以2个单位/秒、1个单位/秒的速度运动,则经过多长时间,M、N两点相距1个单位长度?27.某班举行“知识竞赛”活动,班长安排小明同学购买奖品,下面两图是小明买回奖品时与班长的对话情境:请根据上面的信息,解答下列问题:(1)计算两种笔记本各买了多少本?(2)请你解释:小明为什么不可能找回68元?参考答案一.选择题1.解:设轮船在静水中的速度是x千米/时,则3(x﹣3)=2(x+3)解得:x=15,故选:B.2.解:设进价为x,根据题意得(1+20%)x=80%解得x=则按原标价出售,可获利1÷﹣1=50%.故选:C.3.解:设答对x道题,不答y道题,则答错(25﹣x﹣y)道题.即分数是4x﹣(25﹣x﹣y)=5x+y﹣25.若5x+y﹣25=95,则y=120﹣5x,又x+y≤25,y≥0.则23.75≤x≤24,即x=24,y =0;若5x+y﹣25=89,则y=114﹣5x,又x+y≤25,y≥0则22.25≤x≤22.8,即不可能;若5x+y﹣25=79,则y=104﹣5x,又x+y≤25,y≥0,则19.75≤x≤20.8,即x=20,y =4;若5x+y﹣25=75,则y=100﹣5x,又x+y≤25,y≥0则18.75≤x≤20,即x=19,y=5或x=20,y=0.故选:B.4.解:∵有1节链条时,链条的长度=(2.5﹣0.8)×1+0.8=2.5;有2节链条时,链条的长度=(2.5﹣0.8)×2+0.8=4.2;有3节链条时,链条的长度=(2.5﹣0.8)×3+0.8=5.9;…有n节链条时,链条的长度=(2.5﹣0.8)×n+0.8,∴有60节链条时,链条的长度=(2.5﹣0.8)×60+0.8=102.8.故选:D.5.解:设甲、乙电脑的原来价格分别是a元、b元.①a(1+10%)2=9801,解得:a=8100,②b(1﹣10%)2=9801,解得:b=12100则8100+12100=20200,9801×2=19 60220 200﹣19 602=598即少赚598元.故选:B.6.解:直接存一个3年期的收益是:3×30000×2.70%=2430元;先存一个1年期的,1年后将利息和自动转存一个2年期的收益是:30000×2.25%+2×(30000+30000×2.25%)×2.43%=2165.805元;先存一个1年期的,1年后将利息和自动转存两个1年期的收益是:30000×2.25%+(30000+30000×2.25%)×2.25%=1365.1875(1365.1875+30000)×2.25%+1365.1875≈2091元;先存一个2年期的,2年后将利息和自动转存一个1年期的收益是:2×30000×2.43%+(30000+2×30000× 2.43%)2.25%=2165.805元;∴直接存一个3年期3年后的收益最大,小明的父母应该采用直接存一个3年期.故选:A.7.解:两车都以100千米的速度是所用时间最少是:=0.18小时=10.8分钟;两车速度都是60千米是所用时间最多是:=0.3小时=18分钟.因而正常行驶时到它们在途中交会所需时间应大于或等于10.8分钟且小于或等于18分钟,故选:C.8.解:设男孩的速度为2,则女孩的速度为1.∵男孩步行了27级,女孩步行了18级,∴男孩用的时间为27÷2=13.5,女孩用的时间为18÷1=18,设在男孩步行的时间里扶梯运行了x级,那么在女孩步行的时间里扶梯运行了x级,可以列式为:27+x=18+x,解得:x=27,所以扶梯有27+27=54级.故选B.9.解:(1)若第二次购物超过100元,但不超过300元,设此时所购物品价值为x元,则90%x=252,解得x=280两次所购物价值为80+280=360>300所以享受8折优惠,因此王波应付360×80%=288(元).(2)若第二次购物超过300元,设此时购物价值为y元,则80%y=252,解得y=315 两次所购物价值为80+315=395,因此王波应付395×80%=316(元)故选:C.10.解:慢表走:57分钟,则正常表走:60分钟,即如果慢表走:6小时20分(即380分),求正常表走了x分钟,则 57:60=380:x,解得x=400,400分钟=6小时40分,所以准时时间为11时10分.故选:A.11.解:设每张奖券相当于x元,根据题意得:3×1.8=4(1.8﹣x),解得:x=0.45.故选:C.二.填空题(共7小题)12.解:由题意可得方程:(4x+8)+(3x﹣7)=0,解得x=﹣.13.解:设右下方两个并排的正方形的边长为x,则x+2+x+3=x+1+x+x,解得x=4所以长方形长为3x+1=13,宽为2x+3=11,所以长方形面积为13×11=143.答:结果为143.故答案为:143.14.解:设原计划完成这项工程需要x天,原来的工作效率为1,则实际的工作效率为1×(1+25%)=1.25,1×x=1.25×(x﹣20),解得x=100,故答案为:100.15.解:设原利润率是x,进价为a,则售价为a(1+x),根据题意得:﹣x=8%,解之得:x=0.17所以原来的利润率是17%.16.解:设哥哥现在年龄为X,弟弟现在年龄为X,那么哥哥九年前的年龄为X﹣9,弟弟九年前的年龄为X﹣9.由题意得:X﹣9=(X﹣9)解得:X=24,所以哥哥现在的年龄是24岁.故填:24.17.解:设爸爸的生日是x号.(x﹣1)+(x+1)+(x﹣7)+(x+7)=96,解得x=24,故答案为24.18.解:设需要小麦xkg,依题意得:x(1﹣25%)=600解得:x=800∴需要小麦800kg.三.解答题(共9小题)19.解:(1)m=150×(30×2t)=9000t.(2)设装配车间每天至少要组装x台空调,依题意列方程:(2×30﹣10)x=2×30×150,解得:x=180.答:装配车间每天至少要组装180台空调.20.解:设通讯员出发前,学生走x小时,根据题意得:10×=6×(x+)解得:x=.答:学生走了小时.21.解:设x个工人生产上衣,则有(40﹣x)个工人生产裤子,由题意得:2×3x=4(40﹣x),解得:x=16,则:40﹣x=40﹣16=24.答:16个工人生产上衣,则有24个工人生产裤子.22.解:(1)甲旅行社的收费为:240×10×0.5+240=1440元;乙旅行社的收费为:240×(10+1)×0.6=1584元;∵1584>1440,∴选择甲旅社合适.答:如果有10名学生,应参加甲旅行社.(2)设当学生人数为x人时,两家旅行社收费一样多,则可得:240×x×0.5+240=240(x+1)×0.6,解得:x=4.答:当学生人数是4人时,两家旅行社收费一样多.23.解:(1)根据题意得:第一种方式为:(0.05+0.02)x=0.07x.第二种方式为:50+0.02x.(2)设上网时长为x分钟时,两种方式付费一样多,依题意列方程为:(0.05+0.02)x=50+0.02x,解得x=1000,答:当上网时全长为1000分钟时,两种方式付费一样多;(3)当上网15小时,得900分钟时,A方案需付费:(0.05+0.02)×900=63(元),B方案需付费:50+0.02×900=68(元),∵63<68,∴当上网15小时,选用方案A合算,24.解:(1)设商场购进甲商品x件,则购进乙商品(1200﹣x)件,由题意,得25x+45(1200﹣x)=46000解得:x=400购进乙商品1200﹣x=1200﹣400=800件.答:购进甲商品400件,购进乙商品800件进货款恰好为46000元.(2)设乙商品需打a折,0.1×60a﹣45=45×20%,解得a=9,答:乙商品需打9折.25.解:设安排x人生产长方形铁片,则生产圆形铁片的人数为(42﹣x)人,由题意得:120(42﹣x)=2×80x,去括号,得5040﹣120x=160x,移项、合并得280x=5040,系数化为1,得x=18,42﹣18=24(人);答:安排24人生产圆形铁片,18人生产长方形铁片能合理地将铁片配套.26.解:(1)由图可得,x=1;(2)PA=|﹣1﹣x|,PB=|3﹣x|,则PA+PB=|﹣1﹣x|+|3﹣x|,当x≤﹣1时,﹣1﹣x+3﹣x=6,解得:x=﹣2;当﹣1<x<3时,x+1+3﹣x=6,无解;当x≥3时,x+1+x﹣3=6,解得:x=4;(3)设t秒后M、N两点相距1个单位长度,MN=|(﹣1+2t)﹣(3+t)|=1,|t﹣4|=1,当t>4时,t﹣4=1,解得:t=5,当t≤4时,4﹣t=1,解得:t=3.答:经过3s或5s,M、N两点相距1个单位长度.27.解:(1)设单价为5元的笔记本买了x本,单价为8元的笔记本买了(40﹣x)本,依题意,得5x+8(40﹣x)=300﹣68+13解得x=25.则40﹣x=15(本)答:单价为5元的笔记本买了25本,单价为8元的笔记本买了15本;(2)应找回钱款为300﹣5×25﹣8×15=55≠68,故不能找回68元.。
【40】七年级数学应用题能力训练(数字问题与方案设计)(一元一次方程)拔高练习
【40】七年级数学应用题能力训练(数字问题与方案设计)(一元一次方程)拔高练习第一篇:【40】七年级数学应用题能力训练(数字问题与方案设计)(一元一次方程)拔高练习七年级数学应用题能力训练(数字问题与方案设计)(一元一次方程)拔高练习一、单选题(共5道,每道20分)1.某牛奶加工厂现有鲜奶9吨.若在市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片每天可加工1吨.受人员限制,两种加工方式不可同时进行.受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.为此,该厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶.方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.则方案一与方案二的总利润各为()A.10500,12000B.10500,16800C.12000,10500D.16800,105002.十一期间某校组织七、八年级的同学到某景点郊游,该景点的门票全票票价为15元/人,若为50~99人可以八折购票,100人以上则可六折购票.已知参加郊游的七年级同学少于50人,八年级同学多于50人而少于100人.若七、八年级分别购票,两个年级共计应付门票费1575元,若合在一起购买折扣票,总计应付门票费1080元.参加郊游的七、八年级同学的总人数是否超过100人,以及参加郊游的七、八年级同学的人数分别是()A.不超过;35,55B.超过;35,75C.不超过;25,55D.超过;45,753.儿子今年12岁,父亲今年39岁,()父亲的年龄是儿子的年龄的4倍A.3年后B.3年前C.9年后D.不可能4.如果某一年的5月份中,有五个星期五,它们的日期之和是80,那么这个月的五个星期五分别是()号A.2,9,16,23,30B.1,8,15,22,29C.3,10,17,24,31D.1,8,16,23,305.一个两位数,十位上的数字与个位上的数字之和为11,如果把十位上的数字与个位上的数字对调,那么得到的新数就比原来大63,则原来的两位数是()A.92B.29C.56D.65第二篇:七年级数学应用题分配问题专项训练分配问题1、某厂要在5天内完成18台拖拉机的装配任务,甲车间每天能装配2台,乙车间每天能装配3台,应如何分配两车间的装配任务,使两车间的工作天数都是整天数?2、有三个桶,容积比为7:8:9,原来甲桶盛水12千克,乙桶盛水200千克,丙桶盛水210千克,把190公斤的水分别注入三个桶中恰好都注满,求三个桶各注水多少千克?3、甲、乙、丙三个粮仓共存粮70吨,甲与乙存粮比为1:3,乙与丙存粮比为1:2,求甲、乙、丙三个粮仓分别存粮多少吨?4、三台拖拉机工耕地228亩,已知甲、乙两拖拉机耕地的亩数比是1:2,乙、丙两拖拉机耕地的亩数比是5:3,求三抬拖拉机各耕地多少亩?5、地板砖厂的坯料由白土、砂土、石膏、水按25:2:1:6的比例配制而成,先将前三种坯料称好,共5600千克,应加多少千克的水后搅拌?这前三种坯料各称了多少千克?6、某农户养鸡鸭一群,卖掉15只鸭后,鸡鸭只数比为2:1,在此以后,又卖掉45只鸡,这时鸡鸭只数比为1:5,则该农户原来养鸭的只数是多少?7、红旗机械厂生产甲、乙两种机器,甲种机器每台销售价为4万元,乙种机器每台销售价为5万元。
初一下数学拔高题
1、三角形的三个外角中,钝角最多有( )。
A :1个 B: 2个 C:3 个 D : 4 个2、直角三角形两锐角的平分线相交所成的钝角是( )。
A :120°B : 135° C:150° D: 165°3、如图所示,在△ABC 中,CD 、BE 分别是AB 、AC 边上的高,并且CD 、BE 交于,点P,若∠A=500 ,则 ∠BPC 等于( )A 、90°B 、130°C 、270°D 、315°4、一个多边形的每一个外角都等于30°,这个多边形的边数是 ,它的内角和是5、如图所示,若∠A =32°,∠B =45°,∠C =38°,则∠DFE 等于( ) A 。
120° B。
115° C。
110° D。
105°6、已知等腰三角形的两边长分别为4cm 和7cm , 它的周长是_________㎝.7、等腰三角形一腰上的中线将这个等腰三角形的周长分成15和6两部分,则这个等腰三角形的三边长是_________________.8、若过m 边形的一个顶点有7条对角线,n 边形没有对角线,k 边形有k 条对角线,求(m -k )n 的值__________。
9、如图,已知∠BOF=120°,则∠A+∠B+∠C+∠D+∠E+∠F=___10、下列正多边形中,与正三角形同时使用能进行镶嵌的是 ( )A.正十二边形 B 。
正十边形 C 。
正八边形 D.正五边形11、如图:小明从A 点出发前进10m ,向右转150,,再前进10m ,右转150……这样一直走下去,他第一次回到出发点A 时,一共走了____m 。
12、过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是( ) A 、8 B 、9 C 、10 D 、1113、n 边形的每个外角都为24°,则边数n 为( )A 、13B 、14C 、15D 、16(第3题)F E D C B A14、在△ABC 中,若∠C =2(∠A +∠B ),则∠C = 度。
苏科版七年级数学上册第四章《一元一次方程》应用题填空题拔高训练(二)
第四章《一元一次方程》应用题填空题拔高训练(二)1.在商品市场上经常可以听到小贩的叫嚷声和顾客的讨价还价声:“10元一个的玩具赛车打8折,快来买啊!”“能不能再便宜2元?”如果小贩真的让利(便宜)2元卖了,他还能获利20%,则一个玩具赛车进价是元.2.甲工程队有272名工人,乙工程队有196名工人,根据工作需要要求乙队人数是甲队人数的,应该从乙队调人到甲队.3.将内径为20cm,高为hcm的圆柱形水桶装满水,倒入一个长方体的水箱中,水只占水箱容积的,则此水箱的容积是cm3.4.将某班的学生分成x组,若每组8人,则多2人;若每组9人,则差4人,则x=.5.甲乙两列火车,车长分别160米和200米,甲车比乙车每秒多行驶15米,两列火车相向而行,相遇到错开需要8秒,则甲车的速度为,乙车的速度为.6.某商场的电视机按原价的九折销售,要使销售总收入不变,那么销售量应增加.7.在一次电脑知识竞赛中共有20道题,对于每道题,答对得5分,答错了或不答倒扣3分,小明得了84分,则他答对了道题.8.学校所在地的出租车计价规则如下:行程不超过3千米,收起步价8元,超过部分每千米路程收费1.20元,某天李老师和三名同学去探望一名生病的学生,坐出租车付了17.60元,他们共乘坐了千米.9.一个书包,打9折后售价45元,原价元.10.某种出租车的收费标准是:起步价3元(即行驶距离不超过3km都需3元车费),超过3km以后,每增加1km,加收1.2元(不足1km按1km计算),某人乘这种出租车从甲地到乙地共支付车费9元,设此人从甲地到乙地的路程为xkm,那么x的最大值是.11.在某公路干线上有相距108千米的A、B两个车站.某日16点整,甲、乙两辆车分别从A、B两站同时出发,相向而行,已知甲车的速度为45千米/时,乙车速度为36千米/时,则两车相遇的时间是.12.某个体户到农贸市场进一批黄瓜,卖掉后还剩48kg,则该个体户卖掉kg黄瓜.13.鸡鸭共一栏,鸡为鸭之半;八鸭展翅飞,六鸡在下蛋,再点鸡与鸭,鸭为鸡倍三,请君算一算,鸡只,鸭只.14.某水池有甲进水管和乙出水管,已知单开甲注满水池需6h,单开乙管放完全池水需要9h,当同时开放甲、乙两管时需要h水池水量达全池的一半.15.物体在月球上的重量大约等于在地球上的重量的,如果一个物体在地球上的重量比在月球上的重量多16千克,那么这个物体在地球上的重量是千克.16.在古代的算书中,经常以诗歌的形式来把一些实际生活背景的题目写出来.下面就有这样一道题:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”那么这个客栈有间房,一共来了名客人.17.一个农场,母鸡的只数与猪的头数之和是70,而腿数之和是196,则母鸡比猪多只.18.小红买了一件衣服,原价500元,打8.5折应付元.19.两本书厚度共9cm,其中一本厚度是另一本书厚度的2倍,则这两本书的厚度分别是cm和cm.20.把一个半径为3cm的铁球熔化后,能铸造个半径为1cm的小铁球(球的体积为).21.一项工程,甲单独做需要9天,乙单独做需要12天,甲每天完成全部工作的,乙每天完成全部工作的,两人合作需天完成全部工作的.22.一项工程,甲用6小时完成,甲的总工作量可看成,那么工作时间是,工作效率是.若这件工作甲用12小时完成,则甲的工作效率是.23.国庆节前几天,两家商店的同一种彩电的价格相同.国庆节两家商店都有降价促销活动.甲商店的这种彩电降价500元,乙商店的这种彩电打9折.若原价是2 000元/台,到商店买便宜;若原价是20 000元/台,到商店买便宜;当原价是时,两家商店降价后的价格仍然相等.24.整理一批图书,由一个人做要48小时完成,现在计划由一部分人先做4小时,再增加3人和他们一起做6小时完成这项工作.假设这些人的工作效率相同,则应先安排个人工作.参考答案1.解:设一个玩具赛车进价是x元,由题意得:10×0.8﹣2=x+20%x,解得:x=5,故答案为:5.2.解:设应该从乙队调x人到甲队,196﹣x=(272+x),解得x=79,故答案为:79.3.解:设此水箱的容积是xcm3,由题意得:π×()2×h=x,解得:x=300πh,故答案为:300πh.4.解:设将学生分成x组,由题意得,8x+2=9x﹣4,解得:x=6,故答案为:6.5.解:设乙车每秒行驶xm,则甲车每秒行驶(x+15)m,依题意有8x+8(x+15)=160+200,解得x=15,x+15=30.答:甲车的速度为30米/秒,乙车的速度为15米/秒.故答案为:30米/秒,15米/秒.6.解:设销售量增加x,根据题意得:90%(1+x)=1,解得:x=;故销售量应增加.故答案为:.7.解:设他答对了x道题,那么答错的就有(20﹣x)道题5x﹣3(20﹣x)=845x+3x﹣60=348x=84+608x=144x=18.答:他答对了18道题;故答案为:18.8.解:设共乘了x千米,由题意得17.60=8+1.20(x﹣3),解得x=11.故填:11.9.解:设书包的原价为x元,则90%x=45,解得x=50,故答案为50.10.解:设此人从甲地到乙地的路程的最大值为xkm,由题意,得3+(x﹣3)×1.2=9,解得:x=8.故答案为:8km.11.解:设两车相遇需要x小时,则45x+36x=108,解之得x=1,所以两车相遇的时间是16+1=17,即17点20分.12.解:设进了xkg黄瓜,则:(1﹣)x=48,解得:x=72.∴72×=24(kg)故填24.13.解:设鸭有x只,则鸡有x只,由题意,得3(x﹣6)=x﹣8,解得:x=20,∴鸡有10只.故答案为:10,2014.解:设x小时水池水量达全池的一半,甲的工作效率是,乙的工作效率是,由题意可知:﹣=,解得:x=9,答:当同时开放甲、乙两管时需要9h水池水量达全池的一半.故答案为:915.解:设这个物体在地球上的重量是x千克,则在月球上的重量为x.x﹣x=16,解得x=19.2.故答案为:19.2.16.解:设有x间房,y位客人,则解得答:有8间房,63位客人.故答案为:8,63.17.解:设母鸡有x只,则猪有(70﹣x)头,由题意得,2x+4(70﹣x)=196,解得:x=42,则猪有70﹣42=28头,母鸡比猪多了42﹣28=14只.故答案为:14.18.解:设应付x元,由题意得:500×85%=x,解得x=425.故答案为:425.19.解:设一本书厚xcm,则另一本厚为9﹣xcm,根据题意得:x=2(9﹣x)①或2x=9﹣x②,解①得x=6,解②得x=3,可知两种情况为同一种情况,即两本书的厚度分别是3cm 和6cm.故答案两空分别填:3、6或6、3.20.解:设能铸造x个小铁球,根据题意得:解得:x=27故填27.21.解:设工作总量为1,则甲每天完成全部工作的,乙每天完成全部工作的,由题意,得()x=,解得:x=4,故答案为:,,4.22.解:一项工程,甲用6小时完成,甲的总工作量可看成1,那么工作时间是6,工作效率是.若这件工作甲用12小时完成,则甲的工作效率是.故答案为:1,6,,.23.解:若原价是2 000元/台,甲商店需要:1500元,乙商店需要2000×0.9=1800元;故到甲商店购买;若原价是20000元,甲商店需要:19500元,乙商店需要2000×0.9=18000元;故到乙商店购买;设当原价为x元时,两家价格相等,由题意得,x﹣500=0.9x,解得:x=5000.即当原价是5000时,两家商店降价后的价格仍然相等.故答案为:甲、乙、5000.24.解:由题意可得,每个人每小时完成,设先安排x个人工作,则x×4+×(x+3)×6=1,解得x=3.答:应先安排3个人工作.故答案为:3.。
七年级数拔高题19
65.求解方程:5(X - 3) + 2 = 7
X =_________
66.解方程:18 = 6X + 6
X =_________
67.如果X + 4 = 10,求X的值。
X =_________
68.求解:3X - 5 = 2X + 3
X =_________
69.解方程:10 - X = 4
X =_________
45.解方程:X/9 + 3 = 5
X =_________
46.如果6X - 8 = 10,求X的值。
X =_________
47.求解:2(X + 1) - 3 = 9
X =_________
48.解方程:12 - 4X = 0
X =_________
49.如果X/3 + 3 = 6,求X的值。
X =_________
15.解方程:10 - 2X = 4
X =_________
16.如果X/5 + 1 = 4,求X的值。
X =_________
17.求解:12 - 3X = 6
X =_________
18.解方程:15X - 5 = 10X + 5
X =_________
19.如果4X - 3 = 1,求X的值。
X =_________
35.求解:X - 5 + 9 = 12
X =_________
36.解方程:14 - 2(X + 1) = 0
X =_________
37.如果3X - 1 = 5,求X的值。
X =_________
七年级数拔高题18
姓名:__________座号:__________情况:__________
1.解方程:3X + 5 = 14
X =_________
2.解方程:7X - 9 = 26
X =_________
3.解方程:2(X - 4) = 10
X =_________
4.解方程:5X/3 + 2 = 7
15.解方程:X/5 + X/3 = 1
X =_________
16.解方程:X - 7 = 2X + 1
X =_________
17.解方程:1/2X + 3 = 6
X =_________
18.解方程:7(X - 1) = 21
X =_________
19.解方程:X + X/3 = 12
X =_________
X =_________
25.解方程:7X - 3 = 4X + 15
X =_________2.解方程:9 - 2(X - 1) = 5
X =_________
27.解方程:X + 2X + X/2 = 20
X =_________
28.解方程:8(X/2 - 1) = 0
X =_________
66.解方程:6X - 3 = 3(X - 2)
X =_________
67.解方程:2(X + 1) = 3X - 4
X =_________
68.解方程:8X - 16 = 32
X =_________
69.解方程:1/2X + 3 = X
X =_________
70.解方程:14 = 2(X + 5) - 6
人教版七年级数学拔高试卷
一、选择题(每题4分,共20分)1. 若方程 2x - 3 = 5 的解为 x = 3,则方程 4x + 6 = 2x - 12 的解为()。
A. x = -9B. x = -6C. x = 6D. x = 92. 下列各组数中,成等差数列的是()。
A. 2, 5, 8, 11B. 1, 3, 6, 10C. 4, 9, 16, 25D. 1, 2, 4, 83. 在平面直角坐标系中,点A(2,3)关于原点对称的点的坐标是()。
A. (-2,-3)B. (2,-3)C. (-2,3)D. (3,-2)4. 若a,b,c是等比数列的前三项,且a + b + c = 12,abc = 27,则a的值为()。
A. 1B. 3C. 9D. 275. 已知函数f(x) = x^2 - 4x + 4,那么f(x)的最小值为()。
A. 0B. 1C. 2D. 4二、填空题(每题5分,共25分)6. 若等差数列{an}中,a1 = 3,公差d = 2,则第10项an = ________。
7. 在△ABC中,角A、B、C的对边分别为a、b、c,且a = 5,b = 7,c = 8,则角A的余弦值为 ________。
8. 已知等比数列{an}中,a1 = 2,公比q = 3,则第5项an = ________。
9. 在平面直角坐标系中,点P(-3,2)到直线y = 2x + 1的距离为 ________。
10. 若函数f(x) = ax^2 + bx + c的图像开口向上,且顶点坐标为(-1,2),则a = ________,b = ________。
三、解答题(每题10分,共30分)11. (10分)已知数列{an}的前n项和为Sn,且a1 = 1,an = an-1 + 2n - 1,求Sn的表达式。
12. (10分)在△ABC中,角A、B、C的对边分别为a、b、c,且a = 3,b = 4,c = 5,求sinB的值。
七年级数拔高题1
53.解方程:5X - 2(X + 1) = 0
X =_________
54.解方程:X + 2 = 4(X - 1)
X =_________
55.解方程:3(X - 5) = 2(X + 3)
X =_________
56.解方程:2(X + 6) - 3X = 5
X =_________
X =_________
25.解方程:5(X + 2) - 3 = 2(X + 7)
X =_________
26.解方程:X/5 - 3 = 0
X =_________
27.解方程:4X + 8 = 2(X + 6)
X =_________
28.解方程:2(X - 5) = 3(X + 1)
X =_________
X =_________
10.解方程:9 = 3X + 1
X =_________
11.解方程:8X + 2 = 10 + 4X
X =_________
12.解方程:2X/5 = 4
X =_________
13.解方程:X - 3 = 2X + 1
X =_________
14.解方程:5(X - 2) = X + 8
X =_________
43.解方程:7(X + 2) = 35
X =_________
44.解方程:X/2 - 4 = -2
X =_________
45.解方程:5 - 2X = 3
X =_________
46.解方程:X + 15 = 3(X - 1)
七年级人教版数学拔高试卷
一、选择题(每题4分,共20分)1. 已知a、b是方程x^2-4x+3=0的两个实数根,则a+b的值是:A. 2B. 3C. 4D. 52. 下列各数中,有理数是:A. √2B. πC. 3.14D. -√23. 在下列各数中,绝对值最小的是:A. 2B. -3C. 0.5D. -2.54. 已知x=2,则代数式x^2-5x+6的值为:A. 1B. 3C. 5D. 75. 若a、b是方程x^2-3x+2=0的两个实数根,则a^2+b^2的值是:A. 4B. 5C. 6D. 7二、填空题(每题4分,共16分)6. 已知方程x^2-2x-3=0的解是x1、x2,则x1+x2=________,x1x2=________。
7. 若a、b是方程x^2-5x+6=0的两个实数根,则a^2+b^2=________。
8. 已知a、b是方程x^2-2x+1=0的两个实数根,则a^2+2ab+b^2=________。
9. 若x^2+3x-4=0的两个实数根分别为x1、x2,则x1+x2=________,x1x2=________。
10. 若x^2-3x+2=0的两个实数根分别为x1、x2,则x1^2+x2^2=________。
三、解答题(每题10分,共30分)11. (10分)已知方程x^2-4x+3=0的解是x1、x2,求(x1+x2)^2+2x1x2的值。
12. (10分)已知方程x^2-5x+6=0的解是x1、x2,求x1^2+x2^2+2x1x2的值。
13. (10分)已知方程x^2-2x+1=0的解是x1、x2,求x1^2+x2^2-x1x2的值。
答案:一、选择题1. C2. C3. C4. B5. A二、填空题6. 4,-37. 118. 19. -3,-410. 5三、解答题11. 1912. 3713. 2。
人教版七年级数学上册第三章《一元一次方程》应用题填空题拔高训练(一)
人教版七年级数学上册第三章《一元一次方程》应用题专题训练1.暑假期间,亮视眼镜店开展学生配镜优惠活动.某款式眼镜的广告如下,请你为广告牌填上原价.原价:元暑假八折优惠,现价:160元2.幻方是相当古老的数学问题,我国古代的《洛书》中记载了最早的幻方﹣﹣九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m的值为.3.“元旦”期间,某商店单价为130元的书包按八折出售可获利30%,则该书包的进价是元.4.有一列数,按一定的规律排列成,﹣1,3,﹣9,27,﹣81,….若其中某三个相邻数的和是﹣567,则这三个数中第一个数是.5.有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元、30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是元.6.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是元.7.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.8.文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”,小华说:“那就多买一个吧,谢谢,”根据两人的对话可知,小华结账时实际付款元.9.某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为件.10.一个书包的标价为115元,按8折出售仍可获利15%,该书包的进价为元.11.任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.为例进行说明:设0.=x,由0.=0.7777…可知,10x=7.7777…,所以10x﹣x=7,解方程,得x=,于是.得0.=.将0.写成分数的形式是.12.小明按标价的八折购买了一双鞋,比按标价购买节省了40元,这双鞋的实际售价为元.13.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为元.14.已知:派派的妈妈和派派今年共36岁,再过5年,派派的妈妈的年龄是派派年龄的4倍还大1岁,当派派的妈妈40岁时,则派派的年龄为岁.15.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是元.16.一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是元.17.明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有两.(注:明代时1斤=16两,故有“半斤八两”这个成语)18.一件服装的标价为200元,打八折销售后可获利50元,则该件服装的成本价是元.19.某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件元.20.甲乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,则甲运动周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,则甲运动周,甲、乙第一次相遇,…,以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转周,时针和分针第一次相遇.21.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是元.22.一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是元.23.为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的还少5台,则购置的笔记本电脑有台.24.王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材买了千克.参考答案1.解:设广告牌上的原价为x元,依题意,得:0.8x=160,解得:x=200.故答案为:200.2.解:依题意,得:2+m+4=15,解得:m=9.故答案为:9.3.解:设该书包的进价为x元,根据题意得:130×80%﹣x=30%x,整理得:1.3x=104,解得:x=80,则该书包的进价是80元.故答案为:80.4.解:设这三个数中的第一个数为x,则另外两个数分别为﹣3x,9x,依题意,得:x﹣3x+9x=﹣567,解得:x=﹣81.故答案为:﹣81.5.解:设所购商品的标价是x元,则①所购商品的标价小于90元,x﹣20+x=150,解得x=85;②所购商品的标价大于90元,x﹣20+x﹣30=150,解得x=100.故所购商品的标价是100或85元.故答案为:100或85.由题意得,(1+40%)x×0.8=2240.解得:x=2000,故答案为20007.解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100﹣60)t=100,解得:t=2.5,∴100t=100×2.5=250.答:走路快的人要走250步才能追上走路慢的人.故答案是:250.8.解:设小华购买了x个笔袋,根据题意得:18(x﹣1)﹣18×0.9x=36,解得:x=30,∴18×0.9x=18×0.9×30=486.答:小华结账时实际付款486元.故答案为:486.9.解:设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据题意得:x+1.5x﹣1000=6000,解得:x=2800,∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.10.解:设该书包的进价为x元,根据题意得:115×0.8﹣x=15%x,解得:x=80.答:该书包的进价为80元.故答案为:80.11.解:设0.=x,则36.=100x,∴100x﹣x=36,解得:x=.故答案为:.根据题意,得0.8x=x﹣40x=200.200﹣40=160(元)故答案是:160.13.解:设该商品每件销售利润为x元,根据题意,得80+x=120×0.7,解得x=4.答:该商品每件销售利润为4元.故答案为4.14.解:设今年派派的年龄为x岁,则妈妈的年龄为(36﹣x)岁,根据题意得:36﹣x+5=4(x+5)+1,解得:x=4,∴36﹣x﹣x=28,∴40﹣28=12(岁).故答案为:12.15.解:设进价是x元,则(1+20%)x=200×0.6,解得:x=100.则这件衬衣的进价是100元.故答案为100.16.解:设这台空调的进价为x元,根据题意得:2000×0.6﹣x=x×20%,解得:x=1000.故这台空调的进价是1000元.故答案为:1000.17.解:设有x人,依题意有7x+4=9x﹣8,解得x=6,7x+4=42+4=46.答:所分的银子共有46两.故答案为:46.18.解:设该件服装的成本价是x元,依题意得:200×80%﹣x=50,解得:x=110.∴该件服装的成本价是110元.故答案为:110.19.解:设该商品的标价为每件x元,由题意得:80%x﹣100=20,解得:x=150.答:该商品的标价为每件150元.故答案为:150.20.解:设分针旋转x周后,时针和分针第一次相遇,则时针旋转了(x﹣1)周,根据题意可得:60x=720(x﹣1),解得:x=.故答案为:.21.解:设第一次购书的原价为x元,则第二次购书的原价为3x元,依题意得:①当0<x≤时,x+3x=229.4,解得:x=57.35(舍去);②当<x≤时,x+×3x=229.4,解得:x=62,此时两次购书原价总和为:4x=4×62=248;③当<x≤100时,x+×3x=229.4,解得:x=74,此时两次购书原价总和为:4x=4×74=296;④当100<x≤200时,x+×3x=229.4,解得:x≈76.47(舍去);⑤当x>200时,x+×3x=229.4,解得:x≈81.93(舍去).综上可知:小丽这两次购书原价的总和是248或296元.故答案为:248或296.22.解:设该件服装的成本价是x元,依题意得:300×﹣x=60,解得:x=180.∴该件服装的成本价是180元.故答案为:180.23.解:设购置的笔记本电脑有x台,则购置的台式电脑为(100﹣x)台,依题意得:x=(100﹣x)﹣5,即20﹣x=0,解得:x=16.∴购置的笔记本电脑有16台.故答案为:16.24.5解:设买了甲种药材x千克,乙种药材(x﹣2)千克,依题意,得20x+60(x﹣2)=280,解得:x=5.即:甲种药材5千克.故答案是:5.。
初一数学拔高题
初一数学《有理数》拓展提高试题 一选择题(每小题3分,共30分)1.某粮店出售三种品牌的面粉,袋上分别标有质量为(25±0.1)kg 、(25±0.2)kg 、 (25 ± 03)kg 的字样,从中任意拿出两袋 ,它们的质量最多相差( )A. 0.8kgB. 0.6kgC. 0.5kg D . 0.4kg2、有理数a 等于它的倒数,则a 2004是----------------------------------------------------( )A.最大的负数 B.最小的非负数 C.绝对值最小的整数 D.最小的正整数 3、若0ab ≠,则a bab+的取值不可能是-----------------------------------------------( ) A .0 B.1 C.2 D.-2 4、=<3-x 3-x ,3则若x A 、1 B 、-1 C 、0 D 、25、如果有2005名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2005名学生所报的数是……………………… ( )A 、1B 、2C 、3D 、46、若|a|=4,|b|=2,且|a+b|=a+b, 那么a-b 的值只能是( ).A.2B. -2C. 6D.2或6 7、 x 是任意有理数,则2|x |+x 的值( ).A.大于零B. 不大于零C. 小于零D.不小于零 8、观察这一列数:34-,57, 910-, 1713,3316-,依此规律下一个数是( ) A.4521 B.4519 C.6521 D.65199、下列各式中正确是( )(A )22()a a =- (B )33()a a =-(C )33()aa =- (D )33a a=10、的值为则满足有理数ab b b a a b a ,,,>-=A 正数B 负数C 负数或零D 非负数 二、填空题(每小题4分,共32分)11.请将3,4,-6,10这四个数用加减乘除四则运算以及括号组成结果为24的算式(每个数有且只能用一次)_______________ ______ ; 12.=--<)(0m m m ,则若 (-3)2013×( -31)2014= ; 13.20162015201620152015)()1(9)51,n m xyb a n m y x b a --+⨯-+(是它本身,求的相反数本身,的绝对值与倒数均是它互为倒数,互为相反数,与若.14绝对值大于-2.1而小于4.3的整数有 ,其和为 .. 15.设c b a ,,为有理数,则由ccb b a a ++ 构成的各种数值是 16.设有理数a ,b ,c 在数轴上的对应点如图所示,则 │b-a │+│a+c │+│c-b•│=____ _ ___;17.2(1)20a b -++=,那么a b += 18、 读一读:式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+…+100”表示为1001n n =∑,这里“∑”是求和符号,例如“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为501(21);n n =-∑又如“333333333312345678910+++++++++”可表示为1031n n=∑,同学们,通过以上材料的阅读,请解答下列问题:(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为 ; (2)计算:521(1)n n=-∑= (填写最后的计算结果)。
人教版数学七年级上册拔高题,综合题(word文档良心出品)
七年级上学期拔高题1、翻开数学书,连续看了3页,页码的和为363,则这3页的页码分别是第____ 页,第_______页,第________页.2、近似数3.12×105精确到________位,有________个有效数字.3、如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A 点表示的数是 。
若点B 表示-3.14,则点B 在点A 的 边(填“左”或“右”)。
4、如果a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,那么 a +b +m 2-cd 的值为( )A 、3B 、±3 C、3±21 D 、4±21 5、现定义两种运算“⊕” “*”。
对于任意两个整数,1a b a b ⊕=+-,1a b a b *=⨯-,则6⊕【8*(3⊕5)】的结果是( )A 、60B 、70C 、112D 、696、某个体户在一次买卖中同时卖出两件上衣,售价都是135元,若按成本价计算,其中一件盈利25%,另一件亏损25%,在这次买卖中他 ( )A 、赚18元B 、赚36元C 、亏18元D 、不赚不亏 7、(8分)如图,已知AC=32AB,D 是AC 的中点,E 是BC 的中点. (1)若AB=24cm,求DE 的长;(2)若CE=6cm,求DB 的长.8、 (8分)观察下面几个算式1+2+1=4=2×2 1+2+3+2+1=9=3×31+2+3+4+3+2+1=16=4×4 ……根据上面呈现出的规律,计算下面几个题目: (1)1+2+3+…+10+…+3+2+1 (2)1+2+3+…+200+…+3+2+1 (3)1+2+3+…+2006+…+3+2+19、小明用每小时8千米的速度到某地郊游,回来时走比原路长3 千米的另一条路线,速度为每小时9千米,这样回去比去时多用18小时,求原路长.10、李小明一年前存入一笔钱,年利率为2.25%,但要缴纳20%的利息税, 到期共获得本息和为16288元,求李小明一年前存入银行的本金是多少元?11、股民小张星期五买某公司股票10000股,每股12.60元,下表为第二周星期一至星期五每日该股票涨跌情况(单位:元):星期一二三四五每股涨跌+0.6 +0.3 -0.2 -0.3 +0.1(1)星期三收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知小张买进股票时付了成交额0.15%的手续费,卖出时付了成交额0.15%的手续费和成交额0.1%的交易税,如果小张在星期五收盘前将全部股票卖出,那么他的收益情况如何?12、某顾客看中了小明妈妈开的服装店里进价为268元的一件上装,这件衣服按进价的135%标价的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页,共4页
初一数学应用题拔高
一、 解答题
1. 经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国.小明家网店中红枣和小米这两种商品的相关信息如下表: 根据上表提供的信息,解答下列问题:
(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共 ,获得利润 万元,求这前五个月小明家网店销售这种规格的红枣多少袋;
2. 如图是某市民健身广场的平面示意图,它是由 个正方形拼成的长方形,已知中间最小的正方形 的边长是 米.
(1)若设图中最大正方形 的边长是 米,请用含 的代数式分别表示出正方形 的边长 ________正方形 的边长 ________,正方形 的边长 ________;
(2)观察图形的特点可知,长方形相对的两边是相等的(如图中的 ).根据等量关系可求出 ________;.
(3)现沿着长方形广场的四条边铺设下水管道,由甲、乙 个工程队单独铺设分别需要 天、 天完成.如果两队从同一点开始,沿相反的方向同时施工 天后,因甲队另有任务,余下的工程由乙队单独施工,试问乙还要多少天完成?甲、乙 个工程队各铺设多少米?
3. 小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示,根据图中的数据(单位: ),解答下列问题:
(1)用含 的代数式表示厨房的面积________ ,卧室的面积________ .
(2)设此经济适用房的总面积为 ,请你用含 的代数式表示 .
(3)已知厨房面积比卫生间面积多 ,且铺 地砖的平均费用为 元,那么铺地砖的总费用为多少元?
4. 已知数轴上有 , , 三点,分别表示数 , , .两只电子蚂蚁甲、乙分别从 , 两点同时相向而行,甲的速度为 个单位/秒,乙的速度为 个单位/秒.
(1)问甲、乙在数轴上的哪个点相遇?
(2)问多少秒后甲到 , , 三点的距离之和为 个单位?.
(3)若甲、乙两只电子蚂蚁(用 表示甲蚂蚁、 表示乙蚂蚁)分别从 , 两点同时相向而行,甲的速度变为原来的 倍,乙的速度不变,直接写出多少时间后,原点 、甲蚂蚁 与乙蚂蚁 三点中,有一点恰好是另两点所连线段的中点.
5. 已知: 是最小的正整数,且 、 满足 ,请回答问题 (1)请直接写出 、 、 的值. ________, ________, ________
(2) 、 、 所对应的点分别为 、 、 ,点 为一动点,其对应的数为 ,点 在 、 之间运动时,请化简式
子: (请写出化简过程)
(3)在(1)(2)的条件下,点 、
、
开始在数轴上运动,若点
以每秒 个单位长度的速度向左运动,同时,点 和点 分别以每秒 个单位长度和 个单位长度的速度向右运动,假设经过 秒钟过后,若点 与点 之间的距离表示为 ,点 与点 之间的距离表示为 .请问: 的值是否随着时间 的变化而改变?若变化,请说明理由;若不变,请求其值.
6. 如图所示,数轴上有 、 、 、 四个点,分别对应的数为 、 、 、 ,且满足 , , 与 互为相反数.
(1) ________; ________; ________.
(2)若 、 两点以 个单位长度/秒的速度向右匀速运动,同时 、 两点以 个单位长度/秒的速度向左匀速运动,并设运动时间为 秒,问 为多少时, 、 两点相遇?
(3)在(2)的条件下, 、 、 、 四点继续运动,当点 运动到点 的右侧时,问是否存在时间 ,使得 与 的距离是 与 的距离的 倍?若存在,求时间 ;若不存在,请说明理由.
第2
7. 为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多 元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过 套,则购买足球打八折.
(1)求每套队服和每个足球的价格是多少?
(2)若城区四校联合购买 套队服和 个足球,请用含 的式子分别表示出到甲商场和乙商场购买装备所花的费用;
(3)在(2)的条件下,若 ,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?
8. 某市居民用水收费标准如下,每户每月用水不超过 立方米时,水费按 元/立方米收费,每户每月用水超过 立方米时,未超过的部分按 元/立方米收费,超过的部分按 元/立方米收费. 若某用户 月份用水 立方米,交水费 元,求 的值;
若该用户 月份交水费 元,请问其 月份用水多少立方米?
9. 如图的数阵是由 个偶数排成:
(1)如图中任意作一个平行四边形框,设左上角的数为 ,那么其他 个数从小到大可分为别表示为________.
(2)小红说这 个数的和是 ,能求出这 个数吗?若存在,请求出这 个数.不存在说明理由.
(3)小明说 个数的和是 ,存在这样的数吗?若存在,请求出这 个数,不存在说明理由.
10. 某市出租车收费标准是:起步价 元,可乘 千米,超过 千米后,超过部分每千米 元. (1)若某人乘坐了 千米的路程,则他应支付的费用是多少?
(2)若某人支付了 元车费,那么他乘坐的路程是多少?
第3页,共4页
答案
1. 这前五个月小明家网店销售这种规格的红枣 袋这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润 元
2.
或 (3)由(1)(2)可知,长方形 的长为 米,宽为 米,则长方形 的周
长为 (米).
设余下的工程由乙队单独施工,还要 天完成,由题意,得
,
解得: .
则甲工程队铺设了
(米).
乙工程队铺设了 (米).
答:还要 天完成,甲工程队铺设了 米,乙工程队铺设了 米. 3. (2) ;(3)由题意得: , 解得 ,
当 时, , (元),
答:铺地砖的总费用为 元. 4. 解:(1)设 秒后甲与乙相遇,则 , 解得 , ,
.
故甲、乙在数轴上的 相遇;(2)设 秒后甲到 , , 三点的距离之和为 个单位,
点距 , 两点的距离为 , 点距 、 两点的距离为 , 点距 、 的距离为 ,故甲应为于 或 之间. ① 之间时: 解得 ;
② 之间时: ,
解得 . (3)①设 秒后原点 是甲蚂蚁 与乙蚂蚁 两点的中点,则 ,解得
(舍去);
②设 秒后乙蚂蚁 是甲蚂蚁 与原点 两点的中点,则 ,解得
;
③设 秒后甲蚂蚁 是乙蚂蚁 与原点 两点的中点,则 ,解得
;
综上所述, 秒或
秒后,原点 、甲蚂蚁 与乙蚂蚁 三点中,
有一点恰好是另两点所连线段的中点. 5. (2)由题意 ,
∴ .(3)不变,由题意 , , ∴ , ∴ 的值不变, .
6. (2)当运动时间为 秒时,点 对应的数为 ,点 对应的数为 , 根据题意得: , 解得:
.
答: 为
时, 、 两点相遇.(3)假设存在,当运动时间为 秒时,点 对应的数为 ,点 对应的数为 ,点 对应的数为 ,
∵点 在点 的右侧,且 与 的距离是 与 的距离的 倍, ∴ , 解得: .
答:存在时间 ,使得 与 的距离是 与 的距离的 倍,此时 的值为 .
7. 每套队服 元,每个足球 元;(2)到甲商场购买所花的费用为:
(元),
到乙商场购买所花的费用为: (元);(3)在乙商场购买比较合算,理由如下:
将 代入,得
(元). (元), 因为 ,
所以在乙商场购买比较合算.
8. (1) ; 该用户 月份用水量为 立方米.
9. , , (2)依题意得: , 整理,得 , .
则 , , . 答:这四个数分别是: 、 、 、 ;(3)假设 个数的和是 , 依题意得: , 解得
则这四个数为 , , , .
但是它们不在同一平行四边形内,所以不存在这样的 个数. 10. 他乘坐的路程是 千米.
11. (2)没有被阴影覆盖的这四个数之和不能等于 ,理由如下:
第4页,共4页
四个数之和为 , ∴ , 解得: , ∵ 为正整数,
∴没有被阴影覆盖的这四个数之和不能等于 .(3)根据题意得: , 解得: .
答:这四个数之和能等于 ,此时 的值为 .
12. (3)由题意得 , 解得 .
答:当被框住的 个数之和等于 时, 的值为 . 13. 、 两型自行车的单价分别是 元和 元; 问题 由题可得,
,
解得 ,
经检验: 是所列方程的解, 故 的值为。