高一数学讲义-命题与四种命题

合集下载

高中数学第一章 1.1.2_1.1.3四种命题四种命题间的相互关系讲义(含解析)新人教A版选修1_1

高中数学第一章 1.1.2_1.1.3四种命题四种命题间的相互关系讲义(含解析)新人教A版选修1_1

1.1.2 & 1.1.3 四种命题四种命题间的相互关系预习课本P4~8,思考并完成以下问题1.一个命题的四种形式分别是什么?它们之间的相互关系分别是什么?2.什么样的两个命题有相同的真假性?3.两个互逆命题或互否命题,它们之间的真假性有没有关系?[新知初探]1.原命题与逆命题2.原命题与否命题3.原命题与逆否命题4.四种命题的真假性之间的关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)一个命题的否命题和逆命题有相同的真假性( )(2)原命题与逆命题之间的真假性没有关系( )答案:(1)√(2)√2.命题“若一个数是负数,则它的平方是正数”的逆命题是( )A.若一个数是负数,则它的平方不是正数B.若一个数的平方是正数,则它是负数C.若一个数不是负数,则它的平方不是正数D.若一个数的平方不是正数,则它不是负数答案:B3.命题“若x2>y2,则x>y”的否命题是________________________________________________________________________.答案:若x2≤y2,则x≤y4.命题p:若a=1,则a2=1;命题q:若a2≠1,则a≠1,则命题p与q的关系是________.答案:互为逆否命题四种命题的概念[典例]命题.(1)对顶角相等;(2)全等三角形的对应边相等.[解] (1)原命题:如果两个角是对顶角,则它们相等;逆命题:如果两个角相等,则它们是对顶角;否命题:如果两个角不是对顶角,则它们不相等;逆否命题:如果两个角不相等,则它们不是对顶角.(2)原命题:若两个三角形全等,则这两个三角形三边对应相等;逆命题:若两个三角形三边对应相等,则这两个三角形全等;否命题:若两个三角形不全等,则这两个三角形三边对应不相等;逆否命题:若两个三角形三边对应不相等,则这两个三角形不全等.四种命题的转换方法(1)逆命题:互换原命题的条件和结论,所得命题是原命题的逆命题.(2)否命题:同时否定原命题的条件和结论,所得命题是原命题的否命题.(3)逆否命题:互换原命题的条件和结论,并且同时否定,所得命题是原命题的逆否命题.[注意] 四种命题转换时关键是把命题写成“若……则……”的形式. 写出以下命题的逆命题、否命题和逆否命题.(1)如果一条直线垂直于平面内的两条相交直线,那么这条直线垂直于平面; (2)当x =2时,x 2-3x +2=0.解:(1)逆命题:如果一条直线垂直于平面,那么这条直线垂直于平面内的两条相交直线;否命题:如果直线不垂直于平面内的两条相交直线,那么这条直线不垂直于平面; 逆否命题:如果一条直线不垂直于平面,那么这条直线不垂直于平面内的两条相交直线. (2)逆命题:若x 2-3x +2=0,则x =2; 否命题:若x ≠2,则x 2-3x +2≠0; 逆否命题:若x 2-3x +2≠0,则x ≠2.四种命题真假的判断[典例] (1)“正三角形都相似”的逆命题.(2)“若x 2+y 2≠0,则x ,y 不全为零”的否命题. (3)“若m >0,则x 2+x -m =0有实根”的逆否命题.[解] (1)原命题的逆命题为“若三角形相似,则这些三角形是正三角形”.假命题. (2)原命题的否命题为“若x 2+y 2=0,则x ,y 全为零”.真命题.(3)原命题的逆否命题为“若x 2+x -m =0无实根,则m ≤0”.因为方程x 2+x -m =0无实根,所以判别式Δ=1+4m <0,解得m <-14,故m ≤0,为真命题. [一题多变]1.[变设问]若本例(3)改为判断“若m >0,则x 2+x -m =0有实根”的逆命题的真假,则结果如何?解:原命题的逆命题为“若x 2+x -m =0有实根,则m >0”.因为方程x 2+x -m =0有实根,所以判别式Δ=1+4m ≥0,所以m ≥-14,故逆命题为假命题.2.[变条件]若本例(3)改为判断“若m >0,则mx 2+x -1=0有实根”的逆否命题的真假,则结论如何?解:原命题的逆否命题为“若mx 2+x -1=0无实根,则m ≤0”.因为方程mx 2+x -1=0无实根,则m ≠0,所以判别式Δ=1+4m <0,则m <-14,故m ≤0,为真命题.解决此类题目的关键是牢记四种命题的概念,原命题与它的逆否命题同真同假,原命题的否命题与逆命题也互为逆否命题,同真同假,故只判断二者中的一个即可.等价命题的应用[典例] 证明:若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0.[证明] 法一:原命题的逆否命题为“已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,若a +b <0,则f (a )+f (b )<f (-a )+f (-b )”.若a +b <0,则a <-b ,b <-a . 又∵f (x )在(-∞,+∞)上是增函数, ∴f (a )<f (-b ),f (b )<f (-a ), ∴f (a )+f (b )<f (-a )+f (-b ). 即原命题的逆否命题为真命题. ∴原命题为真命题.法二:假设a +b <0,则a <-b ,b <-a . 又∵f (x )在(-∞,+∞)上是增函数, ∴f (a )<f (-b ),f (b )<f (-a ). ∴f (a )+f (b )<f (-a )+f (-b ).这与已知条件f (a )+f (b )≥f (-a )+f (-b )相矛盾. 因此假设不成立,故a +b ≥0.“正难则反”的处理原则(1)当原命题的真假不易判断,而逆否命题较容易判断真假时,可通过判断其逆否命题的真假来判断原命题的真假.(2)在证明某一个命题的真假性有困难时,可以证明它的逆否命题为真(假)命题,来间接地证明原命题为真(假)命题.证明:若m 2+n 2=2,则m +n ≤2.证明:将“若m 2+n 2=2,则m +n ≤2”视为原命题,则它的逆否命题为“若m +n >2,则m 2+n 2≠2”.由于m +n >2,则m 2+n 2≥12(m +n )2>12×22=2,所以m 2+n 2≠2.故原命题的逆否命题为真命题,从而原命题也为真命题.层级一 学业水平达标1.设a ,b 是向量,命题“若a =-b ,则|a |=|b |”的逆命题是( ) A .若a ≠-b ,则|a |≠|b | B .若a =-b ,则|a |≠|b | C .若|a |≠|b |,则a ≠-bD .若|a |=|b |,则a =-b解析:选D 条件“a =-b ”和结论“|a |=|b |”互换后得到逆命题:若|a |=|b |,则a =-b .故选D.2.“在△ABC 中,若C =90°,则A ,B 全是锐角”的否命题为( ) A .在△ABC 中,若C ≠90°,则A ,B 全不是锐角 B .在△ABC 中,若C ≠90°,则A ,B 不全是锐角 C .在△ABC 中,若C ≠90°,则A ,B 中必有一个是钝角 D .以上都不对解析:选 B “全是”的否定是“不全是”,故该命题的否命题为“在△ABC 中,若C ≠90°,则A ,B 不全是锐角”.3.命题“若a >-3,则a >-6”以及它的逆命题、否命题、逆否命题这四个命题中,真命题的个数为( )A .0B .1C .2D .4解析:选C “若a >-3,则a >-6”为真命题,所以其逆否命题亦为真命题.又逆命题、否命题为假命题,所以真命题的个数为2.故选C.4.若命题p 的逆命题为q ,命题q 的否命题为r ,则命题p 是命题r 的( ) A .逆命题 B .否命题 C .逆否命题D .以上都不对解析:选C 由四种命题的关系,知命题p 与命题r 互为逆否命题. 5.在下列四个命题中,为真命题的是( ) A .“x =2时,x 2-5x +6=0”的否命题 B .“若b =3,则b 2=9”的逆命题 C .若ac >bc ,则a >bD .“相似三角形的对应角相等”的逆否命题解析:选D A 中命题的否命题为“x ≠2时,x 2-5x +6≠0”,是假命题;B 中命题的逆命题为“若b 2=9,则b =3”,是假命题;C 中当c <0时,为假命题;D 中原命题与其逆否命题等价,都是真命题.6.命题“若x ≠1,则x 2-1≠0”的真假性为________.解析:可转化为判断命题的逆否命题的真假,由于原命题的逆否命题是:“若x 2-1=0,则x =1”,因为x 2-1=0,x =±1,所以该命题是假命题,因此原命题是假命题.答案:假命题7.已知命题“若m -1<x <m +1,则1<x <2”的逆命题为真命题,则m 的取值范围是________.解析:由已知得,若1<x <2成立,则m -1<x <m +1也成立.∴⎩⎪⎨⎪⎧m -1≤1,m +1≥2.∴1≤m ≤2.答案:[1,2] 8.下列命题中:①若一个四边形的四条边不相等,则它不是正方形; ②若一个四边形对角互补,则它内接于圆; ③正方形的四条边相等; ④圆内接四边形对角互补; ⑤对角不互补的四边形不内接于圆;⑥若一个四边形的四条边相等,则它是正方形.其中互为逆命题的有_______;互为否命题的有________;互为逆否命题的有________. 解析:命题③可改写为“若一个四边形是正方形,则它的四条边相等”;命题④可改写为“若一个四边形是圆内接四边形,则它的对角互补”;命题⑤可改写为“若一个四边形的对角不互补,则它不内接于圆”,再依据四种命题间的关系便不难判断.答案:②和④,③和⑥ ①和⑥,②和⑤ ①和③,④和⑤9.写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假. (1)正数a 的立方根不等于0;(2)在同一平面内,平行于同一条直线的两条直线平行.解:(1)原命题:若a 是正数,则a 的立方根不等于0,是真命题. 逆命题:若a 的立方根不等于0,则a 是正数,是假命题. 否命题:若a 不是正数,则a 的立方根等于0,是假命题. 逆否命题:若a 的立方根等于0,则a 不是正数,是真命题.(2)原命题:在同一平面内,若两条直线平行于同一条直线,则这两条直线平行,是真命题.逆命题:在同一平面内,若两条直线平行,则这两条直线平行于同一条直线,是真命题.否命题:在同一平面内,若两条直线不平行于同一条直线,则这两条直线不平行,是真命题.逆否命题:在同一平面内,若两条直线不平行,则这两条直线不平行于同一条直线.10.判断命题“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,则a≥1”的逆否命题的真假.解:原命题的逆否命题为“已知a,x为实数,若a<1,则关于x的不等式x2+(2a+1)x +a2+2≤0的解集为空集”.判断其真假如下:抛物线y=x2+(2a+1)x+a2+2的图象开口向上,判别式Δ=(2a+1)2-4(a2+2)=4a-7.因为a<1,所以4a-7<0.即抛物线y=x2+(2a+1)x+a2+2的图象与x轴无交点.所以关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.故原命题的逆否命题为真命题.层级二应试能力达标1.命题“设a,b,c∈R,若a>b,则ac2>bc2”,以及它的逆命题、否命题、逆否命题中,真命题共有( )A.0个B.1个C.2个 D.4个解析:选C 若c=0,则ac2>bc2不成立,故原命题为假命题.由等价命题同真同假,知其逆否命题也为假命题.逆命题“设a,b,c∈R,若ac2>bc2,则a>b”为真命题,由等价命题同真同假,知原命题的否命题也为真命题,所以共有2个真命题,故选C.2.命题“对角线相等的四边形是矩形”是命题“矩形的对角线相等”的( )A.逆命题 B.否命题C.逆否命题 D.无关命题解析:选A 由于这两个命题的关系是一个命题的条件和结论分别是另一个命题的结论和条件,所以互为逆命题,故选A.3.命题“若x,y都是奇数,则x+y也是奇数”的逆否命题是( )A.若x+y是奇数,则x与y不都是奇数B.若x+y是奇数,则x与y都不是奇数C.若x+y不是奇数,则x与y不都是奇数D.若x+y不是奇数,则x与y都不是奇数解析:选C 由于“x,y都是奇数”的否定表达是“x,y不都是奇数”,“x+y是奇数”的否定表达是“x+y不是奇数”,故原命题的逆否命题为若x+y不是奇数,则x,y不都是奇数,故选C.4.有下列四个命题:①若“xy =1,则x ,y 互为倒数”的逆命题;②“面积相等的三角形全等”的否命题;③“若m ≤1,则x 2-2x +m =0有实数解”的逆否命题;④“若A ∩B =B ,则A ⊆B ”的逆否命题.其中,为真命题的是( )A .①②B .②③C .④D .①②③解析:选D ①的逆命题:“若x ,y 互为倒数,则xy =1”是真命题;②的否命题:“面积不相等的三角形不全等”是真命题;③的逆否命题:“若x 2-2x +m =0没有实数解,则m >1”是真命题;命题④是假命题,所以它的逆否命题也是假命题,如A ={1,2,3,4,5},B={4,5},显然A ⊆B 是错误的.5.在原命题“若A ∪B ≠B ,则A ∩B ≠A ”与它的逆命题、否命题、逆否命题中,真命题的个数为________.解析:逆命题为“若A ∩B ≠A ,则A ∪B ≠B ”; 否命题为“若A ∪B =B ,则A ∩B =A ”; 逆否命题为“若A ∩B =A ,则A ∪B =B ”; 全为真命题. 答案:46.若命题“若x <m -1或x >m +1,则x 2-2x -3>0”的逆命题为真、逆否命题为假,则实数m 的取值范围是________________________________________________________________________.解析:由已知,易得{x |x 2-2x -3>0}{x |x <m -1或x >m +1}.又{x |x 2-2x -3>0}={x |x <-1或x >3},∴⎩⎪⎨⎪⎧-1≤m -1,m +1<3或⎩⎪⎨⎪⎧-1<m -1,m +1≤3,∴0≤m ≤2.答案:[0,2]7.已知a ,b ,c ∈R ,证明:若a +b +c <1,则a ,b ,c 中至少有一个小于13.证明:原命题的逆否命题为:已知a ,b ,c ∈R ,若a ,b ,c 都不小于13,则a +b +c ≥1.由条件a ≥13,b ≥13,c ≥13,三式相加得a +b +c ≥1,显然逆否命题为真命题.所以原命题也为真命题.即已知a ,b ,c ∈R ,若a +b +c <1,则a ,b ,c 中至少有一个小于13.8.a,b,c为三个人,命题A:“如果b的年龄不是最大的,那么a的年龄最小”和命题B:“如果c的年龄不是最小的,那么a的年龄最大”都是真命题,则a,b,c的年龄的大小顺序是否能确定?请说明理由.解:能确定.理由如下:显然命题A和B的原命题的结论是矛盾的,因此应该从它的逆否命题来考虑.①由命题A为真可知,当b不是最大时,则a是最小的,即若c最大,则a最小,所以c>b>a;而它的逆否命题也为真,即“a不是最小,则b是最大”为真,所以b>a>c.总之由命题A为真可知:c>b>a或b>a>c.②同理由命题B为真可知a>c>b或b>a>c.从而可知,b>a>c.所以三个人年龄的大小顺序为b最大,a次之,c最小.。

【人教版】高一数学上册四种命题知识点

【人教版】高一数学上册四种命题知识点

【人教版】高一数学上册四种命题知识点学习是一个边学新知识边巩固的过程,对学知识一定要多加计划,这样才能进步。

因此,为大家整理了高一数学上册四种命题知识点,供大家参考。

【人教版】高一数学上册四种命题知识点【《四种命题》知识点】四种命题包括原命题、逆命题、否命题和逆否命题。

1、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。

2、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。

3、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。

四种命题的相互关系1、四种命题的相互关系:原命题与逆命题互逆,逆命题与逆否命题互否,逆否命题与否命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否。

2、四种命题的真假关系:(1)两个命题互为逆否命题,它们有相同的真假性。

(2)两个命题为互逆命题或互否命题,它们的真假性没有关系。

【同步练习题】1.命题“若A∩B=A,则A∪B=B”的否命题是( )A.若A∪B=B,则A∩B=A B.若A∩B≠A,则A∪B≠BC.若A∪B≠B,则A∩B≠A D.若A∪B≠B,则A∩B=A 答案:B解析:条件与结论要同时否定.2.关于命题“平行四边形的两组对边分别相等”,下列论述中,正确的是( )A.逆命题是假命题 B.否命题是假命题C.逆否命题是真命题 D.以上答案都不对答案:C解析:原命题为真命题,所以逆否命题为真命题.3.命题:“若a、b都是偶数,则a+b是偶数”的逆否命题是( )A.若a+b是偶数,则a、b都不是偶数B.若a+b是偶数,则a、b不都是偶数C.若a+b不是偶数,则a、b都不是偶数D.若a+b不是偶数,则a、b不都是偶数答案:D解析:注意“都是”的否定为“不都是”.4.用反证法证明“如果a b 0,那么”假设的内容应是( )A. = B. C. ≤ D. 且 =答案:C解析:“ ”的反面为“≤”.5.“相似三角形的周长相等”写成“若p则q”的形式为_________________.答案:若两三角形相似,则它们的周长相等解析:条件p:若两三角形相似,结论q:它们的周长相等.6.用反证法证明:“任何三角形至少有两个锐角”时,应假设_____________________.答案:三角形至多有一个锐角解析:即假设三角形只有一个锐角或一个锐角也没有.7.给定命题:已知a、b为实数,若x2+ax+b≤0的解集是空集,则a2-4b≤0,写出它的逆命题、否命题、逆否命题,并判断四个命题的真假.解:原命题:是假命题.逆命题:已知a、b为实数,若a2-4b≤0,则x2+ax+b≤0的解集是空集.假命题.否命题:已知a、b为实数,若x2+ax+b≤0的解集不是空集,则a2-4b 0.假命题.逆否命题:已知a、b为实数,若a2-4b 0,则x2+ax+b≤0的解集不是空集.假命题.能力提升踮起脚,抓得住!8.一个命题与它的逆命题、否命题、逆否命题这四个命题中( )A.真命题的个数一定是奇数B.真命题的个数一定是偶数C.真命题的个数可能是奇数也可能是偶数D.以上判断都不正确答案:B解析:原命题与逆否命题同真同假,逆命题与否命题同真同假.9.若命题p的否命题为r,命题r的逆命题为s,则s是p的逆命题t的( )A.逆否命题 B.逆命题C.否命题 D.原命题答案:C解析:由题知s是p的逆否命题,而t是p的逆命题,所以s是t的否命题.10.命题“若a b,则ac bc(a、b、c∈R)”与它的逆命题、否命题、逆否命题中,真命题的个数为__________________.答案:0解析:注意c∈R.知识点是同学们提高总体学习成绩的重要途径,高一数学上册四种命题知识点为大家巩固相关重点,让我们一起学习,一起进步吧!。

高一数学四种命题课件

高一数学四种命题课件

真 逆命题:若ac2>bc2,则a>b 假 否命题:若四边形对角线不相等,则四边形不是平行四边形。
假 逆命题:若四边形是平行四边形,则四边形对角线相等。


4
逆命题和否命题
总是同真同假
练习
1、分别写出下列命题,并判断真假。 原命题: 逆命题: 否命题: 三边对应相等的两个三角形全等。 全等的两个三角形三边对应相等。
1、互逆命题
一个命题的条件和结论,分别是另一个命题的结论
和条件,这两个命题就叫做互逆命题。把其中一个叫
做原命题,则另一个叫做原命题的逆命题。
例如: 原命题: 同位角相等,两直线平行
逆命题: 两直线平行,同位角相等 总结: 原命题: 若p则q
逆命题: 若q则p
2、互否命题
一个命题的条件和结论,分别是另一个命题的条件 的否定和结论的否定,这两个命题就叫做互否命题。把 其中一个叫做原命题,则另一个叫做原命题的否命题。
(2)原命题: 若四边形是正方形,则四边形两对角线垂直。 逆命题: 若四边形两对角线垂直,则四边形是正方形。 否命题: 若四边形不是正方形,则 四边形两对角线不垂直。
逆否命题:若四边形两对角线不垂直,则四边形不是正方形。
(3)原命题: 若a>b,则ac2>bc2. 逆命题: 若ac2>bc2,则a>b.
(2)正方形的四条边相等
原命题:若一个四边形是正方形,则它的四条边相等; 逆命题:
若一个四边形的四条边相等,则它是正方形; 若一个四边形不是正方形,则它的四条边不相等;
否命题: 逆否命题:
若一个四边形的四条边不相等,则它不是正方形;
例2、写出命题 “若 xy= 0 则 x = 0或 y = 0” 的逆命题、否命题、逆否命题

人教版高中数学必修第一册同步讲义第一章 1.7 四种命题

人教版高中数学必修第一册同步讲义第一章 1.7 四种命题

1.7 四种命题①课文三点专讲重点:(1)四种命题及其关系.原命题:若p 则q 逆命题:若p 则q否命题:若⌝p 则⌝q 逆否命题:若⌝q 则⌝p(2)四种命题的关系.四种命题的关系如下表所示:(3)命题真假的判定.互为逆否命题具有相同的真假性.(4)反证法.要证明某一结论A是正确的,但不直接证明,而是先去证明A的反面(非A)是错误的,从而断定A是正确的即反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法难点:反证法反证法的步骤:(1)假设命题的结论不成立,即假设结论的反面成立(2)从这个假设出发,通过推理论证,得出矛盾(3)由矛盾判定假设不正确,从而肯定命题的结论正确注意:可能出现矛盾四种情况:①与题设矛盾;②与反设矛盾;③与公理、定理矛盾④在证明过程中,推出自相矛盾的结论考点:(1)考察逆命题、否命题与逆否命题.(2)四种命题的相互关系.应用四个重要结论解题.(3)反证法.该方法较为适用的题型为:①命题简单明了,没有更多的公理概念等依据可供论证的命题; ②结论本身是以否定形式出现的一类命题; ③有关结论是以“至多……”或“至少……”的形式出现的一类命题; ④关于惟一性、存在性的命题; ⑤结论的反面比原结论更具体、更容易研究和掌握.②练功篇典型试题分析例1. 写出命题“在△ABC 中,若∠C =90°,则c 2=a 2+b 2”的逆命题,否命题和逆否命题,并指出它们的真假.分析:此题的原命题中“在△ABC 中”是前提,在写这类命题的逆命题、否命题和逆否命题时一般保持不变.解析:原命题是真命题.逆命题为“在△ABC 中,若c 2=a 2+b 2,则∠C =90°.为真命题.否命题为:“在△ABC 中,若∠C ≠90°,则c 2≠a 2+b 2”,是真命题.逆否命题为:“在△ABC 中,若c 2≠a 2+b 2,则∠C ≠90°,是真命题.例2. 判断下列命题的真假,并说明理由.(1)设a ,b ∈N *,如果a +b 是偶数,那么a 、b 都是偶数.(2)如果A ⊆B ,B ⊆C ,那么A ⊆C.(3)如果一元二次方程ax 2+bx +c =0满足ac <0那么这个方程有实数根.(4)相似三角形一定是全等三角形.(5)合数必定是偶数.分析:在判断命题的真假时,应注意运用有关的概念、定理、公式等基本理论,对命题的条件和结论仔细分析,认真思考.并注意反例的运用. (1)取反例:a =1,b =3,(2)由集合的性质,可判定,(3)由ac <0⇒b 2-4ac ≥0,(4)相似三角形的对应边不一定相等,(5)反例:9是合数,但不是偶数.解析:(1)假命题.例如a =1,b =3,a +b =4为偶数.但a 、b 不是偶数.(2)真命题.设任x 0∈A ,∵A ⊆B .∴x 0∈B .又 ∵B ⊆C ,则x 0∈C .故A ⊆C 成立.(3)真命题.因方程中由ac <0⇒Δ=b 2-4ac ≥0.故一元二次方程ax 2+bx +c =0有实数根.(4)假命题.因相似三角形的对应边不一定相等.则不一定是全等三角形.(5)假命题.例如9是合数,但不是偶数.基础知识巩固1.有以下5个命题:(1)没有男生爱踢足球;(2)所有男生都不爱踢足球;(3)至少有一个男生不爱踢足球;(4)所有女生都爱踢足球;(5)所有男生都爱踢足球.其中命题(5)的否命题是 ( )A .(1)B .(2)C .(3)D .(4)2.下面三个命题:(1)“若3=b ,则92=b ”的逆命题;(2)“全等三角形的面积相等”的否命题;(3)“若1≤c ,则022=++c x x 有实根”的逆否命题.其中真命题的个数是 ( )A . 0B . 1C . 2 D..33.命题“能被4整除的数一定是偶数”,等价命题是()A.偶数一定能被4整除B.不能被4整除的数一定不是偶数C.不能被4整除的数不一定是偶数D.4.下列命题中,正确的是( )①“若x2+y2 =0,则x , y全是0”的否命题②“全等三角形是相似三角形”的否命题③“若m>1,则mx2-2(m+1)x+(m-3)>0的解集为R”的逆命题④若“a+5是无理数,则a是无理数”的逆否命题A.①②③B.①④C.②③④D.①③④5.用反证法证明命题的第二步中,得出的矛盾可以是与下列哪些内容产生的( )①命题已知②数学定义③定理,公理④推理、演算的规律A.①B.①③C.②D.①②③④6.用反证法证明命题“2+3是无理数”时,假设正确的是( )A.假设2是有理数B.假设3是有理数C.假设2或3是有理数D.假设2+3是有理数7.给定下列命题:①“若k>0,则方程x2+2x-k=0”有实数根;②“若a>b,则a+c>b+c”的否命题;③“矩形的对角线相等”的逆命题;④“若xy=0,则x、y中至少有一个为0”的否命题.其中真命题的序号是______.8.写出命题p:“若m>0,则关于x的方程x2+x-m=0有实数根”的逆命题,否命题和逆命题,并分别判断它的真假.9.写出下列命题的否命题(1)有些三角形是直角三角形;(2)所有的质数都是奇数 .10.若x、y∈R+,且x+y>2,求证:y x+1<2与x y+1<2中,至少有一个成立.③升级篇典型试题分析例3:写出命题“若x≥2且y≥3,则x+y≥5”的逆命题、否命题,逆否命题.并判断其真假.分析:应注意分析清楚原命题的条件与结论,并充分利用四种命题的定义,还要注意条件和结论中“或”“且”“非”的否定的语句表述的准确性. 本题应注意理解掌握“p且q”的否定为“⌝p 或⌝q ”,“p 或q ”的否定为“⌝p 且⌝q ”.解析:原命题:“若x ≥2且y ≥3则x +y ≥5”为真命题.逆命题为:“若x +y ≥5,则x ≥2且y ≥3”,为假命题.否命题是:“若x <2或y <3,则x +y <5.”其为假命题.逆否命题是:“若x +y <5,则x <2或y <3”其为真命题.例4. 写出下列命题的否命题,并判断原命题及否命题的真假:(1)如果x >-3,那么x +8>0(2)如果一个三角形的三边都相等,那么这个三角形的三角都相等.(3)矩形的对角线互相平分且相等.(4)相似三角形一定是全等三角形.分析:将原命题的条件和结论同时加以否定,便得到其否命题. 一个命题的否定应当包含除了本身以外的所有情况.如:“都相等”的否定应为“不都相等”,即至少有两个元素不相等;“p 或q ”与“⌝p 且⌝q ”互为否定;“一定是”的否定是“一定不是”.解析:(1)否命题是:“如果 x ≤-3,那么x +8≤0”原命题为真命题,否命题为假命题.(2)否命题是:“如果一个三角形的三边不都相等,那么这个三角形的三角不都相等. 原命题为真命题,否命题也为真命题.(3)否命题是:“如果四边形不是矩形,那么对角线不互相平分或不相等”.原命题是真命题,否命题也是真命题.(4)否命题是“不相似的三角形一定不是全等三角形.”原命题是假命题,否命题是真命题.知识应用与提升11. 给出以下四个命题:其中真命题是( )①“若x +y =0,则x ,y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1-≤q ,则02=++q x x 有实根”的逆否命题;④“不等边三角形的三内角相等”的逆否命题.A .①②B .②③C .①③D .③④ 12. 命题“a 、b 都是偶数,则a +b 是偶数”的逆否命题为A.a +b 不是偶数,则a 、b 不都是偶数B.a +b 不是偶数,则a 、b 都不是偶数C.a 、b 不都是偶数,则a +b 不是偶数D.a 、b 都不是偶数,则a +b 不是偶数13. 用反证法证明命题“若整数n 的立方是偶数,则n 也是偶数”如下:假设n 是奇数,则n =2k +1(k 是整数),n 3=(2k +1)3=______,与已知n 3是偶数矛盾,所以n 是偶数.14. 用反证法证明命题:“a ,b ∈N ,ab 可被5整除,那么a ,b 中至少有一个能被5整除”时,假设的内容应为( )A. a ,b 都能被5整除B. a ,b 都不能被5整除C. a ,b 不都能被5整除D. a 不能被5整除15. 给出下列命题:①命题“若b 2-4ac <0,则方程ax 2+bx +c =0(a ≠0)无实根”的否命题②命题“△ABC 中,AB =BC =CA ,那么△ABC 为等边三角形”的逆命题③命题“若a >b >0,则3a >3b >0”的逆否命题其中真命题的序号为__________.16. 写出下列命题的逆命题,并判断原命题和逆命题的真假.(1)若x 2=1,则x =1.(2)对顶角相等.(3)等腰三角形的两腰相等.(4)x 2+2x +8>0的解集为空集.④闯关篇典型试题分析例5:若a 、b 、c 均为实数,且2222,2,2236a x y b y z c z x πππ=-+=-+=-+,求证:a 、b 、c 中至少有一个大于0.分析: 反证法是一种常用的数学方法,属于一种间接证法.当待证命题中出现“不可能”、“一定”、“至多”、“唯一”等词语时,常可考虑运用反证法.运用反证法时常见词语的否定方式有:“在”⇒“不在”;“是”⇒“不是”;“都是”⇒“不都是”;“大于”⇒“不大于”;“所有的…”⇒“至少有一个不…”;“至少一个” ⇒“一个也没有”;“任意一个”⇒“存在某个不…”,等等.证明: (用反证法)假设a 、b 、c 都不大于0,即0a ≤,0,0b c ≤≤,则有0a b c ++≤. 而222222236a b c x y y z z x πππ⎛⎫⎛⎫⎛⎫++=-++-++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()222222x x y y z z π=-+-+-+()()()()2221113x y z π=-+-+-+-,所以 0a b c ++>,此与0a b c ++≤矛盾.故假设错误,从而原命题正确.评述:本题亦可直接转化为证明等价命题:0a b c ++>..例6.若()22f x x ax a a =++-在[-1,1]上至少存在一点C 使()0f C >,求实数a 的取值范围.分析: 利用否命题来求解这一类问题,可以简化运算步骤,回避分类讨论.解析:该题可利用其否命题来解.该命题的否命题是: ()22f x x ax a a =++-在[-1,1]不存在点C 使()0f C >即对任意x ∈[-1,1], ()f x ≤0 .∴有()()1010f f ≤⎧⎪⎨-≤⎪⎩解之得11a a ≥≤-或故实数a的取值范围为()1a ∈- ... 知识拔高与创新17. 否定结论“至多有两个解”的说法中,正确的是( )A.有一解B.有两解C.有三解D.至少有两解18. 已知两函数:2222132,3)31(2a x x y a ax x y ++=+--+=.求证:不论a 取怎样的实数,这两函数的图象至少有一个位于x 轴的上方.19. 已知a 、b 、c 是一组勾股数(即a 2+b 2=c 2),求证:a 、b 、c 不可能都是奇数.20. 假设p 、q 都是奇数,求证:关于x 的方程x 2+px +q =0无整数根.⑤行侠篇高考试题点击21.(2005江苏) 命题“若a >b ,则2a >2b -1”的否命题为 .22. (2004江苏)若命题p 的否命题为r ,命题r 的逆命题为s ,则s 是p 的逆命题t 的( )A.逆否命题 B.逆命题 C.否命题 D.原命题⑥娱乐广场开阔视野、趣味学习反证法小游戏三个古希腊哲学家,由于争论和天气炎热感到疲倦了,于是在花园里的一棵大树下躺下来休息一会,结果都睡着了这时一个爱开玩笑的人用炭涂黑了他们的前额三个人醒来以后,彼此看了看,都笑了起来但这并没引起他们之中任何一个人的担心,因为每个人都以为是其他两人在互相取笑这时其中有一个突然不笑了,因为他发觉自己的前额也给涂黑了答案:为了方便,用甲、乙、丙分别代表三个科学家,并不妨设甲已发觉自己的脸给涂黑了那么甲这样想:“我们三个人都可以认为自己的脸没被涂黑,如果我的脸没被涂黑,那么乙能看到(当然对于丙也是一样),乙既然看到了我的脸没给涂黑,同时他又认为他的脸也没给涂黑,那么乙就应该对丙的发笑而感到奇怪因为在这种情况下(甲、乙的脸都是干净的),丙是没有可笑的理由了然而现在的事实是乙对丙的发笑并不感到奇怪,可见乙是在认为丙在笑我由此可知,我的脸也给涂黑了这里应着重指出的是,甲并没有直接看到自己的脸是否给涂黑了,他是根据乙、丙两人的表情进行分析、思考,而说明了自己的脸给涂黑了简单地说,甲是通过说明脸被涂黑了的反面—没被涂黑是错误的,从而觉察了自己的脸被涂黑了因此这是一种间接的证明方法显然这种证明方法也是不可缺少的像这样,为了说明某一个结论是正确的,但不从正面直接说明,而是通过说明它的反面是错误的,从而断定它本身是正确的方法,就叫做“反证法“参考答案:1.7 四种命题1. C 解析:“所有”的否定是“至少有一个不”.2. B解析:(3)“若1≤c ,则022=++c x x 有实根”的逆否命题为真命题.3. D 解析:其逆否命题为“不是偶数一定不能被4整除”.4. B 解析:“若x 2+y 2 =0,则x , y 全是0”的否命题与若“a +5是无理数,则a 是无理数”的逆否命题为真命题.5. D 解析:反证法证明命题的第二步中,得出的矛盾的可以是所有的条件或相关的结论.6. D 解析: “2+3是无理数”的否定是“2+3是有理数”.7. ①②④ 解析 ①Δ=4-4(-k )=4+4k >0 ∴是真命题 ;②否命题为“若a ≤b ,则a +b ≤b +b ”是真命题;③逆命题“对角线相等的四边形是矩形”是假命题;④否命题:“若xy ≠0,则x 、y 都不为零”是真命题.8. 逆命题:“若关于x 的方程x 2+x -m=0有实数根,则m >0”;否命题:“m ≤0,则关于x 的方程x 2+x -m=0没有实数根”;逆否命题:“若关于x 的方程x 2+x -m=0没有实数根,则m ≤0”.当m >0时,△=1+4m >0,方程x 2+x -m=0必有两个不等实根,故原命题及逆否命题是真命题.当方程x 2+x -m=0,有实数根时,△=1+4m ≥0,m ≥-41,而不一定要>0,故逆命题及否命题是假命题.9. 解析:(1)这是一个存在性命题,存在量词“有些”可以用“存在一个、至少有一个、某个”等词代替,故该命题的否命题为“所有三角形都不是直角三角形”.本题还可以写出它的逆否命题来判断原命题与否命题的真假.(2)这是一个全称命题,全称量词“所有的”可以用“任意的、对于一切、每一个”等词代替,故该命题的否命题为“存在一个质数不是奇数”或“所有的奇数不都是奇数”.10. 证明:假设都不成立,即yx +1≥2,x y +1≥2成立 ∵x ,y ∈R +,∴1+x ≥2y ,1+y ≥2x ,∴2+x +y ≥2x +2y ,∴x +y ≤2与已知x +y >2矛盾, ∴假设不成立,∴原结论成立.11. C 解析: “全等三角形的面积相等”的否命题;“不等边三角形的三内角相等”的逆否命题都是假命题.12. A 解析:命题“a 、b 都是偶数,则a +b 是偶数”的逆否命题为“a +b 不是偶数,则a 、b不都是偶数”13. 2(4k3+6k2+3k)+1解析: (2k+1)3=8k3+12k2+6k+1=2(4k3+6k2+3k)+114. B解析:“a,b中至少有一个能被5整除”的否定是“a,b都不能被5整除”15. ①②③以上均为真命题.16. 分析:应先将原命题改写成“如果……,那么……的形式”然后再构造它的逆命题. 解析:(1)逆命题是“若x=1,则x2=1.”原命题为假命题,逆命题是真命题.(2)逆命题是“如果两个角相等,那么这两个角是对顶角”.原命题为真命题,逆命题为假命题.(3)逆命题是“如果一个三角形有两边相等,那么这个三角形是等腰三角形.”原命题是真命题,逆命题也是真命题.(4)逆命题是“空集是x2+2x+8>0的解集”.原命题和逆命题都是假命题.17. C 解析: “至多有两个解”包括了无解、有一解、有两解三种情形,其否定可以选有三解.18.证明:假设这两函数的图象没有一个位于x轴的上方,则有22144(10,4120,a aa aa a⎧≤-≥⎧+-⎪⎪⇒⎨⎨-≥≤≤⎪⎪⎩⎩或此不等式组的解集为∅,所以假设不成立.故这两函数的图象至少有一个位于x轴的上方.19. 证明假设a、b、c都是奇数∵a、b、c是一组勾股数,∴a2+b2=c2 ①∵a、b、c都是奇数,∴a2、b2、c2也都是奇数 ∴a2+b2是偶数这样①式的左边是偶数,右边却是奇数,得出自相矛盾的结论.∴a、b、b不可能都是奇数.20. 分析:此题中含有否定用“无”,可考虑用反证法,另外关于有无整数根,可从已知方程的判别式与根和系数的关系入手分析证明之.证法一:只有在Δ=p2-4q=(p-m)2时((p-m)2表示完全平方数,其中由-4q=-2pm +m2可知m应为偶数)才可能有整数根.化简上式得出p与q的关系:q=p·2m-(2m)2,因p是奇数,不论2m是怎样的整数,都可得q为偶数,这与已知q为奇数相矛盾,则判别式Δ的值不会是一个完全平方数,故方程无整数根.证法二:假设方程有整数根α,无论α是奇数还是偶数,都必有α2+pα+q为奇数,这与α2+pα+q=0矛盾.故方程无整数根.21. 若122,-≤≤baba则解析:由题意原命题的否命题为“若122,-≤≤baba则”.22. B解析设p为“若A则B”,则r、s、t分别为“若﹁A则﹁B”“若﹁B则﹁A”“若B 则A”,故s是t的否命题.。

高一数学四种命题1

高一数学四种命题1
2
(2)若xy 0, 则x 0或y 0.
否定形式: 若xy 0, 则x 0且y 0. 否命题: 若xy 0, 则x 0且y 0.
(3)对一切实数 x, 总有 x x 1 0.
2
否定形式: 对一切实数x,不总有x x 1 0.
2
(或存在实数x0 , 使 x0 x0 1 0)
2
若 x 3或 x 2, 则 x x 6 0
2
若x x 6 0,则x 3且x 2.
2
若 x 3且 x 2, 则 x x 6 0
2
(5)若 x R , 则 x x 1 0
2
若 x x 1 0, 则 x R .
; / 太阳能路灯 太阳能路灯厂家 太阳能路灯价格 ; 2019.1 ;
数.李小克原本希望来个一箭三雕,即:第一,把霍姆尼奇打下来.第二,打一下德军715师.第三,伏击公路,再袭击一下敌人运输队. 现在它条公路要有大量战俘走过,袭击运输队的计划必须要改,变更为救援行动,那里面的事可就复杂了. 在会议上,李小克初步了阐述原来的方案. "我们要拿下霍姆尼奇,但并不是解放她.我们能很容易攻克,之后我们重兵袭击那件事就会暴露,就俘虏亨舍尔的说法,他们的师很希望解决掉公路两侧的游击队,尤其是还比较神秘的我们." "所以你准备怎么干呢?你的意思,言外之意就是说敌人会疯狂反扑?"耶夫洛夫冷静问道. "没错,我相信敌人会反扑的,那样才符合我的计划,也符合敌人大部队的希望."说到那儿,李小克透露出胸有成竹的微笑.(未完待续.) ------------ 第一百九十九章 两路并进 耶夫洛夫不怎么懂兵事,他缓缓问道:"敌人会反扑,那也是你希望的.( 求书网)如果

高一数学四种命题的真假精品PPT课件

高一数学四种命题的真假精品PPT课件
否命题:当c>0时,若a≤b, 则ac≤bc.
逆否命题:当c>0时,若ac≤bc, 则a≤b.
(真)
(真)
(真)
分析:“当c>0时”是大前提,写其它命题时应该保留。
原命题的条件是“a>b”,
结论是“ac>bc”。
例2 若m≤0或n≤0,则m+n≤0。写出其逆命题、否命题、 逆否命题,并分别指出其真假。
(假)
4) 原命题:若a > b, 则 a2>b2。
逆命题:若a2>b2, 则a>b。
否命题:若a≤b,则a2≤b2。
逆否命题:若ac2≤bc2,则a≤b。
(假)
(假)
(假)
(假)
想一想?
(2) 若其逆命题为真,则其否命题一定为真。但其原命题、 逆否命题不一定为真。
逆否命题:若A∩B≠φ,则A∪B≠A。
(假)
(假)
(假)
(假)
3)一个命题的原命题为假,它的逆命题一定为假。
(错)
4)一个命题的逆否命题为假,它的否命题为假。
(错)
例题讲解
例1:设原命题是:当c>0时,若a>b,则ac>bc. 写出它的逆命 题、否命题、逆否命题。并分别判断它们的真假。
解:逆命题:当c>0时,若ac>bc, 则a>b.
逆否
2)原命题:若a=0, 则ab=0。
逆命题:若ab=0, 则a=0。
否命题:若a≠ 0, 则ab≠0。
逆否命题:若ab≠0,则a≠0。
(真)
(假)
(假)
(真)
(真)
1)原命题:若x=2或x=3, 则x2-5x+6=0。

高一数学最新课件-四种命题2001 精品

高一数学最新课件-四种命题2001 精品
命题;
④“若A∩B=B,则AB”的逆命题。 其中真命题是
(3)写出命题“若xy=0,则 x=0 或 y=0”的逆命题 ,否命题,逆否命题,并 判断它们的真假。
若x=0或y=0,则xy=0,
若xy≠0,则x≠0 且y≠0
若x≠0 且y≠0,则xy≠0
(4)写出命题“有两个角是450的三角形 是等腰直角三角形”的逆否命题,否命题, 逆命题,并判断它们的真假。
例2 写出下列命题的逆命题,并判断原命题和逆命题的真 假。
(1)若x2=1,则x=1。 (2)对顶角相等。 (3)等腰三角形的两腰相等。
例3 写出下列命题的否命题,并判断原命题和否命题的真假。 (1)如果x>-3,那么x+8>0。 (2)如果一个三角形的三边都相等,那么这个三角形的三
角都相等。
(3)相似三角形一定是全等三角形。
否命题 若﹁ p则﹁ q
互逆命题 真假无关
逆否命题 若﹁ 角形”的否命题。
错解:否命题为“不是全等三角形不一定是相似三角形” 。
剖析:从四种命题的真假关系分析,该题的逆命题是“相 似三角形一定是全等三角形”,它为假命题,而“不是全 等三角形不一定是相似三角形”为真命题,这与互为逆否 命题的等价性矛盾,而把“否命题”改为“不是全等三角 形一定不是相似三角形”(假命题)就正确了。 为什么对“全…”、“都…”的否定,只需在其前面加一 个“不”字即可,而对“一定…”的否定却不一样呢?这 是因为两者的侧重点不同,“全”、“都”是对某一个范 围而言的,重在“范围”;而“一定”带强调意味,重在 肯定“是”,它们是有区别的。因此,在对“一定…”、 “一定都…”的否定时,可分两步,先将“一定”两字去 掉,否定后放在“不”的前面。如对命题“三角形两边之

高一数学逻辑联结词与四种命题知识精讲

高一数学逻辑联结词与四种命题知识精讲

高一数学逻辑联结词与四种命题通用版【本讲主要内容】逻辑联结词与四种命题含有“或”、“且”、“非”复合命题的概念及其构成形式;四种命题的关系,充分、必要条件。

【知识掌握】【知识点精析】1、命题:可以判断真假的语句叫做命题。

2、逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词。

3、简单命题和复合命题:不含逻辑联结词的命题叫做简单命题。

简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题。

由简单命题和逻辑联结词构成的命题叫做复合命题。

4、真值表:非或且真真假真真真假真假假真真真假假假假假为了正确判断复合命题的真假,首先应该确定复合命题的形式,然后指出其中简单命题的真假,再根据真值表判断这个复合命题的真假。

5、四种命题的形式:如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题。

一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题。

把其中一个命题叫做原命题,另一个命题叫做原命题的否命题。

一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题。

把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题。

原命题:若则;逆命题:若则;否命题:若则;逆否命题:若则。

一个命题的真假与其他三个命题的真假有如下关系:①原命题为真,它的逆命题不一定为真;②原命题为真,它的否命题不一定为真;③原命题为真,它的逆否命题一定为真;④原命题的逆命题为真,原命题的否命题一定为真。

6、一般地,如果已知,那么我们就说是成立的充分条件;q是p成立的必要条件;如果既有,又有q p 那么我们就说是成立的充分必要条件。

【解题方法指导】例1. “已知、、、是实数,若,,则。

”写出上述命题的逆命题、否命题、逆否命题,并分别判断它们的真假。

点拨:“已知,,,是实数”是大前提,写四种命题时应该保留。

〔高中数学〕命题与四种命题PPT课件

〔高中数学〕命题与四种命题PPT课件

观察命题(1)与命题(2)的条件和结论之间 分别有什么关系?
1. 若f(x)是正弦函数,则f(x)是周期函数;
2. 若f(x)是周期函数,p 则f(x)是正弦函数;q
你能分析此故事中歌德与批评家 的言行语句吗?
第一章
常用逻辑用语
“数学是思维的科学”
逻辑是研究思维形式和规律的科学.
逻辑用语是我们必不可少的工具.
通过学习和使用常用逻辑用语,掌握常用逻辑 用语的用法,,纠正出现的逻辑错误,体会运用常用 逻辑用语表述数学内容的准确性、简捷性.
命题及其关系
1.1.1 命题
“若p则q”形式的命题的优点是条件与结论容易辨 别,缺点是太格式化且不灵活.
“若p则q”形式的命题的书写
了解命题表示的判断,明确与判断有关的条件与 结论。
对于一些条件与结论不明显的命题,一般采取先 添补一些命题中省略的词句, 确定条件与结论。
如命题:“垂直于同一条直线的两个平面平行”。 写成“若p则q”的形式为:
(3) 0.5是整数;
(4)对顶角相等;
(5)3 能被2整除;
(6)若x2=1,则x=1.
用语言、符号或式子表达的,可以判断真假的陈述句 叫做命题。
判断为真的语句叫做真命题。
判断为假的语句叫做假命题。
理解:
1)命题定义的核心是判断,切记:判断的标准 必 须确定,判断的结果可真可假,但真假必居其一。
增加,它是真命题.
在本题中,a>0是大前提,应单独给出, 不能把大前提也放在命题的条件部分内.
2、把下列命题改写成“若p,则q”的形式, 并判断它们的真假.
(1)等腰三角形两腰的中线相等;
(2)偶函数的图象关于y轴对称;
(3)垂直于同一个平面的两个平面平行。

四种命题

四种命题

四种命题1.命题及其概念(1)判断一个语句是不是命题,首先应明确它是否符合“是陈述句”和“可以判断真假”两个条件,只有能判断真假的陈述句才是命题.一个命题要么是真的,要么是假的,不能既是真命题又是假命题,也不能模棱两可,无法判断其真假.(2)数学中的定义、公理、公式、定理都是命题,但命题不一定都是定理,因为命题有真假之分,而定理是真命题.2.命题的结构形式(1)数学中的命题大多是:“若p,则q”的形式,其中p叫做命题的条件,q叫做命题的结论.而数学中的有些命题从形式上看,不是“若p,则q”的形式,但是将它的表述作适当改变,也可以写成“若p,则q”的形式,因此,在研究命题时,不要受其形式的影响.(2)“若p,则q”形式的命题中,p和q本身也可为一个简单命题.(3)并非所有的命题都可写成“若p,则q”型,如“13是有理数”,“5>3”.3.命题真假的判断(1)一个命题的真假与命题所在环境有关.对其进行判断时,要注意命题的前提条件,如“若a⊥c,b⊥c,则a∥b”在平面几何中是真命题,而在立体几何中却是假命题.(2)关于“若p,则q”型的命题许多命题都可写成“若p,则q”的形式.其中p为条件,q为结论,p和q 本身也可为一个简单命题,这种命题形式明确、简洁,是我们研究命题的主要形式之一.很多命题表面上不是“若p,则q”型的,但是,可以改写成“若p,则q”型,当一个命题改写成“若p则q”的形式之后,判断这种命题的真假的办法:①若由“p”经过逻辑推理得出“q”,则可确定“若p,则q”是真;确定“若p,则q”为假,则只需举一个反例说明即可.②从集合的观点看,我们建立集合A、B与命题中的p、q之间的一种联系:设集合A={x|p(x)成立},B={x|q(x)成立},就是说,A是能使条件p成立的全体对象x所构成的集合,B是能使条件q成立的全体对象x所构成的集合,此时,命题“若p,则q”为真,当且仅当A⊆B时满足.1.一般地,我们把用语言、符号或式子表达的,可以判断真假________的陈述句叫做命题.2.判断为真的语句叫真命题_______,判断为假的语句叫假命题______.3.命题常写成“若p,则q__________”的形式,其中命题中的p叫做命题的条件______,q叫做命题的结论________.考点一命题概念的理解例1判断下列语句是否是命题,并说明理由.(1)求证:3是无理数;(2)x2+4x+4≥0;(3)你是高一的学生吗?(4)并非所有的人都喜欢苹果.[分析]由题目可获取以下主要信息:①给定一个语句,②判定其是否为命题并说明理由.解答本题要严格验证该语句是否符合命题的概念.[解析](1)祈使句,不是命题.(2)x2+4x+4=(x+2)2≥0,它包括x2+4x+4>0,或x2+4x+4=0,对于x ∈R,可以判断真假,它是命题.(3)是疑问句,不涉及真假,不是命题.(4)是命题,人群中有的人喜欢苹果,也存在着不喜欢苹果的人.[点评] 判定一个语句是否为命题,主要把握以下两点:(1)必须是陈述语句.祈使句、疑问句、感叹句都不是命题.(2)其结论可以判定真或假.含义模糊不清,不能辨其真假的语句,不是命题.另外,并非所有的陈述语句都是命题,凡是在陈述语句中含有比喻、形容等词的词义模糊不清的,都不是命题.跟踪练习:判断下列语句是否为命题,并说明理由.(1)若x <2,则x <1;(2)x 2+2x -1=0;(3)存在实数x ,使得不等式x 2-3x +1<0成立.[解析] (1)是命题.因为由x <2不能推出x <1,可以作出判断.(2)不是命题.因为字母的性质不明确,所以不是命题.(3)是命题.因为根据不等式的解法我们可以求得不等式x 2-3x +1<0的解,所以是命题.考点二 命题真假的判断例2 判断下列命题的真假:①AB →+BC →=AC →;②log 2x 2=2log 2x ;③若m >1,则方程x 2-2x +m =0无实根;④直线x+y=0的倾斜角是π4;⑤若α=3π4,则sinα=22;⑥若x∈A,则x∈(A∩B).[分析]运用数学中的定义、定理、公理、公式等知识进行判断.[解析]①是真命题;②是假命题.如x=-1时,log2x2=0,而2log2x=2log2(-1)无意义;③是真命题.若m>1,则Δ=4-4m<0;④是假命题.直线x+y=0的倾斜角是3π4;⑤是真命题;⑥是假命题.如A={1,2,3},B={2,3,4}时,1∈A,但1∉A∩B.[点评](1)真命题的判定方法真命题的判定过程实际就是利用命题的条件,结合正确的逻辑推理方法进行正确逻辑推理的一个过程.判断命题为真的关键是弄清命题的条件,选择正确的逻辑推理方法.(2)假命题的判定方法通过构造一个反例否定命题的正确性,这是判断一个命题为假命题的常用方法.另外,一些命题的真假也可以依据客观事实作出判断.跟踪练习:给出下列几个命题:(1)若x,y互为相反数,则x+y=0;(2)若a>b,则a2>b2;(3)若x>-3,则x2+x-6≤0;(4)若a,b是无理数,则a b也是无理数.其中的真命题有________个.[答案] 1[解析](1)是真命题.(2)设a=1>b=-2,a>b,但a2<b2,假命题.(3)设x =4,显然x>-3,但x2+x-6=14>0,假命题.(4)设a=(2)2,b=2,则a b=(2)2=2是有理数,假命题.考点三命题结构分析例3指出下列命题的条件与结论.(1)负数的平方是正数;(2)正方形的四条边相等.[分析]由题目可获取以下主要信息:①给出了命题的一般简略形式.②找出命题的条件和结论.解答本题的关键是正确改变命题的表述形式.[解析](1)可表述为“若一个数是负数,则这个数的平方是正数”条件为:“一个数是负数”;结论为:“这个数的平方是正数”.(2)可表述为:“若一个四边形是正方形,则这个四边形的四条边相等”.条件为:“一个四边形是正方形”;结论为:“这个四边形的四条边相等”.[点评]一个命题总存在条件和结论两个部分,但是,有的时候条件和结论不是很明显,这时可以把它的表述作适当的改变,写成“若p,则q”的形式,其中p为条件,q为结论.跟踪练习:写出下列命题的条件与结论.(1)质数是奇数;(2)矩形是两条对角线相等的四边形.[解析](1)可表述为:“若一个自然数是质数,则它是奇数”.条件为:“一个自然数是质数”;结论为:“这个自然数是奇数”.(2)可表述为:“若一个四边形是矩形,则它的两条对角线相等.”条件为:“若一个四边形是矩形”;结论为:“这个四边形的两条对角线相等”.例4将下面的命题写成“若p,则q”的形式.当a>0时,函数y=ax+b的值随x的增加而增加.[错解]“若p,则q”的形式为:如果a>0,则函数y=ax+b的值随x的增加而增加.[辨析]原命题有两个条件:a>0和x增加,其中a>0是大前提,x增加是条件.[正解]“若p,则q”的形式为:当a>0时,若x的值增加,则函数y=ax +b的值也增加.第2课时四种命题及其相互关系1.四种命题的概念关于原命题的逆命题、否命题和逆否命题的写法:首先:把原命题整理成“若p,则q”的形式.其次:(1)“换位”(即交换命题的条件与结论)得到“若q,则p”,即为逆命题;(2)“换质”(即将原命题的条件与结论分别否定后作为条件和结论)得到“若非p,则非q”即为否命题;(3)既“换位”又“换质”(即把原命题的结论否定后作为新命题的条件,条件否定后作为新命题的结论)得到“若非q,则非p”即为逆否命题.注意:①非p常记作⌝p.②只有“若p,则q”形式的命题才研究它的逆命题、否命题、逆否命题.2.要注意否命题与命题的否定是不同的,“命题的否定”只否定结论,而否命题要对条件和结论分别进行否定.“若p,则q”形式的命题其否命题为“若⌝p,则⌝q”.在写一个命题的否定或否命题时要注意一些关键词的否定,后面学习逻辑联结词时还要详加讨论.3.命题的四种形式间的关系(1)命题的四种形式中,哪个是原命题是相对的,不是绝对的;(2)四种命题间有两对互逆关系,两对互否关系,两对互为逆否的关系,互为逆否的两命题同真同假,在判断和证明中要注意它们之间的相互转化.要通过实例去发现四种命题间的关系,并能用命题间的关系去验证写出的命题是否正确.4.间接证明有关问题由于原命题和它的逆否命题有相同的真假性,所以在直接证明一个命题有困难时,可以通过证明它的逆否命题为真来间接证明原命题为真,即正难则反的思想.1.一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题__________,其中一个命题叫做原命题________,另一个叫做原命题的逆命题________.2.一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题_________,其中一个命题叫做原命题_______,另一个叫做原命题的否命题_________.3.一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题_____________,其中一个命题叫做原命题________,另一个叫做原命题的逆否命题_________.4.原命题为真,它的逆命题不一定________为真.5.原命题为真,它的否命题不一定_______为真.6.原命题为真,它的逆否命题一定______为真.即互为逆否的命题是等价命题,它们同真____同假____,同一个命题的逆命题和否命题是一对互为逆否______的命题,它们同真____同假_____.考点一命题的四种形式之间的转换例1写出下列命题的逆命题、否命题与逆否命题.(1)负数的平方是正数;(2)正方形的四条边相等.[分析]此题的题设和结论不很明显,因此首先将命题改写成“若p,则q”的形式,然后再写出它的逆命题、否命题与逆否命题.[解析](1)改写成“若一个数是负数,则它的平方是正数”.逆命题:若一个数的平方是正数,则它是负数.否命题:若一个数不是负数,则它的平方不是正数.逆否命题:若一个数的平方不是正数,则它不是负数.(2)原命题可以写成:若一个四边形是正方形,则它的四条边相等.逆命题:若一个四边形的四条边相等,则它是正方形.否命题:若一个四边形不是正方形,则它的四条边不相等.逆否命题:若一个四边形的四条边不相等,则它不是正方形.[点评]写出一个命题的逆命题、否命题、逆否命题的关键是分清原命题的条件和结论,然后按定义来写.在判断原命题及逆命题的真假时,常借助原命题与其逆否命题同真假,逆命题和否命题同真假进行判断.跟踪练习:写出下列命题的逆命题、否命题、逆否命题.(1)若x2+y2=0,则x,y全为0.(2)若a+b是偶数,则a,b都是偶数.[解析](1)逆命题:若x,y全为0,则x2+y2=0;否命题:若x2+y2≠0,则x,y不全为0;逆否命题:若x,y不全为0,则x2+y2≠0.(2)逆命题:若a,b都是偶数,则a+b是偶数;否命题:若a+b不是偶数,则a,b不都是偶数;逆否命题:若a,b不都是偶数,则a+b不是偶数.考点二四种命题的关系及真假判断例2写出下列命题的逆命题、否命题、逆否命题,然后判断真假.(1)菱形的对角线互相垂直;(2)等高的两个三角形是全等三角形;(3)弦的垂直平分线平分弦所对的弧.[解析](1)逆命题:若一个四边形的对角线互相垂直,则它是菱形.是假命题.否命题:若一个四边形不是菱形,则它的对角线不互相垂直.是假命题.逆否命题:若一个四边形的对角线不互相垂直,则这个四边形不是菱形.是真命题.(2)逆命题:若两个三角形全等,则这两个三角形等高.是真命题.否命题:若两个三角形不等高,则这两个三角形不全等.是真命题.逆否命题:若两个三角形不全等,则这两个三角形不等高.是假命题.(3)逆命题:若一条直线平分弦所对的弧,则这条直线是弦的垂直平分线.是假命题.否命题:若一条直线不是弦的垂直平分线,则这条直线不平分弦所对的孤.是假命题.逆否命题:若一条直线不平分弦所对的孤,则这条直线不是弦的垂直平分线.是真命题.[点评]①四种命题具有两对互为逆否的关系,所以,判断四种命题的真假时,只需判断出原命题与其逆命题的真假,即可得其他命题的真假.②当一个命题是否定性命题且不易判断真假时,可通过判断其逆否命题的真假以达到目的.跟踪练习:已知一个命题与它的逆命题、否命题、逆否命题,在这四个命题中()A.真命题个数一定是奇数B.真命题个数一定是偶数C.真命题个数可能是奇数,也可能是偶数D.以上判断都不对[答案] B[解析]因为原命题是真命题,则它的逆否命题一定是真命题,一个命题的逆命题是真命题,则它的否命题一定是真命题,故选B.考点三互为逆否命题同真同假的应用例3判断命题“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题的真假.[分析]解答本题可以直接进行逻辑推理判断;可以从逆否命题直接判断;也可以先判断原命题的真假,然后利用等价命题的同真同假判断.[解析]解法一:∵m>0,∴12m>0,∴12m+4>0.∴方程x2+2x-3=0的判别式Δ=12m+4>0.∴原命题“若m>0,则方程x2+2x-3m=0有实数根”为真.又因原命题与它的逆否命题等价,所以“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题也为真.解法二:原命题“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题为“若方程x2+2x-3m=0无实数根,则m≤0”.方程x2+2x-3m=0无实数根,∴Δ=4+12m<0.∴m<-13≤0.∴“若方程x2+2x-3m=0无实数根,则m≤0”为真.[点评]本题中解法一利用了原命题与它的逆否命题同真同假的方法解决;解法二是先写出原命题的逆否命题,再判断其真假.跟踪练习:有下列四个命题:(1)“若x+y=0,则x、y互为相反数”的否命题;(2)“对顶角相等”的逆命题;(3)“若x≤-3,则x2-x-6>0”的否命题;(4)“直角三角形的两锐角互为余角”的逆命题.其中真命题的个数是()A.0B.1C.2D.[答案] B[解析](1)“若x+y≠0,则x与y不是相反数”是真命题.(2)“对顶角相等”的逆命题是“相等的角是对顶角”是假命题.(3)“若x>-3,则x2-x-6≤0”,解不等式x2-x-6≤0可得-2≤x≤3,当x=4时,x>-3而x2-x-6=6>0,故是假命题.(4)“若一个三角形的两锐角互为余角,则这个三角形是直角三角形”,真命题.[点评]本题的解法中运用了举反例的办法,如(2)、(3)的解法.举出一个反例说明一个命题不正确是以后经常用到的方法.例4写出命题“已知a、b、c、d是实数,如果a=b,c=d,则a+c=b +d”的逆命题、否命题,并证明它们的真假.[错解]逆命题:如果a+c=b+d,则a、b、c、d是实数,且a=b,c=d.假命题.否命题:如果a、b、c、d不是实数,a≠b,c≠d,则a+c≠b+d.假命题.[辨析]上述解法没有弄清命题的条件,将大前提“a、b、c、d是实数”充当了条件.[正解]逆命题:已知a、b、c、d是实数,如果a+c=b+d,则a=b,c =d.假命题.否命题:已知a、b、c、d是实数,如果a≠b,或c≠d,则a+c≠b+d.假命题.。

命题的定义及四种命题(共29张PPT)

命题的定义及四种命题(共29张PPT)

课堂小结
定义3:条一件般和结地论,对于两个命题,如果一个
命题否的定
否恰定好是另一个命题的结论的
和条件的
,那么我们把这样的两个命题叫做 逆否命题
互为
.其中一个命题叫做原命题,另一
个命题叫做原命题的逆否命题.
否命题:若┐p,则┐q
例如,原命题:同位角相等,两直线平行。
否命题:同位角不相等,两直线不平行。
观察命题(1)与命题(4)的条件和结论之间分别 有什么关系?
若f(x)是正弦函数,则f(x)是周期函数; 1. (5)3 能被2整除; q 逆命题:若一个整数能被5整除,则这个数的末位数字是0. 若f(x)不是周期函数p,则f(x)不是正弦函数. 4. 若整数a能被2整除,则a是偶数;
命题“若整数a是素数,则a是奇数。”具有“若p则
q”的形式。
p
q
通常,我们把这种形式的命题中的p叫做命题
的条件,q叫做命题的结论。
“若p则q”形式的命题是命题的一种形式而不 是唯一的形式,也可写成“如果p,那么q” “只要 p,就有q”等形式。
“若p则q”形式的命题的书写
对于一些条件与结论不明显的命题,一般采取先 添补一些命题中省略的词句, 确定条件与结论 。
条件p:四边形是菱形, 结论q:四边形的对角线互相垂直且平分。
例3 把下列命题改写成“若p则q”的形 式,并判定真假。
”具有(“若p1则q)”的形垂式。 直于同一条直线的两个平面平行;
若x)是正弦函数,则f(x)是周期函数;
若两个平面垂直于同一直线,则这两个平面平行。 真 如何判断一个语句是不是命题?
(1) 原命题:若一个整数的末位数字是0,则这
个整数能被5整除;
真命题

《命题及四种命题》课件

《命题及四种命题》课件
详细描述
总结词
如果两个命题中,一个命题的条件和结论分别是另一个命题的结论和条件的否定,并且这两个否定后的条件和结论交换了位置,则这两个命题称互为逆否命题。
详细描述
互为逆否命题是四种命题中的一种,它指的是两个命题之间的一种关系。如果一个命题的条件和结论分别是另一个命题的结论和条件的否定,并且这两个否定后的条件和结论交换了位置,那么这两个命题就是互为逆否命题。例如,“所有动物都是生物”和“所有非生物都不是动物”就是一对互为逆否命题。
互逆命题和互否命题的关系
互逆命题之间不一定是互否命题,互否命题之间也不一定是互逆命题。互逆命题和互否命题的真假性没有必然联系。
互为逆否命题:如果两个命题中,一个命题的条件和结论分别是另一个命题的结论和条件的否定,并且这两个命题的真假性相反,则这两个命题称互为逆否命题。如:原命题为“若a=b,则a^2=b^2”,其逆否命题为“若a^2≠b^2,则a≠b”。
在解决代数方程时,常常需要使用四种命题来推导和证明方程的解。例如,可以通过逆命题或否命题来证明一个代数方程是否有解。
在代数方程中的应用
在几何学中的应用
四种命题在推理逻辑中有着广泛的应用。例如,通过使用四种命题,可以构建有效的推理链条,从而证明某个结论的正确性。
在推理逻辑中的应用
在决策制定过程中,可以使用四种命题来分析各种可能性和结果。例如,可以通过分析命题的真假来评估某个决策的风险和收益。
反归纳推理
命题逻辑与推理
一个明确的陈述,具有真或假两种状态。
命题
由简单命题通过逻辑联结词组合而成的命题。
复合命题
不能再分解为更简单形式的命题。
原子命题
从一般到特殊的推理,必须保证前提真实和推理形式正确。
演绎推理

高中数学课件-1.1.1命题与四种命题

高中数学课件-1.1.1命题与四种命题
2 ⑺ x > 6 〔不是命题〕
注:命题〔2〕〔5〕具有共同形式: “假设p,那么q〞.
例1中的命题〔2〕〔5〕具有“假设p,那么q〞的共同形式.
通常,我们把这种形式的命题中的p叫做命题的条件,q叫做 命题的结论.
(注:本章中我们只讨论这种“假设p,那么q〞形式的命题)
数学中有一些命题虽然外表上不是 “假设p,那么q〞的形式, 但是把它 的形式作适当改变,就可以写成“假 设p,那么q〞的形式.
注:p的否认记为 “ p〞,读为非p. 它的逆否命题为:假设 q ,那么 p
原命题与它的逆命题叫做_互__逆__命__题____;原命题与它的否命题叫做 _互__否__命__题____;原命题与它的逆否命题叫做__互__为__逆__否___命__题______
四种命题之间的关系
原命题
互逆
若p 则q
角形全等;
真命题
逆命题: 假设两个全等三角形 , 那么这两个三角形的三边真对命应题
相等;
真命题
否命题: 假设两个三角形三边不对应相等 , 那么这两个三角形 不全等;
逆否命题:假设两个三角形不全等 , 那么这两个三角形的三边不 对应相等.
例3.把以下命题改写成“假设p那么q〞的形式,并写出它们的 逆命题、否命题与逆否命题,并判断真假
──它其实是反证法的一种特殊表现:从命 题结论的反面出发, 引出矛盾(如证明结论的条 件不成立),从而证明命题成立的推理方法.
例4.证明:若x2 y2 0,则x y 0
反证法证明命题的一般步骤如下: 1.假设结论的反面成立; 2.由这个假.设.出发,经过正确的推理,导
出矛盾; 3. 由 矛 盾 判 定 假 设 不 正 确 , 从 而 肯 定 命
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
它的逆命题就是:两直线平行,同位角相等
三、互否命题:
如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的
命题叫做互否命题。如果把其中一个命题叫做原命题,那么另一个叫做原命题的否命题。
即:如果原命题为“若p,则q”,那么它的否命题为“若┐p,则┐q”
例如:同位角相等,两直线平行;它的否命题就是:同位角不相等,两直线不平行;
两直线不平行,同位角不相等。
五、四种命题的相互关系:
互逆命题、互否命题与互为逆否命题都是说两个命题的关系,若把其中一个命题叫做原命题时,另一个命题就叫做原命题的逆命题、否命题与逆否命题.因此,四种命题之间的相互关系,可用下图表示:
【例4】命题“若 ,则 ”,写出它的逆命题、否命题、逆否命题,并判断它们的真假。
(3)垂直于同一个平面的两个平面互相垂直;
(4)已知 ,若 或 ,则 ;
(5)互为补角的两个角不相等。
2.已知直线 、 与平面 、 ,给出下列三个命题:
①若 , ,则 ;②若 , ,则 ;③若 , ,则 .
其中真命题的个数是()
A.0B. C.2D.3
3.设 和 为不重合的两个平面,给出下列命题:
①若 内的两条相交直线分别平行于 内的两条直线,则 平行于 ;
四、互为逆否命题:
如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的
两个命题叫做互为逆否命题。如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆
否命题。即:如果原命题为“若p,则q”,那么它的逆否命题为“若┐q,则┐p”
例如:同位角相等,两直线平行;它的逆否命题就是:
辅导讲义
教师姓名
学科
数学
上课时间
序号
学生姓名
年级
高一
组长签字
日期
课题名称
四种命题
教学目标
1.四种命题定义
2.四种命题关系
重点难点
1.四种命题关系
课前检查
教学过程
一、命题:
可以判断真假的语句叫做命题。正确的命题叫做真命题,错误的命题叫做假命题。
【例1】请判断下列语句哪些是命题,哪些不是命题?如果是命题,那它们是真命题还是假命题,为什么?
A. B. C. D.
二、互逆命题:
一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那
么我们把这样的两个命题叫做互逆命题。其中一个命题叫做原命题,另一个叫做原命题的逆命
题。即:如果原命题为“若p,则q”,那么它的逆命题为“若q,则p”。
例如:同位角相等,两直线平行;(条件:同位角相等;结论:两直线平行)
②若 外一条直线 与 内的一条直线平行,则 和 平行;
③设 和 相交于直线 ,若 内有一条直线垂直于 ,则 和 垂直。
上面命题中,真命题的序号是____.(写出所有真命题的序号)
4.写出下列命题的逆命题,否命题,逆否命题,并判断它们的真假.
(1)当 时,若 ,则 ”;
(2)写出命题“若 都是偶数,则 是偶数”的逆命题,否命题,逆否命题,并判断它们的真假.
【例5】命题:“若 ,则 ”的逆否命题是()
A.若 ,则 或 B.若 ,则
C.若 或 ,则 D.若 或 ,则
【例6】命题“若 是奇数,则 是偶数”的逆否命题是;它是命题,判断出其真假,若不是,说明理由.
(1)空间中两条不平行的直线一定相交;
(2)我今天很开心;
(1)你是上海人吗?
(2)直角三角形都相似。
(3)互为余角两个角不相等。
(4)个位数是5的自然数能被5整除。
(5)上课请不要吃东西。
【例2】已知 是两条不同直线, 是三个不同平面,下列命题中正确的是()
A.若 ,则 B.若 ,则
C.若 ,则 D.若 ,则
【例3】已知三个不等式: (其中 均为实数).用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成真命题的个数是()
相关文档
最新文档