数学(七年级)(下)应用题专题训练——行程问题(1课时)
(word完整版)初中行程问题专题讲解
初中列方程解应用题(行程问题)专题行程问题是指与路程、速度、时间这三个量有关的问题。
我们常用的基本公式是:路程=速度×时间;速度=路程÷时间;时间=路程÷速度.行程问题是个非常庞大的类型,多年来在考试中屡用不爽,所占比例居高不下。
原因就是行程问题可以融入多种练习,熟悉了行程问题的学生,在多种类型的习题面前都会显得得心应手。
下面我们将行程问题归归类,由易到难,逐步剖析。
1. 单人单程:例1:甲,乙两城市间的铁路经过技术改造后,列车在两城市间的运行速度从h km /80提高到h km /100,运行时间缩短了h 3。
甲,乙两城市间的路程是多少?【分析】如果设甲,乙两城市间的路程为x km ,那么列车在两城市间提速前的运行时间为h x 80,提速后的运行时间为h x 100. 【等量关系式】提速前的运行时间—提速后的运行时间=缩短的时间. 【列出方程】310080=-x x .例2:某铁路桥长1000m ,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min ,整列火车完全在桥上的时间共s 40。
求火车的速度和长度。
【分析】如果设火车的速度为x s m /,火车的长度为y m ,用线段表示大桥和火车的长度,根据题意可画出如下示意图:【等量关系式】火车min 1行驶的路程=桥长+火车长;火车s 40行驶的路程=桥长-火车长 【列出方程组】⎩⎨⎧-=+=yx y x 100040100060举一反三:1.小明家和学校相距km 15。
小明从家出发到学校,小明先步行到公共汽车站,步行的速度为60min /m ,再乘公共汽车到学校,发现比步行的时间缩短了min 20,已知公共汽车的速度为h km /40,求小明从家到学校用了多长时间。
2.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间由现在的2小时18分钟缩短为36分钟,其速度每小时将提高km 260.求提速后的火车速度。
(完整)七年级数学行程问题(整理)
行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:简单行程:路程=速度×时间相遇问题:路程和=速度和×时间追击问题:路程差=速度差×时间流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2甲、乙两人分别从相距100 米的 A 、B 两地出发,相向而行,其中甲的速度是 2 米每秒,乙的速度是 3 米每秒。
一只狗从 A 地出发,先以 6 米每秒的速度奔向乙,碰到乙后再掉头冲向甲,碰到甲之后再跑向乙,如此反复,直到甲、乙两人相遇。
问在此过程中狗一共跑了多少米?1.甲、已两个车站相距168千米,一列慢车从甲站开出,速度为36千米/小时,一列快车从乙站开出,速度为48千米/小时。
(1)两列火车同时开出,相向而行,多少小时相遇?(2)慢车先开1小时,相向而行,快车开几小时与慢车相遇?2.甲、乙两人从同地出发前往某地。
甲步行,每小时走4公里,甲走了16公里后,乙骑自行车以每小时12公里的速度追赶甲,问乙出发后,几小时能追上甲?3.甲、乙两人练习50米短距离赛跑,甲每秒钟跑7米,乙每秒钟跑6.5米。
(1)几秒后,甲在乙前面2米?(2)如果甲让乙先跑4米,几秒可追上乙?4甲、乙两人在400米的环行形跑道上练习跑步,甲每秒跑5.5米,乙每秒跑4.5米。
a)乙先跑10米,甲再和乙同地、同向出发,还要多长时间首次相遇?b)乙先跑10米,甲再和乙同地,背向出发,还要多长时间首次相遇?c)甲、乙同时同地同向出发,经过多长时间二人首次相遇?d)甲先跑10米,乙再和甲同地、同向出发,还要多长时间首次相遇?5、一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?6、甲、乙两人在一条长400米的环形跑道上跑步,如果同向跑,每隔133分钟相遇一次,,如果反向跑,则每隔40秒相遇一次,已知甲比乙跑的快,求甲、乙两人的速度?7、甲、乙两人骑自行车,同时从相距65千米两地相向而行,甲的速度为17.5千米每小时,乙的速度为15千米每小时,经过了几小时两人相距32.5千米?1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
一元一次方程解应用题:行程问题专题
一元一次方程解应用题:行程问题专题一元一次方程解应用题:行程问题专题一元一次方程行程问题常见问题类型:追击问题、相遇问题、圆环跑道、时钟问题、风速问题、流水问题、折返问题、变速问题、上坡下坡、数轴动点问题、其他问题(1)、追击问题:Eg1:乙两列复兴号动车组相向而行,甲列车每小时行350千米,车身长180米;乙列车每小时行320千米,车身长220米,两车从车头相遇到车尾分离需多少时间?Eg2:某中学学生步行去某地参加社会公益活动,每小时5千米. 出发20分钟后,队长派一名通信员以10千米/时原路的速度返回学校取重要信件,然后以12千米/时的速度追赶队伍,问通信讯员拿到信件后用多少时间可以追上学生队伍?(2)、相遇问题:Eg1:甲骑自行车从A地到B地,乙骑自行车从B地到A地,甲骑车的速度是乙骑车的2倍,已知二人在上午8时同时出发,到上午10时二人相距36千米,到中午12时二人又相距36千米,求A、B 两地间的距离。
Eg2:甲、乙两人,分别同时从A、B两地相向而行,甲骑自行车每小时行15千米,乙步行每小时行5千米,两人相遇后乙又行了6小时到达A地,求两地之间的路程是多少千米?Eg3:甲、乙两列火车长分别为166m和180m,甲车比乙车每秒钟多行4m,两列车相向行驶,从相遇到全部错开(从两车头相遇到两车尾离开)需10秒,(1)问两车速度各是多少?(2)若同向而行,甲车的车头从乙车的车尾追及到甲车全部超出乙车,需多少秒?Eg4:小芳骑自行车以16千米/时的速度去上学,15分钟后,小芳的姐姐看到小芳忘了带英语书,于是她就骑摩托车以56千米/时的速度沿同一条路去给小芳送英语书,已知小芳家与学校相距6千米,请问,小芳的姐姐能否在小芳到校前追上小芳?如能,此时她们离学校还有多远?如不能,小芳到校多长时间后,她姐姐才到校?Eg5:甲乙两人从相距1000米的两地同时相对而行,甲每分钟行60米,乙每分钟行40米.几分钟后,甲乙二人相遇?如果甲带了一只狗和甲同时出发,狗以每分钟150米的速度向乙跑去,遇到乙后立刻回头向甲跑去。
初一数学一元一次方程应用专题训练1(行程问题 附答案)
初一数学一元一次方程应用专题训练1(行程问题附答案)1.一艘船从甲码头到乙码头顺流而行,用了2小时;从乙码头返回甲码头逆流而行,用了2.5小时.已知水流的速度是3km/h,船在静水中的速度是()A.30 B.27 C.3 D.242.A、B两人分别从甲乙两地同时相向而行,A的速度是每小时80千米,B的速度是甲的34,经过52时两人相距10千米,甲乙两地相距______千米.3.两村相距35千米,甲、乙两人从两村出发,相向而行,甲每小时行5千米,乙每小时行4千米,甲先出发1小时后,乙才出发,当他们相距9千米时,乙行驶了____小时.4.已知A港在B港上游,小船于凌晨3:00从A港出发开往B港,到达后立即返回,来回穿梭于A、B港之间,若小船在静水中的速度为16千米/小时,水流的速度为4千米/小时,在当晚23:00时,有人看见小船在距离A港80千米处行驶,则A、B两港之间的距离为_______km.5.有一快递小哥骑电动车需要在规定的时间把快递送到某地,若他以30 km/h的速度行驶就会提前2分钟到达,如果他以20 km/h的速度行驶就要迟到6分钟.(1)快递小哥行驶的路程是多少千米;(2)规定的时间是多少分钟?(3)当快递小哥以30 km/h的速度行驶10分钟后,因某段路拥堵耽误了3分钟,为了刚好在规定时间到达,快递小哥应以怎样的速度行驶?6.甲,乙两车先后从两地相对开出,甲车每小时行驶60千米,是乙车速度的1.2倍,甲车出发6小时与乙车在中点相遇,求乙车比甲车早出发几小时?7.甲、乙两人在笔直的道路上练习赛跑,甲每秒跑7m,乙每秒跑6.5m,若甲让乙先跑了一段距离后,则甲在60s后追上了乙,试求甲让乙先跑的距离.8.甲、乙两人相距40km,甲先出发1.5小时后,乙再出发,甲的速度为8/km h,乙的速度为6/km h.(1)甲在后,乙在前,两人同向而行,甲出发几小时后追上乙?(2)两人相向而行,乙用了几小时与甲相遇?9.甲、乙两站相距360千米,一列快车从甲站开出,每小时行160千米,一列慢车从乙站开出,每小时行80千米.(1)两车同时开出,相向而行多少小时后两车相遇?(2)两车同向而行,快车在慢车的后面,且慢车提前半小时出发,经过多少小时后快车追上慢车?10.甲、乙两车分别从相距270km 的A 、B 两地出发,沿足够长的公路行驶,甲车速度为75/km h ,乙车速度为60/km h .(l )两车同时出发,相向而行,多长时间后两车相遇?(2)两车同时出发,同向而行(乙车在前甲车在后),多长时间后两车相遇?(3)两车同时出发,同向而行(乙车在前甲车在后),多长时间后两车相距120km ? 11.某人计划骑车以每小时12千米的速度由A 地到B 地,这样便可以在规定的时间到达B 地,但他因有事将原计划出发的时间推迟了20分钟,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B 地,求A 、B 两地间的距离.(列方程解) 12.甲、乙两人骑自行车分别从相距36km 的两地匀速同向而行,如果甲比乙先出发半小时,那么在乙出发后经3小时甲追上乙;如果乙比甲先出发1小时,那么在甲出发后经5小时甲才能追上乙.请问:甲、乙两人骑自行车每小时各行多少千米?13.常州地铁已开通近一年.小明骑自行车从家中前往地铁一号线的B 站,与此同时,一列地铁从A 站开往B 站.3分钟后,地铁到达B 站,小明离B 站还有1800米.已知A 、B 两站间距离和小明家到B 站的距离恰好相等,这列地铁的平均速度是小明的4倍. (1)求小明骑车的平均速度;(2)如果此时另有一列地铁需8分钟到达B 站,且小明骑车到达B 站后还需2分钟才能走到地铁站合候车,他要想乘上这趟地铁,骑车的平均速度至少应提高多少?14.一辆轿车和一辆客车分别从A ,B 两地出发,沿同一条公路相向匀速而行.出发后2小时两车相遇. 相遇时轿车比客车多行驶40km ,相遇后1.5h 轿车到达B 地. 求A ,B 两地之间的距离.15.小王从家里骑摩托车到火车站接朋友,如果每小时行30千米,那么比火车到站时间早到15分钟;如果每小时行18千米,则他比火车到站时间迟到15分钟。
(完整版)七年级数学应用题专题---行程问题【精】整理版
行程问题1:甲、乙两地相距416千米,一辆汽车从甲地开往乙地,每小时行32千米,汽车开出半小时后,一辆摩托车从乙地开往甲地,速度是汽车的1.5倍,问摩托车开出几小时后才能与汽车相遇?2:甲、乙两人相距80千米,甲骑自行车每小时行20千米,乙骑摩托车每小时行60千米,摩托车在自行车后面,两人同时出发,同向行驶,问乙经过多少时间追上甲。
3:一只轮船,在甲、乙两地之间航行,顺水用8小时,逆水比顺水多30分钟,已知轮船在静水中速度是每小时26千米,求水流的速度。
4:自行车环城赛,一圈12千米,已知甲的速度是乙的5/7,两人同时同地出发后2小时30分相遇,问乙比甲每分钟快多少千米?5:一条山路,从山下到山顶,走了1小时还差1千米,从山顶到册下,50分钟可以走完,已知下山速度是上山速度的1.5倍,上山、下山每小时各走了多少千米?这条山路有多少千米?6:一架飞机在两个城市之间飞行,顺风时需要5小时30分钟,逆风时需要6小时,已知风速是每小时24千米,求两城市之间的距离?7:甲、乙两人骑自行车从相距75千米的两地相向而行,3小时后相遇,若甲比乙每小时多走2千米,求甲、乙的速度及各自所走的距离?8:一条环形跑道长400米,甲骑车,平均速度为550米/分,乙跑步平均速度为250米/分。
⑴两人同时同向从同地出发经过多少分钟两人再相遇。
⑵两人同时同地背向出发经过多少分钟相遇?9:甲、乙两人沿一公路自西向东前进,速度分别为3千米/小时和5千米/小时,甲于中午12时经过A地,乙于下午2时经过A地,则乙追上甲时离A地多远10:若敌我相距15千米,且敌军于1小时前以每小时4千米的速度逃跑,现我军以每小时7千米的速度追击,问几小时可以追上?11:甲骑自行车从A地出发,以每小时12千米的速度驶向B地,经过15分钟后,乙骑自行车从B地出发,以每小时14千米的速度驶向A地,两人相遇时,乙已超过中点1.5千米,求A、B两地距离。
12:一个学生用每小时5千米的速度前进,可以及时从家里返回学校,走了全程度的1/3,他搭上了速度是每小时20千米的公共汽车,因此比规定时间早2小时到达学校。
七年级数学行程问题应用题精选
一行程问题1.甲、已两个车站相距168千米,一列慢车从甲站开出,速度为36千米/小时,一列快车从乙站开出,速度为48千米/小时。
(1)两列火车同时开出,相向而行,多少小时相遇?(2)慢车先开1小时,相向而行,快车开几小时与慢车相遇?2.甲、乙两人从同地出发前往某地。
甲步行,每小时走4公里,甲走了16公里后,乙骑自行车以每小时12公里的速度追赶甲,问乙出发后,几小时能追上甲?3.甲、乙两人练习50米短距离赛跑,甲每秒钟跑7米,乙每秒钟跑6.5米。
(1)几秒后,甲在乙前面2米?(2)如果甲让乙先跑4米,几秒可追上乙?4甲、乙两人在400米的环行形跑道上练习跑步,甲每秒跑5.5米,乙每秒跑4.5米。
a)乙先跑10米,甲再和乙同地、同向出发,还要多长时间首次相遇?b)乙先跑10米,甲再和乙同地,背向出发,还要多长时间首次相遇?c)甲、乙同时同地同向出发,经过多长时间二人首次相遇?d)甲先跑10米,乙再和甲同地、同向出发,还要多长时间首次相遇?5、一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?6、甲、乙两人在一条长400米的环形跑道上跑步,如果同向跑,每隔133分钟相遇一次,,如果反向跑,则每隔40秒相遇一次,已知甲比乙跑的快,求甲、乙两人的速度?7、甲、乙两人骑自行车,同时从相距65千米两地相向而行,甲的速度为17.5千米每小时,乙的速度为15千米每小时,经过了几小时两人相距32.5千米?二盈亏问题工作量与折扣问题8.用化肥若干千克给一块麦田施肥,每亩用6千克,还差17千克;每亩用5千克,还多3千克,这块麦田有多少亩?9毕业生在礼堂入座,1条长凳坐3人,有25人坐不下;1条长凳坐4人,正好空出4条长凳,则共有多少名毕业生?长凳有多少条?10 将一批货物装入一批箱子中,如果每箱装10件,还剩下6件;如果每箱装13件,那么有一只箱子只装1件,这批货物和箱子各有多少?11有一次数学竞赛共20题,规定做对一题得5分,做错或不做的题每题扣2分,小景得了86分,问小景对了几题?12.修一条路,A 队单独修完要20天,B 队单独修完要12天。
初一七年级数学重点题型之方程应用专题训练
方程应用专题训练(一)一、行程问题1.一列火车匀速行驶,完全通过一条长300m的隧道需要20s的时间,隧道的顶上有一盏灯,垂向下发光,灯光照在火车上的时间是10s,求火车的速度.2.某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船4小时,已知船在静水中的速度为每小时7.5千米,水流速度为每小时2.5千米,若A、C两地的距离为10千米,则A、B两地的距离为多少千米?3.甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人均匀速前进,已知两人在上午8时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米.求A、B两地间的距离.4.一船往返于甲、乙两个码头之间,由甲到乙是顺水,乙到甲是逆水,并知船在静水中的速度为8千米/时,平时逆水行驶与顺水行驶一次时间比为2∶1,某天恰逢暴雨,水流速度是原来的2倍,这条船往返甲、乙两码头之间一次共用9小时,求甲、乙两码头间的距离是多少千米?5.某人上午8时乘装有竹杆的船逆流而上,10时半发现一捆竹杆掉入河中,他立即掉头顺流去追赶,用30分钟追上了竹杆,竹杆是何时掉入河中的?6.某人沿公路匀速前进,每隔4分钟就遇到迎面开来的一辆公共汽车,每隔6分钟就有一辆公共汽车从背后超过他,假定汽车速度不变,而且迎面开来相邻两车和从背后开来相邻两车的距离都是1200米,求某人前进的速度和公共汽车的速度,汽车每隔几分钟开出一辆?7.8点到9点之间,何时时针与分针夹角为直角?8.某人下午6点多外出购物,表上的时针和分针的夹角恰好为110°,下午近7点回家,发现表上的时针和分针夹角又是110°,试计算此人外出用了多长时间?9.钟表在12点时三针重合,经过x分钟第一次将分针和时针所夹的角平分,求x的值.二、工程问题10.学校修建运动场,如果让甲工程队单独做需要15天完成,如果让乙工程队单独做需要10天完成,如果让甲、乙工程合做2天后,剩下的工程由乙工程队完成,问共需要多少天?11.一项工程,由一个人做要40小时完成,现计划由一部分人先做4小时,再增加2人和他们一起做8小时完成任务.若这些人的工作效率相同,应先安排多少人工作?12.两根两样长的蜡烛,粗烛可烧4小时,细烛可烧3小时,一次停电,同时点亮两根蜡烛,来电后,又同时吹灭,发现粗烛的长是细烛的2倍,求停电时间有多长?13.一项工程中,拟由甲乙两个工程队共同完成某项目.若两工程队合做,则24天刚好完成;若合做18天后,由甲队单独做10天才能完成.问(1)甲乙两队单独做各需要多少天?(2)如果甲队每天的施工费为0.6万元,乙队每天的施工费为0.35万元.要使该工程的总施工费不超过22万元,则乙队至少要施工多少天?方程应用专题训练(二)三、数字问题1.三个连续的偶数之和比最大的一个偶数的2倍多12,求个三位数.2.一个两位数,十位上的数字比个位上的数字大2,十位上的数字与个位上的数字和是这个数的71,求这个两数.3.一个四位数,若千位上的数字与百位上的数字顺次组成的两位数与十位上的数字与个位上的数字顺次组成的两位数之和为53,把这两个两位数交换位置得到一个新的四位数,这个新的四位数比原来的四位数大693,求原来的这个四位数为多少?4.初一(2)班的数学课代表苗苗问数学老师家的电话号码是多少?老师说:“我家的电话号码是八位数,这个数的前四位数字相同,后面四位数字是连续的自然数,八位数全部数字之和恰好等于号码的最后两位数,巧的是,这个号码的后五位数也是连续的自然.”则老师家的电话号码为多少?5.小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄.四、调配问题6.甲队有32人,乙队有28人,现从乙队抽调一些人到甲队,使甲队人数是乙队人数的2倍,求应调多少?7.在一次美化校园中,先安排32人去拔草,17人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和植树的人分别有多少人?8.某工厂每一车间人数比第二车间人数的54少30人,如果从第二车间调10人到第一车间,那么第一车间人数就是第二车间人数的43,求原来每个车间的人数.9.某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉120个或螺母200个,两个螺母与一个螺钉配套,怎样安排工人使每天产品刚好配套?10.用铝片做听装饮料瓶,每张铝片可制瓶身16张或制瓶底43张,一个瓶身和两个瓶底可酿成一套,有150张铝片,用多少张制瓶身和多少张制瓶底?11.某车间有工人34人,平均每人每天可加工大齿轮10个,又知2个大齿轮与3个小齿轮酿成一套,要使每天生产的大小齿轮刚好配套,应怎样分配工人?五、浓度问题12.130克含盐5%的盐水,与含盐9%的盐水混合,配成含盐6.4%的盐水,这样配成的6.4%的盐水有多少克?13.把浓度为20%、40%和60%的某溶液混合在一起,得到浓度为36%的溶液50升.已知浓度为40%的溶液用量是浓度为20%的溶液用量的3倍,浓度为40%的溶液的用量是多少升?14.两个杯子里分别装有浓度为40%与10%的盐水,将这两杯盐水倒在一起混合后,盐水浓度为30%,若再加入300克20%的盐水,浓度变化25%,请问:原有40%的盐水是多少克?15.杯中原有浓度为18%的盐水溶液100ml,重复以下操作2次,加入100ml水,充分混合后,倒出100ml溶液,问杯中溶液的浓度变成了多少?方程应用专题训练(三)六、利润问题1.某种商品每件的进价为250元,按标价的九折销售,盈利15.2%,这种商品的标价是多少元?2.为了搞活经济,商场将一种商品按标价的9折出售,仍可获利10%,若商品标价33元,那么该商品进价为多少元?3.某商品的进价为310元,按标价的8折销售,利润率为16%,商品的标价为多少元?4.某商品的进价为120元,标价为200元,折价销售时的利润率为10%,此商品是按几折销售的?5.一件商品以60元的价格卖出,获利25%;另一件商品以80元的价格卖出,亏损20%,卖这两件商品总的是盈利不是亏损多少元?七、分段计费问题6.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民1月份用水83m,则应收水费:2×6+4×(8﹣6)=20元.(1)若该户居民2月份用水12.5m3,则应收水费元;(2)若该户居民5月份交水费52元,则该户居民5月份共用水多少立方米?(3)若该户居民3、4月份共用水15m(4月份用水量超过3月份),共交水费44元,则该户居民3,4月份各用水多少立方米?7.武汉市居民用电电费目前实行梯度价格表(为计算方便,数据进行了处理)(1)若月用电150千瓦时,应交电费元,若月用电250千瓦时,应交电费元;(2)若居民王成家12月应交电费150元,请计算他们家12月的用电量;(3)若居民王成家12月应交纳的电费,经过测算,平均每千瓦时0.55元,请计算他们家12月的用电量;八、方案问题8.世贸广场某品牌西服每套定价400元,领带每条定价80元.“十一”黄金周期间,商场促销提供两种优惠方案:①买一套西服送一条领带;②西装和领带均按九折付款.某高校一次性购买西装20套,领带多少条时,两种优惠方案所付钱相等.说明:月使用费固定收取,主叫不超限定时间不再收费,主叫超过时部分加收超时费,被叫免费.(1)若李杰某月主叫通话时间为200分钟,则他按方式一计费需元,按方式二计费需元,若徐明某月按方式二计费需103.8元,则主叫通话时间为分钟.(2)是否存在某主叫通话时间t(分钟),按方式一和方式二的计费相等,若存在,请求出t的值;若不存在,请说明理由.(3)请你通过计算分析后,直接给出当月主叫通话时间t(分钟)满足什么条件时,选择方式一省钱;当月主叫通话时间t(分钟)满足什么条件时,选择方式二省钱.10.某地生产的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元;若经过粗加工后销售,每吨利润达到4500元;若经过精加工后销售,每吨利润达到7500元.当地一家农工商公司收获这种蔬菜140吨,代公司家工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果对蔬菜进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须用15天德时间将这批蔬菜全部销售或加工完毕,为此,公司制定了三种可行方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能多对蔬菜进行精加工,没有来得及进行加工的蔬菜,在市场上直接销售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好用15天完成.你认为选择哪种方案获利最多?为什么?11.某商场计划拨款9 万元从厂家购进50 台电视机.已知厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500 元,乙种每台2100 元,丙种每台2500 元.(1)若商场同时购进其中两种不同型号的电视机50 台,用去9 万元,请你研究一下商场的进货方案.(2)若商场每销售一台甲、乙、丙电视机可分别获利150 元、200 元、250 元,在以上的方案中,为使获利最多,你选择哪种进货方案?(3)商场准备9万元同时购进三种不同型号的电视机50台,请你设计进货方案.。
人教版七年级下册数学实际问题与二元一次方程组(行程问题)应用题训练
人教版七年级下册数学8.3 实际问题与二元一次方程组(行程问题)应用题训练1.一辆汽车从A地驶向B地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A到B地一共行驶了2.2h.那么汽车在高速公路上行驶了多少千米?2.从甲地到乙地有一段下坡路与一段平路,如果保持下坡路每小时走5千米,平路每小时走4千米,上坡路每小时走3千米,那么从甲地到乙地需要36分钟,从乙地返回甲地需要48分钟.求甲地到乙地的全程是多少?3.小李骑电动自行车,预计用相同的时间往返于甲、乙两地,去时电动自行车的车速是18km/h,结果早到20min;返回时,以每小时15km的速度行进,结果晚到4min.求甲、乙两地间的距离和预计时间.4.已知,从小明家到学校,先是一段上坡路,然后是一段下坡路,且小明走上坡路的平均速度为每分钟走60m,下坡路的平均速度为每分钟走90m,他从家里走到学校需要21min,从学校走到家里需要24min,求小明家到学校有多远.5.某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑,如果反向而行,那么他们每隔32秒相遇一次.如果同向而行,那么每隔160秒乙就追上甲一次.甲、乙的速度分别是多少?6.某学校组织学生举行“远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时.原路返回时,以每小时6千米的速度下坡,又以每小时4千米的速度走平路,共用了3.5小时.问平路和坡路的路程各多少千来?7.甲、乙两人在A地,丙在B地,他们三人同时出发,甲、乙与丙相向而行,甲每分走120米,乙每分走130米,丙每分走150米.已知丙遇上乙后,又过了5分钟遇到甲,求A、B两地的距离.8.一只小船从A港口顺流航行到B港口需6h,而由B港口返回A港口需8h,某日,小船在早6点钟出发由A港口返回B港口时,发现船上一个救生圈在途中掉入水中,于是立即返回寻找救生圈,于1小时后找到救生圈.(1)若小船按水流速度由A港口漂流到B港口需要多长时间?(2)救生圈何时掉入水中?9.甲、乙两人分别从相距30 千米的A、B 两地同时出发,相向而行,经过3 小时后,两人相遇后又相距3 千米,再经过2 小时,甲到 B 地所剩的路程是乙到A 地所剩的路程的2 倍.求甲、乙两人的速度.10.宜昌至万县的游船可游览三峡全程,由万县开往宜昌(顺水)时,每小时行20千米,由宜昌开往万县(逆水)时,每小时行16千米,求游船在静水中的速度和水速.11.小刚和小亮两人骑自行车,在400米环形跑道上用不变的速度行驶,当他们按相反的方向行驶时,每20秒就相遇一次;若按同一方向行驶,那么每100秒钟相遇一次,问两个人的速度各是多少?12.张强和李毅二人分别从相距20千米的A、B两地出发,相向而行,如果张强比李毅早出发30分钟,那么在李毅出发后2小时,他们相遇;如果他们同时出发,那么1小时后两人还相距11千米.求张强、李毅每小时各走多少千米.13.A、B两地之间的路程是36km,小丽从A地骑自行车到B地,小明从B地骑自行车到A地,两人同时出发,相向而行,经过1h后两人相遇;再过0.5h,小丽余下的路程是小明余下路程的2倍.小明和小丽骑车的速度各是多少?14.男女运动员各一名在环形跑道上练习长跑,男运动员比女运动员速度快,他们从同一起点沿相反方向同时出发,每隔25秒相遇一次.现在他们从同一起跑点沿相同方向同时出发,经过25分钟男运动员追上女运动员,并且比女运动员多跑20圈.求(1) 男运动员的速度是女运动员的多少倍?(2) 男运动员追上女运动员时,女运动员跑了多少圈?15.客车和货车分别在两条平行的铁轨上行驶,客车长450米,货车长600米.如果两车相向而行,那么从两车车头相遇到车尾离开共需21秒钟;如果客车从后面追货车,那么从客车车头追上货车车尾离开货车车头共需1分45秒,求两车的速度.16.甲、乙两人在东西方向的公路上行走,甲在乙西边300米,若甲、乙两人同时向东走30分钟后,甲正好追上乙;若甲、乙两人同时相向而行,2分钟相遇.问甲、乙两人的速度各是多少?17.某学校组织学生乘汽车去自然保护区野营,先以60km/h的速度走平路,后又以30km/h的速度爬坡,共用了6.5h;原路返回时,汽车以40km/h的速度下坡,又以50km/h 的速度走平路,共用了6 h.问平路和坡路各有多远?18.小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?19.某城市规定:出租车起步价允许行驶的最远路程为3千米,超过3千米的部分按每千米另行收费,甲说:“我乘这种出租车走了9千米,付了15元”:乙说:“我乘这种出租车走了25千米,付了39元”请你算一算这种出租车的起步价是多少元?超过3千米后,每千米的车费是多少元?20.为提高学生综合素质,亲近自然,励志青春,某学校组织学生举行“远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时;原路返回时,以每小时5千米的速度下坡,又以每小时4千米的速度走平路,共用了4小时,问平路和坡路各有多远.参考答案:1.120km2.甲地到乙地的全程是2.7千米.3.36km,7 3 h4.小明家到学校有1620m.5.甲的速度是5米/秒,乙的速度是7.5米/秒6.12;37.A、B两地的距离为37800米.8.(1)小船按水流速度由A港口漂流到B港口需要48小时;(2)救生圈11点掉入水中.9.甲乙两人的速度分别为4km/h、5km/h 或163km/h,173km/h.10.游船在静水中的速度为18千米/时,水速为2千米/时11.两个人的速度分别为12米/秒、8米/秒.12.张强每小时走4千米,李毅每小时走5千米.13.小明速度为20 km/h,小丽速度为16km/h14.(1)男运动员速度是速度的2倍;(2)女运动员跑了20圈.15.客车:30米/秒,货车:20米/秒16.80m/min,70m/min17.平路有150 km,坡路有120 km.18.小华家离学校700米.19.这种出租车的起步价是6元,超过3千米后,每千米的车费是1.5元.20.平路有443千米,坡路有53千米。
数学初中行程问题
初中数学中的行程问题通常涉及到两个物体在不同的速度下相对运动的情况。
以下是一些常见的行程问题类型和解决方法:
1.相遇问题:两个物体从不同的地点出发,相向而行,最终相遇。
通常需要求出相遇时间或两地之间的距离。
解决方法:利用速度和×相遇时间=距离这个公式来解决。
2.追及问题:一个物体在前,另一个物体在后,后者速度大于前者,
最终追上前者。
通常需要求出追及时间或开始时两者之间的距离。
解决方法:利用速度差×追及时间=距离这个公式来解决。
3.环形跑道问题:两个物体在环形跑道上运动,可能是同向或反向。
通常需要求出它们相遇或追及的时间。
解决方法:根据具体情况,利用相遇问题或追及问题的公式进行求解。
4.飞行问题:涉及到两个物体在不同的高度或速度下飞行,通常需
要求出它们相遇或相距的时间或距离。
解决方法:根据具体情况,利用速度、时间和距离之间的关系进行求解。
5.流水行船问题:涉及到船在水中顺流或逆流航行,通常需要求出
航行的时间或距离。
解决方法:利用顺流速度=船速+水流速度,逆流速度=船速-水流速度,以及路程=速度×时间的公式进行求解。
解决行程问题的关键是理解物体的运动情况,画出示意图,明确速度、时间和距离之间的关系,并选择合适的公式进行计算。
同时,要注意单位的一致性,确保计算的准确性。
人教版七年级下册数学二元一次方程应用题分类训练(行程问题)
人教版七年级下册数学8.3 二元一次方程应用题分类训练(行程问题)1.A、B两地相距36千米,甲从A地步行到B地,乙从B地步行到A地,两人同时相向出发,4小时后两人相遇,6小时后,甲剩余的路程是乙剩余路程的2倍,求二人的速度.(用方程解)2.小颖家到学校的距离为1200m,其中有一段为上坡路,另一段为下坡路,她去学校共用去16min,假设小颖在上坡路的平均速度为3km/h,下坡路的平均速度为5km/h,小颖家到学校的上坡路和下坡路各有多少米?3.甲、乙两人同时从A,B两地出发赶往目的地B,A,甲骑摩托车,乙骑自行车,沿同一条路线相向匀速行驶,出发后经2.5小时两人相遇.已知在相遇时甲比乙多行驶了75千米,相遇后经过1小时甲到达B地.(1)求甲、乙两人行驶的速度.(2)在整个行程中,问甲、乙行驶多少小时,两车相距35千米.4.小明家离学校2120米,其中有一段为上坡路,另一段为下坡路.他跑步去学校共用了16分钟,已知小明在上坡路上的平均速度是4.8千米/时,而他在下坡路上的平均速度是12千米/时,小明上坡、下坡各用了多长时间?5.小杰、小明两人同时绕400米的环形跑道行走,已知小杰比小明速度快,如果他们同时由同一点同向而行12分30秒首次相遇,如果他们同时从同一点起背向而行2分首次相遇,求小杰、小明两人每分钟各走多少米?6.为了测得隧道长度和火车通过隧道时的速度,小明和小亮在隧道两端进行观察:火车从开始入隧道到完全出隧道共用时24秒,整列火车完全在隧道内的时间为14秒,整列火车长300米.请你根据小明和小亮获得的数据,求出隧道的长度和火车过隧道的速度.7.甲.乙两地相距880千米,小轿车从甲地出发,2小时后,大客车从乙地出发相向而行,又经过4小时两车相遇.已知小轿车比大客车每小时多行20千米,问大客车每小时行多少千米?小轿车每小时行多少千米?8.某学校组织学生举行“远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时.原路返回时,以每小时6千米的速度下坡,又以每小时4千米的速度走平路,共用了3.5小时.问平路和坡路的路程各多少千来?9.一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?10.甲、乙两个同学从A地到B地,甲步行的速度为3千米/小时,乙步行的速度是5千米/小时,两人骑车的速度都是15千米/小时.现在甲先步行,乙先骑自行车,两人同时从A地出发,走了一段路程后,乙放下自行车步行,甲到乙放自行车的地方处改骑自行车.后面不断这样交替进行,两人恰好同时到达B地.那么,甲走全程的平均速度是多少?11.甲说:你先跑10米,我跑5秒钟就能追上你.乙说:那我先跑2秒钟呢?甲说:那我只用跑4秒钟就追上你了.根据以上对话回答问题:求甲、乙两人速度各是多少?(假设两人同地同向出发且速度不变)12.“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速减少m%,以便于有充分时间应对m%小时,求m的值.突发事件,这样,从重庆到上海的实际运行时间将增加10913.A、B两地相距20千米,甲从A地向B地匀速行进,同时乙从B地向A地匀速行进,两个小时后两人在途中相遇,相遇后甲立即以原速返回A地,乙继续以原速向A地行进,甲回到A地时乙离A地还有4千米,求甲、乙两人的速度.14.已知甲、乙两辆汽车同时....A出发行驶...向从同一地点..、同方(1)若甲车的速度是乙车的2倍,甲车走了90千米后立即返回与乙车相遇,相遇时乙车走了1小时.求甲、乙两车的速度;(2)假设甲、乙每辆车最多只能带200升汽油,每升汽油可以行驶10千米,途中不能再加油,但两车可以互相借用对方的油,若两车都必须沿原路返回到出发点A,请你设计一种方案使甲车尽可能地远离出发点A,并求出甲车一共行驶了多少千米?15.男女运动员各一名在环形跑道上练习长跑,男运动员比女运动员速度快,他们从同一起点沿相反方向同时出发,每隔25秒相遇一次.现在他们从同一起跑点沿相同方向同时出发,经过25分钟男运动员追上女运动员,并且比女运动员多跑20圈.求(1) 男运动员的速度是女运动员的多少倍?(2) 男运动员追上女运动员时,女运动员跑了多少圈?16.小丽沿公路匀速前进,每隔4分钟就遇到一辆迎面而来的公共汽车,而每隔6分钟就会有一辆公共汽车从背后超过她.假定汽车速度不变,而且同一方向行驶的公共汽车相邻两车的距离都是1200米,求小丽前进的速度和公共汽车的速度,公共汽车每隔几分钟发一班车.17.抗洪指挥部的一位驾驶员接到一个防洪的紧急任务,要在限定的时内把一批抗洪物质从物质局运到水库,这辆车如果按每小时30千米的速度行驶在限定的时间内赶到水库,还差3千米,他决定以每小时40千米的速度前进,结果比限定时间早到18分钟,问限定时间是几小时?物质局仓库离水库有多远?18.从小华家到姥姥家的路由一段上坡路和一段下坡路组成.星期天,小华骑自行车去姥姥家,如果保持上坡每小时行3km,下坡每小时行5km,他到姥姥家需要66分钟,从姥姥家回来时需要78分钟才能到家那么从小华家到姥姥家的上坡路和下坡路各有多少千米?19.近几年某地在全面推进“两型社会”建设方面成效显著,低碳环保.生态节能的生活方式已成为社会共识.杨先生要从某地到长沙,若乘飞机需要3h,乘汽车需要9h.这两种交通工具每小时排放的二氧化碳总量为70kg,已知飞机每小时二氧化碳的排放量比汽车多44kg.(1)求汽车.飞机每小时二氧化碳的排放量各是多少千克;(2)杨先生若乘汽车来长沙,那么他此行与乘飞机相比将减少二氧化碳排放量多少千克?20.甲乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇.相遇后,拖拉机继续前进,汽车在相遇处停留1个小时后调头按原速返回,汽车在返回后半个小时追上了拖拉机.(1)在这个问题中,1小时20分=小时;(2)相向而行时,汽车行驶小时的路程+拖拉机行驶小时的路程=160千米;同向而行时,汽车行驶小时的路程=拖拉机行驶小时的路程;(3)全程汽车、拖拉机各自行驶了多少千米?参考答案:1.甲的速度为4千米/时,乙的速度为5千米/时2.小颖家到学校的上坡路有200米,下坡路有1000米.3.(1)甲:50/km h ,乙:20/km h ;(2)2h 或3h4.小明上坡用了9分钟,下坡用了7分钟.5.小杰每分钟走116米,小明每分钟走84米6.隧道长1140米,火车过隧道的速度为60米/秒.7.76,968.12;39.(1)该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时;(2)甲、丙两地相距2254千米. 10.457千米/小时. 11.甲速度为6米/秒,乙速度为4米/秒.12.(1)1600千米;(2)62013.甲的速度为6千米/时,乙的速度为4千米/时.14.(1)120千米/时、60千米/时(2)3000米15.(1)男运动员速度是速度的2倍;(2)女运动员跑了20圈.16.小丽前进的速度是50米/分钟,公共汽车前进的速度是250米/分钟,公共汽车每隔4.8分钟发一班车.17.限定时间是1.5小时,物资局仓库离水库有48千米.18.从小华家到姥姥家有1.5km 上坡路,3km 下坡路.19.(1)汽车每小时二氧化碳的排放量是57千克,飞机每小时二氧化碳的排放量是13千克;(2)他此行与乘飞机相比将减少二氧化碳排放量54千克.20.(1)113;(2)113,113,12,112;(3)汽车行驶的路程为165千米,拖拉机行驶的路程为85千米.。
华师大版七年级数学下册第6章一元一次方程应用题专题训练(有解析)
华师大版七年级数学下册一元一次方程应用题专题训练一、行程问题策略:理清路程、速度、时间的关系,一般情况下,三个量中有一个量是已知的,把其中一个未知量设为未知数,利用路程=速度×时间等关系来表示另外一个未知量,依据另外一个未知量之间的关系建立方程。
例:汽车从A 地到B 地,若每小时行驶40km ,就要晚到半小时:若每小时行驶45km ,就可以早到半小时。
求A 、B 两地的距离。
分析:若规定t 点到达,以每小时行驶40km ,就要晚到半小时,即到达时间为t+0.5点,以每小时行驶45km ,就可以早到半小时,到达时间为t -0.5点;显然,前者要比后者行驶时间多(t+0.5)-(t -0.5)=0.5+0.5=1(小时)。
速度是已知的,把路程设为未知数,依据时间的关系建立方程。
解:设A 、B 两地的路程为x km/小时,根据题意,得11404522x x -=+360x =答:A 、B 两地的距离为360千米。
练习1、甲乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,则甲运动周,甲、乙第一次相遇;若甲的速度32是乙的速度4倍,则甲运动周,甲、乙第一次相遇,…,以此探43究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转 周,时针和分针第一次相遇.解:设分针旋转x 周后,时针和分针第一次相遇,则时针旋转了(x 1)周,根据题意可得:60x=720(x 1),解得:x=.1211故答案为:.12112、某队伍450米长,以每分钟90米速度前进,某人从排尾到排头取东西后,立即返回排尾,速度为3米/秒。
问往返共需多少时间?解:设追及的时间为x 秒,根据题意,得3x -1.5x=450解得:x=300设返回相遇的时间为y 秒,根据题意,得3y+1.5y=450 解得:y=100故往返共需的时间为 x+y=300+100=400(秒)答;往返共需400秒。
初中数学二元一次方程组的应用题型分类汇编——行程问题1(附答案)
初中数学二元一次方程组的应用题型分类汇编——行程问题1(附答案)1.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了min x ,下坡用了min y ,根据题意可列方程组( )A .35120016x y x y +=⎧⎨+=⎩B .35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩ C .35 1.216x y x y +=⎧⎨+=⎩D .351200606016x y x y ⎧+=⎪⎨⎪+=⎩ 2.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x 分钟,下坡用了y 分钟,根据题意可列方程组为( )A .3x 5y 1200x y 16+=⎧+=⎨⎩B .35x y 1.26060x y 16⎧+=⎪⎨⎪+=⎩C .3x 5y 1.2x y 16+=⎧+=⎨⎩D .35x y 12006060x y 16⎧+=⎪⎨⎪+=⎩ 3.甲、乙两人练习跑步.如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙.若设甲的速度为x 米/秒,乙的速度为y 米/秒,则下列方程组中正确的是( )A .5510,442x y x y y =+⎧⎨=+⎩B .5510,424x y x x y -=⎧⎨-=⎩C .5105,442x y x y +=⎧⎨-=⎩D .5510,424x y x y -=⎧⎨-=⎩4.小刚去距县城28千米的旅游点游玩,先乘车,后步行.全程共用了1小时,已知汽车速度为每小时36千米,步行的速度每小时4千米,则小刚乘车路程和步行路程分别是( )A .26千米,2千米B .27千米,1千米C .25千米,3千米D .24千米,4千米5.一辆汽车在公路上行驶,看到里程表上是一个两位数,1小时后其里程表还是一个两位数,且刚好它的十位数字与个位数字与第一次看到的两位数的十位数字与个位数字颠倒了位置,又过了1小时后看到里程表是一个三位数,它是第一次看到的两位数中间加一个0,则汽车的速度是( )千米/小时.A .35B .40C .45D .506.甲乙两人在一环形跑道上同时从A 点匀速跑步,已知甲的速度比乙的速度快,若两人同向出发,则两人在6分钟时第1次相遇;若两人背向出发,两人在3分钟时第1次相遇,则甲的速度是乙的速度的( )倍. A .2B .3C .4D .57.李明同学早上骑自行车上学,中途因道路施工需步行一段路,到学校共用时15分钟.他骑自行车的速度是250米/分钟,步行的速度是80米/分钟.他家离学校的距离是2900米.若他骑车和步行的时间分别为x 分钟和y 分钟,则列出的方程组是( )A .1{4250802900x y x y +=+= B .15{802502900x y x y +=+= C .15{250802900x y x y +=+=D .1{4802502900x y x y +=+= 8.甲、乙两人练习跑步,如果甲让乙先跑10米,那么甲跑5秒就能追上乙;如果甲让乙先跑2秒,那么甲跑4秒就能追上乙.若甲、乙每秒分别跑x y 、米,则列出方程组应是( )A .5105442x y x y +=⎧⎨-=⎩B .5510424x y x y =+⎧⎨-=⎩C .()551042x y x y y -=⎧⎨-=⎩D .()()51042x y x y ⎧-=⎪⎨-=⎪⎩9.甲.乙二人从同一地点出发,同向而行,甲骑车乙步行,若乙先行12千米,那么甲1小时追上乙;如果乙先走1小时,甲只用12小时追上乙,则乙的速度是( ) A .6千米/时B .12千米/时C .18千米/时D .36千米/时10.一艘船从甲码头到乙码头顺流行驶,用了2小时,从乙码头返回到甲码头逆流行驶,用了2.5小时.已知水流的速度是3千米/时,船在静水中的速度为千米/时,则可列方程为( ) A .B .C .D .11.一艘轮船顺流从重庆到上海需5天,而逆流从上海到重庆要7天,那么有一木排从重庆顺流漂到上海要________天.12.A 、B 、C 三地在同一直线上,甲、乙两车分别从A ,B 两地相向匀速行驶,甲车先出发2小时,甲车到达B地后立即调头,并将速度提高10%后与乙车同向行驶,乙车到达A地后,继续保持原速向远离B的方向行驶,经过一段时间后两车同时到达C地,设两车之间的距离为y(千米),甲行驶的时间x(小时).y与x的关系如图所示,则B、C两地相距_____千米.13.A、B两地相距20千米,甲乙两人分别从A、B两地相向而行,2小时后在途中相遇,然后甲立即返回A地,乙继续向A地走,当甲回到A地时,乙距离A地还有2千米,则甲的速度为____千米/时,乙的速度为_____千米/时.14.A、B两地相距80千米,一艘船从A地出发顺水航行4小时到达B地,而它从B 地出发逆水航行5小时才能到达A地.已知船顺水航行、逆水航行的速度分别为船在静水中的速度与水流速度的和与差,则船在静水中的速度是________,水流速度是________.15.某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x米/秒,乙的速度是y米/秒.则列出的方程组是_____.16.在一条笔直的公路上有A、B两地,甲、乙两车均从A地匀速驶向B地,甲车比乙车早出发2小时,出发后,甲车出现了故障停下来维修,半小时后继续以原速向B地行驶.当乙车到达B地后立刻提速50%返回,在返回途中第二次与甲车相遇.下图表示甲乙两车之间的距离y(千米)与甲车行驶的时间x(小时)之间的函数关系.则当乙车第二次与甲车相遇时,甲车距离B地_____千米.17.已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是___.18.小蒲家与学校之间是一条笔直的公路,小蒲从家步行前往学校的途中发现忘带作业本,便向路人借了手机打给妈妈,妈妈接到电话后,带上作业本马上赶往学校,同时小蒲沿原路返回,两人相遇后,小蒲立即赶往学校,妈妈沿原路返回家,小蒲到达学校刚好比妈妈到家晩了2分钟.若小蒲步行的速度始终不变,打电话和交接作业本的时间忽略不计,小蒲和妈妈之间的距离y米与小蒲打完电话后步行的时间x分钟之间的函数关系如图所示;则相遇后妈妈返回家的速度是每分钟_____米.19.一辆汽车要在规定的时间内从甲地赶往乙地,如果每小时行驶45千米,就要迟到0.5小时;如果每小时行驶50千米,就会早0.5小时.若设甲、乙两地间的距离为x千米,规定的时间为y小时,则可列方程组为________.20.已知铁路桥长500米,现有一列火车从桥上通过测得火车从开始上桥到完全离开桥共用30秒,而整列火车在桥上的时间为20秒,则火车的长度________.21.甲、乙两人同时绕400米的环形跑道行走,如果他们同时从同一起点背向而行,2.5分钟可以相遇;如果他们同时从同一点同向而行,12.5分钟甲能追上乙.求甲、乙每人每分钟各走多少米?22.一条船顺流航行,每小时行20千米;逆流航行,每小时行16千米.求船在静水中的速度与水流的速度.23.从甲地到乙地有一段下坡路与一段平路,如果保持下坡路每小时走5千米,平路每小时走4千米,上坡路每小时走3千米,那么从甲地到乙地需要36分钟,从乙地返回甲地需要48分钟.求甲地到乙地的全程是多少?24.某学校组织学生乘汽车去自然保护区野营,先以60km/h的速度走平路,后又以30km/h的速度爬坡,共用了6.5h;原路返回时,汽车以40km/h的速度下坡,又以50km/h 的速度走平路,共用了6 h.问平路和坡路各有多远?25.小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?26.小明从家里到学校先是走一段平路然后走一段下坡路,假设他始终保持平路每分钟走80m,下坡路每分钟走90m,上坡路每分钟走60m,则他从家里到学校需20min,从学校到家里需25min.问:从小明家到学校有多远?27.“滴滴出行”改变了传统打车方式,最大化节省了司机与乘客双方的资源与时间.该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算.甲、乙两乘客用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与平均车速等信息如下表:平均速度(公里/时)里程数(公里)车费(元)甲乘客60812乙乘客501016(1)求x,y的值;(2)如果你采用“滴滴出行”的打车方式,保持平均车速45公里/时,行驶了9公里,那么你是否能够计算出打车的总费用?如果能,总费用为多少元?如果不能,请说明理由.28.小李骑电动自行车,预计用相同的时间往返于甲、乙两地,去时电动自行车的车速是18km/h,结果早到20min;返回时,以每小时15km的速度行进,结果晚到4min.求甲、乙两地间的距离和预计时间.29.“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速要比设计时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加110m 小时,求m 的值.30.从A 地到B 地全程290千米,前一路段为国道,其余路段为高速公路.已知汽车在国道上行驶的速度为60/km h ,在高速公路上行驶的速度为100/km h ,一辆客车从A 地开往B 地一共行驶了3.5h .求A 、B 两地间国道和高速公路各多少千米.(列方程组,解应用题)参考答案1.B 【解析】 【分析】根据路程=时间乘以速度得到方程35 1.26060x y +=,再根据总时间是16分钟即可列出方程组. 【详解】∵她去学校共用了16分钟, ∴x+y=16,∵小颖家离学校1200米, ∴351.26060x y +=, ∴35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩, 故选:B. 【点睛】此题考查二元一次方程组的实际应用,正确理解题意列出方程组,注意时间单位,这是解题中容易出现错误的地方. 2.B 【解析】 【分析】两个等量关系为:上坡用的时间+下坡用的时间=16;上坡用的时间×上坡的速度+下坡用的时间×下坡速度=1200,把相关数值代入即可求解. 【详解】小颖上坡用了x 分钟,下坡用了y 分钟,根据题意得35x y 1.26060x y 16⎧+=⎪⎨⎪+=⎩, 故选B . 【点睛】本题考查了二元一次方程组的应用,弄清题意,找准合适的等量关系列出方程组是解题的关键. 3.A 【解析】 【分析】根据甲跑的路程等于相同时间乙跑的路程加上乙先跑的路程即可解答. 【详解】设甲的速度为x 米/秒,乙的速度为y 米/秒,根据题意得:5510442x y x y y =+⎧⎨=+⎩故选:A 【点睛】此题主要考查了由实际问题抽象出二元一次方程组,此题是追及问题,注意:无论是哪一个等量关系中,总是甲跑的路程=乙跑的路程. 4.B 【解析】 【详解】试题分析:利用方程的思想进行求解,设乘车的路程为x 千米,则步行的路程为(28-x)千米,根据时间=路程÷时间求出乘车的时间和步行的时间,根据两个时间之和为1小时列出方程进行求解.设乘车的路程为x 千米,则步行的路程为(28-x)千米,281364x y x y +=⎧⎪⎨+=⎪⎩ 解得:x=27,y=1 故选:B 5.C 【解析】 【分析】设第一次他看到的两位数的个位数为x ,十位数为y ,汽车行驶速度为v ,第一次看到的两位数为10y+x ,行驶一小时后看到的两位数为10x+y ,第三次看到的三位数为100y+x ,由汽车均速行驶可得三段时间的路程相等,即可列出两个方程求解即可.由速度=总里程时间,求得答案. 【详解】设第一次他看到的两位数的个位数为x ,十位数为y ,汽车行驶速度为v ,根据题意得:()()10101100101x y y x v y x x y v ⎧+-+=⨯⎪⎨+-+=⨯⎪⎩, 解得:6x y =, ∵xy 为1-9内的自然数, ∴61x y =⎧⎨=⎩;即两位数为16.即:第一次看到的两位数是16. 第二次看到的两位数是61. 第三次看到的两位数是106. 则汽车的速度是:10616452-=(千米/小时). 故选:C. 【点睛】本题考查了二元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组.本题涉及一个常识问题:两位数=10×十位数字+个位数字,并且在求两位数或三位数时,一般是不能直接设这个两位数或三位数的,而是设它各个数位上的数字为未知数. 6.B 【解析】 【分析】设乙的速度为x 米/分钟,甲的速度为y 米/分钟,根据同向出发相遇和背向出发相遇列出方程组求解即可. 【详解】设乙的速度为x 米/分钟,甲的速度为y 米/分钟,根据题意得:1613y x y x⎧=⎪-⎪⎨⎪=⎪+⎩ 解方程得:3yx=,即甲的速度是乙的速度的3倍. 故选:B 【点睛】本题考查了列二元一次方程组解环形问题的运用,二元一次方程组的解法的运用,解答时运用环形问题的数量关系建立方程是关键. 7.C 【解析】 【分析】根据关键语句“到学校共用时15分钟”可得方程:x+y=15,根据“骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米”可得方程:250x+80y=2900,两个方程组合可得方程组. 【详解】设骑车和步行的时间分别为x 分钟,y 分钟,由题意得:15{250802900x y x y +=+=, 故选C. 【点睛】本题考查了二元一次方程组的应用,根据题意找到等量关系式是解题的关键. 8.C 【解析】 【分析】等量关系:(1)乙先跑10米,甲跑5秒就追上乙;(2)如果让乙先跑2秒,那么甲跑4秒就追上乙,可以列出方程组. 【详解】设甲、乙每秒分别跑x 米,y 米,由题意知:()551042x y x y y -=⎧⎨-=⎩. 故选:C. 【点睛】此题考查由实际问题抽象出二元一次方程组,解题关键在于理解题意列出方程., 9.A 【解析】 【分析】这里给了两个信息,我们可以设两个未知数,列两个等式,给出二元一次方程组,只需求解二元一次方程组即可. 【详解】解:设甲的速度为每小时x 千米,乙的速度为每小时y 千米121122x y x y y -=⎧⎪⎨-=⎪⎩ ,解得186x y =⎧⎨=⎩, 故选A 【点睛】本题考查了二元一次方程组的应用,学会利用题目给的信息列等量关系式是关键. 10.B 【解析】 【分析】顺水行船的路程=逆水行船的路程,再根据流水行船问题的公式求出顺水路程以及逆水路程,即可得到答案. 【详解】∵顺水路程=顺水速度×顺水时间=2(x+3) 逆水路程=逆水速度×逆水时间=2.5(x-3) 又顺水路程=逆水路程∴2.5(x-3)=2(x+3),因此答案选择B. 【点睛】本题主要考查的是一元一次方程的应用,需要熟悉流水行船问题的公式.11.35 【解析】 【分析】设重庆到上海的路程为单位“1”,根据1V V V 5=+=顺流船水以及1=7V V V =-逆流船水 ,即可求出水流的速度,从而求出木排从重庆顺流漂到上海的天数. 【详解】解:设船的速度为V 船,顺流的速度为V 顺流,逆流速度为V 逆流,水流速度为V 水,则1=51=7V V V V V V ⎧=+⎪⎪⎨⎪=-⎪⎩顺流船水逆流船水①②, 由①-②得:1122=5735V -=水 ∴1=35V 水, ∴有一木排从重庆顺流漂到上海要35天 故答案为:35 【点睛】本题考查了方程组的实际应用,当一些必须的量没有时,应设为未知数,在计算过程中消除即可. 12.1320. 【解析】 【分析】根据题意和函数图象中的数据,可以求得甲乙两车的速度,再根据“路程=速度×时间”,即可解答本题. 【详解】解:设甲车的速度为a 千米/小时,乙车的速度为b 千米/小时,(62)()560(62)(96)a b b a -⨯+=⎧⎨-=-⎩,解得8060a b =⎧⎨=⎩,∴A 、B 两地的距离为:80×9=720千米, 设乙车从B 地到C 地用的时间为x 小时, 60x =80(1+10%)(x+2﹣9), 解得,x =22,则B 、C 两地相距:60×22=1320(千米) 故答案为:1320. 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答. 13.5.5 4.5 【解析】 【分析】设甲的速度为x km/h ,乙的速度为y km/h ,根据行程问题的数量关系建立方程解出方程即可. 【详解】解:设甲的速度为x km/h ,乙的速度为y km/h ,由题意得:2()20222x y x y +=⎧⎨-=⎩ ,解得: 5.54.5x y =⎧⎨=⎩ 故甲的速度为5.5千米/时,乙的速度为4.5千米/时. 【点睛】本题考查了列二元一次方程组解决实际问题的运用,二元一次方程组的解法的运用,相遇问题和追及问题的数量关系,解答时由行程问题的数量关系建立方程组是关键. 14.18千米/时 2千米/时 【解析】 【分析】设船在静水中的速度为x 千米/时,水流速度为y 千米/时,根据题意列出二元一次方程组即可求解. 【详解】设船在静水中的速度为x 千米/时,水流速度为y 千米/时. 根据题意,得4()805()80x y x y +=⎧⎨-=⎩,解得182x y =⎧⎨=⎩.即船在静水中的速度为18千米/时,水流速度为2千米/时.【点睛】此题主要考查二元一次方程组的应用,解题的关键根据题意找到等量关系列方程求解.15.30()400 80()400x yy x+=⎧⎨-=⎩【解析】【分析】此题中的等量关系有反向而行,则两人30秒共走400米;②同向而行,则80秒乙比甲多跑400米【详解】解:①根据反向而行,得方程为30(x+y)=400;②根据同向而行,得方程为80(y﹣x)=400.那么列方程组30()400 80()400x yy x+=⎧⎨-=⎩.【点睛】此题考查由实际问题抽象出二元一次方程组,解题关键在于列出方程组16.90【解析】【分析】设甲的速度a千米/时,乙的速度b千米/时,由图象可列方程组,求出甲,乙速度,即可求解.【详解】解:设甲的速度a千米/时,乙的速度b千米/时,由图象可知,甲,乙第一次相遇是甲出发3.5小时时,乙到达B地是甲出发6.5小时时,∴3 1.5 6120 4.5a ba b=⎧⎨+=⎩,解得:4080 ab=⎧⎨=⎩,∴甲的速度40千米/时,乙的速度80千米/时,∴A、B两地距离=80×4.5=360千米,∴从B地返回到相遇时间=12034080(150%)4=+⨯+小时,∴当乙车第二次与甲车相遇时,甲车距离B地=120﹣40×34=90千米,故答案为:90.【点睛】本题考查了一次函数的应用,以及二元一次方程组,理解图象,正确进行求解是本题的关键.17.1,0≤x≤1或43≤x≤2.【解析】【分析】(1)由图象直接可得答案;(2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答【详解】(1)由函数图象可知,乙比甲晚出发1小时.故答案为1.(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:一是甲出发,乙还未出发时:此时0≤x≤1;二是乙追上甲后,直至乙到达终点时:设甲的函数解析式为:y=kx,由图象可知,(4,20)在函数图象上,代入得:20=4k,∴k=5,∴甲的函数解析式为:y=5x①设乙的函数解析式为:y=k′x+b,将坐标(1,0),(2,20)代入得:202k bk b=+⎧⎨=+⎩,解得2020kb=⎧⎨=-⎩,∴乙的函数解析式为:y=20x﹣20 ②由①②得52020y xy x=⎧⎨=-⎩,∴43203xy⎧=⎪⎪⎨⎪=⎪⎩,故43≤x≤2符合题意.故答案为0≤x≤1或43≤x≤2.【点睛】此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据18.50.【解析】【分析】由图像得出相向而行和背向而行行走的路程和时间,然后列出方程组,即可求解.【详解】解:设相遇后妈妈返回家的速度是每分钟x米,小蒲的速度为每分钟y米,由题意得:16+10y=2000 16+18y=2960xx⎧⎨⎩解得:x=50 y=120⎧⎨⎩∴相遇后妈妈返回家的速度是每分钟50米.【点睛】本题考查了函数图象的识别,二元一次方程组的应用,列出方程组解题的关键.19.0.5450.550x yx y⎧+=⎪⎪⎨⎪-=⎪⎩【解析】【分析】设规定时间是y小时,甲、乙两地相距x千米,根据45×(规定时间+0.5)=两地距离;50×(规定时间-0.5)=两地距离,列出方程组即可.【详解】设甲、乙两地间的距离为x千米,规定的时间为y小时,由题意得0.5450.550x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩. 故答案为:0.5450.550x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩.【点睛】此题考查了二元一次方程组的运用,解答此题的关键是读懂题意,找出之间的等量关系,列出方程组. 20.100米. 【解析】 【分析】设火车长为x,火车速度为y ,根据题意得方程:500+x=30y 和500-x=20y ,根据等式性质求解. 【详解】解: 设火车长为x,火车速度为y根据题意得方程: 500+x=30y 和500-x=20y 解得 x=100,y=20所以火车的速度是20米/秒,火车的长度是100米. 故答案为:100米. 【点睛】考核知识点:列方程解应用题.理解题意列出方程,根据等式性质求解是关键. 21.甲每分钟走96米,乙每分钟走64米. 【解析】 【分析】设甲每分钟x 米,乙每分钟y 米 ,根据题目中相遇问题和追及问题的等量关系可得: ,解方程组即可. 【详解】设甲每分钟x 米,乙每分钟y 米 ,根据题意可得:2.540012.5400x y x y +=⎧⎨-=⎩()(), 解得:9664x y =⎧⎨=⎩.答:甲每分钟走96米,乙每分钟走64米. 【点睛】本题主要考查列二元一次方程组解决行程问题,解决本题的关键是要熟练掌握行程问题中追及和相遇问题的等量关系. 22.18/km h ,2/km h 【解析】 【分析】直接根据题意结合静水速度+水速度=顺水速度,静水速度-水速度=逆水速度,进而列出方程组,求出答案. 【详解】解:设船在静水中的速度为/xkm h ,水流的速度为/ykm h .根据题意可得:2016x y x y +=⎧⎨-=⎩, 解得:182x y =⎧⎨=⎩答:船在静水中的速度为18/km h ,水流的速度为2/km h . 【点睛】此题主要考查了二元一次方程组在路程问题中的应用,根据题意正确得出等量关系是解题关键.23.甲地到乙地的全程是2.7千米. 【解析】 【分析】设从甲地到乙地的下坡路为xkm ,平路为ykm ,根据保持下坡每小时走5km ,平路每小时走4km ,上坡每小时走3km ,然后根据从甲地到乙地用36分钟,从乙地返回甲地用48分钟列出方程组进行求解即可.设从甲地到乙地的下坡路为xkm ,平路为ykm ,由题意得:365460483460x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得: 1.51.2x y =⎧⎨=⎩,所以:x+y=2.7千米答:甲地到乙地的全程是2.7千米. 【点睛】本题考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组. 24.平路有150 km ,坡路有120 km . 【解析】 【分析】设平路有x km ,坡路有y km ,根据题意列出方程组求解即可. 【详解】解:设平路有x km ,坡路有y km ,根据题意,得x y+=6.56030{x y +=65040, 解得x=150{y=120. 答:平路有150 km ,坡路有120 km . 【点睛】本题考查了二元一次方程组的应用(行程问题).方程(组)的应用解题关键是找出等量关系,列出方程求解. 25.小华家离学校700米. 【解析】设出平路和坡路的路程,由题意从家里到学校需10分钟,从学校到家里需15分钟,列方程即可得出答案. 【详解】设平路有x 米,坡路有y 米,根据题意列方程得,106080{156040x y x y +=+=, 解这个方程组,得300{400x y ==,所以x +y =700.所以小华家离学校700米. 【点睛】本题考查二元一次方程的应用,此题主要利用时间、速度、路程三者之间的关系进行解答,注意来回坡路的变化是解题的关键. 26.1700m 【解析】 【分析】设出平路和坡路的路程,从家里到学校走平路和下坡路一共用10分钟,从学校到家里走上坡路和平路一共用15分钟,利用这两个关系式列出方程组解答即可. 【详解】解:设平路有x 米,坡路有y 米,根据题意列方程得,208090258060x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 解得:800900x y =⎧⎨=⎩总路程:8009001700m += 答:小明家到学校有1700m .【点睛】此题考查二元一次方程组的应用,主要利用时间、速度、路程三者之间的关系解答,解答时注意来回坡路的变化,由此找出关系式,列方程组解决问题.27.(1)112xy=⎧⎪⎨=⎪⎩;(2)能,总费用是15元.【解析】【分析】(1)由表中数据可列出二元一次方程组,求解即可得到x,y的值;(2)设平均车速为a公里/时,行驶时间为b分钟,车费为w元,则w=a+12b,将a=45,b=945代入,即可得总费用.【详解】解:(1)由题意得886012601010601650x yx y⎧+⨯=⎪⎪⎨⎪+⨯=⎪⎩.解得112 xy=⎧⎪⎨=⎪⎩(2)能.设平均车速为a公里/时,行驶时间为b分钟,车费为w元,则w=a+12 b,将a=45,b=945代入,可得总费用w=91916015452⨯+⨯⨯=(元)答:总费用是15元.【点睛】本题考查二元一次方程组和一次函数的应用,灵活运用一次函数解决问题是解题的关键.28.36km,7 3 h【解析】【分析】设预计时间为t h,甲、乙两地间的距离为s km,根据时间=路程÷速度,即用去时的时间加上早到的20min (即13h )等于t ,返回的时间减去晚到的4min (115h )等于t ,即可列方程组解答.【详解】 解:设预计的时间为t h ,甲、乙两地间的距离为s km , 据题意得118311515s t s t ⎧+=⎪⎪⎨⎪-=⎪⎩,解得7336t s ⎧=⎪⎨⎪=⎩.答:甲、乙两地间的距离为36km ,预计时间为73h . 【点睛】本题考查二元一次方程组的实际应用,解答此题的关键是明白去时所用的时间加上早到的时间与返回时所用的时间减去迟到的时间相等;二是时间的单位换算.29.(1)1600;(2)20.【解析】【分析】(1)利用“从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时”,分别得出等式组成方程组求出即可;(2)根据题意得出:1(80120)(1%)(8)160010m m +-+=进而求出即可. 【详解】 试题解析:(1)设原时速为xkm/h ,通车后里程为ykm ,则有:8(120){(816)320x y x y+=+=+, 解得:80{1600x y ==,答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米;(2)由题意可得出:1(80120)(1%)(8)160010m m +-+=, 解得:120=m ,20m =(不合题意舍去),答:m 的值为20.考点:1.一元二次方程的应用;二元一次方程组的应用.30.A、B两地国道为90千米,高速公路为200千米.【解析】【分析】首先设A、B两地间国道和高速公路分别是x、y千米,根据题意可得等量关系:国道路程+高速路程=290,在国道上行驶的时间+在高速公路上行驶的时间=3.5,根据等量关系列出方程组,再解即可.【详解】解:设A、B两地国道为x千米,高速公路为y千米.则方程组为:2903.5 60100x yx y+=⎧⎪⎨+=⎪⎩,解得:90200 xy=⎧⎨=⎩,答:A、B两地间国道和高速公路分别是90、200千米.【点睛】此题考查了二元一次方程组的应用,关键是设出未知数,表示出每段行驶所花费的时间,得出方程组,难度一般.。
初一数学一元一次方程行程问题专题训练
(2)从两车出发直至慢车达到甲地的过程中,经过几小时两车相距150千米.
12.甲乙两地相距900千米,一列快车从甲地出发匀速开往乙地,速度为120千米/时;快车开出30分钟时,一列慢车从乙地出发匀速开往甲地,速度为90千米/时.设慢车行驶的时间为x小时,快车到达乙地后停止行驶,根据题意解答下列问题:
(1)这列队伍一共有多少名战士?
(2)这列队伍要过一座320米的大桥,为安全起见,相邻两个战士保持相同的一定间距,行军速度为5米/秒,从第一位战士刚上桥到全体通过大桥用了100秒时间,请问相邻两个战士间距离为多少米(不考虑战士身材的大小)?
6.列方程解应用题
甲、乙两人同时从相距25千米的A地去B地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40分钟,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?
(1)这艘轮船在静水中的平均速度;(2)AB两地之间的距离.
10.A、B两城市间有一条300千米的高速公路,现有一长途客车从A城市同时B城市开往A城市平均速度是115千米/时,问两车相遇时离A城市有多远?
11.甲、乙两地相距450千米,一辆快车和一辆慢车上午7点分别从甲、乙两地以不变的速度同时出发开往乙地和甲地,快车到达乙地后休息一个小时按原速返回,快车返回甲地时已是下午5点,慢车在快车前一个小时到达甲地.试根据以上信息解答以下问题:
13.我市某初中每天早上总是在规定时间打开学校大门,七年级同学小明每天早上同一时间从家到学校,周一早上他骑自行车以每小时12千米的速度到校,结果在校门口等了6分钟才开门,周二早上他步行以每小时6千米的速度到校,结果校门已开了12分钟,请解决以下问题:
七年级数学应用题3(行程问题)
甲、乙两车同时从A地出发,沿 同一条公路前往B地。A、B两地 相距100km。甲车的速度为 40km/h,乙车的速度为 30km/h。甲车到达B地后立即 返回,途中与乙车相遇。求两 车相遇时距离A地多远?
甲、乙两车从A地出发,前往B 地,然后返回。A、B相距 100km,甲车速度40km/h,乙 车速度30km/h。
特点
速度保持不变,加速度为零,路 程与时间成正比。
匀速直线运动的基本公式
01
02
03
路程公式
$s = vt$,其中$s$表示 路程,$v$表示速度,$t$ 表示时间。
速度公式
$v = frac{s}{t}$,其中 $v$表示速度,$s$表示路 程,$t$表示时间。
加速度公式
$a = 0$,因为匀速直线 运动的速度保持不变。
04 匀减速直线运动问题
匀减速直线运动的定义和特点
定义
匀减速直线运动是指物体在直线运动过程中,速度随时间均匀减小的运动。
特点
加速度恒定,方向与速度方向相反,速度随时间均匀减小。
匀减速直线运动的基本公式
速度公式
$v = v_{0} - at$,其中$v_{0}$是初速度,$a$是加速度,$t$是 时间。
七年级数学应用题3(行程问题)
目录
• 行程问题概述 • 匀速直线运动问题 • 匀加速直线运动问题 • 匀减速直线运动问题 • 追及与相遇问题
01 行程问题概述
行程问题的定义
行程问题是一种常见的数学应用 题,主要研究物体或人在运动过 程中所经历的距离、速度和时间
之间的关系。
它涉及到实际生活中的各种运动 场景,如走路、跑步、骑车、开
03 匀加速直线运动问题
匀加速直线运动的定义和特点
初一下册数学变量行程问题
初一下册数学变量行程问题
初一下册的数学中,变量和行程问题是一个重要的主题。
变量在数学中是一个可以取不同值的量,而行程问题通常涉及到速度、时间和距离之间的关系。
在解决行程问题时,我们通常使用以下公式:
1. 距离 = 速度× 时间
2. 速度 = 距离÷ 时间
3. 时间 = 距离÷ 速度
这些公式是解决行程问题的关键。
例如,假设有一个人从A地到B地,他以恒定的速度行走。
我们知道他走
了10分钟,然后走了20分钟,现在我们需要知道他总共走了多远。
首先,我们可以计算他前10分钟走了多远:
距离1 = 速度× 10分钟
然后,我们可以计算他接下来的20分钟走了多远:
距离2 = 速度× 20分钟
最后,我们可以把这两个距离加起来得到总距离:
总距离 = 距离1 + 距离2
在这个问题中,速度是一个变量,因为不同的人以不同的速度行走。
时间也是一个变量,因为每个人走的时间都不同。
而距离则是由速度和时间决定的。
因此,解决这类问题的关键是理解速度、时间和距离之间的关系,并能够将这些关系应用到实际问题中。
七年级数学行程问题
1、同时出发(两段)
2、不同时出发 (三段 ) 二、相遇问题的等量关系
s甲s乙s总
s先s甲s乙s总
2021/5/27
6
一、追及问题的基本题型
1、不同地点同时出发 2、同地点不同时出发 二、追及问题的等量关系
1、追及时快者行驶的路程-慢者行驶的路程=相距的 路程
2、追及时快者行驶的路程=慢者行驶的路程或 慢者所用时间=快者所用时间+多用时间
解:设小王追上连队需要x小时,则小王行驶的路程为 14x千米,连队所行路程是 (6 18 6x) 千米 60 等量关系:小王所行路程=连队所行路程
依题意得:14x 618 6x
9 60
x
9小 时 13.5分 4钟 0 <15分 钟
40
20答21/5:/27 小王能在指定时间内完成任务。
10
2.小明每天早上要在7:20之前赶到 距家1000米的学校上学,一天,小 明以80米/分的速度出发,5分后,小 明的爸爸发现他忘了带语文书,于 是,爸爸立即以180米/分的速度去 追小明,并且在途中追上了他。
开往甲地少1.5小时。已知船在静水的速度为18千米/小时, 水流速度为2千米/小时,求甲、乙两地之间的距离?
分析:本题是行程问题,但涉及水流速度,必须要
掌握:顺水速度=船速+水速 逆水速度=船速-水速
解:(直接设元)
设甲、乙两地的距离为x 千米 等量关系:逆水所用时间-顺水所用时间=1.5 依题意得: x x 1.5
驶往乙地,结果同时到达终点。已知轮船的速度是每小时 24千米,汽车的速度是每小时40千米,求甲、乙两地水路、 公路的长,以及汽车和轮船行驶的时间?
解:设水路长为x千米,则公路长为(x+40)千米
初一下数学行程问题测试
行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题(相向而行):路程=甲速度*甲行驶时间+乙速度*乙行驶时间(2)追及问题(同向而行):路程=甲速度*甲行驶时间-乙速度*乙行驶时间 (快-慢) 一般情况都是A地到B地,这之间的距离不变来列方程。
(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系总结:对分段路程:①总路程=各段路程之和②总时间=各段路程时间之和对相遇问题:③总路程=速度和*相遇的时间对追及问题:④路程差=速度差*追及时间1、甲乙两地相距20千米,A从甲地向乙地方向前进,同时B从乙地向甲地方向前进两小时后二人在途中相遇,相遇后A就返回甲地,B仍向甲地前进,A回到甲地时,B离甲地还有2千米,求A、B二人的速度.2、小明从学校出发骑自行车去县城,中途因道路施工步行一段路,1.5小时后到达县城。
他骑车的平均速度是15千米每小时,步行的平均速度是5千米每小时,路程全长20千米,他骑车与步行各用多少时间?3、已知A、B两码头之间的距离为240km,一艘船航行于A、B码头之间,顺流航行需要4小时;逆流航行需要6小时。
求轮船在静水中的速度和水流的速度?4、某站有甲、乙两辆汽车,若甲车先出发1h后乙车出发,则乙车出发后5h追上甲车;若甲车先开出30km后乙车出发,则乙车出发4h后乙车所走的路程比甲车所走的路程多10km。
求两车的速度。
5、一列快车长230米,一列慢车长220米,若两车同向而行,快车从追上慢车时开始到离开慢车,需要90秒;若两车相向而行,快车从与慢车相遇到离开慢车,只需18秒,问快车与慢车的速度各是多少?6、甲、乙两人在周长为400m的环形跑道上连跑,如果相向出发,每隔2.5min相遇一次;如果同向出发,每隔10min相遇一次,假定两人速度不变,且甲快乙慢,求甲乙两人的速度。
七年级数学行程问题1
七年级数学行程问题行程问题综述:在行车、走路等类似运动时,已知其中的两种量,按照速度、路程和时间三者之间的相互关系,求第三种量的问题,叫做“行程问题”。
行程问题涉及到物体匀速运动,变化较多,有关一个物体的运动,有关两个物体的运动,有关三个物体的运动。
关于两个物体运动的,可分运动方向相向(面对面)、运动方向相反(反向)、运动方向相同(同向)三种情况。
不管是“一个物体的运动”还是“多个物体的运动”,不管运动方向如何,它们反映出来的数量关系是相同的,可归纳为:速度×时间=路程。
分析这类问题,要弄清物体运动的具体情况。
如运动的方向(相向,相背,同向),出发的时间(同时,不同时),出发的地点(同地,不同地),运动的路线(封闭,不封闭),运动的结果(相遇、相距多少、交错而过、追及)。
两个物体运动时,运动的方向及运动的速度有着很大关系,当两个物体运动方向相向或者相反时,此时物体的运动速度都是两个物体运动速度的和,当两个物体运动方向相同时,此时两个物体的追击的速度就变为了两个物体运动速度的差当物体运动有外作用力(风,水等)时,速度也会发生变化。
当飞机在飞行时顺风飞行和逆风飞行,船在河中顺水行驶和逆水行驶。
那么飞机在顺风飞行时速度就应该等于飞机本身的速度加上风的速度,飞机在逆风飞行时的速度就应该等于飞机本身的速度减去风的速度;我们再比较一下飞机顺风的速度和逆风的速度会发现,顺风速度及逆风速度之间相差着两个风的速度;同样,行船问题,顺水行驶和逆水行驶的两个速度之间也相差着两个“水流的速度”。
相遇问题:两个运动物体作相向运动,或在环形道口作背向运动,随着时间的延续、发展,必然面对面地相遇,即相遇问题。
相遇问题的模型为:甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么:AB两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间基本公式:两地距离=速度和×相遇时间相遇时间=两地距离÷速度和速度和=两地距离÷相遇时间二次相遇问题的模型为:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。
七年级行程问题例题
第十讲:行程问题分类例析主讲:何老师行程问题有相遇问题,追及问题,顺流、逆流问题,上坡、下坡问题等.在运动形式上分直线运动及曲线运用如环形跑道. 相遇问题是相向而行.相遇距离为两运动物体的距离和.追及问题是同向而行,分慢的在快的前面或慢的先行若干时间,快的再追及,追及距离慢快S S S +=.顺逆流、顺风逆风、上下坡应注意运动方向,去时顺流,回时则为逆流. 一、相遇问题例1:两地间的路程为360km,甲车从A 地出发开往B 地,每小时行72km ;甲车出发25分钟后,乙车从B 地出发开往A 地,每小时行使48km,两车相遇后,各自按原来速度继续行使,那么相遇以后,两车相距100km 时,甲车从出发开始共行驶了多少小时分析:利用相遇问题的关系式相遇距离为两运动物体的距离和建立方程. 解答:设甲车共行使了xh,则乙车行使了h x )(6025-.如图1依题意,有72x+48)(6025-x =360+100, 解得x=4.因此,甲车共行使了4h. 说明:本题两车相向而行,相遇后继续行使100km,仍属相遇问题中的距离,望读者仔细体会. 例2:一架战斗机的贮油量最多够它在空中飞行,飞机出航时顺风飞行,在静风中的速度是575km/h,风速25 km/h,这架飞机最多能飞出多少千米就应返回 分析:列方程求解行程问题中的顺风逆风问题. 顺风中的速度=静风中速度+风速 逆风中的速度=静风中速度-风速解答:解法一:设这架飞机最远飞出xkm 就应返回. 依题意,有642557525575.=-++xx解得:x=1320.答:这架飞机最远飞出1320km 就应返回. 解法二: 设飞机顺风飞行时间为th. 依题意,有575+25t=575-25, 解得:t=.575+25t=600×=1320.答:这架飞机最远飞出1320km 就应返回. 说明:飞机顺风与逆风的平均速度是575km/h,则有645752.=x,解得x=.错误原因在于飞机平图1均速度不是575km/h,而是)/(h km v v v v v x v x x 574550600550600222≈+⨯⨯=+⋅=+逆顺逆顺逆顺例3:甲、乙两人在一环城公路上骑自行车,环形公路长为42km,甲、乙两人的速度分别为21 km/h 、14 km/h.(1) 如果两人从公路的同一地点同时反向出发,那么经几小时后,两人首次相遇(2) 如果两人从公路的同一地点同时同向出发,那么出发后经几小时两人第二次相遇 分析:这是环形跑道的行程问题. 解答:1设经过xh 两人首次相遇. 依题意,得21+14x=42, 解得:x=.因此,经过小时两人首次相遇. (3) 设经过xh 两人第二次相遇. 依题意,得21x-14x=42×2, 解得:x=12.因此,经过12h 两人第二次相遇.说明:在封闭的环形跑道上同向运动属追及问题,反向运动属相遇问题.从同一地点出发,相遇时,追及路程或相隔路程就是环形道的周长,第二次相遇,追及路程为两圈的周长.有趣的行程问题探究新知例1、甲、乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇分析与解: 出发时甲、乙二人相距30千米,以后两人的距离每小时都缩短6+4=10千米,即两人的速度的和简称速度和,所以30千米里有几个10千米就是几小时相遇.30÷6+4 =30÷10 =3小时答:3小时后两人相遇.本题是一个典型的相遇问题.在相遇问题中有这样一个基本数量关系:路程=速度和×时间.例2、如右下图有一条长方形跑道,甲从A 点出发,乙从C 点同时出发,都按顺时针方向奔跑,甲每秒跑5米,乙每秒跑4.5米;当甲第一次追上乙时,甲跑了多少圈第二届希望杯试题分析与解:这是一道环形路上追及问题;在追及问题问题中有一个基本关系式:追击路程=速度差×追及时间;追及路程:10+6=16米速度差:5-=米追击时间:16÷=32秒甲跑了5×32÷10+6×2=5圈答:甲跑了5圈;例3、一列货车早晨6时从甲地开往乙地,平均每小时行45千米,一列客车从乙地开往甲地,平均每小时比货车快15千米,已知客车比货车迟发2小时,中午12时两车同时经过途中某站,然后仍继续前进,问:当客车到达甲地时,货车离乙地还有多少千米分析与解:货车每小时行45千米,客车每小时比货车快15千米,所以,客车速度为每小时45+15千米;中午12点两车相遇时,货车已行了12—6小时,而客车已行12—6-2小时,这样就可求出甲、乙两地之间的路程.最后,再来求当客车行完全程到达甲地时,货车离乙地的距离.解:①甲、乙两地之间的距离是:45×12—6+45+15×12—6—2=45×6+60×4=510千米.②客车行完全程所需的时间是:510÷45+15=510÷60=小时.③客车到甲地时,货车离乙地的距离:510—45×+2=510-=千米.答:客车到甲地时,货车离乙地还有37.5千米.例4、两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米.两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长分析与解:首先应统一单位:甲车的速度是每秒钟36000÷3600=10米,乙车的速度是每秒钟54000÷3600=15米.本题中,甲车的运动实际上可以看作是甲车乘客以每秒钟10米的速度在运动,乙车的运动则可以看作是乙车车头的运动,因此,我们只需研究下面这样一个运动过程即可:从乙车车头经过甲车乘客的车窗这一时刻起,乙车车头和甲车乘客开始作反向运动14秒,每一秒钟,乙车车头与甲车乘客之间的距离都增大10+15米,因此,14秒结束时,车头与乘客之间的距离为10+15×14=350米.又因为甲车乘客最后看到的是乙车车尾,所以,乙车车头与甲车乘客在这段时间内所走的路程之和应恰等于乙车车身的长度,即:乙车车长就等于甲、乙两车在14秒内所走的路程之和.解:10+15×14=350米答:乙车的车长为350米.例5、某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟分析与解:解这类应用题,首先应明确几个概念:列车通过隧道指的是从车头进入隧道算起到车尾离开隧道为止.因此,这个过程中列车所走的路程等于车长加隧道长;两车相遇,错车而过指的是从两个列车的车头相遇算起到他们的车尾分开为止,这个过程实际上是一个以车头的相遇点为起点的相背运动问题,这两个列车在这段时间里所走的路程之和就等于他们的车长之和.因此,错车时间就等于车长之和除以速度之和;列车通过250米的隧道用25秒,通过210米长的隧道用23秒,所以列车行驶的路程为250—210米时,所用的时间为25—23秒.由此可求得列车的车速为250—210÷25—23=20米/秒.再根据前面的分析可知:列车在25秒内所走的路程等于隧道长加上车长,因此,这个列车的车长为20×25—250=250米,从而可求出错车时间;解:根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20米/秒,某列车的速度为:250-210÷25-23=40÷2=20米/秒某列车的车长为:20×25-250=500-250=250米两列车的错车时间为:250+150÷20+20=400÷40=10秒.答:错车时间为10秒.例6、甲、乙两人分别从相距260千米的A、B两地同时沿笔直的公路乘车相向而行,各自前往B地、A地;甲每小时行32千米,乙每小时行48千米;甲、乙各有一个对讲机,当他们之间的距离小于20千米时,两人可用对讲机联络;问: 1两人出发后多久可以开始用对讲机联络2他们用对讲机联络后,经过多长时间相遇3他们可用对讲机联络多长时间第四届希望杯试题分析与解:1260-20÷32+48=3小时;220÷32+48=小时;3从甲、乙相遇到他们第二次相距20千米也用小时.所以他们一共可用对讲机联络+=小时;例7、甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,问两次相遇点相距多少千米分析与解:甲、乙两车共同走完一个AB全程时,乙车走了64千米,从上图可以看出:它们到第二次相遇时共走了3个AB全程,因此,我们可以理解为乙车共走了3个64千米,再由上图可知:减去一个48千米后,正好等于一个AB全程.解:①AB间的距离是64×3-48=192-48=144千米.②两次相遇点的距离为144—48-64=32千米.答:两次相遇点的距离为32千米.※例8赵伯伯为锻炼身体,每天步行3小时,他先走平路,然后上山,最后又回沿原路返回,假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少米第五届希望杯试题分析与解:赵伯伯上山和下山走的路程相同,上山速度为3千米,下山速度为6千米,上山与下山的平均速度是多少这是一个易错题可以通过“设数”的方法让四年级同学明白;设上山路程为6千米,想一想为什么设6千米还可以设几千米上山时间为:6÷3=2时下山时间为:6÷6=1时上下山的平均速度为:6+6÷2+1=4千米又因为平路的速度也为4千米/小时,所以赵伯伯每天锻炼走的路程为:4×3=12千米;挑战自我1、小明、小华和小新三人家在同一条街道上,小明家在小华家西300米处,小新家在小明家东400米处,则小华家和小新家相距多少米第三届希望杯试题答案:画图得100米;2、小明家离学校2千米,小光家离学校3千米,小明和小光的家相距多少千米第一届希望杯试题答案:1千米与5千米之间;分类讨论,一题多解;当小明家与小光家在同一侧时,距离最近为1千米;当小明家与小光家方向相反时,距离最远为5千米;但是小明和小光家可能不在一条直线上,所以小明与小光家的距离应在1千米至5千米之间;3、甲乙两个港口相距400千米,一艘轮船从甲港顺流而下,20小时可到达乙港;已知顺水船速是逆水船速的2倍;有一次,这艘船在由甲港驶向乙港途中遇到突发事件,反向航行一段距离后,再掉头驶向乙港,结果晚到9个小时;轮船的这次航行比正常情况多行驶了多少千米第四届希望杯试题答案:顺水速度是400÷20=20千米逆水速度是20÷2=10千米反向航行一段距离顺水时用的时间是9÷2+1=3小时比正常情况多行驶的路程是20×3×2=120千米4、两列相同而行的火车恰好在某站台相遇;如果甲列车长225米,每秒行驶25米,乙列车每秒行驶20米,甲、乙两列车错车时间是9秒;求:1乙列车长多少米2甲列车通过这个站台用多少秒3坐在甲列车上的小明看到乙列车通过用了多少秒第二届希望杯试题答案:1乙列车长180米2甲列车通过这个站台用多9秒3坐在甲列车上的小明看到乙列车通过用了4秒5、甲、乙两车同时从A、B两地沿相同的方向行驶,甲车如果每小时行60千米,则5小时可追上前方的乙车;如果每小时行驶70千米,则3小时可追上前方的乙车;由上可知,乙车每小时行驶多少千米第三届希望杯试题答案:乙车每小时行驶45千米;综合练习1、甲、乙两车分别从相距240千米的A、B两城同时出发,相向而行,已知甲车到达B城需4小时,乙车到达A城需6小时,问:两车出发后多长时间相遇答案:240÷240÷4+240÷6=小时.2、小明家在学校东400米处,小红加在小明家的西200米处,那么小红家距离学校多少米第三届希望杯试题答案:画图解题,小红家距学校200米;3、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离答案:①A、B两地间的距离: 4×3—3=9千米.②两次相遇点的距离:9-4-3=2千米.4、周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米;已知林荫道周长是480米,他们从同一地点同时背向而行;在他们第10次相遇后,王老师再走多少米就回到出发点第四届希望杯试题答案:几分钟相遇一次:480÷55+65=4分钟10次相遇共用:4×10=40分钟王老师40分钟行了:55×40=2200米2200÷480=4圈……280米所以正好走了4圈还多280米,480-280=200米答:再走200米回到出发点;5、“希望号”和“奥运号”两列火车相向而行,“希望号”车的车身长280米,“奥运号”车的车身长385米,坐在“希望号”车上的小明看见“奥运号”车驶过的时间是11秒,求:1“希望号”和“奥运号”车的速度和 2坐在“奥运号”车上的小强看见“希望号”车驶过的时间3两列火车的会车的时间答案:1速度和35米/秒;28秒;3会车时间19秒;5.小张与小王分别从甲、乙两村同时出发,在两村之间往返行走到达另一村后就马上返回,他们在离甲村千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远相遇指迎面相遇解:画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了×3=千米.从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是=千米.每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离3+2+2倍的行程.其中张走了×7=千米,=++千米.就知道第四次相遇处,离乙村千米.答:第四次相遇地点离乙村1千米.35甲、乙、丙是一条路上的三个车站,乙站到甲、丙两站的距离相等,小强和小明同时分别从甲、丙两站出发相向而行,小强经过乙站100米时与小明相遇,然后两人又继续前进,小强走到丙站立即返回,经过乙站300米时又追上小明,问:甲、乙两站的距离是多少米先画图如下:分析与解:结合上图,我们可以把上述运动分为两个阶段来考察:①第一阶段——从出发到二人相遇:小强走的路程=一个甲、乙距离+100米,小明走的路程=一个甲、乙距离-100米;②第二阶段——从他们相遇到小强追上小明,小强走的路程=2个甲、乙距离-100米+300米=2个甲、乙距离+200米, 小明走的路程=100+300=400米;从小强在两个阶段所走的路程可以看出:小强在第二阶段所走的路是第一阶段的2倍,所以,小明第二阶段所走的路也是第一阶段的2倍,即第一阶段应走400÷2=200米,从而可求出甲、乙之间的距离为200+100=300米;47、现在是3点,什么时候时针与分针第一次重合分析与解:3点时分针指12,时针指3;分针在时针后5×3=15个格.48、有一座时钟现在显示10时整;那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合解:10时整,分针与时针距离是10格,需要追击的距离是60-10格,分针走60格,时针走5格,即分针走1格,时针走5/60=1/12格;第一次重合经过 60-10/1-1/12=546/11分第二次重合再经过60/1-1/12=655/11分答:经过546/11分钟,分针与时针第一次重合;再经过655/11分钟,分针与时针第二次重合; 2点钟以后,什么时刻分针与时针第一次成直角分析与解:在2点整时,分针落后时针5×2=10个格,当分针与时针第一次成直角时,分针超过时针60×90÷360=15个格,因此在这段时间内分针要比时针多走10+15=25个格,所以到达这一时刻所用的时间为:49、在9点与10点之间的什么时刻,分针与时针在一条直线上分析与解:分两种情况进行讨论;①分针与时针的夹角为180°角:当分针与时针的夹角为180°角时,分针落后时针60×180÷360=30个格,而在9点整时,分针落后时针5×9=45个格.因此,在这段时间内分针要比时针多走45-30=15个格,而每分钟分针比时针多走分钟;②分针与时针的夹角为0°,即分针与时针重合:9点整时,分针落后时针5×9=45个格,而当分针与时针重合时,分针要比时针多走45个格,因此到达这一时刻所用的时间为:45÷1-1/12=49又1/11分钟19、甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A、B两地的距离;解:先画图如下:方法一若设甲、乙二人相遇地点为C,甲追及乙的地点为D,则由题意可知甲从A到C用6分钟.而从A到D则用26分钟,因此,甲走C到D之间的路程时,所用时间应为:26-6=20分;同时,由上图可知,C、D间的路程等于BC加BD.即等于乙在6分钟内所走的路程与在26分钟内所走的路程之和,为50×26+6=1600米.所以,甲的速度为1600÷20=80米/分,由此可求出A、B间的距离;50×26+6÷26-6=50×32÷20=80米/分80+50×6=130×6=780米答:A、B间的距离为780米;方法二设甲的速度是x米/分钟那么有x-50×26=x+50×6解得x=80所以两地距离为80+50×6=780米5.小张与小王分别从甲、乙两村同时出发,在两村之间往返行走到达另一村后就马上返回,他们在离甲村千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远相遇指迎面相遇解:画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了×3=千米.从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是=千米.每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离3+2+2倍的行程.其中张走了×7=千米,=++千米.就知道第四次相遇处,离乙村千米.答:第四次相遇地点离乙村1千米.例20 从甲市到乙市有一条公路,它分成三段.在第一段上,汽车速度是每小时40千米,在第二段上,汽车速度是每小时90千米,在第三段上,汽车速度是每小时50千米.已知第一段公路的长恰好是第三段的2倍.现有两辆汽车分别从甲、乙两市同时出发,相向而行.1小时20分后,在第二段的1/3处从甲方到乙方向的1/3处相遇,那么,甲、乙两市相距多少千米解一:画出如下示意图:当从乙城出发的汽车走完第三段到C时,从甲城出发的汽车走完第一段的到达D处,这样,D把第一段分成两部分两车在第二段的1/3处相遇,水明甲城汽车从D到E走完第一段,与乙城汽车走完第二段的1/3从C到F,所用时间相同,设这一时间为一份,一小时20分相当于因此就知道,汽车在第一段需要第二段需要 30×3=90分钟;甲、乙两市距离是答:甲、乙两市相距185千米.把每辆车从出发到相遇所走的行程都分成三段,而两车逐段所用时间都相应地一样.这样通过“所用时间”使各段之间建立了换算关系.这是一种典型的方法.例8、例13也是类似思路,仅仅是问题简单些.还可以用“比例分配”方法求出各段所用时间.解二:走第一段的2/5,与走第三段时间一样就得出第一段所用时间∶第三段所用时间=5∶2.D至E与C至F所用时间一样,就是走第一段的3/5与走第二段的1/3所用时间一样;第一段所用时间∶第二段所用时间=5∶9.因此,三段路程所用时间的比是:5∶9∶2.行程问题三相遇问题是指两个物体在行进过程中相向而行,然后在途中某点相遇的行程问题;其主要数量关系式为:总路程=速度和×相遇时间追及问题是指两个物体在行进过程中同向而行,快行者从后面追上慢行者的行程问题;其主要数量关系式为:路程差=速度差×追及时间例1 姐姐放学回家,以每分钟80米的速度步行回家,12分钟后妹妹骑车以每分钟240米的速度从学校往家中骑,经过几分钟妹妹可以追上姐姐分析:经过12分钟,姐姐到达A地,妹妹骑车回家;如下图所示:例2 一辆公共汽车和一辆小轿车同时从相距360千米的两地相向而行,公共汽车每小时行35千米,小轿车每小时行55千米,几小时后两车相距90千米分析:两车从相距360千米的两地同时出发相向而行,距离逐渐缩短,在相遇前某一时刻两车相距90千米;如下图这时两车共行的路程为360-90=270千米值得注意的是,当两车相遇后继续行驶时,两车之间的距离又从零逐渐增大,到某一时刻,两车再一次相距90千米;如下图所示例3 兄弟两人骑自行车同时从学校出发回家;哥哥每小时行15千米,弟弟每小时行10千米;出发半个小时后哥哥因事返回学校,到学校后又耽搁了1小时,然后动身去追弟弟;当哥哥追上弟弟时,距学校多少千米分析:本题可以分段考虑,从开始一步步分析;出发半个小时后,哥哥因事返回学校,在这个过程中哥哥和弟弟各行了1小时,到学校后哥哥又耽搁了1小时,这时弟弟又行了1小时;因此可以看作当哥哥准备从学校追弟弟时,弟弟共行了2小时,弟弟2小时所行的路程就是哥哥与弟弟的路程差,由此可求出追及时间;例4 小张、小明两人同时从甲、乙两地出发相向而行,两人在离甲地40米处第一次相遇,相遇后两人仍以原速继续行驶,并且在各自到达对方出发点后立即沿原路返回,途中两人在距乙地15米处第二次相遇;甲、乙两地相距多少米分析:根据题意画图如下例5 在周长为400米的圆形跑道的一条直径的两端,甲、乙两人分别以每秒6米和每秒4米的速度骑自行车同时同向出发顺时针沿圆周行驶,经过多长时间,甲第二次追上乙分析:如图,在出发的时候,甲、乙两人相距半个周长,根据路程差÷速度差=追及时间,就可求出甲第一次追上乙的时间;当甲追上乙后,两人就可以看作同时同地出发,同向而行;甲要追上乙,就要比乙多骑一圈400米,从而可求出甲第二次追上乙的时间;例6 客车、货车、卡车三辆车,客车每小时行60千米,货车每小时行50千米,卡车每小时行55千米;客车、货车从东镇,卡车从西镇,同时相向而行,卡车遇上客车后,10小时后又遇上了货车;东西两镇相距多少千米分析:根据题意画图当卡车与客车在A点相遇时,而货车行到B点,10小时后,卡车又遇到货车,说明在10小时内卡车与货车合行路程是卡车与客车相遇时客车与货车所行的路程差;客车与货车相差AB的路程所用的时间就是卡车与客车的相遇时间;例7 商场的自动扶梯以匀速由下往上行驶,两个孩子嫌扶梯走得太慢,于是在行驶的扶梯上,男孩每秒钟向上走2个梯级,女孩每2秒向上走3个梯级;结果男孩用40秒钟到达,女孩用50秒钟到达;则当该扶梯静止时,可看到的扶梯级有:A.80级 B.100级 C.120级 D.140级 2005年中央真题解析;这是一个典型的行程问题的变型,总路程为“扶梯静止时可看到的扶梯级”,速度为“男孩或女孩每个单位向上运动的级数”,如果设电梯匀速时的速度为X,则可列方程如下, X+2×40=X+3/2×50解得 X= 也即扶梯静止时可看到的扶梯级数=2+×40=100所以,答案为B;例8 姐弟俩出游,弟弟先走一步,每分钟走40米,走了80米后姐姐去追他;姐姐每分钟走60米,姐姐带的小狗每分钟跑150米;小狗追上了弟弟又转去找姐姐,碰上了姐姐又转去追弟弟,这样跑来跑去,直到姐弟相遇小狗才停下来;问小狗共跑了多少米A.600米 B.800米 C.1200米 D.1600米 2003年中央A类解析:此题将追及问题和一般路程问题结合起来,是一道经典习题;首先求姐姐多少时间可以追上弟弟,速度差=60米/分-40米/=20米/分,追击距离=80米,所以,姐姐只要80米÷20米/分=4分种即可追上弟弟,在这4种内,小狗一直处于运动状态,所以小狗跑的路程=150米/分×4分=600米;所以,正确答案为A;练习:甲乙两人从相距50千米的两地同时出发,相向而行;甲每小时行6千米,乙每小时行4千米,甲带着一只狗,狗每小时跑12千米,这只狗同甲一道出发,;碰到乙的时候,它就掉头朝甲这边跑,碰到甲时又往乙那边跑,直到两人相遇,这只狗一共跑了多少千米。
人教版七年级数学下册专题训练10-多变的行程问题试题(含答案)
10 多变的行程问题阅读与思考行程问题的三要素是:距离(s )、速度(v )、时间(t ),基本关系是:s vt =,s v t =,st v=. 行程问题按运动方向可分为相遇问题、追及问题;按运动路线可分为直线形问题、环形问题等.其中相遇问题、追及问题是最基本的类型,它们的特点与常用的等量关系如下:1.相遇问题其特点是:两人(或物)从两地沿同一路线相向而行,而最终相遇,一般地,甲行的路程+乙行的路程=两地之间的距离.2.追及问题其特点是:两人(或物)沿同一路线、同一方向运动,由于位置或者出发时间不同,造成一前一后,又因为速度的差异使得后者最终能追及前者.一般地,快者行的路程-慢者行的路程=两地之间的距离.例题与求解【例1】 在公路上,汽车A 、B 、C 分别以80千米/时,70千米/时,50千米/时的速度匀速行驶,A 从甲站开往乙站,同时,B 、C 从乙站开往甲站.A 在与B 相遇后两小时又与C 相遇,则甲、乙两站相距__________千米.(“希望杯”竞赛试题)解题思路:本例为直线上的相遇问题,可依据时间关系列方程.【例2】 如图,某人沿着边长为90来的正方形,按A →B →C →D →A …方向,甲从A 以65米/分的速度,乙从B 以72米/分的速度行走,当乙第一次追上甲时在正方形的( ).A .AB 边上B .DA 边上C .BC 边上D .CD 边上乙甲BCAD(安徽省竞赛试题)⨯=(米)处.解题思路:本例是一个特殊的环形追及问题,注意甲实际在乙的前面390270【例3】亚州铁人三项赛在徐州市风光秀丽的云龙湖畔举行.比赛程序是:运动员先同时下水游泳1.5千米到第一换项点,在第一换项点整理服装后,接着骑自行车40千米到第二换项点,再跑步10千米到终点.下表是亚洲铁人三项赛女子组(19岁以下)三名运动员在比赛中的成绩(游泳成绩即游泳所用时间,其他类推,表内时间单位为秒).(1)填空(精确到0.01):第191号运动员骑自行车的平均速度是__________米/秒;第194号运动员骑自行车的平均速度是__________米/秒;第195号运动员骑自行车的平均速摩是__________米/秒;(2)如果运动员骑自行车都是匀速的,那么在骑自行车的途中,191号运动员会追上195号或194号吗?如果会,那么追上时离第一换项点有多少米(精确到0.01)?如果不会,为什么?(3)如果运动员长跑也都是匀速的,那么在长跑途中这三名运动员有可能某人追上某人吗?为什么?(江苏省徐州市中考试题)解题思路:从表格中获取信息,注意速度、时间的比较是解本例的关键.【例4】一小船由A港到B港顺流需行6小时,由B港到A港逆流需行8小时.一天,小船从早晨6点由A港出发顺流行至B港时,发现一救生圈在途中掉落在水中,立刻返回,1小时后找到救生圈,问:(1)若小船按水流速度由A港漂流到B港时需多少小时?(2)救生圈是何时掉人水中的?(天津市中考试题)解题思路:要求小船按水流速度由A港漂流到B港时所需时间,需求两港间的距离及水流速度,考虑增设辅助未知数.【例5】某乡镇小学到县城参观,规定汽车从县城出发于上午7时到达学校后,接参观的师生立即出发去县城,由于汽车在赴校的途中发生故障,不得不停车修理,学校师生等到7时10分,仍未见汽车来接,就步行走向县城.在行进途中遇到了已经修理好的汽车,立即上车赶赴县城,结果比预定到达县城的时间晚了半小时,如果汽车的速度是步行速度的6倍,汽车在途中排除故障花了多少时间?(山东省中考试题)解题思路:从题中比原定时间晚到半小时入手,选好未知量,找出汽车所用时间与师生步赶所用时间之间的关系.依时间、速度和路程之间的关系列出方程.【例6】甲、乙两人分别从A,B两地同时出发,在距离B地6千米处相遇,相遇后两人又继续按原方向、原速度前进,当他们分别到达B地、A地后,立刻返回,又在距A地4千米处相遇,求A,B两地相距多少千米?(“祖冲之杯”邀请赛试题)解题思路:本例有多种解法,可借助图形辅助分析.能力训练A级1.某人以4千米/小时的速度步行由甲地到乙地,然后又以6千米/小时的速度从乙地返回甲地,那么某人往返一次的平均速度是__________千米/小时.2.汽车以每小时72千米的速度笔直地开向寂静的山谷,驾驶员按一声喇叭,4秒后听到回响,已知声音的速度是每秒340米,听到回响时汽车离山谷的距离是__________米.(江苏省竞赛试题)3.甲、乙两地相距70千米,有两辆汽车同时从两地相向出发,并连续往返于甲、乙两地,从甲地开出的为第一辆汽车,每小时行30千米,从乙地开出的为第二辆汽车,每小时行40千米.当从甲地开出的第一辆汽车第二次从甲地出发后与第二辆汽车相遇,这两辆汽车分别行驶了__________千米和__________千米.(武汉市选拔赛试题)4.上午9时整,时计与分针成直角,那么下一次时针与分针成直角的时间是().A.9时30分B.10时5分C.10时5511分D.9时83211分(“希望杯”竞赛试题)5.甲、乙两人同时从A地到B地,如果乙的速度v保持不变,而甲先用2v的速度到达中点,再用12v的速度到达B地,则下列结论中正确的是().A.甲、乙同时到达B地B.甲先到B地C.乙先到B地D.无法确定谁先到6.甲与乙比赛登楼,他俩从36层的长江大厦底层出发,当甲到达6楼时,乙刚到达5楼,按此速度,当甲到达顶层时,乙可到达().A.31层B.30层C.29层D.28层7.如图,甲、乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们的第2007次相遇在边()上.A.AB B.BC C.CD D.DA乙甲BAD(湖北省黄冈市竞赛试题)8.甲、乙两列火车同时从相距120千米的两地相向行驶,甲速为每小时84千米,乙速为每小时60千米,则当两车相距24千米时行驶的时间为( ).A .40分钟B .1小时C .1小时或20分钟D .40分钟或1小时9.有一个只允许单向通过的窄道口,通常情况下,每分钟可以通过9人,一天王老师到达道口时,发现由于拥挤,每分钟只能有3人通过道口,此时自己前面还有36人等待通过(假定先到的先过,王老师过道口的时间忽略不计).通过道口后,还需7分钟到达学校:(1)此时,若绕道而行,要15分钟到达学校,从节省时间考虑,王老师应绕道去学校,还是选择通过拥挤的道口去学校?(2)若在王老师等人的维持下,几分钟后,秩序恢复正常(维持秩序期间,每分钟仍有3人通过道口),结果王老师比拥挤的情况下提前了6分钟通过逬口,求维持秩序的时间.(江西省中考试题)10.某人从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,若每小时行18千米,则比火车开车时间迟到15分钟,现在此人打算在火车开车前10分钟到达火车站,求此人此时骑摩托车的速度应该是多少?(湖北省孝感市竞赛试题)11.铁路旁的一条平行小路上有一行人与一骑车人同时向东行进,行人速度为 3.6千米/小时,骑车人速度为16.8千米/小时,如果有一列火车从他们背后开过来,它通过行人用22秒,通过骑车人用26秒,问这列火车的车身长为多少米?(河北省竞赛试题)B 级1.甲、乙两人从两地同时出发,若相向而行,a 小时相遇;若同向而行,则b 小时甲追及乙,那么甲、乙两人的速度之比为__________.(江苏省竞赛试题)2.甲、乙两列客车的长分别为150米和200米,它们相向行驶在平行的轨道上,已知甲车上某乘客测得乙车在他窗口外经过的时间是10秒,那么乙车上的乘客看见甲车在他窗口外经过的时间是__________秒.(“希望杯”邀请赛试题)3.某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船4小时,已知船在静水中的速度为每小时7.5千米,水流速度为每小时2.5千米,若A ,C 两地的距离为10千米,则A ,B 的距离为__________千米.(重庆市竞赛试题)4.某段公路由上坡、平坡、下坡三个等长的路段组成,已知一辆汽车在三个路段上行驶的平均速度分别为1v ,2v ,3v .则该汽车在这段公路上行驶的平均速度为( ).A .1233v v v ++ B .1231113v v v ++C .1231111v v v ++D .1233111v v v ++(天津市竞赛试题)5.静水中航行,甲船的速度比乙船快,在水流速度不为零的河流中,甲、乙两船同时从A 港出发,同向航行1小时后立即返航,那么( ).A .甲船先返回A 港B .乙船先返回A 港C.甲、乙两船同时返回A港D.不能确定哪条船先返回A港(《时代学习报》数学文化节试题)6.某商场有一部自动扶梯匀速由下而上运动,甲、乙二人都急于上楼办事,因此在乘扶梯的同时匀速登梯,甲登了55级后到达楼上,乙登梯速度是甲的2倍(单位时间内乙登楼级数是甲的2倍),他登了60级后到达楼上,那么,由楼下到楼上的自动扶梯级数为__________.(北京市竞赛试题)7.甲、乙两同学从400米的环形跑道上的某一点背向出发,分别以每秒2米和每秒3米的速度慢跑.6秒钟后,一只小狗从甲处以每秒6米的速度向乙跑,遇到乙后,又从乙处以每秒6米的速度向甲跑,如此往返直至甲、乙第一次相遇,那么小狗共跑了__________米.8.某风景区的旅游线路如右图所示,其中A为入口处,B,C,D为风景点,E为三岔路的交汇点,图中所给的数据为相应两点间的路程(单位:千米).某游客从A处出发,以每小时2千米的速度步行游览,每到一个景点逗留的时间均为半小时.(1)若该游客沿跨线“A→D→C→E→A”游览回到A处,共用去3小时,求C,E两点间的路程.(2)若该游客从A处出发,打算在最短时间内游完三个景点并返回A处(仍按上述步行速度和在景点的逗留时间,不考虑其他因素),请你为他设计一个步行路线,并对路线设计的合理性予以说明.1.311.20.41.1EDCBA(江苏省竞赛试题)9.某人沿电车路行走,每12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来,假定此人和电车都是匀速前进,则电车是每隔多少分钟从起点站开出一辆?(湖北省黄冈市竞赛试题)10.如图,甲、乙两人分别在A,B两地同时相向而行,于E处相遇后,甲继续向B地行走,乙则休息了14分钟,再继续向A地行走,甲和乙到达B和A后立即折返,仍在E处相遇,已知甲每分钟行走60米,乙每分钟行走80米,则A和B两地相距多少千米?A BE乙(“华罗庚金杯”竞赛试题)专题 10 多变的行程问题例1 1950 提示:设甲乙两站相距S 千米,则280708050S S+=++,解得S=1950千米例2 B 提示:乙第一次追上甲用了2707分钟,270672736029077⨯=⨯+⨯ 例3 ⑴ 8.12 7.03 7.48⑵ 191号能追上194号,这时离第一换项点有24037.96米191号不会追上195号 ⑶ 从第二换项点出发时,195号比191号提前216秒,且长跑速度比191号快,所以195号在长跑时始 终在191号前面,而191号在长跑时始终在194前面,故在长跑时,谁也追不上谁.例4 ⑴设小船在静水中的速度为α,水流的速度为b ,由题意,得6(a +b )=8(a -b ),解得a =7b .故小船按水流速度由A 港漂流到B 港所需的时间为6()6(7)4848a b b b bb b b++===小时 ⑵ 设小船行驶x 小时后救生圈掉入水中,则小船找到救生圈即小船与救生圈相遇,他们行驶的路程如图所示:由题意得(6-x +1)b +(a -b )×1=(6-x )(a +b ),将a =7b 代入上式,解得x =5 故救生圈是在上午11点掉入水中的.例5 如图,设点A为县城所在地,点B为学校所在地,但C为师生途中与汽车相遇之处.汽车晚到的的半小时一方面是因晚出发了10分钟,另一方面是从B到C由于步行代替乘车而多花了20分钟.若设汽车从C到B需要X分钟,则师生从B到C应花(x+20)分钟,由于汽车由C到B与师生从B到C的路程相等由时间与速度成反比可得1206xx=+解得x=4故排除故障花的时间为4×2+30=38分钟例6 解法一:第一次相遇时,甲乙两人所走的路程之和,正好是AB两地相距的路程,即当甲乙合走完AB间的全部路程时,乙走了6千米.第二次相遇时,两人合走的路程恰为两地间距离的3倍(如图,图中实线表示甲走的路程,虚线表示乙走的路程),因此,这时乙走的路程应为1836=⨯千米.考虑到乙从B 地走到A 地后又返回了4千米,所以A,B 两地间的距离为18-4=14千米.解法二:甲、乙两人同时出发,相向而行,到相遇时两人所走时间相等,又因为两人都做匀速运动,应有:两人速度之比等于他们所走路程之比,且相同时间走过的路程亦成正比例.到第一次相遇,甲走了(全程-6)千米,乙走了6千米;到第二次相遇,甲走了(2×全程-4)千米,乙走了(全程+4)千米. 设全程为S ,则可列方程44266+-=-S S S . 解得01421==S S , (舍去).故A,B 两地相距14千米.解法三:设全程为S 千米,甲、乙两人速度分别为21,v v v, 则⎪⎪⎩⎪⎪⎨⎧+=-=-②①212144266v S v S v v S ②①÷得46426+=--S S S ,解得014==S S 或 (舍去) 故A,B 两地相距14千米.A 级1. 4.82.6403. 150 200提示:设第一辆车行驶了(140十x )千米,则第二辆车行驶了()⎪⎭⎫ ⎝⎛++=⨯+x x 34324614034140千米,由题意得 70343246=⎪⎭⎫ ⎝⎛++x x ,解得10=x . 4.D 提示:因为分针每分钟转 6,时针每分钟转⎪⎭⎫ ⎝⎛21,设两针从上午9时开始,x 分钟后两针成直角,由题意知3602190906=⎪⎭⎫ ⎝⎛-++x x ,解得11832=x .5.C6.C 提示:45==乙甲乙甲V V S S . 7. C 8. D 9.(1)因15197336>=+,故王老师应选择绕道去学校. (2)设维持秩序时间为t, 则69336336=⎪⎭⎫ ⎝⎛-+-t t ,解得t=3(分钟). 10.设此人从家里出发到火车开车的时间为x 小时,由题意得⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-601518601530x x ,解得x =1. 此人打算在火车前10分钟到达火车站,骑摩托车的速度应为276010160151306010601530=-⎪⎭⎫ ⎝⎛-⨯=-⎪⎭⎫ ⎝⎛-⨯x x 千米/时.11.设火车的速度为x 米/秒,由题意得()()263221⨯-=⨯-x x ,解得x =14.故火车的车身长为(14-1)×22=286米.B 级 1.ab a b -+ 2.7.5 提示:先求出甲、乙两车速度和为2010200=米/秒. 3. 20或320 4. D 提示:设三个等长路段的路程均为S ,则平均速度为⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛++=++321321321111311133v v v v v v S S v S v S v S S . 5.D 提示:考虑两船同时先顺水航行的情形,设想乙船在静水中的速度接近水流的速度,则它将迟迟难以返航.而甲先返回A 港,类似的可考虑两船同时先逆水航行的情形.6. 667. 4448. (1) CE=0.6千米.(2)基本的行走路线有两条:一是A→D→C→B→E→A(或A→E→B→C→D→A ),总时间为4小时;二是A→D→C→E→B→E→A(或A→E→B→E→C→D→A),总时间为3.9小时.9.设电车速度为v ,人速为x ,电车每隔t 分钟开出一辆,则每两辆电车之间的距离vt ,对于迎面来的电车,这个距离是人与电车共同走4分钟完成的,对于后面追上的电车,两辆电车之间的距离是电车在12分钟追上起始时的距离,由题意得x v vt x v 121244-==+,解得t =6分钟.10. AE:BE=60:80=3:4,设AE=3x , BE= 4x ,从而AB= 7x (米).由题意得1480376047++=+x x x x ,解得x =240,故AB=7x =7×240=1680米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学(七年级)(下)应用题专题训练——行程问题(1课时)
学情分析:
一般的学生对于应用题总有一种恐惧感,提到应用题总认为很难,不敢轻易尝试!
教材分析:
从实例出发,讨论应用题的解法,并注重渗透建模思想、类比思想以及化归思想等,培养学生运用数学知识解决实际问题的意识和能力。
教学目标:
1、 尝试对应用题进行分类,使学生能做到举一反三;
2、 会根据具体问题中的数量关系列方程或方程组并求解,能根据问题的实际意义检验所锝结果
是否合理;
3、 通过实践与探索,克服恐惧心理,体会建模思想、类比思想、以及化归思想等,提高学生分
析和解决实际问题的能力,增强合作意识。
教学的重点及难点:
重点:
1、 尝试对所见过的应用题进行分类;
2、 应用方程或方程组解决现实生活中的应用题。
难点:
1、 列方程或方程组解实际问题;
2、 根据题目情景,编写应用题。
教学设计:
一、
复习提问
1、 我们见过的应用题有哪些类型?请回忆并尽可能多地写出来。
(行程问题、工程问题、经费问题、利润问题、数位问题、浓度问题等等) 2、 解应用题的一般步骤有那些?
(①审题;②设元;③列方程或方程组;④解方程或方程组;⑤检验;⑥作答。
)
二、“行程问题”专题训练
1、 概念回顾: ①公式:速度=
时间路程, 路程=速度╳时间, 时间=速度
路程
②同向而行(追及问题)及相向而行(相遇问题),同时出发与不同时出发
2、 例题回顾
①、甲、乙两人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就可以追上乙;如果甲
让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,求两人每秒钟各跑多少米?
②、一列快车从甲地开往乙地需5小时,一列慢车从乙地开往甲地需要的时间比快车多
5
1
小时.两列火车同时从两地相对开出,2小时后,慢车在一个车站停了下来,快车继续行驶96千米与慢车相遇.问甲、乙两地相距多少千米?
3、 学生练习
某同学在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,
涂黑部分表示被墨水覆盖的若干文字)请将这道作业补充完整,列出相应的
三、小结:
见到题目要先分清它属于哪一种类型,比如本课的行程问题,抓住行程问题的特点: 相遇问题:路程之和=总路程 追及问题:路程之差=相距路程
把相应的等量关系转换成方程或方程组进行求解。
四、作业:
①、甲、乙两站相距245千米,一列慢车由甲站开出,每小时行驶50千米;同时,一列快车由
乙站开出,每小时行驶70千米;两车同向而行,快车在慢车的后面,经过几小时快车可以追上慢车?
②、汽车从甲地到乙地,若每小时行驶45千米,就要延误30分钟到达;若每小时行驶50
千米,那就可以提前30分钟到达,求甲、乙两地之间的距离及原计划行驶的时间?
2005-5-28。