润滑脂防腐性及测试方法
润滑脂性能指标详解
滴点
滴点是指润滑脂在规定条件下从试验装置的孔里落下第一滴 油脂时的温度(不是熔点),它大致地决定脂的最高使用温
度。对于皂基脂,其使用温度应低于滴点 20~30℃。
蒸发性
又称蒸发损失性,表示润滑脂在规定温度条件下蒸发后其损 失量所占的重量百分数,蒸发损失越小越好。润滑脂的蒸发
性主要取决于润滑油的性质和馏分组成。
示。
防腐性是润滑脂阻止与其相接触金属被腐蚀的能力,用来衡 防腐性(防护性) 量脂在湿热的条件下对金属的防锈保护能力,要求在室温和
湿度较大条件下不腐蚀金属。
泵送性
泵送性是指在压力作用下,把润滑脂送到分配系统的管道喷 嘴和脂枪嘴等部位的难易程度。
抗橡胶溶胀性 成沟性
气穴敏感性 内聚力 粘附性 触变性
抗橡胶溶胀性是指润滑脂对密封件等橡胶制品不致有超过限 度的溶解、渗入或泡胀变形的现象。
胶体安定性表明润滑脂在使用、运输和贮存过程中的析油趋 势或保持胶体结构的能力,润滑脂胶体安定性对高温和高负
荷用途很重要。
抗磨性是指润滑脂通过保持在运动部件表面的油膜,防止接
抗磨性
触摩擦面产生磨损的能力。测定抗磨性的方法一般用四球机 测定临界负荷 PB 值;烧结负荷 PD 值;综合磨损指标。梯姆肯 试验机测 OK 值等。
润滑脂性能指标详解
稠度
稠度是指润滑脂在外力作用下抵抗变形的程度。稠度一般用 锥入度来表示,稠度愈大,锥入度愈小,塑性强度愈大。
稠度等级
NLGI(美国润滑脂协会)分为九个等级,从 000 到 6 共九个。
锥入度
锥入度是润滑脂稠度的一个量度。锥入度越大,润滑脂越软。 用一个标准圆锥体在 5s 内,沉入到一定温度的润滑脂内的深 度,以 1/10mm 为一个单位,体现润滑脂注入润滑点的难易程 度。
二硫化钼润滑脂标准
二硫化钼润滑脂标准
二硫化钼润滑脂是一种高效的润滑材料,广泛应用于机械制造、汽车制造、航空航天等领域。
为了保证二硫化钼润滑脂的品质,制定了一系列的标准。
本文将介绍二硫化钼润滑脂的标准,包括其性能、检测方法、使用要求等方面。
一、性能要求
1. 外观:应为光滑均匀的黑色膏状物。
2. 锥入度:不大于310mm。
3. 滴点:不低于230℃。
4. 氧化安定性:在100℃下,24h内酸值变化不超过
0.5mgKOH/g。
5. 机械稳定性:在60次往返运动后,锥入度变化不超过30%。
6. 腐蚀性:铜片腐蚀等级不高于1级。
7. 防锈性:在96h内,铜片腐蚀等级不高于1级。
二、检测方法
1. 锥入度:按GB/T 269标准测定。
2. 滴点:按GB/T 3498标准测定。
3. 氧化安定性:按SH/T 0325标准测定。
4. 机械稳定性:按GB/T 7321标准测定。
5. 腐蚀性:按GB/T 5018标准测定。
6. 防锈性:按GB/T 7326标准测定。
三、使用要求
1. 在使用前应先清洗润滑部位,并确保其干燥无水。
2. 使用时应均匀涂抹在润滑部位,避免过量使用。
3. 在高温环境下使用时,应注意防止二硫化钼润滑脂炭化。
4. 在低温环境下使用时,应注意防止润滑脂过度硬化,影响润滑效果。
5. 在长期存储时,应存放在干燥、阴凉、通风的地方,避免受潮。
以上就是关于二硫化钼润滑脂标准的介绍。
通过严格执行标准,可以保证二硫化钼润滑脂的品质和性能,提高机械设备的使用寿命和效率。
润滑脂性能测试方法研究
润滑脂性能测试方法研究润滑脂是一种常用于机械设备中的润滑剂,其性能的好坏直接影响着机械设备的运行效果和寿命。
为了确保润滑剂的质量和性能,科研人员不断探索和改进润滑脂性能测试方法。
本文将就润滑脂性能测试方法进行研究与讨论。
一、黏度测试方法黏度是润滑脂最基本的性能之一,润滑脂的黏度对机械设备的润滑效果有着重要的影响。
目前常用的润滑脂黏度测试方法有多种,如锥板黏度法、均质化仪法和旋转黏度法等。
这些测试方法的原理和操作步骤略有不同,但都能较为准确地测量出润滑脂的黏度。
二、滴点测试方法滴点是润滑脂的另一个重要性能指标,它在高温下测量润滑脂在液态和固态之间的转变点。
滴点测试方法目前主要有两种,即滴点式和滴沥式。
滴点式测试方法是通过将润滑脂样品加热,然后放置在试验设备中,观察其滴下转变为滴沥的温度。
而滴沥式测试方法是通过将润滑脂样品在试验设备中加热、旋转,然后观察其滴沥的温度。
这两种方法都能较为准确地测量出润滑脂的滴点。
三、极压性能测试方法极压性能是润滑脂在极高压力下保持润滑性能的能力。
现有的极压性能测试方法主要有四球法、滚珠法和扭矩法等。
其中,四球法是通过将三个小球加压到润滑脂样品上,然后用第四个大球滚动在小球上,观察润滑脂的极压性能。
滚珠法是通过在机械设备上设置滚珠,然后在一定的条件下测量滚珠的滚动阻力来评估润滑脂的极压性能。
扭矩法是通过在设备上加上一定的扭矩,然后测量润滑脂能承受的最大扭矩来判断其极压性能。
四、抗氧化性能测试方法抗氧化性能是衡量润滑脂长期使用寿命的重要指标之一。
目前常用的抗氧化性能测试方法有旋转氧化安定性测试法(ROT)、氧化安定性试验法和微量热法等。
这些方法均通过模拟润滑脂在高温、高氧环境下的长期使用情况,评估其抗氧化性能。
综上所述,润滑脂性能测试方法的研究对于确保润滑脂质量和性能至关重要。
黏度、滴点、极压性能和抗氧化性能是润滑脂的重要性能指标,并且可以通过相应的测试方法进行准确测量。
润滑脂nlgi标准astm检测方法
润滑脂nlgi标准astm检测方法润滑脂的品质直接影响着机械设备的运行效果和使用寿命,因此正确选择和检测润滑脂至关重要。
在众多润滑脂品牌中,NLGI标准的润滑脂是一种常见的选择。
那么,如何检测这种润滑脂的品质呢?这就需要了解ASTM检测方法。
一、NLGI标准润滑脂简介NLGI标准润滑脂是一种低针入度、高粘度的润滑脂,其针入度为50-150,颜色为黑色。
这种润滑脂通常用于需要高粘性、低磨损的机械设备中,如轴承、齿轮等部位。
它能够有效地减少摩擦和磨损,提高机械设备的运行效率和寿命。
二、ASTM检测方法1. 样品准备:首先,需要准备适量的润滑脂样品,确保其符合NLGI标准。
2. 粘度检测:使用粘度计对润滑脂进行检测,确保其粘度符合要求。
3. 老化测试:将润滑脂样品在规定的环境下进行老化测试,以检测其性能变化。
4. 摩擦试验:进行摩擦试验,比较不同润滑脂在不同条件下的摩擦系数,以确定润滑脂的性能。
5. 耐久性测试:模拟机械设备的使用环境,对润滑脂进行耐久性测试,以评估其在实际使用中的表现。
三、检测过程中的注意事项1. 确保检测环境符合规定,避免环境因素对检测结果的影响。
2. 确保润滑脂样品的质量,避免因样品问题导致检测结果不准确。
3. 在进行摩擦试验时,应使用相同的试验条件和方法,以便于对比和评估。
4. 测试过程中要保持数据的准确记录,以便于分析和评估。
四、检测结果的应用通过以上步骤的检测,可以确定所使用的NLGI标准润滑脂是否符合要求。
如果检测结果符合标准,那么可以放心使用;如果不符合标准,则需要更换合格的润滑脂,以保障机械设备的正常运行。
同时,根据检测结果可以进行必要的调整和优化,以提高机械设备的性能和寿命。
总之,正确的选择和检测润滑脂对于保障机械设备的安全运行至关重要。
通过了解NLGI标准和ASTM检测方法,我们可以更科学地选择和使用润滑脂,提高机械设备的性能和寿命。
润滑油脂的性能及其测试方法参考标准
润滑剂(润滑油脂)的性能及其测试方法、参考标准润滑剂(润滑油脂)的性能是润滑剂(润滑油脂)的组成及配制工艺的综合体现。
润滑剂(润滑油脂)性能的测试不但在生产上和研究工作上有决定性的意义,而且在生产部分、使用部门对润滑剂(润滑油脂)的选用和检验上也是必不可少的。
实践证明理化性能试验、模拟试验、台架试验,是开发润滑剂(润滑油脂)新品必不可少的步骤:(1)在实验室评价润滑油脂的理化性能。
试验方法必须有代表性、简单和快速。
(2)模拟试验。
将润滑油脂润滑的特定机械部件在标准化的试验条件下(如温度、速度、载荷等)进行试验。
所选用的试验条件尽量能模拟实际使用情况。
(3)台架试验。
将内燃机油在选用的发动机上按标准化条件进行一定时间的运转后评定其性能。
发动机台架试验的结果是判定内燃机油质量等级的依据,对于内燃机油特别重要。
在生产和销售中则以理化试验作为衡量产品性能的主要尺度。
现对润滑剂(润滑油脂)性能及三个测试步骤的内容分述于下。
一、润滑油的性能现代润滑油必备的基本性能,是要保证机械润滑的最低粘度;粘度随温度变化小的高粘度指数;优良的抗氧化性和耐热性;在便用条件下具有良好的流动性优良的抗磨损及润滑性;对氧化产物溶解能力强;对机械无腐蚀和锈蚀;在使用环境下的低挥发性;良好的抗乳化和抗泡性等。
二、理化性能试验理化性能试验简单快速,具有代表性,现在常用的理化性能试验项目为:(1)粘度:是液体流动内摩擦阻力的量度,是评价油品流动性的最基本指标,是各种润滑油分类分级,质量鉴别和确定用途的重要指标。
馏分相同而化学组成不同的润滑油,其粘度不同。
动力粘度:动力粘度是液体在一定剪切应力下流动时内摩擦力的量度,其值为所加于流动液体的剪切应力和剪切速率之比。
国际单位制中以帕•秒表示。
在低温下测定的动力粘度,可以表征油品的低温启动性。
运动粘度:是液体在重力作用下流动时内摩擦力的量度,其值为相同温度下液体的动力粘度与其密度之比,国际单位中以米2/秒表示。
了解润滑脂滴点检测方法及内容
Symbol森博检测服务中心
1 润滑脂滴点检测方法及内容
润滑脂的滴点是考察润滑脂高温状态下的成脂能力.
当然也不是所有的润滑脂都存在滴点的!
锂基脂滴点在180度~200之间
复合锂基脂滴点在260度以上,不到340度
聚脲润滑脂的滴点在250度~300度之间,看配方设计.
而无机稠化剂稠化的润滑脂,如二氧化硅,膨润土等稠化的润滑脂,则无固定的滴点.
检测项目有:
GB/T3498工作锥入度GB/T269延长工作锥入度(10万次) SH/T0189磨斑直径
SH/T0338相似黏度SH/T0109抗水淋性GB/T5018防腐蚀性
下面来看一下按照国家标准来实施的试验流程:
1.调节温度计位置,使浴中的温度计水银球位置与试验试管中温度计的位置高度在一个水平
面上;
2.取试样(不能取表面试样)将试样装满脂杯用刮刀除去多余试样。
从杯底小孔将金属棒插
入,旋转向上伸出,带出试样,将带出试样去除,使脂杯内侧留下厚度可重复的光滑脂膜;
3. 将脂杯和温度计放入试管中,把试管挂在油浴中。
使油面距试管边缘不超过6mm;
4.开启电源开关,搅拌油浴,按4-70C/min的速度升温,直到油浴温度比预期滴点约低170C
的温度。
然后降低加热速度,使试管里的温度与油浴温度差值在20C或低于20C范围内,
继续加热,以1-1.50C/min的速度加热油浴,使其温度差维持在1-20C之间。
当温度继续升
高试样逐渐从脂杯中露出从脂杯中滴出滴1滴流体时,立即记录两个温度计上的温度。
两个温度计读数的平均值即为测试结果;。
润滑脂的性能及其评定指标
润滑脂通过保持在运动部件表面问的油膜,防止金属对金属相接触而磨损的能力称为抗磨性。润滑脂的稠化剂本身就是油性剂,具有较好的抗磨性。在苛刻条件下使用的润滑脂,添加有二硫化钥、石墨等减磨剂和极压剂,因而具有比普通润滑脂更强的抗磨性,这种润滑脂被称为极压型润滑脂。
SH/T0204一92《润滑脂抗磨性能测定法(四球机法)》规定了涧滑脂抗磨性能的测定方法。SH/T0427一92《润滑脂齿轮磨损测定法》是用齿轮磨损试验机测定润沿脂抗磨性的方法。
l.稠度
在规定的剪力或剪速下,测定润滑脂结构体系变形程度以表达体系的结构性,即为甲厚的概念。它是一个与润滑脂在所润滑部位上的保持能力和密封性能,以及与润滑脂的泵送和加注方式有关的重要性能指标。某些润滑点之所以要使用润滑脂,就是因为其有一定的稠度,从而使其具有一定的抵抗流失的能力。不同稠度的润滑脂所适用的机械转速、负荷和环境温度等工作条件不同,因此,稠度是润滑脂的一个重要指标。
润滑脂的滴点可按GB/T4929一85《润滑脂滴点测定法》进行测定。方法概要:将润滑脂装入滴点计的脂杯中,在规定的标准条件下,记录润滑脂在试验过程中达到规定流动性时的温度。该标准与ⅠSO/DP2176等效。GB/T3498一83是润滑脂宽温度范围滴点测定法。
润滑脂的蒸发度是指在规定条件下蒸发后,润滑脂的损失量所占的质量百分数。润滑脂的蒸发度主要取决于所采用的基础油的种类、馏分组成和分子量。高温、宽温度条件下使用的润滑脂,其蒸发度的测定尤为重要,蒸发度可以定性地表示润滑脂上限使用温度。润滑脂基础油蒸发损失,就会使润滑脂中的皂基稠化剂含量相对增大,导致脂的稠度发生变化,使用中会造成内摩擦增大,影响润滑脂的使用寿命。因而,蒸发度指标可以从一定程度上表明润滑脂的高温使用性能。
ASTM D1743-2005润滑脂防腐蚀性能测定法
Designation:D1743–05a e1An American National Standard Standard Test Method forDetermining Corrosion Preventive Properties of Lubricating Greases1This standard is issued under thefixed designation D1743;the number immediately following the designation indicates the year oforiginal adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.Asuperscript epsilon(e)indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.e1N OTE—Editorially replaced Stoddard solvent with mineral spirits in the test method to match approved change to7.5inDecember2005.1.Scope*1.1This test method covers the determination of the corro-sion preventive properties of greases using grease-lubricated tapered roller bearings stored under wet conditions.This test method is based on CRC Technique L412that shows correla-tions between laboratory results and service for grease lubri-cated aircraft wheel bearings.1.2Apparatus Dimensions—The values stated in inch-pound units are to be regarded as standard.The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3All Other Values—The values stated in SI units are to be regarded as the standard.The values given in parentheses are for information only.1.4This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2.Referenced Documents32.1ASTM Standards:D1193Specification for Reagent Water3.Terminology3.1Definitions of Terms Specific to This Standard:3.1.1corrosion,n—the chemical or electrochemical reac-tion between a material,usually a metal,and its environment that produces a deterioration of the material and its properties.3.1.1.1Discussion—In this test method,corrosion is mani-fested by red rust or black stains on the bearing race.Stains, through which the underlying metal surface is still visible,are not considered corrosion in Test Method D1743and shall be ignored.4.Summary of Test Method4.1New,cleaned,and lubricated bearings are run under a light thrust load for6063s to distribute the lubricant in a pattern that might be found in service.The bearings are exposed to water,then stored for4860.5h at5261°C(125 62°F)and100%relative humidity.After cleaning,the bearing cups are examined for evidence of corrosion.5.Significance and Use5.1This test method differentiates the relative corrosion-preventive capabilities of lubricating greases under the condi-tions of the test.6.Apparatus6.1Bearings—Timken bearing cone and roller assembly LM11949,and cup LM11910.4,56.2Motor,1750650-rpm speed,1⁄15hp(min).6.3Bearing Holder,consists of a160.10kg weight,upper and lower plastic collars for the bearing cone(Parts A and B),a metal screw,and a plastic collar for the cup(Part C).(See Fig.1.)6.4Plastic Test Jar,as shown in Fig.2.6.5Run-in Stand,as shown in Fig.3.1This test method is under the jurisdiction of ASTM Committee D02on Petroleum Products and Lubricants and is the direct responsibility of Subcommittee D02.G0on Lubricating Grease.Current edition approved July1,2005.Published July2005.Originally approved st previous edition approved in2005as D1743–05.2“Research Technique for Determining Rust-Preventive Properties of Lubricat-ing Greases in the Presence of Free Water,”L-41-957,undated,CoordinatingResearch Council,Inc.,219Perimeter Center Parkway,Atlanta,GA30346.3For referenced ASTM standards,visit the ASTM website,,or contact ASTM Customer Service at service@.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.4The sole source of supply of the apparatus known to the committee at this time is The Timken Co.,Canton,OH44706.5If you are aware of alternative suppliers,please provide this information to ASTM International Headquarters.Your comments will receive careful consider-ation at a meeting of the responsible technical committee,1which you may attend.*A Summary of Changes section appears at the end of this standard. Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.6.6Spindle/Thrust Loading Device ,as shown in Fig.4.(See Table 1for metric equivalents.)6.7Mechanical Grease Packer ,as shown in Fig.5and Fig.6.6.8Pliers,5,6as shown in Fig.7.6.9Syringe ,of at least 100-mL volume and with a needle of at least 16gage and a minimum length of 100mm (4in.).6.10Timer ,capable of measuring a 6063-s interval.6The sole source of supply of the Waldes Truarc Plier No.4modified as in Fig.7known to the committee at this time is TRUARC Company LLC,70East Willow Street,Millburn,NJ07041.KEY DESCRIPTIONQUANTITY1PISTON 12O RING 13WEIGHT14UPPER FLANGE 15LOWER FLANGE161⁄4−2031-1⁄4FILLISTER HD.MACH.SCREW S.S.17O RING18BEARING HOLDER 19PLASTIC JAR 110O RING1FIG.1Bearing HolderAssembly6.11Oven —A laboratory oven,essentially free of vibration,capable of maintaining 5261°C.7.Reagents7.1Purity of Reagents —Reagent grade chemicals shall be used in all tests.Unless otherwise indicated,it is intended that all reagents shall conform to the specifications of the Commit-tee on Analytical Reagents of the American Chemical Society,where such specifications are available.7Other grades may be used,provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.7.2Purity of Water —Unless otherwise indicated,references to water shall be understood to mean reagent water conforming to Specification D 1193,Type III.7.3Isopropyl Alcohol.Warning—Flammable.7.4Solvent Rinse Solution of the following composition by volume:7.4.1Isopropyl Alcohol ,90%.7.4.2Distilled Water ,9%.7.4.3Ammonium Hydroxide ,1%.Warning—Poison.Causes burns.Vapor extremely irritating.Can be fatal if swallowed.Harmful if inhaled.7.5Mineral Spirits ,reagent grade,minimum purity.(Warning—Combustible.Vapor harmful.)8.Standardization of Thrust Loading Device8.1Pack a bearing,install it into the holder and place the assembly into a plastic jar as described in 10.1through 10.4.Place the jar onto the base of the motor drive spindle and center it under the indexing pin of the drive.Lower the drive until the O ring just contacts the 1-kg weight.Run the bottom nut of the depth gage (see Fig.3)down to the stop.Place a 3-mm spacer on top of this nut.Bring the top nut down to the spacer.While holding the top nut in position,remove the spacer and run the bottom nut up and tighten it against the top nut.When the O ring is compressed against the 1-kg weight until the adjustment nut hits the stop,there will be a 29-N load added,giving a total load of 39N on the bearing.(The loads described are provided by the forces of the spring in the thrust loading spindle and sum of the 1-kg weight and spring,respectively.These loads are approximate.The 1-kg weights should be within 0.010kg of their stated values.The thrust loading spindle should be calibrated by some suitable method when it is first put into service,recalibrated periodically,and replaced if its spring does not provide sufficient force to spin the test bearings without slippage during the 60s run to distribute the grease.)Examine the O ring periodically and replace it if it shows any cracks or other signs of deterioration.8.2The thrust loading device should be standardized before use,once per day if used daily,and again if there is reason to believe that the standardization has changed.The thrust load-ing device may be standardized using one of the greases to be tested.9.Preparation of Bearings9.1Examine the test bearings carefully and select only bearings that have outer races (cups)and rollers entirely free of corrosion.During the bearing preparation handle the bearings with tongs or rubber or plastic gloves.Do not touch bearings with the fingers at any time.9.2Wash the selected bearing thoroughly in hot (52to 66°C)mineral spirits,reagent grade (Warning—Combustible.Vapor harmful.)to remove the rust preventive.Wipe the bearing cone and cup with tissue moistened in hot solvent to remove any remaining residue.Rinse the bearing a second time in fresh,hot mineral spirits,reagent grade.N OTE 1—The washing temperatures specified are considerably above the flash point of the mineral spirits,reagent grade.Accordingly,the washing operation should be carried out in a well-ventilated hood where no flames or other ignition sources are present.9.3Transfer the bearing from the mineral spirits,reagent grade to the solvent rinse solution (Warning—Poison.Causes burns.Vapor extremely irritating.Can be fatal if swallowed.Harmful if inhaled.)to remove the mineral spirits,reagent grade and any fingerprints that are present.Then rinse the bearing and slowly rotate in fresh hot (6665°C)solvent rinse solution.N OTE 2—Use fresh rinse solution to avoid the selective evaporation of the components at the rinse temperature.9.4Remove the bearing from the solvent rinse solution and place on filter paper to drain.After draining,dry the bearing in an oven at 7065°C for 15to 30min.7Reagent Chemicals,American Chemical Society Specifications ,American Chemical Society,Washington,DC.For suggestions on the testing of reagents not listed by the American Chemical Society,see Analar Standards for Laboratory Chemicals,BDH Ltd.,Poole,Dorset,U.K.,and the United States Pharmacopeia and National Formulary,U.S.Pharmacopeial Convention,Inc.(USPC),Rockville,MD.Test Jar SpecificationsInner Diameter Range:3.11–3.31in.(79–84mm)Inner Height Range:3.5–4.0in.(89–102mm)FIG.2Plastic TestJarFIG.3Run-in StandDrawingFIG.4Spindle/Thrust Loading Device TABLE1Metric Equivalents for Figs.3and4 Inches Millimetres 1⁄320.79 1⁄8 3.18 5⁄32 3.97 3⁄16 4.76 5⁄327.14 5⁄167.94 3⁄89.53 7⁄1611.11 1⁄212.70 19⁄3215.08 21⁄3216.67 3⁄419.05 125.40 11⁄828.58 13⁄1631.26 11⁄431.75 111⁄3234.131.49537.971.50038.1019⁄1639.69 11⁄444.451.78545.34115⁄1649.211.94649.4327⁄3256.36 21⁄457.15 211⁄3259.53 376.209.5Permit the bearing to cool to room temperature and reexamine surfaces to assure that corrosion-free and free-turning specimens have been selected.(Care should be taken not to spin the bearings after cleaning and drying.)9.6Wash and dry the bearing packer using the same technique as for the preparation of the bearings.10.Procedure10.1With the reservoir of grease packer resting on a clean bench top,and while wearing gloves,place bearing cup with small diameter face down into the recess of the packer.Place the bearing cone over the cup,and while holding the bearing assembly against the packer,lift and invert the whole unit and return it to the bench.10.2Fill the reservoir with the grease sample,and use the plunger to force grease through the bearing.Carefully remove the plunger from the reservoir to avoid sucking air into the bearing,and slide the packer unit over the edge of the bench.While holding the bearing assembly in the packer,invert the unit to its original position on the bench.10.3Using a small square-ended spatula,remove excess grease from the bearing bore and the annulus between the grease packer and outer perimeter of the bearing cup.The bearing is removed from the packer by either use of the pliers or by placing gloved index finger in the bore and lifting out.While holding the bearing,use the spatula to remove excess grease above the cage on both sides of the bearing.This procedure is done to ensure that approximately the same volume of grease is used each time.10.4Using Fig.1as a guide,hold the packed bearing between gloved fingers with large inside diameter of cup downward and insert the small diameter plastic flange on top of the bore,and the larger flange into the bottom of the bore.Slide the bearing assembly onto the 1-kg weight so that the largediameter flange fits into the recess on the top of the weight.Insert the bolt through the assembly and screw the bolt tightly into the weight.Lower the plastic bearing holder (Part 8)over the bearing (the large O ring faces upward).Press down the holder so that the bearing fits squarely into the holder.10.5Invert a plastic jar over the bearing assembly.Slide the two components over the edge of the bench,and with fingers pressing the weight against the inner bottom of the jar,invert the entire assembly.10.6Place the jar onto the base of the motor driven spindle and center under the indexing pin of the drive.Start the motor and bring the drive into the center of the 1-kg weight and load until the nut hits the depth stop.Run for 60s,raise the drive,and allow the bearing to coast to a stop.Extreme care should be taken not to break the contact between the races and rollers at this point and in the following steps.10.6.1At no time during or after the 60s run shall the grease be redistributed or forced back into the bearing.10.7Freshly boil the distilled water for 1065min to remove carbon dioxide and cool to 2565°C.10.8Fill a clean syringe with 10065mL of distilled water from 10.7.With the run-in bearing in the jar,simultaneously start a timer and begin adding the water into the hole provided for this purpose in the bearing holder.Add the 100mL of water within 2063s.When the timer shows 5063s start withdrawing the water.When the timer shows 6063s,complete the withdrawal of 7065mL of water.Leave the remaining 3065mL of water in the jar.Make sure that water does not touch the bearing after 7065mL is withdrawn.It may be difficult to withdraw 7065mL water in 10s using a 16gage needle.A larger needle may be required.10.9Screw the cap on the jar and transfer to a dark oven essentially free from vibration for 48h at 5261°C.N OTE —Tolerances are 0.003in.unless specified otherwise.FIG.5Bearing PackerBrass10.10Prepare three bearings with each grease to be tested.Each group of three bearings is one test.11.Rating Procedure11.1Remove the bearing from the test jar and place the bearing cup in a 50+50mixture by volume of isopropyl alcohol (Warning—Flammable)and mineral spirits,reagent grade (Warning—Combustible.Vapor harmful).The solvent mixture can be heated to facilitate the removal of the grease.Agitate vigorously to remove the grease.Repeat the rinsing using fresh solvent mixture or gently wipe the bearing with a clean cloth or tissue to ensure that traces of grease are removed.11.2Transfer the bearing cup from the solvent and allow to dry on clean filter paper.11.3Examine the cup raceway for evidence of corrosion without the use of magnification (Section 5).Use only a pass or fail rating.Criteria for failure shall be the presence of any corrosion spot 1.0mm or larger in the longest dimension.Ignore the number ofspots.KEY DESCRIPTIONQUANTITY1GREASE PACK PLUNGER 12CYLINDER13LM11900BEARING ASSEMBLY 14STUD 15BASE1FIG.6BearingPacker—Alternative11.3.1Spots that are easily removed by rubbing lightly with soft tissue (alone or wetted with any solvent nonreactive to rust or steel at room temperature)shall not be considered as corrosion in the rating.12.Report12.1The reported result shall be the pass or fail rating as determined by at least two of the three bearings.13.Precision and Bias13.1Due to the nature of the results,the precision of this test method was not obtained in accordance with RR:D02–1007,“Manual on Determining Precision Data for ASTM Methods on Petroleum Products and Lubricants.”13.2Precision —The precision of this test method as deter-mined by statistical examination of interlaboratory results is as follows:13.2.1Repeatability may be judged by the fact that 94%of duplicate results obtained by nine laboratories with six samples were in agreement.13.2.2Reproducibility may be judged by the fact that nine laboratories matched consensus 96%of the time with six samples showing good or poor protection against corrosion.13.3Bias —No statement is made about the bias of this test method since the result merely states whether there is conform-ance to the criteria for success specified in the procedure.14.Keywords14.1bearing;corrosion;lubricating grease;rustAPPENDIXES(Nonmandatory Information)X1.RATIONALEX1.1The current version of Test Method D 1743differs primarily from the older version Test Method D 1743–73(1981)e 2in two major areas.X1.1.1First,the current procedure uses a new run-in stand and bearing holder.This equipment change was designed to reduce the possibility of the bearing rollers and race breaking contact after run-in.When these surfaces break contact,direct water contamination and unrepeatable rusting can occur.X1.1.2Second,the rating procedure was simplified to a pass/fail statement.Instead of relating failure to the number of corrosion spots,the current procedure now defines a failure in terms of one corrosion spot greater than 1.0mm in length.X1.2One disadvantage of the current procedure is thatfewer tests can be run per unit time without purchasing additional bearing holders.X1.2.1The committee felt that the procedure for Test Method D 1743–73should remain available for those labora-tories needing a quicker screening test method.During the round-robin development of the current test method,a limited comparison of the two test methods was made.Although not enough data was collected for a meaningful statistical analysis,the two procedures gave good agreement.X1.3The procedure of D 1743–73modified with the new rating method is incorporated as Appendix X2.It should be noted however,that the current procedure shall be used for refereepurposes.FIG.7Plier to Remove Bearing from GreasePackerX2.ALTERNATE CORROSION TEST PROCEDUREX2.1ScopeX2.1.1This test method covers the determination of the corrosion preventive properties of greases using grease-lubricated tapered roller bearings stored under wet conditions.This test method is based on CRC Technique L 41that shows correlation between laboratory results and service for grease lubricated aircraft wheel bearings.X2.1.2The values stated in inch-pound units are to be regarded as the standard.X2.2Referenced Documents X2.2.1See Section 2.X2.3Terminology X2.3.1See Section 3.X2.4Summary of Test MethodX2.4.1Clean new bearings are lubricated,then run under a light thrust load for 6063s so as to distribute the lubricant in a pattern that might be found in service.The bearings are subsequently stored for 4860.5h at 5261°C (12562°F)and 100%relative humidity.After cleaning,the bearing cups are examined for evidence of corrosion.X2.5Significance and Use X2.5.1See Section 5.X2.6ApparatusX2.6.1Bearings ,4,5Timken bearing cone and roller assem-bly and cup.X2.6.2Container ,237-cm 3(8-oz)clear glass jar (85.7mm (33⁄8in.)high,69.8mm (23⁄4in.)in diameter)fitted with a wax-lined screw cap.X2.6.3Bearing Support ,14⁄35to 18⁄38taper glass adapter.5,8X2.6.4Motor ,1750650-r/min speed.X2.6.5Spindle ,No.4rubber stopper drilled and fitted to motor shaft.X2.6.6Thrust Loading Device ,as shown in Fig.X2.1.(See Table X2.1for metric equivalents.)X2.6.7Mechanical Grease Packer ,similar or equivalent to the mechanical bearing packer as shown in Fig.X2.2.(See Table X2.1for metric equivalents.)X2.7ReagentsX2.7.1See Section 7.8The sole source of supply of the apparatus known to the committee at this time is Thomas Scientific Co.,P.O.Box 99,Swedesboro,NJ08085.FIG.X2.1Thrust LoadingDevicesX2.8Standardization of Thrust Loading DeviceX2.8.1Place the handle of the thrust loading device (Fig.X2.1)in a vise with the thrust loading device in an upright position.Place a 2.760.3-kg (660.7-lb)weight on the cup and mark the barrel to identify the proper handle position.X2.9Preparation of BearingsX2.9.1Examine the test bearings carefully and select only bearings which are entirely free of corrosion.During the bearing preparation handle the bearing with tongs.Bearings should not be touched with the fingers at any time.X2.9.2Wash the selected bearing thoroughly in hot (52to 66°C (125to 150°F))Stoddard solvent (Warning—Combustible.Vapor harmful.)to remove the rust preventive.To ensure complete removal of the rust preventive,subject the bearing to a second wash in fresh hot 52to 66°C Stoddard solvent.X2.9.3Transfer the bearing from the Stoddard solvent to the solvent rinse solution to remove the Stoddard solvent and any fingerprints that are present.Then rinse the bearing and slowly rotate in fresh hot (minimum 66°C)solvent rinse solution (Warning—Poison.Causes burns.Vapor extremely irritating.Can be fatal if swallowed.Harmful if inhaled.).X2.9.4Remove the bearing from the solvent rinse solution and place on filter paper to drain.After draining,dry the bearing in an oven at 7065°C (160°F)for 15to 30min.X2.9.5Permit the bearing to cool to room temperature and reexamine surfaces to assure that corrosion-free and free-turning specimens have been selected.(Care should be taken not to spin the bearings after cleaning and drying.)X2.9.6Wash and dry the thrust loading device and bearing packer using the same technique as for the preparation of the bearings.X2.10ProcedureX2.10.1Three new bearings are required for each test.Weigh the bearing (cone and cup assembly)to the nearest 0.1g using clean oil-resistant gloves while handling the bearing.X2.10.2Pack the assembled bearing with the grease sample using a mechanical packer similar or equivalent to the oneshown in Fig.X2.2.Keep the cone and cup assembled for the remaining operations through step X2.10.10.X2.10.3Wipe off the excess grease and place the assembled bearing in the thrust loading device (Fig.X2.1).Lock the bearing in place with the locking screw.X2.10.4Place the bearing cone against the rubber stopper on the motor shaft and apply a thrust load by pushing the handle of the thrust loading device up to the calibration mark on the barrel.X2.10.5Rotate the bearings at 1750650r/min for 1061s,turn off the motor and allow to coast to stop.Remove the bearing from the spindle and loosen the locking screw and push the bearing out of the cup with the rod.X2.10.6By removal of the excess grease and uniform redistribution of the sample,adjust the total quantity of grease on the assembled cone and cup to within 2.160.1cm 3(2.060.1g).Then wipe over the exterior surfaces of the assembled bearing a thin film of grease (about 0.1g).For greases having densities significantly higher than mineral oil based greases,adjust the quantity of the grease to equal 2.160.1cm 3.X2.10.7Place the bearing in the thrust loading device and lock the bearing with the locking screw.Place the bearing cone against the rubber stopper on the motor shaft and apply a thrust load of 26.7N (6lbf)by pushing the handle up to the calibration mark on the barrel.X2.10.8Rotate the bearing at 1750650rpm for 6063s,turn off the motor and allow to coast to stop (see Note X2.1).Remove the bearing from the spindle and loosen the locking screw and push the bearing out of the cup with the rod.Extreme care should be taken not to break the contact between the races and rollers at this point and in the following steps.X2.10.9Place the bearing on the bearing support in such a manner that the weight of the outer race will maintain contact between the races and rolling elements.By means of the bearing support immerse the entire assembly for 1062s into freshly boiled distilled water which has been cooled to 2565°C (use a new supply of water for each bearing).X2.10.10Allowing any water on the bearing to remain,place the assembly in the glass jar to which has been added 561mL of distilled water,tighten the screw cap firmly (Note X2.1)and store in a dark oven,located in an area essentially free from vibration for 4860.5h at 5261°C (12562°F).N OTE X2.1—It is recommended that a tube or rod be attached to the center of the screw cap to drop over or inside the glass adapter or that other suitable means be used to prevent the assembly from sliding to the side of the jar during handling.Any such attachments should not cause rotation of the bearing adapter when tightening the screw cap on the jar.X2.11Rating ProcedureX2.11.1Remove the bearing from the test jar and place the bearing cup in a 50+50mixture by volume of isopropyl alcohol and Stoddard solvent.The solvent mixture can be heated to facilitate the removal of the grease,observing the proper precautions for a flammable mixture.Agitate vigorously to remove the grease.Repeat the rinsing using fresh solvent mixture to ensure that traces of grease are removed.X2.11.2Transfer the bearing cup from the solvent and allow to dry on clean filter paper.TABLE X2.1Metric Equivalents for Figs.X2.1and X2.2in.mm in.mm 0.0010.02511⁄828.60.0030.076113⁄1630.21⁄320.7911⁄431.81⁄16 1.59 1.37334.871⁄8 3.18 1.37534.923⁄16 4.7617⁄1636.57⁄32 5.5615⁄841.31⁄4 6.35 1.936849.195⁄167.94 1.938049.2210⁄327.94161⁄6449.65⁄1210.58250.87⁄1611.1221⁄457.21⁄212.7023⁄860.30.5914.99376.23⁄419.05613⁄161730.812520.6481⁄1620515⁄1623.81X2.11.3Examine the cup raceway for evidence of corrosion without the use of magnification (Section 3).Only a pass or fail rating shall be used.Criteria for failure shall be the presence of any corrosion spot 1.0mm or larger in the longest dimension.The number of spots is ignored (see Note X2.1).X2.12ReportX2.12.1See Section 12.X2.13Precision and BiasX2.13.1No precision in accordance with RR:D02–1007,“Manual on Determining Precision Data for ASTM Methods on Petroleum Products and Lubricants,”was established.X2.13.2Precision —Limited testing conducted in concert with testing done to establish the repeatability and reproduc-ibility precision for the revised procedure indicated that this procedure may have similar precision.X2.13.3Bias —No statement is made about the bias of this test method since the result merely states whether there is conformance to the criteria for success in the procedure.SUMMARY OF CHANGESSubcommittee D02.G0has identified the location of selected changes to this standard since the last issue,(D 1743–05),that may impact the use of this standard.(Approved July 1,2005.)(1)Added Fig.2.(2)Deleted Falex equipment footnote.Subcommittee D02.G0has identified the location of selected changes to this standard since the last issue,(D 1743–01),that may impact the use of this standard.(Approved June 1,2005.)(1)Deleted Specification D 235from the Referenced Docu-ments and 7.5.(2)Revised 7.5.FIG.X2.2Mechanical BearingPackerCopyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, Pennsylvania 19428, USA Distributed under ASTM license agreement by Shanghai Institute of Standardization (SIS)Addr: 1219, 1227 Changle Rd., Shanghai, 200031. Tel: 86-21-64370807D1743–05a e1ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentionedin this ers of this standard are expressly advised that determination of the validity of any such patent rights,and the riskof infringement of such rights,are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed everyfive years andif not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standardsand should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of theresponsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you shouldmake your views known to the ASTM Committee on Standards,at the address shown below.This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.Individual reprints(single or multiple copies)of this standard may be obtained by contacting ASTM at the aboveaddress or at610-832-9585(phone),610-832-9555(fax),or service@(e-mail);or through the ASTM website().11ASTM International 版权所有, 100 Barr Harbor Drive, West Conshohocken, Pennsylvania 19428, USA由上海市标准化研究院(SIS)根据ASTM授权协议进行销售 地址: 上海市长乐路1219/1227号 邮编: 200031联系。
润滑脂抗水性及测试
三、抗水性的测试方法: SH/TO109一92规定了用抗水淋性能测定法测 定润滑脂抗水性的方法。方法概要:在规定条件 下,将巳知量的试样加入试验机轴承中,在运转 中受水喷淋,根据试验前后轴承中试样质量差 值。得出因水喷淋而损失的润滑脂量。也可用 测定润滑脂溶水性能的方沫测定其抗水性。方 法概要:在试样中逐次加入定量的水分,测其 10万次延长工作锥人度再与试验前60次工作锥 入度相比较,其差值大小可评定该试样的溶水 性能。
润滑脂抗水性及测试
一、润滑脂抗水性概述: 润滑脂的抗水性表示润滑脂在大气湿度条件下的 吸水性能,要求润滑脂在储存和使用中不具有吸收 水分的能力。润滑脂吸收水分后,会使稠化剂溶 解而致滴点降低,引起腐蚀,从而降低保护作用。 二、影响润滑脂抗水性因素: 有些润滑脂,如复合钙基脂,吸收大气中的水分还 会导致变硬,逐步丧失润滑能力。润滑脂的抗水性 主要取决于稠化剂的抗水性与乳化性。汽车与工 程机械在使用过程中,底盘各摩擦点可能与水接 触,这就要求润滑脂具有良好的抗水性。抗水性差 的润滑脂吸收大气中水分或遇水后往往造成稠度 降低甚至乳化而流失。
润滑脂的抗水最主要取决于稠化剂和基础油的 类型,对石油润滑油为基础油的脂,如烃类稠 化剂的抗水性好、不吸水、不乳化,皂基润滑 脂的抗水性取决于金属皂的水溶性,如钠皂易 溶于水,形成油/水型的乳化体而使润滑脂变为 流体失去润滑作用。铝、钙、钡、锂等皂基脂 能形成水/油型乳化体,这种乳化体比较稳定, 所以润滑脂的结构变化不大。 在潮湿或有水存在下的工作机械的润滑,应选 用抗水性好的润滑脂,如钢铁厂、印染厂尊、 轧钢厂的轧辊轴承遭受高温环境并有水的冲洗 ,工作条件苛刻。
润滑油脂的性能及其测试方法、参考标准综述
润滑剂(润滑油脂)的性能及其测试方法、参考标准润滑剂(润滑油脂)的性能是润滑剂(润滑油脂)的组成及配制工艺的综合体现。
润滑剂(润滑油脂)性能的测试不但在生产上和研究工作上有决定性的意义,而且在生产部分、使用部门对润滑剂(润滑油脂)的选用和检验上也是必不可少的。
实践证明理化性能试验、模拟试验、台架试验,是开发润滑剂(润滑油脂)新品必不可少的步骤:(1)在实验室评价润滑油脂的理化性能。
试验方法必须有代表性、简单和快速。
(2)模拟试验。
将润滑油脂润滑的特定机械部件在标准化的试验条件下(如温度、速度、载荷等)进行试验。
所选用的试验条件尽量能模拟实际使用情况。
(3)台架试验。
将内燃机油在选用的发动机上按标准化条件进行一定时间的运转后评定其性能。
发动机台架试验的结果是判定内燃机油质量等级的依据,对于内燃机油特别重要。
在生产和销售中则以理化试验作为衡量产品性能的主要尺度。
现对润滑剂(润滑油脂)性能及三个测试步骤的内容分述于下。
一、润滑油的性能现代润滑油必备的基本性能,是要保证机械润滑的最低粘度;粘度随温度变化小的高粘度指数;优良的抗氧化性和耐热性;在便用条件下具有良好的流动性;优良的抗磨损及润滑性;对氧化产物溶解能力强;对机械无腐蚀和锈蚀;在使用环境下的低挥发性;良好的抗乳化和抗泡性等。
二、理化性能试验理化性能试验简单快速,具有代表性,现在常用的理化性能试验项目为:(1)粘度:是液体流动内摩擦阻力的量度,是评价油品流动性的最基本指标,是各种润滑油分类分级,质量鉴别和确定用途的重要指标。
馏分相同而化学组成不同的润滑油,其粘度不同。
动力粘度:动力粘度是液体在一定剪切应力下流动时内摩擦力的量度,其值为所加于流动液体的剪切应力和剪切速率之比。
国际单位制中以帕.秒表示。
在低温下测定的动力粘度,可以表征油品的低温启动性。
运动粘度:是液体在重力作用下流动时内摩擦力的量度,其值为相同温度下液体的动力粘度与其密度之比,国际单位中以米2/秒表示。
gp-a润滑脂执行标准
gp-a润滑脂执行标准
GP-A润滑脂是广泛应用于轴承、齿轮、链条、机械运动部件的一种润滑脂。
为保证其质量,以下为其执行标准:
1.适用标准和类别:
GB/T 3141-2006润滑脂储存稳定性试验方法
2.技术要求
2.1 外观:GP-A润滑脂为均质的乳白色或黄色膏状物,无夹杂物。
2.2 熔点:熔点不高于220℃。
2.3 锥入度:77℉(25℃)时,不大于330。
2.6 机械稳定性:GP-A润滑脂在热氧稳定性试验后满足GB/T 269-2008的规定。
2.7 耐水性:GP-A润滑脂在吸水循环试验后,其机械稳定性和防腐性能无明显下降。
3.包装和储存
GP-A润滑脂通常以塑料桶、铁桶或槽车装运,应在通风干燥处存放,并严禁阳光直射和淋雨。
存放期限一般不超过24个月。
如果储存时间较长,需要进行质量检测。
4.使用注意事项
4.1 GP-A润滑脂在储存时,应避免混入沙子、铁屑等杂物及水分。
4.2 使用前应先将其放置于室温下自然解冻,不能用火炉和烤炉加热。
不应将润滑脂加入过多,防止影响设备运转。
4.3 使用前应先清洗润滑部位,并确保润滑部位干燥,以免发生润滑剂发黑和失效。
总之,只有按照GP-A润滑脂的执行标准进行生产、包装、储存和使用,才能保证其优良的润滑性能和稳定性,为设备的正常运转提供可靠保障。
润滑油腐蚀试验方法
润滑油腐蚀试验方法1目的适应彭工下达的《合成酯项目检测通知》中材料腐蚀性检测方案2方法概要将磨光并露出新鲜金属面的金属片侵入润滑油中,在规定的温度下,以经一定时间作用后所发生的颜色变化来确定润滑油对金属的腐蚀性。
3材料与仪器3.1仪器3.1.1烧杯或瓷杯:直径不小于85mm,高度不小于100mm。
3.1.2玻璃棒:比烧杯或瓷杯的直径长约20~30mm,上面有两个相距20~30mm的凹形切口,以便挂玻璃小钩。
3.1.3L形玻璃小钩:长约30mm,挂金属片用。
3.1.4放大镜:能放大6~8倍。
3.1.5瓷蒸发皿或培养皿。
3.2乙醇—苯混合液:用无水乙醇和苯按体积比1∶4配成。
3.2.1准备工作钢针或电刻字仪。
3.2.2镊子。
3.3材料3.3.1金属片:材料为304、321、316不锈钢金属。
形状为圆形(直径38~40mm,厚3mm±1mm)或正方形(边长48~50mm,厚3mm±1mm)。
每一块金属片带有直径5mm的孔眼一个:圆形金属片的孔眼中心位置在距离边缘5mm的地方;正方形金属片的孔眼中心位置,则在一角上距离两边5mm 的地方。
3.3.2砂布(或砂纸):粒度为150号和180号。
3.3.3脱脂棉。
4试剂4.1无水乙醇:分析纯。
4.2苯:分析纯。
55.1金属片的全部表面用砂布纵行仔细研磨,最后用180号砂布磨至光滑明亮无明显的加工痕迹。
各金属片的号码只许刻在边缘侧面。
5.2将磨好的金属片用镊子夹持在瓷蒸发皿或培养皿中用苯洗涤,再用苯浸过的脱脂棉擦拭,最后用干棉花擦干并不得与手接触。
5.3将洗过和擦干的金属片用放大镜来观察,片上不得有腐蚀斑点等痕迹,对金属片上的小凹痕和小点,要用钢针或电刻字仪刻划一个直径不超过1mm的圆环,如果金属片上再有污点,则再洗涤擦干,如再有腐蚀痕迹存在时,该金属片应作废。
6试验步骤6.1将试样倒入清洁而干燥的烧杯中,满到距离杯口15~20mm处,并将其加热到250℃,随后取准备好已知准确重量(精确0.0001g)的两块同牌号的金属片挂在玻璃小钩上,再挂在杯口中央的玻璃棒的切口处,并使金属片浸入加热的试样内。
润滑剂认知—润滑脂防护性能分析
试验时先将涂有试样的新轴承,在轻的推力负荷下运转 60s,使润滑脂象使用情况那样分布,轴承在(52±2)℃,100% 相对湿度下存放48h,然后清洗并检查轴承外圈滚道的腐蚀迹 象。根据轴承外圈滚道的腐蚀迹象可将腐蚀性分为三级。没有 腐蚀的是Байду номын сангаас级;不多于3个肉眼可见斑点的是二级;有较大或 较多斑点的是三级。
2.评定指标的分析检验
(1)润滑脂的防护性能 SH/T0331-1992《润滑脂腐蚀 试验法》用于测定润滑脂对金属的腐蚀性。 试验时将金属试片浸入润滑脂中,在一定温度(100±2)℃下 经过一定时间(3h)作用后,通过观察金属试片颜色的变化, 来确定润滑脂对金属的腐蚀性。用肉眼观察,如果金属试 片上没有斑点和明显不均匀的颜色变化,即认为试样合格。
(三)防护性能
1.质量要求
润滑脂防护性包括:润滑脂不对接触金属产生腐蚀;具有 良好的耐水性和防腐性;以及具有良好的附着性,能够抵抗环 境中腐蚀介质和酸气。
润滑脂还要求具有一定的抗水性,即在水中不溶解、不乳化, 不从周围介质中吸收水分,不被水冲刷掉,在与水接触时不明 显地改变性能等。润滑脂的抗水性主要决定于稠化剂。
评价抗水性的方法还有加水剪切和加水滚筒试验、热水中 的安定性试验等。
GB/T7326-1987《润滑脂铜片腐蚀试验法》适于测定润 滑脂对铜的腐蚀性。方法与其他油品的腐蚀性试验相似。
(2)抗水性 SH/T0109-2004《润滑脂抗水淋性能测定法》, 评价润滑脂抵抗被水冲出轴承能力的方法。
测定时将(4.00±0.05)g润滑油试样装填在球轴承内,将球轴 承和已称量质量的防护板装入具有规定间隙要求的轴承套内, 以(5±0.05)mL/s的速度将规定温度(38℃或79℃)的热水喷淋 到轴承套的防护板上,使轴承以(600±30)r/min的速度运行, 连续喷淋(60±5)min,将轴承和防护板在71~83℃下烘干 15h后称量,用脂流失量的百分数表示其抗水性。水流失量越大, 抗水性越差。
润滑脂防腐性及测试方法
一、润滑脂防腐性概述: 防腐性是润滑脂阻止与其相接触金属被腐蚀 的能力。润滑脂的稠化剂和基础油本身是不会 腐蚀金属的,使润滑脂产生腐蚀性的原因很多, 主要是由于氧化产生酸性物质所致。一般而言 ,过多的游离有机酸、碱都会引起腐蚀。
二、润滑脂防腐性测试方法: 腐蚀试验就是检测润滑脂是否对金属有腐蚀作 用,测定的方法有好几种,试验条件也各异,但都是 在一定温度和试验时间下,通过观察金属片上的 变色或产生斑点等现象未判断润滑脂腐蚀性的大 小。 SH/T0331一92《润滑脂腐蚀试验法》,采用 100℃,3h,铜片、钢片进行测定。 GB/T 7326一87《润滑脂铜片腐蚀试验》规定了 润滑脂对铜部件酌腐蚀性测亨方法,采用 100℃,24h,铜片进行测定,分甲法与乙法。甲法 是将试验锅片与铜片腐蚀标准色板进行比较,确定 腐蚀级别;乙法是检查试验铜片有润滑脂防腐蚀性试验法》规定了 润滑脂防腐蚀性能的试验方法。方法概要:将涂有 试样的新轴承,在轻的推力负荷下运转60s,使润滑 脂象使用情况那样分沛。轴承在52℃±l℃,100X 相对湿度条件下存放48h,然后清洗并检查轴承外圈 滚道的腐蚀迹象。本方法中的腐蚀是指轴承外圈滚 道的任何表面损坏(包括麻点、刻蚀、锈蚀等)或黑 色污渍。该方法可以评定在潮湿条件下润滑脂阻止 与其相接触金属产生锈蚀及其它形式腐蚀的能力。
化工分公司润滑脂腐蚀测定操作规程
化工分公司润滑脂腐蚀测定操作规程
1.本操作规程根据上海彭浦制冷器有限公司生产的DF-1石油产品铜片腐蚀测定仪编写。
2.将仪器放在水平位置上。
3.接通电,打开电源开关及搅拌开关,此时主加热器开始工作,仪器处于升温加热状态。
同时,风扇也处于工作状态。
4.根据试验的要求,可通过温控仪上的温度设定按钮和调节电位器来选择所需要的控温温度。
5.打开辅助加热开关,加快升温速度。
当显示温度低于设定温度的3-5℃时,即关闭辅助加热开关。
6.当温度到达设定温度时,控温仪便自动控制温度。
7.温度恒定以后,将大约60ml润滑脂试样放入清洁的试管的底部,使润滑脂高度大约到80mm。
小心地轻拍试管使润滑脂装入到试管内。
把顶部弄成一个比较平的表面。
用不锈钢镊子将已清洁的铜片插入润滑脂内直至铜片碰到管底,铜片是完全浸没并最少要覆盖有5mm的润滑脂,并塞上有孔的软木塞;将试管放入100±1℃恒温浴中,恒温浴中的介质必须高于试管中的样品,保持此状态24小时。
8.试验结束后,应关闭电源。
润滑脂检测
抗腐蚀与防锈性
ASTM D 1743–抗腐蚀性
D 4048 – 铜片腐蚀
润滑油技术部
ASTM 润滑脂性能测试方法
润滑脂特性 ASTM 方法 简述 表观念度/ D 1092 – 测 一个浮式活塞挤压润滑脂流过一 泵送性 量润滑脂的 跟毛细管,测量活塞上的液压可 以决定16种剪切率下的表观粘度 表观粘度 。使用8种不同的毛细管和一个 双速液压齿轮泵。 压力表 温 度 计
• 台架试验
润滑油技术部
润滑脂的稠度
• 稠度是润滑脂的基本 特性,用于衡量其软 硬 • 稠度不是性能的度量 • 影响因素
– – – – 稠化剂的种类与份量 基础油的特性 温度 工作条件
润滑油技术部
润滑脂的稠度
ISO2137-2,DIN 51 818,NLGI稠度级别 NLGI号 000 00 0 1 2 3 4 5 6 工作针入度 (1/10mm) 445-475 400-430 355-385 310-340 265-295 220-250 175-205 130-160 85-115 稠度 半流体 半流体 非常软 软 常用脂 半固体 稍硬 较硬 固体 应用 齿轮箱 闭式齿轮箱 集中润滑系统 集中润滑系统 轴承 轴承 轴承 开式齿轮 开式齿轮
滤 网 分离 的油
润滑油技术部
ASTM 润滑脂性能测试方法
ASTM 方法 润滑脂特性 稠度与剪切 D 217 – 润滑脂 稳定性 圆锥针入度 D 1403 -润滑 脂圆锥针入度 ,使用1:4和1:2 的圆锥仪器 D 1831- 润滑脂 滚动稳定性 简述 深度,以1/10毫米计量。一个 150克的圆锥插入25=C的工 作过和未工作过的润滑脂表 面5秒中。 D 1403 用于只有少量润滑脂 试样的情况。 一个5公斤的滚子和50克润滑 脂置入一个165rpm的转膛中 ,室温下运转两小时。转动 前与转动后针入度的差异即 表示剪切稳定性。
润滑脂检测
润滑脂液压油检测成分分析配方分析还原纯度分析润滑脂稠厚的油脂状半固体。
用于机械的摩擦部分,起润滑和密封作用。
也用于金属表面,起填充空隙和防锈作用。
主要由矿物油(或合成润滑油)和稠化剂调制而成。
润滑脂主要是由稠化剂、基础油、添加剂三部分组成。
一般润滑脂中稠化剂含量约为10%-20%,基础油含量约为75%-90%,添加剂及填料的含量在5%以下。
性能特点:优异的高温性能及氧化安定性能,防止润滑脂高温变质,保证润滑部位高温长期正常工作;优异的粘附性能、良好的机械安定性和胶体安定性,保证在润滑部位而不会流失;良好的润滑性,保护轴承减少磨损;优异的综合性能,保证轴承较长的使用寿命。
8.21根据稠化剂可分为皂基脂和非皂基脂两类。
皂基脂的稠化剂常用锂、钠、钙、铝、锌等金属皂,也用钾、钡、铅、锰等金属皂。
非皂基脂的稠化剂用石墨、炭黑、石棉还有合成的(如聚脲基、膨润土),根据用途可分为通用润滑脂和专用润滑脂两种,前者用于一般机械零件,后者用于拖拉机、铁道机车、船舶机械、石油钻井机械、阀门等。
主要质量指标是滴点、针入度、灰分和水分等。
用来评价润滑脂胶体稳定性的指标为分油试验、滚动轴承性能试验等。
科标化工分析检测润滑脂检测标准如下:GB15179-1994食品机械润滑脂GB/T23800-2009有机热载体热稳定性测定法GB/T269-1991润滑脂和石油脂锥入度测定法GB/T3498-2008润滑脂宽温度范围滴点测定法GB/T392-1977润滑脂压力分油测定法GB/T491-2008钙基润滑脂GB/T4929-1985润滑脂滴点测定法GB/T5018-2008润滑脂防腐蚀性试验法GB/T512-1965润滑脂水分测定法GB/T513-1977润滑脂机械杂质测定法(酸分解法)GB/T5671-1995汽车通用锂基润滑脂GB/T7323-2008极压锂基润滑脂GB/T7324-2010通用锂基润滑脂GB/T7325-1987润滑脂和润滑油蒸发损失测定法GB/T7326-1987润滑脂铜片腐蚀试验法GB7631.8-1990润滑剂和有关产品(L类)的分类第8部分:X组(润滑脂)JB/T5489-1991光学仪器用润滑脂NB/SH/T0324-2010润滑脂分油的测定锥网法NB/SH/T0823-2010润滑脂在稀释合成海水中防腐蚀性试验法NB/SH/T0839-2010汽车轮毂轴承润滑脂低温转矩测定法定法NB/SH/T0850-2010精密机械和光学仪器润滑脂流散性测定法NB/SH/T0851-2010精密机械和光学仪器用润滑脂服务范围:成分分析、物理性能、配方分析、成分鉴定、含量分析、纯度分析等。
润滑脂检测 润滑脂指标测定
润滑脂检测润滑脂指标测定润滑脂检测润滑脂指标测试润滑脂需要检测哪些指标?去哪做润滑脂检测?哪有润滑脂检测机构?润滑脂检测的费用是多少?润滑脂英文名:lubricating grease;grease 稠厚的油脂状半固体。
用于机械的摩擦部分,起润滑和密封作用。
也用于金属表面,起填充空隙和防锈作用。
主要由矿物油(或合成润滑油)和稠化剂调制而成。
润滑脂检测请立即搜索青岛东标能源检测中心,专业的第三方油品检测机构,专注检测,值得信赖!润滑油检测项目有:外观、色度、密度、粘度、粘度指数、闪点、凝点、倾点、酸碱值、中和值、水分、机械杂质、灰分、硫酸灰分、残炭、泡沫性、凝胶指数、过滤性、承受能力、清洁度、液相锈蚀、抗擦伤试验、初馏点、油膜质量、蒸发量、防腐蚀性、硬化实验等等。
润滑脂主要是由稠化剂、基础油、添加剂三部分组成。
一般润滑脂中稠化剂含量约为10%-20%,基础油含量约为75%-90%,添加剂及填料的含量在5%以下。
2.26-6l.基础油基础油是润滑脂分散体系中的分散介质,它对润滑脂的性能有较大影响。
一般润滑脂多采用中等粘度及高粘度的石油润滑油作为基础油,也有一些为适应在苛刻条件下工作的机械润滑及密封的需要,采用合成涧滑油作为基础油,如酯类油、硅油、聚泣-烯烃油等。
2.稠化剂稠化剂是润滑脂的重要组分,稠化剂分散在基础油中并形成润滑脂的结构骨架,使基础油被吸附和固定在结构骨架中。
润滑脂的抗水性及耐热性主要由稠化剂所决定。
用于制备润滑脂的稠化剂有两大类。
皂基稠化剂(即脂肪酸金属盐)和非皂基稠化剂(烃类、无机类和有机类)。
皂基稠化剂分为单皂基(如钙基脂)、混合皂基(如钙钠基脂)、复合皂基(如复合钙基脂)三种。
90%的润滑脂是用皂基稠化剂制成的。
3.添加剂与填料一类添加剂是润滑脂所待有的,叫胶溶剂,它使油皂结合更加稳定?如甘油与水等。
钙基润滑脂中一旦失去水,其结构就完全被破坏,不能成脂,如甘油在钠基润滑脂中可以调节脂的稠度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、润滑脂防腐性概述: 防腐性是润滑脂阻止与其相接触金属被腐蚀 的能力。润滑脂的稠化剂和基础油本身是不会 腐蚀金属的,使润滑脂产生腐蚀性的原因很多, 主要是由于氧化产生酸性物质所致。一般而言 ,过多的游离有机酸、碱都会引起腐蚀。
二、润滑脂防腐性测试方法: 腐蚀试验就是检测润滑脂是否对金属有腐蚀作 用,测定的方法有好几种,试验条件也各异,但都是 在一定温度和试验时间下,通过观察金属片上的 变色或产生斑点等现象未判断润滑脂腐蚀性的大 小。 SH/T0331一92《润滑脂腐蚀试验法》,采用 100℃,3h,铜片、钢片进行测定。 GB/T 7326一87《润滑脂铜片腐蚀试验》规定了 润滑脂对铜部件酌腐蚀性测亨方法,采用 100℃,24h,铜片进行测定,分甲法与乙法。甲法 是将试验锅片与铜片腐蚀标准色板进行比较,确定 腐蚀级别;乙法是检查试验铜片有无变色。
GB/T5018一85《润滑脂防腐蚀性试验法》规定了 润滑脂防腐蚀性能的试验方法。方法概要:将涂有 试样的新轴承,在轻的推力负荷下运转60s,使润滑 脂象使用情况那样分沛。轴承在52℃±l℃,100X 相对湿度条件下存放48h,然后清洗并检查轴承外圈 滚道的腐蚀迹象。本方法中的腐蚀是ቤተ መጻሕፍቲ ባይዱ轴承外圈滚 道的任何表面损坏(包括麻点、刻蚀、锈蚀等)或黑 色污渍。该方法可以评定在潮湿条件下润滑脂阻止 与其相接触金属产生锈蚀及其它形式腐蚀的能力。