§3.2.3平面直角坐标系
3.2.3平面直角坐标系第3课时(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平面直角坐标系的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对坐标表示方法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-各象限内点的坐标特征:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-)。
-实际问题中的应用:运用坐标方法解决几何问题,如计算线段长度、判断点与线段的关系等。
2.教学难点
-难点内容:坐标特征的推理与应用。
-推理难点:学生需要理解为什么坐标轴上点的坐标特点如此,以及如何从坐标特点推断点的位置。
-举例:使用坐标系图,让学生亲自标出各象限内点的坐标,加深对坐标特征的理解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《3.2.3平面直角坐标系第3课时》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要标明位置的情况?”(如电影院选座、地图定位等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平面直角坐标系的奥秘。
b.帮助学生掌握坐标轴上点的坐标特点。
c.引导学生探索并掌握各象限内点的坐标特征。
d.应用坐标表示方法解决实际问题,提高学生的实际应用能力。
二、核心素养目标
1.培养学生空间观念和直观想象能力,通过平面直角坐标系的学习,使学生能够将点与坐标相互转化,形成数形结合的思想。
-能够在坐标系中表示出给定坐标的点。
北师大八年级数学上册《平面直角坐标系》课件(共18张PPT)
第一课时
什么是数轴?
在直线上规定了原点、正方向、单位长度 就构成了数轴。
单位长度
B
· 原点 A
C
-3 -2 -1 0 1 2 3 4
数轴上的点与实数之间 存在着一一对应关系。
我帮老师解决问题
如果课上老师要点一名同学回答问 题,但不知道同学们的姓名,我想根据同 学们所在的位置来确定,你能帮我解决吗?
3、能适当建立直角坐标系,写出直角坐标 系 中有关点的坐标。
作业:
新课堂 P51 第一课时
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年4月21日星期四2022/4/212022/4/212022/4/21 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年4月2022/4/212022/4/212022/4/214/21/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/4/212022/4/21April 21, 2022
高荣荣
朱奕菲
讲台
行
10
8
m(4,6)
6
·
4
2
0 1 2 3 4 5列
课本58页做一做
情景问题
问题1
问题2
1平. 面平直面角上坐标两系条,互相水垂平直的且数有轴公共叫原x点轴的(数横轴轴组)成, 取向 右为正方向, 铅直的数轴 叫y轴(纵轴), 取向 上为正方向。 两轴的交点是 原点 。 这个平面叫 坐标 平面。
谢谢观赏
You made my day!
我们,还在路上……
《平面直角坐标系》第三课时教案
3.2 平面直角坐标系 (三)一.教课目标(一 )教课知识点1.进一步牢固画平面直角坐标系,在给定的直角坐标系中,会依据坐标描出点的地点,由点的地点写出它的坐标.2.能在方格纸上建立合适的直角坐标系,描述物体的地点.3.能联合详尽情境灵巧运用多种方式确立物体的地点.(二 )能力训练要求依据已知条件有不一样的解决问题的方式,灵巧地采用既简易又易懂的方法求解是本节的要点,经过多角度的研究既可以拓宽学生的思想,又可以从中找到解决问题的捷径,使大家的解决问题的能力得以提升 .(三 )感情与价值观要求1.经过学习建立直角坐标系有多种方法,让学生体验数学活动充满着研究与创建 .2.经过确立旅行景点的地点,让学生认识数学与人类生活的亲近联系,提升他们学习数学的兴趣 .二.教课要点依据实质问题建立合适的坐标系,并能写出各点的坐标.三.教课难点依据已知条件,建立合适的坐标系.四.教课方法商讨法 .五.教具准备方格纸若干张 .投电影三张:第一张:练习 (记作§3.2.3 A);第二张:增补练习 (记作§3.2.3 B);第三张:增补练习 (记作§3.2.3 C).六.教课过程Ⅰ.创建问题情境,引入新课在前两节课中我们学习了在直角坐标系下由点找坐标,和依据坐标找点,并把点用线段连接起来构成不一样的图形,还自己设计出了许多美丽的图案 .这些都是在已知的直角坐标系下进行的,假如给出一个图形,要你写出图中一些点的坐标,那么你一定建立直角坐标系,直角坐标系应如何建立?是唯一的情况还是多种状况,这就是本节课的内容 .Ⅱ.讲解新课[例]以以下图,矩形 ABCD 的长与宽分别是 6,4,建立合适的直角坐标系,并写出各个极点的坐标 .[师]在没有直角坐标系的状况下是不可以写出各个极点的坐标的,因此应先建立直角坐标系,那么应如何采用直角坐标系呢?请大家思虑.[生甲]以以下图所示,以点 C 为坐标原点,分别以 CD、CB 所在直线为 x 轴、 y 轴,建立直角坐标系 .由 CD 长为 6, CB 长为 4,可得 A、 B、 C、D 的坐标分别为 A(6, 4),B(0,4), C(0,0),D(6, 0).[生乙]以以下图所示 .以点 D 为坐标原点,分别以 CD、AD 所在直线为 x 轴、 y 轴,建立直角坐标系 .由 CD 长为 6,BC 长为 4,可得 A、B、C、D 的坐标分别为 A(0,4),B(-6,4), C(-6,0), D(0,0).[师]这两位同学采用坐标系的方式都是以矩形的某一极点为坐标原点,矩形的相邻两边所在直线分别作为x 轴、y 轴,建立直角坐标系的 .这样建立直角坐标系的方式还有两种,即以 A、 B 为原点,矩形两邻边分别为 x 轴、 y 轴建立直角坐标系 .除此以外,还有其余方式吗?[生]有,以以下图所示 .以矩形的中心 (即对角线的交点 )为坐标原点,平行于矩形相邻两边的直角为 x 轴、 y 轴,建立直角坐标系 .则 A、 B、C、D 的坐标分别为 A(3, 2),B(-3,2),C(-3,- 2),D(3,-2).[师]这位同学做的很棒 .较前两种有难度,那还有没有其余建立直角坐标系的方式呢?[生]有,以以下图所示 .建立直角坐标系,则 A、 B、C、D 的坐标系分别为A(4,3),B(-2,3), C(-2,- 1),D(4,- 1).[师]还有其余状况吗?[生]有,把上图中的横坐标逐渐向上挪动,纵坐标左、右挪动,则可获得不一样的坐标系,从而获得 A、B、C、D 四点的不一样坐标 .[师]从刚刚我们谈论的状况看,大家能发现什么?[生]建立直角坐标系有多种方法.[师]特别正确 .[例题]对于边长为 4 的正三角形 ABC,建立合适的直角坐标系,写出各个极点的坐标 .解:以以下图,以边 BC 所在直线为 x 轴,以边 BC 的中垂线为 y 轴建立直角坐标系 .由正三角形的性质,可知AO=2 3 ,正△ABC各个极点A、B、C的坐标分别为 A(0,2 3 ),B(-2,0),C(2,0).[师]正三角形的边长已经确立是4,则它一边上的高能否是会因所处地点的不一样而发生变化呢?[生]不会,不过地点变化,而长度不会变.[师]除了上边的直角坐标系的采用外,能否还有其余的采用方法.[生]有,以以下图所示 .以点 B 为坐标原点, BC 所在的直线为 x 轴,建立直角坐标系 .由于 BC=4,AD=2 3,因此 A、 B、 C 三点的坐标为 A(2,2 3 ), B(0, 0),C(4, 0).[师]很好,其余同学还有不一样建议吗?[生]有 .分别以 A、C 为坐标原点,以平行于线段 BC 或线段 BC 所在的直线为 x 轴,建立直角坐标系,则 A、B、C 的坐标相应地发生变化 .[师]很棒,其余状况我们就不一一列举了,请大家在课后连续.议一议在一次“寻宝”游戏中,寻宝人员已经找到了坐标为(3,2)和(3,-2)的两个标记点,而且知道藏宝地点的坐标为(4,4),除其余不知道其余信息 .如何确立直角坐标系找到“宝藏”?与伙伴进行交流 .[生]由于 (3,2)和(3,- 2)到 x 轴的距离都为 2,因此 x 轴必定经过连接两个点的线段的中点 .[生]由于这两点的横坐标都是 3,因此 y 轴应在这两点的左边,且连接 (3,- 2),(3,2)的线段向左挪动 3 个单位长度就与 y 轴相重合 .[师]说的对,下边我完好地给大家表达一次.以以下图,设A(3,2),B(3,- 2),C(4,4).由于点 A、B 到 x 轴的距离相等,因此线段 AB 垂直于 x 轴,则连接线段 AB,作线段 AB 的垂直均分线即为 x 轴,并把线段 AB 四等份,此中的一份为一个单位长度,以线段 AB 的中点 D 为起点,向左挪动 3 个单位长度的点为原点O,过点 O 作 x 轴的垂线即为 y 轴,建立直角坐标系,再在新建的直角坐标系内找到 (4,4)点,即是藏宝地点 .Ⅲ.课堂练习(一 )随堂练习投电影 ( §5.2.3 A)以以下图,五个少儿正在做游戏,建立合适的直角坐标系,写出这五个少儿所在地点的坐标 .[师]请大家每 5 个人构成一个小组,每个同学建立直角坐标系的方式不一样. 请在自己准备的方格纸上建立直角坐标系,并写出在此坐标系下的坐标.[生甲]我是以中间的少儿(即 A)为坐标原点,以方格的横线、纵线所在直线为横轴、纵轴,建立直角坐标系,这样,五个少儿所在地点的坐标分别为A(0,0), B(-5,0), C(0,- 4), D(4,0),E(0, 3),如上图所示 .[生乙]我是以图中的 B 为坐标原点,以方格的横线、纵线所在直线为横轴、纵轴建立直角坐标系,五个少儿所在地点的坐标分别为 A(5,0),B(0,0),C(5,- 4),D(9, 0), E(5,3).以以下图所示 .[师]其余以 C、D、E 为坐标原点,以方格的横线、纵线所在直线为横轴、轴纵建立直角坐标系的方法我们就不一一说了然,我相信大家做的必定很棒.除这五种方法外,能否就没有其余方法了呢?请大家思虑.[生]还有,以方格纸的横线、纵线所在直线为横轴、纵轴,横线、纵线的任一交点为原点,都可建立直角坐标系,相应的可求出五个地点的坐标.(二 )增补练习Ⅵ.活动与研究以以下图,建立两个不一样的直角坐标系,在各个直角坐标系下,分别写出八角星 8 个角的极点的坐标,并比较同一极点在两个坐标系中的坐标.解:如上图所示建立直角坐标系,则八个极点的坐标分别为A(- 5, 10),B(- 7, 5),C(- 5, 0),D(0,- 2),E(5,0) ,F(7,5), G(5, 10),H(0,12).第二种:以以下图所示建立直角坐标系.这时八个极点的坐标分别为A(-5,7),B(-7,2),C(-5,- 3),D(0,-5), E(5,- 3), F(7, 2),G(5, 7),H(0,9).比较同一极点在两种坐标系下的坐标:A(- 5,10),A(-5,7),可知横坐标不变,纵坐标减小了;B(-7,5)、 B(-7,2),横坐标不变,纵坐标减小了比较全部极点的坐标可知,在这两种直角坐标系下,同一极点的坐标的横坐标不变,纵坐标减小了 .七.板书设计§平面直角坐标系(三)一、例题讲解二、议一议 (寻宝藏 )三、课时小结四、课后作业五、课堂练习。
八年级数学上册 3.2.3 平面直角坐标系教案 (新版)北师大版
图2课题:3.2.3平面直角坐标系教学目标:1.能结合所给图形的特点,建立适当的直角坐标系,写出点的坐标.2.能根据一些特殊点的坐标复原坐标系.3.经历画坐标系、连线、看图以及由点找坐标等过程,培养数形结合的能力.教学重点:根据实际问题建立适当的坐标系,并能写出各点的坐标.教学难点:根据一些特殊点的坐标复原坐标系.教法及学法指导:采用合作探究式学习,帮助学生在学习的过程中理解、掌握知识,提高解决问题的能力.课前准备:多媒体课件.教学过程:一、创设情境,导入新课问题1:在坐标平面内如何确定一个点的坐标?已知点的坐标如何确定点的位置?问题2:在一次“寻宝”游戏中,寻宝人已经找到了坐标为(3,2)和(3,-2)的两个标志点,并且知道藏宝地点的坐标为(4,4),除此外不知道其他信息.如何确定直角坐标系找到宝藏?处理方式:教师引导学生思考回答.对于问题1学生利用前两节课的知识可解答,问题2的设置为引入新课做铺垫. 设计意图:这个情境具有一定趣味性和探究性,这样可以大大激发学生的思维,增强学生的学习兴趣,使学生进入快乐的学习中来,提高学生学习的积极性和主动性,同时引导学生进入新课的学习.二、探究学习,感悟新知活动一:建立平面直角坐标系,描述图形问题:如图3,矩形ABCD 的长与宽分别是6,4,请你建立适当的直角坐标系,并写出各个顶点的坐标.提示:在没有直角坐标系的情况下不能写出各个顶点的坐标,所以应先建立直角坐标系,那么应如何选取直角坐标系呢?请大家思考.处理方式:学生独立完成,并在小组内交流.在学生交流中产生质疑或分歧后让学生各抒己见.教师强调:建立直角坐标系有多种方法,要灵活选择坐标原点,使问题变得越简单图1越好,在今后的学习中同学们会发现合理建立平面直角坐标系是解决问题非常关键的一步.学生可能出现的答案如下:方法1 (教师板书):如图3所示,以点C为坐标原点,分别以CD、CB所在直线为x 轴、y轴,建立直角坐标系.此时点C的坐标是(0,0). 由CD=6,CB=4,可得A、B、D的坐标分别为A(6,4),B(0,4),C,D(6,0).方法2 :如图4所示,以点D为坐标原点,分别以CD、AD所在直线为x轴、y轴,建立直角坐标系. 由CD长为6,BC长为4,可得A、B、C、D的坐标分别为A(0,4),B(-6,4),C(-6,0),D(0,0) .方法3:如图5所示,以点A为坐标原点,分别以AB、AC所在直线为x轴、y轴,建立直角坐标系. 由AB长为6,AC长为4,可得A、B、C、D的坐标分别为A(0,0),B(0,-6),C(0,-4),D(-6,-4) .方法4:如图6所示,以点B为坐标原点,分别以BA、BC所在直线为x轴、y轴,建立直角坐标系. 由BA长为6,BC长为4,可得A、B、C、D的坐标分别为A(0,6),B(0,0),C(0,-4),D(6,-4) .方法5 :如图7所示,以矩形的中心(即对角线的交点)为坐标原点,平行于矩形相邻两边的直线为x轴,y轴,建立直角坐标系. 则A、B、C、D的坐标分别为A(3,2),B (-3,2),C(-3,-2),D(3,-2).方法6:把图7中的横坐标逐渐向上、下移动,纵坐标左、右移动,则可得到不同的坐图3图4图6图5标系,从而得到A,B,C,D四点的不同坐标.如图8所示,建立直角坐标系,则A、B、C、D的坐标系分别为A(4,3),B(-2,3),C(-2,-1),D(4,-1) .活动二:议一议通过以上的探索学习你认为怎样建立适合的直角坐标系?处理方式:结合实际应用,引导学生分组讨论怎样建立适合的直角坐标系,教师参与到小组中,学生发言后,教师总结建立直角坐标系的基本思路:(1)分析条件,选择适当的点为坐标原点;(2)过原点在两个互相垂直的方向上分别作出x轴与y轴;(3)确定正方向和单位长度.设计意图:“学习知识,归纳知识”,通过两个活动不仅让学生明白根据已知条件建立适当的直角坐标系是确定点的位置的必经过程,只有建立适当的直角坐标系,点的位置才能确定,才能使数与形有机地结合起来定理,还能让学生为顺利解决实际问题而有成功的体验并养成良好的研究习惯.三、例题解析,应用新知例4 对于边长为4的等边三角形ABC(图9),试建立适当的直角坐标系,写出各个顶点的坐标.处理方式:学生独立完成,找个别学生进行板演.教师进行巡视指导,并规范学生的解题过程书写.进而提问在这一问题中,你还可以怎样建立角坐标系?解: 如图10所示,以BC所在的直线为x轴,以边BC的中垂线y轴建立直角坐标系. 由等边三角形的性质可知AO==顶点A,B,C的坐标分别为A(0,; B( -2 , 0 );C ( 2 ,0 ).图7图8图9图10学生还可能有以下方法:思路2:如图11所示,以点B 为坐标原点,BC 所在的直线为x 轴,建立直角坐标系.因为BC =4,AD =23,所以A 、B 、C 三点的坐标为A (2,23),B (0,0),C (4,0).思路3:如图12所示,以点A 为坐标原点,边BC 的中垂线直线为y 轴,建立直角坐标系. A 、B 、C 三点的坐标为A (0,0),B (-2,-,C (2,-.设计意图:再次让学生练习,加深学生对此结论的记忆,并进一步明确(1)体会不同的坐标系同一图形的位置不同,那么,关键点的坐标也不同.(2)确定坐标系时,一方面是看点的位置,同时也与此点到坐标轴有关,而距离往往需要进行计算.(3)培养学生综合应用知识解决问题的能力.议一议(回解情境)在一次“寻宝”游戏中,寻宝人员已经找到了坐标为A (3,2)和B (3,-2)的两个标志点(如图),并且知道藏宝地点的坐标为(4,4),除此外不知道其他信息.如何确定直角坐标系找到“宝藏”?与同伴进行交流.处理方式:引导学生讨论确定直角坐标系的原点、单位长度、坐标轴的位置.并尝试用语图11 图12言表述出来.教师参与到各组讨论,检查学生的做法,倾听他们的表述,并对问题总结. 师总结:如图设A(3,2),B(3,-2),C(4,4).因为点A、B到x轴的距离相等,所以线段AB垂直于x轴,则连接线段AB,作线段AB的垂直平分线即为x轴,并把线段AB四等份,其中的一份为一个单位长度,以线段AB的中点D为起点,向左移动3个单位长度的点为原点O,过点O作x轴的垂线即为y轴,建立直角坐标系,再在新建的直角坐标系内找到(4,4)点,即是藏宝地点.设计意图:通过寻宝游戏这一有趣问题的讨论,不仅让学生对本节知识有了更清晰的认识,还提高了学生的运用知识的能力,同时激发学生学习的积极性,从而达到对直角坐标系和点坐标的进一步理解.四、变式训练,巩固提高1.如图,建立两个不同的直角坐标系,在各个直角坐标系中,分别写出八角星八个角的顶点坐标,并比较同一个顶点在两个坐标系中的坐标.22,-5)位置的坐标为(4,-2),那么工兵所在的位置的坐标为.处理方式:学生练习,小组内展示比较,推选代表发言.设计意图:通过题目的训练,帮助学生进一步运用本节课所学知识,提高能力.五、回顾反思,提炼升华通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.设计意图:小结本节课自己的收获和进步,从知识和能力上两个方面总结;鼓励学生大胆发言,敢于表达自己的观点,同时学生之间可以相互学习,共同提高,老师给予肯定和鼓励,激发学生的学习热情.六、达标检测,反馈提高A 组:1.如图,有五个儿童在做游戏,请建立适当的直角坐标系,写出这五个儿童的位置坐标.2.某地为了发展城市群,在现有的四个中小城市A ,B ,C ,D 附近新建机场E ,试建立适当的直角坐标系,并写出各点的坐标.DE3.如图,象棋盘中的小方格均为边长为1个单位的正方形,“炮”的坐标为(–2, 1),“帅”的坐标为(1, –1),则“卒”的坐标为 .B 组:1.已知点A 到x 轴、y 轴的距离均为4,求A 点坐标;2.已知x 轴上一点A (3,0),B (3,b ) ,且AB =5,求b 的值.处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.七、布置作业,课堂延伸必做题:课本 第66页 随堂练习 第66—67页 习题 第1、2、3题.选做题:课本 第66—67页习题 第4、5题.板书设计:。
北师版八年级数学上册课件(BS) 第三章 位置与坐标 平面直角坐标系 第2课时 平面直角坐标系的应用
10.(2021·沈阳月考)棋在中国有着三千多年的历史,由于用具简单,趣味性强, 成为流行极为广泛的益智游戏.如图是局象棋残局,若在中国象棋盘上建立平面 直角坐标系,使表示棋子“马”和“車”的点的坐标分别为(4,3),(-2,1),则 表示“炮”的点的坐标为A( )
数学 八年级上册 北师版
第三章 位置与坐标
3.2 平面直角坐标系
第2课时 平面直角坐标系的应用
知识点:建立平面直角坐标系确定点的坐标 1.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M 的位置用(-40,-30)表示,那么(10,20)表示的位置是( B )
A.点A B.点B C.点C D.点D
6.(射阳模拟)如图,在下列正方形网格中,标注了射阳县城四个大型超市的大 致位置(小方格的边长为1个单位).若用(0,-2)表示苏果超市的位置,用(4,1)表 示文峰超市的位置,则大润发超市的位置可表示为_(_-__1_,__4_)_.
7.(2020·吉州区期末)如图,一个小正方形网格的边长表示50米.A同学上学 时从家中出发,先向东走250米,再向北走50米就到C=6,建立适当的平面直角坐标系, 并写出点A,B,C的坐标.
解:如图,作 AO⊥BC,以点 O 为原点建立平面直角坐标系,因为 AB=AC=5, 所以 OB=OC=12 BC=3,在 Rt△AOB 中,因为 AB=5,OB=3,所以 OA=
AB2-OB2 =4,所以 A 点坐标为(0,4),B 点坐标为(-3,0),C 点坐标为(3, 0).(答案不唯一)
北师大版八年级数学上册3.2 平面直角坐标系(第3课时)课件
课堂检测 基础巩固题
1.如图所示,小明在与同伴玩“找宝”游戏,他们准备到A、B、
C三个点去找宝,现已知点A的坐标是(1,0),点B的坐标是 (3,2),则点C的坐标是___(__5_,__1_)__.
课堂检测
基础巩固题
2.(1)已知A(1,4), B(-4,0),C(2,0).
y A (1,4)
D
C
A
B
巩固练习
y 4D
(A) O
解:如图,以顶点A为原点,AB C 所在直线为x轴,AD所在直线为
y轴建立平面直角坐标系. 此时,正方形四个顶点A,B,C,D
B
4 x 的坐标分别为: A(0,0), B(4,0), C(4,4), D(0,4).
巩固练习
y D
OA
讨论 还可以建立其他平面直角坐
y 4
B(0,4)
6
A(6,4)
o
C(0,0) D(6,0)x
探究新知
解:如图,以点C为坐标 原点, 分别以CD , CB所 在的直线为x 轴,y 轴建 立直角坐标系. 此时C点 坐标为( 0 , 0 ).
y
4 B (0,4)
由CD长为6, CB长为4,
可得D , B , A的坐标分别
为D( 6 , 0 ), B( 0 , 4 ),
巩固练习
yD
C
4
3
2
1
Aቤተ መጻሕፍቲ ባይዱ
B
0
-4
-3
-2
-1
-1
1
2
3
4
5
x
-2 -3 -4
巩固练习
y 4
3
2
1
D
0
北师大版-数学-八年级上册-3.2《平面直角坐标系(3)》教学设计
3.2《平面直角坐标系(3)》教学设计教学目标:1.能结合所给图形的特点,建立适当的坐标系,写出点的坐标;2.能根据一些特殊点的坐标复原坐标系;3.经历建立坐标系描述图形的过程,进一步发展数形结合意识。
教学重点:建立适当的坐标系,确定点的坐标教学难点:建立适当的坐标系,确定点的坐标教学过程:一、导入新课活动过程:确定适当的直角坐标系,确定各个关键点的坐标。
活动成果:根据坐标系确定点的坐标。
【设计意图】:借助于大家熟悉的长方形着手,建立适当的直角坐标系,确定各个顶点的坐标,引入课题。
二、探究新知活动一:活动过程:通过建立不同的直角坐标系,感受点与坐标之间的对应关系。
活动成果:巩固坐标与点的对应关系。
【设计意图】:通过活动感受点与坐标之间的对应关系,并通过观察、猜想并验证坐标之间的特征,提升能力。
三、例题讲解:讲解过程:先确定如图所示的坐标系,然后再确定各个顶点的坐标。
解题思路:在具体情景中根据建立坐标系确定点的坐标。
解题方法:观察分析法答案:略四、课堂练习1.课本随堂练习五、课堂总结本节课我们通过活动更好的感受点与坐标之间的对应关系,建立适当的直角坐标系,确定各个点的坐标。
通过本节课的学习,你还有什么新的收获?请与大家分享。
六、课后作业课内作业:课本课后习题习题3.4 1、2、3七、板书设计课题:3.2 平面直角坐标系(3)1.建立适当的坐标系:2.例题八、教学反思本节课的内容主要通过建立适当的坐标系,确定图形各个顶点的坐标,增强学生解决问题的能力。
在坐标轴上的点学生易弄错坐标。
八年级数学上册3.2平面直角坐标系第1课时平面直角坐标系说课稿(新版北师大版)
八年级数学上册3.2平面直角坐标系第1课时平面直角坐标系说课稿(新版北师大版)一. 教材分析平面直角坐标系是八年级数学上册第三章第二节的内容,本节课的主要内容有:平面直角坐标系的定义,坐标轴和坐标点的概念,坐标的表示方法以及坐标轴上的点的坐标特征。
这部分内容是学生学习函数、几何等数学知识的基础,对于学生来说具有重要的意义。
二. 学情分析学生在七年级时已经学习了坐标轴和坐标的初步知识,对本节课的内容有一定的了解。
但是,对于平面直角坐标系的定义,坐标轴和坐标点的概念,以及坐标轴上的点的坐标特征等知识,还需要进一步的讲解和巩固。
此外,学生对于实际问题中的坐标系应用还不够熟悉,需要通过实例来加强理解和运用。
三. 说教学目标1.知识与技能:理解平面直角坐标系的定义,掌握坐标轴和坐标点的概念,学会表示坐标,并能判断坐标轴上的点的坐标特征。
2.过程与方法:通过实例和练习,培养学生的空间想象能力,提高学生解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和探究精神。
四. 说教学重难点1.重点:平面直角坐标系的定义,坐标轴和坐标点的概念,坐标的表示方法。
2.难点:坐标轴上的点的坐标特征的判断,以及坐标系在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、实例教学法和合作学习法,引导学生主动探究,提高学生的学习兴趣和参与度。
2.教学手段:利用多媒体课件和教具,直观展示平面直角坐标系,帮助学生理解和记忆。
六. 说教学过程1.导入:通过问题驱动,引导学生回顾七年级学过的坐标轴和坐标点的知识,为新课的学习做好铺垫。
2.新课讲解:讲解平面直角坐标系的定义,坐标轴和坐标点的概念,坐标的表示方法,以及坐标轴上的点的坐标特征。
通过实例和练习,让学生加深对知识的理解。
3.课堂互动:学生进行小组讨论,分享学习心得,解答疑难问题。
4.练习巩固:布置一些具有代表性的题目,让学生独立完成,检验学习效果。
北师大版八年级数学上册:3.2《平面直角坐标系》说课稿
北师大版八年级数学上册:3.2《平面直角坐标系》说课稿一. 教材分析《平面直角坐标系》是北师大版八年级数学上册第三章第二节的内容。
本节课的主要内容是让学生掌握平面直角坐标系的建立、坐标轴的特点、坐标的表示方法以及坐标轴上的点的坐标特点。
教材通过生动的实例和丰富的练习,使学生能够理解并熟练运用平面直角坐标系解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了实数、一次函数和二次函数等基础知识。
他们对数学图形有一定的认识,但平面直角坐标系的概念和应用可能较为抽象。
因此,在教学过程中,需要注重引导学生通过观察、操作和思考,理解和掌握平面直角坐标系的相关知识。
三. 说教学目标1.知识与技能目标:让学生掌握平面直角坐标系的建立、坐标轴的特点、坐标的表示方法,以及坐标轴上的点的坐标特点。
2.过程与方法目标:通过观察、操作和思考,培养学生运用平面直角坐标系解决实际问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的合作意识和创新精神。
四. 说教学重难点1.教学重点:平面直角坐标系的建立,坐标轴的特点,坐标的表示方法。
2.教学难点:坐标轴上的点的坐标特点,以及运用平面直角坐标系解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和探究式教学法。
2.教学手段:利用多媒体课件、实物模型和几何画板等辅助教学。
六. 说教学过程1.导入新课:通过一个实际问题,引导学生思考如何用数学方法表示物体的位置。
2.探究平面直角坐标系:让学生观察和分析实际问题,引导学生发现平面直角坐标系的建立和特点。
3.学习坐标表示方法:讲解坐标的表示方法,让学生通过实际操作,掌握坐标轴上的点的坐标特点。
4.应用与拓展:让学生运用平面直角坐标系解决实际问题,培养学生的应用能力。
5.总结与反思:对本节课的内容进行总结,引导学生思考如何更好地运用平面直角坐标系。
七. 说板书设计板书设计要简洁明了,突出重点。
3.2《平面直角坐标系第3课时》北师大版数学八年级上册精品教案
第三章位置与坐标2 平面直角坐标系第3课时一、教学目标1.能结合所给图形的特点,建立适当的坐标系,写出点的坐标.2.能根据一些特殊点的坐标复原坐标系.3.经历建立坐标系描述图形的过程,进一步发展数形结合意识.4.通过学习建立直角坐标系的多种方法,体验数学活动充满着探索与创造,激发学习兴趣,感受数学在生活中的应用,增强数学应用意识.二、教学重难点重点:根据实际问题建立适当的坐标系,并能写出各点的坐标.难点::根据一些特殊点的坐标复原坐标系.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计教学环节教师活动学生活动设计意图环节一创设情境【情境导入】教师活动:教师出示课件,与学生一起做工兵排雷游戏.根据给出的坐标,找到地雷的位置,如果你找对了,地雷就爆炸了,如果找不对,地雷就不会爆炸哦!(-5,0)、(0,4)、(6,4)、(6,-4)、(2,3)、(-2,3)、(-3,-3)、(-5,6)、(2,-3)、(4,-3)、(0,0).预设:尝试找出各点位置,进行排雷游戏通过做工兵排雷游戏,激发学生的学习兴趣.思考:你能写出图中几个点的坐标吗?预设:不能,因为没有建立直角坐标系.给出一个平面图形,要想写出图形中一些点的坐标,必须建立直角坐标系,而直角坐标系如何建立?建立方法是否唯一呢?我们一起来探索下!思考并回答通过给出平面图形,不能直接写出点的坐标,引发学生思考,从而引出新课的学习.环节二探究新知【探究】教师活动:通过探究活动,引导学生探究如何建立适当的平面直角坐标系.如图,长方形ABCD的长与宽分别是6和4,建立适当的直角坐标系,并写出各个顶点的坐标.思考:你是如何建立的直角坐标系?各顶点坐标如何求得?预设:(1)确定坐标原点;(2)确定x轴和y轴,建立直角坐标系;(3)根据条件中线段长度表示各顶点的坐标.合作探究,并交流讨论.以写出长方形各顶点坐标为背景,引领学生探索建立适当的平面直角坐标系,培养合作交流的能力,同时发展数形结合意识.解:如图,以点C 为坐标原点,分别以CD,CB所在的直线为x轴,y轴建立直角坐标系. 此时C点坐标为( 0,0 ).由CD长为6,CB长为4,可得D,B,A的坐标分别为:D( 6 ,0 ),B( 0,4 ),A( 6,4).【议一议】还可以建立其他平面直角坐标系,表示长方形的四个顶点A,B,C,D的坐标吗?预设:成果展示教师引导学生多尝试,方法多样,合理即可.【想一想】由上得知,建立的平面直角坐标系不同,则各点的坐标也不同.你认为怎样建立直角坐标独立尝试,并交流反馈思考并交流明确同一个图形,可以建立多种平面直角坐标系,建立不同的坐标系对应的顶点坐标不同.系才比较适当?预设:①以特殊线段所在直线为坐标轴;②图形上的点尽可能的在坐标轴上;③所得坐标简单,运算简便.注意:建立不同的平面直角坐标系,同一个点就会有不同的坐标,但长方形的形状和性质不会改变.提问:说一说,建立平面直角坐标系的步骤是什么?归纳:建立平面直角坐标系的步骤:(1)定原点.尽可能选择一些特殊点作为坐标原点(如垂足、顶点、中心等);(2)定坐标轴.坐标轴尽可能建立在已知图形中的线段上;(3)完善平面直角坐标系,如箭头、坐标轴符号、原点、单位长度等.讨论合作探究,交流反馈引导学生如何建立适当的平面直角坐标系.归纳出建立平面直角坐标系的步骤.环节三应用新知【典型例题】教师活动:教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例如图,对于边长为4的等边三角形ABC,建立适当的直角坐标系,并写出各个顶点的坐标.解:如图,以边BC所在直线为x轴,以边BC的中垂线为y轴建立直角坐标系. 引导学生由等边三角形的性质可知AO =,顶点A ,B ,C 的坐标分别为A (0,);B (-2,0);C(2,0).提问:想一想,还有其他方法吗?预设:其他方法展示【议一议】在一次“寻宝”游戏中,寻宝人已经找到了坐标为(3,2)和(3,-2)的两个标志物A ,B ,并且知道藏宝地点的坐标为(4,4),除此外不知道其他信息.如何确定直角坐标系找到“宝藏”?预设:连接AB ,作线段AB 的中垂线,并以这条直线为横轴;将线段AB 分成四等份,以其中的一份为单位长度,以线段AB 的中点为起点,向左找到距起点3个单位长度的点,过这个点明确例题的做法,尝试独立解答,并交流讨论独立思考,尝试解决思考如何选择适当的直角坐标系,从而更简便地描述图形的位置,进一步熟练如何建立适当的平面直角坐标系并写出对应的坐标.根据已知点的坐标来确定平面直角坐标系的原点、单位长度、坐标轴的位置,可以加深学生对平面直角坐标系的理解.作横轴的垂线,并以此作为纵轴,建立直角坐标系.再在新建的直角坐标系内找到坐标为(4,4)的点,即是藏宝地点.环节四巩固新知【随堂练习】教师活动:教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.如图,建立适当的直角坐标系,并写出这个四角星的八个顶点的坐标.2.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(-2,2),黑棋(乙)的坐标为(-1,-2),则白棋(甲)的坐标为__________.3.对于边长为4的正方形,建立适当的直角坐标系,并写出各个顶点的坐标.4.如图所示,在某次行动中,当我方两架飞机处于A(-1,2)与B(3,2)位置时,雷达探测到有一架可疑飞机C 在(1,-2)位置. 请你建立适当的直角坐标系,找出可疑飞机C的位置.自主完成练习,再集体交流评价.通过课堂练习及时巩固本节课所学内容,并考查学生的知识应用能力,培养独立完成练习的习惯.答案:1.解:各顶点坐标如下图:2.解:白棋(甲)的坐标为(2,1).3.解:如图,以顶点A为原点,AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系.正方形四个顶点A,B,C,D的坐标分别为:A(0,0),B(4,0),C(4,4),D(0,4).方法不唯一.4.解:点C的位置如图所示:环节五课堂小结思维导图的形式呈现本节课的主要内容:学生尝试回顾本节课所讲的内容通过小结总结回顾本节课学习内容,帮助学生归纳、巩固所学知识.环节六布置作业教科书第66页习题3.4第3、4题学生课后自主完成.通过课后作业,教师能及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.。
§3.2.3平面直角坐标系导学案
子洲三中“双主”高效课堂导学案2014-2015学年第一学期姓名:组名:使用时间2014年月日年级科目课题主备人备课方式负责人(签字)审核领导(签字)序号八(3)数学§3.2.3平面直角坐标系乔智一、教学目标:1、能结合所给图形的特点,建立适当的坐标系,写出点的坐标;2、能根据一些特殊点的坐标复原坐标系;3、经历建立坐标系描述图形的过程,进一步发展数形结合意识。
二、教学过程第一环节:探究建立平面直角坐标系,描述图形1.如图,矩形ABCD的长与宽分别是6,4,建立适当的直角坐标系,并写出各个顶点的坐标。
分析:在没有直角坐标系的情况下不能写出各个顶点的坐标,所以应先建立直角坐标系,那么应如何选取直角坐标系呢?请大家思考。
如下图所示,以点C为坐标原点,分别以CD,CB所在直线为x轴、y轴,建立直角坐标系。
由CD的长为6,CB长为4,可得A,B,C,D的坐标分别为A(6,4),B(0,4),C(0,0),D(6,0)。
如下图所示,以点D为坐标原点,分别以CD,AD所在直线为x轴、y轴,建立直角坐标系。
这两位同学选取坐标系的方式都是以矩形的某一个顶点为坐标原点,矩形的相邻两边所在直线分别作为x轴、y轴,建立直角坐标系的。
这样建立直角坐标系的方式还有两种,即以A,B为原点,矩形两邻边分别为x轴、y轴建立直角坐标系。
除此之外,还有其他方式吗?有,如下图所示,以矩形的中心(即对角线的交点)为坐标原点,平行于矩形相邻两边的直线为x轴、y轴建立直角坐标系,则A,B,C,D的坐标分别为A(3,2),B(-3,2),C(-3,-2),D(3,-2)。
把上图中的横坐标逐渐向上、下移动,纵坐标左、右移动,则可得到不同的坐标系,从而得到A,B,C,D四点的不同坐标。
从刚才我们讨论可知,大家能发现什么?第二环节:巩固内容:在一次“寻宝”游戏中,寻宝人已经找到了坐标为(3,2)和(3,-2)的两个标志点,并且知道藏宝地点的坐标为(4,4),除此外不知道其他信息。
3.2平面直角坐标系(第二课时)平面直角坐标系 课件(共17张PPT) 北师大版八年级数学上册
课堂小结
1.坐标轴上点的坐标
坐标轴上的点的坐标中至少有一个是0,即横轴上的点的纵坐标为0,纵轴上 的点的横坐标为0.
2.各个象限内的点的坐标特征:
第一象限(+,+),第二象限(-,+), 第三象限(-,-),第四象限(+,-).
3.平行x轴的直线上的点的 纵坐标相同 ,平行于y轴的直线上的 点的 横坐标相同 .
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.如果点P(x,y)满足xy=0,那么点P必定在( D )
A.原点上 B.x轴上 C.y轴上 D.坐标轴上
4.点P(m+3,m+1)在直角坐标系的x轴上,则点P的坐标为( B )
A.(0,-2) B.(2,0) C.(4,0) D.(0,-4)
探究新知
任务二:利用平面直角坐标系内点的坐标确定字母的值
例3 已知在平面直角坐标系中,点P(m,m-2)在第一象限内,
则m的取值范围是__m__>___2_.
解析:根据第一象限内点的坐标的符号特征,横坐标为正,纵坐
标为正,可得关于m的一元一次不等式组
m 0, m 2 0,
解得m>2.
求点的坐标中字母的取值范围的方法:根据各个象限内点的坐标的符号 特征,列出关于字母的不等式或不等式组,解不等式或不等式组即可求 出相应字母的取值范围.
第三章 位置与坐标
3.2平面直角坐标系(第二课时)
学习目标
3. 进一步体会平面直角坐标系中点与坐标之间 的一一对应关系. 2. 能够分析某些特殊点(坐标轴上的点、与坐 标轴平行的直线上的点等)的特征. 1. 熟练地根据坐标确定点的位置以及写出给定 点的坐标.Fra bibliotek复习导入
1.什么是平面直角坐标系? 2.作平面直角坐标系 3.指出四个象限 4.写出 P 点坐标 P(3,4)
八年级数学上册 3.2 平面直角坐标系(第3课时)课件 (新版)北师大版
y
例4: 对于边长为4的正
△ABC,建立(jiànlì)适当的直
角坐
标解系:,如写图出,各以个边顶B点C所的在坐标。
的直线为x轴,以边BC的 中垂线为y轴建立(jiànlì)
o
ห้องสมุดไป่ตู้
x
直角坐标系。
由正三角形的性质可得,AO= 2 ,3正△ABC各
个顶点(dǐngdiǎn)A,B,C的坐标分别为A2 3 (0, ),B(-2,0),C(2 ,0)。
平面(píngmiàn)直角坐 标系(3)
第一页,共10页。
1.平面直角坐标(zhí jiǎo zuò biāo)系是如何建立的?
在平面内,有公共原点的互相垂直(chuízhí)的两条数轴, 就构成了平面直角坐标系,其中水平数轴称为x轴或横轴,铅 直数轴称为y轴或纵轴.
2.怎样确定点的坐标?
对于平面内任一点,通过建立平面直角坐标系,从这 点分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的 数,分别叫做这一点的横坐标和纵坐标.按横纵顺序所得 的有序数对,称为这点的坐标.
还能如何建立直角坐标系?
第四页,共10页。
思考:在一次“寻宝”游戏中,寻宝人 已经找到了坐标为(3,2)和(3, -2)的两个标志点,并且知道藏宝地 点的坐标为(4,4),除此外不知道 其他信息,如何确定直角坐标(zhíjiǎo zuò biāo)系找到“宝藏”?与同伴进行 交流.
第五页,共10页。
第二页,共10页。
3.如何通过建立(jiànlì)平面直角坐标系来确定点的位 置?对于(duìyú)平面直角坐标系中的点,通过作x轴、y
轴的垂线可确定它的坐标;反之,对于(duìyú)所给点的坐标, 在直角坐标系中,也可找到点所在的位置 .
3.2 平面直角坐标系
·
2
(+,+)
2 (-,+) ( -2,1 ) C 1
·
-4
-3
-2
-1
(-,-)-2
D ( -4,- 3 )
0 -1 -3 -4
1
3
· ·
4 5
B ( 4,2 )
F (5,0) x 横轴
·
· E
( 1,- 2 ) (+,-)
·G
(0,-4)
3-2 平面直角坐标系
想一想: 下列各点分别在平面坐标的什么位置上? A(3,2) B(0,-2) C(-3,-2) D(-3,0)E(-1.5,3) F(2,-3) 答:A点在第一象限; B点在y轴上; C点在第三象限; D点在x轴上; E点在第二象限; F点在第四象限。
3-2 平面直角坐标系
§3.2 平面直角坐标系
3-2 平面直角坐标系
温故而知新
1.请你画出一条数轴.你能说出数轴的 三要素吗?
规定了原点、正方向、单位长度的直线叫数轴. 2.如图,你能说出数轴上点A和点B的 坐标吗?
3-2 平面直角坐标系
温故而知新
3.已知数轴上点C的坐标是5,点D的坐标 是-2,你能在数轴上画出点C和点D吗?
例1(1)求出图形轮廓线 F F' 3-2 平面直角坐标系 上各转折点A,O,B,C,D, D' E' E D E,F的坐标 A(0,-2) A'(0,-2) C' B' C B 1 O(0,0) O'(0,0) B(3,2) B'(-3,2) -4 -3 -2 -1 O O' 2 3 4 1 -1 C(2,2) C'(-2,2) A A' D(2,3) D'(-2,3) E(1,3) E'(-1,3) F(0,5) F'(0,5) (2)利用坐标关系,求出它们关于y轴对称点的 坐标。 (3)在同一坐标系中,描点A′,O′,B′,C′, D′,E′,F′,并用线段依次将它们连接起来。
3.2.3 建立适当的平面直角坐标系描述图形的位置课件 2024-2025学年北师大版八上
变长方形为不规则的四边形
如图,在边长为1个单位长度的小正方形组成的网格中,四边形ABCD的
每个顶点都在格点上.
(1)在图中建立合适的平面直角坐标系,使点A的坐标为(1,2),
点B的坐标为(2,-3);
解:建立平面直角坐标系
如解图①所示;
第10.3题图
第10.3题解图①
(2)四边形ABCD的面积为
16
9.五子棋起源于中国,规则为:双方各执一色,黑先白后,先形成五子连
色者获胜.如图,若白棋A的位置记为(1,2),黑棋B的位置记为(-2,-
1),为了阻止黑棋立即获胜,则白棋必须落子的位置是
(用坐标表示).
第9题图
(0,-1)
10.1 坐标原点不在长方形的顶点处
如图,在长方形ABCD中,AB=6,BC=4,以BC的中点为坐标原点,BC
(m,n),(4,3),则点B的坐标是
(-4,3)
第12题图
.
13.如图是老北京城一些地点的分布示意图.已知东直门和宣武门的坐标
分别为(3.5,4)和(-2,-1).
(1)在图中画出相应的平面直角坐标系,并写出(-4,2)表示的地点;
解:根据题意,建立平面
直角坐标系如解图所示,
第8题图
根据解图可得,(-4,2)
为 1,求点 A 的坐标.
BC = 6,三角形的高为4
即横坐标为1,纵坐标
距离x轴为4的点
A 点坐标为( 1 , 4 ) 或 ( 1 , -4 )
A( 1 , 4 )
B( -4 , 0 )
C( 2 , 0 )
6. 如图,长方形ABCD的两条边AB,BC的长分别为3,5,建立平面直角
坐标系,若要使其中三个顶点在坐标轴上,且点C的坐标为(5,-3),则
3.2.3平面直角坐标系八年级上册数学北师大版
随堂练习
1. 如图,小红从点 O 出发,先向西走 40 米,再向南走 30 米到达点
M,如果点 M 的位置用(−40,−30)表示,那么(10,20)表示的位置是
你能在图上画出小强家、小敏家 的位置,并标明它们的坐标吗?
答:小强家(−1500,3500), 小敏家(3000,−1750).
小强家 小敏家
选取学校所在位置为原点,并以正 东、正北方向为 x 轴、y 轴的正方 向有什么优点?
小强家
答:容易写出三位同学家的位置的 坐标.
小敏家
知识点 利用平面直角坐标系绘制区域内一些地点分布情况 平面图的过程如下.
-5 -4 -3 -2 -1 O -1
1 2 3 4 5x
课堂小结
利用 平面 直角 坐标 系表 示
建立坐标系,选择一个适当 的参照点为原点,确定 x 轴、 y 轴的正方向
根据具体问题确定适当的比例 尺,在坐标轴上标出单位长度
在坐标平面内画出这些点,写出 各点的坐标和各个地点的名称
3.2.3 平面直角坐标系
知识回顾
象限内点的坐标符号特征
点的位置
横坐标 的符号
第一象限 +
第二象限 − 第三象限 −
第四象限 +
纵坐标 的符号
+
+ − −
坐标轴上点的坐标符号特征
点的位置
x轴正半轴 x轴负半轴 y轴正半轴 y轴负半轴
横坐标的符 号(或值)
+ − 0 0
纵坐标的 符号(或值)
3.平面直角坐标系课件(1)
y 4 3 2 1
-4 -3 -2 -1 O -1 -2 -3
1 2 34 x
学习目标
1. 理解各象限内及坐标轴上点的坐标特征. 2.掌握直角坐标系中各象限内及坐标轴上点的坐标特点.
新知探究
例1 写出图中的平行四边形ABCD各个顶点的坐标;在图中,A与D, B与C的坐标有什么共同特征?AD与x轴有什么位置关系?BC呢?
4
3
2 (0, 2)
(−3, 0) 1
-4 -3 -2 -1O 1 2 3 4 x
(0, 0) -1
(3, 0)
பைடு நூலகம்
-2
-3 (0, −3)
-4
例3 在“笑脸”上找出几个位于第一象限的点,指出它们的坐标,说 说这些点的坐标有什么特点;在其他象限内分别找几个点,看看其他 各个象限内的点的坐标有什么特点.
解:∵A (−1,1), B (−1,−2), C (3,−2), D (3,1), ∴ AB=CD=3,AD=BC=4, ∴ C矩形ABCD=2(AB+AD)=14. ∵ 202X=288×(14÷2)+1.5+2+1.5, ∴ 当 t=202X秒时,瓢虫在点 D 处, ∴ 此时瓢虫的坐标为(3,1).故选 A.
3.2.2 平面直角坐标系
知识回顾
1.如图,请写出点A的坐标,在平面直角坐标系中描出点B(–6, –3).
y
(–4, 5) A
5
–6 –4
O
x
B
–3
(–6, –3)
2.在平面内画两条_互__相__垂__直__、_原__点__重__合__的数轴,组成平面直
角坐标系. __水__平__的数轴称为 x 轴或横轴. _竖__直___的数轴称为 y 轴或纵轴. 两坐标轴的交点为平面直角坐 标系的_原__点__.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
B (0,4)
A (6,4)
C (0 , 0 )
D ( 6 , 0)
0
x
议一议:在问题一中,你还可以怎样建立直角坐标系? y 与同伴交流. y 0
x
0 y
0
x y
动动脑:
在一次“寻宝”游戏中,寻宝人已经找到了坐标为 (3,2)和(3,-2)的两个标志点A,B(如图),并 且知道藏宝地点的坐标(4,4),除此外不知道其他 信息。如何确定直角坐标系找到“宝藏”?
A
B
课堂小结:
请说说本节课你有什么收获和体会,请 与大家分享!
必做题:P66习题3.4 1、2、3。 选做题:P66---P67 4、5
第三章
§3.2.3
位置与坐标
平面直角坐标系(3)
Байду номын сангаас
暗流中学
张金建
问题一: 如图, 矩形ABCD的长宽分别是6 , 4 , 建立 适当的坐标系,并写出各个顶点的坐标.
解: 如图,以点C为坐标 原点, 分别以CD , CB所 在的直线为x 轴,y 轴建 立直角坐标系. 此时C点 坐标为( 0 , 0 ).
y
解:A(6,0),B(2,2),C(0,6),
C
D
E
B
D(-2,2),E(-6,0),
F(-2,-2),G(0,-6), H(2,-2)
F
o
H G
A
x
拓展练习:
2、如图,在一次军棋比赛中,如果团长所在的位置 的坐标为(2,-5),司令所在的位置的坐标为(4, -2),那么工兵所在的位置的坐标为 (1,-2) 。
C (0, 3 3 )
6
A ( -3 , 0 )
0 3
B (3,0)
x
议一议:在上面的问题中,你还可以怎样建立直角坐标系 与同伴交流. y
C 0 (0,0) 6
x
A ( -3 , - 3 3 )
3
B ( 3 , -3 3)
随堂 练 习:
1、 如图,建立适当的直角坐标系,在直角坐标系中, 并写出四角星 8个顶点的坐标。
x 0 x
问题二: 如图,正三角形ABC的边长为 6 , 建立适当 的直角坐标系 ,并写出各个顶点的坐标 . 解: 如图,以边AB所在 的直线为x 轴,以边AB 的中垂线y 轴建立直角 坐标系. 由正三角形的性质可 知CO= 3 3 ,正三角形 ABC各个顶点A , B , C的坐标分别为 A ( -3 , 0 );B ( 3 , 0 ); C ( 0 , 3 3 ). y