初中几何结论总结及常用方法
初中数学解几何题方法总结
初中数学解几何题方法总结数学几何题在初中阶段是我们经常遇到的题型。
解几何题需要运用几何知识和推理能力,同时还需要一些解题技巧。
下面是对初中数学解几何题的一些方法总结。
1. 观察图形特点:在解几何题时,我们首先要观察图形的特点,包括图形的形状、对称性和相等的边或角等。
通过观察图形特点,我们可以获得一些有用的信息,从而更好地解题。
2. 利用几何定理:几何学有一些重要的定理,如皮亚诺定理、勾股定理、正弦定理和余弦定理等。
在解题时,我们可以运用这些定理来分析和推导出有关的几何关系,从而解决几何题。
3. 利用相似性:相似三角形是解几何题常用的方法之一。
如果两个三角形的对应角相等,且对应边成比例,那么这两个三角形是相似的。
通过相似性的性质,我们可以求解未知边或角的值。
4. 利用三角函数:在解三角形的几何题中,我们经常需要用到三角函数。
正弦、余弦和正切函数可以帮助我们求解三角形内的边长和角度。
在运用三角函数时,我们需要根据题目给出的条件,选择合适的三角函数关系式进行计算。
5. 运用推理和演绎:解几何题的过程中,推理和演绎是非常重要的。
通过逻辑推理和演绎,我们可以根据题目给出的条件,推导出所需的结果。
合理运用推理和演绎,可以在解几何题时事半功倍。
6. 假设和反证法:在解决一些复杂的几何题时,我们可以采用假设和反证法。
假设一些未知条件或结果,然后根据已知条件进行推导和证明。
通过反证法,我们可以反向推导出题目所求的结果,从而解决几何题。
7. 利用图形辅助线:当我们遇到难题时,可以尝试在图形中加入一些辅助线。
通过合理的辅助线可以将题目转化为易于解决的几何问题。
图形辅助线是解几何题的有效方法之一,可以帮助我们更好地理解和解决问题。
除了以上方法,还有一些解几何题的技巧需要我们注意:1. 画图准确:在解几何题时,我们需要准确地画出图形,尽量按照题目给出的条件和要求进行绘制。
画图准确对于解答几何题是很重要的。
2. 简化计算:在计算过程中,我们可以利用一些简化计算的技巧。
(完整版)初中几何知识点总结非常全
证明(一)1、本套教材选用如下命题作为公理:(1)、两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
(2)、两条平行线被第三条直线所截,同位角相等。
(3)、两边及其夹角对应相等的两个三角形全等。
(4)、两角及其夹边对应相等的两个三角形全等。
(5)、三边对应相等的两个三角形全等。
(6)、全等三角形的对应边相等、对应角相等。
此外,等式的有关性质和不等式的有关性质都可以看做公理。
2、平行线的判定定理公理两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简单说成:同位角相等,两直线平行。
定理两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
简单说成:同旁内角互补,两直线平行。
定理两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
简单说成:内错角相等,两直线平行。
3、平行线的性质定理公理两条平行线被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
定理两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
定理两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。
如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
4、三角形内角和定理三角形三个内角的和等于180。
5、三角形内角和定理的推论三角形的一个外角等于和它不相邻的两个内角的和。
三角形的一个外角大于任何一个和它不相邻的内角。
证明(二)一、公理(1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
(2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)。
(3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)。
(4)全等三角形的对应边相等、对应角相等。
推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)。
二、等腰三角形1、等腰三角形的性质(1)等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。
初中几何知识点总结归纳
初中几何知识点总结归纳初中几何知识点总结归纳在年少学习的日子里,很多人都经常追着老师们要知识点吧,知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。
哪些才是我们真正需要的知识点呢?下面是小编为大家整理的初中几何知识点总结归纳,欢迎大家分享。
初中几何知识点总结归纳11过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于18018推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23角边角公理有两角和它们的夹边对应相等的两个三角形全等24推论有两角和其中一角的对边对应相等的两个三角形全等25边边边公理有三边对应相等的两个三角形全等26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于6034等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理四边形的内角和等于36049四边形的外角和等于36050多边形内角和定理n边形的内角的和等于(n—2)18051推论任意多边的外角和等于36052平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(ab)267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)2S=Lh83(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84(2)合比性质如果a/b=c/d,那么(ab)/b=(cd)/d85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n0),那么(a+c+…+m)/(b+d+…+n)=a/b86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角对应相等,两三角形相似(ASA)92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94判定定理3三边对应成比例,两三角形相似(SSS)95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97性质定理2相似三角形周长的比等于相似比98性质定理3相似三角形面积的比等于相似比的平方99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d﹥R+r②两圆外切d=R+r③两圆相交R—r﹤d﹤R+r(R﹥r)④两圆内切d=R—r(R﹥r)⑤两圆内含d﹤R—r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n—2)180/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2p表示正n边形的周长142正三角形面积3a/4a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360,因此k(n—2)180/n=360化为(n—2)(k—2)=4 144弧长计算公式:L=nR/180145扇形面积公式:S扇形=nR/360=LR/2146内公切线长=d—(R—r)外公切线长=d—(R+r)初中几何知识点总结归纳2什么是几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形(geometric figure)几何图形一般分为立体图形(solid figure)和平面图形(plane figure)。
初中数学几何基证明技巧
初中数学几何基证明技巧黄文杰一.总论:1.研究几何图形要把我们生活中的折叠,平移,旋转等操作运用到几何学习和探究中来,充分运用生活的观察视角去研究问题和解决问题;2.要熟练掌握几何图形够成的基本元素是边和角,运用分类思想对组成图形的各要素进行研究和探索,得出合理的结论;3.充分灵活运用“边清,角清,已知条件清,等量关系清,问题清”和“合情推理”。
4.图形计算问题一般运用公式,等量关系,勾股定理,相似比建立方程解决。
5.辅助线的添加要以基本公理,定理模型图为根据,完善模型;计算题一般是构造直角三角形和相似三角形;面积问题一般是根据面积的和与差建立等量关系。
二.几何证明的分析和书写:(一)几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。
几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
(二)掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;例:如图,等腰直角三角形ABC中,∠ACB=90°,AD为腰CB上的中线,CE⊥AD交AB于E.求证∠CDA=∠EDB.12AB CDE(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;例、如图,在△ABC 中,AD 平分∠BAC 交BC 于D ,EF 垂直平分AD ,交AC 于E ,交AC 于F.求证:四边形AEDF 是菱形.(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
例;已知:如图,在四边形ABCD 中,∠ABC =90°,CD ⊥AD ,AD 2+CD 2=2AB 2.(1)求证:AB =BC ;(2)当BE ⊥AD 于E 时,试证明:BE =AE +CD .(4)分析法与综合法的特点:分析法的特点是从要证明的结论开始一步步地寻求其成立的条件,直至寻求到已知条件上。
初中几何证明的所有公理和定理
初中几何证明的所有公理和定理几何学是数学的一个分支,研究平面和空间中的图形、形状、大小以及它们之间的关系。
在几何学中,有一些基本的公理和定理被广泛应用于证明其他几何结论。
以下是初中几何中常用的公理和定理。
一、公理1.尺规公理:任意两点可以用直尺连接,任意一点可以用剪刀间距来复原。
2.同位角公理:同位角互等。
3.平行公理:通过点外一条直线的直线,与这条直线平行的直线只有唯一一条。
4.直线偏转公理:过直线和不在直线上的一点,有且只有一条直线与该直线相交。
二、定理1.垂直平分线定理:平分一条线段的直线必垂直于该线段。
2.三角形内角和定理:三角形内角的和为180°。
3.直角三角形定理:在直角三角形中,两个直角三角形的边长和斜边相等。
4.点到直线的距离定理:点到直线的距离等于点到该直线上垂线的距离。
5.等腰三角形定理:等腰三角形的底边中点到顶点的距离等于底边的一半。
6.等边三角形定理:等边三角形的三条边相等。
7.三角形外角定理:三角形外角等于其对应内角的和。
8.直角三角形的勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方。
9.海伦公式:已知三角形的三边长,可以通过海伦公式求解其面积。
10.等周定理:等周的两角相等,反之亦成立。
11.三角形中位线定理:三角形两边中点连线中位线,且平分第三边。
12.周长定理:四边形周长等于各边长的和。
13.三角形周长定理:三角形的周长等于三边长的和。
14.三角形中线定理:三角形中线等分中位线,且平分第三边。
15.三角形终边定理:一个角的终边上的点,到另一个角所在的直线的距离永远相等。
16.五边形内角和定理:五边形的内角和是540°。
17.钝角三角形的边长关系:钝角三角形两边长的平方和小于斜边长的平方。
18.三角形的相似性定理:对应角等价、对应边成比例的两个三角形为相似三角形。
19.平行线的性质定理:平行条边分别过枚角且长度成正比,则连线为平行线。
20.重叠三角形定理:如果两个角和一个边分别相等,则两个三角形相等。
初中常见数学模型几何和证明方法
初中常见数学模型几何和证明方法初中数学中的几何和证明方法是学习数学的重要内容之一。
通过几何学习,学生可以掌握基本的几何概念、性质和定理,进而培养逻辑思维、分析问题和解决问题的能力。
而证明方法则是通过推理和论证的方式验证和证明数学命题的正确性。
下面将对初中常见的几何模型和证明方法进行介绍。
一、几何模型1. 点、线、面:几何学的基本要素是点、线和面。
点是没有大小和形状的,用来表示位置;线是由无数个点组成的,它没有宽度和厚度;面是由无数个线组成的,它有宽度和厚度。
2. 直线和线段:直线是由无数个点组成的,它没有起点和终点;线段是直线的一部分,有起点和终点。
3. 角:角是由两条射线共同起点组成的,可以用度数来表示。
4. 三角形:三角形是由三条线段组成的,它有三个顶点、三条边和三个角。
5. 直角三角形:直角三角形是一个角为90度的三角形,其中的两条边相互垂直。
6. 平行四边形:平行四边形是四边形的一种,它的对边是平行的。
7. 圆:圆是由一个固定点到平面上所有到该点距离相等的点组成的图形。
以上是初中常见的几何模型,通过对这些模型的学习,可以帮助学生理解几何概念和性质,为后续的学习打下基础。
二、证明方法1. 直接证明法:直接证明法是通过一系列逻辑推理,从已知条件出发,推导出结论的过程。
这种证明方法通常可以通过图形、等式等形式来进行。
2. 反证法:反证法是通过假设所要证明的命题不成立,然后通过逻辑推理,推导出一个与已知条件矛盾的结论,从而证明原命题的正确性。
3. 数学归纳法:数学归纳法是通过证明当命题对于某个特定的数成立时,对于下一个数也成立,进而可以推导出对于所有数都成立的结论。
这种证明方法常用于证明与自然数相关的命题。
4. 反证法:反证法是通过假设所要证明的命题不成立,然后通过逻辑推理,推导出一个与已知条件矛盾的结论,从而证明原命题的正确性。
5. 用反证法证明:用反证法证明是指通过假设所要证明的命题不成立,然后推导出一个与已知条件矛盾的结论,从而证明原命题的正确性。
初中几何12345模型结论总结
初中几何12345模型结论总结
初中几何是数学学科中的一个重要分支,主要研究平面和空间内的图形、尺寸、位置等性质。
其中初中几何12345模型是初中阶段的基础,也是后续几何学习的重要依据。
下面是初中几何12345模型结论的总结:
1. 垂直平分线定理:平面内一个点到一条直线的两个不同点垂
直平分线相交于这个点。
2. 角平分线定理:平面内一个角的角平分线将这个角分成两个
角度相等的角。
3. 中线定理:三角形中连接一个顶点至对边中点的线段称为中线,三角形中任意一条中线的长度等于其它两条边的长度之和的一半。
4. 高线定理:三角形中连接一个顶点至对边垂足的线段称为高线,三角形中任意一条高线的长度小于或等于另外两条边的长度。
5. 余弦定理:在任意一三角形中,其任意一条边的平方等于其
余两边平方和的差的两倍再乘以这两边夹角的余弦值。
这些结论是初中几何学习的基本定理,对于后续高中几何的学习也具有重要意义。
在学习初中几何时,我们可以通过推导和证明这些结论,深入理解其内涵和应用,提高我们的几何思维能力。
初中数学最值问题解题技巧,初中几何最值问题方法归纳总结
几何最值问题大一统追本溯源化繁为简目有千万而纲为一,枝叶繁多而本为一。
纲举则目张,执本而末从。
如果只在细枝末节上下功夫,费了力气却讨不了好。
学习就是不断地归一,最终以一心一理贯通万事万物,则达自由无碍之化境矣(呵呵,这境界有点高,慢慢来)。
关于几何最值问题研究的老师很多,本人以前也有文章论述,本文在此基础上再次进行归纳总结,把各种知识、方法、思想、策略进行融合提炼、追本溯源、认祖归宗,以使解决此类问题时更加简单明晰。
一、基本图形所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。
余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形。
AD一定,所以D是定点,C是直线的最短路径,求得当CD⊥AC时最短为是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。
初中几何证明题的解题思路
初中几何证明题的解题思路初中几何证明题是初中几何中很重要的一部分,加强知识储备和运用技能也必须掌握几何证明题的解题思路和方法。
解决几何证明题,除了要掌握基础的定理、定义、规则和基本的计算技巧外,还应注意以下几点:一、熟练掌握几何证明的基本方法1.逆否命题法:当一个命题成立时,其逆命题不成立,反之亦然,因此,可用该法证明:先把命题的否定形式表达出来,然后用简单的数学推导证明它是有悖常理的,从而由“逆否律”证明原命题的正确性。
2.抽象法:有时可通过抽象的方法,让问题变得更容易解决。
比如,将几何问题抽象成代数问题,或者将几何图形抽象成抽象的风范,可以使得问题变得更加容易理解。
3.反证法:即依据一定的前提,证明假设不符合要求,即可以知识前提及充分条件,利用反证法,证明假设是错误的。
反证法按逻辑关系可分为“反证正确”和“反证错误”两类。
通过反证法,我们可以得到几何定理证明的结论,从而解决几何证明题。
4.归纳法:归纳法也称归绕法,是几何证明题的解决方法之一,是依据一个事实、一个特性或一个定理,从而推出其他一些事实或定理的过程。
它的解法具有一般性,可以应用在各种形式的几何证明题中。
二、逐步解决几何证明题1.第一步:识别几何图形:首先要明确几何图形的形状、大小、位置等特征,然后把图形上的角、弧、线段和点等标出来,注明它们的名称和特点,以及它们之间的关系。
2.第二步:分析题意:要弄清题目所提出的问题,明确要证明的是什么,并对问题和其它已知条件进行分析,总结出题目的本质,找出和解决问题的重点。
3.第三步:确定证明步骤:根据题目的条件和要证明的内容,结合定义、定理和基本性质,确定出证明步骤,并画出证明图形,默写证明式。
4.第四步:设立并证明中间结论:根据证明步骤,依次针对每一步进行证明,首先得出一个中间结论,然后按定义、定理及基本性质等,写出证明式,再根据前一步得出的中间结论,将其作为充分条件,以此推出下一步的中间结论,依次重复反复证明,最终推出原结论。
最新初中数学几何知识点总结(7篇)
最新初中数学几何知识点总结(7篇)最新初中数学几何知识点总结(7篇)学会倾听和理解他人的观点和需要,并与他们建立积极的互动关系。
学习如何制定有效的沟通策略和技能,以更好的传达信息和支持成功。
下面就让小编给大家带来最新初中数学几何知识点总结,希望大家喜欢!最新初中数学几何知识点总结篇1诱导公式的本质所谓三角函数诱导公式,就是将角n(/2)的三角函数转化为角的三角函数。
常用的诱导公式公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin(2k)=sin kzcos(2k)=cos kztan(2k)=tan kzcot(2k)=cot kz公式二:设为任意角,的三角函数值与的三角函数值之间的关系:sin()=-sincos()=-costan()=tancot()=cot公式三:任意角与 -的三角函数值之间的关系:sin(-)=-sincos(-)=costan(-)=-tancot(-)=-cot公式四:利用公式二和公式三可以得到与的三角函数值之间的关系:sin()=sincos()=-costan()=-tancot()=-cot最新初中数学几何知识点总结篇21、正数和负数的有关概念(1)正数:比0大的数叫做正数;负数:比0小的数叫做负数;0既不是正数,也不是负数。
(2)正数和负数表示相反意义的量。
2、有理数的概念及分类3、有关数轴(1)数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
(2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。
(2)相反数:符号不同、绝对值相等的两个数互为相反数。
若a、b互为相反数,则a+b=0;相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。
(3)绝对值最小的数是0;绝对值是本身的数是非负数。
4、任何数的绝对值是非负数。
最小的正整数是1,最大的负整数是-1。
初中几何模型及常见结论的总结归纳精编版
初中几何模型及常见结论的总结归纳三角形的概念三角形边、角之间的关系:①任意两边之和大于第三边(任意两边之差小于第三边);②三角形内角和为0180(外角和为0360);③三角形的外角等于不相邻的两内角和。
三角形的三线:(1)中线(三角形的顶点和对边中点的连线);三角形三边中线交于一点(重心)如图,O 为三角形的重心,重心O 分中线长度之比为1:2(1:2=OE BO :);DF EF DE 、、分别为三角形AC AB BC 、、边上的中位线(三角形任意两边中点的连线),DE ∥BC 且BC DE 21=。
几何问题中的“中点”与“中线”常常是联系再一起的。
因此遇到中点这样的条件(或关键词)我们可以考虑中线定理与中位线定理进行思考。
中线(中点)的应用:①在面积问题中,中线往往把三角形的面积等分,如果两三角形高相同,我们往往把面积之比转化为底边之比。
(面积问题转化为线段比的问题)如上图,我们可以得到2:1===∆∆∆∆AO OF S S S S ABO BOF ACF ABF ::,②在涉及中线有关的线段长度问题,我们往往考虑倍长中线。
如图,已知AB ,AC 的长,求AF 的取值范围时。
我们可以通过倍长中线。
利用三角形边的关系在三角形ABD 中构建不等关系。
(AC AB AF AC AB +- 2).(2)角平分线(三角形三内角的角平分线);三角形的三条内角平分线交于一点(内心)如图,O 为三角形ABC 的内心(内切圆的圆心);内心O 到三边的距离相等r OD OF OE ===(角平分线的性质定理);090=∠+∠+∠ACO CBO BAO ;ABC ABC C S r ∆∆=2(ABC S ∆表示ABC ∆的面积,ABC C ∆表示ABC ∆的周长); 关于角平分线角度问题的常见结论:A BOC ∠+=∠21900 A BOC ∠-=∠21900 A BOC ∠=∠21 角平分线的性质定理:角平分线上的点到角两边的距离相等;到角两边距离相等的点在这个角的角平分线上。
初中数学几何常用十大解题方法
初中数学几何常用十大解题方法
初中数学几何是一门非常重要且广泛运用的学科,掌握一些常用的
解题方法能够加深对这门学科的理解,也有助于我们在考试中更为得
心应手。
下面是我总结的初中数学几何常用的十大解题方法。
1. 引理法:在证明一个重要的结论时,我们可以先引入一个类似的但
容易证明的结论,然后再运用这个结论推导得出所要证明的结论。
2. 分类讨论法:将不同情况按照不同性质分为若干个类别,然后分别
进行讨论,最后再根据各个情况得出所要求的答案。
3. 反证法:这种证明方法常用于证明命题的否定。
先假设结论不成立,然后推导得到一个矛盾的结论,说明原命题是成立的。
4. 相似性质法:找出几何图形之间的相似性质,利用这些性质建立几
何方程来求解未知量。
5. 对称性法:通过图形的对称性质,将几何问题转化为已知问题来解决。
6. 等角定理法:利用三角形等角定理推导问题,解决几何题。
7. 重心法:通过计算三角形各顶点的坐标,进而求出三角形的重心坐标,从而解决几何问题。
8. 勾股定理法:利用勾股定理解决几何题,是一种非常常见的解题方法。
9. 同位角反向法:通过同位角的反向推导,建立几何方程求解未知量。
10. 线性规划法:用代数的方法求解对于一些线性方程的优化问题,对
于一些几何问题也可以通过线性规划进行求解。
以上就是初中数学几何常用的十大解题方法,这些方法都有着广泛的
运用场景,希望大家在学习中能够加以应用,并且能够掌握更多的解
题方法。
初中几何题的解题技巧
初中几何题的解题技巧可以归纳为以下几点:
1.认真审题:读题时要理解题意,搞清楚已知条件和要求解的问题。
对于一些较复杂的题目,要反复读几遍,弄清题目的条件和结论,以及各个条件之间的关系。
2.画图分析:对于较复杂的几何题,可以画图进行分析。
先画出图形,再根据题目要求进行标注和解释。
这样可以帮助我们更好地理解题意和分析问题。
3.找出关键点:几何题中往往会有一些关键点,如中点、垂直平分线等。
这些关键点可以帮助我们找到解题的突破口。
4.逆向思维:有时候正向思考问题比较困难,可以从结论出发,逆向推理,找到需要的条件和证明的步骤。
5.分类讨论:对于一些分类讨论的题目,要明确讨论的对象和范围,以及讨论的各个情况之间的联系和区别。
6.善于总结:做完一道几何题后,要总结解题思路和用到的知识点,以及解题的技巧和方法。
这样可以帮助我们更好地掌握解题的方法和思路,提高解题能力。
总之,初中几何题的解题技巧需要平时多加练习和总结。
只有掌握了这些技巧和方法,才能在考试中快速准确地解答几何题。
初中数学几何知识点总结7篇
初中数学几何知识点总结7篇初中数学几何知识点总结7篇良好的知识积累和传承是推动文明延续和发展的重要保障。
教育公平和机会平等是实现知识人才培养和利用的重要前提。
下面就让小编给大家带来初中数学几何知识点总结,希望大家喜欢!初中数学几何知识点总结1一、圆1、圆的有关性质在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。
由圆的意义可知:圆上各点到定点(圆心O)的距离等于定长的点都在圆上。
就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。
心的距离小于半径的点的集合。
圆的外部可以看作是到圆心的距离大于半径的点的集合。
连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。
圆上任意两点间的部分叫圆弧,简称弧。
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。
由弦及其所对的弧组成的圆形叫弓形。
圆心相同,半径不相等的两个圆叫同心圆。
能够重合的两个圆叫等圆。
同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的弧叫等弧。
二、过三点的圆l、过三点的圆过三点的圆的作法:利用中垂线找圆心定理不在同一直线上的三个点确定一个圆。
经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。
2、反证法反证法的三个步骤:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾得出假设不正确,从而肯定命题的结论正确。
例如:求证三角形中最多只有一个角是钝角。
证明:设有两个以上是钝角则两个钝角之和180°与三角形内角和等于180°矛盾。
∴不可能有二个以上是钝角。
即最多只能有一个是钝角。
三、垂直于弦的直径圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。
初中数学八大几何模型归纳
初中数学几何模型总结归纳1.中点模型【模型1】倍长1、倍长中线;2、倍长类中线;3、中点遇平行线延长相交ABCD E ABC DEFEDCBA【模型2】遇多个中点,构造中位线1、直接连接中点;2、连对角线取中点再相连GABCDEFABCD E【例1】在菱形ABCD 和正三角形BEF 中,∠ABC =60°,G 是DF 的中点,连接GC 、GE . (1)如图1,当点E 在BC 边上时,若AB =10,BF =4,求GE 的长;(2)如图2,当点F 在AB 的延长线上时,线段GE 、GC 有怎样的数量和位置关系,写出你的猜想,并给予证明;(3)如图3,当点F 在CB 的延长线上时,(2)问中的关系还成立吗?写出你的猜想,并给予证明.图3图2图1ACDEFGDEFGCDEGABBFCBA【解答】(1)延长EG 交CD 于点H 易证明△CHG ≌△CEG ,则GE =HBEGCFAD(2)延长CG 交AB 于点I ,易证明△BCE ≌△FIE ,则△CEI 是等边三角形,GE =3GC 错误!未找到引用源。
,且GE ⊥GCF(3)EJ【例2】如图,在菱形ABCD 中,点E 、F 分别是BC 、CD 上一点,连接DE 、EF ,且AE =AF ,∠DAE =∠BAF .(1)求证:CE =CF ; (2)若∠ABC =120°,点G 是线段AF 的中点,连接DG 、EG ,求证:DG ⊥EG .GFE DC BAE H GF EDCBA【解答】(1)证明△ABE ≌△ADF 即可;(2)延长DG 与AB 相交于点H ,连接HE ,证明△HBE ≌△EFD 即可【例3】如图,在凹四边形ABCD 中,AB =CD ,E 、F 分别为BC 、AD 的中点,BA 交EF 延长线于G 点,CD 交EF 于H 点,求证:∠BGE =∠CHE . 【解答】取BD 中点可证,如图所示:JA BCDE F GH2.角平分线模型【模型1】构造轴对称【模型2】角平分线遇平行构等腰三角形【例4】如图,平行四边形ABCD 中,AE 平分∠BAD 交BC 边于E ,EF ⊥AE 交边CD 于F 点,交AD 边于H ,延长BA 到G 点,使AG =CF ,连接GF .若BC =7,DF =3,EH =3AE ,则GF 的长为_______.HGFEDCBA【解答】延长FE 、AB 交于点I ,易得CE =CF ,BA =BE ,设CE =x ,则BA =CD =3+x ,BE =7-x , 3+x =7-x ,x =2,AB =BE =5,AE =,作AJ ⊥BC ,连接AC ,求得GF =AC =3JIAB CDEFGH3.手拉手模型【条件】OA =OB ,OC =OD ,∠AOB =∠COD【结论】△OAC ≌△OBD ,∠AEB =∠AOB =∠COD (即都是旋转角);OE 平分∠AEDDC EBAOOABEC D 导角核心图形:八字形CBAO【例5】(2014重庆市A 卷)如图,正方形ABCD 的边长为6,点O 是对角线AC 、BD 的交点,点E 在CD 上,且2DE CE ,连接BE .过点C 作CF ⊥BE ,垂足是F ,连接OF ,则OF 的长为________.FABCOEDDE CBA【例6】如图,△ABC 中,∠BAC =90°,AB =AC ,AD ⊥BC 于点D ,点E 在AC 边上,连接BE ,AG ⊥BE于F ,交BC 于点G ,求∠DFG . GFE DCBAABC【答案】45°【例7】(2014重庆B 卷)如图,在边长为ABCD 中,E 是AB 边上一点,G 是AD 延长线一点,BE =DG ,连接EG ,CF ⊥EG 交EG 于点H ,交AD 于点F ,连接CE 、BH .若BH =8,则FG=_____________.HGDE CBAFABE G【答案】4.邻边相等对角互补模型【模型1】【条件】如图,四边形ABCD 中,AB =AD ,∠BAD +∠BCD =∠ABC +∠ADC =180° 【结论】AC 平分∠BCDEB【模型2】【条件】如图,四边形ABCD 中,AB =AD ,∠BAD =∠BCD =90° 【结论】① ∠ACB =∠ACD =45°; ② BC +CDABCECB【例8】如图,矩形ABCD 中,AB =6,AD =5,G 为CD 中点,DE =DG ,FG ⊥BE 于F ,则DF 为_____.F ABCEDGG DE【例9】如图,正方形ABCD 的边长为3,延长CB 至点M ,使BM =1,连接AM ,过点B 作BN ⊥AM ,垂足为N ,O 是对角线AC 、BD 的交点,连结ON ,则ON 的长为__________. OMN DCBA【例10】如图,正方形ABCD 的面积为64,△BCE 是等边三角形,F 是CE 的中点,AE 、BF 交于点G ,则DG 的长为___________. GFEABCDEC【答案】45.半角模型【模型1】【条件】如图,四边形ABCD 中,AB =AD ,∠BAD +∠BCD =∠ABC +∠ADC =180°,∠EAF =12∠BAD , 点E 在直线BC 上,点F 在直线CD 上 【结论】BE 、DF 、EF 满足截长补短关系FEDCBA【模型2】【条件】如图,在正方形ABCD 中,已知E 、F 分别是边BC 、CD 上的点,且满足∠EAF =45°,AE 、AF 分别与对角线BD 交于点M 、N . 【结论】①BE +DF =EF ; ② ABE ADF AEF S S S ∆∆∆+=;③AH =AB ;④2ECF C AB ∆=;⑤BM 2+DN 2=MN 2;⑥△ANM ∽△DNF ∽△BEM ∽△AEF ∽△BNA ∽△DAM (由AO :AH =AO :AB =1:可得到△ANM 和△AEF 相似比为1)⑦AMN MNFE S S ∆=四边形;⑧△AOM ∽△ADF ;△AON ∽△ABE ;⑨△AEN 为等腰直角三角形,∠AEN =45°,△AFM 为等腰直角三角形,∠AFM =45°;⑩A 、M 、F 、D 四点共圆,A 、B 、E 、N 四点共圆,M 、N 、F 、C 、E 五点共圆.H NM FEDCBA【模型2变形】【条件】在正方形ABCD 中,已知E 、F 分别是CB 、DC 延长线上的点,且满足∠EAF =45° 【结论】BE +EF =DFFEDCB A【模型2变形】【条件】在正方形ABCD 中,已知E 、F 分别是BC 、CD 延长线上的点,且满足∠EAF =45° 【结论】DF +EF =BEAB C DEF【例11】如图,△ABC 和△DEF 是两个全等的等腰直角三角形,∠BAC =∠EDF =90°,△DEF 的顶点E与△ABC 的斜边BC 的中点重合,将△DEF 绕点E 旋转,旋转过程中,线段DE 与线段AB 相交于点P ,射线EF 与线段AB 相交于点G ,与射线CA 相交于点Q .若AQ =12,BP =3,则PG =__________.Q PGD FECBA【解答】连接AE ,题目中有一线三等角模型和半角模型设AC =x ,由△BPC ∽△CEQ 得BP CE =BE CQ , 3/(22x )=22x /(x +12),解得x =12 设PG =y ,由AG 2+BP 2=PG 2得32+(12-3-x )2=x 2,解得x =5【例12】如图,在菱形ABCD 中,AB =BD ,点E 、F 在AB 、AD 上,且AE =DF .连接BF 与DE 交于点G ,连接CG 与BD 交于点H ,若CG =1,则S 四边形BCDQ =__________.HGFED CB A【解答】346.一线三等角模型【条件】∠EDF =∠B =∠C ,且DE =DF 【结论】△BDE ≌△CFDFEDCBA【例13】如图,正方形ABCD 中,点E 、F 、G 分别为AB 、BC 、CD 边上的点,EB =3,GC =4,连接EF 、FG 、GE 恰好构成一个等边三角形,则正方形的边为__________.GA B CDEF【解答】如图,构造一线三等角模型,△EFH ≌△FGI 则BC =BF +CF =HF -BH +FI -CI =GI -BH +HE -CI =733IH F ED C B A G7.弦图模型【条件】正方形内或外互相垂直的四条线段 【结论】新构成了同心的正方形LK JIHGFECDB AHG FEDCBA【例14】如图,点E 为正方形ABCD 边AB 上一点,点F 在DE 的延长线上,AF =AB ,AC 与FD 交于点G ,∠F AB 的平分线交FG 于点H ,过点D 作HA 的垂线交HA 的延长线于点I .若AH =3AI ,FH =22,则DG =__________.I H AGFEDCB【解答】1742【例15】如图,△ABC 中,∠BAC =90°,AB =AC ,AD ⊥BC 于点D ,点E 是AC 中点,连接BE ,作AG ⊥BE 于F ,交BC 于点G ,连接EG ,求证:AG +EG =BE .FE CGDBABC【解答】过点C 作CH ⊥AC 交AG 的延长线于点H ,易证8.最短路径模型【两点之间线段最短】 1、将军饮马Q2、费马点【垂线段最短】【两边之差小于第三边】【例16】如图,矩形ABCD 是一个长为1000米,宽为600米的货场,A 、D 是入口,现拟在货场内建一个收费站P ,在铁路线BC 段上建一个发货站台H ,设铺设公路AP 、DP 以及PH 之长度和为l ,求l 的最小值.【解答】3500600 ,点线为最短.【例17】如图,E 、F 是正方形ABCD 的边AD 上的两个动点,满足AE =DF,连接CF 交BD 于G ,连接BE 交AG 于H ,若正方形的边长为2,则线段DH 长度的最小值为______________________.【解答】如图,取AB 中点P ,连接PH 、PD ,易证PH ≥PD -PH 即DH ≥15-.【例18】如图所示,在矩形ABCD 中,AB =4,AD =24,E 是线段AB 的中点,F 是线段BC 上的动点,△BEF 沿直线EF 翻折到△EF B ',连接B D ',B D '最短为________________.【解答】4【例19】如图1,□ABCD 中,AE ⊥BC 于E ,AE =AD ,EG ⊥AB 于G ,延长GE 、DC 交于点F ,连接AF .(1)若BE =2EC ,AB =13,求AD 的长;(2)求证:EG =BG +FC ;(3)如图2,若AF =25,EF =2,点M 是线段AG 上一动点,连接ME ,将△GME 沿ME 翻折到△ME G ',连接G D ',试求当G D '取得最小值时GM 的长.图1 图2 备用图【解答】(1)3(2)如图所示(3)当DG ′最小时D 、E 、G '三点共线解得43173-=+'=MN N G GMEH【练习1】如图,以正方形的边AB为斜边在正方形内作直角三角形ABE,∠AEB=90°,AC、BD交于O.已知AE、BE的长分别为3、5,求三角形OBE的面积.【解答】25【练习2】问题1:如图1,在等腰梯形ABCD 中,AD∥BC,AB=BC=CD,点M,N分别在AD,CD上,∠MBN21∠ABC,试探究线段MN,AM,CN有怎样的数量关系?请直接写出你的猜想;问题2:如图2,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M,N分别在DA,CD延长线,若∠MBN=12∠ABC仍然成立,请你进一步探究线段MN,AM,CN又有怎么样的关量关系?写出你的猜想,并给予证明。
初中几何模型及常见结论的总结归纳
初中几何模型及常见结论的总结归纳一、引言在初中数学学习中,几何是一个重要的部分,它不仅涉及到图形的性质和特点,还涉及到一些基本的几何模型和常见结论。
掌握这些模型和结论,有助于更好地理解和应用几何知识,提高解题能力和数学素养。
二、初中几何模型总结1. 全等三角形模型:两个三角形全等,则它们的边相等或角相等。
2. 相似三角形模型:两个三角形相似,则它们的对应边成比例。
3. 直角三角形模型:直角三角形的两个锐角互余。
4. 平行线模型:两直线平行,同位角相等,内错角相等,同旁内角互补。
5. 三角形内角和定理:三角形内角和为180度。
6. 多边形内角和定理:n边形内角和等于(n-2) × 180度。
7. 三角形重心性质模型:三角形的重心是三边中线的交点,重心到顶点的距离是它到对边中点距离的2倍。
三、常见结论归纳1. 等腰三角形的特点:等腰三角形两底角相等,顶角平分线垂直平分底边。
2. 直角三角形的特点:直角三角形斜边上的中线等于斜边的一半;勾股定理的逆定理适用;两个锐角互余。
3. 平行线的判定和性质:平行线的判定主要是依据平行线的定义和两直线夹角相等;平行线的性质主要有两直线平行,同位角相等;三角形内角和定理的推论等。
4. 辅助线常见位置和方法:在添加辅助线时,常常用到截长补短、垂直平分线、对顶角相等、平行线的性质等。
四、应用举例1. 利用全等三角形模型解决实际问题:例如测量旗杆高度或河流宽度等问题,需要用到全等三角形的性质。
2. 利用相似三角形模型解决实际问题:例如测量河对岸的建筑物高度或篮球架高度等问题,需要用到相似三角形的性质。
3. 利用平行线模型解决实际问题:例如求两直线的距离问题,需要用到平行线的判定和性质。
4. 利用勾股定理解决实际问题:例如求斜坡的长度等问题,需要用到勾股定理的性质。
五、总结通过总结归纳初中几何模型和常见结论,可以更好地理解和应用几何知识,提高解题能力和数学素养。
在应用时,需要根据具体情况选择合适的几何模型和结论,并结合辅助线等方法解决问题。
初中几何模型及常见结论的总结归纳
初中几何模型及常见结论的总结归纳几何学是研究空间和图形性质以及它们之间关系的学科。
初中阶段的几何学主要涉及平面几何和立体几何两个方面。
在学习几何学的过程中,我们会遇到一些常见的几何模型和结论。
下面是我对初中几何模型和常见结论的总结归纳:平面几何模型:1.点、线、面:-点是没有大小和形状的,用字母表示,如A、B等。
-线是由无数个点连在一起而形成的,用一条直线表示,如AB。
-面是由无数条线连在一起而形成的,用一个平面表示,如三角形ABC。
2.直角:-直角是以一个点为顶点,两条线段以此点为公共端点,相互垂直的角。
-常见的直角符号是“∟”。
3.直线的性质:-相交定理:两条直线相交于一点,那么相交的两个角互为垂直角。
-平行定理:如果两条直线分别与第三条直线相交,使得同侧内角和为180°(即补角),那么这两条直线是平行线。
4.三角形的性质:-等边三角形:三边相等的三角形。
-等腰三角形:两边相等的三角形,其两底角也相等。
-直角三角形:其中一个内角是90°的三角形。
-钝角三角形:其中一个内角大于90°的三角形。
立体几何模型:1.立体几何体:-立方体:六个面都是正方形的立体。
-正方体:六个面都是正方形的立体。
-圆柱体:底面是圆形的立体。
-圆锥体:底面是圆形的立体。
-球体:表面上的每一点到球心的距离相等的立体。
2.面的性质:-顶点:多个边的交点。
-棱:多个面的交线。
-面:棱围成的区域。
3.体的性质:-体积:表示立体几何体所占的空间大小。
-表面积:表示立体几何体外部各个面的总面积。
常见几何结论:1.同位角定理:同位角互等的两条平行线与同一条直线相交。
其中,同位角是指两条直线被前者截过的各对对应角。
2.三角形内角和定理:三角形的内角和等于180°。
3.勾股定理:直角三角形的斜边的平方等于两直角边的平方和。
4.正方体的体积和表面积:-正方体的体积等于边长的立方。
-正方体的表面积等于6倍边长的平方。
初中几何常用定理(竞赛)
1已知:AD为BC边上的中线结论:(2)垂线定理已知:AD为BC边上的高结论:(3)梅涅劳斯定理已知:一条直线与△ABC三边或其延长线交于R、Q、P(4)塞瓦定理已知:三角形内部一点O,延长AO、BO、CO交三边于X、Y、Z(5)角平分线定理已知:AD为∠BAC平分线(6)斯特瓦尔特定理已知:D为BC边上一点结论:7结论:(8)外森皮克不等式已知:三角形的面积为S结论:(9)西姆松定理已知:过△ABC外接圆上一点P作三边或其延长线的垂线结论:三个垂足M、N、Q共线(10)海伦公式已知:△ABC三边分别为a、b、c其中(11)燕尾定理已知:△ABC中,AD、BE、CF相交于OAA12已知:△ABC外接圆半径为R,三顶点A、B、C所对的边为a、b、c结论:(13)余弦定理已知:△ABC三顶点A、B、C所对的边为a、b、c结论:(14)张角定理已知:D是△ABC中BC上一点(15)托勒密定理已知:四边形ABCD为圆内接四边形结论:(任意凸四边形ABCD,必有,当且仅当ABCD四点共圆时取等)(16)九点圆定义:三角形三边的中点MHG,三条高的垂足DEF和各顶点与垂心连线的中点PNQ,九点共圆。
结论:①九点圆的半径是三角形外接圆半径的一半;②九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;③九点圆与三角形的内切圆,三个旁切圆均相切(费尔巴哈定理)DFB CCAAB17已知:M是弦AB中点,任意两条弦CD、EF过点M,DE、CF交AB于P、Q(18)欧拉线定义:三角形的外心O、重心G、九点圆圆心V和重心H,依次位于同一直线上,这条直线即欧拉线(19)弦切角定理已知:PA切圆于点A(20)圆幂定理已知:弦AB与弦CD交于点P结论:已知:PQ切圆于Q,割线PB、PD交圆于A、CDAB CPDPB21结论:已知:P是矩形内任意一点结论:(22)维维亚尼定理已知:P是等边△ABC内任意一点,P到三边的距离分别是,h1、h2、h3,等边△ABC的高为H(23)莫利定理已知:△ABC各内角的三等分线交点为D、E、F结论:△DEF为等边三角形(24)笛沙格定理已知:△ABC和△A1B1C1中,AA1、BB1、CC1交于一点P结论:AB与A1B1交点D,BC与B1C1交点E,AC与A1C1交点F,三点共线B DABBCB CB25定义:三角形内到三个顶点距离之和最短的点结论:①若三角形有一个内角≥120°,则此内角的顶点为费马点;②若三角形三各内角均小于120°,以三角形三边向外作等边△ABE、等边△BCF、等边△ACG,AF、BG、CE交于一点P,点P为费马点,此时(26)婆罗摩笈多定理已知:圆内接四边形的对角线互相垂直相交结论:从交点向某一边所引垂线的反向延长线必经过这条边对边的中点(G为AD中点)E。
初中地理常见几何基本模型及结论
初中地理常见几何基本模型及结论
地理学是研究地球表层现象及其规律的学科,其中几何模型在
地理学中具有重要的作用。
本文将介绍初中地理中常见的几何基本
模型及相应的结论。
1. 平面几何模型
平面几何模型是描述地表特征的常见模型,其主要包括以下几
个基本模型:
- 圆形模型:地理学中常用来描述湖泊、盆地等自然地理要素。
圆形模型的结论是,湖泊或盆地的形状通常近似于圆形。
- 矩形模型:地理学中常用来描述田地、建筑物等人文地理要素。
矩形模型的结论是,田地或建筑物的形状通常接近于矩形。
2. 空间几何模型
空间几何模型是描述地球内部结构和地理空间关系的模型,主
要包括以下几个基本模型:
- 球体模型:地理学中常用来描述地球的整体形状。
球体模型
的结论是,地球的整体形状近似于一个球体。
- 锥体模型:地理学中常用来描述河流的流域和山脉的形状。
锥体模型的结论是,河流的流域和山脉的形状通常呈锥状。
3. 空间位置关系模型
空间位置关系模型是描述地理要素之间相对位置关系的模型,
主要包括以下几个基本模型:
- 上下游模型:用来描述河流沿着水流方向的位置关系。
上下
游模型的结论是,河流的上游位于源头,下游位于河口。
- 东西方向模型:用来描述地理要素在东西方向上的位置关系。
东西方向模型的结论是,东方位于太阳升起的一侧,西方位于太阳
落山的一侧。
以上是初中地理常见的几何基本模型及相应的结论。
通过理解
和应用这些模型,可以更好地理解地理现象和地球的空间关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中几何结论总结及常用方法一.基本概念。
1.直线的基本性质:(1)两条直线的位置关系(在同一平面内):相交与平行;(2)两直线相交,只有一个交点;(3)直线公理:经过两点有且只有一条直线,即两点确定一条直线。
2.线段的有关内容:(1)线段中点:点M 在线段上,且把线段AB 分成相等的两条线段AM 与BM ,点M 就是线段AB 的中点。
AM =BM =21AB. (2)线段公理:两点之间的所有连线中,线段最短。
3.角(1)角的定义:有公共端点的两条射线组成的图形。
公共端点是角的顶点。
(2)角的表示:①三个大写字母及符号“∠”表示②.用一个数字或阿拉伯字母表示角的定义-------角也看成是有由一条射线绕着它的端点旋转而成。
平角:一条射线绕它的端点旋转,当终边和始边成一条直线时所成的角。
周角:终边继续旋转,当它又和始边重合时所成的角.(3)角的分类:锐角、直角、钝角。
(4)角的单位换算:1周角=2平角=4直角=360 1平角=2直角=1801直角=90 1=60=3600 1=60(5)余角、补角及其性质:互余:如果两个角和是直角,这两个角叫做互为余角,简称互余。
互补:如果两个角的和是平角,这两个角叫做互为补角,简称互补。
性质: 同角(或等角)的余角相等;同角(或等角)的补角相等。
(6)对顶角:、两条直线相交后所得的只有一个公共顶点而没有公共边(或是一个角的两条边分别是另一个角两条边的反向延长线)的两个角叫做对顶角。
对顶角性质:对顶角相等。
4.平行线:在同一个平面内,不相交的两条直线。
(1)性质1:经过直线外一点,有且只有一条直线与这条直线平行。
(2)性质2:如果两条直线都与第三条直线平行,那么这两条直线互相平行(即平行于听一条直线的两条直线平行。
)(3)平行线判别方法:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行。
(4)平行线性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
5.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
性质1:平面内,过一点有且只有一条直线已知直线垂直。
性质2:直线外一点与直线上各点连接的所以线段中,垂线段最短。
6.三角形的有关概念(1)三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形。
三角形ABC 记作“△ABC”(2)三角形中的三条重要线段:角平分线、中线、高。
三角形的中线:三角形中,连结一个顶点和它所对边的中点的连线段叫做三角形的中线。
三角形的高线:过一个顶点作垂直于它对边所在直线的线段。
三角形的角平分线:三角形顶点到其内角的角平分线交对边的点连的一条线段注意:①三角形的角平分线、中线、高都是线段;②三角形的角平分线、中线都在三角形内部交于一点; ③三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形)、边上(直角三角形),它们(或延长线)相交于一点。
7.三角形三边之间的关系:(1)三角形的任意两边之和大于第三边;(2)三角形的任意两边之差小于第三边。
8.三角形内、外角关系: (1)三角形的内角和等于180; (2)三角形的一个外角等于和它不相邻的两个内角和; (3)三角形的一个外角大于任何一个和它不相邻的内角; (4)三角形的外角和等于3609.三角形的分类(根据角):直角三角形和斜三角形(钝角三角形和锐角三角形)。
三角形的分类(根据边):不等边三角形和等腰三角形(①底和腰不等的等腰三角形;②等边三角形。
10.全等三角形:(1)定义:两个能够重合的三角形。
△ABC与△DEF全等,记作△ABC≌△DEF。
(表示对应角顶点的字母写在对应位置上。
)(2)全等三角形的性质:①全等三角形的对应边和对应角相等;②全等三角形的对应线段(角平分线、中线、高)相等,周长相等,面积相等。
(3)全等三角形的判别方法:一般三角形:①三边对应相等的两个三角形全等。
SSS②两角和它们的夹边对应相等的两个三角形全等。
ASA③两角和其中一角的对边对应相等的两个三角形全等。
AAS④两边和它们的夹角对应相等的两个三角形全等。
SAS直角三角形:SSS,SAS,ASA,AAS,HLHL定理:斜边和一条直角边对应相等的两个直角三角形全等。
11.角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线就是这个角的平分线。
(1)角平分线的性质:①角平分线的定义;②角平分线上的点到这个角的两边的距离相等;③三角形的三条角平分线相交与一点,且这一点到三条边的距离相等。
(2)角平分线的判别方法:①角平分线的定义;②在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。
12.垂直平分线:经过线段中点,并且垂直于这条线段的直线。
(1)垂直平分线的性质:①垂直平分线的定义;②线段垂直平分线上的点到这条线段两个端点的距离相等;③三角形三条边的垂直平分线相交与一点,且这一点到三个顶点的距离相等。
(2)垂直平分线的判定方法:①垂直平分线的定义;②到线段两个端点距离相等的点在这条线段的垂直平分线上。
13.等腰三角形:有两条边相等的三角形。
(1)等腰三角形的性质:①等腰三角形的定义;②等腰三角形的两个底角相等;(等边对等角)③等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。
(三线合一)(2)等腰三角形的判别方法:①等腰三角形的定义;②有两个角相等的三角形。
(等角对等边)(3)等边三角形:三条边都相等的三角形。
(4)等边三角形的性质:①等边三角形的定义;②等腰三角形的所有性质。
③等边三角形的三个角都相等,且等于60。
(5)等边三角形的判别:①等边三角形的定义;②有一个角等于60的等腰三角形;③三个角都相等的三角形。
14.直角三角形:有一个角等于90的三角形。
(1)直角三角形的性质:①勾股定理:直角三角形两直角边的平方和等于斜边的平方。
a2+b2=c2(a、b为直角边c为斜边);②在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半;③直角三角形斜边的中线等于斜边的一半;④直角三角形两个锐角互余。
(2)直角三角形的判别方法:(1)直角三角形的定义;(2)HL定理;(3)三角形两边的平方和等于第三边的平方。
15.三角形的中位线:连接三角形任意两边中点的线段。
性质:三角形的中位线平行于第三边且等于第三边的一半。
16.多边形的内角和、外角和:(1)n边形的内角和为(n-2)×180;(2)n边形的外角和为360。
17.平行四边形:两组对边分别平行的四边形。
平行四边形不相邻的两个顶点连成的线段叫它的对角线。
四边形ABCD是平行四边形,记作“ ABCD”。
(1).平行四边形的性质:①平行四边形的两组对边分别相等;②平行四边形的两组对边分别平行;③平行四边形的对角分别相等;④平行四边形的对角线互相平分。
(2)平行四边形的判别:①两组对边分别平行的四边形;②两组对边分别相等的四边形;③一组对边平行且相等的四边形;④对角线互相平分的四边形。
(3)平面镶嵌:同一种正多边形可以镶嵌的有:正三角形、正方形、正六边形;不同的多边形只有满足在同顶点各个内角和是360才能镶嵌。
18.平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。
性质:平行线之间的垂线段处处相等。
19.菱形:一组邻边相等的平行四边形。
(1)菱形的性质:①平行四边形的所有性质;②菱形的定义;③菱形的四条边相等;④对角线垂直,且每一条对角线平分一组对角;⑤S=21对角线之积。
(2)菱形的判别方法:①一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等的四边形。
20.矩形:有一个内角是直角的平行四边形。
(1)矩形的性质:①平行四边形的所有性质。
②矩形的对角线相等③四个角都是直角。
(2)矩形的判别方法:①有一个角是直角的平行四边形;(2)对角线相等的平行四边形;③有三个角是直角的四边形。
21.正方形:一组邻边相等的矩形。
(1)正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(2)正方形的判别方法:①一组邻边相等的矩形。
②对角线垂直的矩形。
③对角线相等的菱形④一个角是直角的菱形。
22.梯形:一组对边平行而另一组对边不平行的四边形。
平行的两边叫做梯形的底,不平行的两边叫做梯形的腰。
夹在两底之间的垂线段叫做梯形的高。
梯形的分类:①一般梯形;②等腰梯形;③直角梯形。
23.等腰梯形:两腰相等的梯形。
直角梯形:一条腰和底垂直的梯形。
(1)等腰梯形的性质:①等腰梯形两腰相等;②等腰梯形同一底上的两个内角相等;③等腰梯形的对角线相等。
(2)等腰梯形的判别方法:①两腰相等的梯形;②同一底上的两个角相等的梯形。
24.梯形的中位线:连接两腰中点的线段。
性质:梯形的中位线平行于上下底且等于上下底之和的一半。
25.梯形的面积:S =21(a +b )×h =l×h(其中a,b 分别为上下底长,h 为高,l 中位线线长) 26.梯形中常用的辅助线:①作高;②平移腰;③平移对角线;④过一腰中点作辅助线。
27.五种基本作图:(1)作一条线段等于已知线段:(2)作一个角等于已知角;(3)平分已知角;(4)经过一点作已知直线的垂线;(5)作线段的垂直平分线。
28.轴对称和轴对称图形:(1)轴对称的定义:把一个图形沿着某条直线对折后能与另一个图形重合,我们就说这两个图形关于这条直线成轴对称.(2)轴对称图形:把一个图形沿着某条直线对折后,能与本身重合的图形叫轴对称图形; (3)轴对称的性质: ①成轴对称的两个图形是全等形; ②成轴对称的对应点连线段被对称轴垂直平分;③成轴对称的对应点线段的交点在对称轴上.29.中心对称和中心对称图形:(1)中心对称的定义:把一个图形绕着一点旋转180后,能与另一个图形重合,我们就说这两个图形关于这一点成中心对称;(2)中心对称图形:在平面内,一个图形绕某个点旋转180,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。
这个点叫做它的对称中心;(3)中心对称图形的性质:①成中心对称的两个图形是全等形; ②中心对称图的对应点连线都经过对称中心,且都被对称中心平分。
30.平移: (1)定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
(2)平移的性质:①平移后的图形与原来的图形是全等形; ②经过平移,对应点所连的线段平行且相等。
③平移后对应点所连的线段平行(或在同一条直线上)且相等,对应角相等,其线段的长度就是平移的距离,从原图形上的点到 平移后图形上的对应点射线的方向,就是平移的方向.(3)图形平移的主要因素是平移距离和平移方向.31. 旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。