2015年高考理科数学模拟试题(二)(含答案)

合集下载

2015年普通高校招生全国统一考试模拟检测卷(2)数学(理科)

2015年普通高校招生全国统一考试模拟检测卷(2)数学(理科)

2015年普通高校招生全国统一考试模拟检测卷(2)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.参考公式: 样本数据12,,,n x x x 的标准差s =其中x 为样本平均数 柱体体积公式VSh =其中S 为底面面积,h 为高锥体体积公式13V Sh =其中S 为底面面积,h 为高球的表面积,体积公式24R S π=,334R V π=其中R 为球的半径第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设1|52A x x ⎧⎫=<<⎨⎬⎩⎭,{}|B x x a =>,若A B ⊆,则实数a 的取值范围是 A .12a <B .12a ≤C .1a ≤D .1a <2.i 是虚数单位,复数242(1)412ii i i+----= A .0B .2C .4i -D .4i3.已知,m n 是两条不重合的直线,,,αβγ是三个不重合的平面,则α∥β的一个充分条件是A .m ∥α,m ∥βB .α⊥γ,β⊥γC .,,m n m αβ⊂⊂∥nD .,m n 是异面直线,,m m α⊂∥,,n n ββ⊂∥α4.一个几何的三视图如图所示,其中,正(主)视图中△ABC 的边长是2的正三角形,俯视图为正六边形,那么该几何体的体积为A .1B .32C .2D .45.1211x ⎛⎫- ⎪ ⎪⎝⎭的展开式中第三项系数等于 A .6B .8C .12D .16正(主)视图侧(侧)视图俯视图6.在各项均为正数的等比数列{}n a中,31a =,51a ,则2326372a a a a a ++=A .4B .6C .8D.8-7.已知函数(4),0,()(4),0,x x x f x x x x +<⎧=⎨-≥⎩则函数()f x 的零点个数为A .1B .2C .3D .48.在△ABC 中,,,a b c 分别是角,,A B C 的对边,且cos cos 2B bC a c=-+,若b =,4a c +=,则a 的值为A .1B .1或3C .3D.2+9.执行右面的程序框图,若输入的x 的值为2,则输出的n 的值为A .1B .2C .3D .410.已知函数()y f x =的定义域为R ,当0x <时,()1f x >,且对任意的,x y R ∈,等式()()()f x f y f x y =+成立,对任意非零实数x ,()(0)f x f ≠,若数列{}n a 满足1(0)a f =,且11()()(2)n n f a n N f a ++=∈--,则2015a 的值为A .4029B .4017C .4018D .401911.已知定义在R 上的函数()y f x =满足()(4)f x f x =-,且当2x ≠时,其导函数()f x '满足1()()2f x xf x ''>,若(2,3)a ∈,则 A .2(log )(2)(2)af a f f << B .2(2)(2)(log )af f f a << C .2(2)(log )(2)af f a f <<D .2(2)(log )(2)af f a f <<12.如图,等腰梯形ABCD 中,AB ∥CD 且2,1,2((0,1))AB AD DC x x ===∈,以,A B 为焦点,且过点D 的双曲线的离心率为1e ,以,C D 焦点,且过点A 的椭圆的离心率为2e ,则12e e +的取值范围为A .[)2,+∞B.)+∞C.1,2⎡⎫+∞⎪⎢⎪⎣⎭D.)1,+∞第Ⅱ卷(非选择题共90分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.为了解某校高中学生的近视眼发病率,在该校学生中进行分层抽样调查,已知该校高一、高二、高三分别有学生800名、600名、500名.若高三学生共抽取25名,则高一学生共抽取 名. 14.已知正项等比数列{}n a 满足7652a a a =+,若存在两项,m n a a14a =,则11m n+的最小值为 .15.将5个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有 . 16.在平行四边形ABCD 中,3A π∠=,边AB 、AD 的长分别为2,1,若M 、N 分别是边BC 、CD 上的点,且满足||||||||BM CN BC CD =,则AM AN ⋅的取值范围是 . 三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)设等比数列{}n a 首项1256a =,前n 项和为n S ,且21,,n n n S S S ++成等差数列.(1)求{}n a 的公比q ;(2)用n ∏表示{}n a 的前n 项之积,即12n n a a a ∏=⋅⋅⋅,试比较7∏、8∏、9∏的大小.18.(本小题满分12分)如图,直四棱柱1111ABCD A BC D -的底面为正方形,,P O 分别是上、下底面的中心,点E 是AB 的中点,1AB kAA =.(1)求证:1A E ∥平面PBC ;(2)当k =PA 与平面PBC 所成角的正弦值;(3)当k 取何值时,O 在平面PBC 内的射影恰好为△PBC 的重心?19.(本小题满分12分)生产,A B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下:ABC A 1B1C 1D 1P OD E(1)试分别估计元件A ,元件B 为正品的概率;(2)生产一件元件A ,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B ,若是正品可盈利50元,若是次品则亏损10元.在(1)的前提下:①记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望; ②求生产5件元件B 所获得的利润不少于140元的概率.20.(本小题满分12分)已知椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F 、2F ,正△12PF F 的中心恰为椭圆的上顶点A ,且122AF AF ⋅=-.(1)求椭圆E 的方程;(2)过点P 的直线l 与椭圆E 交于两点,M N ,点B 在x 轴上,△BMN 为顶角B 的等腰直角三角形,求直线l 的方程.21.(本小题满分12分)已知函数()(1)(1)x f x x a e b x =--++,2()xg x x e =,,a b R ∈. (1)若b 是函数()g x 的极大值点,求b 的值;(2)在(1)的条件下,若函数()f x 在()0,+∞内存在单调递减区间,求a 的取值范围;(3)若120,0x x >>,且12x x ≠,求证:1212212x x x x e e e x x +->-.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号. 22.(本小题满分10分)【选修4-1:几何选讲】如图,△ABC 内接于⊙O ,AB AC =,直线MN 切⊙O 于点C ,弦BD ∥MN ,AC 与BD相交于点E .(1)求证:△ABE ≌△ACD ; (2)若6AB =,4BC =,求AE 的长. 23.(本小题满分10分)【选修4-4:坐标系与参数方程】 在直角坐标系xOy 中,圆C 的参数方程为1cos ,sin ,x y ϕϕ=+⎧⎨=⎩(ϕ为参数).以O 为极点,x 轴的非AB CM ND E负半轴为极轴建立极坐标系. (1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是(sin )ρθθ=:3OM πθ=与圆C 交点为P ,与直线l 的交点为Q ,求线段PQ 的长.24.(本小题满分10分)【选修4-5:不等式选讲】 已知函数()|||3|f x x x =-+. (1)求()f x 的最大值;(2)若存在实数x 使|2|()m f x -≤成立,求实数m 的取值范围.2015年普通高校招生全国统一考试模拟检测卷(2)数学(理科)参考答案一、选择题,本题考查基础知识,基本概念和基本运算能力二、填空题.本题考查基础知识,基本概念和基本运算技巧 13. 14. 15. 16.三、解答题 17.。

2015年高三数学理科模拟试卷及参考答案

2015年高三数学理科模拟试卷及参考答案

2015年高三数学理科模拟试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若复数221z i i=++,其中i 是虚数单位,则复数z 的模为( )A.22B. 2C. 3D. 2 2.设a ∈R ,则“4a =”是“直线1:230l ax y +-=与直线2:20l x y a +-=平行”的( )条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要3.设函数()2xf x =,则下列结论中正确的是( ) A. (1)(2)(2)f f f -<<- B. (2)(1)(2)f f f -<-<C. (2)(2)(1)f f f <-<-D. (1)(2)(2)f f f -<-<4.设等差数列{n a 的前n 项和是n S ,若11m m a a a +-<<-(m ∈N *,且2m ≥),则必定有( )A. 0m S >,且10m S +<B. 0m S <,且10m S +>C. 0m S >,且10m S +>D. 0m S <,且10m S +<5.已知实数x ∈[1,9],执行如图所示的流程图, 则输出的x 不小于55的概率为( ) A.14B.23C.28D.386.某几何体的立体图如图所示,该几何体的三视图不可能是( )A .B .C .D .7.设函数()log (01)a f x x a =<<的定义域为[,](m n m <)n ,值域为[0,1],若n m -的最小值为13,则实数a 的值为( )A. 14B.14或23C.23D.23或348.设双曲线22143x y-=的左,右焦点分别为12,F F,过1F的直线l交双曲线左支于,A B两点,则22BF AF+的最小值为( )A.192B. 11C. 12D. 169.已知集合{}(,)(1)(1)A x y x x y y r=-+-≤,集合{}222(,)B x y x y r=+≤,若BA⊂,则实数r可以取的一个值是( )A. 21+ B. 3 C. 2 D.212+10.设函数11,(,2)()1(2),[2,)2x xf xf x x⎧--∈-∞⎪=⎨-∈+∞⎪⎩,则函数()()1F x xf x=-的零点的个数为( )A. 4B. 5C. 6D. 711.设等差数列{}na满足:22222233363645sin cos cos cos sin sin1sin()a a a a a aa a-+-=+,公差(1,0)d∈-.若当且仅当9n=时,数列{}n a的前n项和n S取得最大值,则首项1a的取值范围是( )A.74,63ππ⎛⎫⎪⎝⎭B.43,32ππ⎛⎫⎪⎝⎭C.74,63ππ⎡⎤⎢⎥⎣⎦D.43,32ππ⎡⎤⎢⎥⎣⎦12.已知椭圆,过椭圆右焦点F的直线L交椭圆于A、B两点,交y轴于P点.设,则λ1+λ2等于()A.B.C.D.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.从3,2,1,0中任取三个数字,组成无重复数字的三位数中,偶数的个数是(用数字回答).14.若整数..,x y满足不等式组70y xx yx-≥⎧⎪+-≤⎨⎪≥⎩,则2x y+的最大值为15.已知正三棱锥P﹣ABC中,E、F分别是AC,PC的中点,若EF⊥BF,AB=2,则三棱锥P﹣ABC的外接球的表面积为.16.设P(x,y)为函数y=x2﹣1图象上一动点,记,则当m最小时,点P的坐标为.三.解答题。

2015年上海市十三校联考高考数学二模试卷(理科)含详解

2015年上海市十三校联考高考数学二模试卷(理科)含详解

2015年上海市十三校联考高考数学二模试卷(理科)一、填空题(本大题满分56分)本大题共有14题,每个空格填对4分,否则一律得零分.1.(4分)幂函数y=x(m∈N)在区间(0,+∞)上是减函数,则m=.2.(4分)函数的定义域是.3.(4分)在△ABC中,已知BC=8,AC=5,三角形面积为12,则cos2C=.4.(4分)设i为虚数单位,若关于x的方程x2﹣(2+i)x+1+mi=0(m∈R)有一实根为n,则m=.5.(4分)若椭圆的方程为+=1,且此椭圆的焦距为4,则实数a=.6.(4分)若一个圆锥的侧面展开如圆心角为120°、半径为3 的扇形,则这个圆锥的表面积是.7.(4分)若关于x的方程lg(x2+ax)=1在x∈[1,5]上有解,则实数a的取值范围为.8.(4分)《孙子算经》卷下第二十六题:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?.(只需写出一个答案即可)9.(4分)在极坐标系中,某直线的极坐标方程为ρsin(θ+)=,则极点O 到这条直线的距离为.10.(4分)设口袋中有黑球、白球共7 个,从中任取两个球,令取到白球的个数为ξ,且ξ的数学期望Eξ=,则口袋中白球的个数为.11.(4分)如图所示,一个确定的凸五边形ABCDE,令x=•,y=•,z=•,则x、y、z 的大小顺序为.12.(4分)设函数f(x)的定义域为D,D⊆[0,4π],它的对应法则为f:x→sin x,现已知f(x)的值域为{0,﹣,1},则这样的函数共有个.13.(4分)若多项式(1﹣2x+3x2﹣4x3+…﹣2000x1999+2001x2000)(1+2x+3x2+4x3+…+2000x1999+2001x2000)=a0x4000+a1x3999+a2x3998+…+a3999x+a4000,则a1+a3+…+a2015=.14.(4分)在平面直角坐标系中有两点A(﹣1,3)、B(1,),以原点为圆心,r>0为半径作一个圆,与射线y=﹣x(x<0)交于点M,与x轴正半轴交于N,则当r变化时,|AM|+|BN|的最小值为.二、选择题(本大题满分20分)本大题共有4题,每题有且仅有一个正确答案,选对得5分,否则一律得零分.15.(5分)若非空集合A中的元素具有命题α的性质,集合B中的元素具有命题β的性质,若A⊊B,则命题α是命题β的()条件.A.充分非必要B.必要非充分C.充分必要D.既非充分又非必要16.(5分)用反证法证明命题:“已知a、b∈N+,如果ab可被 5 整除,那么a、b 中至少有一个能被5 整除”时,假设的内容应为()A.a、b 都能被5 整除B.a、b 都不能被5 整除C.a、b 不都能被5 整除D.a 不能被5 整除17.(5分)实数x、y满足x2+2xy+y2+4x2y2=4,则x﹣y的最大值为()A.B.C.D.218.(5分)直线m⊥平面α,垂足是O,正四面体ABCD的棱长为4,点C在平面α上运动,点B在直线m上运动,则点O到直线AD的距离的取值范围是()A.[,]B.[2﹣2,2+2]C.[,]D.[3﹣2,3+2]三、解答题(本大题满分74分)本大题共5题,解答下列各题须写出必要的步骤.19.(12分)已知正四棱柱ABCD﹣A1B1C1D1,底面边长为,点P、Q、R分别在棱AA1、BB1、BC上,Q是BB1中点,且PQ∥AB,C1Q⊥QR(1)求证:C1Q⊥平面PQR;(2)若C1Q=,求四面体C1PQR的体积.20.(14分)已知数列{b n}满足b1=1,且b n+1=16b n(n∈N),设数列{}的前n 项和是T n.(1)比较T n+12与T n•T n+2的大小;(2)若数列{a n}的前n项和S n=2n2+2n+2,数列{c n}=a n﹣log d b n(d>0,d≠1),求d的取值范围使得{c n}是递增数列.21.(14分)某种波的传播是由曲线f(x)=Asin(ωx+φ)(A>0)来实现的,我们把函数解析式f(x)=Asin(ωx+φ)称为“波”,把振幅都是A 的波称为“A 类波”,把两个解析式相加称为波的叠加.(1)已知“1 类波”中的两个波f1(x)=sin(x+φ1)与f2(x)=sin(x+φ2)叠加后仍是“1类波”,求φ2﹣φ1的值;(2)在“A 类波“中有一个是f1(x)=Asinx,从A类波中再找出两个不同的波f2(x),f3(x),使得这三个不同的波叠加之后是平波,即叠加后f1(x)+f2(x)+f3(x),并说明理由.(3)在n(n∈N,n≥2)个“A类波”的情况下对(2)进行推广,使得(2)是推广后命题的一个特例.只需写出推广的结论,而不需证明.22.(16分)设函数f(x)=ax2+(2b+1)x﹣a﹣2(a,b∈R).(1)若a=0,当x∈[,1]时恒有f(x)≥0,求b的取值范围;(2)若a≠0且b=﹣1,试在直角坐标平面内找出横坐标不同的两个点,使得函数y=f(x)的图象永远不经过这两点;(3)若a≠0,函数y=f(x)在区间[3,4]上至少有一个零点,求a2+b2的最小值.23.(18分)设有二元关系f(x,y)=(x﹣y)2+a(x﹣y)﹣1,已知曲线Γ:f (x,y)=0(1)若a=2时,正方形ABCD的四个顶点均在曲线上Γ,求正方形ABCD的面积;(2)设曲线Γ与x轴的交点是M、N,抛物线Γ′:y=x2+1与y轴的交点是G,直线MG与曲线Γ′交于点P,直线NG与曲线Γ′交于Q,求证:直线PQ过定点,并求出该定点的坐标.(3)设曲线Γ与x轴的交点是M(u,0),N(v,0),可知动点R(u,v)在某确定的曲线∧上运动,曲线∧与上述曲线Γ在a≠0时共有四个交点:A(x1,x2),B(x3,x4),C(x5,x6),D(x7,x8),集合X={x1,x2,…,x8}的所有非空子集设为Y i(i=1,2,…,255),将Y i中的所有元素相加(若iY中只有一个元素,则其是其自身)得到255个数y1,y2,…,y255求所有的正整数n的值,使得y1n+y2n+…+y255n是与变数a及变数x i(i=1,2,…8)均无关的常数.2015年上海市十三校联考高考数学二模试卷(理科)参考答案与试题解析一、填空题(本大题满分56分)本大题共有14题,每个空格填对4分,否则一律得零分.1.(4分)幂函数y=x(m∈N)在区间(0,+∞)上是减函数,则m= 0.【考点】4U:幂函数的概念、解析式、定义域、值域;4Y:幂函数的单调性、奇偶性及其应用.【专题】11:计算题;51:函数的性质及应用;59:不等式的解法及应用.【分析】根据幂函数的性质,可得m2+2m﹣3<0,解不等式求得自然数解,即可得到m=0.【解答】解:由幂函数y=x m2+2m﹣3在(0,+∞)为减函数,则m2+2m﹣3<0,解得﹣3<m<1.由于m∈N,则m=0.故答案为:0.【点评】本题考查幂函数的性质,主要考查二次不等式的解法,属于基础题.2.(4分)函数的定义域是(0,1] .【考点】33:函数的定义域及其求法;4K:对数函数的定义域.【专题】11:计算题.【分析】令被开方数大于等于0,然后利用对数函数的单调性及真数大于0求出x的范围,写出集合区间形式即为函数的定义域.【解答】解:∴0<x≤1∴函数的定义域为(0,1]故答案为:(0,1]【点评】求解析式已知的函数的定义域应该考虑:开偶次方根的被开方数大于等于0;对数函数的真数大于0底数大于0小于1;分母非0.3.(4分)在△ABC中,已知BC=8,AC=5,三角形面积为12,则cos2C=.【考点】HR:余弦定理.【专题】11:计算题.【分析】先通过BC=8,AC=5,三角形面积为12求出sinC的值,再通过余弦函数的二倍角公式求出答案.【解答】解:∵已知BC=8,AC=5,三角形面积为12,∴•BC•ACsinC=12∴sinC=∴cos2C=1﹣2sin2C=1﹣2×=故答案为:【点评】本题主要考查通过正弦求三角形面积及倍角公式的应用.属基础题.4.(4分)设i为虚数单位,若关于x的方程x2﹣(2+i)x+1+mi=0(m∈R)有一实根为n,则m=1.【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】把n代入方程,利用复数相等的条件,求出m,n,即可.【解答】解:关于x的方程x2﹣(2+i)x+1+mi=0(m∈R)有一实根为n,可得n2﹣(2+i)n+1+mi=0所以,所以m=n=1,故答案为:1.【点评】本题考查复数相等的条件,考查计算能力,是基础题.5.(4分)若椭圆的方程为+=1,且此椭圆的焦距为4,则实数a=4或8.【考点】K4:椭圆的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】首先分两种情况:①焦点在x轴上.②焦点在y轴上,分别求出a的值即可.【解答】解:∵椭圆的焦距为4.∴2c=4,即c=2∵在椭圆中,a2=b2+c2①焦点在x轴上时:10﹣a﹣(a﹣2)=4解得:a=4.②焦点在y轴上时a﹣2﹣(10﹣a)=4解得:a=8故答案为:4或8.【点评】本题考查的知识要点:椭圆方程的两种情况:焦点在x轴或y轴上,考察a、b、c的关系式,及相关的运算问题.6.(4分)若一个圆锥的侧面展开如圆心角为120°、半径为3 的扇形,则这个圆锥的表面积是4π.【考点】LE:棱柱、棱锥、棱台的侧面积和表面积.【专题】5F:空间位置关系与距离.【分析】易得圆锥侧面展开图的弧长,除以2π即为圆锥的底面半径,圆锥表面积=底面积+侧面积=π×底面半径2+π×底面半径×母线长,把相关数值代入即可求解.【解答】解:圆锥的侧面展开图的弧长为:=2π,∴圆锥的底面半径为2π÷2π=1,∴此圆锥的表面积=π×(1)2+π×1×3=4π.故答案为:4π.【点评】本题考查扇形的弧长公式为;圆锥的侧面展开图的弧长等于圆锥的底面周长,圆锥的表面积的求法.7.(4分)若关于x的方程lg(x2+ax)=1在x∈[1,5]上有解,则实数a的取值范围为﹣3≤a≤9.【考点】51:函数的零点.【专题】11:计算题;51:函数的性质及应用.【分析】由题意,x2+ax﹣10=0在x∈[1,5]上有解,可得a=﹣x在x∈[1,5]上有解,利用a=﹣x在x∈[1,5]上单调递减,即可求出实数a的取值范围.【解答】解:由题意,x2+ax﹣10=0在x∈[1,5]上有解,所以a=﹣x在x∈[1,5]上有解,因为a=﹣x在x∈[1,5]上单调递减,所以﹣3≤a≤9,故答案为:﹣3≤a≤9.【点评】本题主要考查方程的根与函数之间的关系,考查由单调性求函数的值域,比较基础.8.(4分)《孙子算经》卷下第二十六题:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?23,或105k+23(k为正整数)..(只需写出一个答案即可)【考点】F4:进行简单的合情推理.【专题】5M:推理和证明.【分析】根据“三三数之剩二,五五数之剩三,七七数之剩二”找到三个数:第一个数能同时被3和5整除;第二个数能同时被3和7整除;第三个数能同时被5和7整除,将这三个数分别乘以被7、5、3除的余数再相加即可求出答案.【解答】解:我们首先需要先求出三个数:第一个数能同时被3和5整除,但除以7余1,即15;第二个数能同时被3和7整除,但除以5余1,即21;第三个数能同时被5和7整除,但除以3余1,即70;然后将这三个数分别乘以被7、5、3除的余数再相加,即:15×2+21×3+70×2=233.最后,再减去3、5、7最小公倍数的整数倍,可得:233﹣105×2=23.或105k+23(k为正整数).故答案为:23,或105k+23(k为正整数).【点评】本题考查的是带余数的除法,简单的合情推理的应用,根据题意下求出15、21、70这三个数是解答此题的关键.[可以原文理解为:三个三个的数余二,七个七个的数也余二,那么,总数可能是三乘七加二,等于二十三.二十三用五去除余数又恰好是三]9.(4分)在极坐标系中,某直线的极坐标方程为ρsin(θ+)=,则极点O 到这条直线的距离为.【考点】Q4:简单曲线的极坐标方程.【专题】5S:坐标系和参数方程.【分析】由直线的极坐标方程为ρsin(θ+)=,展开并利用即可得出直角坐标方程,再利用点到直线的距离公式即可得出.【解答】解:由直线的极坐标方程为ρsin(θ+)=,展开为,化为x+y﹣1=0,∴极点O到这条直线的距离d==.故答案为:.【点评】本题考查了直线的极坐标方程化为直角坐标方程、点到直线的距离公式、两角和差的正弦公式,考查了推理能力与计算能力,属于基础题.10.(4分)设口袋中有黑球、白球共7 个,从中任取两个球,令取到白球的个数为ξ,且ξ的数学期望Eξ=,则口袋中白球的个数为3.【考点】CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】设口袋中有白球x个,由已知得ξ的可能取值为0,1,2,由Eξ=,得×,由此能求出口袋中白球的个数.【解答】解:设口袋中有白球x个,由已知得ξ的可能取值为0,1,2,P(ξ=0)=,P(ξ=1)=,P(ξ=2)=,∵Eξ=,∴×,解得x=3.∴口袋中白球的个数为3.故答案为:3.【点评】本题考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要注意排列组合知识的合理运用.11.(4分)如图所示,一个确定的凸五边形ABCDE,令x=•,y=•,z=•,则x、y、z 的大小顺序为x>y>z.【考点】9O:平面向量数量积的性质及其运算;9S:数量积表示两个向量的夹角.【专题】5A:平面向量及应用.【分析】根据向量的数量积公式分别判断x,y,z的符号,得到大小关系.【解答】解:由题意,x=•=AB×ACcos∠BAC>0,y=•=AB×ADcos∠BAD≈AB×ACcos∠BAD,又∠BAD>∠BAC所以cos∠BAD<cos∠BAC,所以x>y>0z=•=AB×AEcos∠BAE<0,所以x>y>z.故答案为:x>y>z.【点评】本题考查了向量的数量积的公式;属于基础题.12.(4分)设函数f(x)的定义域为D,D⊆[0,4π],它的对应法则为f:x→sin x,现已知f(x)的值域为{0,﹣,1},则这样的函数共有1395个.【考点】3C:映射.【专题】51:函数的性质及应用;5J:集合.【分析】分别求出sinx=0,x=0,π,2π,3π,4π,sinx=,x=,x=,x=,x=,sinx=1,x=,x=利用排列组合知识求解得出这样的函数共有:(C+C)()()即可.【解答】解:∵函数f(x)的定义域为D,D⊆[0,4π],∴它的对应法则为f:x→sin x,f(x)的值域为{0,﹣,1},sinx=0,x=0,π,2π,3π,4π,sinx=,x=,x=,x=,x=,sinx=1,x=,x=这样的函数共有:(C+C)()()=31×15×3=1395故答案为:1395【点评】本题考查了映射,函数的概念,排列组合的知识,难度不大,但是综合性较强.13.(4分)若多项式(1﹣2x+3x2﹣4x3+…﹣2000x1999+2001x2000)(1+2x+3x2+4x3+…+2000x1999+2001x2000)=a0x4000+a1x3999+a2x3998+…+a3999x+a4000,则a1+a3+…+a2015=0.【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】根据等式,确定a1=﹣2000×2001+2001×2000=0,a3=0,a5=0,…,即可得出结论.【解答】解:根据(1﹣2x+3x2﹣4x3+…﹣2000x1999+2001x2000)(1+2x+3x2+4x3+…+2000x1999+2001x2000)=a0x4000+a1x3999+a2x3998+…+a3999x+a4000,可得x1999•x2000的系数a1=﹣2000×2001+2001×2000=0,a3=0,a5=0,…,所以a1+a3+a5+…+a2011+a2013+a2015=0,故答案为:0.【点评】本题考查二项式定理的运用,考查学生分析解决问题的能力,属于中档题.14.(4分)在平面直角坐标系中有两点A(﹣1,3)、B(1,),以原点为圆心,r>0为半径作一个圆,与射线y=﹣x(x<0)交于点M,与x轴正半轴交于N,则当r变化时,|AM|+|BN|的最小值为2.【考点】IR:两点间的距离公式.【专题】11:计算题;35:转化思想;5M:推理和证明.【分析】由题意,设M(a,﹣a)(a<0),则r=﹣2a,N(﹣2a,0).可得|AM|+|BN|=+,设2a=x,进而可以理解为(x,0)与(﹣,)和(﹣1,)的距离和,即可得出结论.【解答】解:由题意,设M(a,﹣a)(a<0),则r=﹣2a,N(﹣2a,0).∴|AM|+|BN|=+设2a=x,则|AM|+|BN|=+,可以理解为(x,0)与(﹣5,)和(﹣1,)的距离和,∴|AM|+|BN|的最小值为(﹣5,)和(﹣1,﹣)的距离,即2.故答案为:2.【点评】本题考查两点间距离公式的应用,考查学生分析解决问题的能力,有难度.二、选择题(本大题满分20分)本大题共有4题,每题有且仅有一个正确答案,选对得5分,否则一律得零分.15.(5分)若非空集合A中的元素具有命题α的性质,集合B中的元素具有命题β的性质,若A⊊B,则命题α是命题β的()条件.A.充分非必要B.必要非充分C.充分必要D.既非充分又非必要【考点】29:充分条件、必要条件、充要条件.【专题】5J:集合;5L:简易逻辑.【分析】可举个例子来判断:比如A={1},B={1,2},α:x>0,β:x<3,容易说明此时命题α是命题β的既非充分又非必要条件.【解答】解:命题α是命题β的既非充分又非必要条件;比如A={1},α:x>0;B={1,2},β:x<3;显然α成立得不到β成立,β成立得不到α成立;∴此时,α是β的既非充分又非必要条件.故选:D.【点评】考查真子集的概念,以及充分条件、必要条件、既不充分又不必要条件的概念,以及找一个例子来说明问题的方法.16.(5分)用反证法证明命题:“已知a、b∈N+,如果ab可被 5 整除,那么a、b 中至少有一个能被5 整除”时,假设的内容应为()A.a、b 都能被5 整除B.a、b 都不能被5 整除C.a、b 不都能被5 整除D.a 不能被5 整除【考点】FC:反证法.【专题】5M:推理和证明.【分析】反设是一种对立性假设,即想证明一个命题成立时,可以证明其否定不成立,由此得出此命题是成立的.【解答】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”.故选:B.【点评】反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧.17.(5分)实数x、y满足x2+2xy+y2+4x2y2=4,则x﹣y的最大值为()A.B.C.D.2【考点】7F:基本不等式及其应用.【专题】56:三角函数的求值.【分析】x2+2xy+y2+4x2y2=4,变形为(x+y)2+(2xy)2=4,设x+y=2cosθ,2xy=2sinθ,θ∈[0,2π).化简利用三角函数的单调性即可得出.【解答】解:x2+2xy+y2+4x2y2=4,变形为(x+y)2+(2xy)2=4,设x+y=2cosθ,2xy=2sinθ,θ∈[0,2π).则(x﹣y)2=(x+y)2﹣4xy=4cos2θ﹣4sinθ=5﹣4(sinθ+)2≤5,∴x﹣y.故选:C.【点评】本题考查了平方法、三角函数代换方法、三角函数的单调性,考查了推理能力与计算能力,属于中档题.18.(5分)直线m⊥平面α,垂足是O,正四面体ABCD的棱长为4,点C在平面α上运动,点B在直线m上运动,则点O到直线AD的距离的取值范围是()A.[,]B.[2﹣2,2+2]C.[,]D.[3﹣2,3+2]【考点】MK:点、线、面间的距离计算.【专题】5F:空间位置关系与距离.【分析】确定直线BC与动点O的空间关系,得到最大距离为AD到球心的距离+半径,最小距离为AD到球心的距离﹣半径.【解答】解:由题意,直线BC与动点O的空间关系:点O是以BC为直径的球面上的点,所以O到AD的距离为四面体上以BC为直径的球面上的点到AD的距离,最大距离为AD到球心的距离(即BC与AD的公垂线)+半径=2+2.最小距离为AD到球心的距离(即BC与AD的公垂线)﹣半径=2﹣2.∴点O到直线AD的距离的取值范围是:[2﹣2,2+2].故选:B.【点评】本题考查点、线、面间的距离计算,考查学生分析解决问题的能力,属于中档题,解题时要注意空间思维能力的培养.三、解答题(本大题满分74分)本大题共5题,解答下列各题须写出必要的步骤.19.(12分)已知正四棱柱ABCD﹣A1B1C1D1,底面边长为,点P、Q、R分别在棱AA1、BB1、BC上,Q是BB1中点,且PQ∥AB,C1Q⊥QR(1)求证:C1Q⊥平面PQR;(2)若C1Q=,求四面体C1PQR的体积.【考点】LF:棱柱、棱锥、棱台的体积;LW:直线与平面垂直.【专题】5F:空间位置关系与距离;5G:空间角.【分析】(1)由已知得AB⊥平面B1BCC1,从而PQ⊥平面B1BCC1,进而C1Q⊥PQ,又C1Q⊥QR,由此能证明C1Q⊥平面PQR.(2)由已知得B1Q=1,BQ=1,△B1C1Q∽△BQR,从而BR=,QR=,由C1Q、QR、QP两两垂直,能求出四面体C1PQR 的体积.【解答】(1)证明:∵四棱柱ABCD﹣A1B1C1D1是正四棱柱,∴AB⊥平面B1BCC1,又PQ∥AB,∴PQ⊥平面B1BCC1,∴C1Q⊥PQ,又已知C1Q⊥QR,且QR∩QP=Q,∴C1Q⊥平面PQR.(2)解:∵B1C1=,,∴B1Q=1,∴BQ=1,∵Q是BB1中点,C1Q⊥QR,∴∠B1C1Q=∠BQR,∠C1B1Q=∠QBR,∴△B1C1Q∽△BQR,∴BR=,∴QR=,∵C1Q、QR、QP两两垂直,∴四面体C1PQR 的体积V=.【点评】本小题主要考查空间线面关系、线面垂直的证明、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.20.(14分)已知数列{b n}满足b1=1,且b n+1=16b n(n∈N),设数列{}的前n 项和是T n.(1)比较T n+12与T n•T n+2的大小;(2)若数列{a n}的前n项和S n=2n2+2n+2,数列{c n}=a n﹣log d b n(d>0,d≠1),求d的取值范围使得{c n}是递增数列.【考点】82:数列的函数特性;8H:数列递推式.【专题】11:计算题;54:等差数列与等比数列.【分析】(1)由数列递推式可得数列{b n}为公比是16的等比数列,求出其通项公式后可得,然后由等比数列的前n项和求得T n,再由作差法证明T n+12>T n•T n+2;(2)由S n=2n2+2n+2求出首项,进一步得到n≥2时的通项公式,再把数列{a n},{b n}的通项公式代入c n=a n﹣log d b n=4n+(4﹣4n)log d2=(4﹣4log d2)n+4log d2,然后由一次项系数大于0求得d的取值范围.【解答】解:(1)由b n+1=16b n,得数列{b n}为公比是16的等比数列,又b1=1,∴,因此,则=,∵T n+12﹣T n•T n+2=.于是T n+12>T n•T n+2;(2)由S n=2n2+2n+2,当n=1时求得a1=S1=6;当n≥2时,=4n.a1=6不满足上式,∴a n=.当n=1时,c1=a1﹣log d b1=6﹣log d1=6,当n≥2时,可得c n=a n﹣log d b n=4n+(4﹣4n)log d2=(4﹣4log d2)n+4log d2,要使数列{c n}是递增数列,则,解得:0<d<1或d>4.综上,d∈(0,1)∪(4,+∞).【点评】本题考查了等比关系的确定,考查了数列的函数特性,考查了对数不等式的解法,是中档题.21.(14分)某种波的传播是由曲线f(x)=Asin(ωx+φ)(A>0)来实现的,我们把函数解析式f(x)=Asin(ωx+φ)称为“波”,把振幅都是A 的波称为“A 类波”,把两个解析式相加称为波的叠加.(1)已知“1 类波”中的两个波f1(x)=sin(x+φ1)与f2(x)=sin(x+φ2)叠加后仍是“1类波”,求φ2﹣φ1的值;(2)在“A 类波“中有一个是f1(x)=Asinx,从A类波中再找出两个不同的波f2(x),f3(x),使得这三个不同的波叠加之后是平波,即叠加后f1(x)+f2(x)+f3(x),并说明理由.(3)在n(n∈N,n≥2)个“A类波”的情况下对(2)进行推广,使得(2)是推广后命题的一个特例.只需写出推广的结论,而不需证明.【考点】F1:归纳推理;GP:两角和与差的三角函数.【专题】15:综合题;57:三角函数的图像与性质;5M:推理和证明.【分析】(1)根据定义可求得f1(x)+f2(x)=(cosφ1+cosφ2)sinx+(sinφ1+sinφ2)cosx,则振幅是=,由=1,即可求得φ1﹣φ1的值.(2)设f2(x)=Asin(x+φ1),f3(x)=Asin(x+φ2),则f1(x)+f2(x)+f3(x)=0恒成立,可解得cosφ1=﹣,可取φ2=(或φ2=﹣等),证明f1(x)+f2(x)+f3(x)=0.(3)由题意可得f1(x)=Asinx,f2(x)=Asin(x+),f3(x)=Asin(x+),…,从而可求f n(x)=Asin(x+),这n个波叠加后是平波.【解答】解:(1)f1(x)+f2(x)=sin(x+φ1)+sin(x+φ2)=(cosφ1+cosφ2)sinx+(sinφ1+sinφ2)cosx,振幅是=则=1,即cos(φ1﹣φ2)=﹣,所以φ1﹣φ2=2kπ±,k ∈Z.(2)设f2(x)=Asin(x+φ1),f3(x)=Asin(x+φ2),则f1(x)+f2(x)+f3(x)=Asinx+Asin(x+φ1)+Asin(x+φ2)=Asinx(1+cosφ1+cosφ2)+Acosx(sinφ1+sinφ2)=0恒成立,则1+cosφ1+cosφ2=0且sinφ1+sinφ2=0,即有:cosφ2=﹣cosφ1﹣1且sinφ2=﹣sinφ1,消去φ2可解得cosφ1=﹣,若取φ1=,可取φ2=(或φ2=﹣等),此时,f2(x)=Asin(x+),f3(x)=Asin(x+)(或f3(x)=Asin(x﹣)等),则:f1(x)+f2(x)+f3(x)=A[sinx+(sinx+cosx)+(﹣sinx﹣cosx)]=0,所以是平波.(3)f1(x)=Asinx,f2(x)=Asin(x+),f3(x)=Asin(x+),…,f n(x)=Asin(x+),这n个波叠加后是平波.【点评】本题主要考查了两角和与差的正弦函数公式的应用,考查了归纳推理的常用方法,综合性较强,考查了转化思想,属于中档题.22.(16分)设函数f(x)=ax2+(2b+1)x﹣a﹣2(a,b∈R).(1)若a=0,当x∈[,1]时恒有f(x)≥0,求b的取值范围;(2)若a≠0且b=﹣1,试在直角坐标平面内找出横坐标不同的两个点,使得函数y=f(x)的图象永远不经过这两点;(3)若a≠0,函数y=f(x)在区间[3,4]上至少有一个零点,求a2+b2的最小值.【考点】3H:函数的最值及其几何意义;53:函数的零点与方程根的关系.【专题】15:综合题;51:函数的性质及应用.【分析】(1)求出a=0的解析式,再由一次函数的单调性,得到不等式,即可得到范围;(2)b=﹣1时,y=a(x2﹣1)﹣x﹣2,当x2=1时,无论a取任何值,y=﹣x﹣2为定值,y=f(x)图象一定过点(1,﹣3)和(﹣1,﹣1),运用函数的定义即可得到结论;(3)由题意,存在t∈[3,4],使得at2+(2b+1)t﹣a﹣2=0,即(t2﹣1)a+(2t)b+t﹣2=0,由点到直线的距离意义可知≥=,由此只要求,t∈[3,4]的最小值.【解答】解:(1)当a=0时,f(x)=(2b+1)x﹣2,当x∈[,1]时恒有f(x)≥0,则f()≥0且f(1)≥0,即b﹣≥0且2b﹣1≥0,解得b≥;(2)b=﹣1时,y=a(x2﹣1)﹣x﹣2,当x2=1时,无论a取任何值,y=﹣x﹣2为定值,y=f(x)图象一定过点(1,﹣3)和(﹣1,﹣1)由函数定义可知函数图象一定不过A(1,y1)(y1≠﹣3)和B(﹣1,y2)(y2≠﹣1);(3)由题意,存在t∈[3,4],使得at2+(2b+1)t﹣a﹣2=0即(t2﹣1)a+(2t)b+t﹣2=0,由点到直线的距离意义可知≥=,由此只要求,t∈[3,4]的最小值.令g(t)=,t∈[3,4]设u=t﹣2,u∈[1,2],则g(t)=f(u)==∴u=1,即t=3时,g(t)取最小值,∴t=3时,a2+b2的最小值为.【点评】本题考查不等式的恒成立问题转化为求函数的值域问题,主要考查一次函数的单调性,运用主元法和直线和圆有交点的条件是解题的关键.23.(18分)设有二元关系f(x,y)=(x﹣y)2+a(x﹣y)﹣1,已知曲线Γ:f (x,y)=0(1)若a=2时,正方形ABCD的四个顶点均在曲线上Γ,求正方形ABCD的面积;(2)设曲线Γ与x轴的交点是M、N,抛物线Γ′:y=x2+1与y轴的交点是G,直线MG与曲线Γ′交于点P,直线NG与曲线Γ′交于Q,求证:直线PQ过定点,并求出该定点的坐标.(3)设曲线Γ与x轴的交点是M(u,0),N(v,0),可知动点R(u,v)在某确定的曲线∧上运动,曲线∧与上述曲线Γ在a≠0时共有四个交点:A(x1,x2),B(x3,x4),C(x5,x6),D(x7,x8),集合X={x1,x2,…,x8}的所有非空子集设为Y i(i=1,2,…,255),将Y i中的所有元素相加(若iY中只有一个元素,则其是其自身)得到255个数y1,y2,…,y255求所有的正整数n的值,使得y1n+y2n+…+y255n是与变数a及变数x i(i=1,2,…8)均无关的常数.【考点】KH:直线与圆锥曲线的综合.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(1)令f(x,y)=(x﹣y)2+2(x﹣y)﹣1=0,解得x﹣y=﹣1±,由于f(x,y)表示两条平行线,之间的距离是2,为一个正方形,即可得出面积S.(2):在曲线C中,令y=0,则x2+ax﹣1=0,设M(m,0),N(n,0),则mn=﹣1,G(0,1),则直线MG:y=﹣x+1,NG:y=﹣x+1.分别与抛物线方程联立可得P,Q.直线PQ的方程为:,令x=0,可得y=3,因此直线PQ过定点(0,3).(3)令y=0,则x2+ax﹣1=0,则mn=﹣1,即点R(u,v)在曲线xy=﹣1上,又曲线C:f(x,y)=0.恒表示平行线x﹣y=,A(x1,x2),B(x3,x4)关于直线y=﹣x对称,即x1+x2+x3+x4=0,同理可得x5+x6+x7+x8=0,则x1+x2+…+x8=0,集合X={x1,x2,…,x8}的所有非空子集设为Y i=1,2,…,255),取Y1={x1,x2,…,x8},则y1=x1+x2+…+x8=0,即n∈N*,=0,对X的其它子集,把它们配成集合“对”(Y p,Y q),Y p∪Y q=X,Y p∩Y q=∅,这样的集合“对”共有127对,且对每一个集合“对”都满足y p+y q=0.可以利用扇形归纳法证明:对于Y p的元素和y p与Y q的元素和y q,当n为奇数时,=0.即可得出.【解答】解:(1)令f(x,y)=(x﹣y)2+2(x﹣y)﹣1=0,解得x﹣y=﹣1±,∴f(x,y)=0表示两条平行线,之间的距离是2,此为一个正方形的一个边长,其面积S=4.(2)证明:在曲线C中,令y=0,则x2+ax﹣1=0,设M(m,0),N(n,0),则mn=﹣1,G(0,1),则直线MG:y=﹣x+1,NG:y=﹣x+1.联立,解得P,同理可得Q.∴直线PQ的方程为:令x=0,则y===3,因此直线PQ过定点(0,3).(3)令y=0,则x2+ax﹣1=0,则mn=﹣1,即点R(u,v)在曲线xy=﹣1上,又曲线C:f(x,y)=(x﹣y)2+a(x﹣y)﹣1=0.恒表示平行线x﹣y=,如图所示,A(x1,x2),B(x3,x4)关于直线y=﹣x对称,则=,即x1+x2+x3+x4=0,同理可得x5+x6+x7+x8=0,则x1+x2+…+x8=0,集合X={x1,x2,…,x8}的所有非空子集设为Y i,取Y1={x1,x2,…,x8},则y1=x1+x2+…+x8=0,即n∈N*,=0,对X的其它子集,把它们配成集合“对”(Y p,Y q),Y p∪Y q=X,Y p∩Y q=∅,这样的集合“对”共有127对,且对每一个集合“对”都满足y p+y q=0.以下证明:对于Y p的元素和y p与Y q的元素和y q,当n为奇数时,=0.先证明:n为奇数时,x+y能够整除x n+y n,用数学归纳法证明.1°当n=1时,成立;2°假设当n=k(奇数)时,x+y能够整除x k+y k,则当n=k+2时,x k+2+y k+2=x k+2﹣x k y2+x k y2+y k+2=x k(x2﹣y2)+y2(x k+y k),因此上式可被x+y整除.由1°,2°可知:n为奇数时,x+y能够整除x n+y n.又∵当n为奇数时,=(y p+y q)M,其中M是关于y p,y q的整式,∵Y p∪Y q=X,Y p∩Y q=∅,∴每一个集合“对”(Y p,Y q)都满足y p+y q=0.则一定有=(x+y)M=0,M∈N*,于是可得y1n+y2n+…+y255n=0是常数.【点评】本题考查了平行直线系、直线的交点、一元二次方程的根与系数的关系、集合的性质、中点坐标公式、对称性、扇形归纳法,考查了分析问题与解决问题的能力,考查了推理能力与计算能力,属于难题.。

2015高考数学模拟试卷及答案解析-理科

2015高考数学模拟试卷及答案解析-理科

2015高考数学模拟试卷及答案解析(理科)本试卷满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数321i i -(i 为虚数单位)的虚部是A .15iB .15C .15i -D .15-2.设全集U=R ,A={x|2x (x-2)<1},B={x|y=1n (l -x )},则右图中阴影部分表示的集合为 A .{x |x≥1} B .{x |x≤1} C .{x|0<x≤1} D .{x |1≤x<2}3.等比数列{a n }的各项均为正数,且564718a a a a +=,则log 3 a 1+log 3a 2+…+log 3 a l0= A .12 B .10C .8D .2+log 3 54.若x=6π是f (x )=3sin x ω+cos x ω的图象的一条对称轴,则ω可以是 A .4 B .8 C .2 D .15.己知某几何体的三视图如图所示,则该几何体的体积是 A .233π+ B .2323π+ C .232π+ D .23π+6.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有’5架舰载机准备着舰.如果甲乙2机必须相邻着舰,而丙丁不能相邻着舰,那么不同的着舰方法有( )种 A .12 B .18 C .24 D .487.已知M=3(,)|3,{(,)|20}2y x y N x y ax y a x -⎧⎫==++=⎨⎬-⎩⎭且M N =∅I ,则a= A .-6或-2 B .-6 C .2或-6 D .-28.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.己知在过滤过程中废气中的污染物数量尸(单位:毫克/升)与过滤时间t (单位:小时)之间的函数关系为:P= P 0e -kt ,(k ,P 0均为正的常数).若在前5个小时的过滤过程中污染物被排除了90%.那么,至少还需( )时间过滤才可以排放.A .12小时 B .59小时 c .5小时 D .10小时9.己知抛物线22(0)y px p =>的焦点F 恰好是双曲线22221(0,0)x y a b a b-=>>的右焦点,且两条曲线的交点的连线过点F ,则该双曲线的离心率为 A .2+1B .2C .2D .2-110.实数a i (i =1,2,3,4,5,6)满足(a 2-a 1)2+(a 3-a 2)2+(a 4-a 3)2+(a 5-a 4)2+(a 6-a 5)2=1则(a 5+a 6)-(a 1+a 4)的最大值为A .3B .22C .6D .1二、填空题(本大题共6小题,考生共需作答5小题.每小题5分,共25分,请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.)(一)必考题.(11-14题) 11.己知0(sin cos )xa t t dt =+⎰,则(1x ax-)6的展开式中的常数项为 。

2015年普通高考测试(二)数学(理科)附答案

2015年普通高考测试(二)数学(理科)附答案

2015年普通高考测试(二)数学(理科)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}231x x M =-<,集合{}13x x N =-<<,则MN =( ).A .MB .NC .{}12x x -<<D .{}3x x <2.已知z 是复数,i 是虚数单位,若i zi +=1,则z =( ).A .i +1B .i -1C .i +-1D .i --13.随机变量ξ服从正态分布)4,3(N ,若)2()32(+>=-<a P a P ξξ,则a 的值为( ).A .37 B .34 C .3 D .44.一个几何体的三视图如图,正视图和侧视图都是由一个半圆和一个边长为2的正方形组成,俯视图是一个圆,则这个几何体的表面积是( ).A .5πB .6πC .7πD .9π 5.在右图所示的程序框图中,输出的i 和s 的值分别为( ).A .3,21B .3,22C .4,21D .4,226.设)(x f 是定义在R 上的周期为3的周期函数,如图表示该函数在区间]1,2[-上的图像,则)2015()2014(f f +=( ).A .3B .2C .1D .07.若平面向量()1,2a =-与b 的夹角是0180,且53||=b ,则b 的坐标为( ).A .)6,3(-B .)6,3(-C .)3,6(-D .)3,6(- 8.对于任意正整数n ,定义“!!n ”如下:当n 是偶数时,()()!!24642n n n n =⋅-⋅-⋅⋅⋅⋅⋅⋅⋅⋅;当n 是偶数时,()()!!24531n n n n =⋅-⋅-⋅⋅⋅⋅⋅⋅⋅⋅; 且有()()!12321n n n n =⋅-⋅-⋅⋅⋅⋅⋅⋅⋅⋅.则如下四个命题:①()()2015!!2016!!2016!⋅=;②10082016!!21008!=⨯;③2015!!的个位数是5;④2014!!的个位数是0. 其中正确的命题有( ).A .1个B .2个C .3个D .4个 二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.) (一)必做题(9~13题)9.曲线x x y sin +=在点(0,0)处的切线方程是________________.10.双曲线C :221916x y -=的离心率是 . 11.=-⎰dx x |1|20_______________.12.某所学校计划招聘男教师x 名,女教师y 名,x 和y 须满足约束条件⎪⎩⎪⎨⎧<≤-≥-6252x y x y x ,则该校招聘的教师最多是 名.13.已知全集}8,7,6,5,4,3,2,1{=U ,在U 中任取四个元素组成的集合记为},,,{4321a a a a A =,余下的四个元素组成的集合记为},,,{4321b b b b A C U =,43214321b b b b a a a a +++<+++,则集合A 的取法共有____________种.(二)选做题(14~15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)直线l 的参数方程为31x ty t ⎧=⎪⎨=+⎪⎩(t 为参数),则直线l 的倾斜角是 .15.(几何证明选讲选做题)如图,在梯形CD AB 中,D//C A B ,D 2A =,C 5B =,点E .F 分别在AB .CD 上,且F//DE A ,若34AE =EB ,则F E 的长是 .三.解答题(本大题共6小题,共80分.解答应写出文字说明.证明过程或演算步骤.)16.(本小题满分12分)设函数)(,sin 3cos )(R x x x x f ∈-= (1)求函数)(x f 在区间]2,0[π上的值域(2)记AB C ∆内角C B A ,,的对应边分别为c b a ,,,若1)3(=-πA f ,且b a 23=,求B s i n 的值.17.(本小题满分12分)某中学一名数学教师对全班50名学生某次考试成绩分男生女生进行了统计(满分150分),得到右面频率分布表:其中120分(含120分)以上为优秀. (1)根据以上频率表的数据,完成下面的2⨯2列联表;(2)根据(1)中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间有关系?(3)若从成绩在[130,140]的学生中任取3人,已知取到的第一个人是男生,求取到的另外2人中至少一名女生的概率.18.(本小题满分14分)如图,四棱锥ABCD P -中,045BCD 1AD AB 2CD ,,//AB ABCD =∠===⊥⊥,,且,平面DC AD DC PD . (1)若点M 是PD 的中点,证明:PBC AM//平面;(2)若PBC ∆得面积为2,求二面角D -PC -B 的余弦值.19.(本小题满分14分)数列{}n a 的前n 项和记为n S ,对任意正整数n ,均有()241n n S a =+,且0n a >.()1求1a 及数列{}n a 的通项公式; ()2令114)1(+--=n n n n a a nb ,求数列}{n b 的前n 项和n T .20.(本小题满分14分)已知曲线E 上的任一点到点)3,0(1-F 和点)3,0(F 的距离之和为4. (1)求曲线E 的方程;(2)已知点)0,1(),2,0(C A ,设直线)0(,>=k kx y 与曲线E 交于B .D 两点(B 在第一象限),求四边形ABCD 面积的最大值.21.(本小题满分14分)已知函数b a bx ax x f ,(,1)(2++=为实数,),0R x a ∈≠. (1)若0)1(=-f ,且函数)(x f 的值域为),0[+∞,求)(x f ;(2)设0,0,)()()(<>⎩⎨⎧-=x x x f x f x F ,0,0,0>>+<a n m mn ,且函数)(x f 为偶函数.证明:0)()(>+n F m F ;(3)设)(,1ln )(x g ex x g x+=的导函数是),(x g '当1==b a 时,证明:对任意实数0>x ,21)(]1)([-+<'-e x g x f .。

2015届高考第二次模拟考试理科数学试卷及答案

2015届高考第二次模拟考试理科数学试卷及答案

高三第二次模拟考试数学 试题 (理科)满分150分 时间120分钟。

注意事项:1.答卷前,考生务必将自己的学校、姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型后的方框涂黑。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试题卷、草稿纸上无效。

3.填空题和解答题的作答:用0.5mm 的签字笔直接答在答题卡上对应的答题区域内。

答在试题卷、草稿纸上无效。

4.考生必须保持答题卡的整洁。

考试结束后,请将答题卡上交。

第I 卷 选择题 (共50分)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,有一项是符合题目要求的.1.已知复数2(2)i z i-=(i 为虚数单位),则z =( )A .25BC .5D2. 设函数()sin(2)2f x x π=-,则其导函数'()f x 是 ( )A .最小正周期为π2的奇函数B .最小正周期为π2的偶函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数3.已知圆22:()1C x a y -+=,直线:1l x =;则:13''''22a ≤≤是''C 上恰有不同四点到l 的距离为12的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4. 如果等差数列}{n a 中, 111a =-,1082108S S -=,则11S = ( ) A. -11 B. 10 C. 11 D. -105.若变量y x ,满足约束条件1325x y x x y ≥-⎧⎪≥⎨⎪+≤⎩,则2z x y =+的最大值是( )A .4B .3C .2D .16. 执行如图所示的程序框图,则输出的λ是 ( ). A .-4B .-2C .0D .-2或07.若0,0x y >>,228x y xy ++=,则2x y +的最小值是 ( )A . 112B .3C .92D . 48.函数 32()cos sin cos f x x x x =+-的最大值是 ( )第6题图A .827B .1C .3227D .29.已知012201420152015201520152015201512320152016C C C C C M =+++++,则M = ( ) A .2016212016-B .201622016C .2015212015-D .20152201510.已知平面向量满足:,,2PA PB PA PB PM QA QB ⊥+===,若1QM<,则PQ 的取值范围是( )A (B)CD ),3⎡⎣第(II )卷 非选择题(100分)二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号位置上.答错位置,书写不清,模棱两可均不得分. 11.设随机变量X 服从正态分布N (3,1),且(24)0.68P X ≤≤=,则(4)P X >=12.一个几何体的三视图如图,则这个几何体的表面积为13. 在正方体的8个顶点,12条棱的中点,6个面的中心及正方体的中心共27个点中,共线的三点组的个数是14. 已知曲线32:,11cos 2R ρθθΓ=∈-与曲线12:,2x t C t R y ⎧=⎪⎪∈⎨⎪=⎪⎩相交于,A B 两点,又原点(0,0)O ,则OA OB =15、在ABC ∆中,内角A ,B ,C 的所对边分别是,,,a b c 有如下下列命题:①若C B A >>,则C B A sin sin sin >>;②若cos cos cos A B Ca b c==,则△ABC 为等边三角形; ③若sin 2sin 2A B =,则△ABC 为等腰三角形;④若(1tan )(1tan )2A B ++=,则△ABC 为钝角三角形;⑤存在,,A B C ,使得C B A C B A tan tan tan tan tan tan ++<成立. 其中正确的命题为__________________(写出所有正确命题....的序号) 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16. (本小题满分12分)B已知函数x x x x x f 22cos cos sin 2sin )(-+=,R x ∈. 求: (I) 函数)(x f 的单调增区间;(II)若0,2x π⎡⎤∈⎢⎥⎣⎦,求函数)(x f 的值域.17. (本小题满分12分)某校一个研究性学习小组从网上查得,某种植物种子在一定条件下的发芽成功的概率为12,于是该学习小组分成两个小组进行验证性实验:(Ⅰ)第一个小组做了5次这种植物种子的发芽实验(每次均种下一粒种子),求他们的实验至少有3次成功的概率;(Ⅱ)第二个小组做了若干次发芽实验(每次均种下一粒种子),如果在一次试验中种子发芽成功就停止实验,否则就继续进行下次实验,直到种子发芽成功为止,但实验次数不超过5次。

2015市二模理科数学

2015市二模理科数学

理科数学试题(二)参考答案一、选择题(本大题共12小题,每小题5分,共60分.)CBDA A BCBAD CC. 二、填空题:(本大题共4小题,每小题5分,共20分.) 13.23π. 14. 23n n a =. 15.14. 16. 2016 三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 解:(Ⅰ)11sincos 2222ααα-=,11c o s 22αα-=,所以1sin()62πα-=,又因为α为锐角,所以3πα=. ………………6分(Ⅱ)2()cos 22sin 2sin 2sin 1f x x x x x =+=-++,令sin t x =,则2221(11)y t t t =-++-≤≤,由二次函数的图像知:当12t =时,max 32y =;当1t =-时,min 3y =-, 所以函数()f x 的值域为3[3,]2-. ………………12分18.(本小题满分12分) 解:(Ⅰ)证明:PD ⊥平面ABCD ,BC Ü平面ABCD ,BC PD ∴⊥,又,BC CD CD PD D ⊥=,BC PCD ∴⊥面,又PC PCD 面Ü,∴BC PC ⊥. …………6分(Ⅱ)因为,//BC CD AD BC ⊥,所以AD DC ⊥,以D 为原点建立空间直角坐标系D xyz -,不妨设1AD =,则(1,0,0)A ,(0,0,2)P ,(0,2,0)C ,(2,2,0)B ,设平面PBC 的一个法向量为(,,)m x y z =,又(2,0,0)BC =-,(0,2,2)PC =-,由00m BC m PC ⎧⋅=⎪⎨⋅=⎪⎩得20220x y z -=⎧⎨-=⎩,不妨取1y =,则(0,1,1)m =,(1,0,2)PA =-,∴PA 与平面PBC 所成角θ的正弦值sin cos ,52PA m PA m PA mθ⋅=<>===⋅. ……………12分19.(本小题满分12分)解:(Ⅰ)由图知,m 名学生中星期日运动时间少于60分钟的频率为:111()30750300020+⨯=,所以1520m ⨯=,所以100m =;设星期日运动时间在[)90,120内的频率为x ,则1111111()3013000750300100200300600x ++++++⨯+=,所以14x =.所以星期日运动时间在[)90,120内的频率为14. ……………6分 (Ⅱ)由图知,第一组有1人、第二组有4人、第七组有10人,第八组有5人,四组共20人,其中星期日运动时间少于60分钟的有5人.所以ξ可能取值为0,1,2,3,且3515320()(0,1,2,3)i i C C P i i C ξ-⋅===.所以ξ的分布列为所以ξ的期望=0+1+2+3==2282282282282284E ξ⨯⨯⨯⨯. …………12分20.(本小题满分12分) 解:(Ⅰ)由c a =,及222a b c =+,设2,,(0)a k c b k k ===>,则由四个顶点构成的四边形面积为4得12242a b ⋅⋅=,即14242k k ⋅⋅=,解得1k =, ∴椭圆22:14x C y +=. ……………5分 (Ⅱ)设直线:l x ty m =+,即0x ty m --=,1m ≥,则由直线l 与圆221x y +=相切得1=,即221t m =-, 由222244()44x y ty m y x ty m⎧+=⇒++=⎨=+⎩,即222(4)240t y tmy m +++-=,易知0∆>恒成立,设1122(,),(,)A x y B x y ,由韦达定理知:12221222444tm y y t m y y t -⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩,∴由弦长公式得12AB y =-21212)4]y y y y =+-⋅==,∵1m ≥,∴23AB m m ==≤=+,当且仅当3m m =,即m =时等号成立,所以max 2AB =,所以OAB ∆的面积最大值为12112⨯⨯=. ……………12分21.(本小题满分12分) 解:(Ⅰ)由已知得,221ln ln ()=ex xf x x x--'=.由()0f x '>得01x <<;由()0f x '<得1x >.所以函数()y f x =的单调增区间为:(0,1),单调减区间为(1,)+∞.……………5分(Ⅱ)不等式()()f x g x ≥恒成立⇔不等式1+ln 1x kx x ≥+恒成立 ⇔不等式(1)(1+ln )x x k x+≤恒成立,令(1)(1+ln )1()1(1+ln )(1)x x h x x x x x +⎛⎫==+≥ ⎪⎝⎭,则min ()k h x ≤.因为2ln ()x x h x x-'=,令()l n (1)x x xx ϕ=-≥,则()h x '与()x ϕ同号,因为1()0x x x ϕ-'=≥(当且仅当1x =时取等号),所以()x ϕ在[1,)+∞上递增,所以()(1)10x ϕϕ≥=>,所以()0h x '>,所以()h x 在[1,)+∞上递增,所以min ()(1)2h x h ==,所以 2.k ≤ ……………12分22.证明:(Ⅰ)因为A C B D =,所以ABC BCD ∠=∠.又因为EC 与圆相切于点C ,故ACE ABC∠=∠,所以ACE BCD ∠=∠. ………………5分 (Ⅱ)因为ECB CDB ∠=∠,EBC BCD ∠=∠,所以BDCECB ∆∆,故B C C DB E B C=.即2BC BE CD =⋅.又82BE ,CD ,==所以=4BC . ………………10分23.解:(Ⅰ)曲线1:2cos C ρθ=化为普通方程为:22(1)1x y -+=;直线2C的参数方程x ty =⎧⎪⎨=⎪⎩ (t 为参数).0y -=.所以曲线1C 是以1C ()1,0为圆心,1r =为半径的圆.所以圆心1C ()1,00y -=的距离为:d ==.所以1AB ==.………………5分 (Ⅱ)由(Ⅰ)知,圆10分 24.解: 1,1()1223,121,2x f x x x x x x -≤⎧⎪=---=-<<⎨⎪≥⎩(Ⅰ)不等式()2f x x >,即112x x ≤⎧⎨->⎩或12232x x x <<⎧⎨->⎩或212x x≥⎧⎨>⎩,解得12x <-,所以不等式()2f x x >的解集为12x x ⎧⎫<-⎨⎬⎩⎭. ……………5分(Ⅱ)存在x R ∈,使得2()1f x t t >-+,即2max ()1f x t t >-+∵max ()1f x =, ∴只要22110(0,1)t t t t t >-+⇔-<⇔∈即(0,1)t ∈ ……………10分。

2015二模理数答案

2015二模理数答案

长春市普通高中2015届高三质量监测(二)数学(理科)参考答案及评分标准一、选择题(本大题包括12小题,每小题5分,共60分)1. D2. A3. C4. C5. D6. D7. B8. B9. C 10.A 11. C 12. A 简答与提示:1. 【命题意图】本题主要考查集合交集与补集的运算,属于基础题.【试题解析】D 由题意可知{|1Q x x =-≤或2}x >,则{|12}Q x x =-<≤R ð,所以{|02}P Q x x =≤≤R ð. 故选D. 2. 【命题意图】本题考查复数的除法运算,以及复平面上的点与复数的关系,属于基础题.【试题解析】A131255i i i -=--,所以其共轭复数为3155i +. 故选A. 3. 【命题意图】本题考查正态分布的概念,属于基础题,要求学生对统计学原理有全面的认识.【试题解析】C (01)(12)0.5(2)P P P ξξξ==->=≤≤≤≤. 故选C. 4. 【命题意图】本题借助不等式来考查命题逻辑,属于基础题.【试题解析】C 由p 成立,则1a ≤,由q 成立,则1a >,所以p ⌝成立时1a >是q 的充要条件.故选C.5. 【命题意图】本题主要考查线性规划,是书中的原题改编,要求学生有一定的运算能力.【试题解析】D由题意可知,35x y +在(2,1)--处取得最小值,在35(,)22处取得最大值,即35[11,17]x y +∈-.故选D.6. 【命题意图】本题通过正方体的三视图来考查组合体体积的求法,对学生运算求解能力有一定要求.【试题解析】D 该几何体可视为正方体截去两个三棱锥,所以其体积为41138362--=. 故选D. 7. 【命题意图】本题考查向量模的运算.【试题解析】B |2|+==a b 故选B.8. 【命题意图】本题考查学生对茎叶图的认识,通过统计学知识考查程序流程图的认识,是一道综合题.【试题解析】B 由算法流程图可知,其统计的是数学成绩大于等于90的人数,所以由茎叶图知:数学成绩大于等于90的人数为10,因此输出结果为10. 故选B. 9. 【命题意图】本题主要考查三角函数的图像和性质,属于基础题.【试题解析】C由题意()sin(2)6f x x π=+,将其图像向右平移ϕ(0)ϕ>个单位后解析式为()sin[2()]6f x x πϕ=-+,则26k πϕπ-=,即212k ππϕ=+()k ∈N ,所以ϕ的最小值为12π. 故选C.10. 【命题意图】本题借助基本不等式考查点到直线的距离,属于中档题.【试题解析】A 由直线与圆相切可知||m n +=1mn m n =++,由2()2m n mn +≤可知211()4m n m n ++≤+,解得(,2[222,)m n +∈-∞-++∞. 故选A. 11. 【命题意图】本题主要考查双曲线的几何性质,结合着较大的运算量,属于难题.【试题解析】C 由题可知,过I 、III 象限的渐近线的倾斜角为θ,则tan b a θ=,222tan 2aba bθ=-,因此△OAB 的面积可以表示为3222112tan 227a b a a a a b θ⋅⋅==-,解得34b a =,则54e =. 故选C.12. 【命题意图】本题是最近热点的复杂数列问题,属于难题.【试题解析】A 设(2)n n n b nS n a =++,有14b =,28b =,则4n b n =, 即(2)4n n n b nS n a n =++=当2n ≥时,1122(1)(1)01n n n n S S a a nn ---++-+=- 所以12(1)11n n n n a a n n -++=-,即121n n a a n n -⋅=-,所以{}n a n是以12为公比,1为首项的等比数列,所以11()2n n a n -=,12n n na -=. 故选A.二、填空题(本大题包括4小题,每小题5分,共20分)13. 6014.4915.83π16. 19(2,)8简答与提示:13. 【命题意图】本题主要考查二项式定理的有关知识,属于基础题.【试题解析】由题意可知常数项为2246(2)(60C x =. 14. 【命题意图】本题考查定积分的几何意义及微积分基本定理,属于基础题.【试题解析】由题意322023a a x ==⎰,所以49a =. 15. 【命题意图】球的内接几何体问题是高考热点问题,本题通过求球的截面面积,对考生的空间想象能力及运算求解能力进行考查,具有一定难度.【试题解析】由题意,面积最小的截面是以AB为直径,可求得3AB =,进而截面面积的最小值为283ππ=. 16. 【命题意图】本题主要考查数形结合以及函数的零点与交点的相关问题,需要学生对图像进行理解,对学生的能力提出很高要求,属于难题.【试题解析】由题意可知()f x 是周期为4的偶函数,对称轴为直线2x =. 若()F x 恰有4个零点,有(1)(1)(3)(3)g f g f >⎧⎨<⎩,解得19(2,)8a ∈.三、解答题(本大题必做题5小题,三选一选1小题,共70分)17. (本小题满分12分)【命题意图】本小题主要考查两角和的正切公式,以及同角三角函数的应用,并借助正弦定理考查边角关系的运算,对考生的化归与转化能力有较高要求.【试题解析】解:(1) +,tan tan()A B C C A B π+=∴=-+ (3分)tan 2,tan 3,tan 1,4A B C C π==∴=∴= (6分)(2)因为tan 3B =sin 3sin 3cos cos BB B B⇒=⇒=,而22sin cos 1B B +=,且B 为锐角,可求得sin B =.(9分)所以在△ABC中,由正弦定理得,sin sin AB AC B C =⨯=. (12分)18. (本小题满分12分)【命题意图】本小题主要考查统计与概率的相关知识、离散型随机变量的分布列以及数学期望的求法. 本题主要考查数据处理能力.【试题解析】(1)由图可知0.035a =,0.025b =. (4分)(2) 利用分层抽样从样本中抽取10人,其中属于高消费人群的为6人,属于潜在消费人群的为4人. (6分) 从中取出三人,并计算三人所获得代金券的总和X , 则X 的所有可能取值为:150,200,250,300.363101(150)6C P X C ===, 21643101(200)2C C P X C ===,126433(250)10C C P X C ===,343101(300)30C P X C ===,(10分) 且1131150200250300210621030EX =⨯+⨯+⨯+⨯=.(12分)19. (本小题满分12分)【命题意图】本小题主要考查立体几何的相关知识,具体涉及到线面以及面面的垂直关系、二面角的求法及空间向量在立体几何中的应用. 本小题对考生的空间想象能力与运算求解能力有较高要求. 【试题解析】解:(1) 取PB 中点N ,连结MN 、AN ,M 是PC 中点,1//,22MN BC MN BC ∴==, 又//BC AD ,//,MN AD MN AD ∴=,∴四边形ADMN 为平行四边形 ,AP AD AB AD ⊥⊥,AD ∴⊥平面PAB ,AD AN ∴⊥,AN MN ∴⊥ AP AB =,AN PB ∴⊥,AN ∴⊥平面PBC ,AN ⊂平面ADM ,∴平面ADM ⊥平面PBC .(6分) (2) 存在符合条件的λ.以A 为原点,AB 方向为x 轴,AD 方向为y 轴,AP 方向为z 轴,建立空间直角坐标系A xyz -,设(2,,0)E t ,(0,0,2)P ,(0,2,0)D ,(2,0,0)B从而(0,2,2)PD =-,(2,2,0)DE t =-,则平面PDE 的法向量为1(2,2,2)n t =-, 又平面DEB 即为xAy 平面,其法向量2(0,0,1)n =,则1212122cos ,3||||(2n n n n n n ⋅<>===⋅,解得3t =或1t =,进而3λ=或13λ=.(12分)20. (本小题满分12分)【命题意图】本小题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法,椭圆方程的求法、直线与圆锥曲线的相关知识. 本小题对考生的化归与转化思想、运算求解能力都有很高要求.【试题解析】解:(1) 已知11(||||||)||||22ABC A S AB AC BC r BC y ∆=++⋅=⋅,且||2BC =,||3A y r =,其中r 为内切圆半径,化简得:||||4AB AC +=,顶点A 的轨迹是以B C 、为焦点,长轴长为4的椭圆(去掉长轴端点),其中2,1,a c b ===进而其方程为22143x y +=(0)y ≠. (5分)(2) 1232k k k =+,以下进行证明:当直线PQ 斜率存在时,设直线:(1)PQ y k x =-且11(,)P x y ,22(,)Q x y ,(4,)H m联立22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩可得2122834k x x k +=+,212241234k x x k -=+. (8分)由题意:13mk =,1214y m k x -=-,2324y m k x -=-.11212312()(4)()(4)(4)(4)y m x y m x k k x x --+--+=--21212121212882(5)()2424224()1636363m k kx x m k x x mk m mk x x x x k ++-+++====-+++当直线PQ 斜率不存在时,33(1,),(1,)22P Q -,231332222333m m m k k k -++=+== 综上可得1232k k k =+. (12分)21. (本小题满分12分) 【命题意图】本小题主要考查函数与导数的综合应用能力,具体涉及到用导数来描述原函数的单调性、极值以及函数零点的情况. 本小题对考生的逻辑推理能力与运算求解有较高要求.【试题解析】解:(1) 对()f x 求导得:1()ln(1)1axf x a x b x-'=-++-+,根据条件知(0)0f '=,所以101b b -=⇒=. (3分)(2) 由(1)得()(1)ln(1)f x ax x x =-+-,01x ≤≤1()ln(1)11axf x a x x-'=-++-+ 22(1)(1)21()1(1)(1)a a x ax ax a f x x x x -+--++''=-+=-+++.① 当12a ≤-时,由于01x ≤≤,有221()()0(1)a a x a f x x ++''=-≥+,于是()f x '在[0,1]上单调递增,从而()(0)0f x f ''≥=,因此()f x 在[0,1]上单调递增,即()(0)0f x f ≥=而且仅有(0)0f =;②当0a ≥时,由于01x ≤≤,有221()0(1)ax a f x x ++''=-<+,于是()f x '在[0,1]上单调递减,从而()(0)0f x f ''≤=,因此()f x 在[0,1]上单调递减,即()(0)0f x f ≤=而且仅有(0)0f =;③当102a -<<时,令21min{1,}a m a+=-,当0x m ≤≤时,221()()0(1)a a x a f x x ++''=-≤+,于是()f x '在[0,]m 上单调递减,从而()(0)0f x f ''≤=,因此()f x 在[0,]m 上单调递减, 即()(0)0f x f ≤=而且仅有(0)0f =.综上可知,所求实数a 的取值范围是1(,]2-∞-. (8分)(3) 对要证明的不等式等价变形如下:2110000100010000.41000.55210001100111()()(1)(1)100001000100001000e e ++<<⇔+<<+ 所以可以考虑证明:对于任意的正整数n ,不等式215211(1)(1)n n e n n+++<<+恒成立. 并且继续作如下等价变形2152112111(1)(1)()ln(1)1()ln(1)52n n e n n n n n n+++<<+⇔++<<++ 211(1)ln(1)0()5111(1)ln(1)0()2p n n n q n n n ⎧++-<⎪⎪⇔⎨⎪++->⎪⎩对于()p 相当于(2)中21(,0)52a =-∈-,12m =情形,有()f x 在1[0,]2上单调递减,即()(0)0f x f ≤=而且仅有(0)0f =.取1x n =,当2n ≥时,211(1)ln(1)05n n n++-<成立;当1n =时,277(1)ln 21ln 210.710555+-=-<⨯-<.从而对于任意正整数n 都有211(1)ln(1)05n n n ++-<成立.对于()q 相当于(2)中12a =-情形,对于任意x ∈[0,1],恒有()0f x ≥而且仅有(0)0f =. 取1x n=,得:对于任意正整数n 都有111(1)ln(1)02n n n++->成立.因此对于任意正整数n ,不等式215211(1)(1)n n e n n+++<<+恒成立. 这样依据不等式215211(1)(1)n n e n n+++<<+,再令10000n =利用左边,令1000n = 利用右边,即可得到10000.41000.5100011001()()100001000e <<成立. (12分) 22. (本小题满分10分)【命题意图】本小题主要考查平面几何的证明,具体涉及到弦切角定理以及三角形 相似等内容.本小题重点考查考生对平面几何推理能力.【试题解析】解:(1) 由题意可知,EPC APC ∠=∠,PEB PAC ∠=∠,则△PED ∽△PAC ,则PE PD PA PC =,又PE ED PB BD =,则ED PB PDBD PA PC⋅=. (5分) (2) 由EPC APC ∠=∠,PEB PAC ∠=∠,可得CDE ECD ∠=∠, 在△ECD 中,30CED ∠=,可知75PCE ∠=. (10分)23. (本小题满分10分)【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化、利用直线的参数方程的几何意义求解直线与曲线交点的距离等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.【试题解析】解:(1) 对于曲线1C 有1x y +=,对于曲线2C 有2214x y +=.(5分) (2) 显然曲线1C :1x y +=为直线,则其参数方程可写为21x y ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数)与曲线2C :2214x y +=联立,可知0∆>,所以1C 与2C 存在两个交点,由125t t +=,1285t t =,得21||5d t t =-==. (10分) 24. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式及 不等式证明等内容. 本小题重点考查考生的化归与转化思想.【试题解析】解:(1) 当3a =时,174,213()5,22341,2x x f x x x x ⎧-≤⎪⎪⎪=<<⎨⎪⎪-≥⎪⎩,所以()7f x >的解集为{|0x x <或2}x >.(5分)(2) ()|21||2||212||1|f x x a x a x a x a a a =-+-+≥-+-+=-+, 由()3f x ≥恒成立,有|1|3a a -+≥,解得2a ≥ 所以a 的取值范围是[)2,+∞.(10分)。

2015年高考数学模拟试题二word精品文档6页

2015年高考数学模拟试题二word精品文档6页

2015年高考数学模拟试题二第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. “x>0,且y>0”是“x+y>0,且xy>0”成立的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2. 若集合M={x|y=9-x2,x∈R},N={x|x-4x+2≤0},则M∩N=()A.{x|-20,则x0=().A. 2B. 1C.32D. 2336. 如果输入1,-6,9,那么图2程序的输出值为().A. 方程无实根B. x1, x2C. 3D. 3, 37. 已知函数f(x)=2sinxcosx+sin(2x+π2).当x∈[0,π3]时,f(x)的值域是().A.[-2,2]B. [0,2]C.[2-12,2]D. [3-12,2]8. 若(x+1)n=xn+…+px2+qx+1(n∈N*),且p+q=6,那么n=().A. 2B. 3C. 5D. 79.对于抛物线C∶y2=4x,我们称满足y200,0 (Ⅰ)求该女村官至少选一个山区村的概率.(Ⅱ)若该女村官选的3个村中有2个在丘陵,1个在山区,且女村官到丘陵地A、B两村工作的概率均为45,在山区C村工作的概率为35,假设所选村的所在地彼此相互独立,用X表示女村官所选村庄中,选中A、B、C村的个数,求X的分布列及数学期望.20. (本小题满分12分)已知椭圆的中心在坐标原点,右焦点为F (1,0),且经过点P(1,32).(Ⅰ)求椭圆的标准方程;(Ⅱ)若斜率k≠0的直线l过圆x2+y2+2x-y+14=0的圆心D,与椭圆交于M,N两点,且M,N两点关于D对称,求直线l的方程与△MON的面积.21. (本小题满分12分)已知函数g(x)=ln1+2x,f(x)=g(x)+mx.(Ⅰ)若f(x)为其定义域上的单调函数,试求实数m的取值范围;(Ⅱ)当m=1,且0≤b430,且xy>0”中xy>0推知x,y同号,又x+y>0,所以有“x>0,且y>0”;由“x>0,且y>0”,显然可推出“x+y>0且xy>0”.所以选C.2. D.因为M=[-3,3],N=(-2,4],所以M∩N=(-2,3].3. A. 全面积为球表面积的四分之一加两个半圆的面积,就是14×4π×22+π×22=8π,故选A.4. D.由于ziz-11=zi+z=4+2i,所以z=4+2i1+i=(2+i)(1-i)=3-i.5. D.由题意,得∫20f(x)dx=83a+2b=2(ax20+b),解得x0=233.6. D. 根据程序框图可知,a=1,b=-6,c=9,由Δ=b2-4ac得Δ=(-6)2-4×1×9=0,再根据程序框图,可知答案为3,3,故选D.7.D.f(x)=sin2x+cos2x=2sin(2x+π4).当x∈[0,π3],t=2x+π4∈[π4,11π12],由y=2sint,t∈[π4,11π12]的图象可知,当t=π2时,y有最大值2;当t=11π12时,y有最小值2sin11π12=3-12.所以,值域为[3-12,2].故选D.8.B. 因为p,q是组合数,有C1n+C2n=6,解得n+n2=12,得n=3.故选B.9.A. 由y2=4x与y0y=2(x+x0)联立,消去x ,得y2-2y0y+4x0=0,∴Δ=4y20-4×4x0=4(y20-4x0)∵y20 15.36.∵登山的占总数的25,故跑步的占总数的35,又跑步中高二年级占32+3+5=310.∴高二年级跑步的占总人数的35×310=950.由950=x200得x=36.16.310 .如图5所示,球M从点A(5,4,0)出发运动到墙面XOZ后反弹,对称平面是Y=1(此处容易错误理解为Y=0,因为球M 的半径为1),得A关于平面Y=1的对称点为A′(5,-2,0),球M再运动到墙面YOZ后反弹,对称平面是X=1(此处容易错误理解为X=0,因为球M的半径为1),得A′关于平面X=1的对称点为A″(-3,-2,0),因为AC=A′C,A′D=A″D,所以AC+CD+DB=A″B=310.17.(Ⅰ)由q=3,S3=133得a1(1-33)1-3=133,解得a1=13. 所以an=13×3n-1=3n-2.(Ⅱ)由(1)可知an=3n-2,所以a3=3.因为函数f(x)的最大值为3,所以A=3;因为当x=π6时,f(x)取得最大值,所以sin(2×π6+φ)=1.又0=n?AC|n|×|AC|=152×2=105>0,故,所以,sinq=sin(π2-)=cos=105.19. (Ⅰ)设A表示女村官至少选一个山区村,则A表示女村官选3个丘陵村,P(A)=C38C312=1455,则P(A)=1-P(A)=1-1455=4155,即P(A)=4155.(Ⅱ)X的所有可能值为0,1,2,3,则P(X=0)=(15)2×25=2125,由(3)得a2=14或a2=4.因为a2>1,所以a2=4,得b2=3.所求椭圆的标准方程为x24+y23=1.(Ⅱ)法1:由x2+y2+2x-y+14=0可得(x+1)2+(y-12)2=1,得圆心D(-1,12).依题意,l不垂直于x轴,设 l方程为y-12=k(x+1),代入x24+y23=1,得(3+4k2)x2+8k(12+k)x+4(k+12)2-12=0.设M(x1,y1)、N(x2,y2),因为M,N两点关于D对称,所以有x1+x22=-1,得 -8k(k+12)3+4k2=-2得k=32.因为14+143=13-12),所以f ′(x)=11+2x+m.对x>-12,11+2x>0,故不存在实数m,使f ′(x)=11+2x+m-12恒成立,由f ′(x)=11+2x+m≥0对x>-12恒成立,得m≥-11+2x对x>-12恒成立,而-11+2x 经检验,当m≥0时,f ′(x)=11+2x+m>0对x>-12恒成立.所以,当m≥0时,f(x)为定义域上的单调递增函数.(Ⅱ)当m=1时,令H(x)=f(x)-43x=12ln(1+2x)-13x,H′(x)=11+2x-13=2(1-x)3(1+2x),在[0,1]上总有H′(x)≥0,即H(x)在[0,1]上递增.所以,当0≤bH(b),即f(a)-43a>f(b)-43bf(a)-f(b)a-b>43.令h(x)=f(x)-2x=12ln(1+2x)-x,易知它在[0,1]上递减,所以h(a)2时,不等式(*)变形为x-1+x-2≤2,即x≤52成立,此时有2希望以上资料对你有所帮助,附励志名言3条::1、世事忙忙如水流,休将名利挂心头。

2015年云南省高考数学二模试卷(理科)(解析版)

2015年云南省高考数学二模试卷(理科)(解析版)

2015年云南省高考数学二模试卷(理科)一、选择题:共12小题,每小题5分,共60分1.(5分)已知i为虚数单位,复数z1=2+3i,z2=1﹣i,则=()A.﹣﹣i B.﹣+i C.﹣i D.+i2.(5分)设△ABC的外接圆的圆心为P,半径为3,若=,则=()A.﹣B.﹣C.3D.93.(5分)设a=3,b=,c=,则下列正确的是()A.a<b<c B.a<c<b C.b<a<c D.b<c<a4.(5分)在(2x﹣)3的二项展开式中,各项系数的和为()A.27B.16C.8D.15.(5分)设S n是等差数列{a n}的前n项和,若=,则=()A.B.C.4D.56.(5分)如图是一个空间几何体的三视图(注:正视图也称主视图,侧视图也称左视图),其中正视图和侧视图都是边长为6的正三角形,俯视图是直径等于6的圆,则这个空间几何体的体积为()A.54πB.18πC.9D.7.(5分)已知平面向量=(cos x,sin x),=(cos x,cos x),函数f(x)=•,R 是实数集,如果∃x1∈R,∃x2∈R,∀x∈R,f(x1)<f(x)≤f(x2),则|x2﹣x1|的最小值为()A.πB.C.D.8.(5分)在三棱锥P﹣ABC中,P A,PB,PC两两互相垂直,P A=1,PB=PC=2,若三棱锥P﹣ABC的顶点都在球O的球面上,则球O的表面积等于()A.9πB.16πC.25πD.36π9.(5分)如图所示的程序框图的功能是()A.求数列{}的前10项的和B.求数列{}的前11项的和C.求数列{}的前10项的和D.求数列{}的前11项的和10.(5分)表格提供了某工厂节能降耗技术改造后,一种产品的产量x(单位:吨)与相应的生产能耗y(单位:吨)的几组对应数据:根据表中提供的数据,求得y关于x的线性回归方程为=0.7x+0.35,那么表格中t的值为()A.3.5B.3.25C.3.15D.611.(5分)已知a>0,b>0,直线3x﹣4y=0是双曲线S:﹣=1的一条渐近线,双曲线S的离心率为e,则的最小值为()A.B.C.D.12.(5分)已知e是自然对数的底数,函数f(x)=e x﹣e﹣x+lg(x+),a,b都是实数,若p:a+b<0,q:f(a)+f(b)<0,则p是q的()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件二、填空题:每小题5分,共20分13.(5分)在区间(0,4)内任取两个实数,如果每个实数被取到的概率相等,那么取出的两个实数的和大于2 的概率等于.14.(5分)设S n是数量{a n}的前n项和,如果S n=3a n﹣2,那么数列{a n}的通项公式为.15.(5分)已知e是自然对数的底数,函数f(x)=e x(x2+ax﹣2)在区间(﹣3,﹣2)内单调递减,则实数a的取值范围为.16.(5分)已知以点C(1,﹣3)为圆心的圆C截直线4x﹣3y+2=0得到的弦长等于2,椭圆E的长轴长为6,中心为原点,椭圆E的焦点为F1,F2,点P在椭圆E上,△F1PF2是直角三角形,若椭圆E的一个焦点是圆C与坐标轴的一个公共点,则点P到x轴的距离为.三、计算题17.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,S是△ABC的面积,tan B =(Ⅰ)求B的值(Ⅱ)设a=8,S=10,求b的值.18.(12分)某班级艺术团的成员唱歌、跳舞至少擅长一项,已知擅长唱歌的有5人,擅长跳舞的有4人,设从艺术社团的成员中随机选2人,每位成员被选中的概率相等,选出的人中既擅长唱歌又擅长跳舞的人数为X,且P(X>0)=,求:(Ⅰ)该班级艺术社团的人数;(Ⅱ)随机变量X的均值E(X).19.(12分)在正方体ABCD﹣A1B1C1D1中,E为棱CC1的中点(Ⅰ)求证:平面A1ED⊥平面EBD;(Ⅱ)求二面角A1﹣DE﹣B的正弦值.20.(12分)已知抛物线C:y2=4x的准线与x轴交于点M,E(x0,0)是x轴上的点,直线l经过M与抛物线C交于A,B两点(Ⅰ)设l的斜率为,x0=5,求证:点E在以线段AB为直径的圆上;(Ⅱ)设A,B都在以点E为圆心的圆上,求x0的取值范围.21.(12分)已知函数F(x)=lnx,f(x)=x2+a,a为常数,直线l与函数F(x)和f (x)的图象都相切,且l与函数F(x)的图象的切点的横坐标等于1.(Ⅰ)求直线l的方程和a的值;(Ⅱ)求证:关于x的不等式F(1+x2)≤ln2+f(x)的解集为(﹣∞,+∞).四、选考题选修4-1:几何证明选讲22.(10分)如图,P是⊙O的直径CB的延长线上的点,P A与⊙O相切于点A,点D在⊙O 上,∠BAD=∠APC,BC=40,PB=5(Ⅰ)求证:tan∠ABC=3;(Ⅱ)求AD的值.五、选修4-4:坐标系与参数分方程23.已知曲线C1的参数方程为(t为参数),当t=0时,曲线C1上对应的点为P,以原点O为极点,以x轴的正半轴建立极坐标系,曲线C2的极坐标方程为(Ⅰ)求证:曲线C1的极坐标方程为3ρcosθ﹣4ρsinθ﹣4=0;(Ⅱ)设曲线C1与曲线C2的公共点为A,B,求|P A|•|PB|的值.六、选修4-5:不等式选讲24.已知a是常数,f(x)=x2+2|x﹣1|+3,对任意实数x,不等式f(x)≥a都成立(Ⅰ)求a的取值范围(Ⅱ)对任意实数x,求证:|x+3|≥a﹣|x﹣1|2015年云南省高考数学二模试卷(理科)参考答案与试题解析一、选择题:共12小题,每小题5分,共60分1.(5分)已知i为虚数单位,复数z1=2+3i,z2=1﹣i,则=()A.﹣﹣i B.﹣+i C.﹣i D.+i【解答】解:====﹣,故选:B.2.(5分)设△ABC的外接圆的圆心为P,半径为3,若=,则=()A.﹣B.﹣C.3D.9【解答】解:由题意=,又△ABC的外接圆的圆心为P,半径为3,故,两向量的和向量的模是3,由向量加法的平行四边形法则知,此时,两向量的和向量与两向量的夹角都是60°,即,两向量的夹角为120°,∴•=3×3×cos120°=9×(﹣)=﹣.故选:A.3.(5分)设a=3,b=,c=,则下列正确的是()A.a<b<c B.a<c<b C.b<a<c D.b<c<a【解答】解:a=3<0,b==1,0<c=<1,∴a<c<b.故选:B.4.(5分)在(2x﹣)3的二项展开式中,各项系数的和为()A.27B.16C.8D.1【解答】解:令二项式(2x﹣)3中的x=1得到展开式中各项的系数的和为1.故选:D.5.(5分)设S n是等差数列{a n}的前n项和,若=,则=()A.B.C.4D.5【解答】解:等差数列{a n}中,设首相为a1,公差为d,由于:,则:,解得:,=,故选:D.6.(5分)如图是一个空间几何体的三视图(注:正视图也称主视图,侧视图也称左视图),其中正视图和侧视图都是边长为6的正三角形,俯视图是直径等于6的圆,则这个空间几何体的体积为()A.54πB.18πC.9D.【解答】解:此几何体是一个圆锥,由正视图和侧视图都是边长为6的正三角形,可得其底面半径R=3,且其高为正三角形的高,由于此三角形的高为,故圆锥的高h=,此圆锥的体积V=πR2h=9,故选:C.7.(5分)已知平面向量=(cos x,sin x),=(cos x,cos x),函数f(x)=•,R 是实数集,如果∃x1∈R,∃x2∈R,∀x∈R,f(x1)<f(x)≤f(x2),则|x2﹣x1|的最小值为()A.πB.C.D.【解答】解:平面向量=(cos x,sin x),=(cos x,cos x),函数f(x)=•=cos2x+sin x cos x=(1+cos2x)+sin2x=+sin(2x+),即有f(x)的最小值为﹣1,最大值为+1,如果∃x1∈R,∃x2∈R,∀x∈R,f(x1)<f(x)≤f(x2),则﹣1<f(x)≤+1,则|x1﹣x2|的最小值为,即=,故选:B.8.(5分)在三棱锥P﹣ABC中,P A,PB,PC两两互相垂直,P A=1,PB=PC=2,若三棱锥P﹣ABC的顶点都在球O的球面上,则球O的表面积等于()A.9πB.16πC.25πD.36π【解答】解:由题意,以P A、PB、PC为过同一顶点的三条棱,作长方体如图,则长方体的外接球同时也是三棱锥P﹣ABC外接球.∵长方体的对角线长为=3,∴球直径为3,半径R=,因此,三棱锥P﹣ABC外接球的表面积是4πR2=4π×()2=9π故选:A.9.(5分)如图所示的程序框图的功能是()A.求数列{}的前10项的和B.求数列{}的前11项的和C.求数列{}的前10项的和D.求数列{}的前11项的和【解答】解:由已知框图可得:循环变量k的初值为1,终值为10,步长为1,故循环共进而10次,又由循环变量n的初值为1,步长为2,故终值为20,由S=S+可得:该程序的功能是计算S=的值,即数列{}的前10项的和,故选:C.10.(5分)表格提供了某工厂节能降耗技术改造后,一种产品的产量x(单位:吨)与相应的生产能耗y(单位:吨)的几组对应数据:根据表中提供的数据,求得y关于x的线性回归方程为=0.7x+0.35,那么表格中t的值为()A.3.5B.3.25C.3.15D.6【解答】解:==4.5,==2+,∵y关于x的线性回归方程为=0.7x+0.35,∴2+=0.7×4.5+0.35∴t=6.故选:D.11.(5分)已知a>0,b>0,直线3x﹣4y=0是双曲线S:﹣=1的一条渐近线,双曲线S的离心率为e,则的最小值为()A.B.C.D.【解答】解:由题意,=,e==,所以==≥=,所以的最小值为,故选:A.12.(5分)已知e是自然对数的底数,函数f(x)=e x﹣e﹣x+lg(x+),a,b都是实数,若p:a+b<0,q:f(a)+f(b)<0,则p是q的()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件【解答】解:函数f(x)的定义域为R,∵f(x)=e x﹣e﹣x+lg(x+),∴f(x)为增函数,f(﹣x)+f(x)=e﹣x﹣e x+lg(﹣x+)+e x﹣e﹣x+lg(x+)=lg(x+)(﹣x+)=lg1=0,即f(﹣x)=﹣f(x),即函数f(x)是奇函数,若a+b<0,则a<﹣b,则f(a)<f(﹣b),即f(a)<﹣f(b),则f(a)+f(b)<0,若f(a)+f(b)<0,则f(a)<﹣f(b),∵函数f(x)是奇函数,∴f(a)<f(﹣b),∵f(x)是增函数,∴a<﹣b,即a+b<0成立,故p是q的充要条件,故选:C.二、填空题:每小题5分,共20分13.(5分)在区间(0,4)内任取两个实数,如果每个实数被取到的概率相等,那么取出的两个实数的和大于2 的概率等于.【解答】解:设在区间(0,4)内任取两个实数为x,y,则满足,取出的两个实数的和大于2,则满足,如图满足条件的实数如图中阴影部分,面积为4×4﹣×2×2=14,由几何概型公式可得取出的两个实数的和大于2 的概率等于;故答案为:.14.(5分)设S n是数量{a n}的前n项和,如果S n=3a n﹣2,那么数列{a n}的通项公式为.【解答】解:∵S n=3a n﹣2,∴当n=1时,a1=3a1﹣2,解得a1=1;当n≥2时,a n=S n﹣S n﹣1=(3a n﹣2)﹣(3a n﹣1﹣2),化为,∴数列{a n}是等比数列,首项为1,公比为.∴.故答案为:.15.(5分)已知e是自然对数的底数,函数f(x)=e x(x2+ax﹣2)在区间(﹣3,﹣2)内单调递减,则实数a的取值范围为[,+∞).【解答】解:由f(x)=(x2+ax﹣2)e x,得f′(x)=[x2+(a+2)x+a﹣2]e x,令g(x)=x2+(a+2)x+a﹣2,因为△=(a+2)2﹣4(a﹣2)=a2+12>0,所以g(x)有两个不相等的实数根x1,x2,不妨设x1>x2,要使f(x)在[﹣3,﹣2]上单调递减,必须满足,即,解得:a≥,故答案为:[,+∞).16.(5分)已知以点C(1,﹣3)为圆心的圆C截直线4x﹣3y+2=0得到的弦长等于2,椭圆E的长轴长为6,中心为原点,椭圆E的焦点为F1,F2,点P在椭圆E上,△F1PF2是直角三角形,若椭圆E的一个焦点是圆C与坐标轴的一个公共点,则点P到x轴的距离为.【解答】解:如右图,点C到直线4x﹣3y+2=0的距离d==3,故r==,故圆C的方程为(x﹣1)2+(y+3)2=10,令y=0解得,x=0或x=2,故椭圆的一点焦点坐标为(2,0),故c=2,再由椭圆E的长轴长为6知,a=3;故椭圆的方程为+=1;又∵点P在椭圆E上,△F1PF2是直角三角形,∴∠PF1F2=90°或∠PF2F1=90°,∴设点P的横坐标为x0,则|x0|=2,故+=1,故|y0|=;即点P到x轴的距离为;故答案为:.三、计算题17.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,S是△ABC的面积,tan B =(Ⅰ)求B的值(Ⅱ)设a=8,S=10,求b的值.【解答】解:(Ⅰ)△ABC中,∵tan B=,∴b sin A sin B=(2a﹣c+b cos A)cos B.利用正弦定理可得sin A sin2B=(2sin A﹣sin C+sin B cos A)cos B,∴sin A sin2B﹣sin B cos A cos B=2sin A cos B﹣sin C cos B.即﹣sin B cos((A+B)=2sin A cos B﹣sin C cos B,∴sin B cos C+sin C cos B=2sin A cos B,即sin(B+C)=2sin A cos B,∴cos B=,B=.(Ⅱ)∵a=8,S=10=ac•sin B=2c,∴c=5.再由余弦定理可得b===7.18.(12分)某班级艺术团的成员唱歌、跳舞至少擅长一项,已知擅长唱歌的有5人,擅长跳舞的有4人,设从艺术社团的成员中随机选2人,每位成员被选中的概率相等,选出的人中既擅长唱歌又擅长跳舞的人数为X,且P(X>0)=,求:(Ⅰ)该班级艺术社团的人数;(Ⅱ)随机变量X的均值E(X).【解答】解:(Ⅰ)设艺术社团既擅长唱歌又擅长跳舞共有x人,则艺术社团有(9﹣x)人,那么唱歌、跳舞只擅长一项的人数为(9﹣2x)人…(2分)∵P(X>0)=P(X≥1)=1﹣P(X=0)=,∴1﹣=…(4分)整理为:19x2﹣153x+288=0,∴x=3,∴9﹣x=6,即艺术社团有6人…(6分)(Ⅱ)依(Ⅰ)有:艺术社团有6人,既擅长唱歌又擅长跳舞共有3人.X的可能取值为0,1,2,P(X=0)==,P(X=1)==;P(X=2)==…(10分)∴EX=0×+1×+2×=1…(12分)19.(12分)在正方体ABCD﹣A1B1C1D1中,E为棱CC1的中点(Ⅰ)求证:平面A1ED⊥平面EBD;(Ⅱ)求二面角A1﹣DE﹣B的正弦值.【解答】(I)证明:设正方体ABCD﹣A1B1C1D1的棱长为2,建立坐标系D﹣xyz如图,则D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),A1(2,0,2),B1(2,2,2),C1(0,2,2),D1(0,0,2),E(0,2,1),BD的中点0(1,1,0),=(1,﹣1,2),=(2,2,0),=(0,2,1),=(2,0,2),∵,•=﹣1×0﹣1×2+2×1=0,∴OA1⊥DB,OA1⊥DE,又∵DB∩DE=D,DB⊂平面EBD,DE⊂平面EBD,∴OA1⊂平面A1BD,∴平面A1BD⊥平面EBD;(II)解:由(I)知:=(1,﹣1,2)是平面EBD的一个法向量,设=(x,y,z)是平面A1DE的一个法向量,则⊥,⊥,∴,取y=1,解得,∴=(2,1,﹣2)是平面A1DE的一个法向量,设二面角A1﹣DE﹣B的大小为θ,则|cosθ|==,∵0<θ<π,∴,∴二面角A1﹣DE﹣B的正弦值为.20.(12分)已知抛物线C:y2=4x的准线与x轴交于点M,E(x0,0)是x轴上的点,直线l经过M与抛物线C交于A,B两点(Ⅰ)设l的斜率为,x0=5,求证:点E在以线段AB为直径的圆上;(Ⅱ)设A,B都在以点E为圆心的圆上,求x0的取值范围.【解答】(Ⅰ)证明:由已知得M(﹣1,0),直线l的斜率存在,设为k,则k≠0,且l的方程为y=k(x+1),由,得k2x2+2(k2﹣2)x+k2=0.由直线l与抛物线C交于A、B两点得,△=4(k2﹣2)2﹣4k4>0,解得k2<1.∴0<k2<1.设A(x1,kx1+k),B(x2,kx2+k),则,当,x0=5时,,则E(5,0),,∴,),=(x2﹣5,),∵[x1x2+(x1+x2)+1]=0.∴,即EA⊥EB.∴点E在以线段AB为直径的圆上;(Ⅱ)解:∵A、B都在以点E为圆心的圆上,∴|EA|=|EB|.设AB的中点为D,则D(),∵|EA|=|EB|,∴DE⊥AB.∵k≠0,∴k DE•k=﹣1,解得:.∵0<k2<1,∴.∴x0的取值范围为(3,+∞).21.(12分)已知函数F(x)=lnx,f(x)=x2+a,a为常数,直线l与函数F(x)和f (x)的图象都相切,且l与函数F(x)的图象的切点的横坐标等于1.(Ⅰ)求直线l的方程和a的值;(Ⅱ)求证:关于x的不等式F(1+x2)≤ln2+f(x)的解集为(﹣∞,+∞).【解答】(Ⅰ)解:F′(x)=,F′(1)=1,故直线l的斜率为1,切点为(1,f(1)),即(1,0),∴直线l:y=x﹣1 ①又∵f′(x)=x,直线l:y=x﹣1与函数g(x)的图象都相切,∴令f′(x)=1,解得x=1,即切点为(1,+a),∴直线l:y﹣(+a)=x﹣1,即y=x﹣+a②比较①和②的系数得﹣+a=﹣1,∴a=﹣.(Ⅱ)证明:设H(x)=F(1+x2)﹣f(x)﹣ln2=ln(1+x2)﹣x2+﹣ln2,H′(x)=﹣x==,当0<x<1时,H′(x)>0,H(x)递增;当x>1时,H′(x)<0,H(x)递减.即有x>0时,H(x)有最大值,且为H(1)=0;由于H(﹣x)=H(x),则H(x)为偶函数,则H(﹣1)=H(1)=0,即有x<0时,H(x)的最大值为H(﹣1)=0.则H(x)≤0.即x∈R时,F(1+x2)﹣f(x)﹣ln2≤0.即关于x的不等式F(1+x2)≤ln2+f(x)的解集为(﹣∞,+∞).四、选考题选修4-1:几何证明选讲22.(10分)如图,P是⊙O的直径CB的延长线上的点,P A与⊙O相切于点A,点D在⊙O 上,∠BAD=∠APC,BC=40,PB=5(Ⅰ)求证:tan∠ABC=3;(Ⅱ)求AD的值.【解答】(Ⅰ)证明:连接AC,∵P是⊙O的直径CB的延长线上的点,P A与⊙O相切于点A,∴P A2=PB•PC=PB(PB+BC)=225,∴P A=15,在△ACP和△BAP中,∵∠ACP=∠BAP,∠APC=∠BP A,∴△ACP∽△BAP,∴=3,∵AC⊥AB,∴tan∠ABC==3;(Ⅱ)解:连接BD,则在△ACP与△BDA中,∵∠ACP=∠BDA,∠APC=∠BAD,∴△ACP∽△BDA,∴,∴AD==3AB,∵AC⊥AB,=3,∴AC2+AB2=BC2=1600,∴AB=4,∴AD=12.五、选修4-4:坐标系与参数分方程23.已知曲线C1的参数方程为(t为参数),当t=0时,曲线C1上对应的点为P,以原点O为极点,以x轴的正半轴建立极坐标系,曲线C2的极坐标方程为(Ⅰ)求证:曲线C1的极坐标方程为3ρcosθ﹣4ρsinθ﹣4=0;(Ⅱ)设曲线C1与曲线C2的公共点为A,B,求|P A|•|PB|的值.【解答】(Ⅰ)证明:∵曲线C1的参数方程为(t为参数),∴曲线C1的直角坐标方程为3x﹣4y﹣4=0,所以曲线C1的极坐标方程为3ρcosθ﹣4ρsinθ﹣4=0;(Ⅱ)解:当t=0时,x=0,y=﹣1,所以P(0,﹣1),由(Ⅰ)知:曲线C1是经过P的直线,设它的倾斜角为α,则tanα=,从而,cos,所以曲线C1的参数方程为,T为参数,∵,∴ρ2(3+sin2θ)=12,所以曲线C2的直角坐标方程为3x2+4y2=12,将,代入3x2+4y2=12,得21T2﹣30T﹣50=0,所以|P A|•|PB|=|T1T2|=.六、选修4-5:不等式选讲24.已知a是常数,f(x)=x2+2|x﹣1|+3,对任意实数x,不等式f(x)≥a都成立(Ⅰ)求a的取值范围(Ⅱ)对任意实数x,求证:|x+3|≥a﹣|x﹣1|【解答】解:(Ⅰ)∵f(x)=x2+2|x﹣1|+3=,∴当x≥1时,f(x)≥f(1)=4;当x<1时,f(x)>4;∴f(x)的最小值为4,∵对任意实数x,不等式f(x)≥a都成立,∴a≤4,∴a的取值范围为(﹣∞,4];(Ⅱ)证明:由(Ⅰ)得a≤4,∵|x+3|+|x﹣1|≥|(x+3)﹣(x﹣1)|=4,∴|x+3|+|x﹣1|≥a,∴|x+3|≥a﹣|x﹣1|.第21页(共21页)。

2015届高三第二次模拟考试数学试题(理)及答案

2015届高三第二次模拟考试数学试题(理)及答案

2015年普通高考第二次模拟试题 数学(理科)参考公式:1S ,S ,S 3V h V h h ==柱体锥体是底面积,是高。

一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={1,2z 2,zi},B={2,4},i 是虚数单位,若A ∩B={2},则纯虚数z 为 A .i B.-i C. 2i D.-2i2.已知随机变量X 服从正态分布N(5,4),且P(X>k)=P(X<k-4),则k 的值为 A .6 B.7 . C.8 D.93.抛物线214y x =的焦点到准线的距离是 A .2 B.1 . C.12 D.184.以下说法错误的是A .“33log log a b >”是1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭的充分不必要条件B .∃,R αβ∈,使()sin sin sin αβαβ+=+C .∃m R ∈,使()22mmf x mx+=是幂函数,且在()0,+∞上是单调递增D .命题“∃2,13x R x x ∈+>”的否定是“∀2,13x R x x ∈+<5.已知x,y 满足20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩,若z=y-ax 取得最大值时的最优解不唯一,则实数a 的值是 A .12或-1 B. 12或2. C. 2或-1 D.2或1 6cm ,图中水平线与竖线垂直)过程中铁皮的损耗和厚度忽略不计)A .(21003cm B. (22003cmC. (23003cm D. 2300cm7.某教研机构抽取某校20个班级,调查各班关注汉字听写大赛的学生人数,根据所得数据的茎叶图,以组距为5将数据分组成[)0,5,[)5,10,[)10,15,[)15,20,[)20,25,[)25,30,20左视图主视图5 10 15 20 25 30 35 400.030.040.02人数频率组距[)30,35,[]35,40时,所作的频率分布直方图如图所示,则原始茎叶图可能是0 7 41 7 6 4 4 4 02 8 7 6 5 2 1 03 9 5 5 2 0D0 7 41 7 7 4 4 4 02 7 5 5 5 2 1 03 9 5 3 2 0C0 7 61 7 6 5 4 4 02 7 5 5 4 2 1 03 9 5 3 2 0B A 0 7 41 7 6 4 4 1 02 7 5 5 4 2 1 03 9 5 3 2 08.定义:若函数f(x)的图像经过变换T 后所得图像对应函数的值域与f(x)的值域相同,则变换T 是f(x)的同值变换。

山东省聊城市2015届高考数学二模试卷(理科)含解析

山东省聊城市2015届高考数学二模试卷(理科)含解析

2015年山东省聊城市高考数学二模试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知复数(i为虚数单位),则z在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.设集合A={x|x2﹣2x﹣3<0},B={y|y=e x,x∈R},则A∩B=()A.(0,3) B.(0,2) C.(0,1) D.(1,2)3.下列函数中,满足f(xy)=f(x)f(y)的单调递增函数是()A.f(x)=x3B.f(x)=﹣x﹣1C.f(x)=log2x D.f(x)=2x4.已知两条不同的直线l,m和两个不同的平面α,β,有如下命题:①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α⊥β,l⊥β,则l∥α,其中正确命题的个数是()A.3 B.2 C.1 D.05.函数的图象的大致形状是()A.B.C.D.6.利用简单随机抽样从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图如图所示.在这些用户中,用电量落在区间[150,250]内的户数为()A.46 B.48 C.50 D.527.已知直线ax+y﹣1=0与圆C:(x﹣1)2+(y+a)2=1相交于A,B两点,且△ABC为等腰直角三角形,则实数a的值为()A.B.﹣1 C.1或﹣1 D.18.将5名同学分到甲、乙、丙3个小组,若甲组至少两人,乙、丙组至少各一人,则不同的分配方案的种数为()A.80 B.120 C.140 D.509.a1,a2,a3,a4是各项不为零的等差数列且公差d≠0,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列,则的值为()A.﹣4或1 B.1 C.4 D.4或﹣110.已知M是△ABC内的一点,且=2,∠BAC=30°,若△MBC,△MCA和△MAB的面积分别为,x,y,则+的最小值是()A.20 B.18 C.16 D.9二、填空题(本大题共5个小题,每小题5分,共25分.)11.△ABC中,已知,则cosC=.12.已知双曲线=1(a>0,b>0)的离心率为2,一个焦点与抛物线y2=16x的焦点相同,则双曲线的渐近线方程为.13.执行如图所示的程序框图,若输入的T=1,a=2,则输出的T的值为.14.记集合A={(x,y)|(x﹣1)2+y2≤1},B={(x,y)|},构成的平面区域分别为M,N,现随机地向M中抛一粒豆子(大小忽略不计),则该豆子落入N中的概率为.15.已知函数f(x)=x3﹣3ax2+4,若f(x)存在唯一的零点x0,则实数a的取值范围是.三、解答题(本大题共6小题,共75分.解答应写出必要的文字说明,证明过程或演算步骤.)16.设△ABC的内角A,B,C的对边分别是a,b,c,已知A=,a=bcosC.(Ⅰ)求角C的大小;(Ⅱ)如图,在△ABC的外角∠ACD内取一点P,使PC=2,过点P作PM⊥CA于M,PN⊥CD于N,设线段PM,PN的长分别为m,n,∠PCM=x,且,求f(x)=mn的最大值及相应x的值.17.如图,某快递公司送货员从公司A处准备开车送货到某单位B处,有A→C→D→B,A→E→F→B两条路线.若该地各路段发生堵车与否是相互独立的,且各路段发生堵车事件的概率如图所示(例如A→C→D算作两个路段;路段AC发生堵车事件的概率为,路段CD发生堵车事件的概率为).(Ⅰ)请你为其选择一条由A到B的路线,使得途中发生堵车事件的概率较小;(Ⅱ)若记路线A→E→F→B中遇到堵车路段的个数为ξ,求ξ的分布列及其数学期望E(ξ).18.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°PA=PD=AD=2BC=2,CD=,Q是AD的中点,M是棱PC上的点,且PM=3MC.(Ⅰ)求证:平面PAD⊥底面ABCD;(Ⅱ)求二面角M﹣BQ﹣C的大小.19.已知数列{a n}的前n项和是S n,且S n=2a n﹣n(n∈N*).(Ⅰ)证明:数列{a n+1}是等比数列;(Ⅱ)记b n=,求数列{b n}的前n项和T n.20.已知函数.(Ⅰ)当a=1时,判断函数f(x)是否存在极值,若存在,求出极值;若不存在,说明理由;(Ⅱ)求函数f(x)的单调区间.21.已知椭圆E的中心在坐标原点O,它的长轴长,短轴长分别为2a,2,右焦点F(c,0),直线l:cx﹣a2=0与x轴相交于点A,,过点A的直线m与椭圆E交于P,Q两点.(Ⅰ)求椭圆E的方程;(Ⅱ)若以线段PQ为直径的圆过原点O,求直线m的方程;(Ⅲ)设,过点P且平行于直线l的直线与椭圆E相交于另一点M,求证:.2015年山东省聊城市高考数学二模试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知复数(i为虚数单位),则z在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】直接利用复数代数形式的乘除运算化简,求得z的坐标得答案.【解答】解:由=,∴z在复平面内对应的点的坐标为(),在第三象限角.故选:C.【点评】本题考查了复数代数形式的乘除运算,是基础的计算题.2.设集合A={x|x2﹣2x﹣3<0},B={y|y=e x,x∈R},则A∩B=()A.(0,3) B.(0,2) C.(0,1) D.(1,2)【考点】交集及其运算.【专题】集合.【分析】求出A中不等式的解集确定出A,求出B中y的范围确定出B,找出两集合的交集即可.【解答】解:由A中不等式变形得:(x﹣3)(x+1)<0,解得:﹣1<x<3,即A=(﹣1,3),由B中y=e x>0,得到B=(0,+∞),则A∩B=(0,3),故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.下列函数中,满足f(xy)=f(x)f(y)的单调递增函数是()A.f(x)=x3B.f(x)=﹣x﹣1C.f(x)=log2x D.f(x)=2x【考点】抽象函数及其应用.【专题】函数的性质及应用.【分析】根据抽象函数的关系式分别进行判断即可.【解答】解:A.f(x)f(y)=x3y3=(xy)3=f(xy),且函数f(x)为增函数,满足条件.B.f(x)f(y)=﹣x﹣1(﹣y﹣1)=(xy)﹣1,f(xy)=﹣(xy)﹣1,则f(xy)=f(x)f(y)不成立.C.f(xy)=log2xy=log2x+log2y=f(x)+f(y),则f(xy)=f(x)f(y)不成立.D.f(xy)═2xy,f(x)f(y)=2x+2y,f(xy)=f(x)f(y)不成立.故选:A【点评】本题主要考查抽象函数的应用,根据条件进行验证是解决本题的关键.比较基础.4.已知两条不同的直线l,m和两个不同的平面α,β,有如下命题:①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α⊥β,l⊥β,则l∥α,其中正确命题的个数是()A.3 B.2 C.1 D.0【考点】空间中直线与平面之间的位置关系.【专题】空间位置关系与距离.【分析】利用线面平行的性质定理和判定定理对三个命题分别分析解答.【解答】解:对于①,若l⊂α,m⊂α,l∥β,m∥β,则α与β可能相交;故①错误;对于②,若l⊂α,l∥β,α∩β=m,满足线面平行的性质定理,故l∥m;故②正确;对于③,若α⊥β,l⊥β,如果l⊂α,则l⊥α;故③错误;故选C.【点评】本题考查了线面平行的性质定理和判定定理的运用,关键是正确运用定理进行分析解答.5.函数的图象的大致形状是()A.B.C.D.【考点】函数的图象.【专题】数形结合.【分析】先利用绝对值的概念去掉绝对值符号,将原函数化成分段函数的形式,再结合分段函数分析位于y轴左右两侧所表示的图象即可选出正确答案.【解答】解:∵y==当x>0时,其图象是指数函数y=a x在y轴右侧的部分,因为a>1,所以是增函数的形状,当x<0时,其图象是函数y=﹣a x在y轴左侧的部分,因为a>1,所以是减函数的形状,比较各选项中的图象知,C符合题意故选C.【点评】本题考查了绝对值、分段函数、函数的图象与图象的变换,培养学生画图的能力,属于基础题.6.利用简单随机抽样从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图如图所示.在这些用户中,用电量落在区间[150,250]内的户数为()A.46 B.48 C.50 D.52【考点】频率分布直方图.【专题】计算题;概率与统计.【分析】根据频率分布直方图,利用频率、频数与样本容量的关系进行解答即可.【解答】解:这些用户中,用电量落在区间[150,250]内的频率为1﹣(0.0024+0.0036+0.0024+0.0012)×50=0.52∴用电量落在区间[150,250]内的户数为100×0.52=52.故选:D.【点评】本题考查了频率分布直方图的应用问题,也考查了频率=的应用问题,是基础题目.7.已知直线ax+y﹣1=0与圆C:(x﹣1)2+(y+a)2=1相交于A,B两点,且△ABC为等腰直角三角形,则实数a的值为()A.B.﹣1 C.1或﹣1 D.1【考点】直线与圆的位置关系.【专题】计算题;直线与圆.【分析】由题意可得△ABC是等腰直角三角形,可得圆心C(1,﹣a)到直线ax+y﹣1=0的距离等于r•sin45°,再利用点到直线的距离公式求得a的值.【解答】解:由题意可得△ABC是等腰直角三角形,∴圆心C(1,﹣a)到直线ax+y﹣1=0的距离等于r•sin45°=,再利用点到直线的距离公式可得=,∴a=±1,故选:C.【点评】本题主要考查直线和圆的位置关系,直角三角形中的边角关系,点到直线的距离公式的应用,属于基础题.8.将5名同学分到甲、乙、丙3个小组,若甲组至少两人,乙、丙组至少各一人,则不同的分配方案的种数为()A.80 B.120 C.140 D.50【考点】排列、组合及简单计数问题.【专题】计算题.【分析】本题是一个分步计数问题,首先选2个放到甲组,共有C52种结果,再把剩下的3个人放到乙和丙两个位置,每组至少一人,共有C32A22,相乘得到结果,再表示出甲组含有3个人时,选出三个人,剩下的两个人在两个位置排列.【解答】解:由题意知本题是一个分步分类计数问题,首先选2个放到甲组,共有C52=10种结果,再把剩下的3个人放到乙和丙两个位置,每组至少一人,共有C32A22=6种结果,∴根据分步计数原理知共有10×6=60,当甲中有三个人时,有C53A22=20种结果∴共有60+20=80种结果故选A.【点评】本题考查排列组合及简单计数问题,本题是一个基础题,解题时注意对于三个小组的人数限制,先排有限制条件的位置或元素.9.a1,a2,a3,a4是各项不为零的等差数列且公差d≠0,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列,则的值为()A.﹣4或1 B.1 C.4 D.4或﹣1【考点】等差数列与等比数列的综合.【专题】计算题;压轴题.【分析】先利用等差数列通项公式分别表示出a2,a3,a4,进而分别看a1、a2、a3成等比数列,a1、a2、a4成等比数列和a1、a3、a4成等比数列时,利用等比中项的性质,得a22=a1•a3和a22=a1•a4和a32=a1•a4,进而求得a1和d的关系.【解答】解:a2=a1+d a3=a1+2d a4=a1+3d若a1、a2、a3成等比数列,则a22=a1•a3(a1+d)2=a1(a1+2d)a12+2a1d+d2=a12+2a1dd2=0d=0 与条件d≠0矛盾若a1、a2、a4成等比数列,则a22=a1•a4(a1+d)2=a1(a1+3d)a12+2a1d+d2=a12+3a1dd2=a1d∵d≠0∴d=a1则=1若a1、a3、a4成等比数列,则a32=a1•a4(a1+2d)2=a1(a1+3d)a12+4a1d+4d2=a12+3a1d4d2=﹣a1d∵d≠0∴4d=﹣a1则=﹣4若a2、a3、a4成等比数列,则a32=a2•a4(a1+2d)2=(a1+d)(a1+3d)a12+4a1d+4d2=a12+4a1d+3d2d2=0d=0 与条件d≠0矛盾综上所述:=1 或=﹣4故选A.【点评】本题主要考查了等差数列和等比数列的性质.考查了等差数列通项公式和等比中项的性质的灵活运用.10.已知M是△ABC内的一点,且=2,∠BAC=30°,若△MBC,△MCA和△MAB的面积分别为,x,y,则+的最小值是()A.20 B.18 C.16 D.9【考点】基本不等式在最值问题中的应用;向量在几何中的应用.【专题】计算题.【分析】利用向量的数量积的运算求得bc的值,利用三角形的面积公式求得x+y的值,进而把+转化成2(+)×(x+y),利用基本不等式求得+的最小值.【解答】解:由已知得=bccos∠BAC=2⇒bc=4,故S△ABC=x+y+=bcsinA=1⇒x+y=,而+=2(+)×(x+y)=2(5++)≥2(5+2)=18,故选B.【点评】本题主要考查了基本不等式在最值问题中的应用,向量的数量积的运算.要注意灵活利用y=ax+的形式.二、填空题(本大题共5个小题,每小题5分,共25分.)11.△ABC中,已知,则cosC=.【考点】同角三角函数基本关系的运用;两角和与差的正弦函数.【专题】计算题.【分析】先根据条件判断A、B都是锐角,利用同角三角函数的基本关系求出cosA和sinB 的值,由cosC=﹣cos(A+B)=﹣cosA cosB+sinA sinB 运算求得结果.【解答】解:△ABC中,已知,则sinB=,且B为锐角;则有sinB>sinA,则B>A;故A、B都是锐角,且cosA=,sinB=,则cosC=﹣cos(A+B)=﹣cosA cosB+sinA sinB=﹣+=,故答案为.【点评】本题考查同角三角函数的基本关系,两角和差的余弦公式的应用,求出cosA和sinB 的值,是解题的关键.12.已知双曲线=1(a>0,b>0)的离心率为2,一个焦点与抛物线y2=16x的焦点相同,则双曲线的渐近线方程为.【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】根据抛物线的焦点坐标,得到双曲线的右焦点为F(4,0),得a2+b2=16,结合双曲线的离心率为2解出a、b之值,即可算出双曲线的渐近线方程.【解答】解:∵抛物线y2=16x的焦点为F(4,0),∴双曲线=1(a>0,b>0)的右焦点为F(4,0),可得a2+b2=c2=16,又∵双曲线的离心率为2,∴,得a==2,从而得出b==2,∴双曲线的渐近线方程为y=,即y=.故答案为:y=【点评】本题给出双曲线与已知抛物线有相同焦点,在已知双曲线的离心率的情况下求其渐近线方程.着重考查了抛物线、双曲线的标准方程与简单几何性质等知识,属于中档题.13.执行如图所示的程序框图,若输入的T=1,a=2,则输出的T的值为3.【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的T,a的值,当a=8时不满足条件a≤6,退出循环,输出T的值,由换底公式计算即可得解.【解答】解:模拟执行程序框图,可得T=1,a=2T=,a=4满足条件a≤6,T=•,a=6满足条件a≤6,T=••,a=8不满足条件a≤6,退出循环,输出T的值,由于T=••==3.故答案为:3.【点评】本题主要考查了循环结构的程序框图,考查了换底公式的应用,属于基础题.14.记集合A={(x,y)|(x﹣1)2+y2≤1},B={(x,y)|},构成的平面区域分别为M,N,现随机地向M中抛一粒豆子(大小忽略不计),则该豆子落入N中的概率为.【考点】几何概型.【专题】应用题;概率与统计.【分析】求出集合A={(x,y)|(x﹣1)2+y2≤1},B={(x,y)|},表示的区域的面积,即可求得豆子落入N中的概率.【解答】解:集合A={(x,y)|(x﹣1)2+y2≤1},表示的区域的面积为π;B={(x,y)|},表示的区域的面积为==,∴该豆子落入N中的概率为.故答案为:.【点评】本题考查概率的计算,正确求出面积是关键.15.已知函数f(x)=x3﹣3ax2+4,若f(x)存在唯一的零点x0,则实数a的取值范围是(﹣∞,1).【考点】函数零点的判定定理.【专题】计算题;分类讨论;导数的综合应用.【分析】求导f′(x)=3x2﹣6ax=3x(x﹣2a);从而分类讨论以确定函数的单调性,从而转化为极值问题求解即可.【解答】解:∵f(x)=x3﹣3ax2+4,∴f′(x)=3x2﹣6ax=3x(x﹣2a);当a=0时,f(x)=x3﹣3ax2+4在R上是增函数,故f(x)存在唯一的零点;当a<0时,f(x)=x3﹣3ax2+4在(﹣∞,2a)上是增函数,(2a,0)上是减函数,在(0,+∞)上是增函数;而且f(0)=4,f(x)存在唯一的零点;当a>0时,f(x)=x3﹣3ax2+4在(﹣∞,0)上是增函数,(0,2a)上是减函数,在(2a,+∞)上是增函数;而且f(0)=4,故只需使f(2a)=8a3﹣12a3+4>0,解得,a<1;综上所述,实数a的取值范围是(﹣∞,1).【点评】本题考查了导数的综合应用及分类讨论的思想应用,属于中档题.三、解答题(本大题共6小题,共75分.解答应写出必要的文字说明,证明过程或演算步骤.)16.设△ABC的内角A,B,C的对边分别是a,b,c,已知A=,a=bcosC.(Ⅰ)求角C的大小;(Ⅱ)如图,在△ABC的外角∠ACD内取一点P,使PC=2,过点P作PM⊥CA于M,PN⊥CD于N,设线段PM,PN的长分别为m,n,∠PCM=x,且,求f(x)=mn的最大值及相应x的值.【考点】三角形中的几何计算;两角和与差的正弦函数;三角函数的最值.【专题】三角函数的求值;三角函数的图像与性质;解三角形.【分析】(Ⅰ)用正弦定理把a=bcosC化为sinA=sinBcosC,再用三角形的内角和定理与三角恒等变换,求出C的值;(Ⅱ)根据直角三角形中的边角关系,求出m、n,写出f(x)的解析式,利用三角函数求出f(x)的最大值以及对应的x的值.【解答】解:(Ⅰ)△ABC中,A=,a=bcosC,∴sinA=sinBcosC,即sin(B+C)=sinBcosC,∴sinBcosC+cosBsinC=sinBcosC,∴cosBsinC=0;又B、C∈(0,π),∴sinC≠0,cosB=0,∴B=,C=;(Ⅱ)△ABC的外角∠ACD=π﹣=,PC=2,且PM⊥CA,PN⊥CD,PM=m,PN=n,∠PCM=x,;∴m=2sinx,n=2sin(﹣x),∴f(x)=mn=4sinxsin(﹣x)=4sinx(sin cosx﹣cos sinx)=2sinxcosx+2sin2x=sin2x+(1﹣cos2x)=sin2x﹣cos2x+1=2sin(2x﹣)+1;∵<x<,∴<2x<π,∴<2x﹣<,∴sin(2x﹣)≤1,∴f(x)≤2+1=3,当2x﹣=,即x=时,f(x)取得最大值3.【点评】本题考查了三角形中的边角关系的应用问题,也考查了三角函数的恒等变换以及三角函数的图象与性质的应用问题,是综合性题目.17.如图,某快递公司送货员从公司A处准备开车送货到某单位B处,有A→C→D→B,A→E→F→B两条路线.若该地各路段发生堵车与否是相互独立的,且各路段发生堵车事件的概率如图所示(例如A→C→D算作两个路段;路段AC发生堵车事件的概率为,路段CD发生堵车事件的概率为).(Ⅰ)请你为其选择一条由A到B的路线,使得途中发生堵车事件的概率较小;(Ⅱ)若记路线A→E→F→B中遇到堵车路段的个数为ξ,求ξ的分布列及其数学期望E(ξ).【考点】离散型随机变量的期望与方差;互斥事件的概率加法公式;相互独立事件的概率乘法公式;离散型随机变量及其分布列.【专题】应用题;概率与统计.【分析】(1)由对立事件概率计算公式,分别计算路线A→E→F→B途中堵车概率、路线A→C→D→B途中堵车概率,由此能求出选择路线路线A→E→F→B的途中发生堵车的概率最小.(2)由题意,ξ可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的数学期望Eξ.【解答】解:(1)由已知得:路线A→E→F→B途中堵车概率为:1﹣=,路线A→C→D→B途中堵车概率为:1﹣=,所以选择路线路线A→E→F→B的途中发生堵车的概率最小;由题意,ξ可能取值为0,1,2,3.P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==.ξ的分布列为Eξ=0×+1×+2×+3×=.【点评】本题考查概率的求法,考查离散型随机变量的数学期望的求法,考查学生的计算能力,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.18.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°PA=PD=AD=2BC=2,CD=,Q是AD的中点,M是棱PC上的点,且PM=3MC.(Ⅰ)求证:平面PAD⊥底面ABCD;(Ⅱ)求二面角M﹣BQ﹣C的大小.【考点】二面角的平面角及求法;平面与平面垂直的判定.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)连结BQ,易得PQ⊥AD,利用勾股定理可得PQ⊥BQ,通过面面垂直的判定定理即得结论;(Ⅱ)以Q为原点,分别以QA、QB、QP为x、y、z轴建立坐标系如图,通过题意可得Q(0,0,0),B(0,,0),M(﹣,,),则所求二面角即为平面MBQ的一个法向量与平面BCQ的一个法向量的夹角,计算即可.【解答】(Ⅰ)证明:连结BQ,∵四边形ABCD是直角梯形,AD∥BC,AD=2BC,Q为AD的中点,∴四边形ABDQ为平行四边形,又∵CD=,∴QB=,∵△PAD是边长为2的正三角形,Q是AD的中点,∴PQ⊥AD,PQ=,在△PQB中,QB=,PB=,有PQ2+BQ2=PB2,∴PQ⊥BQ,∵AD∩BQ=Q,AD、BQ⊂平面ABCD,∴PQ⊥平面ABCD,又∵PQ⊂平面PAD,∴平面PAD⊥底面ABCD;(Ⅱ)解:由(I)可知能以Q为原点,分别以QA、QB、QP为x、y、z轴建立坐标系如图,则Q(0,0,0),B(0,,0),∵BC=1,CD=,Q是AD的中点,∴PQ===,QC===2,∴PC===,又∵PM=3MC,∴M(﹣,,),∴=(0,,0),=(﹣,,),设平面MBQ的一个法向量为=(x,y,z),由,即,令z=,得=(1,0,),又=(0,0,1)为平面BCQ的一个法向量,∴==,∴二面角M﹣BQ﹣C为.【点评】本题主要考查线面关系及面面角,考查学生分析解决问题的能力,考查空间想象能力和逻辑推理能力,属于中档题.19.已知数列{a n}的前n项和是S n,且S n=2a n﹣n(n∈N*).(Ⅰ)证明:数列{a n+1}是等比数列;(Ⅱ)记b n=,求数列{b n}的前n项和T n.【考点】数列的求和;等比关系的确定.【专题】等差数列与等比数列.【分析】(I)由S n=2a n﹣n(n∈N*),可得当n=1时,a1=2a1﹣1,解得a1=1;由递推式化为a n+1=2a n+1,变形为a n+1+1=2(a n+1)利用等比数列的定义即可证明;(II)由(I)可得:a n=2n﹣1.可得b n==,利用“裂项求和”即可得出.【解答】(I)证明:∵S n=2a n﹣n(n∈N*),∴当n=1时,a1=2a1﹣1,解得a1=1;S n+1=2a n+1﹣(n+1),∴S n+1﹣S n=2a n+1﹣(n+1)﹣(2a n﹣n),化为a n+1=2a n+1,变形为a n+1+1=2(a n+1),∴数列{a n+1}是等比数列,首项为2,公比为2;(II)解:由(I)可得:a n=2n﹣1.b n===,∴数列{b n}的前n项和T n=++…+=1﹣.【点评】本题考查了递推式的应用、等比数列的定义及其通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.20.已知函数.(Ⅰ)当a=1时,判断函数f(x)是否存在极值,若存在,求出极值;若不存在,说明理由;(Ⅱ)求函数f(x)的单调区间.【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【专题】分类讨论;导数的综合应用.【分析】(Ⅰ)求出当a=1时,f(x)的导数,判断符号,进而得到是否存在极值;(Ⅱ)求出f9x)的导数,对a讨论,当a≤0时,当a≥1时,当0<a<1时,判断导数的符号,求出单调区间,即可得到.【解答】解:(Ⅰ)当a=1时,f(x)=x﹣﹣2lnx,x>0,f′(x)=1+﹣=≥0,即有f(x)在(0,+∞)递增,函数f(x)不存在极值;(Ⅱ)f(x)的定义域为(0,+∞),f′(x)=a(1+)﹣=,当a≤0时,f′(x)<0,f(x)在(0,+∞)递减;当a>0时,x>0,f′(x)=0和方程ax2﹣2x+a=0由相同的实根,△=4﹣4a2,①当0<a<1时,△>0,x1=,x2=,且x1<x2,x∈(x1,x2)时,f′(x)<0,f(x)递减;x∈(0,x1)∪(x2,+∞)时,f′(x)>0,f (x)递增.②当a≥1时,△≤0,f′(x)>0,f(x)递增.综上可得,当a≤0时,f(x)的单调减区间为(0,+∞);当0<a<1时,f(x)的减区间为(,),增区间为(0,),(,+∞);当a≥1时,f(x)的增区间为(0,+∞).【点评】本题考查导数的运用:求单调区间和极值,同时考查分类讨论的思想方法,注意化简和整理的运算能力的培养,属于中档题和易错题.21.已知椭圆E的中心在坐标原点O,它的长轴长,短轴长分别为2a,2,右焦点F(c,0),直线l:cx﹣a2=0与x轴相交于点A,,过点A的直线m与椭圆E交于P,Q两点.(Ⅰ)求椭圆E的方程;(Ⅱ)若以线段PQ为直径的圆过原点O,求直线m的方程;(Ⅲ)设,过点P且平行于直线l的直线与椭圆E相交于另一点M,求证:.【考点】椭圆的简单性质.【专题】平面向量及应用;直线与圆;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)设椭圆的方程为+=1(a>),由已知解得a=,c=2,所以椭圆的方程为+=1;(Ⅱ)由(Ⅱ)可得A(3,0),设直线PQ的方程为y=k(x﹣3),代入椭圆方程得(3k2+1)x2﹣18k2x+27k2﹣6=0.依题意△=12(2﹣3k2)>0,得﹣<k<.设P(x1,y1),Q(x2,y2),然后由根与系数的位置关系可知直线PQ的方程为x﹣y﹣3=0或x+y﹣3=0;(Ⅲ)运用向量的共线的坐标运算和韦达定理,计算化简即可得证.【解答】(Ⅰ)解:由题意,可设椭圆的方程为+=1(a>),由已知得解得a=,c=2,所以椭圆的方程为+=1;(Ⅱ)解:由(Ⅰ)可得A(3,0),设直线PQ的方程为y=k(x﹣3),代入椭圆方程得(3k2+1)x2﹣18k2x+27k2﹣6=0,依题意△=12(2﹣3k2)>0,得﹣<k<,设P(x1,y1),Q(x2,y2)则x1+x2=①x1x2=②由直线PQ的方程得y1=k(x1﹣3),y2=k(x2﹣3)于是y1y2=k2(x1﹣3)(x2﹣3)=k2[x1x2﹣3(x1+x2)+9]③以线段PQ为直径的圆过原点O,则有⊥,∴x1x2+y1y2=0④由①②③④得5k2=1,从而k=±,所以直线m的方程为x﹣y﹣3=0或x+y﹣3=0;(Ⅲ)证明:由(Ⅱ)可知x1+x2=,x1x2=,由,即有(x1﹣3,y1)=λ(x2﹣3,y2)即x1﹣3=λ(x2﹣3),y1=λy2,设M(x1,y0),即有x12+3y02=6,即有y0=﹣y1,F(2,0),=(x1﹣2,﹣y1),=(x2﹣2,y2),即有y1+λy2=0,由于λ=,+=0等价为2x1x2+12﹣5(x1+x2)=0,由韦达定理代入可得+12﹣=0,则有(x1﹣2)+λ(x2﹣2)=0,故有.【点评】本题考查椭圆的方程和性质,主要考查椭圆方程的运用,注意联立直线方程,运用韦达定理,同时考查向量的共线的坐标运算,属于中档题和易错题.。

2015年高考数学模拟试题及答案(理科)

2015年高考数学模拟试题及答案(理科)

高中数学高考模拟试卷(理科)2015.10(本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间120分钟.)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 复数111-++-=iiz ,在复平面内z 所对应的点在(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 2.如图,一个简单空间几何体的三视图其主视图与左视图都是边长为2的正三角形,其俯视图轮廓为正方形,则其体积是 (A(B )(C(D ) 833.下列命题错误的是(A )命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠” (B )若命题2:,10p x R x x ∃∈++=,则2:,10p x R x x ⌝∀∈++≠ (C )若p q ∧为假命题,则p 、q 均为假命题(D ) “2x >”是“2320x x -+>”的充分不必要条件4.如图,该程序运行后输出的结果为(A )1 (B )2 (C )4 (D )165.设γβα,,为两两不重合的平面,,,l m n 为两两不重合的直线,给出下列四个命题:①若γβγα⊥⊥,,则βα//;②若ββαα//,//,,n m n m ⊂⊂,则βα//; ③若βα//,α⊂l ,则β//l ;④若γαγγββα//,,,l n m l === ,则n m //. 其中真命题的个数为(A )1(B )2(C )3(D )4俯视图6.已知n S 是等差数列}{n a 的前n 项和,若12852=++a a a ,则9S 等于(A )18 (B )36 (C )72 (D )无法确定 7. P 是ABC ∆所在平面内一点,若+=λ,其中R ∈λ,则P 点一定在(A )ABC ∆内部 (B )AC 边所在直线上 (C )AB 边所在直线上 (D )BC 边所在直线上8. 抛物线212y x =-的准线与双曲线22193x y -=的两条渐近线所围成的三角形的面积等于(A ) (B ) (C )2 (D 9. 定义行列式运算12212121b a b a b b a a -=,将函数xx x f cos 1sin 3)(=的图象向左平移)0(>t t 个单位,所得图象对应的函数为偶函数,则t 的最小值为 (A )6π (B )3π (C )65π (D )32π10. 设方程|)lg(|3x x-=的两个根为21,x x ,则(A ) 021<x x (B )021=x x (C ) 121>x x (D ) 1021<<x x 11. 王先生购买了一部手机,欲使用中国移动“神州行”卡或加入联通的130网,经调查其收费标准见下表:(注:本地电话费以分为计费单位,长途话费以秒为计费单位.)若王先生每月拨打本地电话的时间是拨打长途电话时间的5倍,若要用联通130应最少打多长时间的长途电话才合算.(A )300秒 (B )400秒 (C )500秒 (D )600秒12. 两个三口之家,共4个大人,2个小孩,约定星期日乘“奥迪”、“捷达”两辆轿车结伴郊游,每辆车最多只能乘坐4人,其中两个小孩不能独坐一辆车,则不同的乘车方法种数是(A )40 (B )48 (C )60 (D )68第Ⅱ卷二.填空题:本大题共4小题,每小题4分,共16分.13.在棱长为a 的正方体1111ABCD A BC D -内任取一点P ,则点P 到点A 的距离小于a 的概率为 .14.若等比数列}{n a 的首项为32,且⎰+=4 1 4)21(dx x a ,则公比q 等于 .15. 已知)(x f 为奇函数,且当x >0时, 0)('>x f ,0)3(=f ,则不等式0)(<x xf 的解集为____________.16. 数列 ,,,,,,,,,,1423324113223112211,则98是该数列的第 项. 三.解答题:本大题共6小题,共74分. 17. (本小题满分12分)已知角C B A 、、是ABC ∆的三个内角,c b a 、、是各角的对边,若向量⎪⎭⎫⎝⎛-+-=2cos),cos(1B A B A , ⎪⎭⎫ ⎝⎛-=2cos ,85B A ,且89=⋅.(Ⅰ)求B A tan tan ⋅的值; (Ⅱ)求222sin cb a Cab -+的最大值.18. (本小题满分12分)正ABC ∆的边长为4,CD 是AB 边上的高,E 、F 分别是AC 和BC 的中点(如图(1)).现将ABC ∆沿CD 翻折成直二面角A -DC -B (如图(2)). 在图形(2)中:(Ⅰ)试判断直线AB 与平面DEF 的位置关系,并说明理由; (Ⅱ)求二面角E -DF -C 的余弦值;(Ⅲ)在线段BC 上是否存在一点P ,使DE AP ⊥?证明你的结论.19. (本小题满分12分)张明要参加某单位组织的招聘面试.面试要求应聘者有7次选题答题的机会(选一题答一题),若答对4题即终止答题,直接进入下一轮,否则则被淘汰.已知张明答对每一道题的概率都为21. (Ⅰ)求张明进入下一轮的概率;(Ⅱ)设张明在本次面试中答题的个数为ξ,试写出ξ的分布列,并求ξ的数学期望.20.(本小题满分12分)数列}{n a 满足)2,(122*1≥∈++=-n N n a a n n n ,273=a . (Ⅰ)求21,a a 的值; (Ⅱ)已知))((21*N n t a b n n n ∈+=,若数列}{n b 成等差数列,求实数t ; (Ⅲ)求数列}{n a 的前n 项和n S .21. (本小题满分12分)已知A 为椭圆)0(12222>>=+b a by a x 上的一个动点,弦AB 、AC 分别过焦点F 1、F 2,当AC 垂直于x 轴时,恰好有13||||21::=. (Ⅰ)求椭圆离心率;(Ⅱ)设F AF B F 222111λλ==,试判断21λλ+是否为定值?若是定值,求出该定值并证明;若不是定值,请说明理由.22. (本小题满分14分)已知0>a ,)1ln(12)(2+++-=x x ax x f ,l 是曲线)(x f y =在点))0(,0(f P 处的切线. (Ⅰ)求l 的方程;(Ⅱ)若切线l 与曲线)(x f y =有且只有一个公共点,求a 的值;(Ⅲ)证明对任意的n a =)(*N n ∈,函数)(x f y =总有单调递减区间,并求出)(x f 单调递减区间的长度的取值范围.(区间],[21x x 的长度=12x x -)高中数学高考模拟试卷(理科)参考答案一.选择题: BCCCB BBACD BB1.解析:B. 21(1)1111(1)(1)i i z i i i i -+--=-=-=-++-,故选B.2. 解析:C.该几何体为正四棱锥,底面边长为22=1223V =⨯⨯=. 3. 解析:C .由“且”命题的真假性知,p 、q 中至少有一个为假命题,则p q ∧为假,故选项C 错误. 4. 解析:D.每次循环对应的b a ,的值依次为11,1,2,112a b b a ====+=;22,24,213a b a ====+=;43,4,216,314a b b a =====+=. 5. 解析:B.根据面面平行的判定可知①是假命题;②是假命题; ③是真命题;④是真命题.6. 解析:B. 2585312a a a a ++==,∴54a =,19592993622a a aS +=⨯=⨯=. 7. 解析:B. CB PA PB CB BP PA λλ=+⇒+= CP PA λ⇒=,∴C 、P 、A 三点共线.8. 解析:A. 抛物线212y x =-的准线方程为3x =,双曲线22193x y -=的渐近线为y x =,如图,它们相交得OAB ∆,则(3,A B ,∴132OAB S ∆=⨯=.9. 解析:C. 1sin ()sin sin )2cos xf x x x x x x==-=-2cos()6x π=+.函数()f x 向左平移65π后为55()2cos()2cos()2cos 666f x x x x ππππ+=++=+=-,所以5()2c o s6f x x π+=-为偶函数. 10. 解析:D. 如图,易知231x x =,3120x x x <<<,∴1201x x <<.11. 解析:B. 设王先生每月拨打长途x 秒,拨打本地电话5x 秒,根据题意应满足50.3650.60120.060.076060x x x x ⋅⋅++≤+,解得400x ≥. 12. 解析:B. 只需选出乘坐奥迪车的人员,剩余的可乘坐捷达.若奥迪车上没有小孩,则有2344C C +=10种;若有一个小孩,则有11232444()C C C C ++=28种;若有两个小孩,则有1244C C +=10种.故不同的乘车方法种数为10+28+10=48种. 二.填空题13.6π;14.3;15. {|033x 0}x x <<-<<或;16.128. 13. 解析:6π.易知,在正方体内到点A 的距离小于a 的点分布在以A 为球心,以a 为半径的球的18部分内.故所求概率即为体积之比3341386a P a ππ⋅==.14. 解析:3. 42224 14(12)()44(11)181a x dx x x =+=+=+-+=⎰;123a =,341a a q =⋅得公比3q =.15. 解析:{|033x 0}x x <<-<<或.根据题意,函数()f x 的图象如图,可得0)(<x xf 的解集为{|033x 0}x x <<-<<或.16. 解析:128.分子、分母之和为2的有1项,为3的有2项,…,为16的有15项.而98是分子、分母之和为17的第8项.故共有1511581282+⨯+=项. 三.解答题17. (本题小满分12分)已知角C B A 、、是ABC ∆的三个内角,c b a 、、是各角的对边,若向量⎪⎭⎫⎝⎛-+-=2cos),cos(1B A B A , ⎪⎭⎫ ⎝⎛-=2cos ,85B A n ,且89=⋅.(Ⅰ)求B A tan tan ⋅的值;(Ⅱ)求222sin c b a Cab -+的最大值. 解:(Ⅰ)由(1cos(),cos )2A B m A B -=-+ ,5(,cos )82A Bn -= ,且98m n ⋅= , 即259[1cos()]cos 828A B A B --++=.---------------------------------------------------------------------------2分 ∴4cos()5cos()A B A B -=+,-------------------------------------------------------------------------------------4分即cos cos 9sin sin A B A B =,∴1tan tan 9A B =.--------------------------------------------------------------6分 (Ⅱ)由余弦定理得222sin sin 1tan 2cos 2ab C ab C C a b c ab C ==+-,-------------------------------------------------8分而∵tan tan 9tan()(tan tan )1tan tan 8A B A B A B A B ++==+-9384≥⨯=, 即tan()A B +有最小值34.-----------------------------------------------------------------------------------------10分又tan tan()C A B =-+,∴tan C 有最大值34-(当且仅当1tan tan 3A B ==时取等号),所以222sin ab C a b c +-的最大值为38-.-------------------------------------------------------------------------------12分18. (本题小满分12分)正ABC ∆的边长为4,CD 是AB 边上的高,E 、F 分别是AC 和BC 的中点(如图(1)).现将ABC ∆沿CD 翻折成直二面角A -DC -B (如图(2)). 在图形(2)中:(Ⅰ)试判断直线AB 与平面DEF 的位置关系,并说明理由; (Ⅱ)求二面角E -DF -C 的余弦值;(Ⅲ)在线段BC 上是否存在一点P ,使DE AP ⊥?证明你的结论.解法一:(Ⅰ)如图(2):在ABC ∆中,由EF 分别是AC 、BC 的中点,得EF//AB ,又⊄AB 平面DEF ,⊂EF 平面DEF . ∴//AB 平面DEF.-----------------------------------------------------------------------3分(Ⅱ)CD BD CD AD ⊥⊥,,∴ADB ∠是二面角A -CD -B 的平面角.-------------------------------------------------------------------------------------4分∴BD AD ⊥,∴⊥AD 平面BCD .取CD 的中点M ,则EM //AD ,∴EM ⊥平面BCD .过M 作MN ⊥DF 于点N ,连结EN ,则EN ⊥DF ,MNE ∠是二面角E -DF -C 的平面角.----------------------------------------------------6分在EMN Rt ∆中,EM =1,MN =23,∴721cos =∠MNE .----------------------------------8分(Ⅲ)在线段BC 上取点P ,使BP =BC 31,过P 作PQ ⊥CD 于点Q ,∴⊥PQ 平面ACD .-----------------11分∵,33231==DC DQ ∴ADQ Rt ∆中,33tan =∠DAQ .在等边ADE ∆中, ,30 =∠DAQ ∴DE AP DE AQ ⊥⊥,.------------------------------------------------------12分解法二:(Ⅱ)以点D 为坐标原点,以直线DB 、DC 、DA 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则)0,3,1(),1,3,0(),0,32,0(002(),2,0,0(F E C B A ),,,------------------------------------------4分平面CDF 的法向量)2,0,0(=.设平面EDF 的法向量为n=(x ,y ,z ).则⎪⎩⎪⎨⎧=⋅=⋅0DE n DF ,即⎩⎨⎧=+=+0303z y y x ,取)3,3,3(-=------------------------------------------6分721||||cos =⋅>=⋅<n DA .二面角E -DF -C 的平面角的余弦值为721.------------------------------------8分 (Ⅲ)在平面坐标系x D y 中,直线BC 的方程为323+-=x y ,设)0,332,(x x P -,则)2,332,(--=x x .--------------------------------------------------------------------------------------------------------10分∵x DE AP 31340=⇒=⇒=⋅⇒⊥. ∴在线段BC 上存在点P ,使AP ⊥DE .---------------------------------------------------------------12分.19. (本题小满分12分)张明要参加某单位组织的招聘面试.面试要求应聘者有7次选题答题的机会(选一题答一题),若答对4题即终止答题,直接进入下一轮,否则则被淘汰.已知张明答对每一道题的概率都为21. (Ⅰ)求张明进入下一轮的概率;(Ⅱ)设张明在本次面试中答题的个数为ξ,试写出ξ的分布列,并求ξ的数学期望.解法一:(Ⅰ)张明答4道题进入下一轮的概率为161)21(4=;----------------------------------------------------1分 答5道题进入下一轮的概率为812121)21(334=⋅⋅C ;--------------------------------------------------------------------2分答6道题进入下一轮的概率为32521)21()21(2335=⋅⋅C ;--------------------------------------------------------------3分答7道题进入下一轮的概率为32521)21()21(3336=⋅⋅C ;-------------------------------------------------------------5分张明进入下一轮的概率为1155116832322P =+++=.---------------------------------------------------------------6分 (Ⅱ)依题意,ξ的可能取值为4,5,6,7.当ξ=4时可能答对4道题进入下一轮,也可能打错4道题被淘汰.81)21()21()4(44=+==ξP ; 类似有4121)21()21(21)21()21()5(334334=⋅⋅+⋅⋅==C C P ξ;)6(=ξP =+⋅⋅21)21()21(2335C 16521)21()21(2335=⋅⋅C ; )7(=ξP =+⋅⋅21)21()21(3336C 16521)21()21(3336=⋅⋅C .----------------------------------------------10分 于是ξ的分布列为161671664584=⨯+⨯+⨯+⨯=ξE ---------------------------------------------------------------------12分解法二:(Ⅱ)设张明进入下一轮的概率为1P ,被淘汰的概率为2P ,则121=+P P ,又因为张明答对每一道题的概率都为21,答错的概率也都为21.所以张明答对4题进入下一轮与答错4题被淘汰的概率是相等的.即21P P =. 所以张明进入下一轮的概率为21.--------------------------------------------------------------------------------------6分20.(本小题满分12分)数列}{n a 满足)2,(122*1≥∈++=-n N n a a n n n ,273=a . (Ⅰ)求21,a a 的值; (Ⅱ)已知))((21*N n t a b n n n ∈+=,若数列}{n b 成等差数列,求实数t ; (Ⅲ)求数列}{n a 的前n 项和n S .解法一:(Ⅰ)由)2,(122*1≥∈++=-n N n a a n n n ,得33222127a a =++=29a ⇒=.2212219a a =++=12a ⇒=.--------------------------------------------------------------3分(Ⅱ)*11221(,2)(1)2(1)2nnn n n n a a n N n a a --=++∈≥⇒+=++*(,2)n N n ∈≥1111122n n nn a a --++⇒=+*(,2)n N n ∈≥---------------------------------------------------------5分 1111122n n n n a a --++⇒-=*(,2)n N n ∈≥,令*1(1)()2n n nb a n N =+∈,则数列}{n b 成等差数列,所以1t =. ---------------------------------------------------------------------------------------------7分(Ⅲ))}{n b 成等差数列,1(1)n b b n d =+-321(1)22n n +=+-=.121(1)22n n n n b a +=+=; 得1(21)21n n a n -=+⋅-*()n N ∈.--------------------------------------------------------------8分n S =21315272(21)2n n n -⋅+⋅+⋅+++⋅- -----------①2n S =23325272(21)22n n n ⋅+⋅+⋅+++⋅- --------------------② ① - ② 得213222222(21)2n n n S n n --=+⋅+⋅++⋅-+⋅+233222(21)2nnn n =++++-+⋅+ 14(12)3(21)212n n n n --=+-+⋅+- =(21)21nn n -+⋅+-.所以(21)21n n S n n =-⋅-+*()n N ∈-------------------------------------------------------------12分.解法二:(Ⅱ)))((21*N n t a b n n n ∈+=且数列}{n b 成等差数列,所以有1()n n b b +-*()n N ∈为常数. 11111()()22n n n n n n b b a t a t +++-=+-+*()n N ∈1111(221)()22n n n n n a t a t ++=+++-+*()n N ∈111112222n n n n n n t ta a ++=++--*()n N ∈ 1112n t+-=+*()n N ∈,要使1()n n b b +-*()n N ∈为常数.需1t =.---------------------------------7分21. (本题小满分12分)已知A 为椭圆)0(12222>>=+b a by a x 上的一个动点,弦AB 、AC 分别过焦点F 1、F 2,当AC 垂直于x 轴时,恰好有13||||21::=.(Ⅰ)求椭圆离心率;(Ⅱ)设F AF B F AF 222111λλ==,试判断21λλ+是否为定值?若是定值,求出该定值并证明;若不是定值,请说明理由.解:(Ⅰ)当AC 垂直于x 轴时,a b 22||=,13||||21::=,∴ab 213||=∴a a b 242=,∴222b a =,∴22c b =,故22=e .-----------------------------------------3分 (Ⅱ)由(Ⅰ)得椭圆的方程为22222b y x =+,焦点坐标为)0,(),0,(21b F b F -.①当弦AC 、AB 的斜率都存在时,设),(),,(),,(221100y x C y x B y x A ,则AC 所在的直线方程为)(00b x bx y y --=, 代入椭圆方程得0)(2)23(20200202=--+-y b y b x by y bx b .∴02222023bx b y b y y --=,--------------------------------------------------------------5分F AF 222λ=,bx b y y 020223-=-=λ.--------------------------------------------------7分 同理bx b 0123+=λ,∴621=+λλ------------------------------------------------------9分 ②当AC 垂直于x 轴时,则bbb 23,112+==λλ,这时621=+λλ; 当AB 垂直于x 轴时,则5,121==λλ,这时621=+λλ.综上可知21λλ+是定值 6.---------------------------------------------------------------12分22. (本题小满分14分)已知0>a ,)1ln(12)(2+++-=x x ax x f ,l 是曲线)(x f y =在点))0(,0(f P 处的切线. (Ⅰ)求l 的方程;(Ⅱ)若切线l 与曲线)(x f y =有且只有一个公共点,求a 的值;(Ⅲ)证明对任意的n a =)(*N n ∈,函数)(x f y =总有单调递减区间,并求出)(x f 单调递减区间的长度的取值范围.(区间],[21x x 的长度=12x x -)解:(Ⅰ)1)0(),1ln(12)(2=+++-=f x x ax x f ,11)22(21122)(2'+--+=++-=x x a ax x ax x f , 1)0('=f ,切点)1,0(P ,l 斜率为1-.∴切线l 的方程:1+-=x y ------------------------------------------------------3分(Ⅱ)切线l 与曲线)(x f y =有且只有一个公共点等价于方程1)1ln(122+-=+++-x x x ax 有且只有一个实数解.令)1ln()(2++-=x x ax x h ,则0)(=x h 有且只有一个实数解.---------------------------4分 ∵0)0(=h ,∴0)(=x h 有一解0=x .------------------------------------------------------5分1)]121([21)12(21112)(2'+--=+-+=++-=x a x ax x x a ax x ax x h --------------------------------6分 ①)(),1(01)(,212'x h x x x x h a ->≥+==在),1(+∞-上单调递增, ∴0=x 是方程0)(=x h 的唯一解;------------------------------------------------------7分 ②0)(,210'=<<x h a ,0121,021>-==ax x∴0)11ln(11)1(,0)0()121(2>++-⨯==<-a a aa a h h a h , ∴方程0)(=x h 在),121(+∞-a上还有一解.故方程0)(=x h 的解不唯一;--------------------8分③当0)(,21'=>x h a ,)0,1(121,021-∈-==ax x∴0)0()121(=>-h ah ,而当1->x 且x 趋向-1时,)1ln(,12++<-x a x ax 趋向∞-,)(x h 趋向∞-. ∴方程0)(=x h 在)1211(--a,上还有一解.故方程0)(=x h 的解不唯一.综上,当l 与曲线)(x f y =有且只有一个公共点时,21=a .-------------------------10分(Ⅲ)11)22(2)(2'+--+=x x a ax x f ;∵,1->x ∴0)('<x f 等价于01)22(2)(2<--+=x a ax x k .∵0)1(48)22(22>+=+-=∆a a a ,对称轴12121422->+-=--=aa a x ,011202(2)1(>=---=-a a k ,∴0)(=x k 有解21,x x ,其中211x x <<-.∴当),(21x x x ∈时,0)('<x f .所以)(x f y =的减区间为],[21x x22122121211214)222(4)(aa a a x x x x x x +=⨯+--=-+=---------------------------12分 当)(*N n n a ∈=时,区间长度21211n x x +=-21112=+≤ ∴减区间长度12x x -的取值范围为)2,1(--------------------------------------------------14分。

山西省太原市2015届高三模拟考试理科数学试卷(二)及答案

山西省太原市2015届高三模拟考试理科数学试卷(二)及答案

山西省太原市2015届高三年级第二次模拟试题理科数学一、选择题:1.已知 i 为虚数单位,集合A={}zi ,2,1,B={}1,3则复数z= A .i 4- B .4i C .i 2- D .2i2.下列命题中的假命题是: A. ,0x x R e ∀∈> B. 2,0x R x ∀∈≥ C. 00,sin 2x R x ∃∈= D. 0200,2xx R x ∃∈> 3.已知 (,2),(2,1)a x b ==-,且 a b ⊥,则 a b -= A.5 B. 10 C. 25 D. 104.已知 sin cos 2,(,)22a a a ππ+=∈-.则 tan a = A. -1 B. 22-C .22D. 1 5.执行右图所示的程序框图,若P=1211.则输出的n= A . 4 B . 5 C . 6 D . 76已知某几何体的三视图如图所示,则该几何体的体积为A.314 B. 4 C. 103D. 3 7.已知△ABC 中, 34cos ,cos ,455A B BC ===,则△ABC 的面积为A. 6B.12C. 5D.108已知点A ()0,a -,B (),0a ,若圆 ()22(3)41x y -+-=上存在点P .使得 90APB ∠=,则正数a 的取值范围为A.[4,6]B.[5,6]C. [4,5]D.[3,6]9已知函数 ()f x 的导函数在 (,)a b 上的图象关于直线 2a bx +=对称,则函数 ()y f x =在 [,]a b 上的图象可能是10.已知长方体ABCD-A 1B 1C 1D 1中,AA 1=AB=2,若棱AB 上存在点P ,使得PC P D ⊥1,则AD 的取值范围是11.A .[)2,1 B .(1,2⎤⎦C .(]0,1D .()2,011.已知 12,F F 分别是双曲线 22221(0,0)x y a b a b-=>>的左,右焦点,点p 在双曲线的右支上,且()110F P OF OP ⋅+=(O 为坐标原点),若122F P F P =,则该双曲线的离心率为A .63+ B .632+ C . 62+ D .622+ 12.已知函数()x f 定义域为()+∞,0,且满足()()()ee f x x x f x x f 1,ln =='+,则下列结论正确的是 A.()x f 有极大值无极小值 B.()x f 有极小值无极大值 C.()x f 既有极大值又有极小值 D.()x f 没有极值二、填空题:13.在直角坐标平面内,由曲线3,,1===x x y xy 所围成的封闭图形面积为_______.14已知实数x ,y 满足条件 0,434,0,x x y y ≥⎧⎪+≤⎨⎪≥⎩,则 1x y z x ++=最小值为 _______.15.已知数列 {}n a 满足 ()11121,()1n n n n a a a a a n N n n *++=-=∈+,则 n a =_______.16.已知 10≤≤x ,若1213≤-ax x 恒成立, 则实数a 的取值范围是____. 三、解答题:17. 巳知等差数列 {}n a 的前n 项和为 n S ,且 131,9a S ==.数列 {}n b 中131,20b b == (I)若数列 n n b a ⎧⎫⎨⎬⎩⎭是公比0>q 的等比数列,求 ,n n a b(Ⅱ)在(I)的条件下,求数列 {}n b 的前n 项和 n T 。

2015年高考理科数学模拟试题

2015年高考理科数学模拟试题

绝密★启用前2015年高考仿真模拟试题数学试题(理科)注意事项:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.考试时间120分钟,满分150分。

考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试卷上作答无效,交卷时只交答题卡第I 卷(选择题)一、选择题 (本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}{}1,2,3,14M N x Z x ==∈<<,则( ) A .M N ⊆ B .N M = C .{2,3}M N ⋂= D .(1,4)M N ⋃= 2.已知复数z 43i =--(i 是虚数单位),则下列说法正确的是( )(A )复数z 的虚部为3i -(B )复数z 的虚部为3(C )复数z 的共轭复数为z 43i =+(D )复数z 的模为53.设2log 3a =,4log 6b =,8log 9c =,则下列关系中正确的是( )A .a b c >>B .a c b >>C .c b a >>D .c a b >> 4.若552sin =α,1010)sin(=-αβ,且],4[ππα∈,]23,[ππβ∈,则αβ+的值是( ) (A )74π (B )94π (C )54π或74π (D )54π或94π5.程序框图如图所示,若其输出结果是140,则判断框中填写的是( )A .7i <B .8i <C .7i >D .8i >6.函数31,0()1(),03x x x f x x ⎧+<⎪=⎨≥⎪⎩的图象大致为( )7.把半径为2的圆分成相等的四弧,再将四弧围成星形放在半径为2的圆内,现在往该圆内任投一点,此点落在星形内的概率为( )A .14-πB .π2C .214-π D .21 8.如图,已知正方体1111ABCD A B C D -棱长为4,点H 在棱1AA 上,且11HA =.在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 距离等于线段PF 的长.则当点P 运动时, 2HP 的最小值是 ( ) (A )21 (B )22 (C )23 (D )259.已知抛物线人24y x =的焦点为F ,过点(2,0)P 的直线交抛物线于A ,B 两点,直线AF ,BF 分别与抛物线交于点C ,D 设直线AB ,CD 的斜率分别为12,k k ,则12k k 等于( ) A.12k k B.12 C.1 D.2 10.已知P (x,y )为区域2200y x x a ⎧-≤⎨≤≤⎩内的任意一点,当该区域的面积为4时,2z x y =-的最大值是( )A.6B.0C.2D.11.已知0a b >>,椭圆1C 的方程为2222=1x y a b +,双曲线2C 的方程为22221y x a b -=,1C 与2C的离心率之积为,则2C 的渐近线方程为A.. 0A x ±= B..0B y ±= C ..20C x y ±=D ..20D x y ±=12.对于函数()f x ,若在定义域内存在..实数x ,满足()()f x f x -=-,称()f x 为“局部奇函数”,若()12423x x f x m m +=-+-为定义域R 上的“局部奇函数”,则实数m 的取值范围是 ( )A .3131+≤≤-mB .2231≤≤-mC .2222≤≤-mD .3122-≤≤-m第II 卷(非选择题)本卷包括填空题和解答题两部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年高考数学(理科)模拟试题(二)㊀㊀一㊁选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={0,1,2},则集合B={x-y|xɪA,yɪA}中元素的个数是(㊀㊀).A.1㊀㊀㊀B.3㊀㊀㊀C.5㊀㊀㊀D.92.已知i是虚数单位,若(2-i)㊃z=i3,则z=(㊀).A.15-25i㊀㊀㊀㊀B.-25+15i㊀㊀C.-25-15i㊀㊀D.15+25i3.命题 对任意xɪR,都有x2ȡ0 的否定为(㊀).A.对任意xɪR,都有x2<0B.不存在xɪR,都有x2<0C.存在x0ɪR,使得x20ȡ0D.存在x0ɪR,使得x20<04.某班有男生36人,女生18人,用分层抽样的方法从该班全体学生中抽取一个容量为9的样本,则抽取的女生人数为(㊀㊀).A.6㊀㊀㊀B.4㊀㊀㊀C.3㊀㊀㊀D.25.下列函数中是奇函数且周期是π的是(㊀).A.y=2cos(2x+π2)㊀㊀㊀B.y=2cos(x+π2)C.y=2sin(2x+π2)㊀㊀㊀D.y=2sin(x+π2)6.如图所示,在下列四个几何体中,其三视图中有且仅有两个相同的是(㊀㊀).A.②③④㊀㊀B.①②③㊀㊀C.①③④㊀㊀D.①②④7.从1,3,5,7,9这5个奇数中选取3个数字,从2,4,6,8这4个偶数中选取2个数字,再将这5个数字组成没有重复数字的五位数,且奇数数字与偶数数字相间排列,这样的五位数的个数是(㊀㊀).A.180㊀㊀㊀B.360㊀㊀㊀C.480㊀㊀㊀D.7208.某算法的程序框图如图所示,则输出S的值是(㊀㊀).A.6㊀㊀B.24C.120㊀㊀D.840㊀㊀9.已知点P在抛物线x2=4y上,且点P到x轴的距离与点P到此抛物线的焦点的距离之比为1ʒ3,则点P到x轴的距离是(㊀).A.14㊀㊀B.12㊀㊀C.1㊀㊀D.210.设偶函数f(x)(xɪR)满足f(x)=f(2-x),且当xɪ[0,1]时,f(x)=x2.又函数g(x)=xcos(πx),则函数h(x)=g(x)-f(x)在区间[-12,32]上的零点个数为(㊀㊀).A.5㊀㊀㊀B.6㊀㊀㊀C.7㊀㊀㊀D.8二㊁填空题:本大题共5小题,每小题5分,共25分.11.二项式2x3-12x2æèçöø÷5的展开式的常数项是㊀㊀㊀㊀.12.在平面直角坐标系中,若点A(1,1),B(2,4),C(-1,3),则|ABң-ACң|=㊀㊀㊀㊀.13.设函数f(x)=21-x,xɤ1,1-log2x,x>1,{则f(x)ɤ2时x的取值范围是㊀㊀㊀㊀.14.已知双曲线x2a2-y2b2=1(a>0,b>0)的渐近线与圆x2+y2-4x+2=0有公共点,则该双曲线离心率的取值范围是㊀㊀㊀㊀.15.设满足条件x2+y2ɤ1的点(x,y)构成的平面区域的面积为S1,满足条件[x]2+[y]2ɤ1的点(x,y)构成的平面区域的面积为S2(其中[x]㊁[y]分别表示不大于x㊁y的最大整数,例如[-0.3]=-1,[1.2]=1),给出下列结论:①点(S1,S2)在直线y=x左上方的区域内;②点(S1,S2)在直线x+y=7左下方的区域内;③S1<S2;④S1>S2.其中所有正确结论的序号是㊀㊀㊀㊀.三㊁解答题:本大题共6小题,共75分.解答应写出文字说明㊁证明过程或演算步骤.16.(本小题满分12分)已知函数f(x)=sin(2x+π6)+cos(2x-π3).(Ⅰ)求f(x)的最大值及取得最大值时x的值;(Ⅱ)在әABC中,角A,B,C的对边分别为a,b,c,若f(C)=1,c=23,sinA=2sinB,求әABC的面积.17.(本小题满分12分)在数列{an}中,前n项和为Sn,且Sn=n(n+1)2.36(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=an2n,数列{bn}的前n项和为Tn,求Tn的取值范围.18.(本小题满分12分)某中学举行了一次 环保知识竞赛 .为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).(Ⅰ)求样本容量n和频率分布直方图中x㊁y的值;(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设ξ表示所抽取的3名同学得分在[80,90)的学生个数,求ξ的分布列及其数学期望.19.(本小题满分12分)直三棱柱ABC A1B1C1中,AB=BB1=12BC,øABC=90ʎ,N㊁F分别为A1C1㊁B1C1的中点.(Ⅰ)求证:CFʅ平面NFB;(Ⅱ)求二面角B NC A的余弦值.20.(本小题满分13分)已知点F1(-1,0),F2(1,0),动点G满足GF1+GF2=22.(Ⅰ)求动点G的轨迹Ω的方程;(Ⅱ)已知过点F2且与x轴不垂直的直线l交(Ⅰ)中的轨迹Ω于P㊁Q两点.在线段OF2上是否存在点M(m,0),使得以MP㊁MQ为邻边的平行四边形是菱形?若存在,求实数m的取值范围;若不存在,请说明理由.21.(本小题满分14分)已知函数f(x)=kex-x2(其中kɪR,e是自然对数的底数).(Ⅰ)若k<0,试判断函数f(x)在区间(0,+ɕ)上的单调性;(Ⅱ)若k=2,当xɪ(0,+ɕ)时,试比较f(x)与2的大小;(Ⅲ)若函数f(x)有两个极值点x1,x2(x1<x2),求k的取值范围,并证明0<f(x1)<1.参考答案一㊁CADCA㊀㊀㊀ADCBB二㊁11.-5㊀12.10㊀13.[0,+ɕ)㊀14.(1,2]㊀15.①③三㊁解答题16.解(Ⅰ)由已知,得f(x)=sin(2x+π6)+cos(2x-π3)=32sin2x+12cos2x+12cos2x+32sin2x=3sin2x+cos2x=2sin(2x+π6).当2x+π6=2kπ+π2,即x=kπ+π6(kɪZ)时,函数f(x)取得最大值2.(Ⅱ)由f(C)=2sin(2C+π6)=1得sin(2C+π6)=12,因为π6<2C+π6<2π+π6,所以2C+π6=5π6,解得C=π3.因为sinA=2sinB,根据正弦定理,得a=2b,由余弦定理,有c2=a2+b2-2abcosC,(23)2=4b2+b2-2ˑ2b2cosπ3=3b2,解得b=2,a=4,故әABC的面积SәABC=12absinC=12ˑ4ˑ2ˑsinπ3=23.17.解(Ⅰ)当n=1时,a1=S1=1;当nȡ2时,an=Sn-Sn-1=n(n+1)2-(n-1)n2=n,经验证,a1=1满足上式,故数列{an}的通项公式an=n.(Ⅱ)由题意,易得Tn=12+222+323+ +n2n,则12Tn=122+223+324+ +n2n+1,两式相减,得Tn-12Tn=12+122+123+ +12n-n2n+1=1-12n-n2n+1,所以Tn=2-n+22n.由于Tn+1-Tn=n+12n+1>0,则Tn单调递增,故TnȡT1=12,又Tn=2-n+222<2,故Tn的取值范围是[12,2).18.解(Ⅰ)由题意可知,样本容量n=80.016ˑ10=50,y=250ˑ10=0.004,x=0.1-0.004-0.010-0.016-0.04=0.030.(Ⅱ)由题意可知,分数在[80,90)有5人,分数在[90,100]有2人,共7人.抽取的3名同学中得分在[80,90)的学生个数ξ的可能取值为1,2,3,则P(ξ=1)=C15C22C37=535=17,P(ξ=2)=C25C12C37=2035=47,P(ξ=3)=C35C37=1035=27,所以ξ的分布列如下:ξ123p174727㊀㊀故ξ的数学期望为Eξ=1ˑ17+2ˑ47+3ˑ27=157.19.解㊀解法一:(Ⅰ)直三棱柱ABC A1B1C1中,B1BʅAB,BCʅAB,46B1BɘBC=B,所以ABʅ平面BB1C1C.又N㊁F分别为A1C1㊁B1C1的中点,所以ABʊA1B1ʊNF,NFʅ平面BB1C1C.又因FC⊂平面BB1C1C,所以NFʅFC.取BC中点G,有BG=GF=GC,所以BFʅFC,又NFɘFB=F,所以CFʅ平面NFB.(Ⅱ)由题意,平面ABCʅ平面ACC1A1,平面ABCɘ平面ACC1A1=AC.过点B作BHʅAC于H,则BHʅ平面ACC1A1,所以BHʅNC.过H作HEʅNC于E,连结BE,所以NCʅ平面BEH,NCʅBE,则øBEH是二面角B NC A的平面角.在RtәABC中,BHˑAC=ABˑBC.不妨设AB=a,则BH=ABˑBCAC=255a.因为BF=CF,所以在әBNC中,NC=BN=32a,BEˑCN=BCˑNG.又因为在RtәBNG中,NG=52a,所以BE=BCˑNGCN=253a,故在RtәBEH中,sinøBEH=BHBE=35,则cosøBEH=BHBE=45,二面角B NC A的余弦值为45.解法二:(Ⅰ)以B1为坐标原点,B1B,B1C1,B1A1所在直线分别为x轴,y轴,z轴,建立空间直角坐标系.不妨设AB=a,则B1(0,0,0),B(a,0,0),F(0,a,0),A1(0,0,a),C1(0,2a,0),N(0,a,a2),C(a,2a,0),则BFң=(-a,a,0),FNң=(0,0,a2),CFң=(-a,-a,0),CFң㊃BFң=a2-a2=0,CFң㊃FNң=0ˑ(-a)+0ˑ(-a)+0ˑa2=0,所以CFʅBF,CFʅFN,又BFɘFN=F,所以CFʅ平面NFB.(Ⅱ)由(Ⅰ)可得CC1ң=(-a,0,0),A1C1ң=(0,2a,-a),BCң=(0,2a,0),BNң=(-a,a,a2),设平面ACC1A1的一个法向量为n1=(x1,y1,z1),则有n1㊃CC1ң=0与n1㊃A1C1ң=0,即-ax1=0与2ay1-az1=0,取y1=1,z1=2,则n1=(0,1,2).设平面BNC的一个法向量为n2=(x2,y2,z2),则有n2㊃BCң=0与n2㊃BNң=0,即2ay2=0与-ax2+ay2+a2z2=0,取x2=1,z2=2,则n2=(1,0,2).设二面角B NC A的大小为θ,则由n2㊃n2=n1㊃n2cosθ得二面角B NC A的余弦值为45.20.解(Ⅰ)由GF1+GF2=22,且F1F2<22知,动点G的轨迹是以F1(-1,0),F2(1,0)为焦点的椭圆,设椭圆的标准方程为x2a2+y2b2=1(a>0,b>0),c=a2+b2,由题知,c=1,a=2,则b2=a2-c2=2-1=1,故动点G的轨迹Ω的方程是x22+y2=1.(Ⅱ)假设在线段OF2上存在M(m,0)(0<m<1),使得以MP㊁MQ为邻边的平行四边形是菱形,直线l与x轴不垂直,设直线l的方程为y=k(x-1)(kʂ0),由x2+2y2=2,y=k(x-1),{可得(1+2k2)x2-4k2x+2k2-2=0,所以x1+x2=4k21+2k2,x1x2=2k2-21+2k2,MPң=(x1-m,y1),MQң=(x2-m,y2),PQң=(x2-x1,y2-y1),其中x2-x1ʂ0.由于MP㊁MQ为邻边的平行四边形是菱形,所以(MPң+MQң)ʅPQң,则有(MPң+MQң)㊃PQң=0,从而有(x2+x1-2m,y2+y1)㊃(x2-x1,y2-y1)=0,所以(x2+x1-2m)(x2-x1)+(y2+y1)(y2-y1)=0,又因y=k(x-1),则有y2-y1=k(x2-x1),y2+y1=k(x1+x2-2),故上述式子可以变形为(x1+x2-2m)+k2(x1+x2-2)=0,将x1+x2=4k21+2k2代入上式,可以得到(4k21+2k2-2m)+k2(4k21+2k2-2)=0,即2k2-(2+4k2)m=0,所以m=k21+2k2(kʂ0),可知0<m<12,故实数m的取值范围是(0,12).21.解㊀(Ⅰ)由fᶄ(x)=kex-2x可知,当k<0时,由于xɪ(0,+ɕ),fᶄ(x)=kex-2x<0,故函数f(x)在区间(0,+ɕ)上是单调递减函数.(Ⅱ)当k=2时,f(x)=2ex-x2,则fᶄ(x)=2ex-2x,令h(x)=2ex-2x,hᶄ(x)=2ex-2,由于xɪ(0,+ɕ),故hᶄ(x)=2ex-2>0,于是h(x)=2ex-2x在区间(0,+ɕ)上为增函数,所以h(x)=2ex-2x>h(0)=2>0,即fᶄ(x)=2ex-2x>0在区间(0,+ɕ)上恒成立,从而f(x)=2ex-x2在区间(0,+ɕ)上为增函数,故f(x)=2ex-x2>f(0)=2.(Ⅲ)函数f(x)有两个极值点x1,x2,则x1,x2是fᶄ(x)=kex-2x=0的两个根,即方程k=2xex有两个根,设φ(x)=2xex,则φᶄ(x)=2-2xex,当x<0时,φᶄ(x)>0,函数φ(x)单调递增且φ(x)<0;当0<x<1时,φᶄ(x)>0,函数φ(x)单调递增且φ(x)>0;当x>1时,φᶄ(x)<0,函数φ(x)单调递减且φ(x)>0.要使方程k=2xex有两个根,只需0<k<φ(1)=2e,故实数k的取值范围是(0,2e).又由上可知函数f(x)的两个极值点x1,x2满足0<x1<1<x2,由fᶄ(x1)=kex1-2x1=0,得k=2x1ex1,所以f(x1)=kex1-x21=2x1ex1ex1-x21=x1(2-x1)=-x21+2x1=-(x1-1)2+1,由于x1ɪ(0,1),故0<-(x1-1)2+1<1,所以0<f(x1)<1.56。

相关文档
最新文档