18.1.2 平行四边形的判定1 第1课时平行四边形的判定(1)导学案
新课标人教版八年级数学下册《18.1.2 平行四边形的判定(一)》导学案
学习目标:1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.
2.会综合运用平行四边形的判定方法和性质来解决问题.
学习重点:平行四边形的判定方法及应用.
学习难点:平行四边形的判定定理与性质定理的灵活应用.
学习过程:
一、自主预习(10分钟)
【活动一】
提出问题:1.平行四边形的定义是什么?它有什么作用?
2.平行四边形具有哪些性质?
3.平行四边形的对边相等、对角相等、对角线互相平分,那么反过来,对边相等或对角相等或对角线互相平分的四边形是不是平行四边形呢?
【活动二】
★探究:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?
利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:
(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?
(2)你怎样验证你搭建的四边形一定是平行四边形?
(3)你能说出你的做法及其道理吗?
(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?
从探究中得到:
平行四边形判定方法1两组对边分别相等的四边形是平行四边形。
18.1.2 平行四边形的判定(1)平行四边形的判定 参考解析
18.1.2 平行四边形的判定第1课时平行四边形的判定课前预习1.平行四边形的判定定理:(1)两组对边分别相等(或分别平行)的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形.【数学表述】(1)如图1,在四边形ABCD中,∵AB=CD,AD=BC (或AB∥CD,AD∥BC),∴四边形ABCD是平行四边形;(2)如图1,在四边形ABCD中,∵∠A=∠C,∠B=∠D ,∴四边形ABCD是平行四边形;(3)如图2,在四边形ABCD中,AC,BD相交于点O,∵OA=OC,OB=OD,∴四边形ABCD是平行四边形;(4)如图1,在四边形ABCD中,∵AD=BC,AD∥BC(或AB=CD,AB∥CD),∴四边形ABCD是平行四边形.课堂练习知识点1 两组对边分别平行或相等的四边形是平行四边形1.如图,在四边形ABCD中,当∠1=∠2,且___AD___∥BC___时,这个四边形是平行四边形.2.在四边形ABCD中,AB=3 cm,BC=5 cm,那么当DC=___3___ cm,AD=___5___ cm时,四边形ABCD是平行四边形.3.在四边形ABCD中,AD∥BC,要使四边形ABCD是平行四边形,则应添加的条件是(D)A.∠A+∠C=180°B.∠B+∠D=180°C.∠A+∠B=180°D.∠A+∠D=180°知识点2 两组对角分别相等的四边形是平行四边形4.如图,已知∠B=∠D,要使四边形ABCD成为平行四边形,需要添加的一个条件是___∠A=∠C___.5.在下列条件中,不能判定四边形ABCD是平行四边形的是(D)A.∠A=∠C,∠B=∠DB.∠A=∠B=∠C=90°C.∠A+∠B=180°,∠B+∠C=180°D.∠A+∠B=180°,∠C+∠D=180°知识点3 对角线互相平分的四边形是平行四边形6.【核心素养·数学建模】小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图,将两根木条AC,BD的中点重叠,并用钉子固定,则四边形ABCD就是平行四边形,这种方法的依据是(A)A.对角线互相平分的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对边分别平行的四边形是平行四边形知识点4 一组对边平行且相等的四边形是平行四边形7.如图,将线段AB 平移得到线段DC ,连接AD ,BC ,则四边形ABCD 为___平行___四边形,其依据为___一组对边平行且相等的四边形是平行四边形___.8.(2020文山期末)如图,在四边形ABCD 中,E ,F 是对角线AC 上的两点,BE⊥AC,DF⊥AC,且BE=DF ,AF=CE.求证:四边形ABCD 是平行四边形.证明:∵BE⊥AC,DF⊥AC,∴∠BEC=∠DFA=90°,在△BCE 和△DAF 中,,,,BE DF BEC DFA CE AF =⎧⎪∠=∠⎨⎪=⎩∴△BCE≌△DAF(SAS ).∴BC=AD,∠BCE=∠DAF.∴BC∥AD.∴四边形ABCD 是平行四边形.课时作业练基础1.(2020个旧期末)如图,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有哪几种,请一一写出___①③或②④或①②或③④___.2.在四边形ABCD中,AC,BD相交于点O.(1)如果AC=10 cm,BD=8 cm,那么当AO=CO = 5___cm,DO=BO=___4___cm 时,四边形ABCD为平行四边形;(2)如果∠BAD=65°,∠ABC=115°,那么当∠BCD=___65___°,∠ADC=___115___°时,四边形ABCD为平行四边形.3.如图,在平行四边形ABCD中,点E,F分别为边BC,AD的中点,则图中平行四边形的个数一共有(B)A.3个B.4个C.5个D.6个4.如图,在平面直角坐标系xOy中,以A(-1,0),B(2,0),C(0,1)为顶点构建平行四边形,下列各点中不能作为平行四边形顶点坐标的是(B)A.(3,1)B.(-4,1)C.(1,-1)D.(-3,1)5.有下列命题:①一组对边平行且一组对角相等的四边形是平行四边形;②一组对边相等且一组对角相等的四边形是平行四边形;③一组对边平行且一条对角线平分另一条对角线的四边形是平行四边形; ④一组对边相等且一条对角线平分另一条对角线的四边形是平行四边形. 其中正确的个数为( B )A.1个B.2个C.3个D.4个6.(2020盘龙区期末)如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E ,F 是AC 上的两点,且B F∥DE.(1)求证:△BFO≌△DEO;(2)求证:四边形BFDE 是平行四边形.证明:(1)∵四边形ABCD 是平行四边形,∴OB=OD,∵BF∥DE,∴∠OFB=∠OED.在△BFO 和△DEO 中,,,,OFB OED FOB EOD OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BFO≌△DEO(AAS );(2)∵△BFO≌△DEO,∴OF=OE.又∵OB=OD,∴四边形BFDE 是平行四边形.7.如图,E ,F 分别为 ABCD 中AD ,BC 的中点,分别连接AF ,BE 交于点G ,连接CE ,DF 交于点H.求证:EF 与GH 互相平分.证明:∵E 为AD 的中点,F 为BC 的中点, ∴AE=12AD ,CF=12BC. ∵四边形ABCD 是平行四边形,∴AD∥BC,AD=BC.∴AE∥CF,AE=CF.∴四边形AFCE 是平行四边形.∴AF∥CE,同理可证BE∥DF.∴四边形GFHE 是平行四边形.∴EF 与GH 互相平分.8.(2020昆明期末)如图,在平行四边形ABCD 中,E ,F 是对角线BD 上的两点,且BF=DE.求证:(1)AE=CF ;(2)四边形AECF 是平行四边形.证明:(1)∵四边形ABCD 是平行四边形,∴AB=CD,AB∥CD.∴∠ABE=∠CDF.又∵BF=DE,∴BF -EF=DE-EF ,即BE=DF.在△ABE 和△CDF 中,,,,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE≌△CDF(SAS ).∴AE=CF;(2)∵△ABE≌△CDF,∴∠AEB=∠CFD.∴∠AEF=∠CFE.∴AE∥CF.∵AE=CF,∴四边形AECF 是平行四边形.9.如图,以△ABC 的三边为一边的BC 的同侧作等边三角形△ABE,△BCF,△ACG.求证:四边形AEFG 是平行四边形.证明:∵△ABE、△BCF 为等边三角形,∴AB=BE=AE,BF=BC ,∠ABE=∠CBF=60°.∴∠FBE=∠CBA.在△FBE 和△CBA 中,,,,BF BC FBE CBA EB AB =⎧∠=∠=⎪⎨⎪⎩∴△FBE≌△CBA(SAS).∴EF=AC.又∵△AGC 为等边三角形,∴CG=AG=AC.∴EF=AG.同理可得AE=GF.∴四边形AEFG 是平行四边形.提能力10.如果一个四边形ABCD 的边长依次是a ,b ,c ,d ,且a 2+b 2+c 2+d 2=2ac+2bd ,那么这个四边形是 平行四边形.【解析】∵a2+b2+c2+d2=2ac+2bd,∴(a2-2ac+c2)+(b2-2bd+d2)=0,即(a-c)2+(b-d)2=0.∴a-c=0,b-d=0.∴a=c,b=d.∴四边形ABCD是平行四边形.11.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F,CE=BE,(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°.在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°.∴AD∥BC.∵E为AB的中点,∴AE=BE.又∵∠AEF=∠BEC,∴△AEF≌△BEC.∵CE=BE,∴∠BCE=∠EBC=60°.又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°.由等边△ABD得∠D=60°,∴∠AFE=∠D.∴FC∥BD.由AD∥BC知FD∥BC.∴四边形BCFD是平行四边形;(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,AB=3,AC=∴BC=12∴SBCFD。
平行四边形的判定1导学案(参赛导学案)
平行四边形的判定(1)一、学习目标:1、明确平行四边形的判定方法,并掌握其证明。
2、能运用平行四边形的判定,解决简单的实际问题。
二、学习重点:平行四边形的判定方法及其应用。
学习难点:平行四边形的判定条件和方法的寻找。
三.教学过程:(一)忆往昔(You are the best!)1、平行四边形的定义:两组对边分别 的四边形叫做平行四边形。
-------定义就是平行四边形的一种判定方法用几何语言表示:∵_________//____________________//____________∴四边形ABCD 是____________2、平行四边形的性质:(1)边的性质:平行四边形的对边 ;几何语言:在□ABCD 中,AD BC ,AB DC ;(2)角的性质:平行四边形的对角 ;邻角 ;几何语言:在□ABCD 中,∠A= ,∠B= ;(3)对角线的性质:平行四边形的对角线 ;几何语言:在□ABCD 中,OA= =12 ;OB= =12 ; 3、写出下列定理的逆命题:(1)平行四边形两组对边分别相等。
逆命题: 。
(2)平行四边形对边平行且相等。
逆命题: 。
(3)平行四边形对角线相互平分。
逆命题: 。
(二)、讲授新课(相信自己行,自己才行,大胆展示出自己的风采。
)1、两组对边分别相等的四边形是平行四边形吗?已知:AB=CD, AD=BC求证:四边形ABCD 是平行四边形证明:归纳:判定定理一:两组对边分别相等的四边形是平行四边形用几何语言表示:∵_________=___________,_________=____________∴四边形ABCD 是____________2、类似地,我们还可以得出几个平行四边形的判定定理:判定定理二:一组对边平行且相等的四边形是平行四边形用几何语言表示:∵_______//________∴四边形ABCD 是____________如何证明呢?已知:求证:判定定理三:对角线相互平分的四边形是平行四边形用几何语言表示:∵_______=________∴_______=________∴四边形ABCD 是____________如何证明呢?O已知:求证:(三)、爆发吧,小宇宙: (别低估了自己的潜力,小怪兽在你面前弱爆了!)1、已知等边三角形ABC ,它的周长为24cm ,在△ABC 内有一点O ,过点O 分别作三边的平行线与三条边分别交于点D 、点E 、点F ,求OD+OE+OF 。
18.1.2《平行四边形的判定》导学案2
18.1.2 平行四边形的判定第1课时1.会根据平行四边形的定义判断一个四边形是平行四边形.2.知道两组对边(或对角)分别相等的四边形是平行四边形,能给出证明,并能应用这两个定理进行证明和计算.3.从具体情景出发,寻找识别平行四边形的方法,能用语言表达自己发现的结果.4.重点:平行四边形的判定方法及应用.问题探究一用定义判定四边形是平行四边形回忆平行四边形的定义,解决下列问题.1.你能用两个同样的三角板拼出一个平行四边形吗?(如果没有,可以和同桌互相交换)能,如图是其中一部分.2.以其中一种情况证明,其余情况可类似证明.如图,易知∠ADB=∠CBD= 60°,∠ABD=∠BDC= 90°,∴AB∥CD,AD∥BC,∴四边形ABCD是平行四边形.【归纳总结】由平行四边形的定义可知:两组对边分别平行的四边形是平行四边形.用数学式子表示:如图,∵AB∥CD, AD∥BC,∴四边形ABCD是平行四边形.【预习自测】四边形ABCD中,AD∥BC,要判定ABCD是平行四边形,那么还需满足(D)A.∠A+∠C=180°B.∠B+∠D=180°问题探究二两组对边(角)分别相等的四边形是平行四边形阅读教材本节中的“思考”及其后面五行的内容,解决下列问题.1.如图,将两长两短的四根细木条用小钉绞合在一起,做成一个四边形,使等长的木条成为对边,转动这个四边形,使它形状改变,在图形变化的过程中,它一直是一个平行四边形吗?一直是平行四边形.2.如图,四边形ABCD中,AB=DC,AD=BC,完成如下证明:连接AC,∵AB=CD,AD=BC,AC=AC,∴△ABC≌△CDA,∴∠ACB= ∠CAD,∠BAC= ∠DCA.∴AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.3.如图,四边形ABCD中,∠A=∠C,∠B=∠D,完成如下证明:∵∠A=∠C,∠B=∠D,∠A+∠C+∠B+∠D= 360°,∴∠A+∠B= 180°,∠B+∠C= 180°,∴AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.【归纳总结】两组对边(或对角)分别相等的四边形是平行四边形.【预习自测】如上图,能判定四边形ABCD是平行四边形的是(C)A.AB∥CDB.∠A=∠B,∠C=∠DC.AB=CD,AD=BCD.AB=AD,CB=CD互动探究1:如图,在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各点中不能作为此平行四边形顶点坐标的是(A)A.(-3,1)B.(4,1)C.(-2,1)D.(2,-1)互动探究2:一个四边形边长依次是a、b、c、d(a与c是对边,b与d是对边),且满足a2+b2+c2+d2=2ac+2bd,则这个四边形是平行四边形(方法指导:利用完全平方公式).[变式训练]一个四边形边的长依次是a、b、c、d(a与c是对边,b与d是对边),且满足a2+b2+c2+d2=ab+bc+cd+da,这个四边形是平行四边形吗?解:是,对所给式子进行配方,得(a-b)2+(b-c)2+(c-d)2+(d-a)2=0,∴a=b=c=d,∴该四边形是平行四边形.互动探究3:如图,在四边形ABCD中,AD∥BC,∠A=∠C.求证:四边形ABCD是平行四边形.证明:∵AD∥BC,∴∠A+∠B=180°,∠C+∠D=180°,∵∠A=∠C,∴∠B=∠D.∴四边形ABCD是平行四边形.互动探究4:如图,在▱ABCD中,AC的平行线MN交DA的延长线于点M,交DC的延长线于点N,交AB、BC于点P、Q.(1)请直接写出图中的平行四边形.(2)线段MP和QN相等吗?请说明理由.解:(1)图中的平行四边形有▱AMQC,▱APNC,▱ABCD;(2)MP=QN.理由是:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD.又∵AC∥MN,∴四边形AMQC,APNC都是平行四边形,∴MQ=AC,PN=AC,∴MQ=PN.∴MQ-PQ=PN-PQ,即MP=QN.【方法归纳交流】题目中出现了平行四边形,要说明另一个四边形是平行四边形时,要综合应用平行四边形的性质和判定进行解决.见《导学测评》P17。
数学人教版八年级下册§18.1.2 平行四边形的判定(第一课时)教案
问题2:要求学生作业本上写出来。再口答。
教师多媒体出示图形和内容,学生在回顾问题1的基础上,写出几何语言。
自主达标题,学生当堂考试,评出成绩。
借助图形来理解,总结.
各抒己见,不拘泥于形式,师生互相补充,使语言表达的更准确完美,同时教师引导学生通过对平行四边形的判定的探索。
让学生体会到知识的获取过程,以及由性质引发出来的结论来。
学生自主练习
教师多媒体出示平行四边形性质定理的三个逆命题:(即平行四边形的判定定理),学生用几何语言写出定理。
要求学生口答,引导学生逐步会用几何语言书写规范的推理的过程。
(1)你有什么收获?
掌握了哪些平行四边形的判定方法?
(2)积累了哪些解题经验,在数学思想方法上有哪些收获?
如何用判定定理证明四边形是否为平行四边形?
1.边的关系:
(1)证明两组对边分别平行
(2)证明两组对边分别相等
2.角的关系:证明两组对角分别相等.
3.对角线的关系:证明两条对角线互相平分.(多媒体出示图形)
教
学目Leabharlann 标1、知识与技能:(1)在探索平行四边形的判别条件中,理解并掌握用边、角、对角线来判定平行四边形的方法.
(2)会综合运用平行四边形的判定方法和性质来解决问题.
2、过程与方法:经历平行四边形判定条件的探索过程,发展学生合情推理意识和表述能力。
3、情感态度与价值观:培养学生合情推理能力,经过严谨的规范书写表达,体会几何证明的逻辑关系,养成严谨的推理证明习惯。
2.根据下列条件,不能判定一个四边形为平行四边形的是( )
(A)两组对边分别相等
(B)两条对角线互相平分
(C)两条对角线相等
18.1.2平行四边形的判定(1)教学设计
人教版义务教育课程标准实验教科书八年级下册18.1。
2平行四边形的判定(1)教学设计一、教材地位和作用:本节课是平行四边形的判定的第一课时,其探究的主要内容是“两组对边分别相等的四边形是平行四边形”,以及“对角线互相平行的四边形是平行四边形”这两种判定方法。
它是在学习了三角形的相关知识、平行四边形的定义、性质的基础上进行学习的,在教学内容上起着承上启下的作用。
“承上”,首先,在探究判定定理的证明方法和运用判定定理时,都用到了全等三角形的相关知识;其次,平行四边形的判定定理和性质定理是两两对应的互逆定理,本节课在引入新课时就是类比性质引入判定的.“启下”,首先,平行四边形的性质定理、判定定理是研究特殊的平行四边形的基础;其次,平行四边形性质、判定的探究模式从方法上为研究特殊的平行四边形奠定了基础。
并且,本节内容还是学生运用化归思想、数学建模思想的良好素材,培养了学生的创新思维和探索精神.二、教学目标(一)知识与能力1、运用类比的方法,通过学生的合作探究,得出平行四边形的两个判定方法.2、理解平行四边形的这两种判定方法,并学会简单运用。
3、通过类比、观察、实验、猜想、验证、推理、交流等教学活动,进一步培养学生的动手能力、合情推理能力。
4、在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力。
(二)过程与方法1、使学生学会将平行四边形的问题转化为三角形的问题,渗透化归意识。
2、通过对平行四边形两个判定方法的探究,提高学生解决问题的能力。
(三)、情感态度与价值观通过对平行四边形两个判定方法的探究和运用,使学生感受数学思考过程中的合理性、数学证明的严谨性,认识事物的相互联系、相互转化,学会用辨证的观点分析事物。
三、教学重点、难点1、教学重点:平行四边形判定方法的探究、运用以及平行四边形的性质和判定的综合运用.2、教学难点:对平行四边形判定方法的证明以及平行四边形的性质和判定的综合运用。
八年级数学下册18.1.2 平行四边形的判定导学案
18.1.2 平行四边形的判定第一课时教学目标1.理解平行四边形的判定方法,并学会简单运用.2.在问题的解决过程中,增强学生的思维发散性和灵活性.教学重难点重点:平行四边形的两个判定方法.难点:平行四边形判定方法的证明和运用.教学过程一、情境引入前面,我们已经学习了平行四边形的定义和性质,请同学们来思考以下几个问题:【问题1】平行四边形的定义是什么?它有什么作用?(平行四边形的定义既可以作为平行四边形的性质,又可以作为平行四边形的判定.) 【问题2】平行四边形具有哪些性质?【问题3】我们知道,平行四边形的对边相等、对角相等、对角线互相平分.反过来,对边相等或对角线互相平分的四边形是平行四边形呢?也就是说,平行四边形的性质定理的逆命题成立吗?引入:本节课我们一起来学习平行四边形的判定方法.二、互动新授下面,我们以“对角线互相平分的四边形是平行四边形”为例,通过三角形全等进行证明.【问题4】如教材图18.1-10,在四边形ABCD中,AC,BD相交于点O,且OA=OC,OB=OD.求证:四边形ABCD是平行四边形.教材图18.1-10【证明】∵OA=OC,OB=OD,∠AOD=∠COB,∴△AOD≌△COB.∴∠OAD=∠OCB.∴AD∥BC,同理AB∥DC.∴四边形ABCD是平行四边形.由上我们知道,平行四边形的判定定理与相应的性质定理互为逆定理,也就是说,当定理的条件与结论互换以后,所得命题仍成立.同样,我们也可以证明“两组对边分别相等的四边形是平行四边形”.这样,我们就得到平行四边形的判定定理:(1)两组对边分别相等的四边形是平行四边形.(2)两组对角分别相等的四边形是平行四边形.(3)对角线互相平分的四边形是平行四边形.【例3】如教材图18.1-11,▱ABCD的对角线AC,BD相交于点O,E,F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.教材图18.1-11【证明】 ∵四边形ABCD 是平行四边形,∴AO =CO ,BO =DO.∵AE =CF ,∴AO -AE =CO -CF ,即EO =FO.又BO =DO ,∴四边形BFDE 是平行四边形.【问题5】 我们知道,如果一个四边形是平行四边形,那么它的任意一组对边平行且相等.反过来,一组对边平行且相等的四边形是平行四边形吗?学生独自思考,进行小组交流讨论.教师评析:我们猜想这个结论正确,下面进行证明.如教材图18.1-12,在四边形ABCD 中,AB ∥CD ,AB =CD.求证:四边形ABCD 是平行四边形.教材图18.1-12【证明】 连接AC.∵AB ∥CD ,∴∠1=∠2.又AB =CD ,AC =CA ,∴△ABC ≌△CDA.∴BC =DA.∴四边形ABCD 的两组对边分别相等,它是平行四边形.于是我们又得到平行四边形的一个判定定理:一组对边平行且相等的四边形是平行四边形.【例4】 如教材图18.1-13,在▱ABCD 中,E ,F 分别是AB ,CD 的中点.求证:四边形EBFD 是平行四边形.教材图18.1-13【证明】 ∵四边形ABCD 是平行四边形,∴AB =CD ,EB ∥FD.又EB =12AB ,FD =12CD ,∴EB =FD. ∴四边形EBFD 是平行四边形.三、课堂小结通过本节课的学习,你有什么收获?本节课主要学习了平行四边形的判定定理:(1)两组对边分别平行的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)两组对角分别相等的四边形是平行四边形;(4)对角线互相平分的四边形是平行四边形;(5)一组对边平行且相等的四边形是平行四边形.四、板书设计五、教学反思教学中,教师改变教材对判定方法的呈现顺序,符合知识的逻辑顺序、学生的思维顺序和学习顺序,体现了本教案设计的科学性和合理性.另外本节课既有按教材上的探究方式进行,又有变化后的探究活动,不拘泥于固定的模式,这样的改变可以避免操作中的一些困难,有助于学生的猜想,也有利于教师的教学.学习本节课内容后,学生会觉得平行四边形的判定方法比较多且易混淆,教师要给予归纳:(1)与四边形的边有关:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形;(2)与四边形的角有关:两组对角分别相等的四边形是平行四边形;(3)与四边形对角线有关:对角线互相平分的四边形是平行四边形.这样,学生就容易形成知识体系.导学方案一、学法点津学生在判定平行四边形时,从“边”的角度出发有三种方法:(1)两组对边分别平行的四边形是平行四边形;(2)一组对边平行且相等的四边形是平行四边形;(3)两组对边分别相等的四边形是平行四边形.从“角”的角度看,可用“两组对角分别相等的四边形是平行四边形”;从“对角线”角度看,可用“对角线互相平分的四边形是平行四边形”.二、学点归纳总结1.知识要点总结(1).两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3).一组对边平行且相等的四边形是平行四边形.(4)对角线互相平分的四边形是平行四边形.(5)两组对角分别相等的四边形是平行四边形.2.规律方法总结判定四边形是平行四边形时,若已知条件出现在四边形的边上,则应考虑:(1)利用“两组对边分别平行的四边形是平行四边形”来证明;(2)利用“两组对边分别相等的四边形是平行四边形”来证明;(3)利用“一组对边平行且相等的四边形是平行四边形”来证明.若已知条件出现在四边形的“角”上,则应考虑利用“两组对角分别相等的四边形是平行四边形”来证明.若已知条件出现在“对角线”上,则应考虑利用“对角线互相平分的四边形是平行四边形”来证明.第一课时作业设计一、选择题1.在下列给出的条件中,能判定四边形ABCD 是平行四边形的是( ).A .AB ∥CD ,AD =BC B .∠A =∠B ,∠C =∠DC .AB =CD ,AD =BC D .AB =AD ,CB =CD2.能判定一个四边形是平行四边形的条件是( ).A .一组对角相等B .两条对角线互相平分C .两条对角线互相垂直D .一对邻角的和为180°3.下面给出了四边形ABCD 中在∠A ,∠B ,∠C ,∠D 的度数之比,其中能判定四边形ABCD 是平行四边形的是( ).A .1∶2∶3∶4B .2∶2∶3∶3C .2∶3∶3∶2D .2∶3∶2∶3二、填空题4.在四边形ABCD 中,AB =12cm ,BC =6cm ,则当CD =__________,AD =__________时,四边形ABCD 是平行四边形.5.在四边形ABCD 中,AB ∥CD ,请你添加一个条件__________,使四边形ABCD 是一个平行四边形.6.若E 是在△ABC 的中线BD 上的任意一点,延长BD 到点F ,使DF =ED ,连接AE ,EC ,AF ,FC ,则四边形AECF 是__________四边形.三、解答题7.如图所示,点E ,F ,G ,H 分别是平行四边形ABCD 的边AB ,BC ,CD ,DA 上的点,且AE =CG ,BF =DH.求证:四边形EFGH 是平行四边形.K8.如图所示,在▱ABCD 中,点E ,F 分别是对角线AC 的两个三等分点,试说明四边形BFDE 是平行四边形.K【参考答案】一、1.C 2.B 3.D二、4.12cm 6cm 5.AB =CD 或BC ∥AD 等(答案不唯一)6.平行三、7.证明:∵四边形ABCD 是平行四边形,∴∠B =∠D ,AB =CD.∵AE =CG ,∴AB -AE =CD -CG ,∴BE =DG .在△BEF 和△DGH 中,⎩⎪⎨⎪⎧BE =DG ,∠B =∠D ,BF =DH.∴△BEF ≌△DGH(SAS),∴EF =GH .同理,EH =GF .∴四边形EFGH 是平行四边形.8.证明:连接BD ,交AC 于点O.∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD.又∵E ,F 分别为AC 的两个三等分点,∴AE =EF =CF ,∴OA -AE =OC -CF ,∴OE =OF ,∴四边形BFDE 是平行四边形.第二课时教学目标1.了解三角形的中位线及其性质,并会简单运用.2.通过三角形中位线性质的探索,培养学生的探究能力.3.了解简单图形的面积之间的关系,并进行计算,体验探究学习的乐趣.教学重难点重点:三角形的中位线及其性质.难点:中位线性质的探索和证明.教学过程一、情境引入请同学们思考以下几个问题:【问题1】 要判定一个四边形是平行四边形,你有哪些方法?指名让学生回答.【问题2】 现有一张三角形纸片,你能通过裁剪,将它拼成一个平行四边形吗? 以小组合作的方式进行实验操作,主要从以下几个方面去尝试:1.需要把三角形剪成几块?2.如何将剪开的几个部分拼成一个平行四边形?学生讨论后进行汇报,其主要目的是让学生能够得到下面的剪拼方法:(如下图所示)K ―→K教学时注意两点:(1)DE 这条线段的位置如何确定?(2)如何将△ADE 拼到△CFE 的位置上?学生解决了拼图后,再引入问题:【问题3】 这样拼出的图形为什么是一个平行四边形?你能用推理方法给出证明吗? 本节课我们将一起探究通过拼图,还能得出哪些结论.二、互动新授【探究】 如教材图18.1-14,D ,E 分别是△ABC 的边AB ,AC 的中点,求证:(1)四边形DBCF 是平行四边形;(2)DE ∥BC ,且DE =12BC.教材图18.1-14【分析】 本题既要证明两条线段所在的直线平行,又要证明其中一条线段的长等于另一条线段长的一半,将DE 延长一倍后,可以将证明DE =12BC 转化为证明延长后的线段与BC 相等,又由于E 是AC 的中点,根据对角线互相平分的四边形是平行四边形构造一个平行四边形,利用平行四边形的性质进行证明.【证明】 如教材图18.1-15,延长DE 到点F ,使EF =DE ,连接FC ,DC ,AF.教材图18.1-15∵AE =EC ,DE =EF ,∴四边形ADCF 是平行四边形,CF 綊DA ,∴CF 綊BD ,∴四边形DBCF 是平行四边形,DF 綊BC ,又DE =12DF , ∴DE ∥BC ,且DE =12BC. 【问题4】 (1)在上面的裁剪过程中,线段DE 叫做三角形的中位线,你能不能给三角形的“中位线”下一个定义?连接三角形两边中点的线段叫做三角形的中位线.(2)从前面的拼图及证明中你能否找到三角形的中位线有什么特征?学生通过回顾、交流、讨论后,共同得出三角形中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半. (3)一个三角形有几条中位线?请画出三角形所有的中位线.学生尝试画图后,交流,得出三角形共有三条中位线.(如下图所示)K(4)三角形的三条中位线把原三角形分成四个小三角形,这四个小三角形之间有什么关系?有几个平行四边形?学生独自思考后,交流.得出四个全等的三角形.(5)平行四边形的两条对角线把原图形分成四个小三角形如下图所示.这四个小三角形之间有什么关系?学生思考后,教师点拨:四个小三角形的面积相等.K三、课堂小结通过本节课的学习,你有什么收获?本节课主要学习了三角形的中位线定理,了解简单图形的面积之间的关系.四、板书设计18.1.2 平行四边形的判定 第二课时 三角形的中位线定理:三角形中位线平行于三角形的第三边,并且等于第三边的一半.五、教学反思本节课主要从学生的角度出发设计问题:考虑到学生的学习能力和添辅助线的难点,首先安排了一个拼图实验,在拼图中自然产生辅助线,使学生知道怎么添,又理解了为什么要这样添;二是把原本比较枯燥的一个定理的学习,以动手拼图的方式引入,调动了学生的学习热情.从拼图、三角形的中位线性质,到三角形围成的面积等,形成一条循序渐进的问题链,学生在解开这些问题链的过程中掌握了知识,提高了能力.其中教师应注意引导学生理解三角形的中位线不同于三角形的中线,三角形的中位线是连接三角形两边中点所形成的线段,而三角形的中线是连接三角形的顶点与对边中点所形成的线段,不能把三角形的中位线与三角形的中线混为一谈.导学方案一、学法点津学生在学习三角形的中位线时要明确:它是连接三角形两边中点的线段,即三角形的中位线的两个端点均为三角形边的中点,它与第三边平行且等于第三边的一半,每个三角形的中位线都有三条,且每一条中位线都与其第三边有相应的位置关系与数量关系,应用时要根据具体情况选用.二、学点归纳总结1.知识要点总结(1)三角形中位线的定义:连接三角形两边中点的线段叫做三角形的中位线.(2)三角形中位线的定理:三角形的中位线平行于第三边,且等于第三边的一半.2.规律方法总结(1)三角形中位线定理反映的是中位线与第三边的位置和数量关系,在许多推理论证和计算题中经常用到.(2)三角形中位线定理的作用:(1)可以证明两条直线平行;(2)可以证明两条线段相等或倍分关系;(3)可以判定平行四边形.(3).通过添加辅助线,将三角形中位线问题转化为平行四边形和全等三角形问题来解决.第二课时作业设计一、选择题1.以三角形的三个顶点及三边中点为顶点的平行四边形共有( ).A .1个B .2个C .3个D .4个2.如图1,E 为▱ABCD 边AD 上一点,若S ▱ABCD =8,则图中阴影部分的面积为( ).A .3B .4C .5D .63.如图2,在▱ABCD 中,点M ,N 分别是AB ,CD 的中点,BD 分别交AN ,CM 于点P ,Q ,在下列结论:①DP =PQ =QB ;②AP =CQ ;③CQ =2MQ ;④S △ADP =14S ▱ABCD 中,正确的个数是( ). A .1 B .2 C .3 D .4图1 图2二、填空题4.如图3,在△ABC 中,点D ,E 分别是边AB ,AC 的中点,已知DE =6cm ,则BC =__________cm.5.如图4,▱ABCD 中,对角线AC ,BD 相交于点O ,点E 是CD 的中点,若AD =4cm ,则OE 的长为________cm.6.三角形的三条中位线的长分别是3cm ,4cm ,5cm ,则这个三角形的周长为__________cm.图3 图4三、解答题7.如图5,点D ,E ,F 分别是△ABC 各边的中点.(1)若EF =8cm ,则BC =__________cm ,若AB =13cm ,则DF =__________cm.(2)猜想中线AD 与中位线EF 存在怎样的特殊关系?并证明你的猜想.图58.如图6,在△ABC 中,AC =6cm ,BC =8cm ,AB =10cm ,点D ,E ,F 分别是AB ,BC ,CA 的中点,求△DEF 的面积.图6【参考答案】一、1.C 2.B 3.C二、4.12 5.2 6.24三、7.(1)16 6.5 (2)猜想AD 与EF 相互平分.提示:连ED ,证明四边形BEFD 是平行四边形.8.证明:∵AC 2=36,BC 2=64,AB 2=100,∴AB 2=AC 2+BC 2,∴△ABC 是直角三角形.又∵点D ,E ,F 分别是AB ,BC ,CA 的中点,则DF =12BC =4,EF =12AB =5,DE =12AC =3,∴EF 2=DE 2+DF 2,则△DEF 是直角三角形,且∠FDE =90°,则S △DEF =12DE ·DF =12×3×4=6.。
八年级数学下册18.1.2 第1课时 平行四边形的判定(1)导学案
第十八章 平行四边形18.1.2 平行四边形的判定第1课时 平行四边形的判定(1)学习目标:1.经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路;2.掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.重点:经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路.难点:掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.一、知识回顾1.平行四边形的定义是什么?有什么作用?2.除了两组对边分别平行,平行四边形还有哪些性质?3.平行四边形上面的三条性质的逆命题各是什么?一、要点探究探究点1:两组对边分别相等的四边形是平行四边形猜一猜 将两长两短的四根细木条用小钉固定在一起,任意拉动,所得的四边形是平行四边形吗? 证一证已知: 四边形ABCD 中,AB=DC ,AD=BC. 求证: 四边形ABCD 是平行四边形. 证明:连接AC ,在△ABC 和△CDA 中, AB=CD ,AC=CA , ∴△ABC_____△CDA(________). BC=DA ,∴ ∠1____∠4 , ∠ 2_____∠3, ∴AB_____CD , AD_____BC ,要点归纳:平行四边形的判定定理:两组对边分别_________的四边形是平行四边形. 几何语言描述:在四边形ABCD 中,∵AB=CD,AD=BC,课堂探究自主学习教学备注学生在课前完成自主学习部分配套PPT 讲授1.情景引入 (见幻灯片3-4)2.探究点1新知讲授(见幻灯片5-10)∴四边形ABCD是_________________.典例精析例1如图,在Rt△MON中,∠MON=90°.求证:四边形PONM是平行四边形.例2如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.试说明四边形DAEF是平行四边形.针对训练如图, AD⊥AC,BC⊥AC,且AB=CD,求证:四边形ABCD是平行四边形.探究点2:两组对角分别相等的四边形是平行四边形猜一猜对于两组对角分别相等的四边形的形状你的猜想是什么?证一证已知:四边形ABCD中,∠A=∠C,∠B=∠D,求证:四边形ABCD是平行四边形.证明:∵∠A+∠C+∠B+∠D=_______°,又∵∠A=∠C,∠B=∠D,∴___∠A+___∠B=_______°,即∠A+∠B=______°,∴ AD_____BC.同理得 AB_____CD,∴四边形ABCD是________________.教学备注配套PPT讲授3.探究点2新知讲授(见幻灯片11-15)要点归纳:平行四边形的判定定理:两组对角分别________的四边形是平行四边形.几何语言描述:在四边形ABCD中,∵∠A=______,∠B=______,∴四边形ABCD是_______________.典例精析例3 如图,在四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.(1)求∠D的度数;(2)求证:四边形ABCD是平行四边形.针对训练1.判断下列四边形是否为平行四边形:2.能判定四边形ABCD是平行四边形的条件:∠A:∠B:∠C:∠D的值为()A. 1:2:3:4B. 1:4:2:3C. 1:2:2:1D. 3:2:3:2探究点3:对角线互相平分的四边形是平行四边形猜一猜如图,将两根细木条AC、BD的中点重叠,用小钉固定在一起,用橡皮筋连接木条的顶点,做成一个四边形ABCD.转动两根木条,四边形ABCD一直是一个平行四边形吗?证一证已知:四边形ABCD中,OA=OC,OB=OD.求证:四边形ABCD是平行四边形.证明:在△AOB和△COD中,OA=OC,AOB=∠COD,∴△AOB______△COD(________).OB=OD,教学备注配套PPT讲授4.探究点3新知讲授(见幻灯片16-25)∴∠BAO_____∠OCD , ∠ ABO_____∠CDO,∴AB_____CD , AD_____BC,∴四边形ABCD是________________.要点归纳:平行四边形的判定定理:对角线互相________的四边形是平行四边形.几何语言描述:在四边形ABCD中,∵AO_____CO,DO_____BO,∴四边形ABCD是______________.典例精析例4(教材P46例3变式题)如图,AC是平行四边形ABCD的一条对角线,BM⊥AC于M,DN⊥AC于N,四边形BMDN是平行四边形吗?说说你的理由.例5昨天李明同学在生物实验室做实验时,不小心碰碎了实验室的一块平行四边形的实验用的玻璃片,只剩下如图所示部分,他想回家去割一块赔给学校,带上玻璃剩下部分去玻璃店不安全,于是他想把原来的平行四边形重新在纸上画出来?然后带上图纸去就行了,可原来的平行四边形怎么给它画出来呢(A,B,C为三顶点,即找出第四个顶点D)?(请用多种方法)针对训练1.根据下列条件,不能判定四边形为平行四边形的是()A.两组对边分别相等B.两条对角线互相平分C.两条对角线相等D.两组对边分别平行2.如图,在四边形ABCD中,AC与BD交于点O.如果AC=8cm,BD=10cm,那么当AO=_____cm,BO=_____cm时,四边形ABCD是平行四边形.二、课堂小结教学备注4.探究点3新知讲授(见幻灯片16-25)内容平行四边形的判定(1)定义法:两组对边分别平行的四边形叫平行四边形.两组对边分别相等的四边形是平行四边形.两组对角分别相等的四边形是平行四边形.对角线互相平分的四边形是平行四边形.1.判断对错:(1)有一组对边平行的四边形是平行四边形. ( )(2)有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形( )(3)对角线互相平分的四边形是平行四边形()(4)一条对角线平分另一条对角线的四边形是平行四边形( )(5)有一组对角相等且一组对边平行的四边形是平行四边形( )2.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.AB=CD,AO=COC.AB=CD,AD=BC D.∠BAD=∠BCD,AB∥CD3.如图,在四边形ABCD中,(1)如果AB∥CD,AD∥BC,那么四边形ABCD是 __________.(2)如果∠A:∠B:∠ C:∠D=a:b:a:b(a,b为正数),那么四边形ABCD是__________.(3)如果AD=6cm,AB=4cm,那么当BC=_______cm,CD=_____cm时,四边形ABCD为平行四边形.4.如图,五边形ABCDE是正五边形,连接BD、CE,交于点P.求证:四边形ABPE是平行四边形.当堂检测教学备注配套PPT讲授5.课堂小结(见幻灯片33)6.当堂检测(见幻灯片26-32)第2题图第3题图5.如图,已知E,F,G,H分别是平行四边形ABCD的边AB,BC,CD,DA上的点,且AE=CG,BF=DH.求证:四边形EFGH是平行四边形.6.如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD的中点.求证:(1)△AOC≌△BOD;(2)四边形AFBE是平行四边形.7.学校买了四棵树,准备栽在花园里,已经栽了三棵(如图),现在学校希望这四棵树能组成一个平行四边形,你觉得第四棵树应该栽在哪里?教学备注。
《平行四边形的判定(第1课时)》教案 人教数学八年级下册
18.1.2 平行四边形的判定第1课时一、教学目标【知识与技能】1.在探索平行四边形的判定条件中,理解并掌握用边、角、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题.【过程与方法】经历平行四边形判定条件的探索过程,发展学生的合情推理意识和表述能力.【情感态度与价值观】培养学生合情推理的能力及严谨的书写表达,体会几何思维的真正内涵.二、课型新授课三、课时第1课时共3课时四、教学重难点【教学重点】理解和掌握平行四边形的判定定理.【教学难点】对平行四边形的判定与性质定理的综合运用.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)一天,八年级的李明同学在生物实验室做实验时,不小心碰碎了实验室的一块平行四边形的实验用的玻璃片,只剩下如图所示部分,他想去割一块赔给学校,带上玻璃剩下部分去玻璃店不安全,于是他想把原来的平行四边形重新在纸上画出来,然后带上图纸去就行了,可原来的平行四边形怎么画出来呢?(二)探索新知1.出示课件4-6,探究平行四边形的判定定理1教师问:如图,将两长两短的四根细木条用小钉绞合在一起,做成一个四边形,使等长的木条成为对边,转动这个四边形,使它形状改变,在图形变化过程中,它一直是一个平行四边形吗?学生答:是平行四边形.教师问:由上面的过程你得到了什么结论?学生答:两组对边分别相等的四边形是平行四边形. 教师问:如何证明这个结论呢?学生回答:写出已知,求证和画出图形.如下:已知:四边形ABCD中,AB=DC,AD=BC.求证:四边形ABCD是平行四边形.教师问:你能用平行四边形的定义来证明吗?师生一起解答:证明:连接AC,在△ABC和△CDA中,AB=CD (已知),AC=CA (公共边),BC=DA(已知),∴△ABC≌△CDA(SSS).∴∠1=∠4 ,∠2=∠3.∴AB∥CD, AD∥ BC.∴四边形ABCD是平行四边形.总结归纳:(出示课件6)由上述证明可以得到平行四边形的判定定理1:两组对边分别相等的四边形是平行四边形.教师问:你能利用几何语言描述一下平行四边形的判定定理吗?学生回答:在四边形ABCD中,∵AB=CD,AD=BC,∴四边形ABCD是平行四边形.教师强调:几何语言:在四边形ABCD中,∵AB=CD,AD=BC,∴四边形ABCD是平行四边形.考点1:利用两组对边分别相等识别平行四边形如图,在Rt△MON中,∠MON=90°.求证:四边形PONM是平行四边形.(出示课件7)师生共同讨论解答如下:证明:在Rt△MON中,由勾股定理得(x-5)2+42=(x-3)2,解得x=8.∴PM=11-x=3,ON=x-5=3,MN=x-3=5.∴PM=ON,OP=MN,∴四边形PONM是平行四边形.出示课件8,学生自主练习后口答,教师订正.2.出示课件9-12,探究平行四边形的判定定理2教师问:怎么处理本课开头遗留的玻璃碎片问题呢?接下来跟着老师一起解决吧!学生讨论后回答:使∠B=∠D,∠A=∠C即可教师:我们一起来试一下作图如下,学生回答:这样看着与原来的一样了.教师问:对于两组对角分别相等的四边形的形状你的猜想是什么?学生回答:猜想两组对角分别相等的四边形是平行四边形.教师问:如何证明呢?学生回答:已知:四边形ABCD, ∠A=∠C,∠B=∠D.求证:四边形ABCD是平行四边形.师生共同解答如下:证明:∵∠A=∠C,∠B=∠D(已知),又∵∠A+∠B+∠C+∠D =360 °,∴2∠A+ 2∠B=360 °,即∠A+ ∠B=180 °.∴AD∥BC (同旁内角互补,两直线平行).同理可证AB∥CD.∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).总结归纳:(出示课件13)平行四边形的判定定理2:两组对角分别相等的四边形是平行四边形.教师问:你能利用几何语言描述一下两对角相等判定四边形是平行四边形吗?师生一起总结:符号语言:∵∠A=∠C,∠B=∠D,∴四边形ABCD是平行四边形.(两组对角分别相等的四边形是平行四边形)考点1:利用平行四边形的判定定理2判定平行四边形如图,四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.(1)求∠D的度数;(2)求证:四边形ABCD是平行四边形.(出示课件14)学生独立思考后,师生共同解答.(1) 解:∵∠D+∠2+∠1=180°,∴∠D=180°-∠2-∠1=55°;(2)证明:∵AB∥DC,∴∠2=∠CAB.∴∠DAB=∠1+∠2=125°.∵∠DCB+∠DAB+∠D+∠B=360°,又∵∠D=∠B=55°∴∠DCB=∠DAB=125°.∴四边形ABCD是平行四边形.出示课件15,学生自主练习后口答,教师订正.3.出示课件16-17,探究平行四边形的判定定理3教师问:如图,将两根木条AC,BD的中点重叠,用小钉绞合在一起,用橡皮筋连接木条的顶点,做成一个四边形ABCD,转动两根木条,四边形ABCD一直是一个平行四边形吗?学生回答:是.教师问:由此得到什么结论呢?学生回答:猜想对角线互相平分的四边形是平行四边形.教师问:你能证明上边的问题吗?师生共同解答如下:已知:如图,在四边形ABCD中,AC与BD相交于点O,OA=OC,OB=OD.求证:四边形ABCD是平行四边形.证明:在△ADO 和△CBO中,OA=OC,∠AOD=∠COB,OB=OD,∴△ADO ≌△CBO.∴∠1=∠2.∴AD∥BC.同理AB∥CD.∴四边形ABCD是平行四边形.教师总结点拨:(出示课件18)平行四边形的判定定理3:对角线互相平分的四边形是平行四边形.教师问:你能利用几何语言描述一下判定定理3吗?师生总结:几何语言:∵OA=OC , OB=OD,∴四边形ABCD是平行四边形.(对角线互相平分的四边形是平行四边形)考点1:利用平行四边形的判定定理3判定平行四边形如图,□ABCD 的对角线AC,BD相交于点O,E,F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形. (出示课件19)学生独立思考后,师生共同解答.证明:∵四边形ABCD是平行四边形,∴ AO=CO,BO=DO.∵AE=CF ,∴ AO-AE=CO-CF,即EO=OF.又∵BO=DO,∴四边形BFDE是平行四边形.出示课件20,学生自主练习,教师给出答案.教师:学了前面的知识,接下来做几道练习题看看你掌握的怎么样吧。
第十八章导学案定稿
课题18.1.1平行四边形的性质(1)课型新授课主备人韩自鸣上课时间学习目标1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题.3.理解两条平行线间的距离.学习重点理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.学习难点解决简单的平行四边形的计算问题.学习过程一、温故知新1.思考:以前我们学习四边形的内容有哪些?2.我们在三角形全等的性质和判定有哪些?二、新知探究、合作交流1.认识平行四边形阅读课本P41思考平行四边形与一般的四边形有什么异同?给同桌说出平行四边形的定义和表示方法。
探究1 平行四边形的性质度量一下:这个平行四边形它的对边、对角之间有什么关系?你猜想一下你的结论?⑵证明你的猜想:已知:如图ABCD,求证:由此得到:平行四边形性质1平行四边形的平行四边形性质2 平行四边形.探究2 平行线之间的距离1、如图:直线a//b,过直线a上任两点A,B分别向直线b作垂线,教学流程或学生纠错AB C DAB CD交直线b于点C,点D,(1)线段AC,BD所在直线有什么样的位置关系?(2)比较线段AC,BD的长。
归纳:_________________________________________________________三、学习反馈1.在ABCD中,⑵A=50,则⑵B= 度,⑵C= 度,⑵D= 度.2.如果ABCD的周长为28cm,且AB:BC=2⑵5,那么AB= cm,BC= cm,CD= cm,AD= cm.3.如图,在平行四边形ABCD中,CE⑵AB,E为垂足,如果⑵A=125°,则⑵BCE等于_______4.如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.四、拓展延伸1如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.三、课堂小结我学会了......;我感受到了......;我还有的疑惑是.......知识网络(板书设计)课后反思课题18.1.2平行四边形的性质(2)课型新授课主备人韩自鸣上课时间学习目标1、经历探索“平行四边形的对角线互相平分”这一性质的过程,发展探究意识。
18.1.2.1平行四边形的判定(1)--新人教版初中数学导学案八年级上册《平行四边形》【一流精品】
课题:18.1.2.1平行四边形的判定(1)【学习目标】理解并掌握平行四边形判定方法,会应用其进行有关的证明.【学习重点】平行四边形的判定的应用【学习难点】平行四边形的判定的推导【方法指导】与矩形的性质对比学习【课前预习案】平行四边形的性质:【课堂探究案】一、探究研讨:探究1:如图1,将两长两短的四根木条用小钉绞合在一起,做成一个四边形,使等长的木条成为对边,转动这个四边形,使它的形状改变。
在变化的过程中,它一直是一个平行四边形吗?由此可得:平行四边形的判定定理1、已知:求证:证明:探究2:如图2,将两根细木条AC、BD的中点重叠,用小钉绞合在一起,用橡皮筋连接木条的顶点,做成一个四边形ABCD,转动两根木条,四边形ABCD一直是一个平行四边形吗?由此可得:平行四边形的判定定理2、已知:求证:证明:二、课堂练习1、求证:两组对角分别相等的四边形是平行四边形2、已知在四边形ABCD中,AB∥CD且AB=CD。
求证:四边形ABCD是平行四边形三、课堂小结:判定一个四边形是平行四边形的方法:【课末达标案】1.根据下列条件,不能判定一个四边形为平行四边形的是( )A.两组对边分别相等B.对角线互相平分C.对角线相等D.两组对边分别平行E.一组对角相等2.能判定一个四边形是平行四边形的条件是()A.一组对角相等B.一组对边平行且相等C.一对邻角互补D.两条对角线互相垂直3.四边形ABCD中,若∠A = ∠C,∠B = ∠D,则下列结论中错误的是()A、AB = CDB、AD∥BCC、∠A = ∠BD、对角线互相平分4.已知在四边形ABCD中,AD∥BC,添加一个条件____________________,使这个四边形为平行四边形.5.已知,四边形ABCD的对角线AC、BD相交于点O,下列5个条件:①AB∥CD;②OA=OC;③AB=CD;④∠BAD=∠DCB;⑤AD∥BC.从中任意选取2个条件,能推出四边形ABCD是平行四边形的有__________。
人教版八下数学18.1.2 课时1 平行四边形的判定(1)教案+学案
人教版八年级下册数学第18章平行四边形18.1平行四边形 18.1.2 平行四边形的判定课时1 平行四边形的判定(1)教案【教学目标】1.经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路;2.掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.【教学重点】经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路.【教学难点】掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.【教学过程设计】一、情境导入我们已经知道,如果一个四边形是平行四边形,那么它就是一个中心对称图形,具有如下的一些性质:1.两组对边分别平行且相等;2.两组对角分别相等;3.两条对角线互相平分.那么,怎样判定一个四边形是否是平行四边形呢?当然,我们可以根据平行四边形的原始定义:两组对边分别平行的四边形是平行四边形加以判定.那么是否存在其他的判定方法?二、合作探究知识点一:两组对边分别相等的四边形是平行四边形例1如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.试说明四边形DAEF是平行四边形.解析:根据题意,利用全等可证明AD=FE,DF=AE,从而可判断四边形DAEF为平行四边形.解:∵△ABD和△FBC都是等边三角形,∴∠DBF+∠FBA=∠ABC+∠ABF =60°,∴∠DBF=∠ABC.又∵BD=BA,BF=BC,∴△ABC≌△DBF(SAS),∴AC =DF=AE.同理可证△ABC≌△EFC,∴AB=EF=AD,∴四边形DAEF是平行四边形(两组对边分别相等的四边形是平行四边形).方法总结:利用“两组对边分别相等的四边形是平行四边形”时,证明边相等,可通过证明三角形全等解决.知识点二:两组对角分别相等的四边形是平行四边形例2如图,在四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.(1)求∠D的度数;(2)求证:四边形ABCD是平行四边形.解析:(1)可根据三角形的内角和为180°得出∠D的大小;(2)根据“两组对角分别相等的四边形是平行四边形”进行证明.(1)解:∵∠D+∠2+∠1=180°,∴∠D=180°-∠2-∠1=180°-40°-85°=55°;(2)证明:∵AB∥DC,∴∠2=∠CAB=40°,∠DCB+∠B=180°,∴∠DAB =∠1+∠CAB=125°,∠DCB=180°-∠B=125°,∴∠DAB=∠DCB.又∵∠D =∠B=55°,∴四边形ABCD是平行四边形.方法总结:根据两组对角分别相等判断四边形是平行四边形,是解题的常用思路.知识点三:对角线相互平分的四边形是平行四边形例3如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD的中点.求证:(1)△AOC ≌△BOD ;(2)四边形AFBE 是平行四边形.解析:(1)利用已知条件和全等三角形的判定方法即可证明△AOC ≌△BOD ;(2)此题已知AO =BO ,要证四边形AFBE 是平行四边形,根据全等三角形,只需证OE =OF 即可.证明:(1)∵AC ∥BD ,∴∠C =∠D .在△AOC 和△BOD 中,∵⎩⎨⎧∠C =∠D ,∠COA =∠DOB ,AO =BO ,∴△AOC ≌△BOD (AAS);(2)∵△AOC ≌△BOD ,∴CO =DO .∵E 、F 分别是OC 、OD 的中点,∴OF =12OD ,OE =12OC ,∴EO =FO .又∵AO =BO ,∴四边形AFBE 是平行四边形. 方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.知识点四:平行四边形的判定定理(1)的应用【类型一】 利用平行四边形的判定定理(1)证明线段或角相等例4如图,在平行四边形ABCD 中,AC 交BD 于点O ,点E ,点F 分别是OA ,OC 的中点,请判断线段DE ,BF 的位置关系和数量关系,并说明你的结论.解析:根据平行四边形的性质“对角线互相平分”得出OA =OC ,OB =OD .利用中点的意义得出OE =OF ,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定四边形BFDE 是平行四边形,从而得出DE =BF ,DE ∥BF .解:DE =BF ,DE ∥BF .∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .∵E ,F 分别是OA ,OC 的中点,∴OE =OF ,∴四边形BFDE 是平行四边形,∴DE =BF ,DE ∥BF .方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.【类型二】 平行四边形的判定定理(1)的综合运用例5如图,已知四边形ABCD 是平行四边形,BE ⊥AC 于点E ,DF ⊥AC 于点F .(1)求证:△ABE ≌△CDF ;(2)连接BF 、DE ,试判断四边形BFDE 是什么样的四边形?写出你的结论并予以证明.解析:(1)根据“AAS ”可证出△ABE ≌△CDF ;(2)首先根据△ABE ≌△CDF 得出AE =FC ,BE =DF .再利用已知得出△ADE ≌△CBF ,进而得出DE =BF ,即可得出四边形BFDE 是平行四边形.(1)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠BAC =∠DCA .∵BE ⊥AC 于E ,DF ⊥AC 于F ,∴∠AEB =∠DFC =90°.在△ABE 和△CDF 中,⎩⎨⎧∠DFC =∠BEA ,∠FCD =∠EAB ,AB =CD ,∴△ABE ≌△CDF (AAS);(2)解:四边形BFDE 是平行四边形.理由如下:∵△ABE ≌△CDF ,∴AE =FC ,BE =DF .∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥CB ,∴∠DAC=∠BCA .在△ADE 和△CBF 中,⎩⎨⎧AD =BC ,∠DAE =∠BCF ,AE =FC ,∴△ADE ≌△CBF (SAS),∴DE =BF ,∴四边形BFDE 是平行四边形.方法总结:熟练运用平行四边形的性质,可证明三角形全等,证明边相等,再利用两组对边分别相等可判定四边形是平行四边形.三、教学小结本节课我们主要学习了平行四边形的判定方法:平行四边形的定义文字语言:两组对边分别平行的四边形叫做平行四边形.符号语言:∵AD ∥BC ,AB ∥CD ,∴四边形ABCD 是平行四边形.平行四边形的判定定理1文字语言:两组对边分别相等的四边形是平行四边形.符号语言:∵AB =CD ,AD =BC ,∴四边形ABCD 是平行四边形.平行四边形的判定定理2文字语言:两组对角分别相等的四边形是平行四边形.符号语言:∵∠A =∠C ,∠B =∠D ,∴四边形ABCD 是平行四边形.平行四边形的判定定理3文字语言:对角线互相平分的四边形是平行四边形.符号语言:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.四、学习检测1..如图所示,在四边形ABCD中,AC,BD相交于点O.(1)若AD=8 cm,AB=4 cm,那么当BC=cm,CD=cm时,四边形ABCD为平行四边形;(2)若AC=8 cm,BD=10 cm,那么当AO=cm,DO=cm时,四边形ABCD为平行四边形.解析:(1)此题主要考查了平行四边形的判定定理的应用.根据两组对边分别相等的四边形是平行四边形,即可确定BC,CD的长.(2)此题主要考查了平行四边形的判定定理的应用.根据对角线互相平分的四边形是平行四边形,即可确定AO,DO的长.答案:(1)84(2)4 52.如图所示,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件: (只添加一个即可),使四边形ABCD是平行四边形.解析:答案不唯一.所填条件能使△AOB≌△COD,或者△AOD≌△COB即可.可填:①AB∥CD,②AD∥BC,③∠BAO=∠DCO,④∠ABO=∠CDO,⑤∠ADO=∠CBO,⑥∠DAO=∠BCO等.故可填AB∥CD.3.如图所示的是由火柴棒拼出的一列图形,第n个图形由(n+1)个等边三角形拼成,通过观察、分析发现:①第4个图形中平行四边形的个数为.②第8个图形中平行四边形的个数为.解析:根据“两组对边分别相等的四边形是平行四边形”,可以判断图中的平行四边形的个数.通过观察、分析,寻找规律,即可解决问题.答案:①6②204.如图所示,在▱ABCD中,点E,F是对角线AC上两点,且AE=CF.求证∠EBF=∠FDE.解析:要证明∠EBF=∠FDE,根据平行四边形的性质,只要证明四边形BEDF是平行四边形即可.由AE,CF在▱ABCD的对角线上,可考虑利用“对角线互相平分的四边形是平行四边形”,证明EF与BD互相平分即可.证明:连接BD交AC于点O,如图所示,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,∴OA-AE=OC-CF,即OE=OF.∴四边形BEDF是平行四边形,∴∠EBF=∠FDE.【板书设计】18.1平行四边形 18.1.2 平行四边形的判定课时1 平行四边形的判定(1)征1.平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线相互平分的四边形是平行四边形.2.平行四边形的判定定理(1)的应用【教学反思】在本节数学课的教学中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.人教版八年级下册数学第18章平行四边形18.1平行四边形 18.1.2 平行四边形的判定课时1 平行四边形的判定(1)学案【学习目标】1.经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路;2.掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.【学习重点】经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路.【学习难点】掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.【自主学习】一、知识回顾1.平平行四边形的定义是什么?有什么作用?2.除了两组对边分别平行,平行四边形还有哪些性质?3.平行四边形上面的三条性质的逆命题各是什么?二、自主探究知识点1:两组对边分别相等的四边形是平行四边形猜一猜将两长两短的四根细木条用小钉固定在一起,任意拉动,所得的四边形是平行四边形吗?证一证已知:四边形ABCD中,AB=DC,AD=BC.求证:四边形ABCD是平行四边形.证明:连接AC,在△ABC和△CDA中,AB=CD ,AC=CA,∴△ABC_____△CDA(________).BC=DA,∴∠1____∠4 , ∠ 2_____∠3,∴AB_____CD , AD_____BC,∴四边形ABCD是________________.要点归纳:平行四边形的判定定理:两组对边分别_________的四边形是平行四边形.几何语言描述:在四边形ABCD中,∵AB=CD,AD=BC,∴四边形ABCD是_________________.【典例探究】例1如图,在Rt△MON中,∠MON=90°.求证:四边形PONM是平行四边形.例2 如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.试说明四边形DAEF是平行四边形.【跟踪练习】如图, AD⊥AC,BC⊥AC,且AB=CD,求证:四边形ABCD是平行四边形.知识点2:两组对角分别相等的四边形是平行四边形猜一猜对于两组对角分别相等的四边形的形状你的猜想是什么?证一证已知:四边形ABCD中,∠A=∠C,∠B=∠D,求证:四边形ABCD是平行四边形.证明:∵∠A+∠C+∠B+∠D=_______°,又∵∠A=∠C,∠B=∠D,∴___∠A+___∠B=_______°,即∠A+∠B=______°,∴ AD_____BC.同理得 AB_____CD,∴四边形ABCD是________________.要点归纳:平行四边形的判定定理:两组对角分别________的四边形是平行四边形.几何语言描述:在四边形ABCD中,∵∠A=______,∠B=______,∴四边形ABCD是_______________.【典例探究】例3如图,在四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.(1)求∠D的度数;(2)求证:四边形ABCD是平行四边形.【跟踪练习】1.判断下列四边形是否为平行四边形:2.能判定四边形ABCD是平行四边形的条件:∠A:∠B:∠C:∠D的值为()A. 1:2:3:4B. 1:4:2:3C. 1:2:2:1D. 3:2:3:2知识点3:对角线互相平分的四边形是平行四边形猜一猜如图,将两根细木条AC、BD的中点重叠,用小钉固定在一起,用橡皮筋连接木条的顶点,做成一个四边形ABCD.转动两根木条,四边形ABCD一直是一个平行四边形吗?证一证已知:四边形ABCD中,OA=OC,OB=OD.求证:四边形ABCD是平行四边形.证明:在△AOB和△COD中,OA=OC,∠AOB=∠COD,∴△AOB______△COD(________).OB=OD,∴∠BAO_____∠OCD , ∠ ABO_____∠CDO,∴AB_____CD , AD_____BC,∴四边形ABCD是________________.要点归纳:平行四边形的判定定理:对角线互相________的四边形是平行四边形.几何语言描述:在四边形ABCD中,∵AO_____CO,DO_____BO,∴四边形ABCD是______________.【典例探究】例4(教材P46例3变式题)如图,AC是平行四边形ABCD的一条对角线,BM⊥AC 于M,DN⊥AC于N,四边形BMDN是平行四边形吗?说说你的理由.例5昨天林莉同学在生物实验室做实验时,不小心碰碎了实验室的一块平行四边形的实验用的玻璃片,只剩下如图所示部分,她想回家去割一块赔给学校,带上玻璃剩下部分去玻璃店不安全,于是她想把原来的平行四边形重新在纸上画出来?然后带上图纸去就行了,可原来的平行四边形怎么给它画出来呢(A,B,C为三顶点,即找出第四个顶点D)?(请用多种方法)【跟踪练习】1.根据下列条件,不能判定四边形为平行四边形的是()A.两组对边分别相等B.两条对角线互相平分C.两条对角线相等D.两组对边分别平行2.如图,在四边形ABCD中,AC与BD交于点O.如果AC=8cm,BD=10cm,那么当AO=_____cm,BO=_____cm时,四边形ABCD是平行四边形.四、学习中我产生的疑惑【学习检测】1.判断题(对的在括号内填“√”,错的填“×”):(1)有一组对边平行的四边形是平行四边形. ( )(2)有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形( )(3)对角线互相平分的四边形是平行四边形()(4)一条对角线平分另一条对角线的四边形是平行四边形( )(5)有一组对角相等且一组对边平行的四边形是平行四边形( )2.下列命题中,正确的是()A.两组角相等的四边形是平行四边形B.一组对边相等,两条对角线相等的四边形是平行四边形C.一条对角线平分另一条对角线的四边形是平行四边形D.两组对边分别相等的四边形是平行四边形3.四边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下四种说法:①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形;③如果再加上条件“OA=OC”,那么四边形ABCD一定是平行四边形;④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法是()A.①②B.①③④C.②③D.②③④4.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD 是平行四边形()A.OA=OC,OB=OD B.AB=CD,AO=COC.AB=CD,AD=BC D.∠BAD=∠BCD,AB∥CD5.如图,在四边形ABCD中,(1)如果AB∥CD,AD∥BC,那么四边形ABCD是 __________.(2)如果∠A:∠B:∠ C:∠D=a:b:a:b(a,b为正数),那么四边形ABCD是___ _______.(3)如果AD=6cm,AB=4cm,那么当BC=_______cm,CD=_____cm时,四边形ABCD为平行四边形.6.如图所示,在▱ABCD中,E,F分别为AB,CD的中点,求证四边形AECF是平行四边形.证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠D,∵E,F分别为AB,CD的中点,∴AE=BE=AB,CF=DF=CD.∴AE=CF,BE=DF,在△ADF和△CBE 中,AD=BC,∠B=∠D,BE=DF,∴△ADF≌△CBE(SAS).∴AF=CE,∴四边形AECF 是平行四边形.7.如图,五边形ABCDE是正五边形,连接BD、CE,交于点P.求证:四边形AB PE是平行四边形.第4题图第5题图8.如图,平行四边形ABCD的对角线AC,BD相交于点O,M,N分别是OA,OC的中点,求证BM∥DN,且BM=DN.证明:连接DM,BN,如图所示.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵M,N分别是OA,OC的中点,∴OM=OA,ON=OC,∴OM=ON.∴四边形BMDN是平行四边形,∴BM∥DN,且BM=DN.9.如图,已知E,F,G,H分别是平行四边形ABCD的边AB,BC,CD,DA上的点,且AE=CG,BF=DH.求证:四边形EFGH是平行四边形.10.如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD的中点.求证:(1)△AOC≌△BOD;(2)四边形AFBE是平行四边形.11.学校买了四棵树,准备栽在花园里,已经栽了三棵(如图),现在学校希望这四棵树能组成一个平行四边形,你觉得第四棵树应该栽在哪里?12.如图,在▱ABCD中,E,F,G,H分别是四条边上的点,且满足AE=CF,BG=DH,连接EF,GH.(1)猜想EF与GH的关系;(2)证明你的猜想.(1)解:EF与GH互相平分.(2)证明:连接EG,GF,FH,HE,∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C.又∵DH=BG,∴AD-DH=BC-BG,即AH=CG.又∵AE=CF,∴△AEH≌△CFG.∴EH=FG,同理可证明HF=GE.∴四边形EGFH是平行四边形.∴EF与GH互相平分.。
平行四边形判定导学案
18.1.2平行四边形的判定导学案(1)一、学习目标1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题. 二、复习引入 如图ABCD 中对角线AC 、BD 相交于点O,则下列结论不一定成立的是( ) A. OB=OD B. CD=AB C. ∠BAD=∠BCD D. AC=BD 三、探究新知从定义出发可知两组对边分别平行的四边形是平行四边形。
除此之外,我们可以通过研究平行四边形性质定理的逆命题得到平行四边形的其他判定方法。
1、写出平行四边形的三条性质定理的逆命题:性质定理1(边)的逆命题:性质定理2(角)的逆命题:性质定理3(对角线)的逆命题:2、以上命题成立吗?请证明。
(1)证明逆命题1:已知:如图,四边形 ABCD 中,AB=CD, AD=BC.求证:四边形ABCD 是平行四边形.(提示:转化为三角形,根据定义证明.)(2)证明逆命题2:已知:如图,四边形 ABCD 中,∠A =∠C, ∠B =∠D. 求证:四边形ABCD 是平行四边形.(3)证明逆命题3:已知:如图,四边形 ABCD 中,OA=OC , OB=OD .求证:四边形ABCD 是平行四边形.C DBAOA DBC A B DCA DB C O归纳总结:平行四边形的判定定理:1. ;2. ;3. .三、巩固训练1.下列几个条件中,不能判定一个四边形是平行四边形的是( )A .两组对边分别相等 B. 两组对边分别平行 C .两组对角分别相等 D. 对角线相等2.四边形ABCD 中,AC 、BD 相交于点O ,且OA=OC ,如果要使四边形ABCD 是平行四边形,则还需补充的条件是( )A . AC ⊥BD B. OA=OBC . OC=OD D. OB=OD3.在平行四边形ABCD 中,AC 、BD 相交于O 点,点E 、F 分别为AO 、CO 的中点.(1)求证:四边形DEBF 是平行四边形.(3)如果E 、F 点分别在AC 的延长线上时(如图2),且满足AE=CF ,上述结论仍然成立吗?总结反思:18.1.2平行四边形的判定导学案(2)C B A F E 图1一、学习目标:1.掌握用一组对边平行且相等来判定平行四边形的方法.2.会综合运用平行四边形的四种判定方法和性质来证明问题.3、 使学生熟练掌握平行四边形判定的五种方法,并通过定理,习题的证明提高学生的逻辑思维能力;进一步掌握平行四边形性质与判定之间的区别与联系。
八年级数学下册 18.1.2平行四边形的判定(第1课时)导学案3(新版)新人教版
八年级数学下册 18.1.2平行四边形的判定(第1课时)导学案3(新版)新人教版1、在探索平行四边形的判别条件中,理解并掌握用边、角、对角线来判定平行四边形的方法、2、会综合运用平行四边形的判定方法和性质来解决问题、3、培养用类比、逆向联想及运动的思维方法来研究问题、课前准备:1、平行四边形的概念:2、平行四边形的性质:边:角:对角线:3、思考:对边相等或对角相等或对角线互相平分的四边形是不是平行四边形呢?课中导学:【探究1】如图,将两长两短的四根细木条用小钉绞合在一起,做成一个四边形,使等长的木条成为对边,转动这个四边形,使它形状改变,在图形变化过程中,它一直是一个平行四边形吗?已知:四边形ABCD, AB=CD,AD=BC,求证:四边形ABCD是平行四边形小组合作与交流:证明:连结AC,∵ AB=CD,AD=BC (已知)又∵ AC=AC (公共边)∴△ABC≌△CDA()∴∠1=∠2,∠3=∠4()∴ AB∥CD,AD∥BC ()结论1:平行四边形的判定定理1:两组分别相等的四边形是平行四边形。
【探究3】两组对角相等的四边形是平行四边形吗?已知:∠A= , ∠B=求证:四边形ABCD是平行四边形小组合作与交流:分析:只需证明△ABC≌△CDA即得到AB=CD,AD=BC证明:连接AC结论2:平行四边形的判定定理1:两组分别相等的四边形是平行四边形。
展示自我:【探究2】小丽说:“我只要两条细绳就能判断它是不是平行四边形。
” 小丽用两条细绳做四边形的对角线,并在两条对角线的交点处作了个记号。
然后分别把两条对角线沿记号点对折,发现它们被记号点分成的两段线段都能重合,小丽高兴地说:“这的确是个平行四边形!”你知道为什么吗?A D已知:四边形ABCD, OA=OC, OB=OD,求证:四边形ABCD 是平行四边形证明: OBC 结论3:平行四边形的判定定理3:对角线的四边形是平行四边形。
课后巩固:1、教材P47练习题第 1、2题2、已知:如图口ABCD的对角线AC、BD交于点O, E、F是AC上的两点,并且AE=CF、求证:四边形BFDE是平行四边形、课本采用判定定理2证明的,你能用判定定理1证明吗?自我检测:1、下列条件中能判断四边形是平行四边形的是()、(A)对角线互相垂直(B)对角线相等(C)对角线互相垂直且相等(D)对角线互相平分2、如图,在四边形ABCD中,AC、BD相交于点O,(1)若AD=8cm,AB=4cm,那么当BC=___ _cm,CD=___ _cm时,四边形ABCD为平行四边形;(2)若AC=10cm,BD=8cm,那么当AO=__ _cm,DO=__ _cm时,四边形ABCD为平行四边形、3、已知:如图,A′B′∥BA,B′C′∥CB,C′A′∥AC、求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点课后反思及总结:今天学习平行四边形的3个判定方法加上定义共四个,你掌握了吗?。
18.1.2平行四边形的判定1第1课时平行四边形的判定(1)导学案
平行四边形的判断第 1 课时平行四边形的判断(1)学习目标:1、学习平行四边形的三种判断方法;2、能联合图形用几何语言说出平行四边形的判断过程。
重难点:能用平行四边形的判断方法解决简单的问题。
学习过程一、复习1、称为平行四边形。
2、平行四边形边的性质:(1)两组对边分别.(从地点考虑).( 2)两组对边分别(从数目考虑).二、研究新知1、联合图形 1 用定义能够说明四边形ABCD 是平行四边形,如图在四边形ABCD 中AB//,//AD四边形 ABCD 是平行四边形由此平行四边形的定义也能够作为一个判断:平行四边形的判断一(定义法---- 两组对边的地点法):2、请同学们思虑:两组对边分别相等的四边形是平行四边形马?动着手。
用两根同样长的木条作为一组对边(AB=CD) ,再用两根同样长的木条作为另一组对边( AD=BC)拼一个四边形(如图)。
这个四边形是平行四边形吗?自己考证。
证明:(用定义“两组对边分别平行的四边形是平行四边形”加以证明)平行四边形的判断二(两组对边的数目法):判断格式:如图在四边形ABCD 中AB=CD, AD =BC四边形 ABCD 是平行四边形。
3、两组对角分别相等的四边形是平行四边形吗?(用以上判断方法二研究)平行四边形的判断三(两组对角法):判断格式:如图在四边形ABCD 中∠A=∠ C,∠ B=∠D四边形 ABCD 是平行四边形。
平行四边形的判断四(对角线法):4、着手试一试:把两根长度不同样的木条的中点用一颗钉子固定,而后用线段按序连结两木条的端点(即得四边形 ---图 1)。
猜一猜这个四边形是平行四边形吗?5、考证你得猜想:如图2,AC、BD是四边形A BCD 的对角线,交点是点O,且 OA=OC,OB=OD 。
则四边形ABCD 是平行四边形解:因为在OAB 和OCD 中OA()AOB()OB()≌()AB=()1()AB//()四边形 ABCD 是。
() 6、概括平行四边形的第五种判断方法:判断格式如图,在四边形ABCD 中OA==OD四边形 ABCD 是平行四边形。
平行四边形判定导学案
18.1.2平行四边形的判定1一、学习目标1、理解并掌握平行四边形的判定定理。
2、会运用这些判定方法解决简单的问题。
二、自主学习1,平行四边形的性质有:2、写出以上性质的逆命题:3、这些逆命题成立吗?你能用平行四边形的定义证明它们吗?三、问题探究探究1 两组对边分别相等的四边形是平行四边形探究2 两组对角分别相等的四边形是平行四边形探究3 对角线互相平分的四边形是平行四边形探究4 一组对边平行且相等的四边形是平行四边形归纳:平行四边形的判定定理四、反馈提升1、ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF是平行四边形.2、如图ABCD的对角线AC、BD交于点O,并且AE=CF.求证:四边形BFDE是平行四边形.五、达标应用1、如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.2、已知:如图,△ABC,BD平分∠ABC,DE∥BC,EF∥AC,求证:BE=CF3、在ABCD中,BE平分∠A BC交CD于点E,DF平分∠A DC交AB于点F,求证BF=DE.18.1.2平行四边形的判定2一、学习目标1、理解和领会三角形三角形中位线定理及其应用2、会应用三角形中位线解决四边形的问题二、自主学习1、三角形的中位线:2、一个三角形有 条中位线,三角形的中位线和中线一样吗?三、问题探究探究 三角形中位线的性质如图,点D 、E 分别是△ABC 的边AB 、AC 的中点,求证:DE ∥BC 、DE=BC 21.归纳:三角形中位线定理四、反馈提升1、如图(1),在四边形ABCD 中,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA 的中点. 求证:四边形EFGH 是平行四边形.ED C B A五、达标运用1、已知:三角形的各边分别为8cm 、10cm和12cm ,求连结各边中点所成三角形的周长.2、如图,△ABC中,D、E、F分别是AB、AC、BC的中点,(1)若EF=5cm,则AB= cm;若BC=9cm,则DE= cm;(2)中线AF与DE中位线有什么特殊的关系?证明你的猜想.3、在ABCD中,对角线AC、BD相交于点O,M、N、P、Q分别是OA、OB、OC、OD的中点.试说明四边形MNPQ是平行四边形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.1.2 平行四边形的判定
第1课时平行四边形的判定(1)
学习目标:
1、学习平行四边形的三种判定方法;
2、能结合图形用几何语言说出平行四边形的判定过程。
重难点:
能用平行四边形的判定方法解决简单的问题。
学习过程
一、复习
1、称为平行四边形。
2、平行四边形边的性质:(1)两组对边分别.(从位置考虑).
(2)两组对边分别(从数量考虑).
二、探究新知
1、结合图形1用定义可以说明四边形ABCD是平行四边形,
如图在四边形ABCD中
ΘAB// ,//AD
∴四边形ABCD是平行四边形
由此平行四边形的定义也可以作为一个判定:
平行四边形的判定一(定义法----两组对边的位置法):
2、请同学们思考:两组对边分别相等的四边形是平行四边形马?动动手。
用两根一样长的木条作为一组对边(AB=CD),再用两根一样长的木条作为另一组对边(AD=BC)拼一个四边形(如图)。
这个四边形是平行四边形吗?自己验证。
证明:(用定义“两组对边分别平行的四边形是平行四边形”加以证明)
平行四边形的判定二(两组对边的数量法):
判定格式:如图
在四边形ABCD中
ΘAB=CD,AD=BC
∴四边形ABCD是平行四边形。
3、两组对角分别相等的四边形是平行四边形吗?(用以上判定方法二探究)
平行四边形的判定三(两组对角法):
判定格式:如图
在四边形ABCD 中
Θ∠A =∠C ,∠B =∠D
∴四边形ABCD 是平行四边形。
平行四边形的判定四(对角线法):
4、动手试一试:把两根长度不一样的木条的中点用一颗钉子固定,然后用线段顺次连接两木条的端点(即得四边形---图1)。
猜一猜这个四边形是平行四边形吗?
5、验证你得猜想:如图2,AC 、BD 是四边形ABCD 的对角线,
交点是点O ,且OA =OC ,OB =OD 。
则四边形ABCD 是平行四边形
解:由于在OAB ∆和OCD ∆中
⎪⎪⎩⎪⎪⎨⎧==
∠=)
()()(OB AOB OA ≌ ( )
∴AB = ( )
∴ =∠1 ( )
∴AB // ( )
∴四边形ABCD 是 。
( )
6、归纳
平行四边形的第五种判定方法:
判定格式如图, 在四边形ABCD 中
ΘOA =
=OD
∴四边形ABCD 是平行四边形。
三、课堂小结
平行四边形的判定方法-------两组对边法:(1)
(2)
(3)
四、课堂作业
如图,在四边形ABCD中,∠B =∠D,∠1=∠2,求证:四边形ABCD是平行四边形。
的中线AD延长至点E,使得DE=AD,连结EB、EC。
已知:如图,把ABC
求证:四边形ABEC是平行四边形。
五、课后反思。