2019-2020学年高中数学上册 第1章《集合和命题》同步练习(1) 沪教版.doc

合集下载

沪教版(上海) 高一第一学期 新高考辅导与训练 第1章 集合和命题 1.5 命题的形式及等价关系(1

沪教版(上海) 高一第一学期 新高考辅导与训练 第1章 集合和命题 1.5 命题的形式及等价关系(1

沪教版(上海) 高一第一学期新高考辅导与训练第1章集合和命题 1.5 命题的形式及等价关系(1)一、解答题(★) 1. 下列语句是否为命题?如果是,判断它的真假.(1)这道数学题有趣吗?(2)0不可能不是自然数;(3);(4);(5)91不是素数;(6)上海的空气质量越来越好.(★★) 2. 判断下列命题是真命题还是假命题,并说明理由.(1)任何一个集合必有两个子集;(2),,都是自然数,如果是的倍数,那么,中至少有一个是的倍数;(3)如果,BÜ C,那么.(★) 3. 在下列各题中,用符号“ ”把,连起来.(1)实数满足,或;(2),且;(3),;(4)是偶数,是偶数(其中,都是整数).(★★) 4. 已知与均为正有理数,且与均为无理数.证明:也是无理数.(★) 5. 判断下列命题的真假并说明理由.(1)某个整数不是偶数,则这个数不能被4整除;(2)若,且,则,且;(3)合数一定是偶数;(4)若,则;(5)两个三角形两边一对角对应相等,则这两个三角形全等;(6)若实系数一元二次方程满足,那么这个方程有两个不相等的实根;(7)若集合,,满足,则;(8)已知集合,,,如果,那么.(★) 6. 已知下列几个命题的推出关系为:,,,,.现有下列命题:① ;② 且;③ 且;④ 且.试判断哪些命题是正确的.(★) 7. 设是方程的根,求证:不是实数.二、单选题(★) 8. 下列语句中不是命题的是()A.B.是无限循环小数C.D.12是4的倍数(★) 9. 已知下列语句:①对角互补的四边形外接于一个圆;②今天会下雨吗;③你会讲日语吗;④ 是有理数,则,都是有理数;⑤ 或.其中不是命题的是()A.①②B.②③C.②④D.③⑤(★★★) 10. 下面命题中,真命题的个数是()① ,若,则;② ,若,则,都为0;③两个有理数的和是有理数;④ 或,则.A.1B.2C.3D.4(★) 11. 命题与命题,它们的推出关系是()A.B.C.D.以上都不正确(★★) 12. 下列命题是真命题的为()A.若,则B.若,则C.若,则D.若,则三、填空题(★★) 13. 用符号“ ”“ ”“ ”表示下列事件的推出关系:(1),,________ ;(2),,________ ;(3)设抛物线方程为,抛物线的图象与轴有两个交点,,________ ;(4),,________ .(★) 14. 下列命题中,真命题是________.①对角线互相平分的四边形是平行四边形;②对角线相等的四边形是矩形;③对角线互相平分且垂直的四边形是菱形;④对角线互相垂直且相等的四边形是正方形。

上海市必修一第一单元《集合》测试题(有答案解析)

上海市必修一第一单元《集合》测试题(有答案解析)

一、选择题1.设全集U =R ,{}2560A x x x =-->,{}5B x x a =-<(a 为常数),且11B ∈,则下列成立的是( )A .U AB R =B .UA B R =C .UUAB R = D .AB R =2.已知集合P 的元素个数为()*3n n N∈个且元素为正整数,将集合P 分成元素个数相同且两两没有公共元素的三个集合,,A B C ,即P A B C =⋃⋃,AB =∅,A C ⋂=∅,BC =∅,其中{}12,,,n A a a a =,{}12,,,n B b b b =,{}12,,,n C c c c =,若集合,,A B C 中的元素满足12n c c c <<<,k k k a b c +=,1,2,,k n =,则称集合P 为“完美集合”例如:“完美集合”{}11,2,3P =,此时{}{}{}1,2,3A B C ===.若集合{}21,,3,4,5,6P x =,为“完美集合”,则x 的所有可能取值之和为( ) A .9 B .16 C .18 D .27 3.已知集合{,}P a b =,{|}Q M M P =⊆,则P 与Q 的关系为( )A .P Q ⊆B .Q P ⊆C .P Q ∈D .P Q ∉4.集合2|01x A x x -⎧⎫=<⎨⎬+⎩⎭,{|()()0}B x x a x b =--<,若“2a =-”是“A B ⋂≠∅”的充分条件,则b 的取值范围是( ) A .1b <-B .1b >-C .1b ≤-D .12b -<<-5.已知集合{}4A x a x =<<,{}2|560B x x x =-+>,若{|34}A B x x ⋂=<<,则a 的值不可能为( )A B CD .36.已知集合123,,A A A 满足: {}*123|19A A A x N x =∈≤≤,且每个集合恰有3个元素,记()1,2,3i A i =中元素的最大值与最小值之和为()1,2,3i M i =,则123M M M ++的最小值为( ) A .21B .24C .27D .307.已知集合{}|10A x x =-<,{}2|20B x x x =-<,则AB =( )A .{}|0x x <B .{}|1x x <C .{}1|0x x <<D .{}|12x x <<8.对于集合A 和B ,令{,,},A B x x a b a A b B +==+∈∈如果{2,},S x x k k Z ==∈{}|21,T x x k x Z ==+∈,则S T +=( )A .整数集ZB .SC .TD .{41,}x x k k Z =+∈9.设全集为R ,集合{}2log 1A x x =<,{B x y ==,则()RAB =( )A .{}02x x <<B .{}01x x <<C .{}11x x -<<D .{}12x x -<<10.已知集合22{|,N ,N}A t t m n m n = =+ ∈ ∈,且x A ∈,y A ,则下列结论中正确的是( ) A .x y A +∈ B .x y A -∈ C .xy A ∈D .xA y∈ 11.设所有被4除余数为()0,1,2,3k k =的整数组成的集合为k A ,即{}4,k A x x n k n Z ==+∈,则下列结论中错误的是( )A .02020A ∈B .3a b A +∈,则1a A ∈,2b A ∈C .31A -∈D .k a A ∈,k b A ∈,则0a b A -∈12.已知R 为实数集,集合{|lg(3)}A x y x ==+,{|2}B x x =≥,则()R C A B ⋃=( ) A .{|3}x x >-B .{3}x x |<-C .{|3}x x ≤-D .{|23}x x ≤<二、填空题13.已知集合{2,1}A =-,{|2,B x ax ==其中,}x a ∈R ,若A B B =,则a 的取值集合为___________.14.已知集合(){|221,}A k k k Z απαπ=≤≤+∈,{|55}B a α=-≤≤,则A B ⋂=__________.15.集合{(,)|||,}A x y y a x x R ==∈,{(,)|,}B x y y x a x R ==+∈,已知集合A B中有且仅有一个元素,则常数a 的取值范围是________ 16.对于任意集合X 与Y ,定义:①{}|X Y x x X x Y -=∈∉且,②()()X Y X Y Y X =--△∪,(X Y △称为X 与Y 的对称差).已知{}{}2|2|33A y y x x x R B y y ==-∈=-,,≤≤,则A B =△______.17.设集合A ,B 是R 中两个子集,对于x ∈R ,定义: 0,,0,1,,1,x A x Bm n x A x B ⎧∉∉⎧==⎨⎨∈∈⎩⎩.①若A B ⊆;则对任意(),10x R m n ∈-=;②若对任意,0x R mn ∈=,则A B φ⋂=;③若对任意,1x R m n ∈+=,则A ,B 的关系为R A C B =.上述命题正确的序号是______. (请填写所有正确命题的序号)18.对任意两个集合X 与Y ,定义①{X Y x x X -=∈且}x Y ∉,②()()X Y X Y Y X ∆=--,已知{}2,A yy x x R ==∈,{}22B y y =-≤≤,则A B ∆=_________.19.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={5n +k | n ∈Z},k =0,1,2,3,4.给出如下四个结论:①2 014∈[4]; ②-3∈[3]; ③Z =[0]∪[1]∪[2]∪[3]∪[4];④整数a ,b 属于同一“类”的充要条件是“a -b ∈[0]”.其中,正确的结论是________.20.若集合{}|121A x m x m =+<≤-,{}|25B x x =-≤<,若()()R R C A C B ⊇,则m 的取值范围是_____________.三、解答题21.设集合{}227150A x x x =+-≤,{}122B x a x a =-<<. (Ⅰ)若B =∅,求实数a 的取值集合; (Ⅱ)若A B ⊆,求实数a 的取值集合. 22.已知集合{|1A x x =≤或5}x,集合{|221}B x a x a =-≤≤+(1)若1a =,求A B 和A B ;(2)若记符号{A B x A -=∈且}x B ∉,在图中把表示“集合A B -”的部分用阴影涂黑,并求当1a =时的A B -; (3)若AB B =,求实数a 的取值范围.23.已知集合612A xx ⎧⎫=≥⎨⎬+⎩⎭,{}2(4)70B x x m x m =-+++<.(1)若3m =时,求()RAB ;(2)若A B A ⋃=,求实数m 的取值范围.24.设集合A ={x ∣2x −3x +2=0},B ={x ∣2x +2(a +1)x +2a −5=0} (1)若A ∩B ={2},求实数a 的值; (2)若U =R ,A ∩(UB )=A .求实数a 的取值范围. 25.已知集合A ={x |a -1<x <2a +1},B ={x |x 2-x <0} (I )若a =1,求AB ,()R AB ;(II )若A B =∅,求实数a 的取值范围26.已知集合{121}A xa x a =-<<+∣,{}03B x x =<≤,U =R . (1)若12a =,求A B ;()U A B ⋂. (2)若A B =∅,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】求出集合A ,根据11B ∈可求得实数a 的取值范围,利用集合的基本运算可判断各选项的正误. 【详解】{}{25601A x x x x x =-->=<-或}6x >,{}5B x x a =-<,且11B ∈,则6a >,{}{}555B x x a x a x a ∴=-<=-<<+,对于A 选项,取7a =,则{}212B x x =-<<,{}16UA x x =-≤≤,所以,{}16UA B x x R ⋂=-≤≤≠,A 选项错误;对于B 选项,取7a =,则{2UB x x =≤-或}12x ≥,此时UAB A R =≠,B 选项错误;对于C 选项,取7a =,则{}16UA x x =-≤≤,{2UB x x =≤-或}12x ≥,此时,{2UU A B x x ⋃=≤-或16x -≤≤或}12x R ≥≠,C 选项错误;对于D 选项,6a >,则51a -<-,511a +>,此时A B R =,D 选项正确.故选:D. 【点睛】本题考查与集合运算正误的判断,同时也考查了一元二次不等式以及绝对值不等式的求解,考查计算能力,属于基础题.2.D解析:D 【分析】讨论集合A 与集合B ,根据完美集合的概念知集合C ,根据k k k a b c +=建立等式求x 的值. 【详解】首先当2x =时,{}21,2,3,4,5,6P =不可能是完美集合, 证明:假设{}21,2,3,4,5,6P =是完美集合, 若C 中元素最小为3,则11123a b +=+=,222456a b c +=+==不可能成立;若C 中元素最小为4,则11134a b +=+=,222256a b c +=+==不可能成立; 若C 中元素最小为5,则11145a b +=+=,222236a b c +=+==不可能成立;故假设{}21,2,3,4,5,6P =是完美集合不成立,则{}21,2,3,4,5,6P =不可能是完美集合. 所以2x ≠;若集合{1,5},{3,6}A B ==,根据完美集合的概念知集合{}4,,5611C x x =∴=+=; 若集合{1,3},{4,6}A B ==,根据完美集合的概念知集合{}5,,369C x x =∴=+=; 若集合{1,4},{3,5}A B ==,根据完美集合的概念知集合{}6,,347C x x =∴=+=; 则x 的所有可能取值之和为791127++=, 故选:D . 【点睛】本题是新概念题,考查学生分析问题,理解问题的能力,是中档题.3.C解析:C 【分析】用列举法表示集合Q ,这样就可以选出正确答案. 【详解】{}M P M a ⊆⇒=或{}b 或{},a b 或∅.因此{}{}{}{}{|},,,,Q M M P a b a b =⊆=∅,所以P Q ∈.故选:C 【点睛】本题考查了集合与集合之间的关系,理解本题中集合Q 元素的属性特征是解题的关键.4.B解析:B 【分析】由题意知{}|12A x x =-<<,当2a =-时,()(){}|20B x x x b =+-<,且A B ⋂≠∅成立,通过讨论2b <-,2b =-,2b >-三种情况,可求出b 的取值范围.【详解】 解:{}2|0|121x A x x x x -⎧⎫=<=-<<⎨⎬+⎩⎭,当2a =-时,()(){}|20B x x x b =+-< 当2b <- 时,{}|2B x b x =<<-,此时A B =∅不符合题意;当2b =-时,B =∅ ,此时AB =∅不符合题意;当2b >-时,{}|2B x x b =-<<因为A B ⋂≠∅,所以1b >-.综上所述,1b >-. 故选:B. 【点睛】本题考查了分式不等式求解,考查了一元二次不等式,考查了由两命题的关系求参数的取值范围.本题的关键是由充分条件,分析出两集合的关系.5.A解析:A 【分析】求出{2B x x =<或}3x >,利用{|34}A B x x ⋂=<<,得23a ≤≤. 【详解】集合{}4A x a x =<<,{}{25602B x x x x x =-+=<或}3x >,{|34}A B x x ⋂=<<, ∴23a ≤≤, ∴a故选:A. 【点睛】本题考查了根据集合间的基本关系求解参数范围的问题,属于中档题.解决此类问题,一般要把参与运算的集合化为最简形式,借助数轴求解参数的范围.6.C解析:C 【分析】 求出{}{}*123|191,2,3,4,5,6,7,8,9A A A x N x =∈≤≤=,由题意列举出集合123,,A A A ,由此能求出123M M M ++的最小值. 【详解】 由题意可知,{}{}*123|191,2,3,4,5,6,7,8,9A A A x N x =∈≤≤=123,,A A A 各有3个元素且不重复,当{}13,4,5A =,{}22,6,7A =,{}31,8,9A =时,123M M M ++取得最小值,此时最小值为12357927+++++=,故选C 【点睛】本题主要考查集合中的元素运算,解题的关键是理解题中满足的条件,属于中档题.7.C解析:C 【分析】求出A 、B 中不等式的解集确定出A 、B ,找出A 与B 的交集即可. 【详解】集合{}{}|10|1A x x x x =-<=<,集合{}{}2|20|02B x x x x x =-<=<<,所以A B ={}1|0x x <<.故选:C【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.8.C解析:C 【分析】由题意分别找到集合S ,T 中的一个元素,然后结合题中定义的运算确定S T +的值即可. 【详解】由题意设集合S 中的元素为:2,k k Z ∈,集合T 中的元素为:21,m m Z +∈, 则S T +中的元素为:()22121k m k m ++=++, 举出可知集合S T T +=. 故选:C . 【点睛】本题主要考查集合的表示方法,集合的运算法则等知识,意在考查学生的转化能力和计算求解能力.9.B解析:B 【解析】 【分析】解出集合A 、B ,再利用补集和交集的定义可得出集合()RA B .【详解】由2log 1x <,02x <<,{}02A x x ∴=<<.由210x -≥,得1x ≤-或1x ≥,则{}11B x x x =≤-≥或,{}11R B x x ∴=-<<, 因此,(){}01A B x x ⋂=<<R ,故选:B. 【点睛】本题考查交集和补集的混合运算,同时也考查了对数不等式以及函数定义域的求解,考查计算能力,属于中等题.10.C解析:C 【分析】 设22x m n =+,22N,N N,,,N n b b ya ma ,再利用22()()xy ma nb mb na =++-,可得解.【详解】 由x A ∈,yA ,设22x m n =+,22N,N N,,,N n b b y a m a ,所以22222222222222()()()()xy m n a b m a m b n a n b ma nb mb na =++=+++=++-, 且N,N ma nb mb na +-∈∈, 所以xy A ∈, 故选:C. 【点睛】关键点点睛,本题的解题关键是2222222222()()m a m b n a n b ma nb mb na +++=++-,另外本题可以通过列举法得到集合的一些元素,进而排除选项可得解.11.B解析:B 【分析】首先根据题意,利用k A 的意义,再根据选项判断. 【详解】A.202045050=⨯+,所以02020A ∈,正确;B.若3a b A +∈,则12,a A b A ∈∈,或21,a A b A ∈∈或03,a A b A ∈∈或30,a A b A ∈∈,故B 不正确;C.()1413-=⨯-+,所以31A -∈,故C 正确;D.4a n k =+,4b m k =+,,m n Z ∈,则()40,a b n m -=-+()n m Z -∈,故0a b A -∈,故D 正确.故选:B 【点睛】关键点点睛:本题考查集合新定义,关键是理解k A 的意义,再将选项中的数写出k A 中的形式,就容易判断选项了.12.C解析:C 【分析】化简集合,根据集合的并集补集运算即可. 【详解】因为{|lg(3)}{|3}A x y x x x ==+=>-, 所以AB {|3}x x =>-,()R C A B ⋃={|3}x x ≤-,故选C.【点睛】本题主要考查了集合的并集、补集运算,属于中档题.二、填空题13.【分析】根据得到之间的关系由此确定出可取的的值【详解】因为所以当时;当时若则所以;若则综上可知:的取值集合为故答案为:【点睛】本题考查根据集合间的包含关系求解参数难度一般分析集合间的子集关系时注意分 解析:{}1,0,2-【分析】 根据A B B =得到,A B 之间的关系,由此确定出可取的a 的值. 【详解】因为AB B =,所以B A ⊆,当B =∅时,0a =;当B ≠∅时,若{}2B =-,则22a -=,所以1a =-;若{}1B =,则2a =. 综上可知:a 的取值集合为{}1,0,2-, 故答案为:{}1,0,2-. 【点睛】本题考查根据集合间的包含关系求解参数,难度一般.分析集合间的子集关系时,注意分析空集的存在.14.或【分析】分别讨论时集合A 与集合B 的交集即可求解【详解】当时当时当时当时或故答案为: 或【点睛】本题主要考查了集合的交集分类讨论的思想属于中档题解析:{|5ααπ-≤≤- 或0}απ≤≤ 【分析】分别讨论1,0,k =-时集合A 与集合B 的交集即可求解. 【详解】(){|221,}A k k k Z απαπ=≤≤+∈,∴当1k =-时,2παπ-≤≤-,当0k =时,0απ≤≤, 当1k时,5α<,当2k ≤-时,5α<-{|55}B a α=-≤≤,A B ∴={|5ααπ-≤≤-或0}απ≤≤故答案为:{|5ααπ-≤≤- 或0}απ≤≤ 【点睛】本题主要考查了集合的交集,分类讨论的思想,属于中档题.15.【分析】若中有且仅有一个元素则方程有且仅有一个解进而求解即可【详解】由题因为中有且仅有一个元素则方程有且仅有一个解当时则当时则由已知得或或或解得故答案为:【点睛】本题考查由交集结果求参数范围考查分类 解析:[1,1]-【分析】若A B 中有且仅有一个元素,则方程a x x a =+有且仅有一个解,进而求解即可【详解】 由题,因为AB 中有且仅有一个元素,则方程a x x a =+有且仅有一个解, 当0x ≥时,ax x a =+,则1a x a =-, 当0x <时,ax x a -=+,则1a x a =-+, 由已知得0101a a a a ⎧≥⎪⎪-⎨⎪-≥⎪+⎩或0101aa a a ⎧<⎪⎪-⎨⎪-<⎪+⎩或101a aa =⎧⎪⎨-<⎪+⎩或011a a a ⎧≥⎪-⎨⎪=-⎩, 解得11a -≤≤, 故答案为:[]1,1- 【点睛】本题考查由交集结果求参数范围,考查分类讨论思想和转化思想16.【分析】先求出和再计算【详解】由已知则∴故答案为:【点睛】本题考查集合的新定义解题关键是理解新定义运算把新运算转化为集合的运算 解析:[3,1)(3,)--+∞【分析】先求出A B -和B A -,再计算A B ∆ 【详解】由已知{|1}A y y =≥-,则{|3}(3,)A B y y -=>=+∞,{|31}[3,1)B A y y -=-≤<-=--,∴()()[3,1)(3,)A B A B B A ∆=--=--+∞, 故答案为:[3,1)(3,)--+∞【点睛】本题考查集合的新定义,解题关键是理解新定义运算,把新运算转化为集合的运算.17.①②③【分析】对于①按照和两种情况讨论可得①正确;对于②根据不可能都为1可得不可能既属于又属于可得②正确;对于③根据中的一个为0另一个为1可得时必有或时必有由此可知③正确【详解】对于①因为所以当时根解析:①②③ 【分析】对于①,按照x A ∈和x A ∉两种情况讨论,可得①正确;对于②,根据,m n 不可能都为1,可得x 不可能既属于A ,又属于B 可得②正确;对于③,根据,m n 中的一个为0,另一个为1,可得x A ∈时,必有x B ∉,或x B ∈时,必有x A ∉,由此可知③正确.【详解】对于①,因为A B ⊆,所以当x A ∉时,根据定义可得0m =,所以(1)0m n -=,当x A ∈,则必有x B ∈,根据定义有1n =,所以(1)0m n -=,故对于任意x ∈R ,都有(1)0m n -=,故①正确;对于②,因为对任意,0x R mn ∈=,所以,m n 中不可能都为1,即x A ∈和x B ∈不可能同时成立,所以A B φ⋂=,故②正确;对于③,因为对任意,1x R m n ∈+=,所以,m n 中的一个为0,另一个为1,即x A ∈时,必有x B ∉,或x B ∈时,必有x A ∉,所以R A C B =,故③正确.综上所述: 所有正确命题的序号为:①②③.故答案为①②③【点睛】本题考查了元素与集合,集合与集合之间的关系,对新定义的理解能力,属于中档题. 18.【分析】由A ={y|y =x2x ∈R}={y|y≥0}B ={y|﹣2≤y≤2}先求出A ﹣B ={y|y >2}B ﹣A ={y|﹣2≤y <0}再求A △B 的值【详解】∵A ={y|y =x2x ∈R}={y|y≥0} 解析:[)()2,02-+∞,【分析】由A ={y |y =x 2,x ∈R}={y |y ≥0},B ={y |﹣2≤y ≤2},先求出A ﹣B ={y |y >2},B ﹣A ={y |﹣2≤y <0},再求A △B 的值.【详解】∵A ={y |y =x 2,x ∈R}={y |y ≥0},B ={y |﹣2≤y ≤2},∴A ﹣B ={y |y >2},B ﹣A ={y |﹣2≤y <0},∴A △B ={y |y >2}∪{y |﹣2≤y <0},故答案为:[﹣2,0)∪(2,+∞).【点睛】本题考查集合的交、并、补集的运算,解题时要认真审题,仔细解答,注意正确理解X ﹣Y ={x |x ∈X 且x ∉Y }、X △Y =(X ﹣Y )∪(Y ﹣X ). 19.①③④【分析】对各个选项分别进行分析利用类的定义直接求解【详解】在①中∵2014÷5=402…4∴2014∈4故①正确;在②中∵﹣3=5×(﹣1)+2∴﹣3∉3故②错误;在③中∵整数集中的数被5除的解析:①③④【分析】对各个选项分别进行分析,利用类的定义直接求解.【详解】在①中,∵2014÷5=402…4,∴2014∈[4],故①正确;在②中,∵﹣3=5×(﹣1)+2,∴﹣3∉[3],故②错误;在③中,∵整数集中的数被5除的数可以且只可以分成五类,∴Z =[0]∪[1]∪[2]∪[3]∪[4],故③正确;在④中,∵2015÷5=403,2010÷5=402,∴2015与2010属于同一个“类”[0],故④正确.故答案为①③④.【点睛】本题为同余的性质的考查,具有一定的创新,关键是对题中“类”的题解,属基础题. 20.【分析】由进行反推可分为集合和集合两种情况进行分类讨论【详解】由进行反推若则解得成立由可知集合因应满足解得综上所述故答案为:【点睛】本题考查根据集合的补集与包含关系求解参数问题是中档题型在处理此类题 解析:(),3-∞【分析】由()()R R C A C B ⊇进行反推,可分为集合A =∅,和集合A ≠∅两种情况进行分类讨论【详解】由()()R R C A C B ⊇进行反推,若A =∅,则121m m +≥-,解得2m ≤,成立 由A ≠∅可知,集合{}|121U A x x m x m =≤+>-或,{}|25U B x x x =<-≥或因()()R R C A C B ⊇,应满足12215211m m m m +≥-⎧⎪-<⎨⎪->+⎩,解得()2,3m ∈综上所述,(),3m ∈-∞故答案为:(),3-∞【点睛】本题考查根据集合的补集与包含关系求解参数问题,是中档题型,在处理此类题型中,易错点为忽略端点处等号取不取得到的问题,解题时要特别仔细三、解答题21.(Ⅰ)14a ≤;(Ⅱ){}3a a >. 【分析】(Ⅰ)由空集的意义知,当且仅当212a a ≤-时,集合B 中无任何元素,解不等式即可得实数a 的取值范围;(Ⅱ)根据A B ⊆,得到a 的取值范围,即可得到结论.【详解】解:∵集合{}()(){}2327150235052A x x x x x x x x ⎧⎫=+-≤=-+≤=-≤≤⎨⎬⎩⎭,(Ⅰ)∵B =∅,∴{}122x a x a -<<=∅,∴212a a ≤-,解得14a ≤, (Ⅱ)∵A B ⊆,则集合B ≠∅,所以212a a >-,则14a >∴1253322a a a -<-⎧⎪⇒>⎨>⎪⎩∴实数a 的取值集合为{}3a a >.【点睛】本题考查解二次不等式,根据集合的包含关系求参数的范围,属于中档题.22.(1){|01}AB x x =≤≤,{|2A B x x =≤或5}x ;(2)阴影图形见解析,{|0A B x x -=≤或5}x ;(3)0a ≤或3a >. 【分析】(1)当1a =时,求得集合B ,根据交集、并集的运算法则,即可求得答案;(2)阴影图形见解析,当1a =时,求得集合B ,根据A B -的定义,即可求得答案; (3)由题意得B A ⊆,分别讨论B =∅和B ≠∅两种情况,根据集合的包含关系,即可求得a 的范围.【详解】(1)当1a =时,02{}|B x x ≤≤=,所以{|01}A B x x =≤≤,{|2A B x x =≤或5}x ;(2)A-B 的部分如图所示:,当1a =时,{|0A B x x -=≤或5}x; (3)因为A B B =,所以B A ⊆,当B =∅时,221a a ->+,解得3a >,当B ≠∅时,则11221a a a +≤⎧⎨-≤+⎩或225221a a a -≥⎧⎨-≤+⎩, 解得0a ≤或∅,综上:0a ≤或3a >.【点睛】易错点为:根据集合包含关系求参数时,当B A ⊆,且集合B 含有参数时,需要讨论集合B 是否为空集,再进行求解,考查分析理解,计算求值的能力,属中档题.23.(1){}22x x -<≤;(2)197,33⎡⎤-⎢⎥⎣⎦.【分析】(1)依题意先求出集合A 和集合B ,再求出B R ,然后按照交集的定义求出结果即可; (2)由A B A ⋃=可得出B A ⊆,然后分B φ=和B φ≠两种情况进行分类讨论,进而求出结果即可.【详解】(1){}24A x x =-<≤,当3m =时,{}25B x x =<<, ∴{2C B x x =≤R 或}5x ≥,(){}22R A B x x ⋂=-<≤;(2)∵A B A ⋃=,∴B A ⊆,令()2(4)7=-+++f x x m x m , ①当B φ=时,即()0f x ≥恒成立,所以()2=44(7)0∆+-+≤m m ,解得:62m -≤≤;②当B φ≠时,即()0f x <有解,所以6m <-或2m >,令()0f x =,解得:x =,所以24≥-≤ , 解得1963-≤<-m 或723<≤m , 综合①②得m 的范围是197,33⎡⎤-⎢⎥⎣⎦. 【点睛】易错点点睛:由A B A ⋃=可得出B A ⊆,然后进行分类讨论,切记别漏掉B φ=的情形,否则容易漏解.24.(1)1-或3-;(2)1a ≠-且3a ≠-且1≠-±a 【分析】(1)由条件可知集合B 中包含元素2,所以代入求a ,并验证是否满足条件;(2)由条件得A B =∅,分∆<0和0,0∆>∆=三种情况讨论,得到a 的取值范围.【详解】(1){}1,2A =,由{}2A B ⋂=可知,()2224150a a +++-=, 即2430a a ++=,解得:1a =-或3a =-,当1a =-时,2402x x -=⇒=±,此时2,2B ,满足{}2A B ⋂=,当3a =-时,24402x x x -+=⇒=,此时{}2B =,满足{}2A B ⋂=.所以实数a 的值是1-或3-;(2)U =R ,A ∩(U B )=A ,U A B ∴⊆,则A B =∅ ①当()()2241458240a a a ∆=+--=+<,即3a <-时,此时B =∅,满足条件; ②当0∆=时,3a =-,即{}2B =,{}2A B ⋂=,不满足条件;③当0∆>时,即3a >-时,此时只需1B ∉,2∉B ,将2代入方程得1a =-或3a =-,将1代入方程得2220a a +-=,得1=-±a 综上可知,a 的取值范围是1a ≠-且3a ≠-且1≠-±a【点睛】易错点睛:1.当集合的元素是方程的实数根时,根据集合的运算结果求参数时,注意回代检验,否则会造成增根情况,当集合是区间形式表示时,注意端点值的开闭; 2.当集合的运算结果转化为集合的包含关系时,注意讨论空集情况,容易忽略这一点. 25.(I )(0,3),AB =()[1,3)R A B =;(II )12a ≤-或2a ≥ 【分析】(I )先解不等式得集合B ,再根据并集、补集、交集定义求结果;(II )根据A =∅与A ≠∅分类讨论,列对应条件,解得结果.【详解】(I )2{|0}(0,1)B x x x =-<= a =1,A ={x |0<x <3},所以(0,3),AB = (,0][1,)()[1,3)R R B A B =-∞+∞∴=;(II )因为A B =∅,所以当A =∅时,1212a a a -≥+∴≤-,满足题意;当A ≠∅时,须212112*********a a a a a a a a >-⎧-<+⎧⎪∴∴-<≤-⎨⎨+≤-≥≤-≥⎩⎪⎩或或或2a ≥ 综上,12a ≤-或2a ≥ 【点睛】本题考查集合交并补运算、根据并集结果求参数,考查基本分析求解能力,属中档题. 26.(1)1|32x x ⎧⎫-<≤⎨⎬⎩⎭,1|02x x ⎧⎫-<≤⎨⎬⎩⎭;(2){1|2a a ≤-或}4a ≥. 【分析】(1)化简集合,利用集合的交并补运算求解即可;(2)讨论A =∅,A ≠∅两种情况,列出相应的不等式,求解即可得出答案.【详解】(1)若12a =时,12,{03}2A x x B x x ⎧⎫=-<<=<≤⎨⎬⎩⎭∣∣ ∴1|32A B x x ⎧⎫⋃=-<≤⎨⎬⎩⎭,由{|0U B x x =≤或3}x >所以()1|02U A B x x ⎧⎫⋂=-<≤⎨⎬⎩⎭(2)由A B =∅知当A =∅时,121,2a a a -≥+∴≤-当A ≠∅时,21113a a a +>-⎧⎨-≥⎩或211210a a a +>-⎧⎨+≤⎩4a ∴≥或122a -<≤- 综上:a 的取值范围是{1|2a a ≤-或}4a ≥. 【点睛】本题主要考查了集合的交并补混合运算以及根据交集的结果求参数的范围,属于中档题.。

2019年沪教版高一第一学期第一章集合与命题单元练习题

2019年沪教版高一第一学期第一章集合与命题单元练习题

2019年沪教版高一第一学期第一章集合与命题单元练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.若:||2,:p x q x a 剟,且p 是q 的充分不必要条件,则a 的取值范围是( ) A.{|2}a a … B.{|2}a a … C.{|2}a a -…D.{|2}a a -…2.已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为A .9B .8C .5D .43.设全集为R ,集合{}02A x x =<<,{}1B x x =≥,则()A B =R ðA.{}01x x <≤B.{}01x x <<C.{}12x x ≤<D.{}02x x <<4.设R x ∈,则“11||22x -<”是“31x <”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件5.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,76.已知集合{|10}A x x =-≥,{0,1,2}B =,则A B =A .{0}B .{1}C .{1,2}D .{0,1,2}7.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B =( ) A .{}1,3-B .{}1,0C .{}1,3D .{}1,58. 设x ∈R ,则“38x >”是“2x >” 的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件二、填空题9.用列举法表示集合10|,1M m Z m Z m ⎧⎫=∈∈⎨⎬+⎩⎭=________. 10.已知集合{|34},{|211}A x x B x m x m =-≤≤=-<<+,且B A ⊆,则实数m 的取值范围是______.11.已知集合{}1,3,A m =-,{}3,5B =,若B A ⊆,则实数m 的值为__________. 12.已知集合**{|8}A a a N a N =∈-∈且,则A 的子集有__________个.三、解答题13.(天津市和平区2017-2018学年高二上学期期末考)已知命题P : 22114x y m m +=--表示双曲线,命题q : 22124x ym m+=-- 表示椭圆.(1)若命题P 与命题q 都为真命题,则P 是q 的什么条件?(请用简要过程说明是“充分不必要条件”、“必要不充分条件”、“充要条件”和“既不充分也不必要条件”中的哪一个)(2)若P q ∧ 为假命题,且P q ∨ 为真命题,求实数m 的取值范围. 14.若集合{}5|3A x x =-≤≤和{}232|B x m x m =-+≤≤. (1)当3m =-时,求集合AB ;(2)当B A ⊆时,求实数m 的取值集合.参考答案1.A 【解析】 【分析】先化简命题p ,再根据p 是q 的充分不必要条件得到a 的取值范围. 【详解】由题得:22p x -≤≤,:q x a £ 因为p 是q 的充分不必要条件,所以p 对应的集合是q 对应的集合的真子集, 所以2a ≥. 故选:A 【点睛】本题主要考查根据充分不必要条件求参数的范围,意在考查学生对这些知识的理解掌握水平. 2.A 【解析】分析:根据枚举法,确定圆及其内部整点个数. 详解:2223,3,,1,0,1x y x x x +≤∴≤∈∴=-Z ,当1x =-时,1,0,1y =-; 当0x =时,1,0,1y =-; 当1x =-时,1,0,1y =-; 所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别. 3.B 【解析】分析:由题意首先求得R C B ,然后进行交集运算即可求得最终结果. 详解:由题意可得:{}|1R C B x x =<,结合交集的定义可得:(){}01R A C B x ⋂=<<. 本题选择B 选项.点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力. 4.A 【解析】分析:首先求解绝对值不等式,然后求解三次不等式即可确定两者之间的关系. 详解:绝对值不等式1122x -<⇔111222x -<-<⇔01x <<,由31x <⇔1x <.据此可知1122x -<是31x <的充分而不必要条件. 本题选择A 选项.点睛:本题主要考查绝对值不等式的解法,充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力. 5.C 【解析】分析:根据集合{}{}1,3,5,7,2,3,4,5A B ==可直接求解{3,5}AB =.详解:{}{}1,3,5,7,2,3,4,5A B ==,{}3,5A B ∴⋂=,故选C点睛:集合题也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn 图法解决,若是“连续型”集合则可借助不等式进行运算. 6.C 【解析】 【分析】由题意先解出集合A,进而得到结果。

上海(沪教版)2020届高考考典——第1章-集合和命题(教师版)

上海(沪教版)2020届高考考典——第1章-集合和命题(教师版)

第1章 集合和命题考点解读1.理解集合的有关概念(1)集合中元素的特征:确定性、无序性、互异性.在求有关集合问题时,尤其要注意元素的互异性. (2)集合与元素的关系用符号∈和∉表示.(3)常用数集的表示符号:自然数集 N ;正整数集Z + 、N *;整数集Z ;有理数集Q 、实数集R . (4)常用数的表示: 若n 为偶数,则=n 2,k k Z ∈ ;若n 为奇数,则=n 21,k k Z -∈;若n 被3整除,则=n 3,k k Z ∈;若n 被3除余1,则=n 3-2,k k Z ∈.(5)集合的表示法:列举法 , 描述法 ,图示法.(6)空集是指不含任何元素的集合.(}0{、φ和}{φ的区别;0与三者间的关系)空集是任何集合的子集,是任何非空集合的真子集. 2.集合间的关系及其运算(1)子集的定义:若集合A 的任何元素都是集合B 的元素,则称集合A 是集合B 的子集,用符号表示为A B ⊆或B A ⊇.(2)真子集的定义:若集合A 是集合B 的子集,并且B 中至少一个元素不属于A ,则称集合A 是集合B 的真子集.集合A 是集合B 的真子集,用符号表示为A B ≠⊂.(3)A B ⋂={x | x A ∈且x B ∈};A B ⋃={x | x A ∈或x B ∈};U C A ={x | ,x A x U ∉∈}. 对于任意集合,A B ,则:①A B ⋃=B A ⋃;A B ⋂=B A ⋂;A B ⋂⊆A B ⋃; ② A B ⋂=A ⇔A B ⊆; A B ⋃=A ⇔B A ⊆; ③U U U C A C B C ⋂=(A B ⋃);U C B =()U C A B ⋂ .3.对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数依次为,n 2,12-n 21n -22n -.两个有限集并集的元素个数公式:()Card A B ⋃=()()()Card A Card B Card A B +-⋂. 4.数轴和韦恩图是进行交、并、补运算的有力工具,在具体计算时不要忘了集合本身和空集这两种特殊情况,补集思想常运用于解决否定型或正面较复杂的有关问题. 5.四种命题及其相互关系 若原命题是“若p 则q ”,则逆命题为“若q 则p ”;否命题为“若p 不成立 则q 不成立” ;逆否命题为“若q 不成立 则p 不成立” .6. 反证法:当证明“若p 则q ”感到困难时,改证它的等价命题即其逆否命题.7.充要条件(1)关键是分清条件和结论(划主谓宾);(2)如果αβ⇒,那么α是β的充分条件,β是α的必要条件; (3)如果αβ⇔,那么α是β的充分必要条件;(4)注意“β的充分条件是α”与“α是β的充分条件”在题目中的区别.【矛盾来源】①与原命题的条件矛盾;②导出与假设相矛盾的命题; ③导出一个恒假命题.【步骤】①假设结论反面成立;②从这个假设出发,推理论证,得出矛盾; ③由矛盾判断假设不成立,从而肯定结论正确.【思考】哪些命题宜用反证法?适用于待证命题的结论涉及“不可能”、“不是”、“至少”、“至多”、“唯一”等字眼时.8.子集与推出关系:从集合角度解释, 若B A ⊆,则A 是B 的充分条件; 若B A ⊆,则A 是B 的必要条件; 若A B =,则A 是B 的充要条件.1.1集合及其表示法例题精讲【例1】用适当的方法表示下列集合.(1) 方程2222(1)()(2)(1)03x x x x +--+=的有理根的集合A ; (2) 坐标平面内,不在第一、第三象限的点的集合; (3) 方程组23037x y x y -=⎧⎨-=⎩的解集;(4) 到两坐标轴距离相等的点. 【参考答案】(1)这题容易错在把两个无理根2±21,3⎧⎫-⎨⎬⎩⎭.(2)这题易错在表达不全,可以用描述法,正确答案:{}(,)0,,x y xy x R y R ≤∈∈. (3)两种表示方法,可以是{}230(,)37x y x y x y -=⎧⎨-=⎩,也可以是{(3,2)},学生易错成{3,2},这里要强调点集和数集的区别. (4){}(,)x ,,x y y x y R =∈.【例2】已知集合{}13,23A x x a =≤= ) A a A ⊆ B a A ∈ C a A ∉ D {}a A ∈【参考答案】一个元素属于一个集合,用符号∈表示,有些学生会把两个符号,∈⊆用混淆,正确答案B1.2 集合之间的关系例题精讲【例1】确定整数x,y ,使{}{}4,7,2=+y x x【参考答案】根据集合相等的概念可以列出方程组,272447x x x y x y ==⎧⎧⎨⎨+=+=⎩⎩或解得722152x x y y ⎧=⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩(舍), 【例2】已知集合2{25,1},{47,},A s s t t B y y x x x R ==+≥-==-+∈试判断A 与B 之间的关系,并说明理由.【参考答案】1,253,3t t s s s ≥-∴+≥≥∴≥Q 即3,A={},2247(2)33,3y x x x y =-+=-+≥≥∴≥Q 又即y 3,B={y }所以A=B【例3】已知集合{}|2A x x a =-≤≤,{}|23,B y y x x A ==+∈,{}2|,C z z x x A ==∈, 且C B ⊆,求a 的取值范围【参考答案】{}|123B x x a =-≤≤+,当20a -≤≤时,{}2|4C x a x =≤≤, 而C B ⊆ 则1234,,20,2a a a +≥≥-≤≤即而 这是矛盾的; 当02a <≤时,{}|04C x x =≤≤,而C B ⊆, 则11234,,222a a a +≥≥≤≤即即; 当2a >时,{}2|0C x x a=≤≤,而C B ⊆,则223,3a a a +≥<≤即 2; ∴132a ≤≤ 1.3 集合的运算例题精讲【例1】已知集},2|{},,|{2R x y y Q R x x y y P x∈==∈==,求Q P I .【参考答案】集合P 、Q 分别表示函数2x y =与xy 2=在定义域R 上的值域,所以),0[+∞=P ,),0(+∞=Q ,),0(+∞=Q P I .【例2】若}2|{},|{2>=<=x x B a x x A 且∅=B A I ,求a 的取值范围.【参考答案】集合A 有可能是空集.当0≤a 时,∅=A ,此时∅=B A I 成立;当0>a 时,),(a a A -=,若∅=B A I ,则2≤a ,有40≤<a .综上知,4≤a .【例3】已知2A {0}x x ax b =|2-+=,2B {(2)50}x x a x b =|6++++=,且1A B {}2=I ,求A B U . 【参考答案】 由已知得:11022a b -+=①;11522a b +=-② 7,4a b ∴=-=-则1{4,}2A =-,11{,}32B =,11{4,,}32A B =-U【例4】已知集合2{(,)410,}{(,)35},A B,A x y y x B x y y x ==-+==-I 求并说明它的意义【参考答案】本题考查以有序实数对为为元素集合之间的运算,并关注这种类型的集合作为交集的集合意义.求方程组2y 41035x y x =-+⎧⎨=-⎩的解,注意:已知两集合为以有序数对为元素的集合,所以交集的元素还是有序数对.510{(3,22),(,)},33A B =-I 他可以看作是函数410y x =-+与函数235y x =-的图像的交点的集合.1.4 命题的形式及等价关系例题精讲【例1】判读命题:“若a 与b 的积不是有理数,则a ,b 至少有一个不是有理数”的真假,并说明理由. 【参考答案】本题主要考察命题的证明(间接证明的方法),原命题与其逆否命题的等价关系. 假设,,a b Q ∈可设,(,,,,0,0)m t a b m n s t Z m s n s ==∈≠≠,则ab =ntmsQ ∈,与条件矛盾, 所以,a b 至少有一个不是有理数“至少有一个不是”的否定是“都是”,本题不用直接证明而是证明逆 否命题,其原因是:“不是有理数”不如“是有理数”容易用数学语言表达,“是有理数”即“可写成分数形式”1.5 充分条件、必要条件例题精讲【例1】设有集合}2|),{(},2|),{(22>-=>+=x y y x N y x y x M ,则点M P ∈的_______条件是点N P ∈;点M P ∈是点N P ∈的_______条件. 【参考答案】集合M 是圆222=+y x 外的所有点的集合,N 是直线2+=x y 上方的点的集合.显然有M N ⊆.(充分不必要、必要不充分)【例2】求证:二次方程02=++c bx ax 有一根为1的充要条件是0=++c b a 【参考答案】证明:(1)充分性 若0=++c b a 将1=x 代入方程得2110a b c a b c ⋅+⋅+=++= 所以012=++=c bx ax x 是二次方程的一个根.(2)必要性 已知0=++c b a ,则2110a b c a b c ⋅+⋅+=++=,显然1是方程02=++c bx ax 的一个根.1.6 子集与推出关系例题精讲【例1】(1)已知集合2{|440}M x x x =-+>,集合N=2269{|0}2)x x x x -+>-(,则x M ∈是x N ∈的 ________________条件(2)已知条件p :12x +>,条件q :256x x ->,则q 是p 的______________________条件. 【参考答案】本题从子集的角度去判定充分条件与必要条件.对集合M,N 进行化简,因为2{|440}M x x x =-+>=-,-2)(2,)∞⋃+∞(, N=2269{|0}2)x x x x -+>-(= -,-2)(2,3)(3,)∞⋃⋃+∞(,所以,N M于是“x M ∈”是“x N ∈”的必要非充分条件.过关演练一、集合1、(上海市封浜中学2019届高三上学期期中)设集合},1|2|{R ∈<-=x x x A ,集合Z =B ,则=B A I _____________.2、(静安区市西中学2019届高三上学期期中)已知集合{|1}A x x =≤,集合{|}B t t a =≥,且A B =R U ,则a 的取值范围为3、(七宝中学2019届高三上学期期中)集合A ={0,1,2018}的真子集有________个4、(松江区2018高三上期末)已知集合{|03}A x x =<<,2{|4}B x x =≥,则A B =I ▲ .5、(2019届崇明区高三二模)已知全集{1,2,3,4,5}U =,集合{1,2,3,4}A =,{1,3,5}B =,则()U A B =I ð6、(2019届闵行松江区高三二模)已知集合{||1|1}A x x =-<,{|1}B x x =>,则A B =I7、(2019届浦东新区高三二模)若集合{|5}A x x =>,集合{|7}B x x =≤,则A B =I8、(2019届青浦区高三二模)已知{|}A y y x ==,2{|log }B y y x ==,则A B =I ( )A. (0,)+∞B. [0,)+∞C. {2}D. {(4,2)}9、(2019届宝山区高三二模)已知i 为虚数单位,则集合{}Z n i x x A n ∈==;中元素的个数为_____________ 10、(2019届嘉定长宁区高三二模)已知集合{}1,2,3,4A =,{}25,B x x x R =<<∈,则A B =I 11、(2019届普陀区高三二模)已知集合A ={x ||x ﹣1|>3},U =R ,则∁U A = .12、(2019届徐汇区高三二模)设全集U =R ,若集合{1,2,3,4}A =,{|23}B x x =≤≤,则U A B =I ð 13、(奉贤区2019届高三一模)已知{|31}x A x =<,{|lg(1)}B x y x ==+,则A B =U 14、(虹口区2019届高三一模)设全集U =R ,若{2,1,0,1,2}A =--,3{|log (1)}B x y x ==-,则()U A B =I ð15、(松江区2019届高三一模)设集合{|1}A x x =>,{|0}3xB x x =<-,则A B =I 16、(闵行区2019届高三一模)已知全集U =R ,集合2{|30}A x x x =-≥,则U A =ð 17、(静安区2018高三二模)已知集合{1,3,5,7,9}A =,{0,1,2,3,4,5}B =,则图中阴影部 分集合用列举法表示的结果是18、(静安区2018高三二模)已知集合2{(,)|()20}A x y x y x y =+++-≤,222{(,)|(2)(1)}2aB x y x a y a a =-+--≤-,若A B ≠∅I ,则实数a 取值范围为19、(普陀区2018高三二模)设集合1|,2xM y y x R ⎧⎫⎪⎪⎛⎫==∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,()()()1|1112,121N y y x m x x m ⎧⎫⎛⎫==+-+--≤≤⎨⎬ ⎪-⎝⎭⎩⎭,若N M ⊆,则实数m 的取值范围是 .参考答案: 一、集合1、}2{2、1a ≤3、74、[)2,3 5、{2,4,5} 6、(1,2) 7、(5,7] 8、B 9、4 10、{}3,4 11、[﹣2,4] 12、{1,4} 13、R 14、{1,2} 15、(1,3)16、(0,3) 17、{0,2,4} 18、19109[,0]+- 19、(1,0)-二、常用逻辑用语1、(上海市封浜中学2019届高三上学期期中)若集合}4,3,2,1{=P ,},50{R x x x Q ∈<<=,则“P x ∈”是“Q x ∈”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既不充分也不必要条件 2、(静安区市西中学2019届高三上学期期中)若0a >,0b >,则x y a b xy ab +>+⎧⎨>⎩是x ay b>⎧⎨>⎩成立的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件 3、(七宝中学2019届高三上学期期中)“函数存在反函数”是“函数在上为增函数”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件4、(华东师范大学第二附属中学2019届高三10月考试)设集合A=,B=,则“AB=R”是“a =1”的______条件(填写:充要条件、充分不必要条件、必要不充分条件、既不充分也不必要条件之一)5、(2019届崇明区高三二模)对于实数x ,“||1x <”是“1x <”的( )条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要 6、(2019届黄浦区高三二模)设x ∈R ,“0x >”是“(1)0x x +>”的( ) A. 充分非必要条件 B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件 7、(2019届青浦区高三二模)已知△ABC 是斜三角形,则“A B >”是“|tan ||tan |A B >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分又不必要条件8、(2019届杨浦区高三二模)已知命题α:“双曲线的方程为222x y a -=(0a >)”和命题β:“双曲线的两条渐近线夹角为2π”,则α是β的( ) A. 充分非必要条件 B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件9、(2019届宝山区高三二模)设121212(,),(,),(,)A a a B b b C c c 点均非原点,则“OC u u u r 能表示成OA u u u r 和OB uuu r的线性组合”是“方程组111222a xb yc a x b y c +=⎧⎨+=⎩有唯一解”的( )A .充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 10、(2019届嘉定长宁区高三二模)已知x R ∈,则“11x>”是“1x <”的( ) A)充分非必要条件(B)必要非充分条件 (C)充要条件(D)既非充分又非必要条件11、(2019届徐汇区高三二模)设*n ∈N ,则“数列{}n a 为等比数列”是“数列{}n a 满足312n n n n a a a a +++⋅=⋅”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件 12、(宝山区2019届高三一模)“,22x ππ⎡⎤∈-⎢⎥⎣⎦”是“sin(arcsin )x x =”的( )条件. (A )充分非必要. (B )必要非充分. (C )充要. (D )既非充分又非必要.13、(奉贤区2019届高三一模)若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 非充分非必要条件14、(金山区2019届高三一模)给定空间中的直线l 及平面α,条件“直线l 与平面α内无数条直线都垂直”是“直线l 与平面α垂直”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件高考考典第1章—集合和命题教师版 11 15、(青浦区2019届高三一模)“4n =”是“1()n x x +的二项展开式存在常数项”的( )A. 充分不必要条件B. 必要非充分条件C. 充要条件D. 既不充分也不必要条件16、(徐汇区2019届高三一模)设R θ∈,则“=6πθ”是“1sin =2θ”的( ) (A )充分非必要条件 (B )必要非充分条件(C )充要条件 (D )既非充分也非必要条件17、(黄浦区2018高三二模)在空间中,“直线m ⊥平面α”是“直线m 与平面α内无穷多条直线都垂直 ”的 答( ).(A )充分非必要条件 (B )必要非充分条件(C )充要条件 (D )非充分非必要条件18、(普陀区2018高三二模)设n S 是无穷等差数列{}n a 的前n 项和(*N n ∈),则“lim n n S →∞存在”是“该数列公差0d =”的 ……………………………………………………………………………( ))A (充分非必要条件 ()B 必要非充分条件()C 充要条件 ()D 既非充分也非必要条件19、(青浦区2018高三二模)设,αβ是两个不同的平面,b 是直线且b β⊂≠.则“b α⊥”是“αβ⊥”的( ).(A )充分而不必要条件(B )必要而不充分条件 (C )充要条件 (D )既不充分又不必要条件20、(青浦区2018高三上期末)“a b >” 是“22a b ab +⎛⎫> ⎪⎝⎭”成立的……………………( ). (A )充分而不必要条件(B )必要而不充分条件 (C )充要条件(D )既不充分又不必要条件参考答案:二、常用逻辑用语1、A2、B3、B4、必要不充分条件5、A6、A7、C8、A 9、B 10、A 11、A12、B 13、A14、B 15、A 16、A 17、A 18、A19、A 20、A。

沪教版高一(上)数学一课一练及单元测试卷和参考答案

沪教版高一(上)数学一课一练及单元测试卷和参考答案

沪教版⾼⼀(上)数学⼀课⼀练及单元测试卷和参考答案⾼⼀(上)数学⼀课⼀练及单元测试卷和参考答案⽬录第⼀章集合与命题1.1 集合的概念与表⽰法(1) 3 1.2 集合与集合的关系(1)9 1.3 集合的运算(1)14 1.4 命题的形式及等价关系(1)19 1.5充分条件、必要条件(1)24 1.6 ⼦集与推出关系(1)29 第⼀章集合与命题单元测试卷⼀33第⼆章不等式2.1 不等式的基本性质(1)38 2.2 ⼀元⼆次不等式的解法(1)42 2.3 其他不等式的解法(1)46 2.4 基本不等式及其应⽤(1)50 *2.5 不等式的证明(1)54 第⼆章不等式单元测试卷⼀58第三章函数的基本性质3.1 函数的概念(1) 62 3.2 函数关系的建⽴(1) 66 3.3 函数的运算(1) 72 3.4函数的基本性质(1) 76 3.4函数的基本性质(2) 80 3.4函数的基本性质(3) 85 第三章函数的基本性质单元测试卷⼀ 90 第四章幂函数、指数函数和对数函数(上)4.1 幂函数的性质与图像(1)94 4.2 指数函数的图像与性质(1)99*4.3借助计算器观察函数递增的快慢(1)105 第四章幂函数、指数函数和对数函数(上)单元测试卷⼀109参考答案114⾼⼀(上)数学第⼀章集合与命题1.1 集合的概念与表⽰法(1)⼀、选择题1.下⾯四个命题:(1)集合N 中的最⼩元素是1:(2)若a N -?,则a N ∈(3)244x x +=的解集为{2,2};(4)0.7Q ∈,其中不正确命题的个数为() A. 0 B. 1 C.2 D.32.下列各组集合中,表⽰同⼀集合的是() A.)}3,2{()},2,3{(==N M B.{}{}3,2,2,3M N == C.(){},1M x y x y =+=,{}1N y x y =+= D. {}(){}1,2, 1.2M N ==3.下列⽅程的实数解的集合为12,23??-的个数为()(1)224941250x y x y +-++=; (2)2620x x +-=;(3) ()()221320x x -+=; (4) 2620x x --=A.1B.2C.3D.44.集合{}(){}2210,6100A x x x B x N x x x =++==∈++=,{}450C x Q x =∈+<,{}2D x x =为⼩于的质数,其中时空集的有()A. 1个B.2个C.3个D.4个5. 下列关系中表述正确的是() A.{}200x ∈= B.(){}00,0∈ C. 0∈? D.0N ∈ 6. 下列表述正确的是() A.{}0=? B.{}{}1,22,1= C.{}?=? D.0N ? 7. 下⾯四个命题:(1)集合N 中的最⼩元素是1:(2)⽅程()()()31250x x x -+-=的解集含有3个元素;(3)0∈?(4)满⾜1x x +>的实数的全体形成的集合。

沪教版高一上册数学集合及其表示同步测试一级第一学期

沪教版高一上册数学集合及其表示同步测试一级第一学期

高一数学集合及其表示测试一.填空题:(每小题5分,共25分)1.写出满足关系式A ⊂≠{1,2}的所有集合A .2.用描述法表示被5除余1的整数的集合 . 3.集合A ={z |z =qp,其中p +q =5,且p 、q ∈N *}的所有真子集的个数 . 4.已知集合A ={2,4,6},若a ∈A ,6-a ∈A ,则a = . 5.若集合A ={(m ,n )|1+m n=1,m ,n ∈R },B ={(m ,n )|n =1+m ,m ,n ∈R },则A 与B 的关系是 .6.集合M ={a ,b ,c ,d ,e },则包含{a ,b }的M 的子集共有 个. 二.选择题:(每小题5分,共25分)7.下列关于空集Φ的叙述:①0∈Φ;②Φ∈{Φ};③Φ={0}.正确的个数是( ) (A )0; (B )1; (C )2; (D )3.8.下列各组集合M 与N 中,表示相等的集合是( )(A )M ={(0,1)},N ={0,1}; (B )M ={(0,1)},N ={(1,0)};(C )M ={(0,1)},N ={(x ,y )|x =0且y =1}; (D )M ={π},N ={3.14}. 9.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若Φ真包含于集合A ,则A ≠Φ.其中正确的有( ) (A )0个; (B )1个; (C )2个; (D )3个. 10.设a ,b ∈R ,集合{1,a +b ,a }={0,b ,ab},则b -a 等于( ) (A )1; (B )-1; (C )2; (D )-2. 三.解答题:(12+12+12+14=50分)11.当a ,b 满足什么条件时,集合A ={x |ax +b =0}是有限集、无限集、空集? 解:ax+3x+1=0,x∈R},(1)若A中只有一个元素,求实数a的值;12.已知集合A={x|2(2)若A中至多有一个元素,求实数a的取值范围.解:13.若集合A={x|2x+ax+b=0},B={x|2x+cx+6=0},问是否存在实数a,b,c,使A∪B=B且A∩B={2},如果存在,求出a,b,c的值;如果不存在,说明理由.解:14.已知集合A ={x |-1≤x <4},B ={x |2x -4ax +32a =0}.(1)若B ⊂≠A ,求实数a 的取值范围;(2)若A ∩B =Φ,求实数a 的取值范围. 解:高一数学集合及其表示测试 2009.9.8一.填空题:(每小题5分,共25分)1.写出满足关系式A ⊂≠{1,2}的所有集合A Φ、{1}、{2} .2.用描述法表示被5除余1的整数的集合 A ={x |x =5k +1,k ∈Z } . 3.集合A ={z |z =qp ,其中p +q =5,且p 、q ∈N *}的所有真子集的个数 15 . 4.已知集合A ={2,4,6},若a ∈A ,6-a ∈A ,则a = 2或4 .5.若集合A ={(m ,n )|1+m n=1,m ,n ∈R },B ={(m ,n )|n =1+m ,m ,n ∈R },则A 与B 的关系是 A ⊂≠B .6.集合M ={a ,b ,c ,d ,e },则包含{a ,b }的M 的子集共有 8 个. 二.选择题:(每小题5分,共25分)7.下列关于空集Φ的叙述:①0∈Φ;②Φ∈{Φ};③Φ={0}.正确的个数是( B ) (A )0; (B )1; (C )2; (D )3.8.下列各组集合M 与N 中,表示相等的集合是( C )(A )M ={(0,1)},N ={0,1}; (B )M ={(0,1)},N ={(1,0)};(C )M ={(0,1)},N ={(x ,y )|x =0且y =1}; (D )M ={π},N ={3.14}. 9.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若Φ真包含于集合A ,则A ≠Φ.其中正确的有( B ) (A )0个; (B )1个; (C )2个; (D )3个. 10.设a ,b ∈R ,集合{1,a +b ,a }={0,b ,ab},则b -a 等于( C ) (A )1; (B )-1; (C )2; (D )-2. 三.解答题:(12+12+12+14=50分)11.当a ,b 满足什么条件时,集合A ={x |ax +b =0}是有限集、无限集、空集? 解:当a ≠0,b ∈R 时,ax +b =0有唯一解x =-ab,集合A 为有限集; 当a =0,b =0时,ax +b =0有无穷多个解,集合A 为无限集; 当a =0,b ≠0时,ax +b =0有无解,集合A 为空集.12.已知集合A ={x |2ax +3x +1=0,x ∈R },(1)若A 中只有一个元素,求实数a 的值;(2)若A 中至多有一个元素,求实数a 的取值范围. 解:(1)当a =0时,3x +1=0,满足条件;当a ≠0时,△=9-4a =0,a =49; ∴满足条件的实数a 的值为:0或49.(2)若A 中只有一个元素,则实数a 的值为:0或49; 若A =Φ,则△=9-4a <0,得:a >49. ∴满足条件的实数a 的取值范围为:a =0或a ≥49.13.若集合A ={x |2x +ax +b =0},B ={x |2x +cx +6=0},是否存在实数a ,b ,c ,使A ∪B =B 且A ∩B ={2},若存在,求出a ,b ,c 的值;若不存在,说明理由. 解:∵A ∩B ={2},∴2∈B ,得:4+2c +6=0,c =-5,即:B ={2,3}.∵A ∪B =B ,∴A ⊂≠B 且2∈A ,得:A ={2}.当A ={2}时,⎩⎨⎧=⨯-=+ba2222,得:a =-4,b =4;∴存在实数a =-4,b =4,c =-5,使A ∪B =B 且A ∩B ={2}.14.已知集合A ={x |-1≤x <4},B ={x |2x -4ax +32a =0}.(1)若B ⊂≠A ,求实数a 的取值范围;(2)若A ∩B =Φ,求实数a 的取值范围. 解:∵2x -4ax +32a =0,∴x =a 或x =3a .当a =0时,B ={0};当a ≠0时,B ={a ,3a }.(1)若B ⊂≠A 时,a =0或⎪⎩⎪⎨⎧<≤-<≤-≠431410a a a ,∴-31≤a <34.(2)若A ∩B =Φ时,⎩⎨⎧≥>40a a 或⎩⎨⎧-<<1a a ,∴a ≥4或a <-1.。

高中数学上册 第1章《集合和命题》同步练习(1) 沪教版

高中数学上册 第1章《集合和命题》同步练习(1) 沪教版

高一数学集合及其表示测试一.填空题:(每小题5分,共25分)1.写出满足关系式A ⊂≠{1,2}的所有集合A .2.用描述法表示被5除余1的整数的集合 .3.集合A ={z |z =qp ,其中p +q =5,且p 、q ∈N *}的所有真子集的个数 .4.已知集合A ={2,4,6},若a ∈A ,6-a ∈A ,则a = .5.若集合A ={(m ,n )|1+m n =1,m ,n ∈R },B ={(m ,n )|n =1+m ,m ,n ∈R },则A 与B 的关系是 .6.集合M ={a ,b ,c ,d ,e },则包含{a ,b }的M 的子集共有 个.二.选择题:(每小题5分,共25分)7.下列关于空集Φ的叙述:①0∈Φ;②Φ∈{Φ};③Φ={0}.正确的个数是( )(A )0; (B )1; (C )2; (D )3.8.下列各组集合M 与N 中,表示相等的集合是( )(A )M ={(0,1)},N ={0,1}; (B )M ={(0,1)},N ={(1,0)};(C )M ={(0,1)},N ={(x ,y )|x =0且y =1}; (D )M ={π},N ={3.14}.9.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若Φ真包含于集合A ,则A ≠Φ.其中正确的有( )(A )0个; (B )1个; (C )2个; (D )3个.10.设a ,b ∈R ,集合{1,a +b ,a }={0,b ,ab },则b -a 等于( )(A )1; (B )-1; (C )2; (D )-2.三.解答题:(12+12+12+14=50分)11.当a ,b 满足什么条件时,集合A ={x |ax +b =0}是有限集、无限集、空集?解:12.已知集合A ={x |2ax +3x +1=0,x ∈R },(1)若A 中只有一个元素,求实数a 的值;(2)若A 中至多有一个元素,求实数a 的取值范围.解:13.若集合A ={x |2x +ax +b =0},B ={x |2x +cx +6=0},问是否存在实数a ,b ,c ,使A ∪B =B 且A ∩B ={2},如果存在,求出a ,b ,c 的值;如果不存在,说明理由.解:14.已知集合A ={x |-1≤x <4},B ={x |2x -4ax +32a =0}.(1)若B ⊂≠A ,求实数a 的取值范围; (2)若A ∩B =Φ,求实数a 的取值范围.解:高一数学集合及其表示测试 2009.9.8一.填空题:(每小题5分,共25分)1.写出满足关系式A ⊂≠{1,2}的所有集合A Φ、{1}、{2} . 2.用描述法表示被5除余1的整数的集合 A ={x |x =5k +1,k ∈Z } .3.集合A ={z |z =qp ,其中p +q =5,且p 、q ∈N *}的所有真子集的个数 15 .4.已知集合A ={2,4,6},若a ∈A ,6-a ∈A ,则a = 2或4 .5.若集合A ={(m ,n )|1+m n =1,m ,n ∈R },B ={(m ,n )|n =1+m ,m ,n ∈R },则A 与B 的关系是 A ⊂≠B . 6.集合M ={a ,b ,c ,d ,e },则包含{a ,b }的M 的子集共有 8个.二.选择题:(每小题5分,共25分)7.下列关于空集Φ的叙述:①0∈Φ;②Φ∈{Φ};③Φ={0}.正确的个数是( B )(A )0; (B )1; (C )2; (D )3.8.下列各组集合M 与N 中,表示相等的集合是( C )(A )M ={(0,1)},N ={0,1}; (B )M ={(0,1)},N ={(1,0)};(C )M ={(0,1)},N ={(x ,y )|x =0且y =1}; (D )M ={π},N ={3.14}.9.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若Φ真包含于集合A ,则A ≠Φ.其中正确的有( B )(A )0个; (B )1个; (C )2个; (D )3个.10.设a ,b ∈R ,集合{1,a +b ,a }={0,b ,a b },则b -a 等于( C )(A )1; (B )-1; (C )2; (D )-2.三.解答题:(12+12+12+14=50分)11.当a ,b 满足什么条件时,集合A ={x |ax +b =0}是有限集、无限集、空集?解:当a ≠0,b ∈R 时,ax +b =0有唯一解x =-ab ,集合A 为有限集;当a =0,b =0时,ax +b =0有无穷多个解,集合A 为无限集; 当a =0,b ≠0时,ax +b =0有无解,集合A 为空集.12.已知集合A ={x |2ax +3x +1=0,x ∈R },(1)若A 中只有一个元素,求实数a 的值;(2)若A 中至多有一个元素,求实数a 的取值范围.解:(1)当a =0时,3x +1=0,满足条件;当a ≠0时,△=9-4a =0,a =49;∴满足条件的实数a 的值为:0或49. (2)若A 中只有一个元素,则实数a 的值为:0或49;若A =Φ,则△=9-4a <0,得:a >49. ∴满足条件的实数a 的取值范围为:a =0或a ≥49.13.若集合A ={x |2x +ax +b =0},B ={x |2x +cx +6=0},是否存在实数a ,b ,c ,使A ∪B =B 且A ∩B ={2},若存在,求出a ,b ,c 的值;若不存在,说明理由. 解:∵A ∩B ={2},∴2∈B ,得:4+2c +6=0,c =-5,即:B ={2,3}.∵A ∪B =B ,∴A ⊂≠B 且2∈A ,得:A ={2}. 当A ={2}时,⎩⎨⎧=⨯-=+ba 2222,得:a =-4,b =4;∴存在实数a =-4,b =4,c =-5,使A ∪B =B 且A ∩B ={2}. 14.已知集合A ={x |-1≤x <4},B ={x |2x -4ax +32a =0}.(1)若B ⊂≠A ,求实数a 的取值范围; (2)若A ∩B =Φ,求实数a 的取值范围. 解:∵2x -4ax +32a =0,∴x =a 或x =3a .当a =0时,B ={0};当a ≠0时,B ={a ,3a }.(1)若B ⊂≠A 时,a =0或⎪⎩⎪⎨⎧<≤-<≤-≠431410a a a ,∴-31≤a <34. (2)若A ∩B =Φ时,⎩⎨⎧≥>40a a 或⎩⎨⎧-<<10a a ,∴a ≥4或a <-1.。

高中数学上册 第1章《集合和命题》同步练习(1) 沪教版

高中数学上册 第1章《集合和命题》同步练习(1) 沪教版

高一数学集合及其表示测试一.填空题:(每题5分,共25分)1.写出知足关系式A ⊂≠{1,2}的所有集合A . 2.用描述法表示被5除余1的整数的集合 .3.集合A ={z |z =qp ,其中p +q =5,且p 、q ∈N *}的所有真子集的个数 . 4.已知集合A ={2,4,6},假设a ∈A ,6-a ∈A ,那么a = .5.假设集合A ={(m ,n )|1+m n =1,m ,n ∈R },B ={(m ,n )|n =1+m ,m ,n ∈R },那么A 与B 的关系是 .6.集合M ={a ,b ,c ,d ,e },那么包括{a ,b }的M 的子集共有 个.二.选择题:(每题5分,共25分)7.以下关于空集Φ的表达:①0∈Φ;②Φ∈{Φ};③Φ={0}.正确的个数是( )(A )0; (B )1; (C )2; (D )3.8.以下各组集合M 与N 中,表示相等的集合是( )(A )M ={(0,1)},N ={0,1}; (B )M ={(0,1)},N ={(1,0)};(C )M ={(0,1)},N ={(x ,y )|x =0且y =1}; (D )M ={π},N ={3.14}.9.以下命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若Φ真包括于集合A ,那么A ≠Φ.其中正确的有( )(A )0个; (B )1个; (C )2个; (D )3个.10.设a ,b ∈R ,集合{1,a +b ,a }={0,b ,ab },那么b -a 等于( ) (A )1; (B )-1; (C )2; (D )-2.三.解答题:(12+12+12+14=50分)11.当a ,b 知足什么条件时,集合A ={x |ax +b =0}是有限集、无穷集、空集?解:12.已知集合A ={x |2ax +3x +1=0,x ∈R },(1)假设A 中只有一个元素,求实数a 的值;(2)假设A中最多有一个元素,求实数a 的取值范围.解:13.假设集合A ={x |2x +ax +b =0},B ={x |2x +cx +6=0},问是不是存在实数a ,b ,c ,使A ∪B=B 且A ∩B ={2},若是存在,求出a ,b ,c 的值;若是不存在,说明理由.解:14.已知集合A ={x |-1≤x <4},B ={x |2x -4ax +32a =0}.(1)假设B ⊂≠A ,求实数a 的取值范围; (2)假设A ∩B =Φ,求实数a 的取值范围.解:高一数学集合及其表示测试 2020.9.8一.填空题:(每题5分,共25分)1.写出知足关系式A ⊂≠{1,2}的所有集合A Φ、{1}、{2} . 2.用描述法表示被5除余1的整数的集合 A ={x |x =5k +1,k ∈Z } .3.集合A ={z |z =q p ,其中p +q =5,且p 、q ∈N *}的所有真子集的个数 15 . 4.已知集合A ={2,4,6},假设a ∈A ,6-a ∈A ,那么a = 2或4 .5.假设集合A ={(m ,n )|1+m n =1,m ,n ∈R },B ={(m ,n )|n =1+m ,m ,n ∈R },那么A 与B 的关系是 A ⊂≠B . 6.集合M ={a ,b ,c ,d ,e },那么包括{a ,b }的M 的子集共有 8 个.二.选择题:(每题5分,共25分)7.以下关于空集Φ的表达:①0∈Φ;②Φ∈{Φ};③Φ={0}.正确的个数是( B )(A )0; (B )1; (C )2; (D )3.8.以下各组集合M 与N 中,表示相等的集合是( C )(A )M ={(0,1)},N ={0,1}; (B )M ={(0,1)},N ={(1,0)};(C )M ={(0,1)},N ={(x ,y )|x =0且y =1}; (D )M ={π},N ={3.14}.9.以下命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若Φ真包括于集合A ,那么A ≠Φ.其中正确的有( B )(A )0个; (B )1个; (C )2个; (D )3个.10.设a ,b ∈R ,集合{1,a +b ,a }={0,b ,a b },那么b -a 等于( C ) (A )1; (B )-1; (C )2; (D )-2.三.解答题:(12+12+12+14=50分)11.当a ,b 知足什么条件时,集合A ={x |ax +b =0}是有限集、无穷集、空集?解:当a ≠0,b ∈R 时,ax +b =0有唯一解x =-ab ,集合A 为有限集; 当a =0,b =0时,ax +b =0有无穷多个解,集合A 为无穷集;当a =0,b ≠0时,ax +b =0有无解,集合A 为空集.12.已知集合A ={x |2ax +3x +1=0,x ∈R },(1)假设A 中只有一个元素,求实数a 的值;(2)假设A中最多有一个元素,求实数a 的取值范围.解:(1)当a =0时,3x +1=0,知足条件;当a ≠0时,△=9-4a =0,a =49; ∴知足条件的实数a 的值为:0或49. (2)假设A 中只有一个元素,那么实数a 的值为:0或49; 假设A =Φ,那么△=9-4a <0,得:a >49. ∴知足条件的实数a 的取值范围为:a =0或a ≥49. 13.假设集合A ={x |2x +ax +b =0},B ={x |2x +cx +6=0},是不是存在实数a ,b ,c ,使A ∪B =B 且A ∩B ={2},假设存在,求出a ,b ,c 的值;假设不存在,说明理由.解:∵A ∩B ={2},∴2∈B ,得:4+2c +6=0,c =-5,即:B ={2,3}.∵A ∪B =B ,∴A ⊂≠B 且2∈A ,得:A ={2}.当A ={2}时,⎩⎨⎧=⨯-=+ba 2222,得:a =-4,b =4; ∴存在实数a =-4,b =4,c =-5,使A ∪B =B 且A ∩B ={2}.14.已知集合A ={x |-1≤x <4},B ={x |2x -4ax +32a =0}.(1)假设B ⊂≠A ,求实数a 的取值范围; (2)假设A ∩B =Φ,求实数a 的取值范围.解:∵2x -4ax +32a =0,∴x =a 或x =3a .当a =0时,B ={0};当a ≠0时,B ={a ,3a }. (1)假设B ⊂≠A 时,a =0或⎪⎩⎪⎨⎧<≤-<≤-≠431410a a a ,∴-31≤a <34. (2)假设A ∩B =Φ时,⎩⎨⎧≥>40a a 或⎩⎨⎧-<<10a a ,∴a ≥4或a <-1.。

(人教版)上海市必修第一册第一单元《集合与常用逻辑用语》测试题(含答案解析)

(人教版)上海市必修第一册第一单元《集合与常用逻辑用语》测试题(含答案解析)

一、选择题1.“21x >”是“2x >”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.函数3()1f x ax x =++有极值的充分但不必要条件是( ) A .1a <-B .1a <C .0a <D .0a >3.m n 是两条不同的直线,α是平面,n α⊥,则//m α是m n ⊥的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.已知点P 在椭圆C :2214x y +=上,直线l :0x y m -+=,则“m =是“点P 到直线l ”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件 5.已知a ∈R ,则“2a ≤”是“方程2210ax x ++=至少有一个负根”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知在等比数列{}n a 中,120,2a a >+是11a +与33a +的等比中项,则“113a =”是“数列{}n a 唯一”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.若集合1|,6 A x x m m Z ⎧⎫==+∈⎨⎬⎩⎭, 1|,23n B x x n Z ⎧⎫==-∈⎨⎬⎩⎭,1|,26p C x x p Z ⎧⎫==+∈⎨⎬⎩⎭,则A ,B ,C 之间的关系是( )A .ABC ==B .AB C = C .ABC D .B CA8.命题“对任意x ∈R ,都有20x ≥”的否定为 A .对任意x ∈R ,都有20x < B .不存在x ∈R ,都有20x < C .存在0x ∉R ,使得200x <D .存在0x ∈R ,使得200x <9.函数()31f x x ax =--在()1,1-上不单调的一个充分不必要条件是( ) A .[]0,3a ∈B .()0,5a ∈C .()0,3a ∈D .()1,2a ∈10.下列有关命题的说法正确的是( )A .若命题p :0x R ∃∈,01x e <,则命题p ⌝:x R ∀∈,1x e ≥B .“3sin 2x =”的一个必要不充分条件是“3x π=”C.若+=-a b a b ,则a b ⊥D .α,β是两个平面,m ,n 是两条直线,如果m n ⊥,m α⊥,βn//,那么αβ⊥ 11.在下列三个结论中,正确的有( ) ①x 2>4是x 3<-8的必要不充分条件;②在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充要条件; ③若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 不全为0”的充要条件. A .①② B .②③ C .①③D .①②③12.命题“∀a ,b >0,a +1b≥2和b +1a ≥2至少有一个成立”的否定为( )A .∀a ,b >0,a +1b<2和b +1a <2至少有一个成立B .∀a ,b >0,a +1b≥2和b +1a ≥2都不成立C .∃a ,b >0,a +1b<2和b +1a <2至少有一个成立D .∃a ,b >0,a +1b≥2和b +1a ≥2都不成立二、填空题13.设集合{}260,M xx mx x R =-+=∈∣,且{2,3}M M =,则实数m 的取值范围是____.14.设p :|x ﹣1|≤1,q :x 2﹣(2m +1)x +(m ﹣1)(m +2)≤0.若p 是q 的充分不必要条件,则实数m 的取值范围是_____.15.设全集U Z =,{}1,3,5,7,9A =,{}1,2,3,4,5B =,则下图中阴影部分表示的集合是_____.16.定义全集U 的子集M 的特征函数()10M U x Mf x x C M ∈⎧=⎨∈⎩,对于两个集合,M N ,定义集合()(){}*1M N M N x f x f x =+=,已知集合{}{}2,4,6,8,10,1,2,4,8,16A B ==,并用S 表示有限集S 的元素个数,则对于任意有限集,**M M A M B +的最小值为________.17.已知2{|0}A x x x =-≤,1{|20}x B x a -=+≤,若A B ⊆,则实数a 的取值范围是______ .18.已知命题p :∀x ∈R,2x >0,则p ⌝为__________.19.已知命题q :2,10.x R x mx ∀∈++>是真命题,则实数m 的取值范围为__________ 20.已知()2:9p x a -<,()3:log 21q x +<.若p ⌝是q ⌝的充分不必要条件,则a 的取值范围是________.三、解答题21.设m R ∈,命题2:043p x x <-<,命题:(1)(3)0q x m x m -+--<. (1)若p 为真命题,求实数x 的取值范围;(2)若p 是q 的充分不必要条件,求实数m 的取值范围.22.设命题p :12≤x ≤1,命题q :x 2-(2a +1)x +a (a +1)≤0.若q 是p 的必要而不充分条件,求实数a 的取值范围.23.设集合{}|25A x x =-≤≤,{}|121B x m x m =+≤≤-,若A B =∅,求m 的范围.参考答案24.已知条件{}2:230,p x A x x x x R ∈=--≤∈,条件{}22:240,q x B x x mx m x R ∈=-+-≤∈.(1)若[]0,3AB =,求实数m 的值;(2)若p ⌝是q 的必要条件,求实数m 的取值范围. 25.已知()1f x x a x =-++.(1)若不等式()21f x x <++的解集是区间3,2的子区间,求实数a 的取值范围;(2)若对任意的x ∈R ,不等式()21>+f x a 恒成立,求实数a 的取值范围. 26.已知集合1|11A x x ⎧⎫=>⎨⎬-⎩⎭,()(){}|320,1B x x a x a a =--->≤. (1)求集合A 和B ;(2)若A B B ⋃=,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】设{}21A x x =>,{}2B x x =>,然后根据集合包含关系分析充分性和必要性. 【详解】设{}{211A x x x x =>=>或}1x <-,设{}2B x x =>,可得B A ,所以“21x >”是“2x >”的必要不充分条件. 故选:B . 【点睛】方法点睛:充分性和必要性的判断方法:1、定义法,2、命题法,3、传递法,4、集合法.2.A解析:A 【分析】求导2()31f x ax '=+,所以要使函数3()1f x ax x =++有极值,则需3012>0a a ≠∆=-,,可求得a 的范围,再由充分必要条件可得选项. 【详解】因为2()31f x ax '=+,所以要使函数3()1f x ax x =++有极值,则需3012>0a a ≠∆=-,,解得0a <,又由1a <-可推得0a <,而由0a <不能推得1a <-,所以函数3()1f x ax x =++有极值的充分但不必要条件是1a <-, 故选:A . 【点睛】本题考查函数有极值的条件,以及命题的充分必要条件的判断,属于中档题.3.A解析:A 【分析】根据线面平行的性质定理、线面垂直的定义结合充分条件、必要条件的定义判断即可. 【详解】当//m α时,过直线m 作平面β,使得l αβ=,则//m l ,n α⊥,l α⊂,n l ∴⊥,m n ∴⊥,即//m m n α⇒⊥; 当m n ⊥时,由于n α⊥,则m α⊂或//m α,所以,//m n m α⊥⇒/.综上所述,//m α是m n ⊥的充分不必要条件. 故选:A. 【点睛】本题考查充分不必要条件的判断,同时也考查了空间点、线、面位置关系的判断,考查推理能力,属于中等题.4.B解析:B 【分析】“点P 到直线l”解得:m =±. 【详解】点P 在椭圆C :2214x y +=上,直线l :0x y m -+=,考虑“点P 到直线l” 设()[)2cos ,sin ,0,2P θθθπ∈, 点P 到直线l的距离d ϕϕ===点P 到直线l()m θϕ++的最小值()mθϕ++符号恒正或恒负,()m m m θϕ⎡++∈⎣当0m <时,m =-, 当0m >时,m = 综上所述:m =±所以“m =是“点P 到直线l ”的充分不必要条件. 故选:B 【点睛】此题考查充分条件与必要条件的辨析,关键在于根据题意准确求出参数的取值范围.5.B解析:B 【分析】分类讨论a 的正负,利用两根与系数的关系、判别式,进而求解判断即可. 【详解】(1)当0a =时,方程变为210x +=,有一负根12x =-,满足题意;(2)当0a <时,440∆=->a ,方程的两根满足1210x x a=<,此时有且仅有一个负根,满足题意;(3)当0a >时,由方程的根与系数关系可得2010aa⎧-<⎪⎪⎨⎪>⎪⎩,∴方程若有根,则两根都为负根,而方程有根的条件440a ∆=-≥,01a ∴<≤.综上可得,1a ≤.因此,“2a ≤”是“方程2210ax x ++=至少有一个负根”的必要不充分条件. 故选:B. 【点睛】本题考查必要不充分条件的判断,考查二次方程根的分布问题,考查分类讨论思想的应用,属于中等题.6.C解析:C 【分析】根据条件“在等比数列{}n a 中,120,2a a >+是11a +与33a +的等比中项”求解数列{}n a ,然后由充分必要条件的定义判断.【详解】在等比数列{}n a 中,120,2a a >+是11a +与33a +的等比中项,则2213(2)(1)(3)a a a +=++,22213134433a a a a a a ++=+++,设{}n a 的公比为q ,则22222111114433a q a q a q a a q ++=+++,211430q q a -+-=(*),10a >,因为1114164(3)40a a ∆=--=+>,所以此方程一定有两不等实解,当等比数列{}n a 只有一解时,方程(*)的两解中一解为0q =需舍去,此时113a =; 若113a =,方程(*)有一个解是0q =,另一解4q =.数列{}n a 只有一解, 由上分析知113a =是数列{}n a 唯一的充要条件. 故选:C . 【点睛】本题考查充分必要条件的判断,掌握充分必要条件的定义是解题关键.7.B解析:B 【分析】分别将集合中的元素表示为61,6m x x m Z ⎧⎫+=∈⎨⎬⎩⎭,31|,6t x x t Z +⎧⎫=∈⎨⎬⎩⎭和31|,6p x x p Z +⎧⎫=∈⎨⎬⎩⎭即可得结果. 【详解】∵161|,,66m A x x m m Z x x m Z ⎧⎫+⎧⎫==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭, 13231|,|,|,2366n n t B x x n Z x x n Z x x t Z -+⎧⎫⎧⎫⎧⎫==-∈==∈==∈⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭,131|,|,266p p C x x p Z x x p Z +⎧⎫⎧⎫==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭显然A B C =,故选:B. 【点睛】本题主要考查集合间的包含关系的判断,考查集合的包含关系等基础知识,属于基础题.8.D解析:D 【解析】命题“对任意x R ∈,都有20x ≥”的否定为:存在0x R ∈,使得200x <,选D.9.D解析:D 【分析】先求出()f x 在()1,1-上单调的范围,其补集即为不单调的范围,结合选项即可得到答案. 【详解】由已知,当()1,1x ∈-时,()[)23,3f x x a a a '=-∈--,当0a ≤时,()0f x '≥,当3a ≥时,()0f x '≤, 所以()f x 在()1,1-上单调,则0a ≤或3a ≥, 故()f x 在()1,1-上不单调时,a 的范围为()0,3,A 、B 是必要不充分条件,C 是充要条件,D 是充分不必要条件. 故选:D. 【点睛】本题主要考查利用导数研究函数的单调性,涉及到充分条件、必要条件的判断,考查学生的逻辑推理能力,数学运算能力,是一道中档题.10.A解析:A 【分析】对选项逐个分析,对于A 项,根据特称命题的否定是全称命题,得到其正确;对于B 项,根据充分必要条件的定义判断正误;对于C 项根据向量垂直的条件得到其错误,对于D 项,从空间直线平面的关系可判断正误. 【详解】对于A ,命题p :0x R ∃∈,01x e <,则命题p ⌝:x R ∀∈,1x e ≥,A 正确;对于B ,当3x π=时, sin 2x =成立,所以“3x π=”是“sin x =”的充分条件,所以B 错误; 对于C ,a b >且两向量反向时 +=-a b a b 成立, a b ⊥不成立C 错误; 对于D ,若m n ⊥,m α⊥,βn//,则α,β的位置关系无法确定,故D 错误. 故选:A. 【点睛】该题考查的是有关选择正确命题的问题,涉及到的知识点有含有一个量词的命题的否定,充分必要条件的判断,空间直线和平面的关系,属于简单问题.11.C解析:C 【分析】①,证明x 2>4是x 3<-8的必要不充分条件.所以该命题正确;②,在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充分不必要条件,所以该命题错误;③,证明“a 2+b 2≠0”是“a ,b 不全为0”的充要条件,所以该命题正确. 【详解】①,x 2>4即2x >或2x <-,x 3<-8即2x <-,因为2x >或2x <-成立时,2x <-不一定成立,所以x 2>4是x 3<-8的不充分条件;因为2x <-成立时,2x >或2x <-一定成立,所以x 2>4是x 3<-8的必要条件.即x 2>4是x 3<-8的必要不充分条件.所以该命题正确. ②, AB 2+BC 2=AC 2成立时,ABC 为直角三角形一定成立;当ABC 为直角三角形成立时,AB 2+BC 2=AC 2不一定成立,所以在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充分不必要条件,所以该命题错误.③,即判断“0,0a b ==”是“a 2+b 2=0”的什么条件,由于a 2+b 2=0即0,0a b ==,所以“0,0a b ==”是“a 2+b 2=0”的充要条件,所以“a 2+b 2≠0”是“a ,b 不全为0”的充要条件,所以该命题正确. 故选:C. 【点睛】本题主要考查充分必要条件的判定,考查逆否命题和原命题的等价性,意在考查学生对这些知识的理解掌握水平.12.D解析:D 【分析】将“全称量词”改“存在量词”,“至少有一个成立”改为“都不成立”即可得到. 【详解】“∀a ,b >0,a +1b≥2和b +1a ≥2至少有一个成立”的否定为:∃a ,b >0,a +1b≥2和b +1a ≥2都不成立.故选:D 【点睛】本题考查了全称命题的否定,属于基础题. 二、填空题13.【分析】由题意可得是集合的子集按集合中元素的个数结合根与系数之间的关系分类讨论即可求解【详解】由题意可得是集合的子集又当是空集时即方程无解则满足解得即此时显然符合题意;当中只有一个元素时即方程只有一解析:({}5m ∈-【分析】 由题意{}2,3MM =,可得M 是集合{}2,3的子集,按集合M 中元素的个数,结合根与系数之间的关系,分类讨论即可求解. 【详解】 由题意{}2,3MM =,可得M 是集合{}2,3的子集,又{}260,M x x mx x R =-+=∈,当M 是空集时,即方程260x mx -+=无解,则满足()2460m ∆=--⨯<,解得m -<<(m ∈-,此时显然符合题意;当M 中只有一个元素时,即方程260x mx -+=只有一个实数根,此时()2460m ∆=--⨯=,解得m =±x =x ={}2,3的子集中的元素,不符合题意,舍去;当M 中有两个元素时,则2,3M,此时方程260x mx -+=的解为12x =,23x =,由根与系数之间的关系,可得两根之和为5,故235m =+=;当5m =时,可解得2,3M ,符合题意.综上m 的取值范围为({}5m ∈-.故答案为:({}5m ∈-【点睛】方法点睛:根据集合的运算求参数问题的方法:要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解;若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时注意集合中元素的互异性;若集合表示的不等式的解集,常依据数轴转化为不等式(组)求解,此时需要注意端点值是否取到.14.01【分析】分别求出的范围再根据是的充分不必要条件列出不等式组解不等式组【详解】由得得由得得若p 是q 的充分不必要条件则得得即实数的取值范围是故答案为:【点睛】本题主要考查绝对值不等式和二次不等式的解解析:[0,1] 【分析】分别求出,p q 的范围,再根据p 是q 的充分不必要条件,列出不等式组,解不等式组 【详解】由11x -≤得111x -≤-≤,得02x ≤≤.由2(21)(1)(2)0x m x m m -++-+≤,得[(1)][(2)]0x m x m ---+≤, 得12m x m -≤≤+, 若p 是q 的充分不必要条件, 则1022m m -≤⎧⎨+≥⎩,得1m m ≤⎧⎨≥⎩,得01m ≤≤,即实数m 的取值范围是[0,1]. 故答案为:[0,1] 【点睛】本题主要考查绝对值不等式和二次不等式的解法,同时考查了充分不必要条件,属于中档题.15.【分析】先判断阴影部分表示的集合为再计算得到答案【详解】集阴影部分表示的集合为:故答案为【点睛】本题考查了韦恩图的识别将图像转化为集合的运算是解题的关键 解析:{}2,4【分析】先判断阴影部分表示的集合为U B C A ⋂,再计算得到答案. 【详解】集U Z =,{}1,3,5,7,9A =,{}1,2,3,4,5B = 阴影部分表示的集合为:{}2,4U B C A ⋂= 故答案为{}2,4 【点睛】本题考查了韦恩图的识别,将图像转化为集合的运算是解题的关键.16.4【分析】通过新定义及集合的并集与补集的运算求解计算即得结论【详解】由M*N 的定义可知fM (x )+fN (x )=1则M*N ∈{x|x ∈M ∪N 且x ∉M∩N}即M*A ={x|x ∈M ∪A 且x ∉M∩A}M*B解析:4【分析】通过新定义及集合的并集与补集的运算求解计算即得结论.【详解】由M *N 的定义可知,f M (x )+f N (x )=1 ,则M *N ∈{x |x ∈M ∪N ,且x ∉ M ∩N } 即M *A ={x |x ∈M ∪A ,且x ∉M ∩A },M *B ={x |x ∈M ∪B ,且x ∉M ∩B }要使Card (M *A )+Card (M *B )的值最小,则2,4,8一定属于集合M ,且M 不能含有A ∪B 以外的元素,所以集合M 为{6,10,1,16}的子集与集合{2,4,8}的并集, 要使**M A M B +的值最小,M ={2,4,8}, 此时,**M A M B +的最小值为4,故答案为:4【点睛】本题考查对集合运算的理解以及新定义的应用,考查计算能力.注意解题方法的积累,属于中档题.17.【解析】【分析】由题意要由包含关系求出参数的范围先得化简两个集合再比较两个集合得出参数的取值范围【详解】由题意又所以解得故实数a 的取值范围是故答案为【点睛】本题主要考查集合的表示方法由集合之间的关系 解析:(],2-∞-【解析】【分析】由题意,要由包含关系求出参数的范围,先得化简两个集合,再比较两个集合得出参数的取值范围.【详解】由题意,2{|0}{|01}A x x x x x =-≤=≤≤, ()12{|20}{|1}x B x a x x log a -=+≤=≥--,又A B ⊆,所以()210log a --≤,解得2a ≤-,故实数a 的取值范围是(],2-∞-.故答案为(],2-∞-.【点睛】本题主要考查集合的表示方法,由集合之间的关系求参数的取值范围,对数不等式的解法等知识,意在考查学生的转化能力和计算求解能力. 18.【详解】根据全称命题的否定的概念可知p 为解析:00R,20x x ∃∈≤【详解】根据全称命题的否定的概念,可知⌝p 为00R,20x x ∃∈≤.19.【解析】【分析】因为命题:是真命题可得即可求得答案【详解】命题:是真命题解得则实数的取值范围为故答案为【点睛】这是一道关于命题的真假判断与应用的题目关键是根据已知命题为真命题构造关于的不等式是解题的 解析:[2,2]-【解析】【分析】因为命题q :210x R x mx ∀∈++>,,是真命题,可得240m =-<即可求得答案【详解】命题q :210x R x mx ∀∈++>,,是真命题 240m ∴=-<,解得22m -<<则实数m 的取值范围为()22-,故答案为()22-,【点睛】这是一道关于命题的真假判断与应用的题目,关键是根据已知命题为真命题,构造关于m 的不等式是解题的关键20.【分析】解不等式和由题意可得是的必要不充分条件转化为两集合的包含关系由此可求得实数的取值范围【详解】因为是的充分不必要条件所以是的必要不充分条件解不等式得解不等式解得所以即因此实数的取值范围是故答解析:[]2,1-【分析】解不等式()29x a -<和()3log 21x +<,由题意可得p 是q 的必要不充分条件,转化为两集合的包含关系,由此可求得实数a 的取值范围.【详解】因为p ⌝是q ⌝的充分不必要条件,所以p 是q 的必要不充分条件,解不等式()29x a -<,得33a x a -<<+,解不等式()3log 21x +<,解得21x -<<. :33p a x a -<<+,:21q x -<<,{}33x a x a ∴-<<+ {}21x x -<<, 所以3231a a -≤-⎧⎨+≥⎩,即21a -≤≤. 因此,实数a 的取值范围是[]2,1-.故答案为:[]2,1-.【点睛】本题考查利用充分不必要条件求参数,解答的关键就是转化为集合的包含关系来处理,考查分析问题和解决问题的能力,属于中等题.三、解答题21.(1){}|24x x <<;(2){}|13m m ≤≤【分析】(1)解不等式2043x x <-<即可求解;(2)设命题p 成立对应集合A ,命题q 成立对应集合B ,由题意可得A 是B 的真子集,利用数轴即可求解.【详解】(1)若p 为真命题,则2043x x <-<,即240x ->且243x x -<,由240x ->得2x >或2x <-,由243x x -<可得14x -<<,所以解集为:{}|24x x <<,故实数x 的取值范围为{}|24x x <<,(2)由(1)知:p 为真命题,则24x <<,设{}|24A x x =<<,由(1)(3)0x m x m -+--<可得13m x m -<<+,设{}|13B x m x m =-<<+, 若p 是q 的充分不必要条件,则A 是B 的真子集,所以1234m m -≤⎧⎨+≥⎩,解得: 13m ≤≤, 经检验当1m =和3m =时满足A 是B 的真子集,所以实数m 的取值范围是{}|13m m ≤≤【点睛】结论点睛:从集合的观点判断命题的充分条件和必要条件的规则(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.22.[0,1]2【分析】求出q 的等价条件,结合充分条件和必要条件的定义转化为集合子集关系进行求解即可.【详解】由2(21)(1)0x a x a a -+++得1a x a +,若q 是p 的必要不充分条件,则1[2,1][a ,1]a +, 即1211a a ⎧⎪⎨⎪+⎩,得120a a ⎧⎪⎨⎪⎩,得102a , 即实数a 的取值范围是[0,1]2, 【点睛】本题主要考查充分条件和必要条件的应用,求出命题的等价条件,转化为集合关系是解决本题的关键,属于容易题.23.4m >或2m <【分析】由题意可知AB =∅,分类讨论当B =∅和当B ≠∅时两种情况,结合已知条件解关于m 的不等式,即可得到答案. 【详解】因为集合{}|25A x x =-≤≤,{}|121B x m x m =+≤≤-若A B =∅,当B =∅,可得121m m +>-,解得2m <;当B ≠∅,可得121212m m m +≤-⎧⎨-<-⎩或12115m m m +≤-⎧⎨+>⎩解得212m m ≥⎧⎪⎨<-⎪⎩或24m m ≥⎧⎨>⎩ 即为m ∈∅或4m >综上可得m 的取值范围为4m >或2m <【点睛】本题考查了由集合的交集运算求参数的取值范围,解答时需要进行分类讨论集合是否为空集,空集是考查集合时的常考考点,需要掌握解题方法.24.(1)2m =;(2)()(),35,-∞-+∞. 【分析】(1)求出集合A 、B ,根据交集运算结果得出关于m 的等式和不等式,即可求出实数m 的值;(2)求出A R ,由p ⌝是q 的必要条件,可得出RB A ⊆,可得出关于实数m 的不等式,即可求得实数m 的取值范围. 【详解】(1){}[]2230,1,3A x x x x R =--≤∈=-,{}()(){}[]222402202,2B x x mx m x x m x m m m ⎡⎤⎡⎤=-+-≤=-+⋅--≤=-+⎣⎦⎣⎦, 又[]0,3A B ⋂=,则2023m m -=⎧⎨+≥⎩,解得2m =; (2)()(),13,R A =-∞-⋃+∞,且p ⌝是q 的必要条件,则R B A ⊆,所以,21m +<-或23m ->,解得3m <-或5m >.因此,实数m 的取值范围是()(),35,-∞-⋃+∞.【点睛】本题考查了利用交集的结果求参数,同时也考查了利用必要条件求参数,考查了推理能力与计算能力,属于中档题.25.(1)[]1,0-(2)(),0-∞【分析】(1)首先求出不等式的解集,再根据集合的包含关系求出参数的取值范围; (2)根据绝对值的三角不等式可得()1111f x x a x a x x a x x a =-++=-++≥-++=+,故对任意的x ∈R ,()21>+f x a 恒成立可转化为121a a +>+, 分类讨论计算可得;【详解】解:(1)因为()1f x x a x =-++,且()21f x x <++,2x a ∴-< ,22a x a ∴-+<<+,由题意知,()[]2,23,2a a -+⊆-,所以2322a a -≥-⎧⎨+≤⎩, 解得10a -≤≤,所以实数a 的取值范围是[]1,0-.(2)()1111f x x a x a x x a x x a =-++=-++≥-++=+,当且仅当()()10a x x -+≥时,等号成立,所以()f x 的最小值为1a +.故对任意的x ∈R ,()21>+f x a 恒成立可转化为121a a +>+,所以10121a a a +≥⎧⎨+>+⎩或10121a a a +<⎧⎨-->+⎩,解得0a <. 所以实数a 的取值范围是(),0-∞.【点睛】本题考查绝对值不等式的解法,集合的包含关系及绝对值三角不等式的应用,属于中档题. 26.(1)()0,1A =,()(),32,B a a =-∞++∞;(2)(]1,2,13⎡⎤-∞-⎢⎥⎣⎦.【分析】(1)利用不等式的性质即可求出集合A 和B ;(2)由A B B ⋃=,得A B ⊆,解不等式组,进而得出实数a 的取值范围.【详解】(1)集合{}1|1|0|0111x A x x x x x x ⎧⎫⎧⎫=>=>=<<⎨⎬⎨⎬--⎩⎭⎩⎭, 因1a ≤,则32a a ≤+,所以集合()(){}{320,1|3B x x a x a a x x a =---≤=<或}2x a >+.即集合()0,1A =,()(),32,B a a =-∞++∞.(2)由(1)知,集合()0,1A =,()(),32,B a a =-∞++∞, 由A B B ⋃=,得A B ⊆,所以131a a ≤⎧⎨≥⎩或120a a ≤⎧⎨+≤⎩,解得113a ≤≤或2a ≤-, 故实数a 的取值范围为(]1,2,13⎡⎤-∞-⎢⎥⎣⎦. 【点睛】本题考查集合、实数的取值范围的求法,考查交集、并集定义等基础知识,考查运算求解能力,属于基础题.。

上海爱国学校必修第一册第一单元《集合与常用逻辑用语》测试题(答案解析)

上海爱国学校必修第一册第一单元《集合与常用逻辑用语》测试题(答案解析)

一、选择题1.已知命题2:2,:2320p x q x x <--<,则p 是q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件2.已知a ,b R ∈,则“0a b +<”是“0a a b b +<”的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件3.24x >成立的一个充分非必要条件是( )A .23x >B .2xC .2x ≥D .3x > 4.已知集合A ={x |x 2-4|x |≤0},B ={x |x >0},则A ∩B =( )A .(]0,4B .[]0,4C .[]0,2D .(]0,25.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为( ) A .3B .2C .1D .06.已知集合{}{}2|13,|4,P x R x Q x R x =∈≤≤=∈≥ 则()R P Q ⋃=A .[2,3]B .( -2,3 ]C .[1,2)D .(,2][1,)-∞-⋃+∞7.已知ξ服从正态分布()21,N σ,a ∈R ,则“P (ξ>a )=0.5”是“关于x 的二项式321()ax x +的展开式的常数项为3”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分又不必要条件 D .充要条件8.已知p :02x ≤≤,q :2230x x --≥,则p 是q ⌝的( )A .既不充分也不必要条件B .必要不充分条件C .充分不必要条件D .充分必要条件9.非零向量,a b 满足4,2b a ==且a 与b 夹角为θ,则“23b a -=”是“3πθ=”的( )A .必要而不充分条件B .充分而不必要条件C .充分必要条件D .既不充分也不必要条件10.设a 、b 是实数,则“0a >,0b >”是“2b aa b+≥”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件11.“一条直线l 与平面α内无数条直线异面”是“这条直线与平面α平行”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件12.已知函数()31f x x ax =--,则()f x 在()1,1-上不单调的一个充分不必要条件是( ) A .[]0,3a ∈B .()0,5a ∈C .()0,3a ∈D .()1,3a ∈二、填空题13.①一个命题的逆命题为真,它的否命题一定也为真:②在ABC 中,“60B ∠=︒”是“,,A B C ∠∠∠三个角成等差数列”的充要条件; ③1{2x y >>是3{2x y xy +>>的充要条件;④“22am bm <”是“a b <”的充分必要条件; 以上说法中,判断错误的有_______________. 14.已知集合{|(1,2)(0,1),}P a a m m R ==-+∈,{|(2,1)(1,1),}Q b b n n R ==+-∈,则P Q =_________.15.已知下列命题:①命题“213x R x x ∃∈+>,”的否定是“213x R x x ∀∈+<,”;②已知,p q 为两个命题,若p q ∨“”为假命题,则()()“”p q ⌝⌝∧为真命题;③“2a >”是“5a >”的充分不必要条件;④“若0,xy =则0x =且0y =”的逆否命题为真命题.其中 真命题的序号是__________.(写出所有满足题意的序号)16.设命题21:01x p x -<-,命题2:2110q x a x a a ,若p 是q 的充分不必要条件,则实数a 的取值范围是_____________.17.在正项等比数列{}n a 中,已知120151a a <=,若集合1212111|0,t t A t a a a t N a a a *⎧⎫⎛⎫⎛⎫⎛⎫⎪⎪=-+-++-≤∈⎨⎬ ⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎩⎭,则A 中元素个数为______.18.函数,若恒成立的充分条件是,则实数的取值范围是 . 19.集合{}*110,,S x x x N n N=≤≤∈∈共有120个三元子集()1,2,...,120iA i =,若将i A 的三个元素之和记为()1,2,...,120i a i =,则12120...a a a +++=______.20.设命题p :431x -≤,命题q :()()22110x a x a a -+++≤,若q 是p 的必要不充分条件,则实数a 的取值范围是______三、解答题21.已知集合411A x x ⎧⎫=>⎨⎬+⎩⎭,集合{}22220,B x x x a a a R =+-+<∈.(1)求集合A ;(2)若x B ∈是x A ∈的必要条件,求实数a 的取值范围.22.已知集合12{|(,,,),{,1},1,2,,}(2)n n i S X X x x x x k i n n ==∈=≥.对于1212(,,,),(,,,)n n n A a a a B b b b S ==∈,定义:A 与B 的差为1122(||,||,||)n n A B a b a b a b -=---;A 与B 之间的距离为1(,)||niii d A B a b ==-∑.(1)当2,5k n ==时,设(1,2,1,1,2),(2,1,1,2,1)A B ==,求,(,)A B d A B -; (2)若对于任意的,,n A B C S ∈,有n A B S -∈,求k 的值并证明:(,)(,)d A C B C d A B --=.23.设m R ∈,命题2:043p x x <-<,命题:(1)(3)0q x m x m -+--<. (1)若p 为真命题,求实数x 的取值范围;(2)若p 是q 的充分不必要条件,求实数m 的取值范围.24.设集合{}|25A x x =-≤≤,{}|121B x m x m =+≤≤-,若A B =∅,求m 的范围.参考答案25.已知集合{}30A x x a =->,{}260B x x x =-->. (Ⅰ)当3a =时,求A B ,A B ;(Ⅱ)若()RA B ⋂≠∅,求实数a 的取值范围.26.已知集合{}121A x a x a =-<<+,{}01B x x =<<.(1)若12a =,求A B ; (2)若A B =∅,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】求出q 成立的x 的范围,然后根据集合包含关系判断. 【详解】2:2320q x x --<,(21)(2)0x x +-<,122x -<<,由于1,22⎛⎫- ⎪⎝⎭是(,2)-∞的真子集,因此应是必要不充分条件. 故选:C .【点睛】命题p 对应集合A ,命题q 对应的集合B ,则 (1)p 是q 的充分条件⇔A B ⊆; (2)p 是q 的必要条件⇔A B ⊇;(3)p 是q 的充分必要条件⇔A B =;(4)p 是q 的既不充分又不必要条件⇔集合,A B 之间没有包含关系.2.C解析:C 【分析】从充分性和必要性两个方面,分0,0a b <<和0,0a b <≥讨论,分别求解证明即可. 【详解】解:当 0,0a b <<,0a b +<时,此时220a a b b a b +=--<成立,当0,0a b <≥,0a b +<时,此时()()220a a b b a b a b b a +=-+=+-<成立,即0a b +<可以推出0a a b b +<,反之,若0a a b b +<,则,a b 中至少有一个负数, 若,a b 均为负数,必然有0a b +<,若0,0a b <≥,则()()220a a b b b a a b b a +=-=+-<,因为0b a ->,则必有0a b +<, 所以0a a b b +<可以推出0a b +<, 故“0a b +<”是“0a a b b +<”的充分必要条件. 故选:C. 【点睛】本题考查充分性和必要性的判断,考查学生分类讨论的思想,是中档题.3.D解析:D 【分析】根据题意,找到24x >解集的一个真子集即可求解. 【详解】由24x >解得2x >或2x <-,所以24x >成立的一个充分非必要条件是(2)(2,)-∞-+∞的真子集,因为3+∞(,) (2)(2,)-∞-+∞,所以24x >成立的一个充分非必要条件是3x >, 故选:D 【点睛】本题主要考查了充分条件、必要条件,真子集的概念,属于中档题.4.A解析:A 【分析】先求出集合A ,然后进行交集的运算即可. 【详解】 A={x|-4≤x≤4}; ∴A∩B=(0,4]. 故选A . 【点睛】本题主要考查了集合描述法、区间的定义,一元二次不等式的解法,以及交集的运算,属于中档题.5.B解析:B 【解析】试题分析:集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点⎝⎭,⎛ ⎝⎭,则A B 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.6.B解析:B 【解析】有由题意可得:{}|22R C Q x x =-<< , 则()RP Q ⋃= ( -2,3 ] .本题选择B 选项.7.A解析:A 【解析】试题分析:由,知1a =.因为二项式321()ax x +展开式的通项公式为31321()()r r rr T C ax x-+==3333r r r a C x --,令330r -=,得1r =,所以其常数项为212333a C a ==,解得1a =±,所以“”是“关于x 的二项式321()ax x +的展开式的常数项为3”的充分不必要条件,故选A .考点:1、正态分布;2、二项式定理;3、充分条件与必要条件.8.C解析:C 【分析】设[0,2]M =,2{|230}N x x x =--<,根据集合之间的包含关系,即可求解.【详解】因为q :2230x x --≥, 所以q ⌝:2230x x --<,设[0,2]M =,2{|230}N x x x =--<,则(1,3)N =-, 所以M N ,所以p 是q ⌝的充分不必要条件, 故选:C 【点睛】本题主要考查了充分条件、必要条件,集合的真子集,考查了推理能力,属于中档题.9.C解析:C 【分析】由题意,若23b a -=,根据向量的数量积和模的计算公式,可得1cos 2θ=,得到3πθ=,;反之也可求得23b a -=,即可得到答案.【详解】由题意,非零向量,a b 满足4,2b a ==且a 与b 夹角为θ, 若23b a -=,即2222()2164242cos 12b a b a b a a b θ-=-=+-⋅=+-⨯⨯=,解得1cos 2θ=,又因为[]0,θπ∈,可得3πθ=,即充分性是成立的;若3πθ=,由2222()2164242cos123b a b a b a a b π-=-=+-⋅=+-⨯⨯=,可得23b a -=,即必要性是成立的,所以“23b a -=”是“3πθ=”的充分必要条件.故选:C. 【点睛】本题主要考查了充分条件、必要条件的判定,其中解答中熟记向量的数量积的运算,以及向量的模的运算公式是解答的关键,着重考查了推理与运算能力.10.A解析:A 【分析】由2b aa b +≥可推导出0ab >,再利用充分条件、必要条件的定义判断可得出结论. 【详解】由2b a a b +≥可得()22222022a b b a a b ab a b ab ab-+-+-==≥,()20a b -≥,则0ab >,则“0a >,0b >”⇒“0ab >”,但“0ab >”⇒“0a >,0b >”. 所以,“0a >,0b >”是“2b aa b+≥”的充分不必要条件. 故选:A. 【点睛】本题考查充分不必要条件的判断,考查推理能力,属于中等题.11.B解析:B 【分析】根据异面直线的定义及直线与平面平行的定义即可判定. 【详解】因为满足“一条直线l 与平面α内无数条直线异面”这样条件的直线可以和平面相交, 所以推不出“这条直线与平面α平行”,当直线满足与平面α平行时,可以推出这条直线与平面α内无数条直线异面, 所以“一条直线l 与平面α内无数条直线异面”是“这条直线与平面α平行”的必要不充分条件, 故选:B 【点睛】本题主要考查了充分条件、必要条件,直线与平面的位置关系,属于中档题.12.D解析:D 【分析】先求出()f x 在()1,1-上单调的范围,其补集即为不单调的范围,结合选项即可得到答案. 【详解】由已知,()23[,3)f x x a a a =-∈--‘,当0a ≤时,'()0f x ≥,当3a ≥时,'()0f x ≤,所以()f x 在()1,1-上单调,则0a ≤或3a ≥,故()f x 在()1,1-上不单调时,a 的范围为(0,3),A 、B 是必要不充分条件,C 是充要条件,D 是充分不必要条件.故选:D 【点睛】本题主要考查利用导数研究函数的单调性,涉及到充分条件、必要条件的判断,考查学生的逻辑推理能力,数学运算能力,是一道中档题.二、填空题13.③④【解析】对于①一个命题的逆命题与其否命题互为逆否命题则若其逆命题为真其否命题也一定为真①正确;对于②若则有则三个角成等差数列反之若三个角成等差数列有又由则故在中是三个角成等差数列的充要条件②正确解析:③④ 【解析】对于①,一个命题的逆命题与其否命题互为逆否命题,则若其逆命题为真,其否命题也一定为真,①正确;对于②,若60B ∠=,则120A C ∠+∠=,有2A C B ∠+∠=∠,则,,A B C ∠∠∠三个角成等差数列,反之若,,A B C ∠∠∠三个角成等差数列, 有2A C B ∠+∠=∠,又由3=180A B C B ∠+∠+∠=∠,则60B ∠=,故在ABC ∆中,“60B ∠=”是“,,A B C ∠∠∠三个角成等差数列”的充要条件,②正确;对于③, 当19,22x y ==,则满足32x y xy +>⎧⎨>⎩,而不满足12x y >⎧⎨>⎩,则12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的不必要条件,③错误;对于④,若a b <,当0m =时,有22am bm =,则“22am bm <”是“a b <”的不必要条件,④错误,故答案为③④.14.【分析】根据向量的坐标运算可求得集合P 与集合Q 再结合交集的运算即可求解【详解】集合则集合则由集合的交集定义可知解方程组可得所以故答案为:【点睛】本题考查了向量的坐标运算集合交集的定义属于基础题 解析:(){}1,2【分析】根据向量的坐标运算,可求得集合P 与集合Q,再结合交集的运算即可求解. 【详解】集合{|(1,2)(0,1),}P a a m m R ==-+∈则(){}1,2P m =-+集合{|(2,1)(1,1),}Q b b n n R ==+-∈则(){}2,1Q n n =-+由集合的交集定义可知1221nm n =-⎧⎨-+=+⎩解方程组可得14n m =⎧⎨=⎩所以(){}1,2P Q ⋂=故答案为: (){}1,2【点睛】本题考查了向量的坐标运算,集合交集的定义,属于基础题.15.②【分析】①写出命题的否定即可判定正误;②由为假命题得到命题都是假命题由此可判断结论正确;③由时不成立反之成立由此可判断得到结论;④举例说明原命题是假命题得出它的逆否命题也为假命题【详解】对于①中命解析:② 【分析】①写出命题“213x R x x ∃∈+>,”的否定,即可判定正误;②由p q ∨“”为假命题,得到命题,p q 都是假命题,由此可判断结论正确;③由2a >时,5a >不成立,反之成立,由此可判断得到结论; ④举例说明原命题是假命题,得出它的逆否命题也为假命题. 【详解】对于①中,命题“213x R x x ∃∈+>,”的否定为“213x R x x ∀∈+≤,”,所以不正确;对于②中,命题,p q 满足p q ∨“”为假命题,得到命题,p q 都是假命题,所以,p q ⌝⌝都是真命题,所以()()“”p q ⌝⌝∧为真命题,所以是正确的;对于③中,当2a >时,则5a >不一定成立,当5a >时,则2a >成立,所以2a >是5a >成立的必要不充分条件,所以不正确;对于④中,“若0,xy =则0x =且0y =”是假命题,如3,0x y ==时,所以它的逆否命题也是假命题,所以是错误的; 故真命题的序号是②. 【点睛】本题主要考查了命题的否定,复合命题的真假判定,充分与必要条件的判断问题,同时考查了四种命题之间的关系的应用,试题有一定的综合性,属于中档试题,着重考查了推理与论证能力.16.【详解】试题分析:由题意得解得所以由解得即要使得是的充分不必要条件则解得所以实数的取值范围是考点:充分不必要条件的应用;不等式的求解【方法点晴】本题主要考查了充分条件和必要条件的判定与应用分式不等式解析:10,2⎡⎤⎢⎥⎣⎦【详解】试题分析:由题意得,21:01x p x -<-,解得112x <<,所以1:12p x <<,由2:2110q x a x a a ,解得1a x a ≤≤+,即1q a x a ≤≤+:,要使得p 是q的充分不必要条件,则11{12a a +≥≤,解得102a ≤≤,所以实数a 的取值范围是10,2⎡⎤⎢⎥⎣⎦. 考点:充分不必要条件的应用;不等式的求解. 【方法点晴】本题主要考查了充分条件和必要条件的判定与应用、分式不等式和一元二次不等式的求解等知识的应用,本题的解答中根据分式不等式的求解和一元二次不等式的求解,求解,p q 的解集,再由p 是q 的充分不必要条件,列出不等式组是解答的关键,着重考查了学生分析问题和解答问题的能力,属于中档试题.17.4029【解析】试题分析:设等比数列公比为的公比为因为所以即所以解得考点:等比数列求和公式解析:4029 【解析】试题分析:设等比数列公比为{}n a 的公比为,因为,所以,,即,所以,解得.考点:等比数列求和公式.18.1<<4【详解】试题分析:根据充分条件的定义将条件转化为不等式恒成立即当时恒成立即恒成立;然后利用二次函数的性质易求其最值为要使得需要满足化简求解得1<<4考点:必要条件充分条件与充要条件的判断解析:1<a <4 【详解】试题分析:根据充分条件的定义将条件转化为不等式恒成立,即当时,恒成立,即恒成立;然后利用二次函数的性质易求其最值为,要使得,需要满足,化简求解得1<a <4.考点:必要条件、充分条件与充要条件的判断.19.1980【分析】根据题意将所有元素在子集中的个数算出然后再求和即可【详解】因为集合所以含元素1的子集有同理含2345678910的子集也各有所以故答案为:1980【点睛】本题主要考查集合的新定义以及解析:1980 【分析】根据题意,将所有元素在子集中的个数算出,然后再求和即可. 【详解】因为集合{}{}*110,,1,2,3,4,5,6,7,8,9,10S x x x N n N=≤≤∈∈=,所以含元素1的子集有29C ,同理含2,3,4,5,6,7,8,9,10的子集也各有29C ,所以2121209...(123...10)a a a C +++=++++⨯,()1011098198022+⨯=⨯=.故答案为:1980 【点睛】本题主要考查集合的新定义以及组合问题,还考查了分析推理的能力,属于中档题.20.【分析】求出两个命题的等价命题即x 的取值范围得到两命题pq 分别对应的的集合AB 由q 是p 的必要不充分条件得进而可求实数a 的取值范围【详解】因为所以所以命题p 对应的集合为解不等式可得命题q 对应的集合为因解析:10,2⎡⎤⎢⎥⎣⎦【分析】求出两个命题的等价命题,即x 的取值范围,得到两命题p ,q 分别对应的的集合A ,B ,由q 是p 的必要不充分条件,得A B ≠⊂,进而可求实数a 的取值范围。

上海上海第中学必修第一册第一单元《集合与常用逻辑用语》检测(包含答案解析)

上海上海第中学必修第一册第一单元《集合与常用逻辑用语》检测(包含答案解析)

一、选择题1.已知:250p x ->,2:20q x x -->,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件2.已知x 、y 都是实数,那么“x y >”的充分必要条件是( ). A .lg lg x y >B .22xy >C .11x y>D .22x y >3.已知命题“x R ∀∈,2410ax x +-<”是假命题,则实数a 的取值范围是( ) A .(),4-∞-B .(),4-∞C .[)4,-+∞D .[)4,+∞4.下列命题中,不正确...的是( ) A .0x R ∃∈,200220x x -+≥B .设1a >,则“b a <”是“log 1a b <”的充要条件C .若0a b <<,则11a b> D .命题“[]1,3x ∀∈,2430x x -+≤”的否定为“[]01,3x ∃∈,200430x x -+>”5.若实数a ,b 满足0a >,0b >,则“a b >”是“ln ln a b b a ->+-”的( )( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知等比数列{}n a 的前n 项和为n S ,则“10a >”是“20210S >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件7.已知,αβR ∈,则“αβ=”是“tan tan αβ=”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 8.若命题“∃x 0∈R ,x +(a -1)x 0+1<0”是真命题,则实数a 的取值范围是( )A .(-1,3)B .[-1,3]C .(-∞,-1)∪(3,+∞)D .(-∞,-1]∪[3,+∞)9.函数()31f x x ax =--在()1,1-上不单调的一个充分不必要条件是( ) A .[]0,3a ∈B .()0,5a ∈C .()0,3a ∈D .()1,2a ∈10.下列有关命题的说法正确的是( )A .若命题p :0x R ∃∈,01x e <,则命题p ⌝:x R ∀∈,1x e ≥B .“3sin 2x =”的一个必要不充分条件是“3x π=”C .若+=-a b a b ,则a b ⊥D .α,β是两个平面,m ,n 是两条直线,如果m n ⊥,m α⊥,βn//,那么αβ⊥ 11.不等式220x x --<成立的一个充分不必要条件是21a x a <<+,则a 的取值范围为( ) A .–11a ≤≤ B .–11a ≤<C .–11a <<D .11a -<≤12.以下四个命题中错误..的是( ) A .若样本1x 、2x 、、5x 的平均数是2,方差是2,则数据12x 、22x 、、52x 的平均数是4,方差是4B .ln 0x <是1x <的充分不必要条件C .样本频率分布直方图中的小矩形的面积就是对应组的频率D .抛掷一颗质地均匀的骰子,事件“向上点数不大于3”和事件“向上点数不小于4”是对立事件二、填空题13.命题“2000,2390x R x ax ∃∈-+<”为假命题,则实数a 的取值范围是 .14.设:5x α≤-或1x ≥,:2321m x m β-≤≤+,若α是β的必要条件,求实数m 的取值范围_______________.15.设全集U Z =,{}1,3,5,7,9A =,{}1,2,3,4,5B =,则下图中阴影部分表示的集合是_____.16.已知()()21f n n n N*=+∈,集合{}{}1,2,3,4,5,3,4,5,6,7A B ==,记()(){}()(){},f A n f n A f B m f m B =∈=∈, 则()()f A f B ⋂=_________.17.若集合A ={x|2≤x≤3},集合B ={x|ax -2=0,a ∈Z},且B ⊆A ,则实数a =________. 18.若命题“(0,)x ∀∈+∞,不等式4a x x<+恒成立”为真,则实数a 的取值范围是__________. 19.设{}1,2,3,M n =,则M 的所有子集的最小元素之和为__________20.非空集合*S N ⊆,且满足条件“x S ∈,则()10x S -∈”,则集合S 的所有元素之和的总和为______.三、解答题21.设命题p :实数x 满足x 2﹣4ax +3a 2<0(a >0),命题q :实数x 满足x 2﹣5x +6<0. (1)若a =1,且p ∧q 为真命题,求实数x 的取值范围; (2)若p 是q 的必要不充分条件,求实数a 的取值范围.22.设命题0:p x R ∃∈,2020x -=;命题:q 函数22sin y x =在,62ππ⎛⎫-⎪⎝⎭上先增后减. (1)判断p ,q 的真假,并说明理由; (2)判断p q ∨,p q ∧,()p q ∧⌝的真假.23.已知集合103x A xx +⎧⎫=≤⎨⎬-⎩⎭∣,{}2(1)20B x x m x m =--+-≤∣. (1)若[,][1,4]A a b ⋃=-,求实数a ,b 满足的条件; (2)若A B A ⋃=,求实数m 的取值范围.24.已知集合{}{}|25,|121.A x x B x m x m =-≤≤=+≤≤-(1)若AB =∅,求实数m 的取值范围;(2)若A B A ⋃=,求实数m 的取值范围.25.已知命题:P 实数x 满足2280x x --≤,命题:q 实数x 满足2(0)x m m -≤> (1)当m=3时,若“p 且q”为真,求实数x 的取值范围;(2)若“非p”是“非q”的必要不充分条件,求实数m 的取值范围.26.关于x 的不等式1x a -<的解集为A ,关于x 的不等式2320x x -+≤的解集为B ,若x A ∈是x B ∈的必要不充分条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先求出,p q 对应的不等式的解,再利用集合包含关系,进而可选出答案. 【详解】由题意,5:2502p x x ->⇒>,设5|2A x x ⎧⎫=>⎨⎬⎩⎭2:20q x x -->,解得:2x >或1x <-,设{|2B x x =>或}1x <-显然A 是B 的真子集,所以p 是q 的充分不必要条件. 故选:A. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.2.B解析:B 【分析】根据不等式的性质,结合充分条件与必要条件的概念,逐项判断,即可得出结果. 【详解】 对于A ,lg lg 0x y x y >⇔>>,故“lg lg x y >”是“x y >”的充分不必要条件,不符合题意; 对于B ,22⇔>>x y x y ,即“22x y >”是“x y >”的充要条件,符合题意;对于C ,由11x y>得,0x y <<或0x y >>,0x y <<,不能推出x y >,由x y >也不能推出11x y >,所以“11x y>”是“x y >”的既不充分也不必要条件,不符合题意; 对于D ,由22x y x y >⇔>,不能推出x y >,由x y >也不能推出22x y >,故“22x y >”是“x y >”的既不充分也不必要条件,不符合题意; 故选:B. 【点睛】方法点睛:本题主要考查判定命题的充要条件,及不等式的性质,充分条件、必要条件的三种判定方法:(1)定义法:根据p q ⇒,q p ⇒进行判断,适用于定义、定理判断性问题. (2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母的范围的推断问题.(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题.3.C解析:C 【分析】由题意可知,命题“x R ∃∈,2410ax x +-≥”是真命题,分0x =和0x ≠两种情况讨论,结合参变量分离法可求得实数a 的取值范围. 【详解】由题意可知,命题“x R ∃∈,2410ax x +-≥”是真命题. 当0x =时,则有10-≥,不合乎题意;当0x ≠时,由2410ax x +-≥,可得214ax x ≥-,则有221414x a x x x-≥=-, 22141244x x x ⎛⎫-=--≥- ⎪⎝⎭,当且仅当12x =时,等号成立,所以,4a ≥-.综上所述,实数a 的取值范围是[)4,-+∞. 故选:C. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.4.B解析:B 【分析】由()2200022110x x x -+=-+≥,可判断A ;由对数函数的定义域和对数函数的单调性得充分性不一定成立,必要性成立,可判断B ;运用作差法,判断其差的符号可判断C ;根据全称命题的否定是特称命题可判断D. 【详解】由()2200022110x x x -+=-+≥,得A 为真命题;由“b a <”不能推出“log 1a b <”,所以充分性不一定成立,由“log 1a b <”得“b a <”,所以必要性成立,故B 不正确;由0a b <<,则110b aa b ab --=>,∴11a b>,故C 正确; 根据全称命题的否定是特称命题知D 正确. 故选:B. 【点睛】本题考查判断命题的真假,对数函数的定义域,单调性,全称命题与特称命题的关系,属于中档题.5.C解析:C 【分析】构造函数()ln f x x x =+,据a ,b 的范围结合函数的单调性确定充分条件,还是必要条件即可. 【详解】设()ln f x x x =+,显然()f x 在(0,)+∞上单调递增,a b >,所以()()f a f b >ln ln a a b b ∴+>+,即ln ln a b b a ->+-,故充分性成立, 因为ln ln a b b a ->+-ln ln a a b b ∴+>+,所以()()f a f b >,a b ∴>,故必要性成立,故“a b >”是“ln ln a b b a ->+-”的充要条件, 故选:C . 【点睛】本题考查了函数的单调性,必要条件、充分条件与充要条件的判断,考查了构造函数法的应用,是基础题.6.C解析:C 【分析】结合等比数列的前n 项和公式,以及充分、必要条件的判断方法,判断出正确选项. 【详解】由于数列{}n a 是等比数列,所以2021111n q S a q-=⋅-,由于101nq q ->-,所以 2021111001nq S a a q-=⋅>⇔>-,所以“10a >”是“20210S >”的充要条件. 故选:C 【点睛】本小题主要考查等比数列前n 项和公式,考查充分、必要条件的判断,属于中档题.7.D解析:D 【详解】 若2παβ==则tan ,tan αβ不存在,若tan tan αβ=,可得k απβ=+,故选D8.C解析:C 【分析】根据二次函数的图象与性质,得到关于a 的不等式,即可求解. 【详解】由题意,2000,(1)10x R x a x ∃∈+-+<,则2(1)40a ∆=-->,解得3a >或1a <-, 所以实数a 的取值范围是(,1)(3,)-∞-+∞,故选C.【点睛】本题主要考查了存在性命题的真假判定及应用,其中熟记转化为二次函数,利用二次函数的图象与性质是解答的关键,着重考查了推理与计算能力.9.D解析:D 【分析】先求出()f x 在()1,1-上单调的范围,其补集即为不单调的范围,结合选项即可得到答案. 【详解】由已知,当()1,1x ∈-时,()[)23,3f x x a a a '=-∈--,当0a ≤时,()0f x '≥,当3a ≥时,()0f x '≤, 所以()f x 在()1,1-上单调,则0a ≤或3a ≥, 故()f x 在()1,1-上不单调时,a 的范围为()0,3,A 、B 是必要不充分条件,C 是充要条件,D 是充分不必要条件. 故选:D. 【点睛】本题主要考查利用导数研究函数的单调性,涉及到充分条件、必要条件的判断,考查学生的逻辑推理能力,数学运算能力,是一道中档题.10.A解析:A 【分析】对选项逐个分析,对于A 项,根据特称命题的否定是全称命题,得到其正确;对于B 项,根据充分必要条件的定义判断正误;对于C 项根据向量垂直的条件得到其错误,对于D 项,从空间直线平面的关系可判断正误. 【详解】对于A ,命题p :0x R ∃∈,01x e <,则命题p ⌝:x R ∀∈,1x e ≥,A 正确;对于B ,当3x π=时, sin x =成立,所以“3x π=”是“sin x =”的充分条件,所以B 错误; 对于C ,a b >且两向量反向时 +=-a b a b 成立, a b ⊥不成立C 错误; 对于D ,若m n ⊥,m α⊥,βn//,则α,β的位置关系无法确定,故D 错误. 故选:A. 【点睛】该题考查的是有关选择正确命题的问题,涉及到的知识点有含有一个量词的命题的否定,充分必要条件的判断,空间直线和平面的关系,属于简单问题.11.D解析:D 【分析】求解一元二次不等式可得220x x --<的解集,再由题意得关于a 的不等式组求解即可. 【详解】由不等式220x x --<,得12x -<<,∵不等式220x x --<成立的一个充分不必要条件是21a x a <<+,∴()2,1a a +⫋()12-,, 则221112a a a a ⎧<+⎪≥-⎨⎪+≤⎩且1a ≥-与212a +≤的等号不同时成立,解得11a -<≤, ∴a 的取值范围为11a -<≤, 故选:D . 【点睛】本题主要考查充分必要条件的判定及其应用,考查数学转化思想方法,属于中档题.12.A解析:A 【分析】利用平均数和方差公式可判断A 选项的正误;解不等式ln 0x <,利用集合的包含关系可判断B 选项的正误;根据频率直方图的概念可判断C 选项的正误;根据对立事件的概念可判断D 选项的正误.综合可得出结论. 【详解】对于A 选项,样本1x 、2x 、、5x 的平均数为1234525x x x x x x ++++==,方差为()()()()()222221234522222225x x x x x s ⎡⎤-+-+-+-+-⎣⎦==, 数据12x 、22x 、、52x 的平均数是1234522222245x x x x x x x ++++'===,方差为()()()()()2222212345224242424245x x x x x s ⎡⎤-+-+-+-+-⎣⎦'=()()()()()2222212345242222244285x x x x x s ⎡⎤-+-+-+-+-⎣⎦===⨯=,A 选项错误;对于B 选项,解不等式ln 0x <,得01x <<,{}01x x << {}1x x <,所以,ln 0x <是1x <的充分不必要条件,B 选项正确;对于C 选项,由频率分布直方图的概念可知,样本频率分布直方图中的小矩形的面积就是对应组的频率,C 选项正确;对于D 选项,抛掷一颗质地均匀的骰子,事件“向上点数不大于3”即为:向上的点数为1或2或3,事件“向上点数不小于4”即为:向上的点数为4或5或6, 这两个事件互为对立事件,D 选项正确. 故选:A. 【点睛】本题考查命题正误的判断,涉及平均数、方差的计算、充分不必要条件的判断、频率直方图和对立事件概念的理解,考查推理能力,属于中等题.二、填空题13.【解析】试题分析:由题意可得命题:为真命题所以解得考点:命题的真假解析:a -≤≤【解析】试题分析:由题意可得命题:x R ∀∈,22390x ax -+≥为真命题.所以()234290a ∆=--⨯⨯≤,解得a -≤≤ 考点:命题的真假.14.或【分析】根据充分必要条件的定义以及集合的包含关系求出的范围即可【详解】解:或若是的必要条件则或故或故答案为:或【点睛】本题考查了充分必要条件考查集合的包含关系属于基础题解析:3m ≤-或2m ≥ 【分析】根据充分必要条件的定义以及集合的包含关系求出m 的范围即可. 【详解】解::5x α-或1x ,:2321m x m β-+, 若α是β的必要条件, 则231m -或215m +-, 故2m 或3m -, 故答案为:2m 或3m -. 【点睛】本题考查了充分必要条件,考查集合的包含关系,属于基础题.15.【分析】先判断阴影部分表示的集合为再计算得到答案【详解】集阴影部分表示的集合为:故答案为【点睛】本题考查了韦恩图的识别将图像转化为集合的运算是解题的关键 解析:{}2,4【分析】先判断阴影部分表示的集合为U B C A ⋂,再计算得到答案. 【详解】集U Z =,{}1,3,5,7,9A =,{}1,2,3,4,5B = 阴影部分表示的集合为:{}2,4U B C A ⋂= 故答案为{}2,4 【点睛】本题考查了韦恩图的识别,将图像转化为集合的运算是解题的关键.16.【分析】由题意求得所再根据集合的交集的运算即可求解【详解】由题意知集合所以所以故答案为:【点睛】本题主要考查了集合的交集的概念与运算其中解答中正确求解集合是解答的关键着重考查了推理与运算能力属于基础题 解析:{}7,9,11【分析】由题意求得所(){}3,5,7,9,11f A =,(){}7,9,11,13,15f B =,再根据集合的交集的运算,即可求解. 【详解】由题意,知()()21f n n n N*=+∈,集合{}{}1,2,3,4,5,3,4,5,6,7A B ==,所以()(){}{}3,5,7,9,11f A n f n A =∈=,()(){}{}7,9,11,13,15f B m f m B =∈=, 所以()(){}7,9,11f A f B ⋂=. 故答案为:{}7,9,11. 【点睛】本题主要考查了集合的交集的概念与运算,其中解答中正确求解集合,A B 是解答的关键,着重考查了推理与运算能力,属于基础题.17.0或1【分析】根据B ⊆A 讨论两种情况:①B=∅;②B≠∅分别求出a 的范围;【详解】∵B ⊆A 若B=∅则a=0;若B≠∅则因为若2∈B ∴2a ﹣2=0∴a=1若3∈B 则3a ﹣2=0∴a=∵a ∈Z ∴a≠∴a解析:0或1 【分析】根据B ⊆A ,讨论两种情况:①B=∅;②B≠∅,分别求出a 的范围; 【详解】 ∵B ⊆A , 若B=∅,则a=0;若B≠∅,则因为若2∈B ,∴2a ﹣2=0,∴a=1,若3∈B ,则3a ﹣2=0,∴a=32,∵a ∈Z ,∴a≠32, ∴a=0或1,故答案为a=0或1.【点睛】此题主要考查集合关系中的参数的取值问题,此题是一道基础题,注意a 是整数. 18.【解析】由基本不等式可知故解析:a 4<【解析】由基本不等式可知44x x +≥=,故4a <. 19.【分析】先确定元素再确定该元素为最小时对应子集个数最后利用错位相减法求和【详解】若1为最小元素则对应子集个数为个;若2为最小元素则对应子集个数为个;…若n 为最小元素则对应子集个数为个;所以的所有子集 解析:122n n +--【分析】先确定元素,再确定该元素为最小时对应子集个数,最后利用错位相减法求和.【详解】若1为最小元素,则对应子集个数为12n -个;若2为最小元素,则对应子集个数为22n -个;…...若n 为最小元素,则对应子集个数为02个;所以M 的所有子集的最小元素之和为2301223222n n n n ---+⨯+⨯++⨯ 设1230222322n n n n S ---+⨯+=⨯++⨯1212232222n n n n S --+⨯+⨯++⨯= 相减得231112(12)222222212n n n n n n n n n S ---+-++++-==-=--+- 故答案为:122n n +--【点睛】本题考查错位相减法求和以及子集个数,考查综合分析求解能力,属中档题.20.720【分析】欲求中所有元素和的总和需要知道中的元素和分别是多少;中的元素都可以通过题中已知条件:则求出【详解】解:依题意得为正整数集且及均为正整数即可可取的任意正整数1和9要么必须同时出现要么都不 解析:720.【分析】欲求S 中所有元素和的总和,需要知道S 中的元素和分别是多少;S 中的元素都可以通过题中已知条件:x S ∈,则(10)x S -∈求出.【详解】解:依题意得S 为正整数集,x S ∈,且10x S -∈ x 及10x -均为正整数即可 x 可取19→的任意正整数,1和9要么必须同时出现,要么都不出现;同理:2和8、3和7、4和6依此类推5……单独考虑,共5组.那么:只选1组是45,即(19)(28)545++++⋯⋯+=依此类推:选2组是180,选3组是270,选4组是180,选5组是45,共计4518027018045720++++=.故答案为:720.【点睛】首先要明确*N 所代表的数集,然后根据已知条件将所有的可能考虑全面即可,属于中档题.三、解答题21.(1)(2,3)(2)[1,2]【分析】(1)根据p ∧q 为真命题,所以p 真且q 真,分别求出命题p 为真命题和命题q 为真命题时对应的x 的取值范围,取交集,即可求出x 的取值范围;(2)先分别求出命题p 为真命题和命题q 为真命题时,对应的集合,再根据充分、必要条件与集合之间的包含关系,即可求出。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年高中数学上册 第1章《集合和命题》
同步练习(1) 沪教版
一.填空题:(每小题5分,共25分)
1.写出满足关系式A ⊂≠
{1,2}的所有集合A . 2.用描述法表示被5除余1的整数的集合 .
3.集合A ={z |z =q
p ,其中p +q =5,且p 、q ∈N *}的所有真子集的个数 . 4.已知集合A ={2,4,6},若a ∈A ,6-a ∈A ,则a = .
5.若集合A ={(m ,n )|1
+m n =1,m ,n ∈R },B ={(m ,n )|n =1+m ,m ,n ∈R },则A 与B 的关系是 .
6.集合M ={a ,b ,c ,d ,e },则包含{a ,b }的M 的子集共有 个.
二.选择题:(每小题5分,共25分)
7.下列关于空集Φ的叙述:①0∈Φ;②Φ∈{Φ};③Φ={0}.正确的个数是( )
(A )0; (B )1; (C )2; (D )3.
8.下列各组集合M 与N 中,表示相等的集合是( )
(A )M ={(0,1)},N ={0,1}; (B )M ={(0,1)},N ={(1,0)};
(C )M ={(0,1)},N ={(x ,y )|x =0且y =1}; (D )M ={π},N ={3.14}.
9.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若Φ真包含于集合A ,则A ≠Φ.其中正确的有( )
(A )0个; (B )1个; (C )2个; (D )3个.
10.设a ,b ∈R ,集合{1,a +b ,a }={0,b ,
a
b },则b -a 等于( ) (A )1; (B )-1; (C )2; (D )-2.
三.解答题:(12+12+12+14=50分)
11.当a ,b 满足什么条件时,集合A ={x |ax +b =0}是有限集、无限集、空集? 解:
ax+3x+1=0,x∈R},(1)若A中只有一个元素,求实数a的值;12.已知集合A={x|2
(2)若A中至多有一个元素,求实数a的取值范围.
解:
13.若集合A={x|2x+ax+b=0},B={x|2x+cx+6=0},问是否存在实数a,b,c,使A∪B=B且A∩B={2},如果存在,求出a,b,c的值;如果不存在,说明理由.解:
14.已知集合A ={x |-1≤x <4},B ={x |2x -4ax +32a =0}.
(1)若B ⊂≠A ,求实数a 的取值范围;
(2)若A ∩B =Φ,求实数a 的取值范围.
解:
高一数学集合及其表示测试 2009.9.8
一.填空题:(每小题5分,共25分)
1.写出满足关系式A ⊂≠{1,2}的所有集合A Φ、{1}、{2} .
2.用描述法表示被5除余1的整数的集合 A ={x |x =5k +1,k ∈Z } .
3.集合A ={z |z =q p
,其中p +q =5,且p 、q ∈N *}的所有真子集的个数 15
. 4.已知集合A ={2,4,6},若a ∈A ,6-a ∈A ,则a = 2或4 .
5.若集合A ={(m ,n )|1
+m n =1,m ,n ∈R },B ={(m ,n )|n =1+m ,m ,n ∈R },则A 与B 的关系是 A ⊂≠
B . 6.集合M ={a ,b ,c ,d ,e },则包含{a ,b }的M 的子集共有 8 个.
二.选择题:(每小题5分,共25分)
7.下列关于空集Φ的叙述:①0∈Φ;②Φ∈{Φ};③Φ={0}.正确的个数是( B )
(A )0; (B )1; (C )2; (D )3.
8.下列各组集合M 与N 中,表示相等的集合是( C )
(A )M ={(0,1)},N ={0,1}; (B )M ={(0,1)},N ={(1,0)};
(C )M ={(0,1)},N ={(x ,y )|x =0且y =1}; (D )M ={π},N ={3.14}.
9.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若Φ真包含于集合A ,则A ≠Φ.其中正确的有( B )
(A )0个; (B )1个; (C )2个; (D )3个.
10.设a ,b ∈R ,集合{1,a +b ,a }={0,b ,
a b },则b -a 等于( C ) (A )1; (B )-1; (C )2; (D )-2.
三.解答题:(12+12+12+14=50分)
11.当a ,b 满足什么条件时,集合A ={x |ax +b =0}是有限集、无限集、空集? 解:当a ≠0,b ∈R 时,ax +b =0有唯一解x =-a
b ,集合A 为有限集; 当a =0,b =0时,ax +b =0有无穷多个解,集合A 为无限集;
当a =0,b ≠0时,ax +b =0有无解,集合A 为空集.
12.已知集合A ={x |2
ax +3x +1=0,x ∈R },(1)若A 中只有一个元素,求实数a 的值;
(2)若A 中至多有一个元素,求实数a 的取值范围.
解:(1)当a =0时,3x +1=0,满足条件;
当a ≠0时,△=9-4a =0,a =
4
9; ∴满足条件的实数a 的值为:0或49. (2)若A 中只有一个元素,则实数a 的值为:0或
49; 若A =Φ,则△=9-4a <0,得:a >4
9. ∴满足条件的实数a 的取值范围为:a =0或a ≥
49.
13.若集合A ={x |2x +ax +b =0},B ={x |2x +cx +6=0},是否存在实数a ,b ,c ,使A ∪B =B 且A ∩B ={2},若存在,求出a ,b ,c 的值;若不存在,说明理由. 解:∵A ∩B ={2},∴2∈B ,得:4+2c +6=0,c =-5,即:B ={2,3}.
∵A ∪B =B ,∴A ⊂≠
B 且2∈A ,得:A ={2}. 当A ={2}时,⎩⎨⎧=⨯-=+b
a 2222,得:a =-4,
b =4;
∴存在实数a =-4,b =4,c =-5,使A ∪B =B 且A ∩B ={2}.
14.已知集合A ={x |-1≤x <4},B ={x |2x -4ax +32a =0}.
(1)若B ⊂≠
A ,求实数a 的取值范围; (2)若A ∩
B =Φ,求实数a 的取值范围.
解:∵2x -4ax +32
a =0,∴x =a 或x =3a .
当a =0时,B ={0};当a ≠0时,B ={a ,3a }. (1)若B ⊂≠A 时,a =0或⎪⎩
⎪⎨⎧<≤-<≤-≠431410a a a ,∴-31≤a <34. (2)若A ∩B =Φ时,⎩⎨⎧≥>40a a 或⎩⎨⎧-<<10a a ,∴a ≥4或a <-1.。

相关文档
最新文档